
On the Complexity of Cryptographic Groups
and Generic Group Models

Cong Zhang* Keyu Ji∗ Taiyu Wang∗ Bingsheng Zhang∗

Hong-Sheng Zhou† Xin Wang‡ Kui Ren∗

September 18, 2024

Abstract

Ever since the seminal work of Diffie and Hellman, cryptographic (cyclic) groups have served as a fun-
damental building block for constructing cryptographic schemes and protocols. The security of these con-
structions can often be based on the hardness of (cyclic) group-based computational assumptions. Then,
the generic group model (GGM) has been studied as an idealized model (Shoup, EuroCrypt 1997), which
justifies the hardness of many (cyclic) group-based assumptions and shows the limits of some group-based
cryptosystems. We stress that, the importance of the length of group encoding, either in a concrete group-
based construction or assumption, or in the GGM, has not been studied.

In this work, we initiate a systematic study on the complexity of cryptographic groups and generic
group models, varying in different lengths of group encodings, and demonstrate evidences that “the length
matters”. More concretely, we have the following results:

• We show that there is no black-box/relativizing reduction from the CDH-secure groups (i.e., over
such groups, the computational Diffie-Hellman assumption holds) with shorter encodings, to the
CDH-secure groups with longer encodings, within the same security parameter. More specifically,
given any arbitrary longer CDH-secure group, it is impossible to generically shorten the group en-
coding and obtain a shorter CDH-secure group within the same group order.

• We show that there is a strict hierarchy of the GGMs with different lengths of encodings. That is, in
the framework of indifferentiability, the shorter GGM is strictly stronger than the longer ones, even in
the presence of computationally bounded adversaries.
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1 Introduction

Provable security and black-box reduction. Over the past few decades, provable security has become a
cornerstone of modern cryptography. As a key technique in this field, reductions are used to justify the
security of a scheme based on a cryptographic primitive. Essentially, given an adversary that allegedly
breaks the scheme, one can transform it into an adversary that successfully attacks the underlying primitive.
Our focus is largely on black-box reductions, where the primitive and adversary are treated as black boxes,
interacting only through their input-output behavior without examining their internal structure.

In the field of group-based cryptography, introduced by Diffie and Hellman in their seminal work [DH76],
reductions are built on the security of cryptographic groups. This foundation has driven the community to
explore cryptographic groups from multiple perspectives.
From an efficiency perspective. In the literature, with few exceptions, group-based cryptosystems are often
built on cryptographic groups in an abstract and black-box manner, which means the underlying groups
can be instantiated by any concrete ones as long as the desired security properties are fulfilled. For instance,
the well-known public key encryption (PKE) scheme, the ElGamal encryption [ElG85], is chosen-plaintext
attack secure (IND-CPA) w.r.t. any concrete prime-order cyclic group in which the decisional Diffie-Hellman
(DDH) assumption holds.

In practice, when aiming for better efficiency in cryptosystems, we typically choose concrete groups with
shorter descriptions. Specifically, ElGamal encryption uses the prime-order subgroup of Z∗p for a prime p,
where each group element typically has a bit-length of 3072 for 128-bit security [Bar20]. Alternatively, ellip-
tic curves are gaining popularity, with NIST SP 800-186 [CMR+23] recommending curves like Curve25519,
which achieves 128-bit security with a 255-bit prime modulus. With standard point compression, each
Curve25519 group element can be encoded in 256 bits.

This highlights a critical yet subtle issue that has long been overlooked by the community. That is,
the bit-length of a group element is not explicitly taken into account when the group is utilized in a black-box
manner. Note, in real-world applications, groups with shorter descriptions are often preferred to minimize
communication and computation overhead. Hereby, we ask the following questions: Does the length of the
group description matter when using it in a black-box manner? Is it possible to construct a group with a
shorter description generically from groups with longer descriptions? For notation simplicity, throughout
this work, we will use shorter groups and longer groups, to denote “groups with shorter descriptions” and
“groups with longer descriptions,” respectively.
From a security perspective. Unfortunately, despite the advancement of modern cryptography, to the best of
our knowledge, there is a fundamental limitation in provable security—the inability of establishing uncondi-
tional hardness with respect to a concrete group. In the past decades, researchers have made significant efforts
to explore various ways to demonstrate the hardness of those group-based problems, and one approach is
through the class of generic algorithms.

In essence, generic algorithms do not explore the specific encoding of group elements, but instead treat
them in a generic manner. Studying this class of algorithms is highly motivated, since several well-known
algorithms such as the baby-step/giant-step algorithm [PH78] and Pollard’s rho algorithm [Pol78] fall
within this classification. To formally describe generic algorithms, ever since the initial work by Nechaev [Nec94],
variants of generic group models (GGMs) have been proposed. In Shoup’s GGM [Sho97], the group is con-
ceptualized as a random injective encoding from the additive group ZN into bit strings uniformly sampled
from a set S, where algorithms are allowed to retrieve group encodings and perform group operations,
through oracle access. In Maurer’s GGM [Mau05], the group is modeled as pointers with respect to a state-
ful register, where group encodings are the handles (or the indexes) of the register. Within both models, we
can establish unconditional hardness, thereby validating the security of cryptographic groups.

When it comes to the study of the lengths of group encodings in the GGMs, Maurer, Portmann, and
Zhu [MPZ20] initiate the models varying in the length of the group encoding, and illustrate a partial hierar-
chy of the GGMs, wherein any adversary within the GGM with a longer group encoding (below we denote
it as “the longer GGM” for simplicity) can be converted into an adversary within the GGM with a shorter
group encoding (below we denote it as “the shorter GGM” for simplicity). Despite the partial hierarchy,
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the connection and distinction between the longer GGM and the shorter GGM remains unexplored, which
hinders a comprehensive interpretation and comparison of the numerous positive and negative results in
the GGM.

To deepen our understanding on cryptographic groups, we ask the following question:

Will the longer group/GGM and the shorter group/GGM yield the same complexity?

1.1 Our Results

In this work, we initiate a fine-grained study of cryptographic groups and generic group models with
different lengths of group encodings. Specifically, we give evidences that:

• There is a black-box separation between the shorter CDH-secure groups and the longer CDH-secure
groups with the same security parameter; in other words, given longer CDH-secure groups, one cannot
build a shorter CDH-secure group with the same group order from any standard techniques;

• The shorter GGMs are strictly stronger than the longer GGMs, even in the presence of computationally
bounded adversaries.

To illustrate our findings, we first formalize the notions of groups/GGMs, parameterized by (N,m)1, where
N and m denote the order of the group and the length of the group encodings2, respectively. More con-
cretely, we respectively denote the (parameterized) groups and GGMs as PCDH

N,m and GN,m.
To establish the black-box separation between PCDH

N,m1
and PCDH

N,m2
where m2 is much larger than m1, we

apply the common technique, namely, the relativizing separation. Concretely, we identify an idealized
oracle O and prove that the longer CDH-secure groups exist relative to O, but the shorter one does not
exist. In our strategy, we set this oracle to be the GGM with longer group encodings, namely GN,m2

. At
the first glance, this seems impossible, because the GGM is designed as the idealized model for crypto-
graphic groups, and the GGM justifies the CDH by having the unconditional lower bound of the hardness.
Fortunately, we observe that the analysis becomes subtle when the “length” is involved.

Theorem 1 (Main Theorem, informal). Consider m1 < m2. The shorter CDH-secure groups PCDH
N,m1

are black-box
separated from the longer CDH-secure groups PCDH

N,m2
. Concretely,

• PCDH
N,m1

does not exist in the generic group model GN,m2 ;

• GN,m2
implies PCDH

N,m2
.

Remark 1. Careful readers might wonder what is the relationship between the longer groups and the shorter groups
in which the discrete logarithm problem is assumed to be hard. We emphasize that, due to technical challenges3, the
relationship between the longer and shorter groups remains unknown—neither positively nor negatively established.
We leave it as an open problem.

Next, we turn our attention to understanding the relationship between the GGMs with different lengths
of encoding. Based on the trivial observation that “GN,m1 implies PCDH

N,m1
”, we immediately note that the

shorter GGM, GN,m1 , and the longer GGM, GN,m2 do not yield the same black-box complexity. However,
when attempting to grasp the relationship between two idealized models, solely relying on black-box com-
plexity might not provide us a comprehensive understanding. Essentially, the black-box complexity of a
model only demonstrates the limit of standard-model cryptographic systems it implies and considers the
computationally unbounded adversary.

1Typically N is sufficiently large, and 2m ≥ N .
2By the length of group encoding, we mean that the binary length of the longest canonical representation for all group elements.

For instance, let G’s be a group such that the order is 3 and the canonical representation of the group elements is {00, 111, 0101}, then
the length of G, denoted as lenG, is 4.

3It is still unclear that whether discrete logarithm implies key agreement or not yet.
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Figure 1: Relationship between idealized models.

To supplement this, Zhang and Zhandry [ZZ23] propose an orthogonal perspective to the black-box
complexity, namely the heuristic complexity. It considers computationally bounded adversaries, thereby
excluding the impact of all standard-model cryptosystems on the complexity. We investigate “the length
matters” of GGMs within this new perspective, showing that:

Theorem 2 (Hierarchy of GGMs, informal). In the framework of indifferentiability, the GGM with shorter encod-
ings is strictly stronger than the GGM with longer ones, even against computational bounded adversaries.

To make it clearer, we show our results in Fig. 1. Following the notions in [ZZ23], we provide evidence
that shorter GGMs statistically imply longer ones, whereas the existence of longer GGMs does not compu-
tationally imply the existence of shorter ones. More concretely, there exists an indifferentiable construction
of a longer generic group with oracle access to shorter generic group unconditionally; whereas, as long as
the difference in encoding lengths is sufficiently large, there does not exist an indifferentiable construction
of a shorter generic group from a long generic group, even with additional computational assumptions.

1.2 Interpretation

Below, we offer interpretations of our findings.
From the perspective of black-box separation. Our results will bring the research community a better
understanding of the cryptographic groups and the generic group models, from the perspective of the
black-box reduction/separation4. In literature, generic group models have been frequently used to show
the impossibility of constructing advanced group-based cryptosystems. Examples include identity-based
encryption (IBE) [PRV12, SGS21, Zha22], indistinguishable obfuscation (iO) [MMN16], registration-based
encryption (RBE) [HMQS23], accumulators [SGS20], order revealing encryption (ORE) [ZZ18], verifiable
delay functions (VDF) [RSS20], and digital signature [DHH+21]. Most of the separation results (e.g.,
[MMN16, ZZ18, RSS20, SGS20]) are established in Maurer’s GGM. Meanwhile, Zhandry [Zha22] illustrates
the limits of Maurer’s GGM by proving that there are many natural group-based cryptographic schemes
(e.g., efficient IND-CPA secure PKE) cannot be modeled by Maurer’s GGM, and motivates the line of re-
search, i.e., separations in Shoup’s GGM (e.g., IBE in [Zha22] and RBE in [HMQS23]).

Our results demonstrate the first evidence that the generic group model can also be used to show the
impossibility of constructing plain cryptographic groups, varying in distinct length of group encodings.
Speaking of the “lengths” in cryptographic primitives, prior to our work, Garg et.al. [GMM17] prove that

4In this work, when talking about the black-box reduction/separation, we mean that the fully black-box reduction/separation that
is explicitly defined in [RTV04].
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there is no iO construction from the single-key functional encryption (FE), if the output length of the func-
tions is much shorter than the length of the ciphertexts5. Therefore, we believe that, our result would
motivate the community to study the “lengths” in fundamental primitives (e.g., PKE).

However, when delving deeper into our analysis, we stress that our separation results have a limitation.
That is, we only establish the separations between the shorter CDH-secure groups and the longer CDH-
secure groups under the condition that those groups yield the same security-parameter, which indicates
that our separations are somehow security-parameter dependent.

For readability, we now explain the limitation through a concrete example. Let λ and λ′ be two security
parameters. Let p and p′ be two primes where blog pc = λ and blog p′c = λ′. Let G1 be a CDH-secure
cryptographic group where the group order is p and the length is 2λ. Let G2 be another CDH-secure
cryptographic group where the group order is p′ and the length is 4λ′. Apparently, G1 is the shorter group
and G2 is the longer one. According to our findings, if λ′ ≥ λ, then one cannot generically build G1 from
G2. Unfortunately, if λ′ < λ (say, λ′ = 1

3λ, indicating that 4λ′ = 4
3λ < 2λ), then the relationship between G1

and G2 becomes unclear.
In contrast, most known separations are security-parameter independent. Take the separation of IBE

in Shoup’s GGM [Zha22] for instance; according to Zhandry’s analysis, we have that for any sufficiently
large λ and λ′, one cannot generically build an IBE along with security-parameter λ′, in Shoup’s GGM with
security-parameter λ. In order to establish a complete black-box separation (i.e., in the sense of security-
parameter independent) between shorter groups and longer groups, novel techniques must be developed
to resolve the limitation; we leave this as an important open problem.

Next, we justify that despite of the limitation, our results are interesting and important. First, when it
comes to the problem that building a cryptographic group (say, G1) from another one (say, G2), it is natural
to study the cases that: (1) G1 and G2 are with the same group order; (2) the order of G1 is a factor of
G2

6. Second, to the best of our knowledge, we are aware of no technique that can be used to generically
build G1 from G2 if the group orders of G1 and G2 are distinct and co-prime. Therefore, we stress that our
separations do capture the natural settings.

Moreover, our results serve as the first attempt to pin down the “lengths” problem for a fundamental
primitive (i.e., cryptographic groups), which might open up new research directions (say, the “lengths”
problem for other fundamental primitives). Below, for the ease of exposition, when we say the black-box
separation between groups, we always mean the one with the same security parameter.
From a heuristic perspective. Our results will deepen our understanding of the generic group models from
the perspective of heuristic complexity. Inspired by [MRH04, ZZ23], an idealized model can be interpreted
through two orthogonal perspectives: the black-box complexity and the heuristic complexity, as depicted
in Fig. 1.

For the heuristic aspect, initiated by Maurer et.al. [MRH04] and explicitly studied by Zhang and Zhandry [ZZ23],
we consider the framework of indifferentiability against computationally bounded adversaries, where all
cryptosystems that exist in the standard model are incorporated. Therefore, the perspective of heuristic is
orthogonal to the one of black-box reduction/separation, and understanding the heuristic aspect of various
idealized models is important for the relative security of cryptosystems based on idealized models. We es-
tablish a strict hierarchy of GGMs from this perspective and prove that the shorter GGM is strictly stronger
than the longer one.

In the following, we will give an overview of our approach to comparing the various primitives/models,
varying in different lengths of encodings, and our solutions for separating them.

1.3 Technical Overview

Separation between cryptographic groups. Given two cryptographic primitives P and Q, the typical
technique to establish the black-box separation is “relativizing separation” [IR89]. That is, we find a proper

5The separation is established under the condition that one-way functions (OWFs) exist and NP * coAM.
6This case indicates that the security parameter of G2 is bigger than G1’s, and fortunately our analysis does capture such a case.
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oracle O and prove that the primitive P exists relative to O but Q does not. In our setting, we consider the
primitives P and Q to be the longer CDH-secure group and shorter one, respectively.

Compared to prior works, the main technical challenge is that, we need to show the gap between two
primitives within the same security game (i.e., the CDH game), rather than within different games7. The
first obstacle is to find a proper oracle. Apparently, the random oracle does not serve our purpose, because
the random oracle is weak and there is no construction for CDH-secure groups in the random oracle model.

Our idea is to use a stronger oracle, the generic group model. At the first glance, this is impossible,
because GGM implies CDH trivially! Fortunately, the GGMs varying in length of group encodings might
also yield different levels of complexity, and thus we set this oracle to be the longer GGM within the same
security parameter. Concretely, we denote the shorter groups, the longer groups and the longer GGM as
PCDH
N,m1

,PCDH
N,m2

,GN,m2
, respectively; recall that m2 > m1; and we prove that:

• PCDH
N,m2

exists relative to GN,m2
;

• PCDH
N,m1

does not exist relative to GN,m2 .

As the former statement is trivial, below we only explain the latter one. To show that PCDH
N,m1

does not exist
in GN,m2 , it suffices to construct an adversary A that breaks the CDH game for any construction of shorter
group relative to GN,m2

. Due to technical difficulties, we switch to an alternative path. First we pin down a
new primitive—non-interactive key exchange (NIKE) with shorter public key, denoted as PNIKE

N,m1

8. Then we
prove that:

1. PCDH
N,m1

implies PNIKE
N,m1

;

2. PNIKE
N,m1

does not exist relative to GN,m2 .

As the first statement is straightforward, we will prove the second one. Essentially, PNIKE
N,m1

, in and of itself,
is a key agreement scheme. Next, we give a brief explanation of the separation between NIKE and the
random oracle [BKSY11] and then demonstrate how to incorporate the ideas into our analysis. Let H be
a random oracle and ΠH := (KGenH,SHKH) be an NIKE scheme with perfect correctness. Assuming that
the algorithms KGen and SHK make at most q queries, we then construct the adversary A as follows9. Let
Alice and Bob be two honest parties. Given the transcript of an execution between Alice and Bob, i.e., pkA
and pkB , in the present of H, the adversary A maintains a set Sque-res of query/response pairs of H, and a
multiset Skey of candidate keys, both initialized to be ∅. The adversary A then runs 4q + 1 iterations of the
following attack:

• Simulation Phase. The adversary A searches a proper view of Alice that is consistent with pkA and
Sque-res. Specifically, this view contains the randomness r∗A used by KGen and SHK, as well as a set
of oracle queries/responses ŜA made by KGen and SHK. The set ŜA is chosen to be consistent with
Sque-res, but it is unnecessary to be consistent with the true oracleH. Let key be the value computed by
SHK(r∗A, pkB). Now, A adds key into Skey.

• Update Phase. The adversary A makes all queries in ŜA \ Sque-res to the oracle H, and adds the corre-
sponding pairs into Sque-res.

Finally, A outputs the majority of the keys in Skey. Next, we explain why A recovers the key. Let SB denote
the queries made by Bob in the real execution of the key exchange protocol. In a given iteration, there are
two events:

• Event 1 (Bad event): ∃(queA, resA) ∈ ŜA, (queB , resB) ∈ SB s.t. queA = queB but resA 6= resB .

7In [IR89], two different games, the one-wayness game and the key recovery attack game, are considered.
8Here, m1 means the length of the public key; please find the formal definition in Section 2.1.
9The adversary here is computational unbounded but query-efficient.
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• Event 2 (Good event): ∀(queA, resA) ∈ ŜA, (queB , resB) ∈ SB , we have that if queA = queB , then
resA = resB .

Note that event 1 only occurs in at most 2q iterations because |SB | ≤ 2q and once it happens, the update
phase would absorb at least one pair (queB , resB) ∈ SB into Sque-res. For event 2, we observe that, when it
occurs, there is another oracle H̃ that is consistent with both ŜA and SB . Based on the perfect correctness,
we have that the shared key computed in that iteration is valid. Moreover, event 2 occurs in at least 2q+1
iterations, indicating that the majority in Skey is valid.

However, when it comes to the GGM, the attack fails. Comparing to ROM, there are two kinds of queries
in GGM, namely the labeling query (x,G labelN,m2

(x)) and the addition query (G labelN,m2
(x),G labelN,m2

(y),G labelN,m2
(x+ y)).

Therefore, we should define SB that covers all the group encodings that appear in the queries (both labeling
and addition) with the discrete logarithms (Bob might not know the value). Then, in a given iteration, there
are three events:

• Event 1 (Bad event): ∃(queA, resA) ∈ ŜA, (queB , resB) ∈ SB s.t. queA = queB but resA 6= resB .

• Event 2 (Bad event): ∃(queA, resA) ∈ ŜA, (queB , resB) ∈ SB s.t. queA 6= queB but resA = resB .

• Event 3 (Good event): ∀(queA, resA) ∈ ŜA, (queB , resB) ∈ SB , we have that if queA = queB , then
resA = resB .

Note that event 1 and event 3 can be handled similarly as above. However, the fatal problem is that event
2 might always happen. In other words, we cannot find a GGM that is consistent with both ŜA and SB ,
indicating that the above attack fails immediately.

More specifically, we note that the reason why event 2 happens is that, given pkA and pkB , algorithms
can obtain valid group encoding without making labeling query10. Moreover, if algorithms cannot obtain
valid group encodings without making labeling queries, then the GGM can be simulated by a stateful oracle
that only provides labeling queries, as the addition queries can be easily converted into labeling queries.
Such an oracle is close to the random oracle model and thus our goal is to design a mechanism that prevent
extracting valid group elements without knowing the corresponding discrete logarithms.

Here we introduce our length tool, intuitively, if the length of the public key is much shorter than the
group encoding (say, the length gap is at least ω(log λ)), then the public key would not carry enough in-
formation to recover the group encodings. This also explains why we choose NIKE other than general
key agreement (say, multi-round KA), because the adversary only obtains two public keys in the setting of
NIKE.

Concretely, let QskA and QskB be the set of the query/response pairs (only labeling queries11) made
when running KGenGN,m2 (skA) and KGenGN,m2 (skB), respectively. Let h be the valid group encoding that an
algorithm outputs, by having pkA and pkB , we then consider the following four cases:

• Case 1: (Independent) h /∈ QskA ∪QskB .

• Case 2: (Frequent) h ∈ QskA ∩QskB .

• Case 3: (Dependent but hard to extract) h ∈ QskA \QskB .

• Case 4: (Dependent but hard to extract) h ∈ QskB \QskA .

For case 1, h is independent of pkA and pkB . Due to the sparseness of the group encodings in GN,m2 , no
algorithm can output h except for negligible probability.

10This in fact is natural in group-based cryptosystem, take the ElGamal encryption scheme [ElG85] for instance, the public key itself
is a valid group element.

11We stress that, for the algorithm KGenGN,m2 , without loss of generality, it only makes labeling queries. Essentially, the group
encodings of GN,m2 are sparse, which means any algorithm with inputs that are independent of GN,m2 cannot obtain a valid group
encoding without making labeling query, indicating that any addition query can be absorbed by the corresponding labeling query.
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For case 2, it is apparent that pkA and pkB together might carry enough information for h. Fortunately,
with high probability h is a frequent query, therefore the discrete logarithm of h can be easily obtained by
repeatedly running KGenGN,m2 (·) on sufficiently many random inputs.

For case 3 (or case 4), note that h is independent of pkB , which means that only pkA carries the infor-
mation of h. Note that the length of pkA is m1 but length of h is m2. Moreover, h is uniformly distributed
over the probability of GGM. Therefore, conditioned on that m2−m1 is sufficiently large, no algorithm can
extract such an h except for negligible probability.

The above sketch is not precise; please find low-level details, in Section 3.

Hierarchy of GGMs. To establish the hierarchy of the generic group models against computational bounded
adversaries, we formalize our goal in the framework of indifferentiability. Specifically, we prove that the
shorter GGM (denoted as GN,m1 ) statistically implies the longer one (denoted as GN,m2 ), but the longer
GGM does not computationally imply the shorter one.

GN,m1 statistically implies GN,m2 . We first explain how GN,m1 implies GN,m2 against computationally
unbounded adversaries. Let H be a random oracle that maps {0, 1}∗ → {0, 1}m2−m1 ; as the first attempt, it
is natural to design the labeling function as:

LGN,m1
,H(x) := G labelN,m1

(x)||H(G labelN,m1
(x)).

However, there always exists an efficient distinguisher that breaks the indifferentiability w.r.t. the above
scheme. Specifically, in the ideal world, the distinguisher uniformly samples x ∈ ZN , makes a labeling
query with x, and obtains G labelN,m2

(x). Let str and str′ be the firstm1 bits and the lastm2−m1 bits of G labelN,m2
(x),

respectively. Then the distinguisher makes a query to the simulator with input str and checks whether the
response matches str′. Note that, without knowing x, the simulator cannot answer this query properly
except for a negligible probability. To prevent the attack above, we enhance the power of the simulator. We
involve an additional oracle, the random permutation oracle E , that permutes {0, 1}m2 with its inverse12

E−1, and design the labeling function as:

LGN,m1
,H,E(x) := E(G labelN,m1

(x)||H(G labelN,m1
(x))).

Careful readers may wonder why it works. Note that both E and E−1 are under full control of the simulator,
which means that the distinguisher is independent of the valueH(G labelN,m1

(x)) without making queries to the
simulator. This extra information gained from these queries is exactly what the simulator requires for
the proof to go through. In fact, with the aid of E , we can even simplify the construction by replacing
H(G labelN,m1

(x)) with a fixed string, say 0 · · · 0, concretely:

LGN,m1
,E(x) := E(G labelN,m1

(x)|| 0 · · · 0︸ ︷︷ ︸
m2−m1

).

The addition algorithm can be easily constructed by applying the inverse oracle E−1. While the addi-
tional oracle E and its inverse E−1 have protected against certain natural attacks, we need to argue indif-
ferentiability against all possible attacks. To do so, in Section 4.1, we use a careful simulation strategy for
G labelN,m1

,GaddN,m1
, E , and E−1, and prove indifferentiability through a careful sequence of hybrids.

Remark 2. Careful readers might note that the building blocks of construction above contain both the shorter GGM
GN,m1 and an additional independent randome oracle, rather than the shorter GGM solely. Although we have that
GGM implies ROM statistically [ZZ23], it is unclear to us that how to build an indifferentiable GGM plus an
independent ROM from a single GGM. Therefore, we stress that our hierarchy of the GGM is established with the aid
of an additional independent random oracle.

Moreover, this even motivates an interesting research question that whether one single GGM implies multiple
independent GGMs, comparing to the fact that the random oracle does.

12According to [HKT11], the random oracle and random permutation oracle with inverse are equivalent, therefore we take E and
E−1 for granted.
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GN,m2 does not computationally imply GN,m1 . Suppose we have a purported construction ΠGN,m2 :=
(LGN,m2 , AGN,m2 ) of a shorter group from a longer GGM. How could we prove that ΠGN,m2 can be differen-
tiated from GN,m1

by a computationally bounded distinguisher?
Following the strategy in [ZZ23], we should find some security property P that holds for GN,m1

but fails
for any ΠGN,m2 . As explained in [ZZ23], any standard model assumption cannot serve as the property, and
thus, this propertyP is set to be a variant of discrete logarithm problem, called discrete log identification (DLI).
Intuitively, DLI is defined as: given h := L(x), construct a (probabilistic, efficient, and query-free) circuit
C such that C(x) accepts with a high probability, but C(x′) rejects with a overwhelming probability on all
x′ 6= x. Apparently, the DLI problem is easy on any standard-model group: for any y, set C(y) to be 1 if and
only if L(y) = h, where L(y) := gy is computed as part of the circuit13. To establish the separation between
GGM and ROM, Zhandry and Zhang prove that the DLI problem is also easy on any group built within the
random oracle model. Intuitively, they “compile out” the random oracleH and design an attacker that can
easily construct an oracle-aided circuit CH(·), breaking the DLI problem by computing LH(·). The subtlety
is to anticipate the oracle queries that C will make to the random oracle model and have the attacker make
the corresponding queries for itself. Concretely, given input LH(x), the attacker runs the addition algorithm
AH(LH(y), LH(x− y)) and LH(·) on several random inputs, records all queries/responses that were made,
and hardcodes the queries/responses into the C to obtain an oracle-free circuit, which C outputs.

Below, we outline our method for integrating the aforementioned technique into the analysis within
the longer GGM. The difficulty is that, our goal seems to conflict with the results in [ZZ23], as they have
proven that the DLI problem is hard with respect to the generic group model. To bypass the obstacle, we
here leverage the length tool again.

Consider computing LGN,m2 (x) from x, which in turn makes queries to the longer GGM, GN,m2
. Let Qx

be the set of query/response pairs made during the procedure of computing LGN,m2 (x). Similarly as above,
we assume that, without loss of generality, each query/response pair (que, res) ∈ Qx is a labeling query.
Consider computing AGN,m2 (LGN,m2 (y), LGN,m2 (z)) where y and z are random, conditioned on y + z = x.
The output of this addition is LGN,m2 (y + z) = LGN,m2 (x). For each query/response pair (que, res) ∈ Qx,
there are roughly four possible cases:

• Case 1: The label LGN,m2 (x) does not depend on the response res at all;

• Case 2: The label LGN,m2 (x) depends on the response res, but with a overwhelming probability over
the choice of y and z, res does not appear when computing AGN,m2 (LGN,m2 (y), LGN,m2 (z));

• Case 3: The label LGN,m2 (x) depends on the response res, and with a non-negligible probability over
the choice of y and z, AGN,m2 (LGN,m2 (y), LGN,m2 (z)) makes a “labeling” query to GN,m2

on input que;

• Case 4: The label LGN,m2 (x) depends on the response res, and with a non-negligible probability over
the choice of y and z, an “addition” query (que1, que2, res) occurs when computingAGN,m2 (LGN,m2 (y), LGN,m2 (z)).

Now we explain our approach of building the oracle-free circuitC. We collect queries into a list, denoted
as Sque-res, and hardcode Sque-res into the circuitC to make sure thatC(x) will be able to reconstructLGN,m2 (x)
without making any query to the oracle at all:

• In case 1 (Non-sensitive query), same as in [ZZ23], since LGN,m2 (x) does not depend on res, when
computing LGN,m2 (x) we can just replace the response with a random string without affecting the
ultimate labeling. Therefore, for any query not in Sque-res, we will have C respond with a uniformly
random string.

• In case 2 (Sensitive but frequent query), same as in [ZZ23], since LGN,m2 (x) does depend on res, this
query is a sensitive query for the ultimate labeling. In this case, it must be thatAGN,m2 (LGN,m2 (y), LGN,m2 (z))
be able to extract res from the inputs, i.e., LGN,m2 (y) and LGN,m2 (z), which indicates that, with a high
probability, (que, res) ∈ Qx∩(Qy∪Qz). On the other hand, x, y and z are pairwise independent, which

13Note that for standard-model groups, L(y) denotes the value gy for the fixed generator g, and here y is the discrete logarithm of
h with respect to g.
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means that Qx ∩ Qy and Qx ∩ Qz only contains “frequent” queries. Therefore, this query/response
pair can be collected by running LGN,m2 (·) on sufficiently many random inputs.

• In case 3 (Sensitive labeling query), same as in [ZZ23], Sque-res collects all the labeling queries that
occur when running AGN,m2 (LGN,m2 (y), LGN,m2 (z)). We know that, with a non-negligible probability
(que, res) will be amongst the queries in Sque-res. By repeating several times, we have that (que, res) ∈
Sque-res with a high probability.

• In Case 4 (Sensitive addition query), different from [ZZ23], the addition query, i.e., (que1, que2, res)
occurs, where que1 and que2 are two valid group encodings of GN,m2

. Although res appears in this
query, collecting this kind of query is not usually useful for our purpose. Specifically, when running
LGN,m2 (x), the algorithm might make labeling queries on points (x1, . . . , xq), whereas Sque-res might
only store query/response pairs in the form of addition, i.e., (GN,m2(yi),GN,m2(zi),GN,m2(yi + zi)),
without explicitly knowing either yi or zi. As a result, C(x) might fail to reconstruct LGN,m2 (x): when
running C(x) := LSque-res(x), although C knows that GN,m2

(xi) exists in the database Sque-res, it does not
know which tuple corresponds to the correct one.

To resolve the problem, we need to transform this addition query into a labeling query. Observe that
if the discrete logarithms of que1 and que2 are known, then the transformation is trivial. Exploring
deeper, during the procedure of computing AGN,m2 (LGN,m2 (y), LGN,m2 (z)), the algorithm AGN,m2 can
only extract valid group encodings in Qy ∪Qz14. Moreover, we have that LGN,m2 (y) and LGN,m2 (z) are
independent of the responses that are in Qz \Qy and Qy \Qz , respectively.

Now, we leverage the length tool. Concretely, from AGN,m2 ’s perspective, LGN,m2 (y) is the only string
that carries information of the valid group encodings ∈ Qy \ Qz . If m2 −m1 is sufficiently large, say
m2 − m1 ≥ ω(log λ), where λ is the security parameter, then it is impossible for AGN,m2 to extract a
valid group encoding from Qy \Qz except for a negligible probability, indicating that the valid group
encodings that AGN,m2 can extract are in Qy ∩ Qz . Having that x, y and z are pairwise independent,
we know that queries in Qy ∩ Qz are frequent with a high probability, which can be easily captured
as in case 2.

Next, we consider the value of C(x′) for x′ 6= x. If we are lucky and Sque-res contains all sensitive queries
of Qx′ , then C(x′) = LGN,m2 (x′) 6= LGN,m2 (x), indicating that C(x′) rejects as desired. Otherwise, if Sque-res
does not contain all the sensitive queries ofQx′ , then Sque-res would respond to the query with random value,
which means that C(x′) computes an invalid label for x′. As explained in [ZZ23], the random response
would only serve to inject further randomness into the label, and the invalid label would be unequal to
LGN,m2 (x) with a high probability. Combining the above together, we build an oracle-free circuit that only
accepts the discrete logarithm x.

The above sketch is not precise; please find the low-level details in Section 4.

The hierarchy is tight. To complement our results of the hierarchy, we next show that if m2 −m1 is small,
then GN,m1

and GN,m2
are equivalent under the indifferentiability framework. To explain our idea, we

illustrate the simplest case, where m2 −m1 = 115. Let Trunc be the function that chops off the last bit of the
input, we build an indifferentiable group in GN,m2 as follows:

LGN,m2 (x) := Trunc(G labelN,m2
(x));

AGN,m2 (str0, str1) :=

{
Trunc(GaddN,m2

(str0||b0, str1||b1)), if str0||b0 and str1||b1 are valid;
⊥ otherwise.

14Other group encodings in GN,m2 are independent of LGN,m2 (y) and LGN,m2 (z).
15We also require that group encodings in GN,m2

are sparse, say m2 − logN ≥ ω(log λ).
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For clarity, if there exist b0, b1 ∈ {0, 1} such that both str0||b0 and str1||b1 are valid, then the addition
algorithm outputs Trunc(GaddN,m2

(str0||b0, str1||b1)), otherwise it aborts. Based on the fact that the group en-
codings of GN,m2

are sparse, we know that for any string str, the probability that both str||0 and str||1 are
valid is negligible, which indicates that the addition algorithm is well defined. Moreover, we prove that the
construction above is indifferentiable from GN,m1

in Section 4.3.
Due to the composition of indifferentiability, our results can be easily extended to the case thatm2−m1 ≤

Θ(log λ), which completes the entire picture of the hierarchy asymptotically.

1.4 Organization

In Section 2, we present the necessary notations, concepts, and definitions. We establish a separation be-
tween two CDH-secure groups with sufficiently large encoding length difference in Section 3. We then
establish a hierarchy among GGMs with different encoding lengths in Section 4.

2 Preliminaries

Notation. For a finite set S, we denote a random sample s from S according to the uniform distribution

as s $← S. We say a positive function negl(·) is negligible, if for all positive polynomial p(·), there exists a
constant λ0 > 0 such that for all λ > λ0, it holds that negl(λ) < 1/p(λ). We say a function ρ(·) is noticeable

in λ, if the inverse 1/ρ(λ) is polynomial in λ. We write y $← Alg(I) to denote variable y that is obtained by
running a randomized algorithm Alg on input I (which may consist of a tuple I := (I1, ..., In)). If Alg is

deterministic, we write “←” instead of “ $←”. By x||y, we mean the concatenation of strings x and y.

Algorithms. Denote λ ∈ N as the security parameter. Here we use a non-uniform circuit to formalize the
model of computation. An algorithm Alg is a collection of circuits {Cλ}λ∈N with domain Domλ and range
Ranλ, respectively. When considering interactive algorithms (Alg1, . . . ,Algn), algorithms are treated as a
sequence of circuits C(1)

λ , C
(2)
λ , . . ., where the domain of C(i)

λ is denoted as Dom
(i)
λ = stat

(i)
λ × input

(i−1)
λ , the

range of C(i)
λ is denoted as Ran

(i)
λ = stat

(i+1)
λ × output

(i)
λ . Here, stat(i)λ (input(i)λ , output(i)λ ) is the space of the

state (inputs, outputs) that C(i)
λ sends to C(i+1)

λ , respectively.

Games. A game is initiated by a probabilistic interactive algorithm C, called a challenger, and a predicate
function pf : {0, 1}∗ → [0, 1]. The challenger takes the security parameter as input and interacts with k
communicating-restricted parties (Alg1, . . . ,Algk). We call A := (Alg1, . . . ,Algk) the adversary. In the end
of the game, the challenger C outputs a bit b; if b = 1 we say the adversary wins the game, otherwise we say
the adversary loses. Let Cl(A) be a class of adversary. We say a game (C, pf) is hard with respect to Cl(A),
if for any adversary A ∈ Cl(A), we have Pr[Awins] ≤ pf + negl(λ).

Cryptosystems. A cryptosystem Σ consists of a set of algorithms, which typically are non-interactive.
Here, Σ is accessible via two interfaces Σ.hon and Σ.adv, where Σ.hon provides an honest interface through
which the system can be accessed by all parties in a black-box manner, and Σ.adv models the adversarial
access to the inner working part of Σ.

2.1 Primitives, Idealized Models, and Reduction Notions

In this work, we treat CDH-secure groups as cryptographic primitives, and explore black-box reduction
between them with different lengths. First of all, we recall the definition of primitive formalized by [RTV04].
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2.1.1 Cryptographic Primitives

Definition 1 (Cryptographic Primitive [RTV04]). A primitiveP is a pair 〈FP ,RP〉, whereFP is a set of functions
f : {0, 1}∗ 7→ {0, 1}∗, and RP is a relation over pairs 〈f,A〉 of a function f ∈ FP and an adversarial machine A.
(The set FP is required to contain at least one function which is computable by a PPT machine.)

• Efficient implementation. We say a function f implements P or is an implementation of P if f ∈ FP . An
efficient implementation of P is an implementation of P which is polynomial-time computable.

• Secure implementation. We say an adversarial machine A P-breaks f ∈ FP if 〈f,A〉 ∈ RP . A secure
implementation of P is an implementation of P such that no PPT adversarial machine P-breaks f .

We say the primitive P exists if there is an efficient and secure implementation of P .

As mentioned before, we treat CDH-secure groups as a cryptographic primitive. Now we formalize this
primitive by using the terms in [RTV04].

Definition 2 (CDH-Secure Groups). A CDH-secure group PCDH consists of the following pair 〈FPCDH ,RPCDH〉:

1. The set FPCDH for specifying syntax and capturing the correctness property.

Here, the set FPCDH consists of functions f , where f represents the group generation function for generating

group description of finite cycle groups. Concretely, we write (G, g,N,m)
$← f(1λ), where G is a cyclic group

of prime order N , g is a generator G, and m is the length of group encoding (that is, each group element in G
can be represented as an m-bit string).

We note that the correctness is guaranteed by the basic properties of the cyclic group.

2. The relationRPCDH for capturing the security property.

For function f ∈ FPCDH and PPT (adversarial) machineA, we define 〈f,A〉 ∈ RPCDH if there exists a polynomial
p(·) such that Pr[A(G, g,N,m, h1, h2) = gx1x2 ] > 1/p(λ) for infinitely many λ.

Here, (G, g,N,m)
$← f(1λ), and h1, h2 ∈ G are two uniformly chosen group elements where h1 = gx1 ,

h2 = gx2 , and x1, x2 ∈ ZN .

We say CDH-secure group PCDH exists, if there exists a function f ∈ FPCDH , it holds that no PPT adversarial machine
A such that 〈f,A〉 ∈ RPCDH . Often, we make the parameters, the order N and the encoding length m, explicit, and
denote the CDH-secure group as PCDH

N,m.

Non-interactive key exchange (NIKE) was initially studied by Diffie and Hellman in their breakthrough
paper [DH76]. We now describe this primitive by using the terms in [RTV04].

Definition 3 (Non-Interactive Key Exchange). A non-interactive key exchange protocol PNIKE consists of the
following pair 〈FPNIKE ,RPNIKE〉:

1. The set FPNIKE for specifying syntax and capturing the correctness property.

Here, the set FPNIKE consists of functions f , where f := (KGen,SHK) represents

• the public-key message function KGen : SK 7→ PK for generating the public-key message based on a
randomly chosen private-key, where PK and SK are public-key space and private-key space, respectively.

• the shared key generation function SHK : PK× SK 7→ K ∪ {⊥} for generating the shared key, where
K is shared-key space, and ⊥ denotes that the computation fails.

Concretely, for randomly chosen sk
$← SK, we write pk ← KGen(sk), where pk is called public key. Fur-

thermore, for randomly chosen sk′
$← SK, compute pk′ ← KGen(sk′). We write shk ← SHK(pk′, sk) and

shk′ ← SHK(pk, sk′). Note that, when the shared key generation function fails, we write shk = ⊥ or shk′ = ⊥.
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We say correctness is achieved if there exists an negl(·) such that

Pr
[
shk 6= ⊥ ∧ shk′ 6= ⊥ ∧ shk 6= shk′

]
≤ negl(λ)

When negl(λ) = 0, then we say perfect correctness is achieved.

2. The relationRPNIKE for capturing the security property against key-recovery attack (KRA).
For function f := (KGen,SHK) ∈ FPNIKE and a PPT (adversarial) machine A, we define 〈f,A〉 ∈ RPNIKE if
there exists a polynomial p(·) such that Pr[A(pk, pk′) = SHK(pk′, sk) = SHK(pk, sk′) 6= ⊥] > 1/p(λ) for
infinitely many λ.

Here, for randomly chosen sk
$← SK and sk′

$← SK, compute pk ← KGen(sk) and pk′ ← KGen(sk′),
respectively.

We say non-interactive key exchange protocol PNIKE exists, if there exists a function f ∈ FPNIKE , it holds that no
PPT adversarial machine A such that 〈f,A〉 ∈ RPNIKE . When SK = ZN and PK = K = {0, 1}m, we make the
parameters N and m explicit and denote the non-interactive key exchange protocol as PNIKE

N,m .

2.1.2 Idealized Models

In this subsection, we introduce idealized models including the Random Oracle Model (ROM) [BR93],
the Random Permutation Model (RPM) [RS08], and the Generic Group Model (GGM) [Sho97]. In each
idealized model, all entities including the adversary A and the challenger C, are provided with the access
to the corresponding oracle. Below we will specify the behavior of the oracle in each idealized model.

Definition 4 (Random Oracle Model [BR93]). Let I∗,S denote the set of functions h : {0, 1}∗ → S, where
S := {0, 1}n for some integer n. The random oracle model H is an idealized model, sampling a random function h
from I∗,S . Every algorithm can query x, obtaining the corresponding value h(x) ∈ S.

Definition 5 (Random Permutation Model [RS08]). Let IS,S denote the set of permutations π : S → S, where
S := {0, 1}n for some integer n. The random permutation model E is an idealized model, sampling a random
permutation π from IS,S . Every algorithm can query x ∈ S with E for both π and its inverse π−1, obtaining the
corresponding value π(x) ∈ S or π−1(x) ∈ S.

Definition 6 (Generic Group Model [Sho97]). Denote by IZN ,S the set of injections σ : ZN 7→ S, where S :=
{0, 1}m. The generic group model GN,m is an idealized model, sampling a random injection σ from IZN ,S , with
functions G labelN,m and GaddN,m. Concretely, for each query x ∈ ZN , the “labeling” function G labelN,m responds with a value
σ(x) ∈ S. For a query (g1, g2), the “adding” function GaddN,m answers as follows: if g1 = σ(x1) and g2 = σ(x2) for
some x1, x2 ∈ ZN , replying by σ(x1 + x2), and replying by ⊥ otherwise.

2.1.3 Notions of Reductions

To establish separations between primitives, in this paper, we follow two notions, fully black-box reduction
and relativizing reduction, as formalized by Reingold, Trevisan, and Vadhan [RTV04].

Definition 7 (Fully Black-Box Reduction [RTV04]). There exists a fully black-box reduction from a primitive
P := 〈FP ,RP〉 to a primitive Q := 〈FQ,RQ〉, if there exist PPT oracle machines Π and B such that:

Correctness For every implementation f ∈ FQ we have that Πf ∈ FP .

Security For every implementation f ∈ FQ, if there exists a PPT oracle machine A such that Af P-breaks Πf , then
there exists a PPT oracle machine B such that Bf Q-breaks f .

In literature, a typical technique for black-box separation, say for primitives P and Q, is relativizing
separation, which means that there is no relativizing reduction between P and Q. Reingold et al. [RTV04]
indicate that fully black-box reduction implies relativizing reduction, referring to that the relativizing sep-
aration from P to Q indicates the corresponding fully black-box separation.
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Definition 8 (Relativizing Reduction [RTV04]). There exists a relativizing reduction from a primitive P :=
〈FP ,RP〉 to a primitive Q := 〈FQ,RQ〉, if for every oracle O, the primitive P exists relative to O whenever Q
exists relative to O. A primitive P is said to exist relative to O, if there exists f ∈ FP which has an efficient im-
plementation when having access to the oracle O such that no PPT oracle machine with access to O, can P-break
f .

2.2 Indifferentiability

The framework of indifferentiability is proposed by Maurer, Renner, and Holenstein [MRH04], which for-
malizes a set of necessary and sufficient conditions for securely replacing one cryptosystem with another
in an arbitrary environment. This framework is used to justify the structural soundness of various crypto-
graphic primitives, including hash functions [CDMP05, DRS09], block ciphers [ABD+13, CHK+16, DSSL16,
GWL23], domain extenders [CDMS10], authenticated encryption with associated data [BF18], and public
key cryptosystems [ZZ20]. It can also be used to study the relationship between idealized models [ZZ23].
Within the context of the indifferentiability framework, it is customary to consider that a cryptosystem ei-
ther implements certain ideal objects denoted as F , or it is a construction denoted as CF

′
that relies on

underlying ideal objects F ′.

Definition 9 (Indifferentiability [MRH04]). Let Σ1 and Σ2 be two cryptosystems and S be a simulator. The
indifferentiability advantage of a distinguisher D against (Σ1,Σ2) with respect to S is

Advindif
Σ1,Σ2,S,D(1λ) := Pr[RealΣ1,D]− Pr[IdealΣ2,S,D],

where games RealΣ1,D and IdealΣ2,S,D are defined in Fig. 2. We say Σ1 is indifferentiable from Σ2, if there exists
an efficient simulator S such that for any efficient distinguisher D, the advantage above is negligible. Moreover, we
say Σ1 is statistically indifferentiable from Σ2, if there exists an efficient simulator such that, for any unbounded
distinguisher D, the advantage above is negligible.

RealΣ1,D :

b← DHonestR,AdvR

Return b.

HonestR(X)

Return Σ1.hon(X).

AdvR(X)

Return Σ1.adv(X).

IdealΣ2,S,D :

b← DHonestI,AdvI

Return b.

HonestI(X)

Return Σ2.hon(X).

AdvI(X)

Return SΣ2.adv(·)(X).

Indifferentiability

Figure 2: Indifferentiability of Σ1 and Σ2, where S is the simulator and D is the adversary.

Below, we also use the notations in [BF18] and consider the definition above to two systems with inter-
faces as:

(Σ1.hon(X),Σ1.adv(x)) := (ΠF1(X),F1(x)),

(Σ2.hon(X),Σ2.adv(x)) := (F2(X),F2(x)),

where F1 and F2 are two ideal objects sampled from their distributions and ΠF1 is a construction of F2 by
calling F1. Maurer, Renner, and Holenstein prove the composition theorem for the framework of indiffer-
entiability; for simplicity, we give a game-based formalization from [RSS11].

Theorem 3 (Composition Theorem [MRH04]). Let Σ1 := (ΠF1 ,F1) and Σ2 := (F2,F2) be two systems that Σ1

is indifferentiable from Σ2 with respect to a simulator S, then Σ1 is as secure as Σ2 for any single-stage game. More
concretely, let Game be a single-stage game, then for any adversary A, there is an adversary B and a distinguisher D
such that

Pr[GameΠF1 ,AF1 ] ≤ Pr[GameF2,BF2 ] + Advindif
Σ1,Σ2,S,D.
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The proof of Theorem 3 is straightforward; due to space limit, we skip it here. Next, we give the formal
definition of the separation between two idealized models in the framework of indifferentiability against
computational adversaries.

Definition 10 (Computational Indifferentiable Separation [MRH04, ZZ23]). Let Σ1,Σ2 be two idealized mod-
els, we say Σ2 is computationally indifferentiably separated from Σ1 if for any efficient algorithm Π and any efficient
simulator S, there exists an efficient distinguisher DΠ,S and a noticeable function ρ such that

Advindif
ΠΣ1 ,Σ2,S,DΠ,S

(1λ) :=
∣∣∣Pr[RealΣ1,DΠ,S ]− Pr[IdealΣ2,S,DΠ,S ]

∣∣∣ ≥ ρ(λ).

Observe that, if an idealized model Σ2 is computationally indifferentiably separated from another ide-
alized model Σ1, it means that, we cannot build a scheme ΠΣ1 such that ΠΣ1 is indifferentiable from Σ2,
even under arbitrarily strong computational assumptions.

3 Separation between Cryptographic Groups

In this section, we establish the separation between two CDH-secure groups, PCDH
N,m1

and PCDH
N,m2

, under the
condition that both N and (m2 −m1) are sufficiently large within the same security parameter.

Theorem 4 (Main Theorem). Let λ ∈ N be the security parameter. Let N,m1,m2 be integers such that N ≥
2ω(log λ),m1 > logN and m2 −m1 ≥ ω(log λ). Then there is no black-box reduction from PCDH

N,m2
to PCDH

N,m1
.

Proof. To establish the theorem, we apply the so-called two-oracle technique [HR04]. Let PSPACE be a
PSPACE-complete oracle. Essentially, we set O := (PSPACE,GN,m2

) and prove the following:

1. PCDH
N,m2

exists relative to O;

2. PCDH
N,m1

does not exist relative to O.

The former statement holds trivially as GN,m2 implies PCDH
N,m2

in the canonical manner. Therefore, it suffices
to prove the latter one.

Lemma 1. PCDH
N,m1

does not exist relative to O.

To establish the proof, we first pin down an intermediary primitive, i.e., PNIKE
N,m1

(within the same security
parameter), defined in Section 2.1, and then prove that:

1. PCDH
N,m1

implies PNIKE
N,m1

;

2. PNIKE
N,m1

does not exist relative to O.

The first statement holds straightforwardly. Next, we establish our theorem by proving the following
lemma.

Lemma 2. PNIKE
N,m1

does not exist relative to O.

Intuitively, to prove that PNIKE
N,m1

does not exist relative toO, it is sufficient to build a PPT oracle adversary
AO that breaks any construction ΠO := (KGenO,SHKO). Observe thatAO has access to a PSPACE-complete
oracle, which means thatAO implies a computationally unbounded but query-efficient adversary that only
has access to GN,m2

16. Therefore, it suffices to construct such an adversary AGN,m2 . In Fig. 3, we illustrate
the description of the adversary.

We first clarify some undefined notions: Let n be a sufficiently large integer that will be specified
below. By

{
(que1, res1), . . . , (queq, resq)

} query←− KGenGN,m2 (ri), we mean that when running the algorithm
KGenGN,m2 (ri), the algorithm makes queries (que1, . . . , queq) to the oracle GN,m2

and obtains (res1, . . . , resq)17.
16Any computationally unbounded but query-efficient adversary can be simulated by a PPT oracle machine with access to a

PSPACE-complete oracle, that is because what we need are specific labeling query-response tuples of GGM. These tuples can be
picked by using a PSPACE-complete oracle. See [MM11] for more details.

17As explained above, we stress that KGenGN,m2 only makes labeling queries.

14



AGN,m2 (pkA, pkB):

Skey ← ∅; Sque-res ← ∅; r1, . . . , rn
$← ZN ;

Initial phase: //collecting frequent queries

for i = 1 to n:{
(que1, res1), . . . , (queq, resq)

} query←− KGenGN,m2 (ri)

Sque-res ← Sque-res ∪
{

(que1, res1), . . . , (queq, resq)
}

;
for i = 1 to 12q + 1: //running 12q + 1 iterations

Simulation phase: //searching a proper view

Search a secret key s̃kA and a set of query-response tuples ŜA satisfying
the following properties:

Property 1: ŜA is consistent with Sque-res;

Property 2: pkA = KGenSque-res∪ŜA(s̃kA);

Property 3: ŜA only collects tuples of labeling queries and |ŜA| ≤ 12q;

Property 4: ŜA is sufficient for SHK. That is, when running s̃hki ← SHKSque-res∪ŜA(pkB , s̃kA): (1) the
set Sque-res∪ŜA covers all labeling queries; (2) the set Sque-res∪ŜA is able to convert any addition query
into a labeling query properly. Let que = (h1, h2) be an addition query when running the shared-
key algorithm, if either h1 or h2 is not covered in ŜA ∪ Sque-res, then responds with ⊥; otherwise the
set Sque-res∪ŜA must cover the following three tuples: (x1, h1), (x2, h2) and (x1+x2, h3), and responds
with h3.

Skey ← Skey ∪ {s̃hki};
Update phase: //updating the guessing labeling queries with valid encodings

for each (que, res) ∈ ŜA \ Sque-res: Sque-res ← Sque-res ∪ (que,G labelN,m2
(que));

Final phase: //outputting the guessing shared key

return the majority value in Skey.

Adversary AGN,m2 (pkA, pkB)

Figure 3: The description of the adversary that breaks ΠGN,m2 .

Next, we prove that AGN,m2 outputs the valid shared key with noticeable probability. Let SB-label be the
set of the valid group elements that appear when running KGenGN,m2 (skB) and SHKGN,m2 (pkA, skB); those
group elements are either the responses of labeling/addition queries or the valid inputs of the addition
queries. It is apparent that |SB-label| ≤ 6q, due to the fact that each algorithm makes at most q queries. Now,
we define:

SB := {(x, h)|h ∈ SB-label, G labelN,m2
(x) = h}.

Note that, for any iteration, if the adversary successfully guesses SB in ŜA, then the shared key com-
puted in this iteration would be valid. Specifically, in such a context, there exists an instance of the GGM
that is consistent with the query views of both the adversary and the user B, and the validity of the shared
key follows by the perfect correctness of ΠGN,m2 . However, without the knowledge of skB , A might not
guess SB correctly with a good probability. In fact, there are three events:

• Event 1: There exist (queA, resA) ∈ ŜA and (queB , resB) ∈ SB such that queA = queB but resA 6= resB .

• Event 2: There exist (queA, resA) ∈ ŜA and (queB , resB) ∈ SB such that queA 6= queB but resA = resB .

• Event 3: For any (queA, resA) ∈ ŜA, (queB , resB) ∈ SB , we have that if queA = queB then resA = resB ,
and vice versa.

We immediately observe that event 1 occurs at most 6q times, because the updating phase would eliminate
at least one pair in SB . Therefore, it suffices to prove that event 2 never occurs except for negligible prob-
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ability and event 3 would deduce the valid shared key with high probability. According to the description
of the adversary Fig. 3, we have that in event 3, the set ŜA ∪ Sque-res responds to the labeling queries per-
fectly and converts the addition queries into labeling queries properly. Concretely, let que := (h1, h2) be an
addition query, there are two cases: (1) ŜA ∪ Sque-res covers (x1, h1), (x2, h2), and (x1 + x2, h3); (2) either h1

or h2 is not stored in ŜA ∪ Sque-res. For the former case, the response is valid; for latter one, the response is
invalid if and only if both h1 and h2 are valid group encodings. Therefore, the only bad case that prevents
event 3 from deducing the valid shared key is that the adversary outputs a valid group encoding h without
knowing the discrete logarithm.

Moreover, in the simulation phase, ŜA must be consistent with Sque-res, which indicates that when event
2 occurs, the adversary successfully outputs a valid group encoding h without making labeling query. To
bound the probability, we define that, for any sk ∈ ZN :

Qsk :=
{

(que1, res1), . . . , (queq, resq)
} query←− KGenGN,m2 (sk).

Note that the adversary only takes pkA and pkB as inputs, where pkA = KGenGN,m2 (skA) and pkB =

KGenGN,m2 (skB). It is apparent that the group encoding h /∈ Sque-res, and we next establish our analysis by
considering the following four cases:

• Case 1: (Independent group encoding) h /∈ QskA ∪QskB

• Case 2: (Frequent group encoding) h ∈ QskA ∩QskB

• Case 3: (Dependent but hard to extract) h ∈ QskA \QskB .

• Case 4: (Dependent but hard to extract) h ∈ QskB \QskA .

It is apparent that, for any query-efficient adversary (might be computationally inefficient), if the prob-
ability that it outputs such an h (for all cases) is bounded, then we are done.

Case 1. We note that, h is independent of pkA and pkB , indicating that the probability that any adversary
outputs such a h is bounded by O(q)·N

2m2
≤ negl(λ).

Case 2. We first define the frequent group encodings. Specifically, let t := 26q2, we say a group encoding
res is frequent if

Pr[(que, res) ∈ Qz : z
$← ZN ] ≥ 1

t
.

In such a case, we also call (que, res) as a frequent query. Note that skA and skB are uniformly sampled,
therefore, for any (que, res) ∈ QskA , if it is not a frequent query, then Pr[(que, res) ∈ QskB ] ≤ 1

t , indicating
that

Pr[QskA ∩QskB are all frequent queries] ≥ 1− q

t
= 1− 1

26q
.

Next, we bound the probability that h /∈ Sque-res conditioned on that QskA ∩ QskB are all frequent queries.
Let n := t · λ, we then prove that, with a high probability, Qr1 ∪ · · · ∪ Qrn contains all frequent queries.
Essentially, there are at most qf := q · t frequent queries, denoted as {(que′i, res′i)}i∈[qf ]. For each (que′i, res

′
i),

we have that

Pr[(que′i, res
′
i) /∈ Qr1 ∪ · · · ∪Qrn ] ≤

(
1− 1

t

)n
≤ e−λ,

which means
Pr[(que′i, res

′
i) ∈ Qr1 ∪ · · · ∪Qrn : ∀i ∈ [qf ]] ≥ 1− (q · t)e−λ.

Therefore,

Pr[Case 2] = Pr[h ∈ QskA ∩QskB ∧ h /∈ Sque-res] ≤
1

26q
+ (q · t)e−λ ≤ 1

26q
+ negl(λ).
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Case 3. We immediately observe that pkB is independent of h, which means that only pkA carries the
information of h. Note that the length of pkA is m1; in contrast, the length of h is m2; this intuitively
indicates that, over the probability of sampling the GGM instance, it is impossible to extract a valid group
encoding in QskA \ (QskB ∪ Sque-res) except for negligible probability.

To establish the formal analysis, we strengthen the adversaryA by providingA the unbounded compu-
tational power, and the following information: the tuple (skA, skB , pkA, QskB , Sque-res). It is easy to see that
A itself can compute pkA, pkB and Sque-res, therefore it suffices to prove that

Pr[A outputs h ∈ QskA \ (QskB ∪ Sque-res)] ≤ negl(λ)

where the probability is over the sampling of skA, skB and the GGM instance18. Observe that, pkB is in-
dependent of h, which indicates that knowing skB would not increase A’s winning probability. To further
simplify the analysis, we prove a more general statement: for any secret key sk and any S (set of query-
response tuples, poly-size),

Pr[A(sk,KGenGN,m2 (sk), S)→ h : h ∈ Qsk \ S] ≤ negl(λ)

where the probability is only over the sampling of the GGM instance, conditioned on that the GGM instance
GN,m2 is consistent with S.

Note that, for any fixed poly-size S, the total number of the GGM instances (mapping from N to
{0, 1}m2 ) that are consistent with S is

(2m2 − |S|) · (2m2 − (|S|+ 1)) · · · (2m2 − (N − 1)).

Next, we introduce some notations. Note that, once the secret key sk and the GGM instance GN,m2 are fixed,
the algorithm KGenGN,m2 (sk) is deterministic (including the queries made to GN,m2

). We here define Qsk-G
as the sequence of the query-response tuples, denoted as

Qsk-G := {(que1, res1), . . . , (queq, resq)}.

More clearly, when running the algorithm KGenGN,m2 (sk), the i-th query that the algorithm makes to GN,m2

is quei and the corresponding response is resi. Besides, for each (sk,GN,m2
), the algorithm KGenGN,m2 (sk)

outputs a public key. Next, we categorize the public keys into two types, namely the “good public keys”
and the “bad public keys”, with respect to the fixed secret key sk. We denote

T = 2
m2−m1

2 · (2m2 − (|S|+ 1)) · · · (2m2 − (N − 1)),

and for any public key pk we denote Spk as the set of the GGM instances such that KGenGN,m2 (sk) = pk.
Now, we say a public key pk (with respect to sk) is bad if |Spk| ≤ T , otherwise we say the public key is good.
Note that, given a bad public key pk (e.g., |Spk| = 1), the adversary might output a valid group encoding,
thus we need to prove that, over the sampling of the GGM instance,

Pr[KGenGN,m2 (sk) is bad] ≤ negl(λ).

Note that the space of public keys is {0, 1}m1 , which means that there are at most 2m1 public keys. Therefore,
the counting of the GGM instances that induce to a bad public key is bounded by 2m1 × T , referring to

Pr[KGenGN,m2 (sk) is bad] ≤ 2m1 · 2
m2−m1

2

(2m2 − |S|)
≤ 1

2
m2−m1

2 − |S|
≤ negl(λ).

Hence, it suffices to prove that, given any good public key, any adversary A cannot extract a valid group
encoding h ∈ Qsk \ S except for negligible probability.

18The instance of GGM must be consistent with QskB ∪ Sque-res.
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For readability, we first elaborate the analysis in the case that S = ∅, where the adversary only has
knowledge of (sk,KGenGN,m2 (sk)). Let str be any string in {0, 1}m2 , we denote Sstr as the set of GGM in-
stances such that str ∈ Qsk-G . Therefore it is sufficient to prove that, for any str ∈ {0, 1}m2 , the size of Sstr is
much smaller than T (in this special case, |S| = 0). Specifically, by having that

T > 2
m2−m1

2 · (2m2 − 1) · · · (2m2 − (N − 1))

we prove that
|Sstr| ≤ q · (2m2 − 1) · · · (2m2 − (N − 1))

Note that, once the secret key sk and the GGM instance GN,m2
are fixed, the algorithm KGenGN,m2 (sk) is

deterministic. We next illustrate an observation aboutQsk-G . Let GN,m2
and G′N,m2

be two different instances
of GGM, and we denote

Qsk-G := {(que1, res1), . . . , (queq, resq)}
Qsk-G′ := {(que′1, res′1), . . . , (que′q, res

′
q)}

We claim that either Qsk-G = Qsk-G′ or ∃i ∈ [q] such that resi 6= res′i. In other words, it is impossible
that Qsk-G 6= Qsk-G′ but (res1, . . . , resq) = (res′1, . . . , res

′
q). In fact, if such an event occurs, then there exists

an index j ∈ [q] such that (1) ∀i < j, (quei, resi) = (que′i, res
′
i); (2) quej 6= que′j , which contradicts to that

KGenGN,m2 (sk) is deterministic.
This observation illustrates that Qsk-G can be represented only by (res1, . . . , resq); that is, once the se-

quence of the responses is fixed, then the corresponding sequence of the queries is also settled down. We
denote

V = ((2m2 − q) · · · (2m2 − (N − 1)))

and note that for each response sequence (res1, . . . , resq), there are exactly V numbers of GGM instances
that would induce it.

Next, we compute the upper bound of |Sstr|. If str appears in the sequence (res1, . . . , resq), then there
exists an index i such that resi = str. For the rest, we maximize the possibility and have that the number of
all possible sequences that contain str is bounded by

q · ((2m2 − 1) · · · (2m2 − (q − 1))).

Combining the above together, we have that

|Sstr| ≤ q · (2m2 − 1) · · · (2m2 − (N − 1)).

In the following, we extend our analysis into the general case, where S is poly-size and

T = 2
m2−m1

2 · (2m2 − (|S|+ 1)) · · · (2m2 − (N − 1))

We immediately observe that, the upper bound above does not serve our purpose any more. The reason
is that the upper bound above is calculated over all possible GGM instances, while what we need to count
are the ones over the GGM instances that are consistent with S.

It is apparent that Qsk-G can be still represented by the sequence of responses when S 6= ∅. To complete
the analysis, we then illustrate an additional observation about Qsk-G . Let (res1, . . . , resq) and (res′1, . . . , res

′
q)

be two different sequences. We claim it is impossible that there exists an index j ∈ [q] such that(1) ∀i < j,
resi = res′i; (2)resj ∈ S but res′j /∈ S19. More specifically, given the statement that ∀i < j, resi = res′i, it is
apparent that quej = que′j . Moreover, by having (quej , resj) ∈ S, we claim that the response of que′j must be
resj , because the GGM instances must be consistent with S. Based on this new observation, we next prove
the upper bound by induction.

19We here abuse the notation resj ∈ S by meaning that there exists a query/response tuple in S with the response resj
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Let str be a string such that str /∈ S (note that the adversary’s goal is to output a valid group encoding
without knowing the discrete logarithm), we denote Sstr-k as the set of the GGM instances such that: (1) the
algorithm KGenGN,m2 (·) makes k queries; (2) str ∈ Qsk-G \ S. We then prove that for any k,

|Sstr-k| ≤ k · (2m2 − (|S|+ 1)) · · · (2m2 − (N − 1)).

We first compute |Sstr-1|. Note that que1 is always fixed, and if que1 ∈ S20, then |Sstr-1| = 0 because str
would never appear. On the other hand, if que1 /∈ S, then the response must be str because str appears.
Thus, the counting of the GGM instances that are consistent with S ∪ {(que1, str)} is

1 · (2m2 − (|S|+ 1)) · · · (2m2 − (N − 1))

Note that, the response of que1 is str if and only if those GGM instances are sampled. Moreover, based on
our second observation, we have that, either res1 ∈ S or res1 /∈ S. Hence,

|Sstr-1| ≤ max{0, 1 · (2m2 − (|S|+ 1)) · · · (2m2 − (N − 1))}.

Next, given the assumption that

|Sstr-i| ≤ i · (2m2 − (|S|+ 1)) · · · (2m2 − (N − 1)),

we prove
|Sstr-(i+1)| ≤ (i+ 1) · (2m2 − (|S|+ 1)) · · · (2m2 − (N − 1)),

Again, que1 is always fixed, and if que1 ∈ S, then |Sstr-(i+1)| is bounded by |Sstr-i|, because the response
of que1 is always fixed by S, and str must appear in the last i queries. Thus, it suffices to prove that |Sstr-(i+1)|
is properly bounded when que1 /∈ S. Next we consider two scenarios:

• Scenario 1: res1 = str;

• Scenario 2: res1 6= str.

Observe that scenario 1 occurs if and only if the GGM instances that are consistent with S ∪{(que1, str)}
are selected. Therefore, the counting of those GGM instances is:

1 · (2m2 − (|S|+ 1)) · · · (2m2 − (N − 1)).

When scenario 2 occurs, there are at most 2m2 − (|S| + 1) options for res1. Once the response of que1 is
fixed, say (que1, str

′), we apply the induction. Specifically, we denote S′ = S ∪ {(que1, str
′)} (|S′| = |S|+ 1).

Note that scenario 2 occurs means that str appears in the last i queries conditioned on that all the GGM
instances are consistent with S′. Applying the assumption, we have that the counting of the GGM instances
is bounded by

(2m2 − (|S|+ 1)) · i · (2m2 − (|S′|+ 1)) · · · (2m2 − (N − 1))

=i · (2m2 − (|S|+ 1)) · · · (2m2 − (N − 1)).

Now, we see that, if que1 /∈ S (combining both scenario 1 and scenario 2), then

|Sstr-(i+1)| ≤ (i+ 1) · (2m2 − (|S|+ 1)) · · · (2m2 − (N − 1)).

Again, res1 is either in S or not in S. We have that

|Sstr-(i+1)| ≤ max{|Sstr-i|, (i+ 1) · (2m2 − (|S|+ 1)) · · · (2m2 − (N − 1))}
= (i+ 1) · (2m2 − (|S|+ 1)) · · · (2m2 − (N − 1))

20We here abuse the notation que1 ∈ S by meaning that there exists a query/response pair in S with the query is que1
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By setting sk := skA and S := Sque-res, we have that the probability that the adversary outputs h ∈
QskA \ Sque-res is bounded by O(q2)

2
m2−m1

2

≤ negl(λ).

Case 4. It is trivial that
Pr[Case 4] = Pr[Case 3].

Combining together, we have that

Pr[AGN,m2 outputs the valid shared key] ≥ 1− (6q + 1)(
1

26q
+ negl(λ))

≥ 2

3
− negl(λ).

4 The Hierarchy of GGMs

In this section, we establish a hierarchy among GGMs, varying in distinct lengths of group encodings
and prove that the shorter GGM is strictly stronger than the longer GGM. Specifically, we show that one
can construct an indifferentiable longer generic group from a shorter one plus an addtional independent
random oracle, but the shorter generic group model is computationally indifferentiably separated from the
longer generic group (when the gap between the lengths is sufficiently large).

4.1 GN,m1 statistically implies GN,m2

In this section, we show how to build an longer indifferentiable generic group model from a shorter one
plus an additional independent ROM. Here are the building blocks:

• GN,m1
:= (G labelN,m1

,GaddN,m1
) is a generic group model that maps ZN to {0, 1}m1 ;

• E : {0, 1}m2 → {0, 1}m2 is a random permutation oracle with its inverse E−1.

For simplicity, we denote O as the tuple (GN,m1 , (E , E−1)). The following is the construction ΠOL-GGM :=
(LOL-GGM, A

O
L-GGM), depicted in Fig. 4. Correctness easily follows, and it rests to prove the indifferentiability.

Formally,

LOL-GGM(x):

h̃← G labelN,m1
(x);

h← E(h̃||0(m2−m1));
return h.

AOL-GGM(h1, h2):

if E−1(h1) 6= h̃1||0(m2−m1): return ⊥;
if E−1(h2) 6= h̃2||0(m2−m1): return ⊥;
if GaddN,m1

(h̃1, h̃2) = ⊥: return ⊥;
return E(GaddN,m1

(h̃1, h̃2)||0(m2−m1)).

Construction ΠOL-GGM

Figure 4: The construction ΠOL-GGM in the GN,m1
and RPM.

Theorem 5. Let m1,m2 be two integers that m2 ≥ m1. The scheme ΠOL-GGM in Fig. 4, with access to a generic group
GN,m1

, a random permutation E and its inverse E−1, is indifferentiable from a generic group GN,m2
. More precisely,

there exists a simulator S such that for all (qG label
N,m1

, qGadd
N,m1

, qE , qE−1)-query distinguisher D with qG label
N,m1

+ qGadd
N,m1

+

qE + qE−1 ≤ q, we have

Advindif
ΠOL-GGM,GN,m2

,S,D ≤
6q2

N
+

10q2 + 4q

2m1
+

3q

2λ
+

2q

2m1 − 2q
.
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The simulator makes at most 3q queries to GN,m2 .

Proof Sketch. Correctness of our scheme easily follows. For the indifferentiability, we build a simulator
in Fig. 5 to simulate the adversary interfaces G labelN,m1

, GaddN,m1
, E and E−1 properly. We immediately observe

that, our simulator makes at most λq queries to (G labelN,m2
,GaddN,m2

), and it maintains four tables and the size of
each table is at most 2q, meaning that S is efficient. In the following, we present the intuitive idea of why S
works. Note that, E is an ideal random permutation and GN,m1

is a generic group, hence the responses of a
proper simulator should follow these rules:

• Rule 1: The responses of G labelN,m1
are statistically uniform in {0, 1}m1 ;

• Rule 2: There do not exist x1 6= x2 ∈ ZN such that G labelN,m1
(x1) = G labelN,m1

(x2);

• Rule 3: G labelN,m1
(x1 + x2) = GaddN,m1

(G labelN,m1
(x1),G labelN,m1

(x2));

• Rule 4: if h̃ /∈ {G labelN,m1
(x)}x∈ZN , then GaddN,m1

(h̃, ·) = ⊥;

• Rule 5: The responses of E , E−1 are statistically close to a random permutation;

• Rule 6: There is no r1 6= r2 ∈ {0, 1}m2 such that E(r1) = E(r2);

• Rule 7: E(G labelN,m1
(x)||0(m2−m1)) = G labelN,m2

(x);

• Rule 8: if G labelN,m2
(h,G labelN,m2

(1)) 6= ⊥, then E−1(h) = h̃||0(m2−m1).

Next, we illustrate why and how S achieves those eight rules. Observe that Rule 1 and Rule 7 trivially
hold.
Rule 2. The only way to break this rule is if a collision occurs. As h̃ is uniformly sampled, this bad event is
trivially bounded by 2q2

2m1
.

Rule 3. There are three cases as follows:

• Case 1: The addition query of h̃1, h̃2 has already been put into Tadd;

• Case 2: h̃1, h̃2 have already been put into Tlabel;

• Case 3: At least one of h̃1, h̃2 is the unknown encoding.

For Case 1, we note that this equation holds for free.
For Case 2, h̃1, h̃2 are valid encoding and Tlabel holds the corresponding group elements h1, h2 in GN,m2

.
The simulator S makes a query GaddN,m2

(h1, h2) with response h, and then looks up h in Tlabel. If h has been
in Tlabel, this equation holds for free; otherwise, S responds to the query with a random h̃ ∈ {0, 1}m1 and
records h̃. In Case 2, the only way to break this rule is if a collision of h̃ occurs. As h̃ is uniformly sampled,
this bad event is trivially bounded by 2q2

2m1
.

For Case 3, the simulator S samples k1, k2 from the Bernoulli distribution with parameter N
2m1

, and then
considers the unknown encoding h̃1 and/or h̃2 to be valid if k1 = 1 and/or k2 = 1, respectively. Note
that, this probability N

2m1
is close to the probability that a unknown encoding is valid in GGM. For each

considered valid encoding, S randomly samples its pre-image in ZN , and then makes a query G labelN,m2
to

obtain its corresponding group elements in GN,m2
. After that, the simulator S responds to the query using

table Tlabel or uniformly random sampling h̃ ∈ {0, 1}m1 , similar to Case 2. In Case 3, there are two bad
events that break the rule: 1) for the considered valid encoding, a collision of the random pre-image occurs,
which is bounded by 2q2

N ; 2) for the random response, a collision of the encoding occurs, which is bounded
by 2q2

2m1
.
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S.G labelN,m1
(x):

h← G labelN,m2
(x);

if ∃(x, h̃, h) ∈ Tlabel: return h̃;
if ∃(�, h̃, h) ∈ Tlabel: replace � by x, return h̃; // � is a symbol.

h̃
$← {0, 1}m1 , Tlabel ← Tlabel ∪ {(x, h̃, h)}, TE ← TE ∪ {(h̃||0(m2−m1), h)};

return h̃.

S.GaddN,m1
(h̃1, h̃2):

if ∃(h̃1, h̃2, h̃) ∈ Tadd ∨ ∃(h̃2, h̃1, h̃) ∈ Tadd: return h̃;
if h̃1 ∈ T⊥ ∨ h̃2 ∈ T⊥: return ⊥;
sample k1, k2 from the Bernoulli distribution with probability N

2m1 for 1;
for b ∈ {1, 2}, if @(∗, h̃b, yb) ∈ Tlabel: // ∗ refers to x ∈ ZN or the symbol �.

if kb = 0:
h

$← {0, 1}m2 , if GaddN,m2
(h,G labelN,m2

(1)) 6= ⊥: resample h (up to λ times);
T⊥ ← T⊥ ∪ {h̃b}, TE ← TE ∪ {(h̃||0(m2−m1), h)};

else:
xb

$← ZN , Tlabel ← Tlabel ∪ {(xb, h̃b,G labelN,m2
(xb))}, TE ← TE ∪ {(h̃||0(m2−m1), h)};

if ∃(∗, h̃1, h1), (∗, h̃2, h2) ∈ Tlabel:
h← GaddN,m2

(h1, h1);
if ∃(∗, h̃, h) ∈ Tlabel: Tadd ← Tadd ∪ {(h̃1, h̃2, h̃)}, return h̃;

h̃
$← {0, 1}m1 , Tlabel ← Tlabel ∪ {(�, h̃, h)}, TE ← TE ∪ {(h̃||0(m2−m1), h)};

Tadd ← Tadd ∪ {(h̃1, h̃2, h̃)}, return h̃;
return ⊥.

S.E(r):

if ∃(r, h) ∈ TE : return h;
sample k from the Bernoulli distribution with the probability N

2m1 for 1;
if r = h̃||0(m2−m1) ∧ k = 1:

x
$← ZN , h← G labelN,m2

(x), Tlabel ← Tlabel ∪ {(x, h̃, h)};
TE ← TE ∪ {(r, h)}, return h;

if x = h̃||0(m2−m1) ∧ k = 0: T⊥ ← T⊥ ∪ {h̃}
h

$← {0, 1}m2 , if GaddN,m2
(h,G labelN,m2

(1)) 6= ⊥: resample h (up to λ times);
TE ← TE ∪ {(r, h)}, return h;

S.E−1(h):

if ∃(r, h) ∈ TE : return r;

h̃
$← {0, 1}m1 ;

if GaddN,m2
(h,G labelN,m2

(1)) 6= ⊥: Tlabel ← Tlabel ∪ {(�, h̃, h)}, r ← h̃||0(m2−m1);
sample k from the Bernoulli distribution with the probability 2m1−N

2m2−N
for 1;

if k = 1: T⊥ ← T⊥ ∪ {h̃}, r ← h̃||0(m2−m1);

else: t $← {0, 1}(m2−m1) \ {0(m2−m1)}, r ← x||t;
TE ← TE ∪ {(r, h)}, return r

Simulator S

Figure 5: The simulator for construction ΠOL-GGM.
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Rule 4. Note that, for a unknown encoding, the simulator considers it to be group element in GN,m1 ac-
cording to the Bernoulli distribution with parameter N

2m1
. Hence the probability of the adversary sampling

a valid encoding under simulator is close to the one in the generic group GN,m1
.

Rule 5. For E query, say E(r), the simulator responds in three cases:

• if there exists a tuple (r, h) ∈ TE , output h;

• if r = h̃||0(m2−m1), uniformly random sample x ∈ ZN and output h ← G labelN,m2
(x) with the probability

N
2m1

;

• otherwise, uniformly random sample h ∈ {0, 1}m2 such that h is not a group element in GN,m2
via

rejection sampling (up to λ times) and output h.

For Case 1, we not that each h stored in table TE is from generic group GN,m2 so that it is uniformly random,
except for some items generated in the other two cases of E-query. For Case 2, by our construction, E maps
x = h̃||0(m2−m1) to a long group element if h̃ is a valid labeling in GN,m1

. As the probability of adversary
sampling a valid encoding in GN,m1 is close to N

2m1
and GN,m2 is generic group, h = G labelN,m2

(x) for random x
is uniform and the proper answer. The only way to break this rule is a collision of x occurs, which is trivially
bounded by 2q2

N ≤ negl(λ). For Case 3, the only way to break this rule in this case is if 1) the response h
is a valid group element or 2) a collision of h occurs. As (m2 −m1) ≥ 1 and 2m1 ≥ N , the probability of
sampling a valid labeling in GN,m2 is N

2m2
≤ 2m1

2m2
≤ 1

2 . Due to the rejection sampling up to λ times, the first

bad event is bounded by
1

2λ
≤ negl(λ). Easy to note that, the bad event of h collision is trivially bounded

by 2q2

2m2
≤ negl(λ). Therefore, in all three cases above, the responses of E are well-distributed.

For E−1 query, say E−1(h), the simulator also responds in three case:

• if there exists a tuple (r, h) ∈ TE , output r;

• if h is a group element in GN,m2
, uniformly random sample h̃ ∈ {0, 1}m1 and output h̃||0(m2−m1);

• otherwise, uniformly random sample h̃ ∈ {0, 1}m1 , t ∈ {0, 1}(m2−m1). Then output h̃||0(m2−m1) with
the probability 2m1−N

2m2−N ; while output h̃||t with probability 1− 2m1−N
2m2−N .

For Case 1, except for some items from the other two cases of E−1-query, each r stored in table TE is gen-
erated in GN,m1 queries and corresponds to a group element in GN,m1 . By our construction, such r has the
form of a random string h̃ ∈ {0, 1}m1 appending 0(m2−m1) and the bad event is a collision of h̃ occurs, which
is trivially bounded by 2q2

2m1
≤ negl(λ). For Case 2, with the same reason of Case 1, h̃||0(m2−m1) is a proper

answer. For Case 3, we note that there are 2m1 strings in {0, 1}m2 ending in 0(m2−m1), where N strings
correspond to valid group elements. Hence given a non-group element h, the probability of its pre-image
in E ending in 0(m2−m1) is close to 2m1−N

2m2−N . The only way to break this rule in this case is if a collision of r

occurs, which is trivially bounded by 2q2

2m1
≤ negl(λ). Therefore, in all three cases above, the responses of

E−1 are well-distributed.
Rule 5 and Rule 6. Easy to note that, the only chance that A violates these rules is bad events in Rule 4
occurs, referring to Rule 5 and Rule 6 holds as long as Rule 4 holds.
Rule 8. Note that if the adversary makes a query E−1 with a group element h, the response’s form is well
by the Case 3 for E−1 query in Rule 5. Therefore, Rule 8 holds as long as the Case 3 for E−1 query in Rule 5
holds.

Below, we give a full proof of Theorem 5.

Proof. According to the definition of indifferentiability, the adversary has two honest interfaces G labelN,m2
and

GaddN,m2
and four adversarial interfaces G labelN,m1

, GaddN,m1
, E and E−1. Therefore, we need to build an efficient
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simulator S in the ideal world that can simulate four adversarial interfaces properly, which means, for any
PPT differentiator D, the view of D in the real game is computationally close to the view in the ideal game.
We will go through a sequence of hybrid games where in each game, there exists a system that responds to
all of the queries (both honest and adversarial) in a slightly different way and then we build our simulator
S as the system in the last game. Before the description of the games, we first specify some parameters:

• There are six types of queries: the labeling query for GN,m1 (x, label;GN,m1), the addition query for
GN,m1

(h̃1, h̃2, add;GN,m1
), the labeling query for GN,m2

(x, label;GN,m2
), the addition query for GN,m2

(h1, h2, add;GN,m2
), the forward E-query (r, fwd; E) and the inverse E−1-query (h, inv; E), where x ∈

ZN , h̃1, h̃2 ∈ {0, 1}m1 and r, h, h1, h2 ∈ {0, 1}m2 .

• The adversary only makes q queries to the system, where q = poly(λ).

• The oracles used in the real world are a long generic group construction G̃N,m2
:= (G̃ labelN,m2

, G̃addN,m2
), a

short generic group G̃N,m1
:= (G̃ labelN,m1

, G̃addN,m1
) and an ideal random permutation (Ẽ , Ẽ−1).

• In each game, the system’s responses are denoted as G labelrN,m2
, GaddrN,m2

, G labelrN,m1
, GaddrN,m1

, E r and E−1r. For
instance, E−1r(h) denotes the system’s response when adversary makes a query que := (h, inv; E).

The hybrid games are as follows.
Game 0. This game is identical to the real game except that the system maintains four tables, referring to
Tlabel, Tadd, TE and T⊥. Specifically, the system responds every queries by real oracles. For the tables, the
system maintains them as follows:

• Tlabel: It is initiated empty and consists of tuples with form of (x, h̃, h) or (�, h̃, h), where � is a symbol
for the unknown discrete logarithm. Once the adversary makes a query (x, label;GN,m1

), which does
not exist in Tlabel yet, the system inserts (x, G̃ labelN,m1

(x), G̃ labelN,m2
(x)) into Tlabel.

• Tadd: It is initiated empty and consists of tuples with form of (h̃1, h̃2, h̃). Once the adversary makes a
query (h̃1, h̃2, add;GN,m1), which does not exist in Tlabel yet, the system inserts (h̃1, h̃2, G̃addN,m1

(h̃1, h̃2))
into Tadd.

• TE : It is initiated empty and consists of tuples with form of (r, h). Once the adversary makes a query
(r, fwd; E) or (h, inv; E), which does not exist in TE yet, the system inserts (r, Ẽ(r)) or (Ẽ−1(h), h) into
TE .

• T⊥: It is initiated empty and consists of element with form of h̃.

Note that all tables are completely hidden to the adversary, and hence the view in real game is identical
to the one in Game 0, which refers to

Pr[Game Real] = Pr[Game 0]

Then, we illustrate a game that the system responds to part of the queries, by only using the tables and
the real oracles. For ease of exposition, we have define a relation between the query que and the tables.
Specifically, if que is a labeling query, say que := (x, label;GN,m1

), we say que ∈ Tlabel if there exists a tuple
(t1, t2, t3) ∈ Tlabel such that t1 = x. Analogously, for the addition query que := (h̃1, h̃2, add;GN,m1

), we say
que ∈ Tadd if there exists a tuple (t1, t2, t3) ∈ Tadd such that {t1, t2} = {h̃1, h̃2}, and we say que ∈ T⊥ if there
exist an element t ∈ T⊥ such that t = h̃1 or t = h̃2; for the E-query que = (r, fwd; E), we say que ∈ TE if
there exists a tuple (t1, t2) ∈ TE such that t1 = r; for the E−1-query que = (h, inv; E), we say que ∈ TE if there
exists a tuple (t1, t2) ∈ TE such that t2 = h.
Game 1. This game is identical to Game 0 except the way of maintaining the tables and responding to the
queries. Specifically,
Labeling query. Suppose quek = (x, label;GN,m1

), then
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• Case 1: If quek ∈ Tlabel, which means there exists a tuple (t1, t2, t3) ∈ Tlabel such that t1 = x, then the
system responds to the query with t2.

• Case 2: If quek /∈ Tlabel, the system first makes a query (x, label;GN,m2
) with the response h, then

– Case 2.1: If there exists a tuple (t1, t2, t3) ∈ Tlabel such that t3 = h, then the system responds to
the query with t2 and replaces t1 with x.

– Case 2.2: Otherwise, the system responds with h̃← G̃ labelN,m1
(x), inserts (h̃||0(m2−m1), h) to TE , and

inserts (x, h̃, h) into Tlabel.

Addition query. Suppose quek = (h̃1, h̃2, add;GN,m1
), then

• Case 1: If quek ∈ Tadd, which means there exists a tuple (t1, t2, t3) ∈ Tadd such that {t1, t2} = {h̃1, h̃2},
then the system responds to the query with t3.

• Case 2: If quek ∈ T⊥, then the system responds to the query with ⊥.

• Case 3: If there exist two tuples (t1, t2, t3), (t′1, t
′
2, t
′
3) ∈ Tlabel such that t2 = h̃1, t

′
2 = h̃2 and t1 + t′1 ∈

Tlabel, then the system responds with the corresponding record.

• Case 4: If there exist two tuples (t1, t2, t3), (t′1, t
′
2, t
′
3) ∈ Tlabel such that t2 = h̃1, t

′
2 = h̃2 but t1 + t′1 /∈

Tlabel, then the system makes a query (t3, t
′
3, add;GN,m2

) to obtain h. Then:

– Case 4.1: If h ∈ Tlabel, the system responds with the corresponding record.

– Case 4.2: Otherwise, the system responds with h̃← G̃ labelN,m1
(t1 + t′1), and inserts (�, h̃, h) into Tlabel

and (h̃||0(m2−m1), h) into TE .

• Case 5: Otherwise, the system responds to the query with G̃addN,m1
(h̃1, h̃2), inserts (h̃1, h̃2, G̃addN,m1

(h̃1, h̃2))

into Tadd, and inserts (h̃1||0(m2−m1), Ẽ(h̃1)) and (h̃2||0(m2−m1), Ẽ(h̃2)) into TE . Furthermore, if it holds
GaddN,m1

(h̃1,G labelN,m1
(1)) = ⊥, the system inserts h̃1 into T⊥; else if h̃1 does not exist in Tlabel yet, the system

inserts (�, h̃1, Ẽ(h̃1)) into Tlabel. Analogously, if GaddN,m1
(h̃2,G labelN,m1

(1)) = ⊥, the system inserts h̃2 into
T⊥; else if h̃2 does not exist in Tlabel, the system inserts (�, h̃2, Ẽ(h̃2)) into Tlabel.

E-query. Suppose quek = (r, fwd; E), then

• Case 1: If quek ∈ TE , which means there exists a tuple (t1, t2) ∈ TE such that t1 = r, then the system
responds to the query with t2.

• Case 2: If quek /∈ TE and r = h̃||0(m2−m1), the system responds with h← Ẽ(r) and inserts (r, h) into TE .
Furthermore, if G̃addN,m2

(h, G̃ labelN,m2
(1)) = ⊥, the system inserts h̃ into T⊥; else the system inserts (�, h̃, h)

into Tlabel.

• Case 3: Otherwise, the system responds with h← Ẽ(r) and inserts (r, h) into TE .

E−1-query. Suppose quek = (h, inv; E), then

• Case 1: If quek ∈ TE , which means there exists a tuple (t1, t2) ∈ TE such that t2 = h, then the system
responds to the query with t1.

• Case 2: If quek /∈ TE and G̃addN,m2
(h, G̃ labelN,m2

(1)) 6= ⊥, the system responds with r ← Ẽ−1(h), parses
r = h̃||0(m2−m1), and inserts (r, h) into TE and (�, h̃, h) into Tlabel.

• Case 3: Otherwise, the system responds with r ← Ẽ−1(h) and insert (r, h) into TE . Furthermore, when
r = h̃||0(m2−m1), the system inserts h̃ into T⊥.
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In Game 1, the system keeps longer tables, and for part of the adversarial queries, the system responds
to them only using the tables and accessing to the honest interfaces. Note that, each item stored in tables
is consistent with the real oracles, these responses are identical to those by calling real oracles. Moreover,
in either games, the honest interfaces always correspond to the real oracles. Hence, in either game, the
response of any query is identical, which refers to

Pr[Game 0] = Pr[Game 1]

Now, the system needs to answer the rest adversary queries by real oracles. In the following hybrid
games, we replace the responses that answered by real oracles with tables and honest interfaces without
changing the view significantly.
Game 2. This game is identical to Game 1 except for responding to the E−1-queries. Suppose quek =
(r, fwd; E), then

• Case 1: If quek ∈ TE , then same as in Game 1.

• Case 2: If quek /∈ TE and r = h̃||0, if G̃addN,m1
(h̃, G̃ labelN,m1

(1)) = ⊥, the system responds with uniformly
sampled h ∈ {0, 1}m2 such that G̃addN,m2

(h, G̃ labelN,m2
(1)) = ⊥ via reject sampling (up to λ times), and inserts

(r, h) into TE and h̃ into T⊥; else the system randomly samples x ∈ ZN , responds with h← G̃ labelN,m2
(x),

and inserts (r, h) into TE and (�, h̃, h) into Tlabel.

• Case 3: Otherwise, the system responds with uniformly sampled h ∈ {0, 1}m2 such that G̃addN,m2
(h, G̃ labelN,m2

(1)) =
⊥ via reject sampling (up to λ times), and inserts (r, h) into TE .

Note that, the only difference between Game 1 and Game 2 occurs in Case 2 and Case 3, where m is
previously unknown. In Case 2, which means r = h̃||0, we note that if h̃ is a valid encoding in G̃N,m1 , E r(r)
should be a group element in G̃N,m2

. In fact, the discrete log of each group element in G̃N,m2
is independent

of the adversary’s view. Thus, it is okay to replace Ẽ(r) with G̃ labelN,m2
(x) of random x ∈ ZN , as long as x never

appears before quek. The probability of x-collision is bounded as

Pr[Bad1] ≤ 2q

N
.

For the situation of invalid h̃ in Case 2 and for Case 3, by the definition, E r(r) should be an invalid
encoding in G̃N,m1 . Since all bits of Ẽ(r) are independent of the adversary’s view, under the condition that
the bad event never happens, the adversary’s view on quek are distributed identically in both games, i.e.,
Ẽ(r) and random string h. Hence it suffice to prove that except with a negligible probability, the condition
is hold. There are two bad events: 1) h appears before quek; 2) h is a valid group element in G̃N,m2

. For
h-collision event, since h is uniformly sampled from {0, 1}m2 and h is not a valid group element, we have

Pr[Bad2] ≤ 2q

2m2 −N
≤ 2q

2m2 − 2m1
≤ 2q

2m1
.

For the other bad event, it is trivially bounded by

Pr[Bad3] ≤ (
N

2m2
)λ ≤ (

2m1

2m2
)λ ≤ 1

2λ
.

Therefore, we have

|Pr[Game 1]− Pr[Game 2]| ≤ q ·
i=1∑
3

Pr[Badi] ≤
2q2

N
+

2q2

2m1
+

q

2λ
.

Game 3. This game is identical to Game 2 except for modifying the responses of E queries once more.
Suppose quek = (r, fwd; E), then
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• Case 1: If quek ∈ TE , then same as in Game 2.

• Case 2: If quek /∈ TE and r = h̃||0, the system samples k from the Bernoulli distribution with the
probability N

2m1
, if k = 0, the system responds with uniformly sampled h ∈ {0, 1}m2 such that

G̃addN,m2
(h, G̃ labelN,m2

(1)) = ⊥ via reject sampling (up to λ times), and inserts (r, h) into TE and h̃ into
T⊥; else the system randomly samples x ∈ ZN , responds with h← G̃ labelN,m2

(x), and inserts (r, h) into TE
and (�, h̃, h) into Tlabel.

• Case 3: Otherwise, same as in Game 2.

The only difference between Game 2 and Game 3 occurs in Case 2. In Game 2, the system learns whether
h̃ is valid by calling G̃N,m1

; while in Game 3, the system determines it via the Bernoulli distribution with
the probability N

2m1
. We observe that, for a previously unknown encoding h̃, it is valid in G̃N,m1

with the
probability N−|Tlabel|

2m1−|Tlabel|−|T⊥| ≥
p−2q

2m1−2q . Therefore, the adversary’s view are distributed closely in both games,
referring to

|Pr[Game 2]− Pr[Game 3]| ≤ N

2m1
− N − 2q

2m1 − 2q
≤ 2q · (2m1 −N)

2m1 · (2m1 − 2q)
≤ 2q

2m1
.

Game 4. This game is identical to Game 3 except for responding E−1 queries. Suppose quek = (h, inv; E),
then

• Case 1: If quek ∈ TE , then same as in Game 3.

• Case 2: If quek /∈ TE and G̃addN,m2
(h, G̃ labelN,m2

(1)) 6= ⊥, the system randomly samples h̃ ∈ {0, 1}m1 , re-
sponds with r ← h̃||0(m2−m1), and inserts (r, h) into TE and (�, h̃, h) into Tlabel.

• Case 3: Otherwise, the system first samples h̃ $← {0, 1}m1 and k from the Bernoulli distribution with
the probability 2m1−N

2m2−N , then

– Case 3.1: If k = 1, the system responds with r ← h̃||0(m2−m1), and inserts (r, h) into TE and h̃ into
T⊥.

– Case 3.2: Otherwise, the system samples r $← {0, 1}(m2−m1)\{0(m2−m1)}, responds with r ← h̃||t,
and inserts (r, h) into TE .

The differences between Game 2 and Game 3 occurs in Case 2 and Case 3, where h is previously
unknown. In Case 2, h is a group element in GN,m2 , hence its pre-image of E should match the form
h̃||0(m2−m1). Note that, it is satisfied in both games. Furthermore, to be consistent, h̃ would be a group
element in GN,m1 and it has the same discrete log as h. All bits each group element in G̃N,m1(x) are indepen-
dent of the adversary’s view. Hence, the adversary’s views of G̃N,m1

(x) and h̃ are distributed identically, as
long as the random string h̃ never appears before. This bad event is bounded as

Pr[Bad1] ≤ 2q

2m1
.

For Case 3, which means h is an invalid encoding, the system in Game 2 responses with Ẽ−1(h); while
the system in Game 3 responses with random h̃ ∈ {0, 1}m1 appended 0(m2−m1) or random t 6= 0(m2−m1),
determined by the Bernoulli distribution sample. We observe that, in Game 2, the last (m2 −m1) bits of the
response are all 0 with the probability 2m1−N−|T⊥|

2m2−N−|T⊥| ≥
2m1−N−2q
2m2−N−2q , which is close to the probability 2m1−N

2m2−N in
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Game 3. Concretely,

2m1 −N
2m2 −N

− 2m1 −N − |T⊥|
2m2 −N − |T⊥|

≤ 2m1 −N
2m2 −N

− 2m1 −N − 2q

2m2 −N − 2q

=
2q · (2m2 − 2m1)

(2m2 −N − 2q)(2m2 −N)

≤ 2q

2m1 − 2q
.

The only bad event in this case is that the response appears before quek, which is trivially bounded by

Pr[Bad2] ≤ 2q

2m1
.

Therefore, we have

|Pr[Game 3]− Pr[Game 4]| ≤ q ·
2∑
i=1

Pr[Badi] +
2q

2m1 − 2q
≤ 4q2

2m1
+

2q

2m1 − 2q
.

Game 5. This game is identical to Game 4 except for responding addition queries. Suppose quek =

(h̃1, h̃2, add;GN,m1
), then

• Case 1: If quek ∈ Tadd, then same as in Game 4.

• Case 2: If quek ∈ T⊥, then same as in Game 4.

• Case 3: If there exist two tuples (t1, t2, t3), (t′1, t
′
2, t
′
3) ∈ Tlabel such that t2 = h̃1, t

′
2 = h̃2 and t1 + t′1 ∈

Tlabel, then same as in Game 4.

• Case 4: If there exist two tuples (t1, t2, t3), (t′1, t
′
2, t
′
3) ∈ Tlabel such that t2 = h̃1, t

′
2 = h̃2 but t1 + t′1 /∈

Tlabel, then the system makes a query (t3, t
′
3, add;GN,m2) to obtain h. Then:

– Case 4.1: If h ∈ Tlabel, then same as in Game 4.

– Case 4.2: Otherwise, the system responds with uniformly sampled h̃ ∈ {0, 1}m1 , inserts (�, h̃, G̃ labelN,m2
(t3+

t′3)) into Tlabel and inserts (h̃||0(m2−m1), G̃ labelN,m2
(t1 + t′1)) into TE .

• Case 5: Otherwise, the system samples k1, k2 from the Bernoulli distribution with the probability N
2m1

for 1. If k1 = 0 and h̃1 does not exist in Tlabel, then the system inserts h̃1 into T⊥, samples h such that
G̃addN,m2

(h, G̃ labelN,m2
(1)) = ⊥ via reject sampling (up to λ times) and inserts (h̃1||0(m2−m1), h) into TE ; if

k1 = 1 and h̃1 does not exist in Tlabel, then the system uniformly samples x ∈ ZN as the pre-image of
h̃1, and then inserts (x, h̃1, G̃ labelN,m2

(x)) into Tlabel and (h̃1||0(m2−m1), G̃ labelN,m2
(x)) into TE . Similarly for k2

and h̃2. Finally, the system responds to quek in the same way as in Case 2, Case 3 or Case 4.

The differences between Game 4 and Game 5 occurs in Case 4.2 and Case 5. Now we analyze the bad
event in each case.

In Case 4.2, where h̃1, h̃2 are valid group elements, the system in Game 4 responds with G̃ labelN,m2
(t2 + t′2);

while the system in Game 5 responds with random string h̃ ∈ {0, 1}m1 , and records the relationship of h̃ and
G̃ labelN,m2

(t1 + t′1) in TE . Within the same reason of Game 2 ≈ Game 3, the adversary’s views of G̃ labelN,m2
(t2 + t′2)

and h̃ are distributed identically, as long as the random string h̃ never appears before. This bad event is
bounded as

Pr[Bad1] ≤ 2q

2m1
.
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In Case 5, where at least one encoding of h̃1, h̃2 never appears before quek. We observe that, in Game
4, any previously unknown encoding is valid encoding with the probability N−|Tlabel|

2m1−|Tlabel| ≥
N−2q

2m1−2q ; while in
Game 5, the probability is N

2m1
due to the Bernoulli distribution sample. Therefore, under the condition that

the bad event never happens, the adversary’s view are distributed closely as

N

2m1
− N − |Tlabel|

2m1 − |Tlabel|
≤ N

2m1
− N − 2q

2m1 − 2q
≤ 2q

2m1
.

Hence it suffice to prove that except with a negligible probability, the condition is hold. Recall that, for any
previously unknown h̃b ∈ {h̃1, h̃2} that is (considered) valid, in both games, the system records its corre-
sponding group element in G̃N,m2 into Tlabel and TE . In Game 4, the system obtains the group element by
calling Ẽ(h̃b||0(m2−m1)); while in Game 5, the system randomly samples xb ∈ ZN and then calls G̃ labelN,m2

(xb).
Analogously, the bad event in this situation is that xb appears before quek, which is bounded by

Pr[Bad2] ≤ 2q

N
.

For any previously unknown h̃b ∈ {h̃1, h̃2} that is (considered) invalid, the system inserts it into T⊥ and
records its permutation result into TE . Although all bits of each permutation result in Ẽ are independent of
the adversary’s view, to be consistent, the permutation result of h̃b should be an invalid encoding in G̃N,m2 .
Hence, the bad event is that h is a group element in G̃N,m2

, which is bounded as

Pr[Bad3] ≤ (
N

2m2
)λ ≤ (

2m1

2m2
)λ ≤ 1

2λ
.

In addition, if the system finally responds to quek in the same way as in Case 4.2, it introduces the bad event
in Case 4.2 described above.

Thus, we have

|Pr[Game 4]− Pr[Game 5]| ≤ q · (Pr[Bad1] + 2

3∑
i=2

Pr[Badi]) +
2q

2m1

≤ 2q2 + 2q

2m1
+

4q2

N
+

2q

2λ
.

Game 6. This game is identical to Game 5 except for responding labeling queries. Suppose quek =
(x, label;GN,m1), then

• Case 1: If quek ∈ Tlabel, which means there exists a tuple (t1, t2, t3) ∈ T such that t1 = x, then same as
in Game 5.

• Case 2: If quek /∈ Tlabel, the system first makes a query (x, label;GN,m2
) with the response h, then

– Case 2.1: If there exists a tuple (t1, t2, t3) ∈ Tlabel such that t3 = h, then same as in Game 5.

– Case 2.2: Otherwise, the system responds with uniformly sampled h̃ ∈ {0, 1}m1 , inserts (h̃||0(m2−m1), h)

to TE , and inserts (x, h̃, h) into Tlabel.

The only difference between Game 5 and Game 6 occurs in Case 2.2, which means G̃ labelN,m1
(x) never

appears before quek. Note that, all bits of G̃ labelN,m1
(x) are distributed uniformly and independent of the ad-

versary’s view. Thus, under the condition that the bad event never happens, the adversary’s view are
distributed identical in both games. The bad event is that h̃ appears before quek, which is trivially bounded
by

Pr[Bad] ≤ 2q

2m1
.
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Therefore, we have

|Pr[Game 5]− Pr[Game 6]| ≤ q · Pr[Bad] ≤ 2q2

2m1
.

Ideal Game. In Game 6, the queries to the adversarial interfaces are answered by the tables which are
maintained by the system and by making queries to honest interface. It is straightforward to show that we
can replace G̃N,m2

with a generic group GN,m2
, resulting in Ideal Game.

The difference between Game 6 and Ideal Game is that: in Game 6, the system responds to all queries by
calling G̃N,m2

; while in Ideal Game, the system makes queries to GN,m2
. In fact, as G̃ labelN,m2

(x) = Ẽ(G̃ labelN,m1
(x)||0(m2−m1))

in which Ẽ is an ideal random permutation and G̃N,m1 is a generic group, all bits of G̃N,m2(x) are uniformly
random. Analogously, if h1, h2 are valid group elements, all bits of G̃addN,m2

(h1, h2) are uniformly random.
Thus, the distribution of G̃N,m2 and GN,m2 are identical, referring to

Pr[Game 7] = Pr[Ideal Game]

In the following, we give the full description of the simulator.
Simulator in the Ideal Game. Let GN,m2

be a generic group. By definition, the simulator S has access
to the honest interfaces G labelN,m2

,GaddN,m2
. And for the adversarial queries, S works as the system in Game 7.

Concretely, S maintains four tables: the labeling table Tlabel, the addition table Tadd, the permutation table
TE and the invalid table T⊥. And S answers the adversarial queries by the tables and the honest interfaces
G labelN,m2

,GaddN,m2
.

Labeling query. Suppose quek = (x, label;GN,m1
), then

• Case 1: If quek ∈ Tlabel, which means there exists a tuple (t1, t2, t3) ∈ T such that t1 = x, then the
simulator responds to the query with t2.

• Case 2: If quek /∈ Tlabel, the system first makes a query (x, label;GN,m2
) with the response h, then

– Case 2.1: If there exists a tuple (t1, t2, t3) ∈ Tlabel such that t3 = h, then the simulator responds to
the query with t2 and replaces t1 with x.

– Case 2.2: Otherwise, the simulator responds with uniformly sampled h̃ ∈ {0, 1}m1 , inserts
(h̃||0(m2−m1), h) to TE , and inserts (x, h̃, h) into Tlabel.

Addition query. Suppose quek = (h̃1, h̃2, add;GN,m1
), then

• Case 1: If quek ∈ Tadd, which means there exists a tuple (t1, t2, t3) ∈ Tadd such that {t1, t2} = {h̃1, h̃2},
then the simulator responds to the query with t3.

• Case 2: If quek ∈ T⊥, then the simulator responds to the query with ⊥.

• Case 3: If there exist two tuples (t1, t2, t3), (t′1, t
′
2, t
′
3) ∈ Tlabel such that t2 = h̃1, t

′
2 = h̃2 and t1 + t′1 ∈

Tlabel, then the simulator responds with the corresponding record.

• Case 4: If there exist two tuples (t1, t2, t3), (t′1, t
′
2, t
′
3) ∈ Tlabel such that t2 = h̃1, t

′
2 = h̃2 but t1 + t′1 /∈

Tlabel, then the system makes a query (t3, t
′
3, add;GN,m2

) to obtain h. Then:

– Case 4.1: If h ∈ Tlabel, the simulator responds with the corresponding record.

– Case 4.2: Otherwise, the simulator responds with uniformly sampled h̃ ∈ {0, 1}m1 , inserts
(�, h̃,G labelN,m2

(t3 + t′3)) into Tlabel and inserts (h̃||0(m2−m1), G labelN,m2
(t1 + t′1)) into TE .

• Case 5: Otherwise, the simulator samples k1, k2 from the Bernoulli distribution with the probability
N

2m1
for 1. If k1 = 0 and h̃1 does not exist in Tlabel, then the simulator inserts h̃1 into T⊥, samples h such

that GaddN,m2
(h,G labelN,m2

(1)) = ⊥ via reject sampling (up to λ times) and inserts (h̃1||0(m2−m1), h) into TE ;
if k1 = 1 and h̃1 does not exist in Tlabel, then the simulator uniformly samples x ∈ ZN as the pre-image
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of h̃1, and then inserts (x, h̃1,G labelN,m2
(x)) into Tlabel and (h̃1||0(m2−m1),G labelN,m2

(x)) into TE . Similarly for
k2 and h̃2. Finally, the system responds to quek in the same way as in Case 2, Case 3 or Case 4.

E-query. Suppose quek = (r, fwd; E), then

• Case 1: If quek ∈ TE , which means there exists a tuple (t1, t2) ∈ TE such that t1 = r, then the simulator
responds to the query with t2.

• Case 2: If quek /∈ TE and m = h̃||0, the simulator samples k from the Bernoulli distribution with the
probability N

2m1
, if k = 0, the simulator responds with uniformly sampled h ∈ {0, 1}m2 such that

GaddN,m2
(h,G labelN,m2

(1)) = ⊥ via reject sampling (up to λ times), and inserts (r, h) into TE and h̃ into T⊥;
else the simulator randomly samples x ∈ ZN , responds with h ← G labelN,m2

(x), and inserts (r, h) into TE
and (�, h̃, h) into Tlabel.

• Case 3: Otherwise, the simulator responds with uniformly sampled h ∈ {0, 1}m2such that GaddN,m2
(h,G labelN,m2

(1)) =
⊥ via reject sampling (up to λ times), and inserts (r, h) into TE .

E−1-query. Suppose quek = (h, inv; E), then

• Case 1: If quek ∈ TE , which means there exists a tuple (t1, t2) ∈ TE such that t2 = h, then the simulator
responds to the query with t1.

• Case 2: If quek /∈ TE and GaddN,m2
(h,G labelN,m2

(1)) 6= ⊥, the simulator randomly samples h̃ ∈ {0, 1}m1 ,
responds with r ← h̃||0(m2−m1), and inserts (r, h) into TE and (�, h̃, h) into Tlabel.

• Case 3: Otherwise, the simulator first samples h̃ $← {0, 1}m1 and k from the Bernoulli distribution
with the probability 2m1−N

2m2−N , then

– Case 3.1: If k = 1, the simulator responds with r ← h̃||0(m2−m1), and inserts (r, h) into TE and h̃
into T⊥.

– Case 3.2: Otherwise, the simulator samples t $← {0, 1}(m2−m1) \ {0(m2−m1)}, responds with r ←
h̃||t, and inserts (r, h) into TE .

We have shown that every pair of adjacent games are indistinguishable. Combining together, we estab-
lish the entire proof, referring to∣∣∣Pr[Real Game]− Pr[Ideal Game]

∣∣∣ ≤ 6q2

N
+

10q2 + 4q

2m1
+

3q

2λ
+

2q

2m1 − 2q
≤ negl(λ).

4.2 GN,m2 does not computationally imply GN,m1

In this section, we show that the shorter GGM is computationally indifferentiably separated from the longer
one. Formally,

Theorem 6. Let λ be the security parameter. Let GN,m1 and GN,m2 be two generic group models. If (m2 −m1) ≥
ω(log λ), then GN,m1 is computationally indifferentiably separated from GN,m2 .

Essentially, our strategy highly relies on the analysis in [ZZ23], and thus we first recap the discrete
logarithm identification problem (DLI) with respect to the generic groups.

Definition 11 (DLI w.r.t. generic groups [ZZ23]). Given a generic group GN,m := (G labelN,m,GaddN,m), a group element

h← G labelN,m(x), where x $← ZN , an efficient algorithm with access to GN,m outputs a “query-free” circuit CGGM such
that CGGM identifies x with a good probability, specifically,
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• Pr[CGGM(x) = 1] ≥ 1
2 ;

• for any noticeable function ρ, Prx′ 6=x[CGGM(x′) = 1] ≤ ρ,

where the probability is over the sampling of x′ and CGGM’s randomness. We say DLI w.r.t. generic groups is hard if
no query-efficient adversary outputs such a circuit.

To absorb Zhandry and Zhang’s analysis into our setting, we then propose the DLI problem w.r.t the shorter
groups in the longer GGM.

Definition 12 (DLI w.r.t. shorter groups in longer GGM). Given a shorter group construction ΠGN,m2 :=
(LGN,m2 , AGN,m2 ), whose order is N and the length of group encoding is m1, in a longer generic group GN,m2

and

a group element h ← LGN,m2 (x) where x $← ZN , an efficient algorithm with access to GN,m outputs a “query-free”
circuit CG-GGM such that CG-GGM identifies x with a good probability, specifically,

• Pr[CG-GGM(x) = 1] ≥ 2
3 ;

• for any noticeable function ρ, Prx′ 6=x[CG-GGM(x′) = 1] ≤ ρ,

where the probability is over the sampling of x′ and CG-GGM’s randomness. We say DLI w.r.t. shorter groups in the
longer GGM is hard if no query-efficient adversary outputs such a circuit.

Now, we are ready to establish the entire proof of Theorem 6.

Proof. Suppose a construction ΠGN,m2 := (LGN,m2 , AGN,m2 ) is indifferentiable from GN,m1
in the longer GGM

GN,m2
. The argument goes in three steps:

1. DLI w.r.t. ΠGN,m2 is easy.

2. If ΠGN,m2 is indifferentiable from GN,m1 and DLI w.r.t. ΠGN,m2 is easy, then DLI w.r.t. GN,m1 is also
easy.

3. Yet, DLI w.r.t. the generic group GN,m1
is hard.

The above three steps draw a contradiction, so the statement “ΠGN,m2 is indifferentiable from GN,m1
”

cannot be true, completing our proof. Below, we prove them step by step; for readability, we do them in
reverse order.

Lemma 3. DLI w.r.t. the generic group GN,m1 is hard.

The following proof of Lemma 3 is taken verbatim from [ZZ23].

Proof. Assuming there is an efficient adversary Amaking at most q queries to GN,m1 which breaks DLI, we
can convert A into a query-efficient adversary B, as shown in Fig. 6, that breaks Discrete Logarithm in the
GGM21.

According to the description ofB, we have thatBmakes at most q queries to GN,m1
. We set ρ to be 1

q12 and
mbound to be 1+N−1

q6 , respectively; applying Markov’s inequality, it is apparent that Pr[|S| > mbound] ≤ 1
q6 .

Therefore, we have that

Pr[B outputs x] =

N∑
i=1

Pr[|S| = i] · (1

i
) · Pr[x ∈ S

∣∣|S| = i]

≥ Pr[|S| ≤ mbound] · ( 1

mbound
) · Pr[x ∈ S

∣∣|S| ≤ mbound].

21Note that B is time-inefficient if N is super-polynomial, which is not a problem in our setting since the lower bound of discrete
log in the GGM [Sho97] only counts the number of oracle queries.
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BGN,m1 (G labelN,m1
(1),G labelN,m1

(x)):

S ← ∅; CGGM ← AGN,m1 (G labelN,m1
(1),G labelN,m1

(x));
for i = 0 to N − 1,

if CGGM(i) = 1, S ← S ∪ {i};
y

$← S;
return y.

Adversary BGN,m1

Figure 6: A query-efficient adversary breaks Discrete Logarithm in the GGM

Note that Pr[x ∈ S] ≥ 1/2, which means that Pr[x ∈ S
∣∣|S| ≤ mbound] should be close to 1/2, because

|S| ≤ mbound happens with high probability. Formally, we denote A and B to be the events “x ∈ S” and
“|S| ≤ mbound”, respectively, we have that

Pr[A
∣∣B] =

Pr[A]− Pr[A
∣∣¬B] Pr[¬B]

Pr[B]
≥ Pr[A]− Pr[¬B]

Pr[B]
= 1− 1− Pr[A]

Pr[B]
.

Substituting into the inequalities above, we have that,

Pr[B outputs x] ≥ (1− 1

q6
) · ( 1

1 + N−1
q6

) · (1− 1

2
· (1− 1

q6
))

≥ 1

2
· (1− 1

q6
) · q6

q6 +N − 1
= Θ(

q6

N
) > O(

q2

N
),

which contradicts the hardness of discrete log in the GGM [Sho97].

Lemma 4. If ΠGN,m2 is indifferentiable from GN,m1
and DLI w.r.t. ΠGN,m2 is easy, then DLI w.r.t. GN,m1

is also
easy.

Proof. Let A be an adversary which breaks DLI with respect to ΠGN,m2 , that is, A takes LGN,m2 (x) as input,
makes at most q queries to GN,m2

, outputs a query-free circuit CG-GGM such that CG-GGM identifies x with a
good probability. According to the definition of indifferentiability, we know that there exists a simulator
S that makes at most q∗ = poly(q) queries to GN,m1 and simulates the generic group GN,m2 properly. That
is, in the ideal world, given the adversary A that takes GN,m1

(x) as input, AS
GN,m1 = A(SGN,m1 ) outputs a

query-free circuit CGGM
22. By definition, we have that no efficient differentiator D distinguishes these two

circuits, i.e., CG-GGM and CGGM. Next, we claim that CGGM also identifies x with a good probability.

CGGM Accepts x with a Good Probability. In this part, we prove that if Pr[CGGM(x) = 1] < 1
2 , then there

exists an efficient differentiator which breaks indifferentiability.
According to the differentiator in Fig. 7, we have that Pr[Dreal = 1] ≥ 2

3 but if Pr[CGGM(x) = 1] < 1
2 , we

have that Pr[Dideal = 1] < 1
2 , which means the advantage of the differentiator in Fig. 7 is at least 2

3 −
1
2 = 1

6 .

CGGM Accepts x′ (x′ 6= x) with a Small Probability. In this part, we prove that for any noticeable function
ρ, Prx′ 6=x[CGGM(x′) = 1] ≤ ρ. By contraposition, we assume that there exists a noticeable function ρ∗, such
that Prx′ 6=x[CGGM(x′) = 1] > ρ∗, then we proceed to build an efficient differentiator breaks indifferentiabil-
ity. Let n be a polynomial such that n ≥ 1

ρ∗ , we build our differentiator in Fig. 8.
In the real world, by the statement of Lemma 4, we have that for any noticeable function, say 0.08

n ,
Pr[CGGM(zi) = 1] ≤ 0.08

n . According to the differentiator in Fig. 8, immediately observe that Pr[Dreal = 1] ≤
n · 0.08

n = 0.08, due to union bound.

22Note thatAS is the adversary against DLI with respect to GN,m1
.
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Dreal in real world :

x
$← ZN ;

CGGM ← AGN,m2 (LGN,m2 (x));
if CGGM(x) = 1, return 1;
return 0.

Dideal in ideal world :

x
$← ZN ;

CG-GGM ← AS
GN,m1 (G labelN,m1

(x));
if CG-GGM(x) = 1, return 1;
return 0.

Differentiator-1

Figure 7: Differentiator-1 against Indifferentiability.

Dreal in real world :

x
$← ZN ; z1, . . . , zn

$← ZN \ {x};
CGGM ← AGN,m2 (LGN,m2 (x));
for i = 1 to n;

if CGGM(zi) = 1, then return 0;
return 1.

Dideal in ideal world :

x
$← ZN ; z1, . . . , zn

$← ZN \ {x};
CG-GGM ← AS

GN,m1 (GN,m1(x));
for i = 1 to n;

if CG-GGM(zi) = 1, then return 0;
return 1.

Differentiator-2

Figure 8: Differentiator-2 against Indifferentiability.

On the other hand, in the ideal world, if Prx′ 6=x[CGGM(x′) = 1] > ρ∗, then,

Pr[Dideal = 1] ≥ 1− (1− ρ∗)n ≥ 1− (1− ρ∗)
1
ρ∗

≥ 1− 1

e
> 0.6 .

For the first inequality above, Dideal = 1 means that ∀i, CGGM(zi) = 0, and due to independence of zi, it
is apparent that

Pr[Dideal = 1|(∀i, zi 6= x)] ≥ 1− (1− ρ∗)n.

Therefore, the advantage of the differentiator in Fig. 8 is at least (0.6 − 0.08) > 0.1. We conclude that if
ΠGN,m2 is indifferentiable from GN,m1 and DLI w.r.t. ΠGN,m2 is easy, then DLI w.r.t. GN,m1 is easy.

Lemma 5. DLI w.r.t. ΠGN,m2 is easy.

Proof. By the definition of indifferentiability, the algorithms LGN,m2 and AGN,m2 are deterministic; and they
shall support group operations correctly with high probability. More specifically, there exists a negligible
function ε1, such that

Pr
x 6=y

[LGN,m2 (x) = LGN,m2 (y)] ≤ ε1, (1)

Pr[AGN,m2 (LGN,m2 (x), LGN,m2 (y)) = LGN,m2 (x+ y)] ≥ 1− ε1, (2)

where the probability is over the sampling of x, y ∈ ZN and the generic group GN,m2
. As explained above,

we stress that LGN,m2 only makes labeling queries. Let q be an integer in poly(λ). We assume that both
LGN,m2 and AGN,m2 make at most q queries to GN,m2

. Next, we prove that the DLI problem w.r.t. ΠGN,m2

is easy by constructing an efficient adversary A and a query-free circuit CG-GGM in Fig. 9. (Here, G-GGM
denotes the shorter group in the longer GGM.)

We first clarify some undefined notions in Fig. 9. Let n be a sufficiently large integer to be specified be-
low. By

{
(que1, res1), . . . , (queq, resq)

} query←− LGN,m2 (ri), we denote that on input ri, the algorithm LGN,m2 (ri)
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AGN,m2 (LGN,m2 (x)):
Sque-res ← ∅; z, r1, . . . , rn

$← ZN ;

for i = 1 to n: //collecting frequent queries{
(que1, res1), . . . , (queq, resq)

} query←− LGN,m2 (ri);

Sque-res ← Sque-res ∪
{

(que1, res1), . . . , (queq, resq)
}

;

compute LGN,m2 (z), LGN,m2 (x− z)← AGN,m2 (LGN,m2 (x), LGN,m2 (−z));{
(que1, res1), . . . , (queq, resq)

} query←− AGN,m2 (LGN,m2 (x− z), LGN,m2 (z));

for j = 1 to q: //collecting queries in group addition

if quej is an addition query: //converting addition queries into labeling queries

parse the addition query quej to two labels h1, h2;
if ∃(x1, h1), (x2, h2) ∈ Sque-res: Sque-res ← Sque-res ∪ {(x1 + x2, resj)};

else: Sque-res ← Sque-res ∪ {(quej , resj)}; //collecting labeling queries

return CG-GGM( · , Sque-res, L
GN,m2 (x)).

CG-GGM( · , Sque-res, L
GN,m2 (x)):

take z ∈ ZN as input; run str← LSque-res(z);

when L makes a labeling query que = x: //responding to labeling queries

if ∃(x, h) ∈ Sque-res: respond with h;

else: respond with a uniformly sampled h; Sque-res ← Sque-res ∪ {(x, h)};

when L makes an addition query que = (h1, h2): //responding to addition queries

if ∃(x1, h1), (x2, h2) ∈ Sque-res:

if ∃(x1 + x2, h) ∈ Sque-res: respond with h;
else: respond with a uniformly sampled h; Sque-res ← Sque-res ∪ {(x1 + x2, h)};

else: respond with ⊥; //if addition query has a new labeling, then responds with ⊥

if str = LGN,m2 (x): return 1; else: return 0.

Adversary AGN,m2

Figure 9: Efficient Adversary AGN,m2 and query-free circuit CG-GGM w.r.t. ΠGN,m2 .

makes queries (que1, . . . , queq) to GN,m2 and gets responses of (res1, . . . , resq); and similar for the notation{
(que1, res1), . . . , (queq, resq)

} query←− AGN,m2 (LGN,m2 (x− z), LGN,m2 (z)). 23 Given an input z ∈ ZN , the query-
free circuit CG-GGM runs algorithm LGN,m2 (z) except for replacing the querying oracle by looking up the
table Sque-res (and lazy sampling); we denote that as LSque-res .

Next, we give evidence that the query-free circuit CG-GGM in Fig. 9 identifies x with a good probability,
which means DLI w.r.t. ΠGN,m2 is easy. Recall that, we say CG-GGM identifies x with a good probability if:

• Pr[CG-GGM(x) = 1] ≥ 2
3 ;

• for any noticeable function ρ: Prx′ 6=x[CG-GGM(x′) = 1] ≤ ρ.

We prove that CG-GGM satisfies these two properties one by one.

23Here, we abuse the notation LGN,m2 (x− z) as both the group element and the labeling operation on x− z.
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CG-GGM Accepts x with Good Probability. Here, we prove Pr[CG-GGM(x) = 1] ≥ 2
3 . As shown in Fig. 9,

CG-GGM(x) outputs 1 if and only if LSque-res(x) = LGN,m2 (x). For any x, y ∈ ZN , let Sx,y be the set of all group
elements appeared in responses when invoking AGN,m2 (LGN,m2 (x), LGN,m2 (y)). We denote

Qx :=
{

(que1, res1), . . . , (queq, resq)
} query←− LGN,m2 (x);

Qx,y :=
{

(que, res)|res ∈ Sx,y,G labelN,m2
(que) = res

}
.

The adversary AGN,m2 in Fig. 9 collects the queries/responses as

Sque-res = Qr1 ∪ · · · ∪Qrn ∪Qx−z,z except for responses relative to new labels.

Obviously, if Qx ⊆ Sque-res, then LSque-res(x) = LGN,m2 (x). Unfortunately, x is independent of the adversary’s
view and some queries in Qx may be ignored when running AGN,m2 (LGN,m2 (x− z), LGN,m2 (z)). We cannot
guarantee Qx ⊆ Sque-res. In fact, for each (que, res) ∈ Qx, there are four cases as follows:

• Case 1: the representation of LGN,m2 (x) is independent of res;

• Case 2: res does not appear in Qx−z,z ;

• Case 3: res appears in labeling queries made by AGN,m2 (LGN,m2 (x− z), LGN,m2 (z));

• Case 4: res appears in addition queries made by AGN,m2 (LGN,m2 (x− z), LGN,m2 (z)).

For Case 1, we argue the representation of LGN,m2 (x) is independent of Qx \ Q∗x, where Q∗x := Qx ∩
(Qx−z ∪ Qz ∪ Qx−z,z). Concretely, we observe that there are two query-free algorithms, denoted as Alg1

and Alg2, such that LGN,m2 (x) = Alg1(x,Qx) = Alg2(x − z, z,Qx−z ∪ Qz ∪ Qx−z,z) with high probability.
That is, Alg1 computes the group element through the labeling operation LGN,m2 and Alg2 computes the
same group element through the addition operation AGN,m2 ; according to Equation 2, AGN,m2 (LGN,m2 (x −
z), LGN,m2 (z)) = LGN,m2 (x) holds except for a negligible probability ε1. Therefore, the output of Alg1(x,Qx)
is independent of the group elements in Qx−z ∪Qz ∪Qx−z,z \Qx; the output of Alg2(x− z, z,Qx−z ∪Qz ∪
Qx−z,z) is independent of the group elements inQx\Qx−z∪Qz∪Qx−z,z . We conclude that the representation
of LGN,m2 (x) is independent of Qx \ Q∗x. Therefore, the queries we care about are only in Case 2, 3 and 4,
and it is sufficient to prove that Q∗x ⊆ Sque-res with a good probability.

Next, we prove it by two steps as follows:

• Qx ∩Qx−z,z ⊆ Sque-res with a good probability;

• Qx ∩ (Qz ∪Qx−z) ⊆ Sque-res with a good probability.

Qx ∩Qx−z,z ⊆ Sque-res with a good probability. We immediately observe that, the adversary can easily collect
all group elements (with their discrete logarithms) in Qx−z,z , except for the group codings that are the
responses of addition queries (with new and valid labelings as inputs). The challenge is that there may
be valid new labels in addition queries made by AGN,m2 (LGN,m2 (x − z), LGN,m2 (z)), denoted as Snew; but
the adversary does not know their discrete logarithms. To address this challenge, we first show that with
a noticeable probability all group elements in Snew are frequent (defined below), and then collect labeling
queries from a sufficiently large number of samples, say Qr1 ∪ · · · ∪ Qrn , to capture all the frequent group
elements with their discrete logarithms. That is, Snew ⊆ Qr1 ∪ · · · ∪Qrn with a noticeable probability. Here,
we define the frequent group elements. Let t := 200q, we say a labeling query (que, res) and the group
element res are frequent, if

Pr[(que, res) ∈ Qz : z
$← ZN ] ≥ 1

t
.

Applying exactly the same analysis as in Lemma 2, we have that any efficient algorithm AGN,m2 cannot
extract a valid group element of GN,m2 from single LGN,m2 (x − z) or LGN,m2 (z) except for negligible prob-
ability. Therefore, we have Snew ⊆ Qx−z ∩ Qz with high probability. Because both x and r are uniformly
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sampled, x− z and r are independent. For any labeling query (que, res) ∈ Qx−z , if (que, res) is not frequent,
then

Pr[(que, res) ∈ Qz] ≤
1

t
.

Thus, we have that

Pr[Qx ∩Qx−z,z are all frequent queries] ≥ 1− q

t
= 1− 1

200
.

So there exists a negligible function ε2 (for Snew * Qx−z ∩Qz), such that

Pr[Snew are all frequent group elements] ≥ 1− 1

200
− ε2.

Let n := t2 ·q. Below, we prove thatQr1∪· · ·∪Qrn contains all frequent queries with a noticeable probability.
In fact, there are at most qf := q · t frequent queries. Denote all frequent queries as {(que′i, res′i)}i∈[qf ]. For
each (que′i, res

′
i), we have

Pr[(que′i, res
′
i) /∈ Qr1 ∪ · · · ∪Qrn ] ≤

(
1− 1

t

)n
≤ e−q·t,

which refers to

Pr[(que′i, res
′
i) ∈ Qr1 ∪ · · · ∪Qrn : ∀i ∈ [qf ]] ≥ 1− (q · t)e−q·t ≥ 1− 200e−200.

We conclude that, if AGN,m2 (LGN,m2 (x− z), LGN,m2 (z)) = LGN,m2 (x), then

Pr[Snew are all put into Sque-res] ≥ 1− 200e−200 − 1

200
− ε2.

Qx∩ (Qz ∪Qx−z) ⊆ Sque-res with a good probability. Note that x, z and x− z are pairwise independent. Within
the same reason described above,

Pr[Qx ∩Qz are all frequent queries] ≥ 1− 1

200
;

Pr[Qx ∩Qx−z are all frequent queries] ≥ 1− 1

200

which refers to
Pr[Qx ∩ (Qz ∪Qx−z) are all frequent queries] ≥ 1− 1

100
.

Therefore, we have that

Pr[Qx ∩ (Qz ∪Qx−z) are all put into Sque-res] ≥ 1− 1

100
− 200e−200.

Combining together, we have that

Pr[Q∗x ⊆ Sque-res] ≥ 1− 1

200
− 400e−200 − 1

100
− ε2 − ε1 ≥

2

3
,

which refers to Pr[CG-GGM accepts x] ≥ 2
3 .
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CG-GGM Accepts x′ (x′ 6= x) with Small Probability. Here, we prove that for any noticeable function ρ,
Prx′ 6=x[CG-GGM(x′) = 1] ≤ ρ. Recall that, CG-GGM(x′) outputs 1 if and only if LSque-res(x′) = LGN,m2 (x). There
are two cases as follows:

• Case 1: Qx′ ⊆ Sque-res and LSque-res(x′) = LGN,m2 (x);

• Case 2: Qx′ * Sque-res and LSque-res(x′) = LGN,m2 (x).

Immediately observe that if Qx′ ⊆ Sque-res, then LSque-res(x′) = LGN,m2 (x′). According to Equation 1, we have

Pr[Case 1] ≤ ε1.

For Case 2, it is enough to analyze Pr[LSque-res(x′) = LGN,m2 (x)]. We first define an event “Sque-res is good” if
Prx′ 6=x[LSque-res(x′) = LSque-res(x)] ≤ √ε1 (the nonce of Sque-res is fixed); otherwise we say Sque-res is bad. When
Sque-res is good, for any str ∈ {0, 1}m1 , Pr[LSque-res(x′) = str] ≤ 2 4

√
ε1. By Equation 1, we have

Pr
x′ 6=x

[LSque-res(x′) = LSque-res(x)|Sque-res is good] · Pr[Sque-res is good]

+ Pr
x′ 6=x

[LSque-res(x′) = LSque-res(x)|Sque-res is bad] · Pr[Sque-res is bad] ≤ ε1

It’s apparent that Pr[Sque-res is bad] ≤ √ε1. Therefore,

Pr[LSque-res(x′) = LGN,m2 (x)]

= Pr[LSque-res(x′) = LGN,m2 (x)|Sque-res is good] · Pr[Sque-res is good]

+ Pr[LSque-res(x′) = LGN,m2 (x)|Sque-res is bad] · Pr[Sque-res is bad]

≤2 4
√
ε1 +

√
ε1.

which refers to Pr[Case 2] ≤ 2 4
√
ε1 +

√
ε1.

Combining together, we have that

Pr[CG-GGM(x′) = 1] ≤ ε1 + 2 4
√
ε1 +

√
ε1

which means that for any noticeable function ρ, Prx′ 6=x[CG-GGM(x′) = 1] ≤ ρ.

Combining together, we establish the entire theorem.

4.3 The hierarchy is tight

In this section, we build an indifferentiable GN,m1
from a longer generic group GN,m2

, for (m2 −m1) = 1
andm1 ≥ logN+ω(log λ). Our construction can be trivially extended to the case that (m2−m1) ≤ Θ(log λ),
illustrating that our impossibility result is tight.

In Fig. 10, we present a shorter GGM (S-GGM) construction Π
GN,m2

S-GGM := (L
GN,m2

S-GGM , A
GN,m2

S-GGM) where Trunc
is a function that takes an m2-bit string as input and outputs its first m1 bits. For each group operation
L
GN,m2

S-GGM or AGN,m2

S-GGM , the corresponding longer label in GN,m2 is truncated as the result. Specifically, for any
input shorter label h̃ in A

GN,m2

S-GGM , it is easy to obtain the corresponding longer label h (or determine that
h̃ is invalid) through a brute-force approach. That is, call GN,m2

to identify which of h̃||0 and h̃||1 is a
group element. We observe that the bad event is that both h̃||0 and h̃||1 are valid, which is bounded by
2(m2−m1)·N

2m2
= N

2m1
.

Formally, we have the following theorem showing that the Π
GN,m2

S-GGM construction is indifferentiable from
GN,m1

.

38



L
GN,m2
S-GGM (x):

return Trunc(GN,m2(x)).

A
GN,m2
S-GGM (h̃1, h̃2):

h1 ← �; h2 ← �;
for b := 0 to 1:

if GaddN,m2
(h̃1||b,G labelN,m2

(1)) 6= ⊥: h1 ← h̃1||b;
if GaddN,m2

(h̃2||b,G labelN,m2
(1)) 6= ⊥: h2 ← h̃2||b;

if h1 = � or h2 = �: return ⊥;
return Trunc(GaddN,m2

(h1, h2)).

Construction Π
GN,m2

S-GGM

Figure 10: Construction Π
GN,m2

S-GGM in GN,m2
, where (m2 −m1) = 1 and m1 ≥ logN + ω(log λ).

Theorem 7. The construction Π
GN,m2

S-GGM in Fig. 10, with access to a generic group GN,m2
, is indifferentiable from a

generic group GN,m1
, where (m2 −m1) = 1 and m1 ≥ logN + ω(log λ). More precisely, there exists a simulator S

such that for all (qG label
N,m2

, qGadd
N,m2

)-query distinguisher D with qG label
N,m2

+ qGadd
N,m2

≤ q, we have

Advindif

Π
GN,m2
S-GGM ,GN,m1

,S,D
≤ (2q + 1)N

2m1
.

The simulator makes at most 3q queries to GN,m1 .

S.G labelN,m2
(x):

h̃← G labelN,m1
(x);

if ∃(x, h̃, h) ∈ Tlabel: return h;
if ∃(�, h̃, h) ∈ Tlabel: replace � by x, return h; // � is a symbol.

b
$← {0, 1}, h← h̃||b, Tlabel ← Tlabel ∪ (x, h̃, h);

return h.

S.GaddN,m2
(h1, h2):

if ∃(h1, h2, h) ∈ Tadd or ∃(h2, h1, h) ∈ Tadd: return h;
h̃1 ← Trunc(h1), h̃2 ← Trunc(h2);
if (h̃1, h1) ∈ T⊥ ∨ (h̃2, h2) ∈ T⊥: return ⊥;
if GaddN,m1

(h̃1,G labelN,m1
(1)) = ⊥ ∨ GaddN,m1

(h̃2,G labelN,m1
(1)) = ⊥: return ⊥;

for i ∈ {1, 2}, if @(∗, h̃i, hi) ∈ Tlabel: // ∗ refers to x ∈ ZN or symbol �.
if ∃(∗, h̃i, h

′
i) ∈ Tlabel ∧ hi 6= h′i: return ⊥;

sample ki from the Bernoulli distribution with the probability 1

2−|T⊥[h̃i]| for 1;

if ki = 0: T⊥ ← T⊥ ∪ {(h̃i, hi)}, return ⊥;
else: Tlabel ← Tlabel ∪ {(�, h̃i, hi)};

h̃← GaddN,m1
(h̃1, h̃2);

if ∃(∗, h̃, h) ∈ Tlabel: Tadd ← Tadd ∪ {(h1, h2, h)}, return h;

b
$← {0, 1}, h← h̃||b, Tlabel ← Tlabel ∪ {(�, h̃, h)};

Tadd ← Tadd ∪ {(h1, h2, h)}, return h.

Simulator S

Figure 11: The simulator for construction Π
GN,m2

S-GGM .
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Proof Sketch. The correctness of our scheme easily follows. For the indifferentiability, the adversary has
two honest interfaces G labelN,m1

and GaddN,m1
and two adversarial interfaces G labelN,m2

, GaddN,m2
. We build a simulator

in Fig. 11 to simulate the adversary interfaces G labelN,m2
and GaddN,m2

properly. In the following, we give the
high-level intuition of our proof strategy.

Our simulator makes at most 3q queries to (G labelN,m1
,GaddN,m1

), and it maintains three tables Tlabel, Tadd, T⊥
each of size at most 2q, meaning that S is efficient. Note that, the notation T⊥[h̃i] in Fig. 11 stands for a
subset of T⊥ whose items are indexed by h̃i, formally, T⊥[h̃i] := {(t1, t2)|(t1, t2) ∈ T⊥ ∧ t1 = h̃i}. Next,
we present the intuitive idea of why S works. Note that, GN,m2

is a generic group, hence the responses of a
proper simulator should follow the these rules:

• Rule 1: The responses of G labelN,m2
are statistically uniform in {0, 1}m2 ;

• Rule 2: There is no x1 6= x2 ∈ ZN such that G labelN,m2
(x1) = G labelN,m2

(x2);

• Rule 3: G labelN,m1
(x) = Trunc(G labelN,m2

(x));

• Rule 4: G labelN,m2
(x1 + x2) = GaddN,m2

(G labelN,m2
(x1),G labelN,m2

(x2)).

• Rule 5: if h /∈ {G labelN,m2
(x)}x∈ZN , then GaddN,m2

(h, ·) = ⊥.

Next, we illustrate how our simulator S achieves five rules above. Observe that the rule 1, 2 and 3 trivially
hold.
Rule 4. Denote h1 := G labelN,m2

(x1), h2 := G labelN,m2
(x2). There are four cases:

• Case 1: There exists (h1, h2, h) ∈ Tadd;

• Case 2: h1, h2 ∈ Tlabel, and Tlabel holds the corresponding addition result;

• Case 3: h1, h2 ∈ Tlabel, but Tlabel does not have the addition result;

• Case 4: Otherwise, at least one of h1, h2 is previously unknown.

Obviously, for Case 1 and 2, this equation holds for free. For Case 3, from the short generic group GN,m1 ,
the adversary can only learn the first m1 bits of the long addition result. Therefore, it is okay to replace the
last one bit by a random bit b ∈ {0, 1}. The only way to break this rule is that a collision of h occurs, which
never happens due to the first m1 bits from GN,m1

.
Now we analyze Case 4. We immediate observe that, if the first m1 bits of the previously unknown

encoding, denoted as h̃i := Trunc(hi), is not a valid group element in GN,m1 , then hi is invalid due to our
construction and our simulator always responds with ⊥. Otherwise, there are two subcases as follows:
1) there is a valid encoding h′ ∈ Tlabel such that Trunc(h′) = h̃i; 2) Tlabel doesn’t have such h′ yet. In the
first subcase, hi is always an invalid encoding unless both h̃||0 and h̃||1 are valid group elements in the
generic group GN,m2 , which is bounded by a negligible probability N

2m1
≤ 1

2ω(log λ) . Therefore, it is okay of
our simulator to always responds with ⊥. In the second subcase, the simulator considers hi to be a valid
group element according to the Bernoulli distribution with the probability 1

2−T⊥[h̃i]
. Easy to note that, the

probability of the adversary sampling a valid group element under our simulator is close to the one under
the generic group GN,m2 . When all previously unknown encodings are considered valid, our simulator
responds to the addition query with GaddN,m1

(h̃1, h̃2)||b, where b is uniformly sampled from {0, 1}. Within the
same reason of Case 3, Rule 4 holds in Case 4.
Rule 5. There are two cases as follows:

• Case 1: the encoding h is already put into T⊥;

• Case 2: the encoding h is previously unknown.
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Note that, the simulator always responds with ⊥ in Case 1. That is, for any known invalid encoding h, the
response of GaddN,m2

(h, ·) is always ⊥. For Case 2, as mentioned above, our simulator considers the unknown
encoding h to be invalid with the probability close to the one in GN,m2

, and then responds with ⊥.
Below, we give a full proof of Theorem 5.

Proof. According to the definition of indifferentiability, the adversary has two honest interfaces G labelN,m1
,GaddN,m1

and two adversarial interfaces G labelN,m2
,GaddN,m2

. Therefore, we need to build an efficient simulator S in the ideal
world that can simulate two adversarial interfaces properly, which means, for any PPT differentiator D, the
view of D in the real game is computationally close to the view in the ideal game. We will go through a
sequence of hybrid games where in each game, there exists a system that responds to all of the queries (both
honest and adversarial) in a slightly different way and then we build our simulator S as the system in the
last game. Before the description of the games, we first specify some parameters:

• There are four types of queries: the long labeling query (x, label;GN,m2), the long addition query
(h1, h2, add;GN,m2

), the short labeling query (x, label; GN,m1
) and the short addition query (h̃1, h̃2, add;GN,m1

),
where x ∈ ZN , h1, h2 ∈ {0, 1}m2 and h̃, h̃1, h̃2 ∈ {0, 1}m1 .

• The adversary only makes q queries to the system, where q = poly(λ).

• The oracles used in the real world are a short cryptographic group construction G̃N,m1
:= (G̃addN,m1

, G̃ labelN,m1
)

and a long generic group G̃N,m2 := (G̃ labelN,m2
, G̃addN,m2

).

• In each game, the system’s responses are denoted as G labelrN,m2
, GaddrN,m2

, G labelrN,m1
and GaddrN,m1

. For instance,
G labelrN,m2

(x) denotes the system’s response when adversary makes a query que := (x, label;GN,m2
).

The hybrid games are as follows.
Game 0. This game is identical to the real game except that the system maintains a tables Tlabel and Tadd.
Specifically, the system responds to every queries by real oracles. For the tables, the system maintains them
as follows:

• Tlabel: It is initiated empty and consists of tuples with form of (x, h̃, h). Once the adversary makes
a query (x, label;GN,m2), which does not exist in Tlabel yet, the system inserts (x, G̃ labelN,m1

(x), G̃ labelN,m2
(x))

into Tlabel.

• Tadd: It is initiated empty and consists of tuples with form of (h1, h2, h). Once the adversary makes a
query (h1, h2, add;GN,m2

), which does not exist in Tadd yet, the system inserts (h1, h2, G̃addN,m2
(h1, h2))

into Tadd.

• T⊥: It is initiated empty and consists of tuples with form of (h̃, h).

Note that the tables Tlabel, Tadd and T⊥ are completely hidden to the adversary, and hence the view in
real game is identical to the one in Game 0, which refers to

Pr[Real Game] = Pr[Game 0]

Game 1. This game is identical to Game 0 except the way of maintaining the tables and responding to the
queries. Specifically,
Labeling query. Suppose quek = (x, label;GN,m2

)(the k-th querh), then

• Case 1: If quek ∈ Tlabel, which means there exists a tuple (t1, t2, t3) ∈ Tlabel such that t1 = x, then the
system responds to the query with t3.

• Case 2: If quek /∈ Tlabel, the system first makes a query (x, label;GN,m1) with the response h̃, then

– Case 2.1: If there exists a tuple (t1, t2, t3) ∈ Tlabel such that t2 = h̃, then the system replaces t1
with x and responds with t3.

41



– Case 2.2: Otherwise, the system responds with h← G̃ labelN,m2
(x) and inserts (x, h̃, h) into Tlabel.

Addition query. Suppose quek = (h1, h2, add;GN,m2
), then

• Case 1: If quek ∈ Tadd, which means there exists a tuple (t1, t2, t3) ∈ Tadd such that {t1, t2} = {h1, h2},
then the system responds to the query with t3.

• Case 2: If quek ∈ T⊥, then the system responds to the query with ⊥.

• Case 3: If there exist two tuples (t1, t2, t3), (t′1, t
′
2, t
′
3) ∈ Tlabel such that t3 = h1, t

′
3 = h2 and G̃addN,m1

(t2, t
′
2) ∈

Tlabel, then the system responds with the corresponding record.

• Case 4: If there exist two tuples (t1, t2, t3), (t′1, t
′
2, t
′
3) ∈ Tlabel such that t3 = h1, t

′
3 = h2 but G̃addN,m1

(t2, t
′
2) /∈

Tlabel, then the system responds to the query with h ← G̃addN,m2
(h1, h2), inserts (h1, h2, h) into Tadd, and

inserts (�, G̃ labelN,m1
(t1 + t′1), h) into Tlabel.

• Case 5: Otherwise, the system responds to the query with h ← G̃addN,m2
(h1, h2) and inserts (h1, h2, h)

into Tadd.

In Game 1, the system keeps longer tables, and for part of the adversarial queries, the system responds
to them only using the tables. Note that, each item stored in tables is consistent with the real oracles, these
responses are identical to those by calling real oracles. Moreover, in either games, the honest interfaces
always correspond to the real oracles. Hence, in either game, the response of any query is identical, which
refers to

Pr[Game 0] = Pr[Game 1]

Now, the system needs to answer the rest adversary queries by real oracles. In the following hybrid
games, we replace the responses that answered by real oracles with tables and honest interfaces without
changing the view significantly.
Game 2. This game is identical to Game 1 except for responding to the labeling queries. Suppose quek =
(x, label;GN,m2

), then

• Case 1: If quek ∈ Tlabel, which means there exists a tuple (t1, t2, t3) ∈ Tlabel such that t1 = x, then same
as Game 1.

• Case 2: If quek /∈ Tlabel, the system first makes a query (x, label;GN,m1) with the response h̃, then

– Case 2.1: If there exists a tuple (t1, t2, t3) ∈ Tlabel such that t2 = h̃, then same as Game 1.

– Case 2.2: Otherwise, the system uniformly samples b ∈ {0, 1} and responds to the query with
h = h̃||b. In addition, the system inserts (x, h̃, h) into Tlabel.

Note that, the only difference between Game 1 and Game 2 occurs in Case 2, where x never appears
before quek. In Game 1, the system responds with G̃N,m2 ; while in Game 2, the system responds with
h← G̃ labelN,m1

(x)||b, where b ∈ {0, 1} is a random string. According to the construction, the adversary can only
learn the first m1 bits of the long encoding of the previously unknown x. In other word, the last one bit is
uniformly random and independent of the adversary’s view. Due to the uniqueness of G̃ labelN,m1

(x), h is also
not repeated. Hence, the adversary’s views of G̃ labelN,m2

(x) and G̃ labelN,m1
(x)||b are distributed identically, which

refers to
Pr[Game 1] = Pr[Game 2]

Game 3. This game is identical to Game 2 except for responding to the addition queries. Suppose quek =
(h1, h2, add;GN,m2

), then

• Case 1: If quek ∈ Tadd, then same as Game 2.
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• Case 2: If quek ∈ T⊥, then same as Game 2.

• Case 3: If there exist two tuples (t1, t2, t3), (t′1, t
′
2, t
′
3) ∈ Tlabel such that t3 = h1, t

′
3 = h2 and G̃addN,m1

(t2, t
′
2) ∈

Tlabel, then same as Game 2.

• Case 4: If there exist two tuples (t1, t2, t3), (t′1, t
′
2, t
′
3) ∈ Tlabel such that t3 = h1, t

′
3 = h2 but G̃addN,m1

(t2, t
′
2) /∈

Tlabel, then the system randomly samples b from {0, 1} and responds to the query with h← G̃addN,m1
(t2, t

′
2)||b.

• Case 5: Otherwise, same as Game 2.

Note that, the only difference between Game 2 and Game 3 occurs in Case 3. In Game 2, the system
responds with G̃N,m2

; while in Game 3, the system responds with h← G̃ labelN,m1
(t2, t

′
2)||b, where b ∈ {0, 1} is a

random bit. According to the construction, the adversary can only learn the first m1 bits of the long encod-
ing of the previously unknown x. In other word, the last one bit is uniformly random and independent of
the adversary’s view. Since G̃addN,m1

(t2, t
′
2) does not appear, h does not appear either. Hence, the adversary’s

views of quek in Game 2 and Game 3 are distributed identically, which refers to

Pr[Game 2] = Pr[Game 3]

Game 4. This game is identical to Game 3 except for responding to the addition queries. Suppose quek =
(h1, h2, add;GN,m2), then

• Case 1: If quek ∈ Tadd, then same as Game 3.

• Case 2: If quek ∈ T⊥, then same as Game 3.

• Case 3: If there exist two tuples (t1, t2, t3), (t′1, t
′
2, t
′
3) ∈ Tlabel such that t3 = h1, t

′
3 = h2 and G̃addN,m1

(t2, t
′
2) ∈

Tlabel, then same as Game 3.

• Case 4: If there exist two tuples (t1, t2, t3), (t′1, t
′
2, t
′
3) ∈ Tlabel such that t3 = h1, t

′
3 = h2 but G̃addN,m1

(t2, t
′
2) /∈

Tlabel, then same as Game 3.

• Case 5: For i ∈ {1, 2}, if hi does not exist in Tlabel, the system first tests whether h̃i ← Trunc(hi) is a
group element in G̃N,m1 . If not, the system responds with ⊥; else if h̃i ∈ Tlabel, then the system also
responds with ⊥.

• Case 6: Otherwise, same as Game 3.

Note that, the only difference between Game 3 and Game 4 occurs in Case 5, where the firstm1-bit string
of a previously unknown encoding already exist in Tlabel. In Game 3, the system responds with G̃N,m2

; while
in Game 4, the system always responds with ⊥. Obviously, the bad event is that such unknown encoding,
say hi, is a valid group element. Due to our construction, when h̃i is not a group element, hi is always
invalid. The bad event happens only if both h̃||0 and h̃||1 are valid group elements in the generic group
G̃N,m2 , which is bounded as

Pr[Bad] ≤ 2(m2−m1) ·N
2m2

=
N

2m1

Therefore, we have
|Pr[Game 4]− Pr[Game 3]| ≤ 2q · Pr[Bad]

Game 4. This game is identical to Game 4 except for responding to the addition queries. Suppose quek =
(h1, h2, add;GN,m2

), then

• Case 1: If quek ∈ Tadd, then same as Game 4.

• Case 2: If quek ∈ T⊥, then same as Game 4.

43



• Case 3: If there exist two tuples (t1, t2, t3), (t′1, t
′
2, t
′
3) ∈ Tlabel such that t3 = h1, t

′
3 = h2 and G̃addN,m1

(t2, t
′
2) ∈

Tlabel, then same as Game 4.

• Case 4: If there exist two tuples (t1, t2, t3), (t′1, t
′
2, t
′
3) ∈ Tlabel such that t3 = h1, t

′
3 = h2 but G̃addN,m1

(t2, t
′
2) /∈

Tlabel, then same as Game 4.

• Case 5: For i ∈ {1, 2}, if hi does not exist in Tlabel, the system first tests whether h̃i ← Trunc(hi) is a
group element in G̃N,m1 . If h̃i is invalid or h̃i ∈ Tlabel, then same as Game 4.

• Case 6: Otherwise, if h1 does not exist in Tlabel, the system samples k1 from the Bernoulli distribution
with the probability 1

2−|T⊥[h̃1]| for 1, where h̃1 = Trunc(h1). If k1 = 0, the system inserts (h̃1, h1) into

T⊥; otherwise, the system inserts (�, h̃1, h1) into Tlabel. Similarly for h2. Finally, the system responds
to quek in the same way as in Case 2, Case 3 or Case 4.

Note that, the only difference between Game 3 and Game 4 occurs in Case 6, where h1 or h2 never
appears, and the first m1-bit strings of these unknown encodings are short group elements and do not exist
in Tlabel.

We observe that, in Game 3, any previously unknown encoding, say hi, is valid encoding with a prob-
ability bounded by 1

2−|T⊥[h̃i]|
+ N

2m1

24; while in Game 4, the probability is 1
2−|T⊥[h̃i]|

due to the Bernoulli
distribution sample. Therefore, the adversary’s view are distributed closely as

(
1

2− |T⊥[h̃i]|
+

N

2m1
)− 1

2− |T⊥[h̃i]|
=

N

2m1
.

When the system finally responds to quek in the same way as in Case 2, Case 3 or Case 4, recall that, it
introduces no bad event. Therefore, we have

|Pr[Game 4]− Pr[Game 3]| ≤ N

2m1

Ideal Game. In Game 4, the queries to the adversarial interfaces are answered by the tables which are
maintained by the system and by making queries to honest interface. It is straightforward to show that we
can replace G̃N,m1 with a generic group GN,m1 , resulting in Ideal Game.

The difference between Game 4 and Ideal Game is that: in Game 4, the system responds to all queries by
calling G̃N,m1

; while in Ideal Game, the system makes queries to GN,m1
. In fact, as G̃ labelN,m1

(x) = Trunc(G̃ labelN,m2
(x))

in which G̃N,m2 is a generic group, all bits of G̃ labelN,m1
(x) are uniformly random. Analogously, if h1, h2 are valid

group elements, all bits of G̃addN,m1
(h1, h2) are uniformly random. Thus, the distribution of G̃N,m1

and GN,m1

are identical, referring to
Pr[Game 4] = Pr[Ideal Game]

In the following, we give the full description of the simulator.
Simulator in the Ideal Game. Let GN,m1

be a generic group. By definition, the simulator S has access
to the honest interfaces G labelN,m1

,GaddN,m1
. And for the adversarial queries, S works as the system in Game 7.

Concretely, S maintains four tables: the labeling table Tlabel, the addition table Tadd, and the invalid table
T⊥. And S answers the adversarial queries by the tables and the honest interfaces G labelN,m1

,GaddN,m1
.

Labeling query. Suppose quek = (x, label;GN,m2), then

• Case 1: If quek ∈ Tlabel, which means there exists a tuple (t1, t2, t3) ∈ Tlabel such that t1 = x, then the
simulator responds with t3.

• Case 2: If quek /∈ Tlabel, the system first makes a query (x, label;GN,m1) with the response h̃, then

24The addition N
2m1 is from the probability of both h̃i||0 and h̃i||1 are valid group elements.
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– Case 2.1: If there exists a tuple (t1, t2, t3) ∈ Tlabel such that t2 = h̃, then the simulator responds
with t3.

– Case 2.2: Otherwise, the simulator uniformly samples b ∈ {0, 1} and responds to the query with
h = h̃||b. In addition, the simulator inserts (x, h̃, h) into Tlabel.

Addition query. Suppose quek = (h1, h2, add;GN,m2), then

• Case 1: If quek ∈ Tadd, which means there exists a tuple (t1, t2, t3) ∈ Tadd such that {t1, t2} = {h1, h2},
then the simulator responds to the query with t3.

• Case 2: If quek ∈ T⊥, then the simulator responds to the query with ⊥.

• Case 3: If there exist two tuples (t1, t2, t3), (t′1, t
′
2, t
′
3) ∈ Tlabel such that t3 = h1, t

′
3 = h2 and G̃addN,m1

(t2, t
′
2) ∈

Tlabel, then the system responds with the corresponding record.

• Case 4: If there exist two tuples (t1, t2, t3), (t′1, t
′
2, t
′
3) ∈ Tlabel such that t3 = h1, t

′
3 = h2 but G̃addN,m1

(t2, t
′
2) /∈

Tlabel, then the system randomly samples b from {0, 1} and responds to the query with h← G̃addN,m1
(t2, t

′
2)||b.

• Case 5: For i ∈ {1, 2}, if hi does not exist in Tlabel, the system first tests whether h̃i ← Trunc(hi) is a
group element in G̃N,m1 . If h̃i is invalid or h̃i ∈ Tlabel, then the simulator responds with ⊥.

• Case 6: Otherwise, if h1 does not exist in Tlabel, the simulator samples k1 from the Bernoulli distribu-
tion with the probability 1

2−|T⊥[h̃1]| for 1, where h̃1 = Trunc(h1). If k1 = 0, the simulator inserts (h̃1, h1)

into T⊥; otherwise, the simulator inserts (�, h̃1, h1) into Tlabel. Similarly for h2. Finally, the simulator
responds to quek in the same way as in Case 2, Case 3 or Case 4.

We have shown that every pair of adjacent games are indistinguishable. Combining together, we estab-
lish the entire proof, referring to∣∣∣Pr[Real Game]− Pr[Ideal Game]

∣∣∣ ≤ 2qN +N

2m1
.
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