
Generic Differential Key Recovery Attacks and
Beyond

Ling Song1 , Huimin Liu1 , Qianqian Yang2,3B , Yincen Chen1 ,
Lei Hu2,3 , and Jian Weng1

1 College of Cyber Security, Jinan University, Guangzhou, China
2 Key Laboratory of Cyberspace Security Defense, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing, China
3 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

songling.qs@gmail.com,liuhuimin301@gmail.com,yangqianqian@iie.ac.cn,
icsnow98@gmail.com,hulei@iie.ac.cn,cryptjweng@gmail.com

Abstract. At Asiacrypt 2022, a holistic key guessing strategy was pro-
posed to yield the most efficient key recovery for the rectangle attack.
Recently, at Crypto 2023, a new cryptanalysis technique–the differential
meet-in-the-middle (MITM) attack–was introduced. Inspired by these two
previous works, we present three generic key recovery attacks in this paper.
First, we extend the holistic key guessing strategy from the rectangle to
the differential attack, proposing the generic classical differential attack
(GCDA). Next, we combine the holistic key guessing strategy with the
differential MITM attack, resulting in the generalized differential MITM
attack (GDMA). Finally, we apply the MITM technique to the rectangle
attack, creating the generic rectangle MITM attack (GRMA). In terms of
applications, we improve 12/13-round attacks on AES-256. For 12-round
AES-256, by using the GDMA, we reduce the time complexity by a factor
of 262; by employing the GCDA, we reduce both the time and memory
complexities by factors of 261 and 256, respectively. For 13-round AES-256,
we present a new differential attack with data and time complexities of
289 and 2240, where the data complexity is 237 times lower than previously
published results. These are currently the best attacks on AES-256 using
only two related keys. For KATAN-32, we increase the number of rounds
covered by the differential attack from 115 to 151 in the single-key setting
using the basic differential MITM attack (BDMA) and GDMA. Furthermore,
we achieve the first 38-round rectangle attack on SKINNYe-64-256 by using
the GRMA.

Keywords: Differential cryptanalysis, Rectangle attack, Meet-in-the-
middle, Key recovery, AES, KATAN, SKINNYe

1 Introduction

Differential cryptanalysis, which was introduced by Biham and Shamir [BS90,
BS91], is one of the most powerful cryptanalytic approaches for assessing the
security of block ciphers. The basic idea is to exploit non-random propagation of
input difference to output difference, i.e., high-probability differentials. The first

https://orcid.org/0000-0001-9298-7313
https://orcid.org/0000-0003-2187-0817
https://orcid.org/0000-0002-2062-1344
https://orcid.org/0000-0003-3830-8169
https://orcid.org/0000-0002-9920-5342
https://orcid.org/0000-0003-4067-8230

step in mounting a differential attack is to find a high-probability differential
covering a large number of rounds. This procedure has been extensively studied,
and many approaches have been proposed [Mat94,MWGP11,MP13,SHW+14,
SWW21]. Once an r-round high-probability differential of a certain cipher has
been found, one could add some outer rounds and restrict the possible values of
key bits in the outer rounds. Indeed, the right key of the outer rounds will reveal
the non-randomness of the differential.

Since the introduction of differential cryptanalysis, many improvements have
been proposed for the key recovery: structures of data [BS92], conditional dif-
ferentials [KMN10], probabilistic neutral bits [AFK+08], the early abort tech-
nique [LKKD08], the probabilistic extensions [SYC+24] and so on. Among the
techniques for key recovery, the key guessing strategy has received considerable
attention. A common approach is to guess key bits corresponding to S-boxes in a
default order as in [SWW21]. To improve complexity, the dynamic key-guessing
technique [WWJZ18] and a delicate key-guessing technique [BCF+21] that takes
advantage of the structure of the S-box have been introduced. In [BDD+24], an
automated tool was developed for the first time to find the best key guessing
order for block ciphers that use a bit-permutation as the linear layer. Recently,
significant progress was made on the differential key recovery in [BDD+23] where
the key is recovered in a meet-in-the-middle (MITM) manner, and the new attack
is called the differential MITM attack. In classical differential attacks, pairs of
data are constructed first, and for each pair, the attacker identifies the keys,
under which the differential is respected. In the differential MITM attack, pairs
of data are constructed together with the keys it suggests. The new attack has
produced favorable results on block ciphers SKINNY-128-384 and AES-256. Later,
this attack was extended to truncated differentials in [AKM+24].

The rectangle attack [BDK01], which is a variant of the differential attack,
combines two differentials and utilizes the non-randomness of quartets. There
have been a series of works on the key recovery of rectangle attacks [BDK01,
BDK02,ZDM+20,DQSW21], each employing a different key guessing strategy.
In [SZY+22,YSZ+24], the previous key recovery attacks are unified into a generic
rectangle key recovery attack. Notably, the generic rectangle attack supports
any key guessing strategy and can optimize complexity by selecting the most
appropriate one.

Motivations. Even though the key guessing strategy received great attention
in both differential attacks and rectangle attacks, the strategies differ. In the
rectangle attack, it means guessing some key bits before any pairs or quartets are
generated, which allows for filtering out some wrong pairs without even generating
them. This is a natural approach. Under the guessed key some conditions of the
distinguisher can be checked. In rectangle attacks, the number of conditions or
filters is doubled as there are two pairs. Therefore, guessing some key bits initially
is likely to be advantageous. The key guessing strategy lies in determining which
part of the key bits to guess in advance. In contrast, in the differential attack,
the attacker first generates the pairs that potentially satisfy the differential and

2

then guesses some key bits. Here, the strategy focuses on the order in which the
key bits are guessed.

From now on, let the key guessing strategy refer to the one from the rectangle
attack. Although in the differential attack the number of filters under the guessed
key bits is not doubled, it is interesting to investigate whether guessing some
key bits in advance affects the time complexity of the differential attack. Second,
the differential MITM attack employs a fixed key guessing strategy, can it
be generalized to support any key guessing strategy? Further, can the MITM
technique be integrated into the generic rectangle attack [SZY+22, YSZ+24]?
These questions form the starting point of this paper.

Our contributions. Guessing some key bits in advance before any pairs of data
are generated is a technique that has been used in the rectangle attack. It plays
a core role in optimizing the time complexity. In this paper, we introduce the
key guessing strategy from the rectangle attack to the differential attack and
also introduce the MITM key recovery to the rectangle attack, resulting in three
generic key recovery attacks as follows.

GCDA A generic classical differential attack is proposed that first considers the
key guessing strategy. Notably, the key guessing strategy can be any, as in the
generic rectangle attack [SZY+22,YSZ+24]. Therefore, the GCDA encompasses
the previous differential attack with no key bits guessed in advance.

GDMA A generalized differential meet-in-the-middle attack is proposed that ex-
tends the basic differential meet-in-the-middle attack (BDMA) [BDD+23] and
allows a flexible key guessing strategy.

GRMA A generic rectangle meet-in-the-middle attack is proposed that incorporates
the MITM technique into the rectangle key recovery.

To demonstrate the efficiency of these attacks, we revisit the attacks on AES-
256, KATAN-32, and SKINNYe-64-256 v2 using previously published distinguishers.
The following results are obtained and comparisons of the results with previous
ones are summarized in Table 1.

– Using the GCDA and GDMA, the time complexity of the 12-round attack on
AES-256 in the related-key setting can be optimized to 2144. Notably, using the
BDMA, the time complexity cannot be reduced below 2206. This improvement
is primarily due to the flexible key guessing strategy. Additionally, we extend
the attack to 13 rounds, achieving lower data and time complexities than
previous works. Specifically, the data complexity is reduced by a factor of
237. These are the best attacks so far on AES-256 using only two related keys.

– We add various numbers of rounds to a 42-round differential of KATAN-32 and
compare the three attacks, i.e., BDMA, GCDA, and GDMA. We confirm some
properties of the time complexity of these attacks: the GDMA encompasses the
BDMA; GDMA outperforms GCDA under certain conditions (see Section 3.3). Using
a 91-round differential from the literature, we improve the differential attack
on KATAN-32 from 115 rounds to 151 rounds, marking the best differential
attack on KATAN-32 to date.

3

Table 1: Summary of the cryptanalytic results. RK: related-key. SK: single-key.
Cipher Rounds Data Time Memory Setting Type

AES-256

12 289

2214 289 RK BDMA [BDD+23]
2206 2184 RK BDMA [BDD+23]
2185 289 RK GCDA (Section 4.1)
2144 2184 RK GDMA (Section 4.1)
2145 2128 RK GCDA (Section 4.1)

13

2126 2253 289 RK BDMA [BDF23]
2126 2250 2231 RK BDMA [BDF23]
289 2248 289 RK GCDA (Section 4.1)
289 2240 2144 RK GCDA (App. A.3)

KATAN-32 115 232 279.98 − SK Differential [AL13]
151 279.98 238 SK BDMA (Section 4.2)

SKINNYe-64-256 v2 37 262.8 2240.03 262.8 RK Rectangle [QDW+22]
38 265.4 2251.07 2254.8 RK GRMA (Section 4.3)

– We apply the GRMA to SKINNYe-64-256 and extend the rectangle attack by one
round. This is the best attack on SKINNYe-64-256 v2 so far. Note that, using
the same distinguisher, the generic rectangle attack in [SZY+22, YSZ+24]
cannot cover as many rounds. This confirms the advantage of the MITM
technique in certain cases of the rectangle key recovery.

Our work demonstrates that guessing key bits in advance is an excellent
complement to existing techniques for differential attacks. Furthermore, allowing
flexible key guessing strategies enhances the power of the differential MITM
attack. Finally, the MITM technique can be extended to the key recovery of the
rectangle attack.

Organization. The rest of the paper is organized as follows. In Section 2, we recall
the generic rectangle attack and the differential MITM attack. In Section 3, we
introduce three generic key recovery attacks, i.e., the generic classical differential
attack (GCDA), the generalized differential MITM attack (GDMA), and the generic
rectangle MITM attack (GRMA). In Section 4, we provide new cryptanalytic results
on AES-256, KATAN-32, and SKINNYe-64-256 using the newly proposed key recovery
attacks. Finally, we conclude the paper in Section 5.

2 Preliminaries

2.1 Notations

E The block cipher E = Ef ◦ Em ◦ Eb with a distinguisher over Em

n The block size
k The key size
kb (resp. kf) The subset of subkey bits that are employed in Eb (resp. Ef)

4

k′
b (resp. k′

f) The part of kb (resp. kf) guessed in advance
k∗

b (resp. k∗
f) k∗

b = kb \ k′
b (resp. k∗

f = kf \ k′
f)

| · | The size of an object
rb (resp. rf) The dimension of the space spanned by all possible plaintext (resp.

ciphertext) differences
r′

b (resp. r′
f) The number of conditions that can be verified under k′

b (resp. k′
f)

r∗
b (resp. r∗

f) r∗
b = rb − r′

b (resp. r∗
f = rf − r′

f)
GCRA The generic classical rectangle attack [SZY+22]
GCDA The generic classical differential attack
BDMA The basic differential MITM attack [BDD+23]
GDMA The generalized differential MITM attack
GRMA The generic rectangle MITM attack

2.2 The Generic Rectangle Key Recovery Attack

At Asiacrypt 2022, a generic rectangle key recovery attack was proposed by Song
et al. [SZY+22]. It contains a generic key recovery algorithm and a strategy for
finding the best attack. To make a distinction, we call the key recovery attacks
that do not use the MITM technique classical attacks, and then the attack
in [SZY+22] is called the generic classical rectangle attack (GCRA).

As shown in Figure 1, given a block cipher E, we treat it as the composition
of three sub-ciphers: E = Ef ◦Em ◦Eb. Suppose the probability of the boomerang
distinguisher over Em is Pr = 2−2p. When we extend the differential outwards
with probability 1, ∆x will propagate to the plaintext difference ∆P over E−1

b

and ∆y will propagate to the ciphertext difference ∆C over Ef . Let all possible
∆P span a space of dimension rb. Similarly, let all possible ∆C span a space
with dimension rf . Suppose that it requires subkey information kb (resp. kf) to
verify the difference ∆x (resp. ∆y) for plaintext (resp. ciphertext) pairs.

In the GCRA, some key bits may be guessed in advance to sieve the data
faster. Suppose a part of kb and kf , denoted by k′

b, k′
f , is guessed at first,

0 ≤ |k′
b| ≤ |kb|, 0 ≤ |k′

f | ≤ |kf |. With the guessed subkey bits, an r′
b-bit condition

on the top and an r′
f -bit condition on the bottom can be verified. Finally, let

r∗
b = rb − r′

b and r∗
f = rf − r′

f . The specific steps for the algorithm are as follows.

1. Phase of data collection. Collect and store y structures of 2rb plaintexts. The
time complexity of this step is T0.

2. Phase of extracting key candidates.
(a) Subkeys guessed. For each data (P1,C1), partially encrypt P1 and partially

decrypt C1 under the guessed subkey bits. There are y∗ = y · 2r′
b sub-

structures of 2rb∗ = 2rb−r′
b plaintexts. The time complexity of this step

is T1.
(b) Pairs constructed. Insert all the obtained (P ∗

1 , C∗
1) into a hash table by the

inactive bits of P ∗
1 or C∗

1 to construct a set of pairs S = {(P ∗
1 , C∗

1 , P ∗
2 , C∗

2)}
or S = {(P ∗

1 , C∗
1 , P ∗

3 , C∗
3)}. The time complexity is T2.

5

P

Eb Em

C

Ef
∆x

Pr

∆y∆P ∆C

rb
rf

kb
︸ ︷︷ ︸ ︸ ︷︷ ︸

kf

Figure 1: A high-level description of the rectangle/differential MITM attack

(c) Quartets generated. Insert S into a hash table by the inactive bits of C∗
1

and C∗
2 or P ∗

1 and P ∗
3 . Then, generate the quartet for each index.

(d) Quartets processed and key information extracted. Determine the key
candidates involved in Eb and Ef and increase the corresponding counters.
The time complexity of this step is T3.

3. Phase of exhaustive search. Guess the remaining unknown key bits according
to the key schedule algorithm and exhaustively search over them to recover
the correct key. The time complexity of this step is T4.

Complexities. The data complexity is D = y · 2rb =
√

s2n+1+p where s is the
expected number of right quartets and y =

√
s2n/2−rb+p. The memory complexity

is M = fM (D, k′
b, k′

f) = D + min{D · 2r∗
b −1, D2 · 2r∗

f −n−1}+ 2t+|kb∪kf |−|k′
b∪k′

f | for
storing the data, the pairs and the key counters, where 0 ≤ t ≤ |k′

b∪k′
f |. The time

complexity T = fT (D, k′
b, k′

f) is composed of four parts. The time complexity of
collecting data is T0 = D, the time complexity of doing partial encryption and
decryption under guessed key bits is

T1 = 2|k′
b∪k′

f | ·D,

the time complexity of generating pairs is

T2 = 2|k′
b∪k′

f | ·D ·min{2r∗
b −1, D · 2r∗

f −n−1},

the time complexity of generating and processing quartet candidates is

T3 = 2|kb∪kf | ·D2 · 2−2n−2 · ϵ,

where ϵ ≥ 1 and its value depends on the concrete situation, and the time com-
plexity of the exhaustive search is T4 = 2k−h, where h ≤ t + |kb ∪ kf | − |k′

b ∪ k′
f |.

It can be seen that the time complexities are affected by the key guessing
strategy k′

b, k′
f . Given a distinguisher, different strategies for guessing key bits

6

may lead to different time complexities. The GCRA, which supports any strategy,
is supposed to find an optimal attack with the lowest time complexity using a
holistic key guessing strategy.

2.3 The Basic Differential MITM Attack

The basic differential meet-in-the-middle (MITM) attack was first proposed by
Boura et al. [BDD+23] at Crypto 2023, as depicted in Figure 1. Suppose the
probability of the differential distinguisher over Em is Pr = 2−p. The differential
MITM attack can be divided into two phases.

1. MITM phase.
Choose 2p plaintexts. For each one:
(a) Given the plaintext P , for each guess i for kb, compute the associated

P̃ i that ensures Eb(P) ⊕ Eb(P̃ i) = ∆x. There are 2|kb| possible (i, P̃ i).
Acquire the associated ciphertexts Ĉi = E(P̃ i) and store (Ĉi, i) in a hash
table H.

(b) Given C = E(P), for each guess j for kf , we can compute the associated
C̃j that ensures E−1

f (C)⊕E−1
f (C̃j) = ∆y. There are 2|kf | possible (j, C̃j).

(c) Match C̃j with Ĉi by looking up the table H. Each collision of (Ĉi, C̃j)
suggests an associated key kb = i, kf = j, that we will consider as a
candidate. The number of expected collisions for one plaintext P is
2|kb|+|kf |−|kb∩kf |−n.

2. Exhaustive search phase.
(a) Guess the remaining key bits (if there are) and test the guess with

additional pairs.

Complexities. The time complexity of this attack can be estimated as

T = 2p ×
(

2|kb| + 2|kf |
)

+ 2|kb∪kf |−n+p + 2k−n+p, (1)

where the first term corresponds to the computations done in the upper part Eb

and the lower part Ef , the second one to the number of expected key candidates
for kb ∪ kf and the last one to the exhaustive search.

The data complexity of the attack can be roughly estimated as D = min{2n,
2p+min(|kb|,|kf |)}, which may be improved using data structures. The mem-
ory complexity is given by M = 2min(|kb|,|kf |), but it can be improved to
2min(|kb|,|kf |)−|kb∩kf | by guessing the common key material at the beginning.
In particular, [BDD+23] claimed the attack can become much more efficient when
the key size of the cipher is bigger than the state size.

3 New Generic Key Recovery Attacks

Inspired by the holistic key guessing strategy of the GCRA [SZY+22], we propose
counterparts for the differential attack, i.e., a generic classical differential attack

7

(GCDA) and a generalized differential MITM attack (GDMA). Our core idea is to
enhance key recovery attacks using the holistic key guessing strategy and the
MITM technique. By selecting an appropriate strategy (including the type of
key recovery attacks, key guessing strategy, etc.), the different terms of the time
complexity can be more balanced, resulting in a lower overall time complexity.
Further, upon the techniques used in GDMA, we combine the MITM technique
with the rectangle attack and propose a generic rectangle MITM attack (GRMA)
in return.

3.1 The Generic Classical Differential Attack

In [SZY+22], it was demonstrated for rectangle attacks that guessing some key
bits in advance affects the time complexity and that any key guessing strategies
should be allowed to find the best attack in terms of the time complexity. Since
the rectangle attack is a variant of the differential attack, it is interesting to
explore how these strategies can be applied back to the differential attack.

Suppose the differential ∆x → ∆y used in the attack has probability 2−p.
Then the data complexity for the attack is D = 2p+1 if one right pair satisfying
the differential is expected4. Other parameters for the key recovery are the same
as introduced in Section 2.1 and Figure 1. The attacker first guesses k′

b, k′
f , a part

of the involved key kb and kf , where 0 ≤ |k′
b| ≤ |kb|, 0 ≤ |k′

f | ≤ |kf |. Suppose
there are additional r′

b and r′
f filtering bits under the guess of k′

b and k′
f . Let

k∗
b = kb \ k′

b, k∗
f = kf \ k′

f , r∗
b = rb − r′

b, r∗
f = rf − r′

f .
Like the rectangle key recovery algorithm in [SZY+22], a generic differential

attack can be given in Alg. 1. In this algorithm, it is assumed that rb − 1 ≤ p,
so multiple plaintext structures [BS92] are used. However, when rb − 1 > p, a
partial structure is enough, and this can be handled similarly. For conciseness,
Alg. 1 focuses on the former case.

Complexities. The time complexity of Alg. 1 contains five parts:

– T0 = D for getting the data;
– T1 = 2|k′

b∪k′
f | ·D for partial encryption and decryption under the guessed key

bits;
– T2 = 2|k′

b∪k′
f | · D · 2rb−1+rf −n−r′

b−r′
f for getting the pairs that satisfy the

specific filtering conditions;
– T3 = 2|kb∪kf |+p−n · ϵ = D · 2|kb∪kf |−n−1 · ϵ for extracting all the 2|kb∪kf |+p−n

key candidates, where ϵ depends on the concrete situation;
– T4 = 2k−h for the exhaustive search, where n− p ≤ h ≤ |kb ∪ kf | when Line

10 uses the counting method while h = n−p when enumerating all candidates
is chosen.

As there will be 2|kb∪kf |+p−n key candidates on average, T3 is at least 2|kb∪kf |+p−n

and thus ϵ ≥ 1.
4 If a bit more right pairs are needed, then D should be increased by a factor.

8

Algorithm 1: The generic classical differential attack (GCDA)
1 S ← 2p−rb+1 structures, each of 2rb messages.
2 for each possible k′

b and k′
f , 0 ≤ |k′

b| ≤ |kb|, 0 ≤ |k′
f | ≤ |kf |, do

3 for structure S[i], 0 ≤ i < |S| do
4 Do partial encryption and decryption for elements in S[i] if k′

b ∪ k′
f ≠ ∅.

// Additional r′
b, r′

f filtering bits are obtained,
respectively.

5 Store the data into a hash table indexed by the filtering bits.
6 Get 22rb−1+rf −n−r′

b
−r′

f pairs having fixed differences on the filtering
bits.

7 for each of such pairs do
8 Extract 2|k∗

b
|−r∗

b candidates for k∗
b , under which ∆x can be reached.

9 Extract 2|k∗
f

|−r∗
f candidates for k∗

f , under which ∆y can be reached.
10 Update the key counters or test directly.

The data should be stored. In addition, key counters consume memory if the
counting method is used. Thus, the memory complexity is M = max{2|k

∗
b ∪k∗

f |, D}
or M = min{2rb , D} depending on Line 10.

Remark 1. We check if the key guessing strategy makes a difference in the time
complexity. First, the time complexity depends on the guessed key bits k′

b, k′
f .

Additionally, we can compare two typical cases: guessing no key bits and guessing
k′

b, k′
f in advance. From the data, N = 2rb+p−(n−rf) pairs can be constructed,

satisfying the n − rf bits of the ciphertext difference. If the common guess-
and-filter method is then used, it takes a time complexity of N · 2|k′

b∪k′
f | to get

N · 2|k′
b∪k′

f | · 2−r′
b−r′

f pairs which satisfy r′
b + r′

f additional bit conditions. Since
N · 2|k′

b∪k′
f | is higher than T1 when rb + rf > n, the key guessing strategy may

matter in certain cases. In Section 4.1, we will see that using different key guessing
strategies results in different time complexities for attacks on 12-round AES-256.

3.2 The Generalized Differential MITM Attack

In the original differential MITM attack [BDD+23], i.e., the BDMA, a fixed key
guessing strategy is used. Namely, the attacker separately guesses all the kb and
kf in the MITM phase. Similar to the GCDA, it is beneficial to allow all possible
key guessing strategies for the differential MITM attack.

Note that there are n− rf filtering bits from the fixed ciphertext difference,
which are available at no extra cost. However, the BDMA cannot exploit these
filtering bits until two sets are matched. When n − rf is large, whether these
filtering bits can be exploited early or not makes a significant difference. The
attacks on 12-round AES-256 in Section 4.1 are typical examples to confirm this.

9

Storing pairs instead of single messages. To exploit the n − rf filtering bits
earlier, we propose to store pairs instead of single messages in the MITM stages,
as these filtering bits can only be used for pairs. Then, it is more efficient to
perform the MITM stages for all data together in a structure rather than for
each single (P, C) one by one when pairs are considered.

The detailed GDMA. In Alg. 2, we propose our generalized differential MITM
attack (GDMA), which allows any possible key guessing strategies and exploits
the filtering bits of ciphertext difference early. The notations showed in Alg. 2
are defined similarly. The attacker first guesses k′

b, k′
f , a part of the involved key

kb and kf , respectively. Let k′
∩ = k′

b ∩ k′
f . Suppose there are additional r′

b and
r′

f filtering bits under the guessed key bits for the upper and lower parts. Let
k∗

b = kb \ k′
b, k∗

f = kf \ k′
f , r∗

b = rb− r′
b, r∗

f = rf − r′
f . For conciseness, Alg. 2 also

focuses on the case rb − 1 ≤ p where multiple data structures are used.

Algorithm 2: The generalized differential MITM attack (GDMA)
1 S ← 2p−rb+1 structures, each of 2rb messages.
2 for each possible v∩ for k′

∩ do
3 for structure S[i], 0 ≤ i < |S| do
4 for each possible vb for k′

b \ k′
∩ do

5 Do partial encryption for data in S[i].
6 Get 22rb−1+rf −n−r′

b pairs (P, P̃) satisfying n− rf + r′
b filtering bits.

7 Store the corresponding
(
C, C̃, vb

)
in a table H.

8 for each possible vf for k′
f \ k′

∩ do
9 Do partial decryption for data in S[i].

10 Get 22rb−1+rf −n−r′
f pairs

(
C, Ĉ

)
satisfying n− rf + r′

f filtering bits.
11 for each vb ∈ H(C, C̃) do
12 Get (P, P̃) and (v∩, vb, vf).
13 Extract 2|k∗

b
∪k∗

f
|−r∗

b
−r∗

f candidates for k∗
b ∪ k∗

f for each pair.
14 Update the key counters or test directly.

Complexities. Without the pivot (P, C), both ciphertexts
(
C, C̃

)
are stored in

Line 7. Given two random pairs from the same structure, they will match with
probability 2−2rb+1 as there are 22rb−1 pairs in a structure. Therefore, in Line
12, there will be D · 2|k′

b∪k′
f | · 2rb−1+rf −n−r′

b−r′
f pairs5, the same as T2 of the

GCDA. Like the GCDA, it may need to take further actions to extract the remaining
information of kin∪kout using the remaining filters. Similarly, the time complexity
of the whole attack has five parts:
5 2|k′

∩| · 2p−rb+1 · 2|k′
b

∪k′
f

|−|k′
∩| · 22rb−1−r′

b · 22rb−1+rf −n−r′
f · 2−2rb+1 = D · 2|k′

b
∪k′

f
| ·

2rb−1+rf −n−r′
b

−r′
f

10

– T0 = D for getting the data;
– T1 = (2|k′

b| +2|k′
f |) ·D for partial encryption and decryption under the guessed

key bits;
– T2 = D · 2|k′

b| · 2rb−1+rf −n−r′
b + D · 2|k′

f | · 2rb−1+rf −n−r′
f + D · 2|k′

b∪k′
f | ·

2rb−1+rf −n−r′
b−r′

f for getting pairs that satisfy the specific filtering conditions;
– T3 = 2|kb∪kf |+p−n · ϵ = D · 2|kb∪kf |−n−1 · ϵ for extracting all the 2|kb∪kf |+p−n

key candidates, where ϵ depends on the concrete situation;
– T4 = 2k−h for the exhaustive search, where n− p ≤ h ≤ |kb ∪ kf | when Line

14 uses the counting method while h = n−p when enumerating all candidates
is chosen.

The data complexity is D = 2p+1, the same as the GCDA. The memory com-
plexity comes from the storage of the data, the pairs, and key counters if
needed. To save the memory for storing the counters of k′

∩, we store the
whole data and count candidates for (kb ∪ kf) \ k′

∩. However, we can also do
it the other way around, i.e., store one structure each time and count candi-
dates for kb ∪ kf , if it is more beneficial. Therefore, the memory complexity is
M = min

{
max

{
D, 2|kb∪kf |−|k′

∩|
}

, max
{

2rb , 2|kb∪kf |}}
if the counting method

is used or M = max
{

2rb , 22rb−1+rf −n−|k′
∩| ·min

{
2|k′

b|−r′
b , 2|k′

f |−r′
f

}}
if the enu-

meration method is used.

3.3 Comparison

GDMA versus BDMA. Let k′
b = kb and k′

f = kf . Then the GDMA turns out to be
almost identical to the BDMA: the time complexities are exactly the same, while
the formulas for the memory and data complexities are different. Since D = 2p+1

is already minimal, the data complexity of GDMA is not larger than that of BDMA.
The memory complexity of GDMA depends on the key guessing strategy, so it is
hard to compare the memory complexity of two attacks. Hence, Alg. 2 can be
seen as a generalization of BDMA if the time complexity is of the greatest concern.

GDMA versus GCDA. If the same key guessing strategy is used, then GDMA and GCDA
share the same time complexity parts T0, T3 and T4. Let us look into T1 and T2
which are rewritten in Table 2. Using the GDMA, the time complexity T1 of partial
encryption and decryption gets lower. For T2, however, it depends but GDMA’s T2
is at least the one of GCDA. On the one hand, if the GDMA outperforms the GCDA,
then T1 must be dominant for the GCDA. It is the case for the differential attack
on KATAN-32 in Section 4.2 when a 42-round differential is used.

On the other hand, if r′
b ≤ |k′

b| and r′
f ≤ |k′

b|, GDMA will not be worse than
GCDA. Usually, this is the case when a relatively large number of rounds are added
around the distinguisher.

BDMA, GCDA, and GDMA. As there will be 2|kb∪kf |+p−n key candidates on average
in any way, the following property can be obtained for differential attacks.

11

Table 2: Time Complexity Comparison of GCDA and GDMA
GCDA GDMA

T1 2|k′
b

∪k′
f

| ·D (2|k′
b

| + 2|k′
f

|) ·D
- D · 2|k′

b
| · 2rb−1+rf −n−r′

b

T2 - D · 2|k′
f

| · 2rb−1+rf −n−r′
f

D · 2|k′
b

∪k′
f

| · 2rb−1+rf −n−r′
b

−r′
f D · 2|k′

b
∪k′

f
| · 2rb−1+rf −n−r′

b
−r′

f

Property 1. When the overall time complexity reaches 2|kb∪kf |+p−n, the differen-
tial key recovery attack cannot be further improved in terms of time complexity.

If the time complexity of a certain stage exceeds this term 2|kb∪kf |+p−n, there
are ways to balance.

– If the time complexity T4 of the exhaustive search is high, the counting
method can be used to select the most likely candidates to test. This reduces
T4 at the cost of increasing the data by a small factor, say 4.

– The holistic key guessing strategy can balance T1 and T2.
– If T3 is large due to a large ϵ, precomputed tables may help to reduce ϵ.

In a nutshell, balancing the different components of the time complexity makes
the attack more efficient.

3.4 The Generic Rectangle MITM Attack

From the comparison of the GCDA and the GDMA, it is known that when a significant
number of rounds is added around the distinguisher, the MITM technique is
likely to be beneficial. Then, a natural question arises: can the MITM technique
enhance the rectangle attack so that more rounds can be attacked in certain
cases? Next, we study the combination of the MITM technique with the rectangle
attack.

Suppose the boomerang distinguisher has a probability of P 2 = 2−2p and y

structures of plaintexts are needed. Note y structures can constitute 2 ·
(

y2rb−1

2
)6

quartets that satisfy the input difference. Then y = 2n/2−rb+1+p and the data
complexity D = y2rb = 2n/2+p+1. Other notations are similar to the ones in GDMA.
The only difference is that two differentials are used in the rectangle attack. Can
we do MITM for pairs of data as in the GDMA? Since pairs on the upper and lower
parts of the rectangle attack are constructed in different directions, we cannot
perform MITM on pairs but on quartets. The generalized rectangle MITM attack
is given below with this taken into account.

6 If both (P1, P2) and (P3, P4) satisfy the input difference of the distinguisher, then we
can form two quartets: (P1, P2, P3, P4) and (P1, P2, P4, P3).

12

Algorithm 3: The generic rectangle MITM attack (GRMA)
1 S ← y = 2n/2−rb+1+p structures, each of 2rb messages.
2 for each possible v∩ for k′

∩ do
3 for each possible vb for k′

b \ k′
∩ do

4 Do partial encryption for data in S.
5 Get D · 2r∗

b
−1 pairs (P, P̃) satisfying r′

b filtering bits.
6 Generate D2 · 22r∗

b
−2 quartets (C1, C2, C3, C4, vb).

7 Store the quartets in a table H.
8 for each possible vf for k′

f \ k′
∩ do

9 Do partial decryption for data in S.
10 Get D2 · 2r∗

f
−n−1 pairs

(
C, C̃

)
satisfying n− rf + r′

f filtering bits.
11 Generate D4 · 22r∗

f
−2n−2 · y−2 quartets (C1, C2, C3, C4, vb).

12 for each vb ∈ H(C1, C2, C3, C4) do
13 Get (P1, P2, P3, P4) and (v∩, vb, vf).
14 Extract 2|k∗

b
∪k∗

f
|−2r∗

b
−2r∗

f candidates for k∗
b ∪ k∗

f for each quartet.
15 Update the key counters or test directly.

In Line 13 of Alg. 3, there are 2|k′
b∪k′

f | ·D2 · 22r∗
b +2r∗

f −2n−2 matches7. In Line
14, further actions may be needed to get the other key bits. Similarly, the time
complexity of the whole attack has five parts:

– T0 = D for getting the data;
– T1 = (2|k′

b| +2|k′
f |) ·D for partial encryption and decryption under the guessed

key bits;
– T2 = D2 ·2|k′

b|+2r∗
b −2+D4 ·2|k′

f |+2r∗
f −2n−2 ·y−2 for getting quartets that satisfy

the specific filtering conditions on one side, where y−2 is the probability of
both pairs falling in the same structure;

– T3 = 2|kb∪kf | ·D2 · 2−2n−2 · ϵ for extracting all the 2|kb∪kf | ·D2 · 2−2n−2 key
candidates, where ϵ ≥ 1 and its value depends on the concrete situation;

– T4 = 2k−h for the exhaustive search, where n − 2p ≤ h ≤ |kb ∪ kf | when
Line 15 uses the counting method while h = n − 2p when enumerating all
candidates is chosen.

The data, the quartets on one side, and the key counters should be stored,
so the memory complexity is M = max{D, min{D2 · 2|k′

b|+2r∗
b −2+2rf −2n, D4 ·

2|k′
f |+2r∗

f −2n−2 · y−2}, 2k∗
b ∪k∗

f } when the counting method is used and M =
max{D, min{D2 · 2|k′

b|+2r∗
b −2+2rf −2n, D4 · 2|k′

f |+2r∗
f −2n−2 · y−2}} when the enu-

meration method is used in Line 15. Like BDMA, the GRMA is usually more effective
when the ratio k/n is large, which is the inherent limitation of the differential
MITM attack itself.
7 From the set of D plaintexts, there are D222rb−2 quartets, so a match happens with

probability D−222−2rb and 2|k′
b

∪k′
f

|·D222rb−2−2r′
b ·D422rf −2n−2r′

f
−2y−2·D−222−2rb =

2|k′
b

∪k′
f

| ·D2 · 22r∗
b

+2r∗
f

−2n−2.

13

In Section 4.3, we will show with application to SKINNYe-64-256 v2 that when
a large number of rounds are added to the distinguished, the GRMA can help to
attack more rounds.

4 Applications

In this section, we analyze three block ciphers: AES-256, KATAN-32, and SKINNYe-
64-256 using generic key recovery attacks proposed in Section 3. First, we provide
improved attacks on 12/13-round AES-256 using the GCDA and GDMA in the related-
key setting, which are the best attacks on AES-256 to date using only 2 related
keys. Then, for KATAN-32, we use the GDMA and BDMA to extend the attack from
115 rounds to 151 rounds. These improved results demonstrate the advantage of
our new key recovery attacks that enjoy the flexibility of key guessing strategies.
Lastly, we apply the GRMA to SKINNYe-64-256 and extend the rectangle attack by
1 round, confirming the advantage of the GRMA in certain cases.

4.1 Application to AES-256

In this subsection, we give a brief description of AES-256 and recall the differential
MITM attack on 12-round AES-256. We then propose improved attacks on 12-
/13-round AES-256 using the GCDA and the GDMA.

Description of AES. The Advanced Encryption Standard (AES) [DR02] is a
block cipher that encrypts 128-bit plaintext with the secret key of sizes 128, 192,
or 256 bits. Its internal state can be represented by a 4×4 matrix whose elements
are byte values in the finite field of GF (28). As shown in Figure 2, the round
function consists of four basic transformations in the following order:

- SubBytes (SB) is a nonlinear substitution that applies the same S-box to
each byte of the internal state.

- ShiftRows (SR) is a cyclic rotation of the i-th row by i bytes to the left, for
i = 0, 1, 2, 3.

- MixColumns (MC) is a multiplication of each column with a Maximum Distance
Separable (MDS) matrix over GF (28).

- AddRoundKey (AK) is an exclusive-or with the round key.

SB

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

SR MC
AK

4
1 9

8

11
10

13
12

15
14

0

6
5

2
3 7

Figure 2: AES round function and the ordering of bytes

At the beginning of the encryption, an additional whitening key addition is
performed, and the last round does not contain MixColumns. AES-128, AES-192,

14

and AES-256 share the same round function with a different number of rounds:
10, 12, and 14, respectively. AES-256 has a 256-bit key, which is twice as large as
the internal state and derives round keys from the master key based on the key
schedule illustrated in Figure 3. Please refer to [DR02] for more details.

<<

S

S

Figure 3: Key schedule of AES-256

Distinguisher. Our differential attacks below are all based on the distinguisher
proposed in [BDD+23], as shown in Figure 4. The attacks require a pair of related
keys. The attacker chooses two bytes a and b such that the differential transition
b→ a through the S-box happens with probability 2−6. The attacker then injects
the difference b on the first byte of the round key k8 and MC(a, 0, 0, 0) to the first
column of the round key k9. Figure 4 displays the attacks on AES-256, where
ui, 0 ≤ i ≤ 14 are unknown key differences. The differential used for the attacks
starts from columns 0 and 3 of the state w0 and columns 1 and 2 of z1 and
stops at state x11. The differential holds with a probability of 0.25. If it does,
the probability of the distinguisher is 2−86. Moreover, the differential in the red
dashed rectangle represents a 13-round attack on AES-256. The key difference
propagation is depicted in Appendix A.1.

Attacks on AES-256 Reduced to 12 Rounds. In [BDD+23], to show the power
of the differential MITM attack, a 12-round attack on AES-256 was proposed. To
verify the input difference of the differential, it involves 15 key bytes, namely,
kb contains k0[0, 2, 3, 4, 7, 8, 9, 13, 14], k1[5, 10] and k3[12, 13, 14, 15]. Similarly, to
verify the output difference of the differential, it requires the information of 8
key bytes, i.e., kf consists of k11[12, 13, 14, 15] and k12[0, 4, 8, 12], from which an
extra key byte k10[12] can also be derived. These key bytes are highlighted as
red squares in Figure 4. The remaining information of the master key contains 9
bytes. Applying the differential MITM attack presented in Section 2.3, one can
have an attack of data, memory, and time8 complexities D = 289, M = 289 and

8 We contacted the authors of [BDD+23] and confirmed that they mistook the time
complexity 2p ·max{2120, 264}+ 2p+56+72 = 2214 for 2p ·max{2120, 264, 272} = 2206.

15

u0 + b u0

u1 u1

u2 u2

u3 u3

k0

P

x0 z0

a

w0

2a

a

a

3a

u4 + 2a

a

a

3a

k1

x1

u4

z1 w1

u1

u2

u3

u0 + b

u1

u2

u3

bb b

k2

b b b

x2

a a a a

z2

2a 2a 2a 2a

a a a a

a a a a

3a 3a 3a 3a

w2

b b b b

k3

... ...

z9 w9

2a 2a 2a 2a

a a a a

a a a a

3a 3a 3a 3a

k10

b b b b

x10

a a a a

z10

2a 2a 2a 2a

a a a a

a a a a

3a 3a 3a 3a

w10

u6 + b u6 u6 + b u6

u7 u7 u7 u7

u8 u8 u8 u8

u9 u9 u9 u9

k11

u5 u5 u5 u5

x11 z11

u5 + 2a u5 + 2a u5 + 2a u5 + 2a

a a a a

a a a a

3a 3a 3a 3a

k12

C

u5 u5 u5 u5

x11 z11 w11 x12 z12

u6 + b u6 u6 + b u6

u7 u7 u7 u7

u8 u8 u8 u8

u9 u9 u9 u9

k13

u14u10u14u10

u11 + au11 u11 + au11

u12 + au12 u12 + au12

u13 + 3au13 u13 + 3au13

k12

C

Legend : Any possible difference : Unkown fixed difference and u14 = u10 + u5 + 2a : Zero difference

Figure 4: Differential attacks on 12-round and 13-round AES-256 where a, b are chosen
and known and the bottom part of the 13-round attack is shown in the dashed square.

T = 2214, as

T = 2p ×
(

2|kin| + 2|kout|
)

+ 2|kin∪kout|−n+p + 2k−n+p

= 286 ×
(
2120 + 264)

+ 2120+64−128+86 + 2256−128+86 (2)
= 2206 + 2150 + 2142 + 2214 ≈ 2214.

From Equation (2), it is evident that the time for the exhaustive search dominates
the overall time complexity. We could turn to the counting method to reduce the
time complexity of the exhaustive search. However, the time complexity cannot

16

be reduced below 2206, primarily due to the large kb in the upper part of the
MITM phase. To further reduce the time complexity, it is worthwhile to explore
different key guessing strategies.

The first GCDA on 12-round AES-256. We apply the GCDA to AES-256 and put
forward the following attack using the same differential trail. The plaintext
difference falls in a space of dimension 11×8 since ∆k0[1] = ∆k0[5], i.e., rb = 11×8.
Since the bottom three bytes of the columns of ∆k12 are the same, 9 bytes of
the ciphertext difference are known, i.e., rf = 7× 8. We choose to guess 4 bytes
of kb and 3 bytes of kf in advance. The attack starts with preparing a structure
of 288 plaintexts under both related keys, respectively.

1. Guess k3[12, 13, 14, 15],k11[13], and k12[8, 12]:
(a) Compute differences (u0, u1, u2, u3) from k3[12, 13, 14, 15] and (2a, a, a, 3a);

compute u5 from b and k10[12] = k12[8]⊕k12[12]; compute u6 from a and
k11[13].

(b) Initialize counters for all possible values of k∗
b , k∗

f , i.e., k0[0, 2, 3, 4, 7, 8, 9, 13,
14], k1[5, 10] and k11[12, 14, 15], k12[0, 4].

(c) Do partial encryption and decryption. There are 2 additional byte filters
on both sides, i.e., r′

b = r′
f = 8× 2.

(d) Construct 288×2−(2+2+9)×8 = 272 pairs of data. Each pair has i) fixed
differences on 7 x0 bytes at positions 1, 5, 6, 10, 11, 12, 15, ii) the last three
rows of ∆z11 satisfy the pattern of ∆k12 and iii) ∆x11[8, 12] are u5.

(e) For each pair of data, extract the other bytes of kb by guessing ∆w0[5, 10]:
– Compute the two middle columns of ∆z0. From ∆x0 and ∆z0, derive

x0 at the 9 active bytes as well as k0[0, 2, 3, 4, 7, 8, 9, 13, 14]. Compute
w0[5, 10].

– Among the bytes of ∆z1[0, 1, 2, 3] and ∆w1[0, 1, 2, 3], four bytes are
known. From them, compute ∆z1[1, 2]. From ∆x1[5, 10] and ∆z1[1, 2],
recover x1[5, 10] and k1[5, 10] = w0[5, 10]⊕ x1[5, 10].

(f) For each pair of data, extract the other bytes of kf :
– As ∆k12[0] = u6 + b, ∆k12[4] = u6, and ∆x11[0] = ∆x11[4] = u5,

compute ∆z11[0, 4] and derive z11[0, 4], k12[0, 4].
– Let (u7, u8, u9) = ∆C[1, 2, 3]. As ∆k11[14, 15, 12] S−→ (u7, u8, u9), de-

rive k11[14, 15, 12].
(g) Update the counters.
(h) Select the key values with the top 214 counters. Together with the guessed

key bytes and all possible values for another 9 bytes outside kb ∪ kf , test
exhaustively to find the right master key.

The data complexity is still 289. The data and the counters should be stored,
so the memory complexity is max{289, 216×8} = 2128. The time complexity is

T = 256 × (289 + 272 + 288) + 2142 ≈ 2145,

which is much smaller than the time complexity 2206 by the BDMA. The expected
number of right pairs from the data is 4, so the right key ranks first with a high
probability.

17

The second GCDA on 12-round AES-256. However, the memory complexity of the
above attack is higher than that of the BDMA. If we guess more key bytes in advance,
the memory consumption for the counters decreases. Suppose k0[0], k12[0, 4] and
k0[8, 13] are also guessed. Then more filters ∆z0[0] = a, 11 ·∆z0[8] = 13 ·∆z0[9],
and ∆x11[0, 4] are u5, i.e., r′

b, r′
f now are both 4 bytes. Consequently, the time

complexity becomes

T = 296 × (289 + 240 + 248) + 2182 ≈ 2185,

and the memory complexity decreases to max{289, 211×8} = 289. This attack has
the same data and memory complexities as the BDMA but a lower time complexity.

The GDMA on 12-round AES-256. Using the GDMA, let k′
b = k3[12, 13, 14, 15], k′

b =
(k11[13], k12[8, 12]), and we have k′

∩ = 0, r′
b = 16, r′

f = 16, M = 2|kb∪kf | = 2184

and T = D(232 + 232−1 + 224 + 224−1) + 2128 + 2144 = 2144. Now the overall time
complexity is as good as the time complexity of GCDA. If in the attack only single
messages are stored instead of pairs, then the n−rf = 72 bit filters cannot be used
early and the time complexity is T = D(232+232−1+72+224+224−1)+2128+2144 =
2192. Even though this attack is more efficient than the BDMA, it is less efficient
than the GDMA which stores pairs.

Remark 2. According to Property 1, when the overall time complexity of the
attack on 12-round AES-256 based on the differential trail in Figure 4 reaches
2144, there is no room for further improvement. That is, both the GCDA and the
GDMA can lead to attacks with the optimal time complexity. However, using the
BDMA, the time complexity cannot be lower than 2206. This confirms that allowing
flexible key guessing strategies is critical for finding the best attack.

Extending the Attack to 13 Rounds. We use the same differential in
Figure 4 and add one more round to the end. In this case, kb remains the
same as in the 12-round attacks, while kf becomes large. kf involves 28 round
key bytes: k10[12], k11[12, 13, 14, 15], k12[12, 13, 14, 15], k12[0, 4, 8] and k13 where
k12 = MC−1(k12). Now kb ∪ kf covers the whole key information. In addition,
rb = 88, rf = 128.

The BDMA fails due to a large kf in this case. Again, the flexible key guessing
strategy shows its advantage with the following attack. Similar to the GCDA attack
on 12-round AES, we also construct a structure of 288 plaintexts under the two
related keys, respectively.

1. Let k′
b be k3[14, 15] and k′

f be k10[12], k11[12 ∼ 15], k12[12 ∼ 15] and
k13[8 ∼ 11]. Guess k′

b, k′
f :

(a) Initialize counters for all possible values for k∗
b and k∗

f .
(b) Derive the difference for partial kb and the whole kf : From ∆k3[14, 15]

and k3[14, 15], compute u1, u2 so ∆k0[1, 2, 5, 6] is known; from k10[12] and
b compute u5 so ∆k11[0, 4, 8, 12] are known; from k11[12 ∼ 15], compute
u6 ∼ u9 and then ∆k12 is known; from k12[12 ∼ 15], compute u10 ∼ u14
so now ∆k13 is known. From k13[8 ∼ 11] and k12[12 ∼ 15] compute
k13[12 ∼ 15].

18

(c) Do partial encryption and decryption and then construct pairs of data
satisfying 6 filtering bytes: ∆x0[5, 6] = 0, i.e., r′

b = 16, and ∆x12[1] =
∆x12[2], ∆x12[6] = ∆x12[7], ∆x12[8] = ∆x12[11], ∆x12[12] = ∆x12[13]
due to the MDS property of MC, i.e., r′

f = 32. There will be 288×2−6×8 =
2128 pairs of data.

(d) Derive other key bytes k13[0 ∼ 7],k12[0, 4], k12[8 ∼ 11], k3[12, 13] and
k0[0]. Now, ∆z11 and ∆x12 are determined. Given the input and the
output difference of the S-box, there is one solution on average. Therefore,
for each pair, we can get one solution for k13[0 ∼ 7], k12[0, 4, 8, 12] and
k0[0]. As k12[12] must match with the guessed k12[12 ∼ 15], this is a
1-byte filter and the number of pairs becomes 2120.
From the key schedule, k3[14] = S(k12[10]⊕ k12[14])⊕ k11[14], so we can
get k12[10]. Similarly, we can get k12[11]. And k12[8] = k12[12]⊕ k10[12].
As k12[8] is also known, we can get k12[9]. From the known bytes of
k11, k12, we can compute k3[12, 13].

(e) For each pair of data, guess ∆w0[10] and recover the remaining key bytes
of kb, kf .

i. From ∆w0[10], get the difference of the third column of z0. For the
S-boxes of that column, the input difference and the output difference
are known, so we can get k0[8, 13, 2, 7]. Similarly, k1[10] can be known
as ∆z1[3] is known from u1, u2, u3.
According to the relation of key bytes, as shown in Appendix A.2 of
the paper, from k0[0, 2, 7, 8, 13] and k1[10], we can get k12[0, 2, 5, 6, 7]
and a redundant relation which acts as a 1-byte filter.
From k12[5, 6, 7] and k12[4], compute k12[4]. From k12[4, 6], derive
k0[4, 14] which helps to compute ∆z0[4, 6]. This is a 1-byte filter
due to the MDS property. Also, ∆z0[5, 7] and ∆w0[5] can be known
now, so we can derive k0[3, 9] and k1[5]. From these three bytes, we
can derive k12[1, 3] and one redundant relation which is also a 1-byte
filter. From k12[0 ∼ 3] and k12[0], we get the last 1-byte filter.
Now the whole k12 and k13 are determined.

ii. Test the key candidates exhaustively to find the right master key.

Complexities. The data complexity is D = 289. The memory complexity is also 289.
Since |k′

b| = 16, |k′
f | = 104, we have T1 = D · 2120 = 2209, T2 = 2120+128 = 2248.

In Step (e), from 2240 pairs of data, we guess one byte more and get the other 4
filtering bytes. Therefore, 2216 key candidates will be suggested finally in a time
complexity of 2248. Since T4 = 2216 is not dominant, the overall time complexity
is 2248.

13-Round attack with an improved time complexity. In the above attack, several
filters are used in the last steps. If some of these filters can be used earlier, the
number of pairs may not reach 2248 and hopefully the time complexity is lower.
We then propose an adapted attack that guesses fewer key bytes in advance
and utilizes two precomputed tables so that the number of pairs is at most 2240.
This attack has the same data complexity. The time complexity is 2240 while

19

the memory complexity is increased to 2120 due to the precomputed tables. The
detailed attack is given in Appendix A.3.

Comparison and Discussion. On an existing differential, we analyze AES-256
reduced to 12 and 13 rounds using the GCDA and GDMA in the related-key setting.
The results are summarized as follows.

– On 12-round AES-256, both the GCDA and GDMA can achieve attacks with the
optimal time complexity, which is 262 times lower than that of BDMA.

– Using the GCDA, the attack can be extended to 13 rounds. In this attack,
r′

b ≤ |k′
b| and r′

f ≤ |k′
b|, so the GDMA is not worse (not better as well in this

case) under the same key guessing strategy, as explained in Section 3.3.
– Using the same differential, the BDMA cannot cover 13 rounds, because of

2p+|kf | > 2k due to a large kf . In [BDF23], the authors modified the differen-
tial to make kf smaller, thus enabling a differential MITM attack. However,
the differential probability decreased from 2−86 to 2−126.

All these results show that allowing flexible key guessing strategies is critical for
mounting key recovery attacks efficiently. Choosing between the counting method
and the enumerating method for the exhaustive search also impacts the overall
efficiency. The attacks on AES-256 illustrate that by combining these methods,
we can balance the time complexities of the attack steps to get more efficient
attacks.

However, the time complexity of the 13-round attack does not reach 2|kb∪kf |+p−n.
The major reason lies in the nonlinear key schedule. kb and kf share some common
information, but it is difficult to utilize them early on due to their complex non-
linear relationship. The 13-round attack with a lower time complexity highlights
the challenge of effectively leveraging the shared key information.

4.2 Application to KATAN-32

For most block ciphers, a few rounds can be added around a differential in the
key recovery attack. However, the block cipher KATAN-32 is an exception. Since it
updates only 2 bits in each round, a relatively large number of rounds can be
added. In attacks on KATAN-32, we can observe how the BDMA, GCDA, and GDMA
perform when the number of rounds increases, and more importantly, whether
there is any discernible trend. Additionally, any improvement in its differential
attack is of particular interest. We start by recalling the description of the
KATAN-32.

Description of KATAN. The KATAN family is composed of three variants with
32-, 48-, and 64-bit block sizes denoted as KATAN-n, n = 32, 48, 64, respectively.
Here, we briefly revisit the KATAN-32, which is analyzed in the next. The KATAN-32
iterates 254 rounds using two non-linear feedback shift registers (NLFSR) to
store and update the plaintext.

20

Key schedule. The 80-bit master key K = (k0, k1, · · · , k78, k79) uses the linear
feedback register to generate the new round keys.

ki+80 = ki ⊕ ki+19 ⊕ ki+30 ⊕ ki+67, 0 ≤ i ≤ 427. (3)

Figure 5: The round function of KATAN-32.

Round function. A 32-bit plaintext X = (x0, x1, · · · , x30, x31) is divided into two
parts with 13 and 19 bits, respectively. At round t, the two parts are denoted
by St = (st, st + 1, · · · , st+11, st+12) and Lt = (lt, lt + 1, · · · , lt+17, lt+18). When
t = 0, the plaintext is loaded as si = xi, 0 ≤ i ≤ 12 and li = x13+i, 0 ≤ i ≤ 18.
When 0 ≤ t ≤ 253, the round function depicted in Figure 5 is defined as follows:

st+13 = lt ⊕ lt+11 ⊕ lt+6 · lt+8 ⊕ lt+10 · lt+15 ⊕ k2t+1,
lt+19 = st ⊕ st+5 ⊕ st+4 · st+7 ⊕ st+9at ⊕ k2t,

(4)

where at is a round constant updated by the relation equation at = at − 3 ⊕
at−5 ⊕ at−7 ⊕ at−8, (t ≥ 8) with the initial value (a0, a1, a2, a3, a4, a5, a6, a7) =
(1, 1, 1, 1, 1, 1, 1, 0). According to the Equation 4, we can get the expression of lt,
st in the decryption direction:

lt = st+13 ⊕ lt+11 ⊕ lt+6lt+8 ⊕ lt+10lt+15 ⊕ k2t+1,
st = lt+19 ⊕ st+5 ⊕ st+4st+7 ⊕ st+9at ⊕ k2t.

(5)

Distinguisher. Our attacks are based on the 42-round and the 91-round distin-
guishers proposed in [JRS22] and [AL13] with probability 2−12 and 2−31.98:

∆42
in = 0x08020040, ∆42

out = 0x00200420,

∆91
in = 0x1006a880, ∆91

out = 0x00400000.

When the attacker conducts a key attack on KATAN, it is very time-consuming
to determine the best key guessing strategy manually. It becomes even harder
when the added rounds increase. Therefore, we build a MILP model to find the
best key guessing strategy automatically. This model follows the same modules

21

as [SZY+22], and its detailed description is postponed to Appendix B.1. Given a
differential, the number of rounds before the differential, the number of rounds
after the differential, and the type of attack (i.e., BDMA, GCDA, or GDMA), the model
outputs the minimal time complexity of the attack and the parameters that lead
to the attack.

Comparison and Discussion. Using the key recovery model, we can change
the objective function according to the key recovery algorithm to find the best-
attacking parameters such that the time complexity of the attack is optimal.
Based on the key recovery model and the 42-round distinguisher, we apply the
GCDA, GDMA, and BDMA to KATAN-32 from 94 to 137 rounds and compare their time
complexities. The results are illustrated in Figure 6 and analyzed as follows.

95 100 105 110 115 120 125 130 135
Round

40

45

50

55

60

65

70

75

80

85

Ti
m

e
C

om
pl

ex
ity

52

56
5858

61
63

65
67

69
71

73
75

79

60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60
61

63
64

65
66

67
68

69
70

71
72

73
74

75
76

77
78

79

41
43

45
47

49
51

53
55

57
59

606060606060606060
61

606060
6262

656565
66

6767

7171
7272

73737373
74

77
7878

79

GCDA
BDMA
GDMA

Figure 6: The time complexity of three attacks.

– From attacks on KATAN-32 reduced to 94 to 97 rounds before the pink dashed
line as shown in Figure 6, both GCDA and GDMA have a better performance than
the BDMA. The last part 2k−n+p of the BDMA’s time complexity is dominated,
while the GCDA and GDMA can use the counting method mentioned in Section
3.3 to reduce the exhaustive search complexity.

– Between the pink and orange dashed lines, T1 becomes a large one in the
GCDA’s time complexity as the key guessed increases. So, the GCDA is worse
than the GDMA and BDMA. When |kb∪kf | is not the full key space, the GDMA has
a lower time complexity than the BDMA. As the number of rounds increases,
|kb ∪ kf | = 80, which reaches the full key space. The dominant terms of the
BDMA and GDMA are the same.

22

– After the orange dashed line, the first term (2|kb| + 2|kf |) · 2p of BDMA and
T1 = (2|k′

b| + 2|k′
f |) ·D of the GDMA turn to dominant terms. The GDMA has

a lower time complexity than the BDMA. Because the key guessing strategy
of the BDMA is fixed and the GDMA allows the attacker to guess a part of key
information.

– The GDMA always performs better than the GCDA in every round of attacks on
KATAN-32. As explained in Section 3.3, T1 of the GCDA is a dominant one. The
partial encryption and decryption time complexity T1 of the GDMA is lower
than that of GCDA.

Attacks on KATAN-32 Reduced to 151 Rounds. We apply the BDMA and
GDMA to attack 151-round KATAN-32 based on the 91-round distinguisher with
29-round Eb and 31-round Ef , as shown in Table 3. In Table 3, ? denotes a bit
with the unknown difference, 0 and 1 represent the specific difference value.

BDMA. The parameters are p = 31.98, n = 32, |kb| = 41, |kf | = 38. The key
information is listed as follows:

kb = k0, k1, · · · , k36, k37, k40, k44, k45,

kf = k252, k260, k262, k264, k266, k268, k269, k270, k272, k273, · · · , k300, k301.

The time complexity is

T = 231.98+41 + 231.98+38 + 241+38−0.02 + 280−32+31.98

= 272.98 + 269.98 + 278.98 + 279.98 ≈ 279.98

with data and memory complexities D = 232, M = 238.

GDMA. The best guessing parameters are |k′
b| = 33, |k′

f | = 29, r′
b = 25, r′

f = 22
and rb = rf = 32. Namely, guessing 33-bit k′

b and 29-bit k′
f obtains 25 and 22

filters, respectively. The filtering bits in the backward and forward extended
rounds are marked in blue and red in Table 3. The subkey bits guessed are:

k′
b = k0, k1, · · · , k24, k25, k27, k28, k29, k30, k32, k33, k36,

k′
f = k264, k268, k272, k274, k275, k276, k278, k279, k280, k282, k283, · · · , k300, k301.

The data complexity and memory complexity are D = 232, M = 270. The time
complexity is

T = 232+33 + 232+33+32−25−1 + 232+29 + 232+29+32−22−1

+ 232+33+29+32−25−22−1 + 279−0.02 + 280+31.98−32

= 265 + 271 + 261 + 270 + 278 + 278.98 + 279.98 ≈ 279.98.

Although the GDMA and BDMA have a slight advantage over traversing all keys,
our attacks primarily demonstrate that using new generic differential attacks
can significantly increase the number of rounds attacked, from 115 to 151. In

23

the attack, the time complexity of the exhaustive search is dominant. Since the
differential has a probability slightly larger than 2−n, there is no opportunity to
trade data for time by using the counting method. Consequently, BDMA and GDMA
share the same overall time complexity.

In addition, we present alternative 151-round attacks on KATAN-32 by ex-
tending 33 before and 27 rounds after the differential, respectively. More details
are provided in Appendix B.2. In this setting, the GDMA still recovers the key
with a time complexity of 279.98, while the BDMA fails. This outcome underscores
the importance of flexibly guessing key information for successful key recovery
attacks, highlighting the greater applicability of the GDMA.

Table 3: The 151(29 + 91 + 31)-round attack on the KATAN-32. For round t, ∆t is the
t-th round difference, 0 ≤ t ≤ 151. The blue and red denote the filters by guessing a
part of key information k′

b and k′
f .

∆0 ???? ???? ???? ???? ???? ???? ???? ???? ∆out 0000 0000 0100 0000 0000 0000 0000 0000
∆1 ???? ???? ???? ???? ???? ???? ???? ???? ∆121 0000 0000 1000 0000 0000 0000 0000 0001
∆2 ???? ???? ???? ???? ???? ???? ???? ???? ∆122 0000 0001 0000 0000 0000 0000 0000 0010
∆3 ???? ???? ???? ???? ???? ???? ???? ???? ∆123 0000 0010 0000 0000 0000 0000 0000 010?
∆4 ???? ???? ???? ???? ???? ???? ???? ???? ∆124 0000 0100 0000 0000 0000 0000 0000 10?0
∆5 ???? ???? ???? ???? ???? ???? ???? ???? ∆125 0000 1000 0000 ?000 0000 0000 0001 0?01
∆6 ???? ???? ???? ???? ???? ???? ???? ???? ∆126 0001 0000 000? 0000 0000 0000 0010 ?01?
∆7 ???? ???? ???? ???? ???? ???? ???? ???? ∆127 0010 0000 00?0 ?000 0000 0000 010? 01?0
∆8 ???? ???? ???? ???? ???? ???? ???? ???? ∆128 0100 0000 0?0? 0000 0000 0000 10?0 1?00
∆9 ???? ???? ???? ???? ???? ???? ???? ???0 ∆129 1000 0000 ?0?0 ?000 0000 0001 0?01 ?000
∆10 ???? ???? ???? 1??? ???? ???? ???? ??0? ∆130 0000 000? 0?0? ?000 0000 0010 ?01? 0001
∆11 ???? ???? ???1 ???? ???? ???? ???? ?0?1 ∆131 0000 00?0 ?0?? ?000 0000 010? 01?0 001?
∆12 ???? ???? ??1? ???? ???? ???? ???? 0?11 ∆132 0000 0?0? 0??? ?000 0000 10?0 1?00 01?0
∆13 ???? ???? ?1?? ???? ???? ???? ???0 ?110 ∆133 0000 ?0?0 ???? 1000 0001 0?01 ?000 1?0?
∆14 ???? ???? 1??? 0??? ???? ???? ??0? 1101 ∆134 000? 0?0? ???1 ?000 0010 ?01? 0001 ?0??
∆15 ???? ???1 ???0 1??? ???? ???? ?0?1 1010 ∆135 00?0 ?0?? ??1? ?000 010? 01?0 001? 0???
∆16 ???? ??1? ??01 ???? ???? ???? 0?11 0101 ∆136 0?0? 0??? ?1?? ?000 10?0 1?00 01?0 ????
∆17 ???? ?1?? ?01? 0??? ???? ???0 ?110 1010 ∆137 ?0?0 ???? 1??? ?001 0?01 ?000 1?0? ????
∆18 ???? 1??? 01?0 0??? ???? ??0? 1101 0101 ∆138 0?0? ???1 ???? ?010 ?01? 0001 ?0?? ????
∆19 ???1 ???0 1?00 0??? ???? ?0?1 1010 1010 ∆139 ?0?? ??1? ???? ?10? 01?0 001? 0??? ????
∆20 ??1? ??01 ?000 1??? ???? 0?11 0101 0100 ∆140 0??? ?1?? ???? ?0?0 1?00 01?0 ???? ????
∆21 ?1?? ?01? 0001 0??? ???0 ?110 1010 1000 ∆141 ???? 1??? ???? ??01 ?000 1?0? ???? ????
∆22 1??? 01?0 0010 0??? ??0? 1101 0101 0001 ∆142 ???1 ???? ???? ?01? 0001 ?0?? ???? ????
∆23 ???0 1?00 0100 0??? ?0?1 1010 1010 0010 ∆143 ??1? ???? ???? ?1?0 001? 0??? ???? ????
∆24 ??01 ?000 1000 0??? 0?11 0101 0100 0100 ∆144 ?1?? ???? ???? ??00 01?0 ???? ???? ????
∆25 ?01? 0001 0000 0??0 ?110 1010 1000 1000 ∆145 1??? ???? ???? ?000 1?0? ???? ???? ????
∆26 01?0 0010 0000 0?0? 1101 0101 0001 0000 ∆146 ???? ???? ???? ?001 ?0?? ???? ???? ????
∆27 1?00 0100 0000 00?1 1010 1010 0010 0000 ∆147 ???? ???? ???? ?01? 0??? ???? ???? ????
∆28 ?000 1000 0000 0?11 0101 0100 0100 0000 ∆148 ???? ???? ???? ?1?0 ???? ???? ???? ????
∆in 0001 0000 0000 0110 1010 1000 1000 0000 ∆149 ???? ???? ???? ??0? ???? ???? ???? ????

.. ∆150 ???? ???? ???? ?0?? ???? ???? ???? ????

.. ∆151 ???? ???? ???? ???? ???? ???? ???? ????

24

4.3 Application on SKINNYe-64-256 v2

In this subsection, we apply our GRMA to SKINNYe-64-256 to obtain a 38-round
rectangle attack.

Description of SKINNYe-64-256 v2. SKINNYe-64-256 v2 [NSS20a] is one of the
variants of SKINNY [BJK+16]. Similar to SKINNY, SKINNYe-64-256 v2 employs the
TWEAKEY framework and the STK construction [JNP14], with modifications to the
f function in STK. SKINNY supports block sizes n ∈ {64, 128}, and for n = 64,
the tweakey sizes tk ∈ {64, 128, 192}. To support TI-friendly AE modes, Naito et
al. extended SKINNY-64 to create SKINNYe-64-256, which features a 256-bit
tweakey and a similar tweakey schedule [NSS20b]. Due to security concerns raised
by Thomas Peyrin, an updated version, SKINNYe-64-256 v2, was proposed in
2020 [NSS20a].

SKINNY, SKINNYe-64-256, and SKINNYe-64-256 v2 share the same round func-
tion, applying five transformations:

1. SubCells (SC) - A 4-bit (resp. 8-bit) S-box is applied to all cells when n is 64
(resp. n is 128).

2. AddConstants (AC) - This step adds constants to the internal state.
3. AddRoundTweakey (ART) - The first two rows of the internal state absorb the

first two rows of TK, where TK =
⊕z

i=1 TKi.
4. ShiftRows (SR) - Each cell in row j is rotated to the right by j cells.
5. MixColumns (MC) - Each column of the internal state is multiplied by the

matrix M whose branch number is only 2.

Tweakey schedule of SKINNYe-64-256 v2. The 256-bit tweakey state is viewed as
4× 4 square arrays of nibbles, denoted as (TK1, TK2, TK3, TK4). The tweakey
arrays in round r (r ≥ 0) are represented as TK1

r , TK2
r , TK3

r , and TK4
r , where

TKm
0 = TKm (1 ≤ m ≤ 4). For r ≥ 1, TKm

r is generated in two steps:
- First, apply the permutation P = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]

to each nibble of all tweakey arrays: TKm,i
r ← TK

m,P [i]
(r−1) , where 1 ≤ m ≤

4, 0 ≤ i ≤ 15 and r ≥ 1.
- Then, apply LFSRr to update each nibble of the first and second rows of

TKm
r for 2 ≤ m ≤ 4. For the details, please refer to [NSS20a].

Distinguisher of SKINNYe-64-256 v2. At Asiacrypt 2022, Qin et al. [QDW+22]
proposed a 26-round related-key rectangle distinguisher of SKINNYe-64-256 v2
with a probability of 2−57.6. The distinguisher is detailed in Appendix C. By
modifying this distinguisher, we obtain a new version that is more suitable
for GRMA. Specifically, we allow b → 3 in the SC operation in round 5 with a
probability of 2−2. Therefore, the probability of this modified distinguisher is
P 2 = 2−57.6−4 = 2−61.6.

We add 6 rounds forward and backward to attack the 38-round SKINNYe-64-256
v2, as shown in Figure 7. The corresponding parameters are: rb = rf = 16×4 = 64,
|kb| = (8× 3 + 6 + 2)× 4 = 128, and |kf | = (2 + 6 + 8× 3)× 4 = 128.

25

R0
d 7

c

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

R1
8

d 7

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

R2

c

b

8

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

R3
8

b

c
SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

R4

8

b c
SC AC

ART

b

>>> 1

>>> 2

>>> 3

ShiftRows

b

MixColumns

b

b

R5

b c

3

SC

2−2

b

AC

ART

1 1

3

>>> 1

>>> 2

>>> 3

ShiftRows

1 1

MixColumns

1 1

11

26-round rectangle distinguisher of SKINNYe-64-256 version 2

R32

2

SC
2

AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

R33
e

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows

e

MixColumns

e

e

R34

e

SC
e

AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

R35

c

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

R36

c

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

R37
f

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Zero difference

Arbitrary nonzero difference

Fixed nonzero differencea

Value is needed to determine fixed difference

Figure 7: Rectangle meet-in-the-middle attack on 38-round SKINNYe-64-256 v2
26

Parameters and Complexities. We apply GRMA to the above distinguisher.
The attack is illustrated in Figure 7, and the parameters of this attack are
|k′

b| = |kb| = 128 and |k′
f | = |kf | = 128. Therefore, all the involved keys are

guessed, and all the unknown differentials in Eb and Ef can be determined.
Given a boomerang distinguisher with probability P 2, the number of quartets

satisfying the input difference of the distinguisher should be at least P −22n. For
the sake of clarity, we denote 2−2p = P 2, then p = 30.8. In our attack, rb = n,
so we use partial structures of plaintexts for data collection. By collecting D
plaintext-ciphertext pairs, (D2)2 × 2−2n quartets will satisfy the input difference.
Therefore, D = 23n/4 · 2p/2 = 263.4.

Under the related-key setting, the calculation of time complexity is slightly
different from that in the single-key setting introduced in Section 3.4. Additionally,
the data of our attack will always belong to the same partial structure, so y−2 is
omitted in T2. We use DR to represent the data required under the related-key
setting. The complexities of our new attack are as follows:

– The data complexity is DR = 4 ·D = 23n/4+p/2+2 = 265.4.
– The memory complexity is M = D2 · 2|kb|+2rf −2n = 2254.8.
– The time complexity:

T0 = 4 ·DR,

T1 = (2|kb| + 2|kf |) ·DR = 2194.4,

T2 = D2 · 2|kb| + D4 · 2|kf |−2n = 2255.32,

T3 = 2|kb∪kf | ·D2 · 2−2n = 2254.8,

T4 = 2k−h = 2256−(n−2p) = 2253.6.

The time complexity of our attack is 1
38 × (T0 + T1 + T2 + T3 + T4) ≈ 2251.07

38-round encryption.

Comparison and Discussion. In our rectangle MITM attack, we modify one
cell in the input difference. Compared with the original rectangle key recovery,
the probability of the distinguisher is reduced by 2−4, and the kb has two fewer
cells in Eb.

According to the GRMA algorithm, MITM attacks are more effective in situ-
ations where subkey bits are balanced on both sides. Therefore, the modified
distinguisher is more suitable for the GRMA. By adding 6 rounds on both sides of
the distinguisher, the number of the subkey bits is: |kb| = |kf | = 128. Using the
GRMA, we achieve a 38-round rectangle attack on SKINNYe-64-256, which is one
more round than the previous attack. It is worth noting that for this distinguisher,
the GCRA could not provide an effective 38-round rectangle attack.

5 Conclusion

In this paper, we revisit the generic rectangle key recovery attack [SZY+22] and
the differential MITM attack recently proposed in [BDD+23]. Inspired by the

27

holistic strategy and the MITM technique, we propose three new generic key
recovery attacks: the classical differential attack, the differential MITM attack,
and the rectangle MITM attack, respectively denoted as GCDA, GDMA, and GRMA.
By selecting an appropriate strategy (including the type of key recovery attacks,
key guessing strategy, etc.), the different terms of the time complexity can be more
balanced, resulting in a lower overall time complexity. For application, we apply
our new key recovery algorithms to the AES-256, KATAN-32, and SKINNYe-64-256
block ciphers. For AES-256, we provide better results on a 12-round differential
attack using the GCDA and the GDMA, and introduce a new 13-round differential
attack with reduced data and time complexities. We apply the GDMA, GCDA, and
BDMA to KATAN-32, building a dedicated model for key guessing with MILP. With
the aid of MILP-based tools, we improve the differential attacks on KATAN-32
from 115 rounds to 151 rounds. For SKINNYe-64-256, we achieve the first 38-round
rectangle attack using the GRMA, which extends the previous attack by 1 round.

Acknowledgement. The authors would like to thank anonymous reviewers for
their helpful comments and suggestions. The work of this paper was supported by
the National Natural Science Foundation of China (Grants 62132008, 62372213,
62202460, 62332007 and U22B2028). Jian Weng is also supported by the Major
Program of Guangdong Basic and Applied Research Project under Grant No.
2019B030302008, Science and Technology Major Project of Tibetan Autonomous
Region of China under Grant No. XZ202201ZD0006G, Guangdong Provincial
Science and Technology Project under Grant No. 2021A0505030033, National
Joint Engineering Research Center of Network Security Detection and Protection
Technology, Guangdong Key Laboratory of Data Security and Privacy Preserv-
ing, Guangdong Hong Kong Joint Laboratory for Data Security and Privacy
Protection, and Engineering Research Center of Trustworthy AI, Ministry of
Education.

References

AFK+08. Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier,
and Christian Rechberger. New features of latin dances: Analysis of Salsa,
ChaCha, and Rumba. In Kaisa Nyberg, editor, Fast Software Encryption,
15th International Workshop, FSE 2008, Lausanne, Switzerland, February
10-13, 2008, Revised Selected Papers, volume 5086 of Lecture Notes in
Computer Science, pages 470–488. Springer, 2008.

AKM+24. Zahra Ahmadian, Akram Khalesi, Dounia M’foukh, Hossein Moghimi, and
María Naya-Plasencia. Improved differential meet-in-the-middle cryptanal-
ysis. In Marc Joye and Gregor Leander, editors, Advances in Cryptology -
EUROCRYPT 2024 - 43rd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zurich, Switzerland, May 26-
30, 2024, Proceedings, Part I, volume 14651 of Lecture Notes in Computer
Science, pages 280–309. Springer, 2024.

AL13. Martin R Albrecht and Gregor Leander. An all-in-one approach to differen-
tial cryptanalysis for small block ciphers. In Selected Areas in Cryptography:

28

19th International Conference, SAC 2012, Windsor, ON, Canada, August
15-16, 2012, Revised Selected Papers 19, pages 1–15. Springer, 2013.

BCF+21. Marek Broll, Federico Canale, Antonio Flórez-Gutiérrez, Gregor Leander,
and María Naya-Plasencia. Generic framework for key-guessing improve-
ments. In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in
Cryptology - ASIACRYPT 2021 - 27th International Conference on the
Theory and Application of Cryptology and Information Security, Singapore,
December 6-10, 2021, Proceedings, Part I, volume 13090 of Lecture Notes
in Computer Science, pages 453–483. Springer, 2021.

BDD+23. Christina Boura, Nicolas David, Patrick Derbez, Gregor Leander, and
María Naya-Plasencia. Differential meet-in-the-middle cryptanalysis. In
Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptol-
ogy - CRYPTO 2023 - 43rd Annual International Cryptology Conference,
CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings,
Part III, volume 14083 of Lecture Notes in Computer Science, pages 240–272.
Springer, 2023.

BDD+24. Christina Boura, Nicolas David, Patrick Derbez, Rachelle Heim Boissier,
and María Naya-Plasencia. A generic algorithm for efficient key recovery
in differential attacks - and its associated tool. In Marc Joye and Gregor
Leander, editors, Advances in Cryptology - EUROCRYPT 2024 - 43rd
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Zurich, Switzerland, May 26-30, 2024, Proceedings,
Part I, volume 14651 of Lecture Notes in Computer Science, pages 217–248.
Springer, 2024.

BDF23. Christina Boura, Patrick Derbez, and Margot Funk. Related-key differ-
ential analysis of the aes. IACR Transactions on Symmetric Cryptology,
2023(4):215–243, 2023.

BDK01. Eli Biham, Orr Dunkelman, and Nathan Keller. The rectangle at-
tack—rectangling the Serpent. In International Conference on the Theory
and Applications of Cryptographic Techniques, pages 340–357. Springer,
2001.

BDK02. Eli Biham, Orr Dunkelman, and Nathan Keller. New results on boomerang
and rectangle attacks. In International Workshop on Fast Software Encryp-
tion, pages 1–16. Springer, 2002.

BJK+16. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Annual International Cryptology Conference, pages 123–153. Springer, 2016.

BS90. Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryp-
tosystems. In Alfred Menezes and Scott A. Vanstone, editors, Advances
in Cryptology - CRYPTO ’90, 10th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 11-15, 1990, Proceedings,
volume 537 of Lecture Notes in Computer Science, pages 2–21. Springer,
1990.

BS91. Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryp-
tosystems. J. Cryptol., 4(1):3–72, 1991.

BS92. Eli Biham and Adi Shamir. Differential cryptanalysis of the full 16-round
DES. In Ernest F. Brickell, editor, Advances in Cryptology - CRYPTO ’92,
12th Annual International Cryptology Conference, Santa Barbara, California,

29

USA, August 16-20, 1992, Proceedings, volume 740 of Lecture Notes in
Computer Science, pages 487–496. Springer, 1992.

DQSW21. Xiaoyang Dong, Lingyue Qin, Siwei Sun, and Xiaoyun Wang. Key guessing
strategies for linear key-schedule algorithms in rectangle attacks. IACR
Cryptol. ePrint Arch., page 856, 2021.

DR02. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Information Security and Cryptography.
Springer, 2002.

JNP14. Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block
ciphers: The TWEAKEY framework. In Palash Sarkar and Tetsu Iwata,
editors, Advances in Cryptology - ASIACRYPT 2014 - 20th International
Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings,
Part II, volume 8874 of Lecture Notes in Computer Science, pages 274–288.
Springer, 2014.

JRS22. Amit Jana, Mostafizar Rahman, and Dhiman Saha. Deepand: In-depth
modeling of correlated and gates for nlfsr-based lightweight block ciphers.
Cryptology ePrint Archive, Paper 2022/1123, 2022. https://eprint.iacr.
org/2022/1123.

KMN10. Simon Knellwolf, Willi Meier, and María Naya-Plasencia. Conditional
differential cryptanalysis of NLFSR-based cryptosystems. In Masayuki Abe,
editor, Advances in Cryptology - ASIACRYPT 2010 - 16th International
Conference on the Theory and Application of Cryptology and Information
Security, Singapore, December 5-9, 2010. Proceedings, volume 6477 of Lecture
Notes in Computer Science, pages 130–145. Springer, 2010.

LKKD08. Jiqiang Lu, Jongsung Kim, Nathan Keller, and Orr Dunkelman. Improving
the efficiency of impossible differential cryptanalysis of reduced Camellia
and MISTY1. In Tal Malkin, editor, Topics in Cryptology - CT-RSA 2008,
The Cryptographers’ Track at the RSA Conference 2008, San Francisco,
CA, USA, April 8-11, 2008. Proceedings, volume 4964 of Lecture Notes in
Computer Science, pages 370–386. Springer, 2008.

Mat94. Mitsuru Matsui. On correlation between the order of S-boxes and the
strength of DES. In Alfredo De Santis, editor, Advances in Cryptology -
EUROCRYPT ’94, Workshop on the Theory and Application of Crypto-
graphic Techniques, Perugia, Italy, May 9-12, 1994, Proceedings, volume
950 of Lecture Notes in Computer Science, pages 366–375. Springer, 1994.

MP13. Nicky Mouha and Bart Preneel. A proof that the ARX cipher Salsa20 is
secure against differential cryptanalysis. IACR Cryptol. ePrint Arch., page
328, 2013.

MWGP11. Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and
linear cryptanalysis using mixed-integer linear programming. In Chuankun
Wu, Moti Yung, and Dongdai Lin, editors, Information Security and Cryptol-
ogy - 7th International Conference, Inscrypt 2011, Beijing, China, November
30 - December 3, 2011. Revised Selected Papers, volume 7537 of Lecture
Notes in Computer Science, pages 57–76. Springer, 2011.

NSS20a. Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Lightweight authenticated
encryption mode suitable for threshold implementation. Cryptology ePrint
Archive, Paper 2020/542, 2020. https://eprint.iacr.org/2020/542.

NSS20b. Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Lightweight authenti-
cated encryption mode suitable for threshold implementation. In Annual

30

https://eprint.iacr.org/2022/1123
https://eprint.iacr.org/2022/1123
https://eprint.iacr.org/2020/542

International Conference on the Theory and Applications of Cryptographic
Techniques, pages 705–735. Springer, 2020.

QDW+22. Lingyue Qin, Xiaoyang Dong, Anyu Wang, Jialiang Hua, and Xiaoyun
Wang. Mind the tweakey schedule: cryptanalysis on skinnye-64-256. In
International Conference on the Theory and Application of Cryptology and
Information Security, pages 287–317. Springer, 2022.

SHW+14. Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song.
Automatic security evaluation and (related-key) differential characteristic
search: Application to SIMON, PRESENT, LBlock, DES(L) and other bit-
oriented block ciphers. In Palash Sarkar and Tetsu Iwata, editors, Advances
in Cryptology - ASIACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Information Security, Kaoshiung,
Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, volume 8873 of
Lecture Notes in Computer Science, pages 158–178. Springer, 2014.

SWW21. Ling Sun, Wei Wang, and Meiqin Wang. Accelerating the search of dif-
ferential and linear characteristics with the SAT method. IACR Trans.
Symmetric Cryptol., 2021(1):269–315, 2021.

SYC+24. Ling Song, Qianqian Yang, Yincen Chen, Lei Hu, and Jian Weng. Proba-
bilistic extensions: a one-step framework for finding rectangle attacks and
beyond. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 339–367. Springer, 2024.

SZY+22. Ling Song, Nana Zhang, Qianqian Yang, Danping Shi, Jiahao Zhao, Lei
Hu, and Jian Weng. Optimizing rectangle attacks: A unified and generic
framework for key recovery. In Shweta Agrawal and Dongdai Lin, editors,
Advances in Cryptology - ASIACRYPT 2022 - 28th International Conference
on the Theory and Application of Cryptology and Information Security,
Taipei, Taiwan, December 5-9, 2022, Proceedings, Part I, volume 13791 of
Lecture Notes in Computer Science, pages 410–440. Springer, 2022.

WWJZ18. Ning Wang, Xiaoyun Wang, Keting Jia, and Jingyuan Zhao. Differential
attacks on reduced SIMON versions with dynamic key-guessing techniques.
Sci. China Inf. Sci., 61(9):098103:1–098103:3, 2018.

YSZ+24. Qianqian Yang, Ling Song, Nana Zhang, Danping Shi, Libo Wang, Jiahao
Zhao, Lei Hu, and Jian Weng. Optimizing rectangle and boomerang attacks:
A unified and generic framework for key recovery. Journal of Cryptology,
37(2):1–62, 2024.

ZDM+20. Boxin Zhao, Xiaoyang Dong, Willi Meier, Keting Jia, and Gaoli Wang.
Generalized related-key rectangle attacks on block ciphers with linear
key schedule: applications to SKINNY and GIFT. Designs, Codes and
Cryptography, 88(6):1103–1126, 2020.

31

Supplementary Materials

A More Details of the Key Schedule of AES-256

A.1 Differences of Round Key Bytes

k0 k1

k2 k3

u0 + b u0

u1 u1

u2 u2

u3 u3

b b bu4 + 2a

a

a

3a

<<S

S

b b 2a

a

a

3a

2a

a

a

3a

k2 k3

k4 k5

u0 + b

u1

u2

u3

b b b 2a

a

a

3a

2a

a

a

3a

2a

a

a

3a

2a

a

a

3a

<<S

S

u0 + b

u1

u2

u3

b b b 2a

a

a

3a

2a

a

a

3a

2a

a

a

3a

2a

a

a

3a

k4 k5

k6 k7

b b 2a

a

a

3a

2a

a

a

3a

<<S

S

b b 2a

a

a

3a

2a

a

a

3a

k6 k7

k8 k9

b b 2a

a

a

3a

2a

a

a

3a

b 2a

a

a

3a

<<S

S

k8 k9

k10 k11

b 2a

a

a

3a

b b b b u5 + 2a

a

a

3a

u5 + 2a

a

a

3a

u5 + 2a

a

a

3a

u5 + 2a

a

a

3a

<<S

S

k10 k11

k12 k13

b b b b u5 + 2a

a

a

3a

u5 + 2a

a

a

3a

u5 + 2a

a

a

3a

u5 + 2a

a

a

3a

<<S

S

u6 + b

u7

u8

u9

u6

u7

u8

u9

u6 + b

u7

u8

u9

u6

u7

u8

u9

u14

u11 + a

u12 + a

u13 + 3a

u10

u11

u12

u13

u14

u11 + a

u12 + a

u13 + 3a

u10

u11

u12

u13

Legend : Unkown fixed difference and u14 = u10 + u5 + 2a

Figure 8: The key difference propagation about AES-256.

32

A.2 Relationships of Subkey Bytes in the 13-Round Attack

In the 13-round attack on AES-256, we use the relationship of subkey bytes listed
as follows to derive some key bytes from known ones. The blue bytes are knonn
or guessed, the red bytes are obtained by the key schedule and each ◀ marks a
redundant relation, i.e., a 1-byte filter. For simplicity, the use of round constants
is omitted.

k3[12] = S(k10[12])⊕ k11[12];
k3[14] = k11[13]⊕ S(k12[14]⊕ k12[10]);
k3[15] = k11[15]⊕ S(k12[15]⊕ k12[11]);
k12 [8] = MC−1(k12[8], k12[9], k12[10], k12[11]);
k3[13] = k11[13]⊕ S(k12[13]⊕ k12[9]);
k0[8] = k12[0]⊕ k12[8]⊕ S(k12[13]⊕ k12[9])⊕ S(k11[13]⊕ k12[13]⊕ k12[9]);

k0[13] = k12[5]⊕ k12[13]⊕ S(k13[14]⊕ k13[10]⊕ k13[6]⊕ k13[2]);
k0[7] = k12[7]⊕ S(k13[12]⊕ k13[8])⊕ S(k13[12]⊕ k13[8]⊕ k13[4]⊕ k13[0])

⊕ S(S(k10[12])⊕ k11[12]);
k0[0] = k12[0]⊕ S(k13[13]⊕ k13[9])⊕ S(k13[13]⊕ k13[5])⊕ S(k13[13]⊕ k13[9]

⊕ k13[5]⊕ k13[1])⊕ S(k13[13]⊕ k13[9]⊕ S(k12[13]⊕ k12[9]))⊕ S(k13[13]
⊕ k13[5]⊕ S(k12[13]⊕ k12[5])); ◀

k0[2] = k12[2]⊕ S(k13[15]⊕ k13[11])⊕ S(k13[15]⊕ k13[7])⊕ S(k13[15]⊕ k13[11]
⊕ k13[7]⊕ k13[3])⊕ S(k13[15]⊕ S(k12[15]))⊕ S(k13[15]⊕ k13[11]
⊕ S(k12[15]⊕ k12[11]))⊕ S(k13[15]⊕ k13[7]⊕ S(k12[15]⊕ k12[7]));

k1[10] = k13[10]⊕ k13[2]⊕ S(k13[14]⊕ k13[10])⊕ S(k12[14]⊕ k12[10]⊕ k12[6]
⊕ k12[2]);

k12 [4] = MC−1(k12[7], k12[6], k12[5], k12[4]);
k0[4] = k12[4]⊕ S(k13[13]⊕ k13[9])⊕ S(k13[13]⊕ k13[9]⊕ k13[5]⊕ k13[1])

⊕ S(k13[13]⊕ k13[9]⊕ S(k12[13]⊕ k12[9]));
k0[14] = k12[14]⊕ k12[6]⊕ S(k13[15]⊕ k13[11]⊕ k13[7]⊕ k13[3]);
k0[3] = k12[3]⊕ S(k13[12]⊕ k13[8])⊕ S(k13[12]⊕ k13[4])⊕ S(k13[12]⊕ k13[8]

⊕ k13[4]⊕ k13[0])⊕ S(k13[12]⊕ S(k12[12]))⊕ S(k13[12]⊕ k13[8]⊕ S(k12[12]
⊕ k12[8]))⊕ S(k13[12]⊕ k13[4]⊕ S(k12[12]⊕ k12[4]));

k0[9] = k12[9]⊕ k12[1]⊕ S(k13[14]⊕ k13[10]⊕ k13[6]⊕ k13[2]);
⊕ S(k13[14]⊕ k13[10]⊕ S(k12[14]⊕ k12[10]));

k1[5] = k13[5]⊕ S(k12[13])⊕ S(k12[13]⊕ k12[5])⊕ S(S(k13[14]⊕ k13[10])
⊕ k12[13]) ◀

k12[0] = MC−1(k12[0], k12[1], k12[2], k12[3]) ◀

33

A.3 An Alternative Attack on 13-Round AES-256 with T = 2240

1. Let k′
b be k3[14, 15] and k′

f be k10[12], k11[12 ∼ 15], k12[12, 13] and k13[8, 9].
Guess k′

b, k′
f :

(a) Initialize counters for all possible values for k∗
b and k∗

f .
(b) Derive the difference for partial kb and kf : From ∆k3[14, 15] and k3[14, 15],

compute u1, u2 so ∆k0[1, 2, 5, 6] is known; from k10[12] and b compute u5
so ∆k11[0, 4, 8, 12] are known; from k11[12 ∼ 15], compute u6 ∼ u9 and
then ∆k12 is known; from k12[12, 13], compute u10, u11, u14 so now the
first two rows of ∆k13 are known. From k13[8, 9] and k12[12, 13] compute
k13[12, 13].

(c) Do partial encryption and decryption and then construct pairs of data
satisfying 3 filtering bytes: ∆x0[5, 6] = 0, i.e., r′

b = 16, and ∆x12[12] =
∆x12[13] due to the MDS property of MC, i.e., r′

f = 8. There will be
288×2−3×8 = 2152 pairs of data.

(d) For each pair of data, recover the remaining key bytes of kb, kf .
i. Calculate ∆z11[12] from ∆x12[12] and ∆k12[12]. From the known

input difference and output difference of the S-box, recover z11[12].
ii. Look up table H1 using ∆k12[14, 15], MC−1

1 (k12[12, 13], x12[12, 13]),
∆z11[12], C[10, 11, 14, 15], C̃[10, 11, 14, 15], ∆x12[2, 11], k11[10, 15],
∆C[9, 12] and get one solution for k12[14, 15] and k13[10, 11, 14, 15].

iii. Now the whole k13 can be known from ∆x12, ∆z12 and the ciphertext.
Also, k3[12 ∼ 15], k12[8 ∼ 15] and k12[0, 4] are known. Calculate ∆k0
and derive k0[0].

iv. Look up table H2 using k0[0], P [8, 13], P̃ [8, 13] and five values from
known bytes of k12, k13 and get one solution for ∆w0[10], k0[8, 13],
k1[10] and k12[0, 5].

v. Recover the other key bytes as in the original attack.
vi. Test the key candidates exhaustively to find the right master key.

Complexities. This attack has a time complexity of 2240, which is reduced by
a factor of 28 at a cost of precomputed tables of size 2144. The data complexity
remains 289.

Look-up Tables H1 and H2. These two tables take a memory complexity of
2144 and preparing them takes a time complexity 2160.

To build H1, we try all possible values for the following 20 bytes:

∆k12[14, 15], k12[14, 15], ∆z11[12], MC−1
1 (k12[12, 13], x12[12, 13]),

C[10, 11, 14, 15], C̃[10, 11, 14, 15], ∆x12[2, 11], k11[14, 15], ∆C[9, 12],

and compute

∆k13[2, 3, 6, 7, 10, 11, 14, 15], ∆z12[10, 15], z12[10, 15], k13[10, 15],
k13[11, 14], ∆x12[6, 7], ∆x12[14, 15], x12[14, 15], z11[12], k12[14, 15].

34

These deduced bytes should satisfy

∆x12[6] = ∆x12[7],
z11[12] = MC−1

2 (k12[14, 15], x12[14, 15])⊕ MC−1
1 (k12[12, 13], x12[12, 13]).

Store the remaining cases in a hash table indexed by

∆k12[14, 15], ∆z11[12], MC−1
1 (k12[12, 13], x12[12, 13]),

C[10, 11, 14, 15], C̃[10, 11, 14, 15], ∆x12[2, 11], k11[14, 15], ∆C[9, 12],

and each index will map to one item of

k12[14, 15], k13[10, 11, 14, 15].

Building this table takes a time complexity of 2160 and this table takes a memory
complexity of 2144.

The table H2 can be built similarly. Assume k12[8 ∼ 15] and k13 are known.
From the relationship of key bytes in Appendix A.2, we have

k0[8] = k12[0]⊕ known1,

k0[13] = k12[5]⊕ known2,

k0[0] = k12[0]⊕ S(S(k12[5]⊕ known3)⊕ known4)⊕ known5.

We try all possible values for

∆w0[10], k0[0], P [8, 13], P̃ [8, 13], known1 ∼ known5,

and compute k12[0, 5], k1[10]. Then test if

k0[0] = k12[0]⊕ S(S(k12[5]⊕ known3)⊕ known4)⊕ known5

holds. For those values satisfying this condition, store them in a hash table
indexed by k0[0], P [8, 13], P̃ [8, 13], known1 ∼ known5 and each index maps to
one item of ∆w0[10], k12[0, 5], k1[10], k12[0, 5] on average. In this way, the table
H2 is built with time and memory complexities of 288 and 280, respectively.

B More Results of KATAN-32

B.1 A Key recovery model for Finding the Best Attacking
Parameters

In this subsection, we briefly introduce a model as a supplement of our new
key recovery algorithm. The model will assist us in finding the best attacking
parameters such that the corresponding attack’s time complexity is optimal.

35

Algorithm 4: Optimal key guessing strategy searching
1: input: a differential distinguisher with (∆x, ∆y, p), i.e., the input difference, the

output difference, and the probability; the differences of the extend rounds.
2: output: k′

b, k′
f , r′

b, r′
f and the minimal time complexity T .

3: // Difference propagation.

4: Model the differentials ∆P
E−1

b←−−− ∆x and ∆y
Ef−−→ ∆C. Using the binary variables

to mark the state differences is fixed or not. Compute rb and rf .
5: // Value Propagation.
6: To verifying ∆x and ∆y differences, the state values are needed. 0/1 variables are

used to mark the state values and the subkey kb and kf .
7: // Guess-and-determine.
8: Model the relation between the filter bits and the subkey bits. The internal state

bits are determined when the corresponding subkey bits are guessed. If an internal
state bit resulting from some active bits is determined and should have a fixed
difference, then a filter is obtained. Compute r′

b and r′
f .

9: // Key relationship.
10: According to the key schedule, model the relation between round key bits.

Compute |k′
b ∪ k′

f |.
11: //Computing time complexity.
12: Model T ≥ Ts, which is every part of the time complexity.
13: // Objective function.
14: MINIMIZE T.

B.2 An alternative 151-round attack on KATAN-32

We provide an alternative 151-round attack on KATAN-32 with 33-round Eb and
27-round Ef based on the 91-round distinguisher, as shown in Table 4.

BDMA. The parameters are |kb| = 49 and |kf | = 30. The key information is listed
as follows:

kb = k0, k1, · · · , k44, k45, k48, k52, k53,

kf = k260, k268, k270, k272, k274, k276, k277, k278, k280, k281, · · · , k300, k301.

According to the Equation 1, the time complexity is

T = 231.98 · (249 + 230) + 249+30−32+31.98 + 280−32+31.98

= 280.98 + 261.98 + 278.98 + 279.98 ≈ 280.98

with data and memory complexities D = 232, M = 230.

GDMA. The best parameters are |k′
b| = 39, |k′

f | = 21, r′
b = 24, r′

f = 18, rb = 32
and rf = 29. The filtering bits are marked in blue and red in Table 4.

k′
b = k0, k1, · · · , k28, k29, k31, k32, k33, k35, k36, k37, k38, k40, k41,

k′
f = k272, k276, k280, k282, k283, k284, k286, k287, k288, k290, k291, · · · , k300, k301.

36

With these parameters, one can have an attack of data, memory, and time
complexities D = 232, M = 263 and T = 279.98, as

T = 232+39 + 232+39+32−24−3−1 + 232+21 + 232+21+32−18−3−1

+ 232+37+32+21−25−18−3−1 + 279−0.02 + 280+31.98−32

= 271 + 275 + 253 + 263 + 278 + 278.98 + 280+31.98−32 ≈ 279.98.

Table 4: The 151(33 + 91 + 27)-round attack on the KATAN-32. For round t, ∆t is the
t-th round difference, 0 ≤ t ≤ 151. The blue and red denote the filters by guessing a
part of key information k′

b and k′
f .

∆0 ???? ???? ???? ???? ???? ???? ???? ???? ∆32 ?000 1000 0000 0?11 0101 0100 0100 0000
∆1 ???? ???? ???? ???? ???? ???? ???? ???? ∆in 0001 0000 0000 0110 1010 1000 1000 0000
∆2 ???? ???? ???? ???? ???? ???? ???? ????

∆3 ???? ???? ???? ???? ???? ???? ???? ????

∆4 ???? ???? ???? ???? ???? ???? ???? ???? ∆out 0000 0000 0100 0000 0000 0000 0000 0000
∆5 ???? ???? ???? ???? ???? ???? ???? ???? ∆125 0000 0000 1000 0000 0000 0000 0000 0001
∆6 ???? ???? ???? ???? ???? ???? ???? ???? ∆126 0000 0001 0000 0000 0000 0000 0000 0010
∆7 ???? ???? ???? ???? ???? ???? ???? ???? ∆127 0000 0010 0000 0000 0000 0000 0000 010?
∆8 ???? ???? ???? ???? ???? ???? ???? ???? ∆128 0000 0100 0000 0000 0000 0000 0000 10?0
∆9 ???? ???? ???? ???? ???? ???? ???? ???? ∆129 0000 1000 0000 ?000 0000 0000 0001 0?01
∆10 ???? ???? ???? ???? ???? ???? ???? ???? ∆130 0001 0000 000? 0000 0000 0000 0010 ?01?
∆11 ???? ???? ???? ???? ???? ???? ???? ???? ∆131 0010 0000 00?0 ?000 0000 0000 010? 01?0
∆12 ???? ???? ???? ???? ???? ???? ???? ???? ∆132 0100 0000 0?0? 0000 0000 0000 10?0 1?00
∆13 ???? ???? ???? ???? ???? ???? ???? ???0 ∆133 1000 0000 ?0?0 ?000 0000 0001 0?01 ?000
∆14 ???? ???? ???? 1??? ???? ???? ???? ??0? ∆134 0000 000? 0?0? ?000 0000 0010 ?01? 0001
∆15 ???? ???? ???1 ???? ???? ???? ???? ?0?1 ∆135 0000 00?0 ?0?? ?000 0000 010? 01?0 001?
∆16 ???? ???? ??1? ???? ???? ???? ???? 0?11 ∆136 0000 0?0? 0??? ?000 0000 10?0 1?00 01?0
∆17 ???? ???? ?1?? ???? ???? ???? ???0 ?110 ∆137 0000 ?0?0 ???? 1000 0001 0?01 ?000 1?0?
∆18 ???? ???? 1??? 0??? ???? ???? ??0? 1101 ∆138 000? 0?0? ???1 ?000 0010 ?01? 0001 ?0??
∆19 ???? ???1 ???0 1??? ???? ???? ?0?1 1010 ∆139 00?0 ?0?? ??1? ?000 010? 01?0 001? 0???
∆20 ???? ??1? ??01 ???? ???? ???? 0?11 0101 ∆140 0?0? 0??? ?1?? ?000 10?0 1?00 01?0 ????
∆21 ???? ?1?? ?01? 0??? ???? ???0 ?110 1010 ∆141 ?0?0 ???? 1??? ?001 0?01 ?000 1?0? ????
∆22 ???? 1??? 01?0 0??? ???? ??0? 1101 0101 ∆142 0?0? ???1 ???? ?010 ?01? 0001 ?0?? ????
∆23 ???1 ???0 1?00 0??? ???? ?0?1 1010 1010 ∆143 ?0?? ??1? ???? ?10? 01?0 001? 0??? ????
∆24 ??1? ??01 ?000 1??? ???? 0?11 0101 0100 ∆144 0??? ?1?? ???? ?0?0 1?00 01?0 ???? ????
∆25 ?1?? ?01? 0001 0??? ???0 ?110 1010 1000 ∆145 ???? 1??? ???? ??01 ?000 1?0? ???? ????
∆26 1??? 01?0 0010 0??? ??0? 1101 0101 0001 ∆146 ???1 ???? ???? ?01? 0001 ?0?? ???? ????
∆27 ???0 1?00 0100 0??? ?0?1 1010 1010 0010 ∆147 ??1? ???? ???? ?1?0 001? 0??? ???? ????
∆28 ??01 ?000 1000 0??? 0?11 0101 0100 0100 ∆148 ?1?? ???? ???? ??00 01?0 ???? ???? ????
∆29 ?01? 0001 0000 0??0 ?110 1010 1000 1000 ∆149 1??? ???? ???? ?000 1?0? ???? ???? ????
∆30 01?0 0010 0000 0?0? 1101 0101 0001 0000 ∆150 ???? ???? ???? ?001 ?0?? ???? ???? ????
∆31 1?00 0100 0000 00?1 1010 1010 0010 0000 ∆151 ???? ???? ???? ?01? 0??? ???? ???? ????

C The 26-Round Distinguisher of SKINNYe-64-256 v2

37

Table 5: The differentials of the 26-round distinguisher for SKINNYe-64-256 v2, where
R12 to R17 denote rm = 6-round middle part, u satisfies DDT [0x1][u] > 0 and
DDT [u⊕ 0x9][0xb] > 0, v satisfies DDT [0x1][v] > 0 and DDT [v][0xb] > 0 [QDW+22].

Upper differential Lower differential

R0

0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 9, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 9, 0, 8, 0, 0, 0, 0

R1 −R6

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0

R7

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, d, 0, 0, 0, 0, 0

R8

0, 0, d, 0, 0, 0, 0, d, 0, 0, 0, 0, 0, 0, d, 0
0, 0, 2, 0, 0, 0, u, 0, 0, 0, 0, 0, 0, 0, v, 0
0, 0, 2, 0, 0, 0, 6, 0

R9

0, v, 0, 0, 0, 0, 0, 0, 0, 0, 0, u⊕ 0x6, 0, 0, 0, 0
0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0
0, 0, 0, 0, 4, 0, 0, 0

R10

0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, e, 2, 0, 0

R11

0, 0, 0, 0, 0, 0, 0, 0, 0, e, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 9, 0

R12

0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9
0, 0, 0, ∗, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ∗
0, 0, 0, 4, 0, 0, c, 0

-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-
-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-
0, 0, 0, 0, 0, 0, 0, 0

R13 −R16 middle part

R17

-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-
-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-
0, 0, 0, 0, 0, 0, 0, 8

0, ∗, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 8, 0, 0, 0, 0, 0, 0

R18 −R24

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0

R25

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 2, 0

38

Table 6: The 26-round related-tweakey boomerang distinguisher for SKINNYe-64-256
v2 [QDW+22].

r0 = 12, rm = 6, r1 = 8, Pd = 257.6

∆T K1 = 0, 6, 0, 2, 0, 0, 0, 0, 0, 0, 0, d, 0, 0, 0, 0
∆T K2 = 0, 9, 0, 8, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0
∆T K3 = 0, c, 0, b, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0
∆T K4 = 0, a, 0, 9, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0
∆X(0) = 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

∇T K1 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2
∇T K2 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6
∇T K3 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9
∇T K4 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
∇X(26) = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0

Table 7: Differential distribution table of 4-bit Sbox of SKINNY
0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 4 4 4 4 0 0 0 0
2 0 4 0 4 0 4 4 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
4 0 0 4 0 0 0 2 2 0 0 0 4 2 2 0 0
5 0 0 4 0 0 0 2 2 0 0 4 0 2 2 0 0
6 0 2 0 2 2 0 0 2 2 0 2 0 0 2 2 0
7 0 2 0 2 2 0 0 2 0 2 0 2 2 0 0 2
8 0 0 0 0 4 4 0 0 0 0 0 0 2 2 2 2
9 0 0 0 0 4 4 0 0 0 0 0 0 2 2 2 2
a 0 0 0 0 0 4 4 0 2 2 2 2 0 0 0 0
b 0 4 0 4 0 0 0 0 0 0 0 0 2 2 2 2
c 0 0 4 0 0 0 2 2 4 0 0 0 0 0 2 2
d 0 0 4 0 0 0 2 2 0 4 0 0 0 0 2 2
e 0 2 0 2 2 0 0 2 0 2 0 2 0 2 2 0
f 0 2 0 2 2 0 0 2 2 0 2 0 2 0 0 2

39

	Generic Differential Key Recovery Attacks and Beyond
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 The Generic Rectangle Key Recovery Attack
	2.3 The Basic Differential MITM Attack

	3 New Generic Key Recovery Attacks
	3.1 The Generic Classical Differential Attack
	3.2 The Generalized Differential MITM Attack
	3.3 Comparison
	3.4 The Generic Rectangle MITM Attack

	4 Applications
	4.1 Application to AES-256
	4.2 Application to KATAN-32
	4.3 Application on SKINNYe-64-256 v2

	5 Conclusion
	A More Details of the Key Schedule of AES-256
	A.1 Differences of Round Key Bytes
	A.2 Relationships of Subkey Bytes in the 13-Round Attack
	A.3 An Alternative Attack on 13-Round AES-256 with T=2240

	B More Results of KATAN-32
	B.1 A Key recovery model for Finding the Best Attacking Parameters
	B.2 An alternative 151-round attack on KATAN-32

	C The 26-Round Distinguisher of SKINNYe-64-256 v2

