
Updatable Private Set Intersection Revisited:

Extended Functionalities, Deletion, and Worst-Case Complexity

Saikrishna Badrinarayanan1, Peihan Miao2, Xinyi Shi2, Max Tromanhauser2, and Ruida Zeng2

1LinkedIn, bsaikrishna7393@gmail.com
2Brown University, {peihan miao,xinyi shi,max tromanhauser,ruida zeng}@brown.edu

Abstract

Private set intersection (PSI) allows two mutually distrusting parties each holding a private
set of elements, to learn the intersection of their sets without revealing anything beyond the
intersection. Recent work (Badrinarayanan et al., PoPETS’22) initiates the study of updatable
PSI (UPSI), which allows the two parties to compute PSI on a regular basis with sets that
constantly get updated, where both the computation and communication complexity only grow
with the size of the small updates and not the large entire sets. However, there are several
limitations of their presented protocols. First, they can only be used to compute the plain
PSI functionality and do not support extended functionalities such as PSI-Cardinality and PSI-
Sum. Second, they only allow parties to add new elements to their existing set and do not
support arbitrary deletion of elements. Finally, their addition-only protocols either require both
parties to learn the output or only achieve low complexity in an amortized sense and incur linear
worst-case complexity.

In this work, we address all the above limitations. In particular, we study UPSI with
semi-honest security in both the addition-only and addition-deletion settings. We present new
protocols for both settings that support plain PSI as well as extended functionalities including
PSI-Cardinality and PSI-Sum, achieving one-sided output (which implies two-sided output). In
the addition-only setting, we also present a protocol for a more general functionality Circuit-PSI
that outputs secret shares of the intersection. All of our protocols have worst-case computation
and communication complexity that only grow with the set updates instead of the entire sets
(except for a polylogarithmic factor). We implement our new UPSI protocols and compare
with the state-of-the-art protocols for PSI and extended functionalities. Our protocols compare
favorably when the total set sizes are sufficiently large, the new updates are sufficiently small,
or in networks with low bandwidth.

Keywords: Private Set Intersection, Secure Two-Party Computation, Oblivious Data Struc-
ture.

1 Introduction

Private Set Intersection (PSI) enables two distrusting parties, each holding a private set of elements,
to jointly compute the intersection of their sets without revealing anything other than the intersec-
tion itself. Despite its simple functionality, PSI and its related notions have found many real-world
applications including online advertising measurement (deployed by Google Ads [IKN+20, Ads]),
secure password breach alert (deployed by Google Chrome [Chr], Microsoft Edge [MIC], Apple

1

iCloud Keychain [Key], etc.), mobile private contact discovery (deployed by Signal [KRS+19,Sig]),
privacy-preserving contact tracing in a global pandemic (jointly deployed by Google and Ap-
ple [TSS+20,BBV+20,App]). The last several decades have witnessed enormous progress towards
realizing PSI efficiently using various techniques achieving both semi-honest and malicious se-
curity [KKRT16, CLR17, PSTY19, PRTY20, CMdG+21, GPR+21, CRR21, CGS22, RR22, CILO22,
BPSY23].

In many real-world applications such as aggregated ads measurement and privacy-preserving
contact tracing, PSI is performed on a regular (e.g., daily) basis with updated sets, where the
updates can be small when compared to the entire sets. However, most of the existing work requires
the two parties to perform a fresh PSI protocol every time. A recent work by Badrinarayanan et
al. [BMX22] initiates the study of updatable PSI (UPSI), which allows the two parties to compute
set intersections for sets that regularly get updated. Their work presents protocols for updatable
PSI where both the computation and communication complexity only grow with the size of the
updates and are independent of the size of the entire sets (except for a logarithmic factor). As a
result, these protocols are orders of magnitudes faster than a fresh PSI protocol, especially when
the updates are significantly smaller than the entire sets. Nevertheless, there are several limitations
with the protocols in [BMX22].

• Functionality: All the protocols presented in [BMX22] are restricted to the plain PSI func-
tionality, crucially leveraging the fact that parties learn all the elements in the intersection.
However, certain real-world applications require more refined PSI functionalities that do not
reveal the entire intersection but instead only provide aggregated information about the inter-
section or enable restricted computation on the data in the intersection. As two specific exam-
ples that model many applications such as online advertising measurement, PSI-Cardinality
allows two parties to jointly learn the cardinality (or size) of their set intersection; PSI-Sum
allows two parties, where one party additionally holds a private integer value associated with
each element in her set, to jointly compute the sum of the associated integer values for all
the elements in the intersection (together with the cardinality of the intersection).

• Addition-Only: [BMX22] mainly focuses on the addition-only setting, where both parties
can only add new elements to their existing old sets, and do not support arbitrary deletion of
elements from their sets. Note that they present a protocol for UPSI with weak deletion, which
allows the parties to refresh their sets every t days, namely, they will add a set of elements
to their sets every day, and delete elements that were added to their sets t days ago. How-
ever, it does not support arbitrary deletion, and the daily computation and communication
complexity additionally grows with t.

• Tradeoffs of the Addition-Only Protocols: [BMX22] presents two protocols for addition-
only UPSI, each with its own tradeoffs. In particular, one protocol crucially requires both
parties to learn the output (namely, two-sided UPSI), which may not be applicable in certain
applications such as password breach alert. The other protocol allows a single party to learn
the output (namely, one-sided UPSI), but it only achieves low computation and communica-
tion complexity in an amortized sense over many days; the worst-case complexity can be as
high as linear in the entire sets. Note that one-sided UPSI is a strictly stronger functionality
in the semi-honest setting (as considered in [BMX22]) since the output-receiving party can
simply send the output to the other party so as to achieve two-sided UPSI.

2

1.1 Our Results

In this work, we address all the aforementioned limitations by presenting new UPSI protocols for
extended functionalities, supporting both addition and deletion of elements, achieving one-sided
output and low worst-case complexity in both computation and communication. All of our protocols
are secure in the semi-honest model, hence one-sided UPSI is a stronger functionality. In the setting
with both addition and deletion, we achieve a slightly more general functionality than PSI-Sum
as defined in [IKN+20,MPR+20], where we do not reveal the cardinality of the intersection along
with the sum.

Besides the functionalities of plain PSI, PSI-Cardinality, and PSI-Sum that we discussed above,
we consider a more general functionality of Circuit-PSI [PRTY19,RS21,CGS22,RR22,BPSY23],
where the two parties learn the cardinality of the intersection as well as an additive secret share of
each element in it. This functionality allows the two parties to perform further computation over
the shares afterwards.

Note that we only consider Circuit-PSI in the addition-only setting. The challenge in achieving
Circuit-PSI with both addition and deletion is as follows. Intuitively speaking, when deleting
elements from the intersection, the parties must learn which existing secret shares to delete from the
intersection (unless the parties update their entire secret shared intersection, where the complexity
grows with the entire sets, which is undesirable). Given that they know when a particular secret
share (not the element itself) was added to the intersection, this essentially reveals more information
than what the ideal functionality outputs. Crucially, note that in the case of plain PSI with
addition and deletion, this is not a problem since the ideal functionality’s output also reveals when
a particular element was added and deleted; and in the case of PSI-Cardinality or PSI-Sum, parties
only learn aggregated information and this challenge doesn’t arise in the protocol design. We
summarize our results in comparison with [BMX22] in Table 1.

Protocol Functionality Output Addition/Deletion Comp. & Comm. Complexity

[BMX22, ΠUPSI-add-two] PSI Two-Sided Addition-Only O(Nd)

[BMX22, ΠUPSI-add-one] PSI One-Sided Addition-Only O∗(Nd · logN)

Figure 11, ΠUPSI-Addpsi PSI
One-Sided

Addition-Only O(Nd · logN)
Figure 5, ΠUPSI-Addca PSI-Cardinality

Figure 5, ΠUPSI-Addsum PSI-Sum

Figure 5, ΠUPSI-Addcircuit Circuit-PSI Secret Shared

[BMX22, ΠUPSI-del] PSI Two-Sided Weak Deletion O(Nd · t)
Figure 10, ΠUPSI-Delpsi PSI

One-Sided Addition & Deletion
Single Deletion
O(Nd · logN)

Arbitrary Deletion
O(Nd · log2N)

Figure 10, ΠUPSI-Delca PSI-Cardinality

Figure 10, ΠUPSI-Delsum PSI-Sum†

Table 1: Summary of our results in comparison to [BMX22], including functionality, one-sided or two-sided
output, support of addition and deletion of elements, and computation and communication complexity. PSI-
Sum† denotes the variant of PSI-Sum that does not reveal the cardinality. N denotes the size of the entire
sets and Nd denotes the size of the d-th update. t denotes the number of updates when parties refresh their
sets in UPSI with weak deletion. O∗(·) denotes amortized complexity. For UPSI with both addition and
deletion, we present two variants, one allowing each element to be added and deleted at most once, and the
other allowing arbitrary additions and deletions of the same element.

Experiments. We implement all our protocols and compare their performance with the state-
of-the-art protocols for PSI and extended functionalites [CGS22, RR22]. As our communication

3

grows with the size of the update and not the entire input (except by a logarithmic factor), we
demonstrate a significant improvement, up to orders of magnitude, when the input sets grow
sufficiently large with smaller updates. Although our usage of public key operations dampens the
asymptotic impact on computation, in realistic WAN settings, our protocols are able to outperform
prior work in end-to-end running time. We also compare our new one-sided addition-only UPSI
protocol with [BMX22] and show significant improvement in worst-case complexity.

1.2 Technical Overview

We discuss the technical challenges and novelties in this work. We start with addition-only UPSI.
Let X,Y denote the old sets of the two parties P0, P1 respectively, and let Xd, Yd denote their new
added sets on Day d. For simplicity, assume |X| = |Y | = N and |Xd| = |Yd| = Nd.

1 Recall that we
are mostly interested in the scenario when the set updates are significantly smaller than the entire
sets, namely N ≫ Nd. The parties have already learned I = X ∩Y of the old sets, and they would
like to learn the updated intersection Id = (X ∪Xd)∩ (Y ∪Yd). We focus on one-sided UPSI, where
only P0 learns the output.

Addition-Only UPSI with Extended Functionalities. Our starting point is the one-sided
addition-only UPSI protocol in [BMX22]. They observe that it suffices to learn the set difference
Id \ I on each day, which, from P0’s perspective, can be split into two disjoint sets, (Xd ∩ (Y ∪ Yd))
and (X ∩ Yd). They then develop protocols to compute the two sets individually, with complexity
growing only with Nd and not N . To compute UPSI-Cardinality, we similarly split |Id \ I| into
|Xd ∩ (Y ∪ Yd)| and |X ∩ Yd|, and compute them individually. Note that this is not sufficient since
the individual cardinalities reveal more information than the ideal functionality, which we will fix
later.

Computing |Xd ∩ (Y ∪ Yd)|: We first briefly describe the approach in [BMX22] to computing
Xd ∩ (Y ∪ Yd). Their key idea is to let P1 store an encrypted version of her set on P0’s side; on
each day, she updates this encrypted dataset based only on her new input Yd. Here, they require
a data structure that allows P1 to obliviously update the dataset and P0 to obliviously query and
compute on the dataset. [BMX22] constructs such an oblivious data structure via a binary tree and
uses additively homomorphic encryption to compute on encrypted data. By carefully re-crafting
the homomorphic operations on the encrypted data in the oblivious data structure, we design a
method that reveals only the number of elements that are matched between Xd and the encrypted
dataset (Y ∪ Yd). This enables P0 to learn |Xd ∩ (Y ∪ Yd)|.

Computing |X∩Yd|: We review the approach in [BMX22] to computing X∩Yd, which leverages
Diffie-Hellman-based PSI in [BMX22]. Unfortunately, it does not extend to updatable cardinality.
To address this challenge, our idea is to compute |X ∩ Yd| symmetrically on P1’s side using the
oblivious data structure. In particular, we let P0 store an encrypted version of his set on P1’s side
that supports efficient and oblivious updates and queries. This way we can efficiently allow P1 to
learn |X ∩ Yd|.

Computing the sum with one-sided output: There are two issues with our current approach:
first, individual cardinalities should not be revealed to the parties; second, P1 should not learn
anything about the output. At a high level, P0 learns the cardinality |Xd ∩ (Y ∪Yd)| by decrypting
a set of (homomorphically evaluated) ciphertexts and counts the number of 0’s in them. This

1Our constructions work for two sets with different sizes as well, which we elaborate in Section 3 and Section 4.

4

happens similarly for P1 to learn |X ∩ Yd|. To fix the first issue, we develop a method to combine
the two sets of ciphertexts, re-randomize and shuffle all of them, and then decrypt them at the
end. The number of 0’s reveals only the sum of |Xd ∩ (Y ∪ Yd)| and |X ∩ Yd|, rather than
individual values. To fix the second issue, we use a 2-out-of-2 threshold encryption scheme. The
parties will jointly decrypt all the ciphertexts only after the random shuffling, and the decrypted
results are revealed only to P0. This protocol can be further extended to PSI-Sum and Circuit-PSI
by attaching a payload to each element and further leveraging additive homomorphism.

Worst-Case Logarithmic Complexity. The above construction relies heavily on the oblivious
data structure presented in [BMX22]. A critical drawback of the data structure is that it only
achieves logarithmic complexity in an amortized sense, namely the average complexity over many
days is low. However, the worst-case complexity can be as high as linear in the entire sets. In this
work, we construct a new oblivious data structure with worst-case logarithmic complexity.

Recall that in our UPSI construction, P1 store an encrypted version of her set, maintained in
an oblivious data structure, on P0’s side. There are two requirements on the data structure: first,
for each new element y added to P1’s set, P1 can update the encrypted dataset without leaking
any information about y to P0; second, for each new element x added to P0’s set, P0 can locally
identify a small set of encryptions in the P1’s set that are potential matches to x.

At a high level, our construction works as follows. The encrypted dataset is maintained in a
binary tree structure. Each element x identifies a designated, (pseudo)random root-to-leaf path,
computed by a pseudorandom function Fk(x) with k known to both parties. As P1 updates the
tree, she will maintain the invariant that each element y always appears along its designated path.
This allows P0 to query for potential matches by collecting all elements in the appropriate path
(i.e., potential matches to x will be found in the path designated by Fk(x)). However, when a new
element y is added to P1’s set, directly updating the designated path of y in P0’s storage reveals
information about y being added to the tree. Therefore, we need a mechanism for P1 to add y to its
designated path in P0’s storage while hiding the path from P0. In [BMX22], this is achieved through
a series of operations that update an entire level of the tree each time, resulting in an amortized
logarithmic complexity, while the worst-case complexity is linear (when P1 updates the leaf level
of the tree).

Our solution takes inspiration from the Path ORAM construction [SvS+13]. Instead of updating
the designated path, P1 picks a random path each time, and “pushes down” the elements along that
path as much as possible. The access pattern of tree updates consist of random paths, hence are
oblivious to P0. Note that Path ORAM has an additional logarithmic factor from tree recursions
due to limited registers. We can remove the tree recursions since we do not have this restriction
in UPSI, leading to a single logarithmic factor. We refer to Section 3 for more details of our
addition-only UPSI protocols.

Supporting Deletion. Our oblivious data structure is inspired by ORAM, but the manner in
which ORAM handles deletion (or modification) of memory content does not work for us. In
Path ORAM, whenever x is accessed (or modified), x will be re-allocated to a new, freshly sampled
random designated path. However, as discussed above, the designated path of x in our construction
is fixed and known to both parties.

Our key idea is to keep the fixed designated path for the element and attach a payload of +1
or −1 to indicate addition or deletion. Specifically, when y is deleted from P1’s set, instead of

5

deleting it from the data structure, she will add another y to the data structure with a payload of
−1 indicating deletion. In other words, when y is added or deleted from P1’s set, she will add a new
pair of encryptions (Enc(y),Enc(+1)) or (Enc(y),Enc(−1)) to the designated path of y. Recall that
we can update the tree by accessing a random path, hence the access pattern remains oblivious to
P0. When x is added to P0’s set, P0 will still identify all the encrypted pairs on the designated path
of x as potential matches. However, the crucial challenge is when y is not in the intersection, we
need to further hide from P0 whether y was never added to the dataset, or y was added and then
deleted (namely, (y,+1) and (y,−1) cancel out). To achieve this, we design a special protocol that,
for each pair, if the element is a match, then the parties obtain a secret share of its corresponding
payload (+1 or −1); otherwise they obtain a secret share of 0. Finally, they add up all these secret
shares where +1’s and −1’s are canceled out, revealing whether x is in the intersection.

There are several other challenges that arise in handling deletions. For instance, we need to
bound the maximum node size of the tree, especially when there are unlimited, repeated elements
being added to the same path. If we restrict each element to being added and deleted at most once,
the complexity remains the same as in the addition-only protocols. A more nuanced analysis shows
that with unlimited additions and deletions, the complexity incurs only an additional logarithmic
factor. Another challenge arises in plain UPSI, when P0 removes x and P1 adds y = x on the
same day. After these updates, x is not in the intersection, and it should be further hidden that it
was added and then deleted from the intersection. We refer to Section 4 for more details of how
to handle these challenges and the full description of our UPSI protocols with both addition and
deletion.

1.3 Related Work

There has been a long line of work towards realizing PSI efficiently using various techniques includ-
ing Diffie-Hellman-based [Mea86,HFH99,IKN+20], RSA-based [DT10,ADT11], circuit-based [HEK12,
PSSZ15, PSWW18, PSTY19], oblivious transfer (OT)-based [DCW13, PSZ14, KKRT16, PRTY19,
CM20], fully homomorphic encryption (FHE)-based [CLR17, CHLR18, CMdG+21], and vector
oblivious linear evaluation (VOLE)-based [RS21, GPR+21, CRR21, RR22, BPSY23] approaches,
achieving both semi-honest and malicious security [RR17,OOS17,CHLR18,PRTY20,CILO22,RR22,
BPSY23].

As discussed earlier, certain applications require PSI with extended functionalities that do
not reveal the entire intersection but rather enable restricted computation on the elements in
the intersection. PSI-Cardinality and PSI-Sum model many applications such as aggregated ads
measurement [IKN+20,MPR+20] and privacy-preserving contact tracing [TSS+20,BBV+20]. More
generally, Circuit PSI [HEK12,PSTY19,RS21,CGS22,RR22,BPSY23] enables the two parties to
learn secret shares of the set intersection, which can be used to securely compute any function using
generic secure two-party computation protocols [Yao86,GMW87]. However, all these approaches
study PSI or PSI with extended functionalities in the standalone setting, which do not support
small updates to the sets beyond running a fresh protocol after each update.

To the best of our knowledge, [BMX22] is the first work that formalizes and studies PSI in the
updatable setting, which we have extensively discussed above. Another related work is [ADMT22],
which studies delegatable PSI with small updates. Specifically, they allow multiple clients to
outsource their (encrypted) private sets and delegate PSI computation to a cloud server. Clients can
perform efficient updates on their outsourced sets where the computation and communication only
grow with their updates. However, both the computation and communication costs of computing

6

PSI still grow with size of the entire sets, and their protocol crucially requires the existence of a
server.

Concurrent and Independent Work. A concurrent and independent work by Agarwal et
al. [ACG+24] constructs a semi-honest secure UPSI protocol that supports arbitrary addition and
deletion of elements. Their construction, which builds UPSI from a new variant of structured
encryption (StE), achieves worst-case communication and computation complexity that grows lin-
early with the size of the updates and poly-logarithmically with the size of the entire sets. Their
framework supports the plain PSI functionality with two-sided output, and focuses on feasibility. In
contrast, our work additionally achieves the extended functionalities with one-sided output (which
implies two-sided output), and demonstrates concrete efficiency.

2 Preliminaries

Notation. We use λ, κ to denote the computational and statistical security parameters, respec-
tively. For an integer n ∈ N, [n] denotes the set {1, . . . , n}. A 2-out-of-2 additive secret share of

a value x ∈ Zn is denoted as ([[x]]0, [[x]]1) where [[x]]0
$←− Zn and [[x]]0 + [[x]]1 = x mod n. PPT

stands for probabilistic polynomial time. By
c
≈ we mean two distributions are computationally

indistinguishable.

Additively Homomorphic Encryption. An additively homomorphic encryption scheme is a
public-key encryption sccheme that consists of a tuple of PPT algorithms (KeyGen,Enc,Dec) over
message space M with correctness, chosen-plaintext attack (CPA) security, and linear homomor-
phism.

• (pk, sk) ← KeyGen(1λ): On input of the security parameter, output a public key pk and a
secret key sk.

• c← Encpk(m): On input of a public key pk and a message m ∈M, output a ciphertext c.

• m/⊥ ← Decsk(c): On input of a secret key sk and a ciphertext c, output a plaintext m or the
symbol ⊥.

• Encpk(m0 + m1) ← Encpk(m0) ⊕ Encpk(m1): On input two ciphertexts of m0,m1 encrypted
under pk, output a ciphertext for their sum.

• Encpk(m0 ·m1)← m0 ⊙ Encpk(m1): On input a plaintext message m0 and a ciphertext of m1

encrypted under pk, output a ciphertext for their product.

Threshold Additively Homomorphic Encryption. A (2, 2)-threshold additively homomor-
phic encryption scheme consists of a tuple of PPT algorithms (KeyGen,Enc,PartDec,FullDec) over
message spaceM.

• (pk, sk0, sk1)← KeyGen(1λ): On input of the security parameter, output a public key pk and
a pair of secret key shares sk0 and sk1.

• c← Encpk(m): On input of a public key pk and a message m ∈M, output a ciphertext c.

• ĉ← PartDecskb(c): On input a secret key share skb (for b ∈ {0, 1}) and a ciphertext c, output
a partially decrypted ciphertext ĉ.

7

• m/⊥ ← FullDecskb(ĉ): On input a secret key share skb (for b ∈ {0, 1}) and a partially decrypted
ciphertext ĉ by the other secret key sk1−b, output a plaintext m or the symbol ⊥.

The scheme satisfies correctness and CPA security even given a secret key share skb for b ∈ {0, 1}.
It also supports linear homomorphic operations ⊕ and ⊙.

Re-randomization. A re-randomization algorithm c̃ ← ReRandpk(c) homomorphically adds an
independently generated encryption of zero to c, resulting in a ciphertext c̃ that is indistinguishable
from a fresh ciphertext encrypting the same message as c. We implicitly assume that each
homomorphic operation is followed by a re-randomization process. This is required in our protocols
to ensure that the randomness of the final ciphertext is independent of the randomness used in the
original ciphertexts. For the popular (threshold) additively homomorphic encryption schemes such
as exponential El Gamal encryption [ElG85] and Paillier encryption [Pai99], a homomorphically
evaluated ciphertext can be made statistically identical to a fresh ciphertext. We refer to [ElG85,
Pai99] for formal definitions of correctness and CPA security.

3 Addition-Only UPSI

3.1 Definition

In this section, we formalize the ideal functionality and security definition for addition-only UPSI.
Consider two parties P0 and P1 who wish to run PSI on a daily basis with updated sets. In the
addition-only setting, they each hold a private set and add new elements to their respective sets
each day. They want to jointly compute their set intersection (or extended functionalities) on their
updated sets without revealing anything beyond that. We formalize addition-only UPSI as a special
case of secure two-party computation with a reactive functionality defined in Figure 1.

Initialization: X = ∅ and Y = ∅.
Day d:

• Public Parameters: The number of additions that P0 and P1 are performing: |Xd| and
|Yd|, respectively.

• Inputs:
P0 inputs a set Xd ⊆ {0, 1}∗ where Xd ∩X = ∅. In FUPSI-Addsum , Xd includes an integer value
associated with each set member (i.e., vi is associated with xi ∈ Xd).
P1 inputs a set Yd ⊆ {0, 1}∗ where Yd ∩ Y = ∅.

• Update: On receiving the inputs from both parties, the ideal functionality updates X =
X ∪Xd and Y = Y ∪ Yd.

• Output:
In FUPSI-Addpsi , P0 learns the intersection Id = X ∩ Y .
In FUPSI-Addca , P0 learns the cardinality of the intersection Cd = |X ∩ Y |.
In FUPSI-Addsum , P0 learns Cd = |X ∩ Y | and Vd =

∑
i:xi∈X∩Y vi.

In FUPSI-Addcircuit , both parties learn Cd = |X ∩ Y |. For each new element z being added to
the intersection, P0 learns [[z]]0 and P1 learns [[z]]1 as an additive secret share for z.

Figure 1: Ideal functionalities for one-sided addition-only UPSI: FUPSI-Addpsi ,FUPSI-Addca ,FUPSI-Addsum ,
FUPSI-Addcircuit .

8

Let X[D] = {X1, . . . , XD} and Y[D] = {Y1, . . . , YD} be the inputs for P0 and P1 after D days,

respectively. Let ViewΠ,D
b (X[D], Y[D]) and OutΠ,D

b (X[D], Y[D]) be the view and outputs of Pb (for
b ∈ {0, 1}) in the protocol Π at the end of D days, respectively. For a functionality F , let Fb be the
output for Pb in the D days. Note that F1 = ⊥ in all the functionalities except for FUPSI-Addcircuit .

Definition 3.1 (One-Sided Addition-Only UPSI). A protocol Π is semi-honest secure with respect
to ideal functionality F ∈ {FUPSI-Addpsi ,FUPSI-Addca ,FUPSI-Addsum ,FUPSI-Addcircuit} if there exists PPT

simulators Sim0 and Sim1 such that, for any D ∈ N+ and any inputs (X[D], Y[D]),(
ViewΠ,D

0 (X[D], Y[D]),OutΠ,D
1 (X[D], Y[D])

)
c
≈
(
Sim0(1

λ, X[D],F0(X[D], Y[D])),F1(X[D], Y[D])
)
,(

ViewΠ,D
1 (X[D], Y[D]),OutΠ,D

0 (X[D], Y[D])
)

c
≈
(
Sim1(0

λ, Y[D],F1(X[D], Y[D])),F0(X[D], Y[D])
)
.

Notation. Let ΠAHE = (KeyGen,Enc,PartDec,FullDec) be a (2, 2)-threshold additively homomor-
phic encryption scheme (see definition in Section 2) over plaintext space Zq for a prime q. Without
loss of generality we assume all the set elements are in Zq (if not, we can apply a collision-resistant
hash function H : {0, 1}∗ → Zq on all the elements and perform PSI on the hash outputs). Let
F : {0, 1}λ×Zq → {0, 1}λ be a pseudorandom function (PRF). For a bit string s ∈ {0, 1}n, let s[1:i]
denote the prefix of s of length i (for i ∈ [n]).

Consider a binary tree data structure with tree height L and 2L leaves, let ℓ ∈ {0, 1, . . . , 2L−1}
denote the ℓ-th leaf node of the tree. Any leaf node ℓ defines a unique path from the root to the
leaf. We use P(ℓ) to denote such a path, and P(ℓ, k) to denote the node in P(ℓ) at level k of the
tree (for k ∈ {0, 1, . . . , L}). Let σ denote the maximum tree node size and ρ denote the stash
size of our oblivious data structure.

3.2 Construction

In this section, we present our addition-only UPSI protocols. As briefly discussed in Section 1.2,
each party stores an encrypted version of its set on the other party’s storage. We first describe our
new oblivious data structure maintained in a binary tree.

Oblivious Data Structure. Say P1 is the data owner, who stores her encrypted set on P0’s side.
Initially, the binary tree is empty with depth 0. Each node of the tree has a maximum capacity of σ
elements. As P1 adds new elements to the tree, she will gradually increase the tree depth. Figure 2
illustrates a tree of depth 3. Each element x is associated with a designated path computed by
Fk(x), where F is a pseudorandom function and k is a secret key known to both parties. When a
new element x is added to P1’s set, P1 will add x to the one of the nodes in the root-to-leaf path
ending at leaf node Fk(x), but in an oblivious way. In the example in Figure 2, the designated
path of x is Fk(x) = 001, and P1 will obliviously add x to one of the four nodes on the red path.
To do so, P1 first adds x to the root node of the tree. Then she samples a random root-to-leaf
path ℓ of the tree, and collects all the elements in that random path. For every element x∗ in
that random path (note that this includes x, because x was just added to the root), P1 will “push
down” x∗ along the random path ℓ as much as possible subject to the constraint that x∗ is still
on its designated path Fk(x

∗). In the example, ℓ = 011, and P1 considers all the elements on the
blue path. She can push x down one level since it overlaps with the red path. For another element
y, suppose Fk(y) = 011, then P1 can push it down to the leaf level. For the element z, suppose
Fk(z) = 010, then P1 cannot push it down further. Note that this process is oblivious to P0 since

9

the access pattern for any element is a random path. In the example, the access pattern for x is a
random path ℓ that is completely independent of x.

Fk(x) = 001 ℓ = 011

x

x y

y

z

Fk(y) = 011

Fk(z) = 010

Figure 2: Illustration of adding an element x to a tree with depth 3.

Some details were omitted in the above description for the sake of simplicity. First, when
pushing down element along the random path ℓ, another constraint is that no node exceeds the
maximum capacity of σ. Second, if there are extra elements that cannot fit into the maximum
capacity of the random path, P1 puts them into a stash, which has maximum capacity ρ. Both σ
and ρ are defined as part of the security parameters of the protocol. We present this subroutine
formally as UpdateTree in Figure 3. This subroutine will also be used in our UPSI with both
addition and deletion protocols, with slight modifications (highlighted in the figure). We discuss
more details in Section 4.

Addition-Only UPSI-Cardinalty/Sum/Circuit-PSI. We now describe our new addition-
only UPSI protocols (Figure 5). P0 maintains his elements x ∈ X in an oblivious data structure
consisting of a binary tree D0 and a stash S0. He stores an encrypted version of it on P1’s side,
denoted as (D̃0, S̃0). Similarly, P1 maintains her elements y ∈ Y in an oblivious data structure
(D1,S1), and stores an encrypted version (D̃1, S̃1) on P0’s side. The encryption scheme is a (2, 2)-
threshold additively homomorphic encryption. Recall from Section 1.2 that the set difference Id \ I
on each day consists of two disjoint sets, (Xd ∩ Y) and ((X ∪Xd) ∩ Yd).

Let’s first consider (Xd∩Y). Intuitively speaking, P0 queries each xi ∈ Xd in the encrypted tree
of Y , namely (D̃1, S̃1), to determine whether xi ∈ Y . Specifically, for each xi ∈ Xd, P0 identifies
a designated path ℓ = Fk(xi) and collects all the elements in the path ℓ from D̃1, together with
all the elements from S̃1 (because xi could potentially have been put there as well). These are
all the candidate encryptions that could potentially match xi. This process is presented formally
as a subroutine GetPath in Figure 4. To compute PSI-Cardinality, P0 homomorphically subtracts
xi from each candidate encryption, so it becomes an encryption of zero iff it is a match. This is
presented as Step 3 in Figure 5.

Symmetrically, for ((X ∪Xd) ∩ Yd), P1 queries each yj ∈ Yd in the encrypted tree of (X ∪Xd),

namely (D̃0, S̃0). Note that (D̃0, S̃0) needs to be first updated to contain Xd. In the protocol in
Figure 4, P0 adds Xd to the oblivious data structure in Step 3. Then P1 collects all the candidate
encryptions for each yj ∈ Yd and homomorphically subtracts yj from them, as presented in Step 4.

In Step 5, P1 combines all the candidate encryptions and homomorphically multiplies each
one by a random scalar, so that a candidate encryption remains zero if it is a match, or random

10

Subroutine UpdateTree({xi}ni=1, {pi}ni=1,D,S, Fk(·),Encpk(·)):
1. Let N be the total number of elements (excluding dummy ones) in the tree D and stash S after

inserting {xi}ni=1. Extend the tree depth to reach L = ⌈log2 N⌉ if needed. Add empty nodes in the
new levels of D.

2. For each element and payload pair (xi, pi) for i ∈ [n]:

(a) Uniformly sample a random leaf node ℓi
$←− {0, 1, . . . , 2L − 1} of the tree D.

(b) Remove all the elements from the path P(ℓi) of the tree D. Remove all the elements from the
stash S. Combine all the removed elements (excluding dummy ones) with (xi, pi) to get pathi.
In the UPSI with addition and deletion protocols, if there are elements with opposite values,
namely (z, p) and (z,−p), then remove both from pathi.

(c) For k from L down to 0:
Consider the tree node P(ℓi, k) at level k, remove up to σ elements (z, p) from pathi such that
P(ℓi, k) = P(Fk(z)[1:L], k), and add these elements to the node P(ℓi, k) of D.

(d) Replace the stash S with all the elements left in pathi. If there are more than ρ elements left in
pathi, abort.

(e) Pad every node in the path P(ℓi) with dummy elements to reach a size of σ. Pad the stash S
with dummy elements to reach a size of ρ.

3. For each i ∈ [n], gather all the elements in the path P(ℓi) and encrypt them to get

˜updatesi = {(Encpk(xj),Encpk(pj))}σ·Lj=1. Encrypt all elements in the stash S to get S̃ =

{(Encpk(xj),Encpk(pj))}ρj=1. Output ({(˜updatesi, ℓi)}ni=1, S̃)

Figure 3: Subroutine UpdateTree that outputs a succinct update for the tree D that does not reveal the
elements being added.

Subroutine GetPath(D̃, S̃, Fk(·), x):
1. Let L be the height of the tree D.
2. Compute the leaf node for the path containing x as ℓ := Fk(x)[1:L].

3. Collect all the elements in the path P(ℓ), combine them with the stash S to get p̃ath =

{(Enc(yi),Enc(pi))}σ·L+ρ
i=1 , and output p̃ath.

Figure 4: Subroutine GetPath that outputs a collection of potential matching elements with x in the
encrypted tree D̃ with stash S̃ organized according to the pseudorandom function F .

otherwise.2 She then randomly shuffles all the candidate encryptions, partially decrypts them, and
sends to P0, who can then fully decrypt them and count the number of zeros.

Finally, P1 adds Yd to her oblivious data structure in Step 7. It is important to note that the
order of tree updates for Xd and Yd is critical in the protocol. In particular, the tree update for
(D̃1, S̃1) can only occur after Step 3 to prevent doubly counting in PSI-Cardinality.

We can extend the protocol to PSI-Sum and Circuit-PSI by attaching a payload to each element
and leveraging additive homomorphism on these payloads.

Addition-Only Plain UPSI. For addition-only plain UPSI FUPSI-Addpsi , we don’t have to store
two trees. Instead, we can simply plug our new oblivious data structure into the addition-only UPSI
protocol [BMX22, ΠUPSI-add-one] to achieve better concrete efficiency than the two-tree solution

2Note that this holds because the plaintext space for the encryption scheme is Zq for a prime q.

11

Initialization:
1. P0 and P1 jointly setup public and secret keys for a (2, 2)-threshold additively homomorphic encryption scheme

(pk, sk0, sk1) ← KeyGen(1λ) where P0 receives (pk, sk0) and P1 receives (pk, sk1). This can be done via a one-time

secure two-party computation. The two parties agree on a randomly sampled PRF key k
$←− {0, 1}λ.

2. P0 and P1 generate initial trees with only an empty root and stash: (D0,S0, D̃1, S̃1) and (D̃0, S̃0,D1,S1), respectively.

3. Initialize C0 = 0 in ΠUPSI-Addca and ΠUPSI-Addcircuit , C0 = V0 = 0 in ΠUPSI-Addsum .

Day d : P0 and P1 hold (D0,S0, D̃1, S̃1) and (D̃0, S̃0,D1,S1), respectively. Let L0 be the tree height of D0 and D̃0, and L1 be

the tree height of D1 and D̃1. Both parties update L0 and L1 as they update the trees below. Let X,Y denote the two parties’
sets at the end of the previous day, respectively.
P0 holds a new input set Xd and P1 holds a new input set Yd. Let n = |Xd| and m = |Yd|. In ΠUPSI-Addsum , P0 holds a value
vi ∈ Zq associated with each element xi ∈ Xd.

1. P0 defines a payload for each element xi ∈ Xd depending on the functionality: pi = xi in ΠUPSI-Addcircuit , pi = vi in
ΠUPSI-Addsum , and no payload is needed in ΠUPSI-Addca .

2. Xd tree update. P0 computes m1 = ({(˜updatesi, ℓi)}ni=1, S̃′0) ← UpdateTree(Xd, {pi}ni=1,D0,S0, Fk(·),Encpk(·)), and
sends it to P1, who then replaces each path P(ℓi) with ˜updatesi in D̃0, and replaces S̃0 with S̃′0. Both parties update
L0 if needed.

3. Candidates for Xd ∩ Y . For each xi ∈ Xd, P0 computes {Encpk(yi,j)}σ·L1+ρ
j=1 ← GetPath(D̃1, S̃1, Fk(·), xi), homo-

morphically subtracts xi, and attaches an encryption of pi to get p̃athi = {(Encpk(yi,j − xi),Encpk(pi))}σ·L1+ρ
j=1 . Then

P0 sends m2 = {p̃athi}ni=1 to P1.

4. Candidates for (X ∪ Xd) ∩ Yd. For each yj ∈ Yd, P1 computes {(Encpk(xj,i),Encpk(pi))}σ·L0+ρ
i=1 ← GetPath(D̃0, S̃0,

Fk(·), yj), and homomorphically subtracts yj to get p̃athj = {(Encpk(xj,i − yj),Encpk(pi))}σ·L0+ρ
i=1 .

5. Combining candidates. P1 combines {p̃athj}mj=1 with {p̃athi}ni=1 received from P0, randomly samples a mask

αk
$←− Zq for each element in the combined set, and samples a random permutation π over [Γ] where Γ = σ · (n ·

L1 +m · L0) + ρ · (n+m). Compute and send the following to P0:

m3 = π
(
{(PartDecsk1 (αk ⊙ Encpk(ak − bk)),ReRandpk(Encpk(pk)))}Γk=1

)
.

6. Output generation. P0 fully decrypts the first element in each tuple of m3 to get αk(ak − bk). Let K = {k |
αk(ak − bk) = 0}.

• In ΠUPSI-Addca , P0 outputs Cd = Cd−1 + |K|.
• In ΠUPSI-Addsum , P0 computes m4 =

⊕
k∈K Encpk(pk) and sends it to P1. P1 responds to P0 with

m′
4 = PartDecsk1 (m4). P0 fully decrypts it to get V = FullDecsk0 (m

′
4), and outputs Vd = Vd−1 + V .

• In ΠUPSI-Addcircuit , P0 samples a random share [[zk]]0
$←− Zq for all k ∈ K, outputs Cd = Cd−1 + |K| and an updated

share set with new random shares {[[zk]]0}k∈K . Additionally, P0 computes and sends the following to P1:

m4 = {PartDecsk0 (Encpk(pk)⊕ Encpk(−[[zk]]0))}k∈K .

P1 fully decrypts m4 using sk1 to get its shares {[[zk]]1}k∈K , and outputs Cd = Cd−1 + |K| and an updated share
set with new random shares {[[zk]]1}k∈K .

7. Yd tree update. P1 computes m5 = ({(˜updatesj , ℓj)}mj=1, S̃′1) ← UpdateTree(Yd,⊥,D1,S1, Fk(·),Encpk(·)), and sends

it to P0, who then replaces each path P(ℓj) with ˜updatesj in D̃1, and replaces S̃1 with S̃′1. Both parties update L1 if
needed.

Figure 5: Protocols ΠUPSI-Addca ,ΠUPSI-Addsum ,ΠUPSI-Addcircuit for one-sided addition-only UPSI functionalities
FUPSI-Addca ,FUPSI-Addsum ,FUPSI-Addcircuit , respectively, with the differences among the three protocols highlighted.

and much lower worst-case complexity than [BMX22]. We present the protocol ΠUPSI-Addpsi in
Appendix A.

12

3.3 Complexity, Correctness and Security

On each day d, let the entire set sizes of the two parties be N and M , respectively. Let the update
set sizes be n and m, respectively. Then both the computation and communication complexity are
O(n logM +m logN), assuming σ and ρ are both O(1). We state the theorem below and defer its
proof to Appendix B.

Theorem 3.2. Assuming Π is a secure (2, 2)-threshold additively homomorphic encryption scheme,
F is a pseudorandom function, the protocols ΠUPSI-Addca ,ΠUPSI-Addsum ,ΠUPSI-Addcircuit (Figure 5) se-
curely realize the ideal functionalities FUPSI-Addca ,FUPSI-Addsum, FUPSI-Addcircuit (Figure 1), respectively,
against semi-honest adversaries.

4 UPSI with Addition and Deletion

4.1 Definition

Let X[D] = {(X+
1 , X−1), . . . , (X+

D , X−D)} and Y[D] = {(Y +
1 , Y −1), . . . , (Y +

D , Y −D)} be the inputs for P0

and P1 after D days, respectively. Here, X+
d denotes the elements to be added to P0’s set on day

d, and X−d denotes the elements to be deleted from P0’s set on day d; similarly, Y +
d and Y −d denote

the elements to be added and deleted, respectively, for P1 on day d. The ideal functionalities are
defined in Figure 6. Note that for FUPSI-Delsum , we achieve a slightly more general functionality
than PSI-Sum as defined in [IKN+20,MPR+20] (which is the definition used in our addition-only
protocol) in that our functionality does not have to reveal the cardinality Cd along with Vd. Let F0

be the output for P0 for all functionalities. Note that we don’t consider the Circuit-PSI functionality
in this setting, so P1 has no output in the definition.

Definition 4.1 (One-Sided UPSI with Addition and Deletion). A protocol Π is semi-honest se-
cure with respect to ideal functionality F ∈ {FUPSI-Delpsi ,FUPSI-Delca ,FUPSI-Delsum} if there exist PPT
simulators Sim0 and Sim1 such that, for any D ∈ N+ and any inputs (X[D], Y[D]),(

ViewΠ,D
0 (X[D], Y[D])

)
c
≈

(
Sim0(1

λ, X[D],F0(X[D], Y[D]))
)
,(

ViewΠ,D
1 (X[D], Y[D]),Out

Π,D
0 (X[D], Y[D])

)
c
≈

(
Sim1(1

λ, Y[D]),F0(X[D], Y[D])
)
.

Notation. We use the same notation as in Section 3, except that instead of a (2, 2)-threshold
additively homomorphic encryption scheme, we use a plain additively homomorphic encryption
scheme Π = (KeyGen,Enc,Dec) (see definition in Section 2) over plaintext space Zq.

4.2 Construction

In this section, we present our UPSI protocols with both addition and deletion. The oblivious data
structure presented in Section 3.2 only supports adding new elements to the tree. We first discuss
how to extend the construction to also allow for deletion of elements from the tree.

Oblivious Data Structure with Deletion. Recall that each element x is associated with a
designated path Fk(x). When P1 adds a new element x to the tree, she will first add x to the root
node of the tree. Then she samples a random path of the tree and pushes down elements along

13

Initialization: X = ∅ and Y = ∅.
Day d:

• Public Parameters: For FUPSI-Delpsi , the number of additions and deletions performed each

day: |X−d |, |X
+
d |, |Y

−
d |, |Y

+
d |.

For FUPSI-Delca and FUPSI-Delsum , the combined number of additions and deletions performed
each day: |X−d ∪X+

d | and |Y
−
d ∪ Y +

d |.
• Inputs:
P0 inputs an addition set X+

d ⊆ {0, 1}
∗ where X+

d ∩X = ∅ and a deletion set X−d ⊆ X. In
FUPSI-Delsum , X

+
d includes a value associated with each set member (i.e., vi is associated with

xi ∈ X+
d).

P1 inputs an addition set Y +
d ⊆ {0, 1}

∗ where Y +
d ∩ Y = ∅ and a deletion set Y −d ⊆ Y .

• Update: On receiving the inputs from both parties, the ideal functionality updates X =
(X ∪X+

d) \X−d and Y = (Y ∪ Y +
d) \ Y −d .

• Output:
In FUPSI-Delpsi , P0 learns the intersection Id = X ∩ Y .
In FUPSI-Delca , P0 learns the cardinality Cd = |X ∩ Y |.
In FUPSI-Delsum , P0 learns Vd =

∑
i:xi∈X∩Y vi.

Figure 6: Ideal functionalities for one-sided UPSI with both addition and deletion: FUPSI-Delpsi , FUPSI-Delca ,
and FUPSI-Delsum .

that random path as much as possible. To support deletion, P1 first attaches a payload p to each
element x. When x is added to P1’s set, she sets p = +1; when x is deleted from her set, she sets
p = −1. Whenever an element x is added or deleted from her set, P1 adds a new pair (x, p) to
the tree following the exact same approach as described in UpdateTree (Figure 3). The only minor
difference is that when pushing down elements along the random path, if both (x,+1) and (x,−1)
appear in that path, P1 removes both of them from the tree.

This modified UpdateTree process remains oblivious to P0 because the access pattern for addi-
tion or deletion of elements continues to be a random path together with the stash. Note that since
additions and deletions of the same element have the same designated path, there is a higher prob-
ability of stash overflow if we use the same parameters of maximum node capacity σ and maximum
stash capacity ρ as in the addition-only setting, hence we need to increase both parameters for our
new protocols. We discuss the parameter implications in the security proofs (Lemma D.1).

Computation on Encrypted Tree. To compute on the encrypted tree, we take a different
approach from the addition-only protocols. When P0 queries an element x in the encrypted tree
of Y , namely (D̃1, S̃1), he can still identify the designated path ℓ = Fk(x) and collect all the
candidate encryptions using GetPath (Figure 4). However, there could be both (Enc(x),Enc(+1))
and (Enc(x),Enc(−1)) among these candidates. In case x was added and then deleted from tree, it
should be indistinguishable to P0 from the case where x was never added to the tree. We construct
a subprotocol ΠCombinePath (Figure 7) for the two parties to jointly learn a secret share of whether
x is in the path, namely the sum of the associated payloads p for all the (Enc(x),Enc(p)) pairs.

Specifically, for each candidate encryption (Enc(yi),Enc(pi)), P0 first homomorphically computes
Enc(yi − x + αi) for a randomly sampled αi and sends it to P1, which can then be decrypted by

14

Subprotocol ΠCombinePath((x, p, p̃ath), sk)

Public Parameters: a public key pk for the additively homomorphic encryption scheme Π, and k as the

number of pairs in p̃ath.

Inputs: An Initiator inputs an element x, an associated payload p, and a potential matching elements in an

encrypted collection p̃ath = {(Encpk(yi),Encpk(qi))}ki=1. A Responder inputs the secret key sk corresponding
to pk.

Output: Initiator and Responder receive a secret share of
∑

i∈[k]:x=yi
(p · qi) over Zq.

1. For each i ∈ [k], Initiator samples random masks αi, βi
$←− Zq and homomorphically computes the

following:
reqi = (Encpk(yi)⊕ Encpk(αi − x))

mi,0 = p⊙ Encpk(qi)⊕ Encpk(−βi)

mi,1 = Encpk(−βi)

2. Initiator sends the request set {reqi}ki=1 to Responder.

3. Responder decrypts each request with sk to get {γi}ki=1.

4. For all i ∈ [k], both parties invoke Flookup, where Initiator inputs (αi,mi,0,mi,1) as Sender and Responder
inputs γi as Receiver, from which Responder receives mi. Responder then sets [[ri]]1 = Decsk(mi).
Initiator sets [[ri]]0 = βi.

5. Each party Pb (b ∈ {0, 1}) outputs
∑k

i=1[[ri]]b.

Figure 7: Subprotocol ΠCombinePath required for UPSI with addition and deletion.

Inputs: A Sender inputs (a,m0,m1) where a ∈ Zq and (m0,m1) are two messages of equal length.
A Receiver inputs b ∈ Zq.

Output: If a = b, then output m0 to Receiver; otherwise output m1 to Receiver.

Figure 8: Ideal functionality Flookup required for the subprotocol ΠCombinePath.

P1 to γi. Note that αi = γi iff yi = x. Next, our goal is to design a special equality testing
protocol such that if αi = γi (i.e., yi = x), then the two parties obtain a secret share of pi,
otherwise they obtain a secret share of 0. To do so, P0 homomorphically computes two ciphertexts
mi,0 = Enc(pi−βi) and mi,0 = Enc(−βi) for a randomly sampled βi. Then the two parties invoke a
special secure two-party computation protocol with functionality Flookup. The functionality Flookup

takes (αi,mi,0,mi,1) from P0 and γi from P1 as input. If αi = γi, then Flookup outputs mi,0 to P1;
otherwise it outputs mi,1 to P1. Therefore, if αi = γi, then P1 obtains Enc(pi − βi), which can be
decrypted to pi − βi, thereby forming a secret share of pi with the other share βi held by P0. If
αi ̸= γi, then P1 obtains a Enc(−βi), which can be decrypted to −βi, forming a secret share of 0
with P0’s share βi. As a result, the two parties obtain a secret share of pi if yi = x, or a secret
share of 0 otherwise. Finally, the two parties sum up all the secret shares to obtain a secret share
of

∑
yi=x pi.

We present our subprotocol ΠCombinePath in Figure 7 and defer its correctness and security
proofs to Appendix C. The functionality Flookup can be instantiated with a generic secure two-
party computation protocol [Yao86, GMW87]. We present a more efficient realization utilizing
oblivious transfer (OT) and the efficient OT extension [IKNP03,ALSZ13] in Section 5.

15

UPSI-Cardinalty/Sum with Addition and Deletion. Next, we describe our new UPSI pro-
tocols with both addition and deletion for PSI-Cardinality and PSI-Sum, presented in Figure 9.
To compute PSI-Cardinality, we follow the similar framework as in the addition-only protocols
(Figure 5).

Initialization:
1. P0 and P1 independently generate key pairs for an additive homomorphic encryption scheme

(pk0, sk0) ← KeyGen(1λ) and (pk1, sk1) ← KeyGen(1λ) and share the public keys. Both parties agree

on a randomly sampled PRF key k
$←− {0, 1}λ.

2. P0 and P1 generate initial trees with only an empty root and stash: (D0,S0, D̃1, S̃1) and

(D̃0, S̃0,D1,S1), respectively. Initialize Out0 = 0.

Day d : P0 and P1 hold (D0,S0, D̃1, S̃1) and (D̃0, S̃0,D1,S1), respectively. Let L0 and L1 be the heights of

D0 (and D̃0), and D1 (and D̃1) respectively. Both parties update L0 and L1 as they update the trees below.
Let X,Y denote the two parties’ sets at the end of the previous day.
P0 and P1 have new input sets X+

d , Y +
d which include elements they are adding to their set and X−

d , Y −
d of

elements they are deleting. Denote n = |X+
d ∪X

−
d |, m = |Y +

d ∪Y
−
d |. In ΠUPSI-Delsum , P0 holds a value vi ∈ Zq

associated with each element xi ∈ X+
d ∪X−

d .

1. P0 defines a payload for each element xi ∈ X+
d ∪X−

d depending on the functionality:

pi :=

{
(−1)(xi∈X−

d) for ΠUPSI-Delca

(−1)(xi∈X−
d) · vi for ΠUPSI-Delsum

P1 defines a payload for each element yi ∈ Y +
d ∪ Y −

d : qj := (−1)(yj∈Y −
d).

2. X+
d ∪ X−

d tree update. P0 sends ({(˜updatesi, ℓi)}ni=1, S̃ ′0)← UpdateTree(X+
d ∪X−

d , {pi}ni=1,D0,S0,
Fk(·),Encpk0(·)) to P1. P1 replaces each path P(ℓi) with ˜updatesi in D̃0, and replaces S̃0 with S̃ ′0.

3. Secret shares for new elements of X. For all xi ∈ (X+
d ∪ X−

d), run ΠCombinePath with P0 as

Initiator inputting (xi, pi, p̃athi ← GetPath(D̃1, S̃1, Fk(·), xi), pk1) and P1 as Responder inputting sk1
corresponding to pk1. They receive secret shares [[zx,i]]0 and [[zx,i]]1, respectively.

4. Secret shares for new elements of Y . For all yj ∈ (Y +
d ∪Y

−
d), run ΠCombinePath with P0 as Responder

inputting sk0 corresponding to pk0) and P1 as Initiator inputting (yj , qj , pathj ← GetPath(D̃0, S̃0, Fk(·),
yj), pk0). They receive secret shares [[zy,j]]0 and [[zy,j]]1, respectively.

5. Y +
d ∪ Y −

d tree update. P1 sends ({(˜updatesj , ℓj)}mj=1, S̃ ′1)← UpdateTree(Y +
d ∪ Y −

d , {qj}mj=1,D1,S1,
Fk(·),Encpk1(·)) to P0. P0 replaces each path P(ℓj) with ˜updatesj in D̃1, and replaces S̃1 with S̃ ′1.

6. Combine all the shares. For b ∈ {0, 1}, Pb computes [[zd]]b :=
∑n

i=1[[zx,i]]b +
∑m

j=1[[zy,j]]b.

7. Output generation: P1 sends [[zd]]1 to P0, who then computes Outd := Outd−1 + [[zd]]0 + [[zd]]1.
P0 outputs Outd for both ΠUPSI-Delca and ΠUPSI-Delsum .

Figure 9: Protocols ΠUPSI-Delca and ΠUPSI-Delsum for one-side UPSI with both addition and deletion function-
alities FUPSI-Delca and ΠUPSI-Delsum , respectively, with differences between the two protocols highlighted.

In Step 1, if the element xi is deleted from the set, the payload pi should be −1 for ΠUPSI-Delca ,
and −vi for ΠUPSI-Delsum . If the element xi is added to the set, the payload pi should be +1 for
ΠUPSI-Delca , and vi for ΠUPSI-Delsum . In Step 2, P0 adds all the elements in X+

d ∪ X−d to his tree
using the oblivious data structure with deletion. In Step 3, P0 queries each element xi ∈ X+

d ∪X
−
d

in the encrypted tree of Y . For an element xi ∈ X+
d to be added to the set, the two parties run

16

ΠCombinePath to get a secret share of whether xi ∈ Y . For an element xi ∈ X−d to be deleted from
the set, they need to slightly modify ΠCombinePath to get a secret share of (−1) · (whether xi ∈ Y).
This means xi was in the intersection but deleted from P0’s set in this step, so PSI-Cardinality is
decreased by 1. In our protocol for ΠCombinePath (Figure 7), P0 inputs an additional value (+1 or −1)
to be multiplied with the result, which is done homomorphically in the protocol. Symmetrically, P1

queries each element yj ∈ X+
d ∪X−d in the encrypted tree of (X ∪X+

d) \X−d in Step 4. After this,
P1 adds all the elements in Y +

d ∪ Y −d to her tree in Step 5 (recall that it must occur after Step 3).
Finally, the two parties add up all the secret shares in Step 6 and reveal the output in Step 7.

This protocol can be naturally extended to PSI-Sum if P0 attaches payloads of value +vi or −vi
for each element xi in UpdateTree and ΠCombinePath. It is worth noting that parties only aggregate
their secret shares at the end of the protocol, hence our PSI-Sum protocol does not have to reveal
the cardinality of the intersection, which may be useful in certain applications.

Plain UPSI with Addition and Deletion. Interestingly, achieving plain UPSI is more chal-
lenging than PSI-Cardinality and PSI-Sum with addition and deletion. As briefly discussed in
Section 1.2, one issue comes from the scenario when an element x is added by one party while
being deleted by the other party on the same day. In our UPSI-Cardinality/Sum protocols, while
adding and deleting x from the intersection both occur on the same day, their effect on the output
cancels out when their secret shares are combined. However, in plain UPSI, parties need to learn
the exact elements to be added or deleted. Revealing that x was first added and then deleted from
the intersection on the same day discloses more information than the ideal functionality.

To address this issue, we carefully arranged the sequence of the addition and deletion operations,
as presented in Figure 10, such that deletions are dealt with in Step 1 before additions in Step 2. In
other words, if x is deleted by P0 while being added by P1 on the same day, it will be first deleted
from P0’s tree, so that it won’t appear in the intersection when P1 queries x in the encrypted tree.
Since additions and deletions are done separately, both parties need to know |X−d |, |X

+
d |, |Y

−
d |,

|Y +
d | on each day. This is different from UPSI-Cardinality/Sum where they only know |X−d ∪X+

d |
and |Y −d ∪ Y +

d |, as reflected in the ideal functionalities (Figure 6).
Furthermore, unlike UPSI-Cardinality/Sum where parties sum up all the secret shared results

at the end of the protocol, they need to learn the results for each individual element in plain UPSI.
However, they cannot reveal directly these results because doing so may disclose more information
than the ideal functionality. Specifically, if an element x is deleted from both sets on the same
day (hence deleted from the intersection), our protocol ensures that the deleted x only appears once
in either Step 1b or Step 1c, but it should be hidden from the parties whether the other party also
deleted x on that day. To achieve this, the parties re-randomize and shuffle the results in Step 3.

4.3 Complexity, Correctness and Security

UPSI-Cardinalty/Sum with Addition and Deletion. Our protocols for ΠUPSI-Delca and
ΠUPSI-Delsum are presented in Figure 9. On each day d, let N,M be the total number of additions and
deletions of the two parties, respectively. Let the update set sizes be n and m, respectively. Then
both the computation and communication complexity are O(n · (σ · logM +ρ)+m · (σ · logN +ρ)).
We state the theorem below and defer its proof to Appendix E.

Theorem 4.2. Assuming Π is a secure additively homomorphic encryption scheme, F is a pseu-
dorandom function, the protocols ΠUPSI-Delca ,ΠUPSI-Delsum presented in Figure 9 securely realize the

17

Initialization:
1. P0 and P1 independently generate key pairs for an additive homomorphic encryption scheme (pk0, sk0) ← KeyGen(1λ)

and (pk1, sk1)← KeyGen(1λ) and share the public keys. Both parties agree on a randomly sampled PRF key k
$←− {0, 1}λ.

2. P0 and P1 generate initial trees with only an empty root and stash: (D0,S0, D̃1, S̃1) and (D̃0, S̃0,D1,S1), respectively.
Initialize I0 = ∅.

Day d : P0 and P1 hold (D0,S0, D̃1, S̃1) and (D̃0, S̃0,D1,S1), respectively. Let L0 and L1 be the heights of D0 (and D̃0), and

D1 (and D̃1) respectively. Both parties update L0 and L1 as they update the trees below. Let X,Y denote the two parties’
sets at the end of the previous day.
P0 and P1 have new input sets X+

d , Y +
d which include elements they are adding to their set and X−

d , Y −
d of elements they are

deleting. Denote n− = |X−
d |, n

+ = |X+
d |, m

− = |Y −
d |, m

+ = |Y +
d |.

1. Deletion:

(a) X
−
d tree update. P0 sends ({(˜updatesi, ℓi)}n

−
i=1, S̃′0) ← UpdateTree(X−

d , {−xi : xi ∈ X−
d }

n−
i=1,D0,S0, Fk(·),

Encpk0 (·)) to P1. P1 replaces each path P(ℓi) with ˜updatesi in D̃0, and replaces S̃0 with S̃′0.

(b) Secret shares for X
−
d ∩ Y . For all xi ∈ X−

d , run ΠCombinePath with P0 as Initiator inputting (xi,−1, p̃athi ←
GetPath(D̃1, S̃1, Fk(·), xi)) and P1 as Responder inputting sk1 corresponding to pk1. They receive secret shares
[[z−x,i]]0 and [[z−x,i]]1, respectively, where z−x,i = −xi if xi ∈ D1 ∪ S1 and 0 otherwise.

(c) Secret shares for
(
X \ X

−
d

)
∩ Y

−
d . For all yj ∈ Y −

d , run ΠCombinePath with P0 as Responder inputting sk0

corresponding to pk1 and P1 as Initiator inputting (yj ,−1, p̃athj ← GetPath(D̃0, S̃0, Fk(·), yj)). They receive secret

shares [[z−y,j]]0 and [[z−y,j]]1, respectively, where z−y,j = −yj if yj ∈ D0 ∪ S0 and 0 otherwise.

(d) Y
−
d tree update. P1 sends ({(˜updatesj , ℓj)}m

−
j=1, S̃′1) ← UpdateTree(Y −

d , {−yj : yj ∈ Y −
d }

m−
j=1,D1,S1, Fk(·),

Encpk1 (·)) to P0. P0 replaces each path P(ℓj) with ˜updatesj in D̃1, and replaces S̃1 with S̃′1.

2. Addition:

(a) X
+
d tree update. P0 sends ({(˜updatesi, ℓi)}n

+

i=1, S̃′0) ← UpdateTree(X+
d , {xi : xi ∈ X+

d }
n+

i=1,D0,S0, Fk(·),
Encpk0 (·)) to P1. P1 replaces each path P(ℓi) with ˜updatesi in D̃0, and replaces S̃0 with S̃′0.

(b) Secret shares for X
+
d ∩

(
Y \ Y

−
d

)
. For all xi ∈ X+

d , run ΠCombinePath with P0 as Initiator inputting

(xi, 1, p̃athi ← GetPath(D̃1, S̃1, Fk(·), xi)) and P1 as Responder inputting sk1 corresponding to pk1. They re-
ceive secret shares [[z+x,i]]0 and [[z+x,i]]1, respectively, where z+x,i = xi if xi ∈ D1 ∪ S1 and 0 otherwise.

(c) Secret shares for
(
X ∪ X

+
d \ X

−
d

)
∩ Y

+
d . For all yj ∈ Y +

d , run ΠCombinePath with P0 as Responder inputting

sk0 corresponding to pk0 and P1 as Initiator inputting (yj , 1, p̃athj ← GetPath(D̃0, S̃0, Fk(·), yj)). They receive

secret shares [[z+y,j]]0 and [[z+y,j]]1, respectively, where z+y,j = yj if yj ∈ D0 ∪ S0 and 0 otherwise.

(d) Y
+
d tree update. P1 sends ({(˜updatesj , ℓj)}m

−
j=1, S̃′1) ← UpdateTree(Y +

d , {yj : yj ∈ Y +
d }

m+

j=1,D1,S1, Fk(·),

Encpk1 (·)) to P0. P0 replaces each path P(ℓj) with ˜updatesj in D̃1, and replaces S̃1 with S̃′1.

3. Output Generation:

(a) Let {[[zi]]0}Γi=1 and {[[zi]]1}Γi=1 be the shares received by P0 and P1 above, where Γ = n− +m− + n+ +m+. P0

sends {Encpk0 ([[zi]]0)}
Γ
i=1 to P1.

(b) P1 samples a random permutation π over [Γ]. P1 samples a random mask αi
$←− Zq for each i ∈ [Γ]

and homomorphically adds them to the encryptions received from P0. P1 sends the following to P0:

π
({

(Encpk0 ([[zi]]0)⊕ Encpk0 (αi)), [[zi]]1 − αi)
}Γ

i=1

)
.

(c) P0 decrypts the first element in each pair using sk0, and adds up each pair of shares to learn the shuffled set
{zj}Γj=1.

Output Id := Id−1 ∪ {zj |zj > 0} \ {−zj |zj < 0}.

Figure 10: Protocol ΠUPSI-Delpsi for one-sided UPSI with addition and deletion functionality FUPSI-Delpsi .

18

ideal functionalities FUPSI-Delca ,FUPSI-Delsum defined in Figure 6, respectively, against semi-honest
adversaries.

Plain UPSI with Addition and Deletion. We present our protocol ΠUPSI-Delpsi in Figure 10.
On each day d, let N,M be the total number of additions and deletions of the two parties, re-
spectively. Let the update set sizes be n and m, respectively. Then both the computation and
communication complexity are O(n · (σ · logM + ρ) +m · (σ · logN + ρ)). We state the theorem
below and defer its proof to Appendix D.

Theorem 4.3. Assuming Π is a secure additively homomorphic encryption scheme, F is a pseu-
dorandom function, the protocol ΠUPSI-Delpsi presented in Figure 10 securely realizes the ideal func-
tionalities FUPSI-Delpsi defined in Figure 6 against semi-honest adversaries.

5 Implementation Details and Optimizations

In this section, we discuss instantiations of the building blocks in our UPSI protocols and optimiza-
tions to further improve the concrete efficiency.

Encryption Schemes. In the addition-only UPSI protocols ΠUPSI-Addca and ΠUPSI-Addsum , we
instantiate the (2, 2)-threshold additively homomorphic encryption scheme with exponential El
Gamal encryption [ElG85] to take advantage of efficient elliptic curve operations. Recall that in
this scheme, Enc(m) = (gr, hr · gm) where the public key consists of a group generator g and a
random group element h = gs with a secret key s. In the (2, 2)-threshold scheme, sk0 and sk1 form
an additive secret share of s. Decryption of exponential El Gamal requires computing the discrete
logarithm of a group element gm, which is possible for a bounded message space. In all our addition-
only UPSI protocols presented in Figure 5, decryption occurs in Step 6. Observe that P0 does not
have to fully decrypt the first element in each tuple of m3; instead, it is sufficient to check whether
the decrypted message is 0 or not. In particular, given a partially decrypted ciphertext ĉ = (a, b),
P0 can determine if the encrypted message is 0 by checking if b = ask0 , without performing discrete
logarithm. In ΠUPSI-Addsum , P0 needs to fully decrypt m′4, where the underlying message can be
bounded by the maximum sum of associated values.

In ΠUPSI-Addcircuit , while exponential El Gamal can still be used for the first ciphertext in m3,
the (masked) payload messages are distributed uniformly over the entire plaintext space, hence the
payload messages are encrypted using (2, 2)-threshold Paillier encryption [Pai99] instead.

In our protocols with both addition and deletion presented in Section 4 (ΠUPSI-Delpsi in Figure 10
and ΠUPSI-Delca ,ΠUPSI-Delsum in Figure 9), El Gamal cannot be utilized because all the ciphertexts are
encrypting secret shares that are distributed across the message space. Instead, the additively ho-
momorphic encryption scheme is instantiated with Paillier. This has an impact on the computation
time, as can be seen in Section 6.

Paillier Modulus Switching. Using Paillier in the deletion protocols introduces an additional
technical challenge. Recall that the plaintext space in Paillier encryption is Zn for a public key n,
which is different for P0’s and P1’s keys. During our deletion protocols, parties perform ΠCombinePath

for both pk0 = n0 (P0’s public key) and pk1 = n1 (P1’s public key) to get secret shares in both Zn0

and Zn1 . We discuss how to combine these secret shares over different moduli.

19

Let ℓ be the maximum bit length required to represent a set element or associated value. Recall
that if set elements are of arbitrary length, we can apply a hash function on all the elements and
perform PSI on the hash outputs. In our evaluation section, each party holds at most 222 elements,
hence there are at most 223 total elements. If we model the hash function as a random oracle, to
ensure collision probability lower than 2−κ for statistically security parameter κ = 40, it is safe to
bound ℓ = 85. Let n be a Paillier public key and L be the bit length of n, which is typically 1536
or 2048.

Consider a value r ∈ Z2ℓ being secret shared as [[r]]0, [[r]]1 ∈ Zn. We will convert this secret
share into another secret share of r in Z2ℓ . First, the integer summation of [[r]]0 + [[r]]1 is either r
or r + n, and the probability Pr [[[r]]0 + [[r]]1 = r] ≤ Pr [[[r]]0 ≤ r] ≤ 2ℓ−L ≪ 2−κ. Therefore, with
overwhelming probability [[r]]0 + [[r]]1 = r + n. Let s0 = [[r]]0 and s1 = [[r]]1 − n, then s0 + s1 = r,
where s0 > 0 and s1 < 0 as integers. If we represent s1 in two’s complement format, then the
lowest ℓ bits of s0 + s1 should be r and the higher order bits should all be 0. Therefore, we can
take the ℓ lowest order bits of s0 and s1 (in two’s complement format) to form a secret share of r
in Z2ℓ . Given that the original secret shares [[r]]0, [[r]]1 ∈ Zn are distributed randomly over Zn, the
new shares are statistically close to a uniform distribution over Z2ℓ because ℓ≪ L.

Realizing Flookup. While Flookup can be instantiated with a generic secure two-party compu-
tation (2PC) protocol [Yao86, GMW87], we construct a protocol that achieves better concrete
efficiency, leveraging oblivious transfer (OT) and the efficient OT extension [IKNP03, ALSZ13].
Let (a,m0,m1) and b be the inputs to Flookup where m0 is output when a = b and m1 otherwise.
Before comparison, both parties compute a hash function H : Zq → {0, 1}ℓgc on their inputs a and
b. The parties then run a garbled-circuit based equality testing to compute a binary secret share

[[c]] ∈ {0, 1} of H(a)
?
= H(b). Then two two parties run an OT protocol where Sender inputs two

messages (m1−[[c]]0 ,m[[c]]0) and Receiver inputs a choice bit [[c]]1. If a = b, then [[c]]0 ̸= [[c]]1, in which
case Receiver will receive m0, as desired in Flookup; if a ̸= b, then [[c]]0 = [[c]]1 with overwhelming
probability (see analysis below), and the Responder will receive m1.

In this approach, we need the guarantee that if a ̸= b, then H(a) ̸= H(b) with overwhelming
probability, hence ℓgc should be sufficiently large. On the other hand, the size of the equality
testing circuit grows with ℓgc, so we want to choose the smallest ℓgc such that the probability of
a failure (i.e., that H(a) = H(b) for a ̸= b) over the entire protocol is less than 2−κ. In all the
benchmarks presented in Section 6, there are at most 223 elements held by both parties, and each
element is compared against at most 29 elements in ΠCombinePath. Hence the total number of Flookup

invocations is bounded by 223 ·29 = 232. The overall failure probability is no greater than 232 ·2−ℓgc ,
and we want to ensure statistical security, namely 232 · 2−ℓgc ≤ 2−κ for κ = 40. Therefore, we set
ℓgc ≈ 32 + 40 = 72.

6 Evaluation

6.1 Experimental Setup

We implement all of our UPSI protocols in C++ and report their performance in this section. We
use the crypto library as part of Google’s open-sourced Private Join and Compute project [PJC] for
El Gamal and Paillier encryptions, Google’s gRPC [gRP] for networking, and emp-tool [WMK16]
for instantiations of garbled circuits and oblivious transfer (including OT extension). Benchmarks

20

are run on a Google Cloud [clo] c2-standard-16 virtual machine with 64 GB of RAM. Each party
is executed on a single thread and communicate over localhost. The Linux tc command is used to
simulate the various network settings. We simulate the LAN connection with 0.2 ms RTT network
latency and 1Gbps network bandwidth. For WAN connection, we set the RTT latency to be 80
ms and test on various network bandwidths including 200 Mbps, 50 Mbps, and 5 Mbps. Our
implementation is available on GitHub: https://github.com/ruidazeng/upsi-revisited.

Addition-Only UPSI. To demonstrate the updatable property of our protocols, we consider
the setting where both parties begin with an empty set to which Nd elements are added each day.
Our benchmarks represent the performance of the protocols on day (N

Nd
) where the size of each

party’s set reaches N .
We compare our plain UPSI protocols with the state-of-the-art semi-honest PSI protocol [RR22]

(RR22), and compare our UPSI for extended functionalities (PSI-Cardinality, PSI-Sum, and Circuit-
PSI) with the state-of-the-art Circuit-PSI [CGS22] (CGS22) and [RR22] (RR22), where, on day
(N
Nd

), the parties run PSI or Circuit-PSI on their full input sets of size N . Note that the Circuit-
PSI protocols [CGS22,RR22] are also state-of-the-art for computing PSI-Cardinality or PSI-Sum,
with slight modifications to their protocols. In our comparison, we assume these modifications do
not incur extra overhead in their performance. We also compare our addition-only plain UPSI
with [BMX22] to demonstrate the improvement of worst-case complexity by plugging in our new
oblivious data structure.

We don’t compare with the protocols specifically designed for PSI-Cardinality or PSI-Sum [IKN+20,
GMR+21] because these protocols are outperformed by [CGS22,RR22]. A more recent work [BPSY23]
improves PSI and Circuit-PSI communication by 12% compared to [RR22], but we don’t compare
with it for three reasons: (1) their construction is built on the Silver codes [CRR21], which turns
out to be insecure [RRT23], (2) their source code is not available online, and (3) even if their con-
struction is instantiated with secure codes, from our comparison with the other works, we expect
our protocols to perform better in certain settings as well. Note that [RR22] is also instantiated
with the insecure Silver codes, but their open-sourced library [RR] supports instantiating the con-
struction with the state-of-the-art OT extension from expand-accumulate codes [BCG+22], which
is what we compare with.

UPSI with Addition and Deletion. In the setting with both addition and deletion, standalone
PSI protocols need only compute over elements that remain in the input sets. In the extreme case
where the every element is added and then soon deleted, the input sets remain small and so the
standalone PSI protocols would likely be optimal. Alternatively, if the input sets are growing
at a steady rate, then our constructions may be best. These caveats should be understood and
application-specific context would play a role in choosing a solution.

In our benchmarks, we assume roughly 3/4 set operations are additions and 1/4 are deletions.
We further assume that each element can only be added and deleted at most once in each party’s
set (i.e., an element cannot be re-added once it has been deleted). In this case, the computation
and communication complexity of our protocols are O(Nd · logN).

Choice of N and Nd. In all of our experiments, we chose the values for N and Nd that would best
demonstrate the turning point where we become competitive. Our protocols have more advantages
when increasing the gap between N and Nd. As N increases (e.g., for billion-sized sets [KMRS14,

21

https://github.com/ruidazeng/upsi-revisited

BKC+23]), we expect our protocol to be dominant for more network settings and larger Nd values.
In all of our comparison tables, cells in green indicate the state-of-the-art performance, and those

in blue indicate that our protocols perform better.

Concrete Parameters. We set the computational security parameter λ = 128 and the statistical
security parameter κ = 40. Following the analysis in [SvS+13], we set the maximum tree node
capacity σ = 4 and the maximum stash capacity ρ = 89 to achieve failure probability of 2−80 for
inserting a single element into the tree. Even with our largest set size of 222, the combined failure
probability is bounded well below 2−κ. In protocols with addition and deletion, we allow parties
to add and delete each element at most once, and so we double both our node size (to σ = 8) and
stash size (to ρ = 178) following Lemma D.1. To enable P0 to efficiently decrypt m′4 in Step 6 of
ΠUPSI-Addsum (Figure 5) with exponential El Gamal encryption, we bound the PSI-Sum maximum
value to be at most 10,000. Larger sums can either utilize extra storage with a lookup table or
switch to using Paillier encryption. .

6.2 Addition-Only UPSI with Extended Functionalities

We compare our addition-only UPSI for extended functions (PSI-Cardinality, PSI-Sum, and Circuit-
PSI) with [RR22] (RR22) and [CGS22] (CGS22) in Table 2 with total set sizes ranging from 218

to 222 and update sizes from 26 to 210. Our computation and communication complexity grows
logarithmically with the total set size and linearly with the update size Nd, so our protocols are
more competitive in larger input sizes and smaller update sizes. Note that [CGS22] (CGS22)
presents two constructions (C-PSI1 and C-PSI2) with different trade offs between computation and
communication, but for all the parameters we choose, C-PSI2 outperforms C-PSI1 in all aspects. We
were unable to run CGS22 with input size of 222, so we use the communication cost and running
time under LAN reported in their paper [CGS22], and estimate the running time in the WAN
settings.

Communication: Since our communication grows linearly with Nd and only logarithmically
with N , our protocols have a communication advantage in settings where Nd ≪ N . For N = 218,
our communication has an improvement of 2.2 − 13× when Nd = 26 in all functionalities, and
when Nd = 28, ΠUPSI-Addca and ΠUPSI-Addsum have an advantage 1.8 − 3.4×. For N = 220, our
protocols outperform RR22 by 2.2−50× depending on the functionality and update size, with only
ΠUPSI-Addcircuit at Nd = 210 not showing an improvement. When N = 222, that improvement extends
to all settings and increases to a factor of 2.2− 200×.

Computation: Our computational complexity also grows linearly with Nd and logarithmically
with N . Despite this, our computation times do not reflect this asymptotic improvement as clearly,
which stems from our usage of costly public key operations. As a result, we show better per-
formance only when N is sufficiently large. In the LAN setting with N = 220, Nd = 26, our
ΠUPSI-Addca and ΠUPSI-Addsum are faster by 3.2× and 2.1×, respectively. By N = 222, Nd = 26 − 28,
our ΠUPSI-Addca ,ΠUPSI-Addsum protocols outperform CGS22 by 1.4− 15×.

End to End: Given these communication and computation trade offs, our protocols perform best
with more realistic network configurations with lower network bandwidth. At N = 218, we begin to

22

N Nd Protocol Comm. (MB)
Total Running Time (s)

LAN 200Mbps 50Mbps 5Mbps

218

−
RR22 37.1 7.76 10.7 13.8 64.4

CGS22 (C-PSI1) 548 7.90 36.9 106 968
CGS22 (C-PSI2) 353 6.32 29.4 70.6 619

26

ΠUPSI-Addca

2.83 7.12 7.59 7.87 11.8
28 11.0 27.6 28.6 30.2 45.6
210 42.6 108 110 115 177
26

ΠUPSI-Addsum

5.35 11.0 11.8 12.5 20.1
28 22.3 45.9 47.2 49.3 82.0
210 87.1 178 184 195 321
26

ΠUPSI-Addcircuit

17.1 81.7 83.1 85.3 110
28 67.0 318 327 330 427
210 248 1171 1182 1214 1570

220

−
RR22 149 31.1 38.4 51.9 258

CGS22 (C-PSI1) 2190 31.0 135 414 3771
CGS22 (C-PSI2) 1408 24.3 92.8 268 3872

26

ΠUPSI-Addca

3.03 7.59 8.14 8.46 12.6
28 11.8 29.6 30.6 32.0 48.7
210 45.7 116 121 127 194
26

ΠUPSI-Addsum

5.70 11.8 12.5 13.1 21.5
28 22.3 45.9 47.2 49.3 82.0
210 87.1 178 184 195 321
26

ΠUPSI-Addcircuit

17.1 81.7 83.1 85.3 110
28 67.0 318 327 330 427
210 264 1251 1263 1295 1674

222

−
RR22 606 125 159 214 1086

CGS22 (C-PSI1) 6667* 93.0* 126* 226* 1426*
CGS22 (C-PSI2) 4435* 77.9* 100* 167* 965*

26

ΠUPSI-Addca

3.22 8.09 9.02 9.33 14.3
28 12.6 31.6 32.7 34.2 52.7
210 48.9 123 127 133 205
26

ΠUPSI-Addsum

6.04 12.5 13.3 14.1 23.6
28 23.6 48.8 50.3 53.3 88.6
210 92.7 191 197 209 342
26

ΠUPSI-Addcircuit

18.1 86.6 88.4 90.2 116
28 71.1 339 343 352 454
210 280 1348 1341 1376 1780

Table 2: Communication cost (in MB) and running time (in seconds) comparing our addition-only UPSI
protocols to prior work. * indicates estimated communication and running time.

have competitive runtimes for ΠUPSI-Addca and ΠUPSI-Addsum in the smaller update size Nd = 26. By
N = 222 and Nd = 26, our protocols outperform in all network settings by 15− 76× for ΠUPSI-Addca ,
11− 46× for ΠUPSI-Addsum , and 1.8− 9.4× for ΠUPSI-Addcircuit .

6.3 UPSI-Cardinality/Sum with Addition and Deletion

Our performance for ΠUPSI-Delca and ΠUPSI-Delsum in comparison with [RR22,CGS22] is presented in
Table 3. Since the two protocols are implemented in the same way except that P0’s inputting pay-
loads are different, they have close experimental results. We combine them in the table. This pro-
tocol is more expensive than the addition-only ones, so we set smaller update sizes of Nd = 24, 25, 26

to demonstrate the turning point where our protocols start to perform better. Our experiments
for input size N = 222 are run on a Google Cloud c2-standard-30 virtual machine with 120 GB
of RAM as we run out of 64 GB memory.

23

N Nd Protocol Comm. (MB)
Total Running Time (s)

LAN 200Mbps 50Mbps 5Mbps

220

−
RR22 149 31.1 38.4 51.9 258

CGS22 (C-PSI1) 2190 31.0 135 414 3771
CGS22 (C-PSI2) 1408 24.3 92.8 415 3872

24
ΠUPSI-Delca

ΠUPSI-Delsum

58.5 96.1 101 106 179
25 116 190 198 212 362
26 231 364 375 402 723

222

−
RR22 606 125 159 214 1086

CGS22 (C-PSI1) 6667* 93.0* 126* 226* 1426*
CGS22 (C-PSI2) 4435* 77.9* 100* 167* 965*

24
ΠUPSI-Delca

ΠUPSI-Delsum

61.4 103 107 113 191
25 122 203 210 223 383
26 243 385 399 429 765

Table 3: Communication cost (in MB) and running time (in seconds) of our protocols for UPSI-Cardinality
and UPSI-Sum with addition and deletion in comparison with prior work. * indicates estimated communi-
cation and running time.

Communication: Our communication complexity is O(Nd · logN), but the improvements are
not as stark, for two reasons: (1) the increased stash and node sizes required, and (2) in addition to
exchanging ciphertexts, the parties also perform OT and garbled circuits. Despite this, our protocol
still achieves lower communication overhead in most settings. At N = 220, our communication has
an improvement of 1.3−2.5× when Nd ≤ 25. By N = 222, our communication has an improvement
of 2.5− 9.9× for all update sizes.

Computation: Our performance under LAN is again dominated by public key operations, but,
unlike in the addition-only protocols, does not benefit from the efficient El Gamal instantiations.
Our computation has the same growth rate as communication, and so we expect our performance
to eventually beat CGS22 when N is sufficiently large.

End to End: As shown in Table 3, the end to end running time of our protocol begins to
outperform RR22 and CGS22 at 5 Mbps when N = 220, Nd = 24 by 1.4×. By N = 222, we show
an improvement of 1.3 − 5.1× at 5 Mbps for all update sizes, and an improvement of 1.5× at 50
Mbps for Nd = 24.

6.4 UPSI for Plain PSI

We compare our plain UPSI protocols with [RR22] (RR22) in Table 4. We evaluate two construc-
tions in RR22 with different encoding sizes of 1.28n and 1.23n, which have different trade offs
in computation and communication, denoted as fast and small respectively in the table. Note
that our addition-only plain UPSI (Figure 5) contains only one encrypted tree, hence it is more
efficient than our other addition-only protocols. To best demonstrate our turning point, we use
Nd = 24, 26, 28, 210 for ΠUPSI-Addpsi and Nd = 24, 25, 26 for ΠUPSI-Delpsi

Communication: Similarly as in our other protocols, our communication complexity in both
ΠUPSI-Addpsi and ΠUPSI-Delpsi are O(Nd · logN). The communication cost of ΠUPSI-Addpsi outperforms

24

N Nd Protocol Comm. (MB)
Total Running Time (s)

LAN 200Mbps 50Mbps 5Mbps

220

− RR22 (fast) 34.3 0.73 3.09 7.10 55.9
RR22 (small) 32.1 1.00 3.21 6.97 52.8

24

ΠUPSI-Addpsi

0.50 1.41 1.84 1.89 2.48
26 1.95 5.54 6.11 6.30 8.88
28 7.57 21.6 22.8 23.5 34.1
210 29.6 84.9 87.5 90.8 133
24

ΠUPSI-Delpsi

58.7 98.6 103 109 181
25 117 195 203 215 369
26 231 370 384 410 729

222

− RR22 (fast) 138 3.45 11.3 27.7 227
RR2 (small) 129 4.81 12.2 27.6 214

24

ΠUPSI-Addpsi

0.53 1.49 1.93 1.97 2.57
26 2.06 5.89 6.48 6.67 9.51
28 8.03 22.9 24.1 24.9 36.2
210 31.5 89.9 92.8 96.2 141
24

ΠUPSI-Delpsi

61.6 105 109 115 194
25 122 208 214 228 388
26 243 396 412 437 776

Table 4: Communication cost (in MB) and running time (in seconds) of our protocols for plain UPSI in
comparison with prior work.

RR22 by 1.1− 240× in all settings, whereas that of ΠUPSI-Delpsi only beats RR22 by 1.1− 2.1× with
N = 222 and Nd = 24, 25.

Computation: Our computation complexity is similar to communication, leading to better per-
formance when N is sufficiently large. Our addition-only protocol starts to outperforms RR22 when
N = 222 and Nd = 24.

End to End: As the communication and computation discussed above, our protocols are more
competitive with larger input sizes, smaller updates, and in networks with lower bandwidths. By
N = 222 and Nd = 24, ΠUPSI-Addpsi achieves an improvement of 2.3− 88× in all network settings. It
outperforms RR22 by 1.5× even when the update size grows to 210.

6.5 Worst-Case Logarithmic Complexity

We compare our one-sided addition-only plain UPSI protocol ΠUPSI-Addpsi with that of [BMX22]
(BMX22). While BMX22 has amortized complexity of O(Nd · logN), their worst-case complexity
is O(N) when they update the leaf level of the tree. By plugging in our new oblivious data
structure, we significantly reduce the worst-case complexity to O(Nd · logN). The worst-case
performance (Max) and amortized performance (Avg) are presented in Table 5 with N = 218, 220

and Nd = 26, 28, 210. To analyze the amortized cost of BMX22, we start with two sets each of size
N . Then, on every new day, both parties add a new set of size Nd to their existing sets and run
the UPSI protocol. We repeat this process over a period of several days (N

Nd
) until the total set

size of each party reaches 2N . We report the amortized cost over these N
Nd

days.

25

N Nd Protocol
Comm.(MB) Total Running Time(s)

Max Avg
LAN 200Mbps 50Mbps 5Mbps

Max Avg Max Avg Max Avg Max Avg

218

26
BMX22 120 1.09 79.6 4.30 85.9 4.53 100 4.59 272 5.88

ΠUPSI-Addpsi 1.82 5.17 6.24 6.31 8.70

28
BMX22 121 3.74 77.9 14.7 84.2 15.1 98.3 15.5 268 20.3

ΠUPSI-Addpsi 7.08 20.2 21.8 22.6 32.4

210
BMX22 122 12.5 86.4 49.0 87.7 49.9 95.1 51.3 268 67.2

ΠUPSI-Addpsi 27.7 79.4 81.5 84.7 124

220

26
BMX22 480 1.25 321 4.92 350 5.17 403 5.24 1090 6.76

ΠUPSI-Addpsi 1.95 5.54 6.11 6.30 8.88

28
BMX22 481 4.37 319 17.2 344 17.6 401 18.1 1090 23.7

ΠUPSI-Addpsi 7.57 21.6 22.8 23.5 34.1

210
BMX22 482 15.0 312 58.9 337 59.9 394 61.4 1090 81.1

ΠUPSI-Addpsi 29.6 84.9 87.5 90.8 133

Table 5: Communication cost (in MB) and running time (in seconds) comparing our addition-only plain
UPSI protocol to the worst-case and average-case performance of [BMX22].

Comparison. As shown in Table 5, our communication cost is comparable to BMX22’s average-
case while outperforming their worst-case by 4.4−246× in all settings since their worst-case commu-
nication grows linearly with N . Similarly, our computation cost is comparable to their average-case
while outperforming their worst-case by 1.1− 58× in the LAN setting. As a result, the end to end
running time of our protocol outperforms BMX22’s worst-case in all settings by 1.1− 123×, while
having 1.1 − 1.8× overhead compared to their average-case. Concerning the worst-case perfor-
mance, our protocol has more advantages in larger input sizes and smaller updates.

Acknowledgments

This project is supported in part by the NSF CNS Award 2247352, Brown Data Science Seed
Grant, Meta Research Award, Google Research Scholar Award, and Amazon Research Award.

References

[ACG+24] Archita Agarwal, David Cash, Marilyn George, Seny Kamara, Tarik Moataz, and Jas-
pal Singh. Updatable private set intersection from structured encryption. Cryptology
ePrint Archive, 2024. https://eprint.iacr.org/2024/1183.

[ADMT22] Aydin Abadi, Changyu Dong, Steven J. Murdoch, and Sotirios Terzis. Multi-party
updatable delegated private set intersection. In Ittay Eyal and Juan A. Garay, editors,
FC 2022, volume 13411 of LNCS, pages 100–119. Springer, Cham, May 2022.

[Ads] Private Intersection-Sum Protocols with Applications to Attributing Aggregate Ad
Conversions. https://research.google/pubs/pub51026/.

[ADT11] Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. (If) size matters: Size-
hiding private set intersection. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and
Antonio Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 156–173. Springer,
Berlin, Heidelberg, March 2011.

26

https://eprint.iacr.org/2024/1183
https://research.google/pubs/pub51026/

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More effi-
cient oblivious transfer and extensions for faster secure computation. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 535–548.
ACM Press, November 2013.

[App] Privacy-Preserving Contact Tracing. https://covid19.apple.com/

contacttracing.

[BBV+20] Alex Berke, Michiel A. Bakker, Praneeth Vepakomma, Ramesh Raskar, Kent Larson,
and Alex ’Sandy’ Pentland. Assessing disease exposure risk with location histories
and protecting privacy: A cryptographic approach in response to A global pandemic.
CoRR, abs/2003.14412, 2020.

[BCG+22] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas Resch,
and Peter Scholl. Correlated pseudorandomness from expand-accumulate codes. In
Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume
13508 of LNCS, pages 603–633. Springer, Cham, August 2022.

[BKC+23] Saikrishna Badrinarayanan, Ranjit Kumaresan, Mihai Christodorescu, Vinjith Na-
garaja, Karan Patel, Srinivasan Raghuraman, Peter Rindal, Wei Sun, and Minghua
Xu. A plug-n-play framework for scaling private set intersection to billion-sized sets.
In Cryptology and Network Security - 22nd International Conference, CANS 2023,
Augusta, GA, USA, October 31 - November 2, 2023, Proceedings, volume 14342 of
Lecture Notes in Computer Science, pages 443–467. Springer, 2023.

[BMX22] Saikrishna Badrinarayanan, Peihan Miao, and Tiancheng Xie. Updatable private set
intersection. PoPETs, 2022(2):378–406, April 2022.

[BPSY23] Alexander Bienstock, Sarvar Patel, Joon Young Seo, and Kevin Yeo. Near-optimal
oblivious key-value stores for efficient psi, PSU and volume-hiding multi-maps. In
Joseph A. Calandrino and Carmela Troncoso, editors, 32nd USENIX Security Sym-
posium, USENIX Security 2023, Anaheim, CA, USA, August 9-11, 2023. USENIX
Association, 2023.

[CGS22] Nishanth Chandran, Divya Gupta, and Akash Shah. Circuit-PSI with linear complex-
ity via relaxed batch OPPRF. PoPETs, 2022(1):353–372, January 2022.

[CHLR18] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled PSI from fully
homomorphic encryption with malicious security. In David Lie, Mohammad Mannan,
Michael Backes, and XiaoFengWang, editors, ACM CCS 2018, pages 1223–1237. ACM
Press, October 2018.

[Chr] Protect your accounts from data breaches with Password Checkup. https://

security.googleblog.com/2019/02/protect-your-accounts-from-data.html.

[CILO22] Wutichai Chongchitmate, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. PSI from ring-
OLE. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS
2022, pages 531–545. ACM Press, November 2022.

[clo] Google Cloud. https://cloud.google.com.

27

https://covid19.apple.com/contacttracing
https://covid19.apple.com/contacttracing
https://security.googleblog.com/2019/02/protect-your-accounts-from-data.html
https://security.googleblog.com/2019/02/protect-your-accounts-from-data.html
https://cloud.google.com

[CLR17] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from ho-
momorphic encryption. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 1243–1255. ACM Press, Octo-
ber / November 2017.

[CM20] Melissa Chase and Peihan Miao. Private set intersection in the internet setting from
lightweight oblivious PRF. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 34–63. Springer, Cham, Au-
gust 2020.

[CMdG+21] Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai, Ilia Il-
iashenko, Kim Laine, and Michael Rosenberg. Labeled PSI from homomorphic encryp-
tion with reduced computation and communication. In Giovanni Vigna and Elaine
Shi, editors, ACM CCS 2021, pages 1135–1150. ACM Press, November 2021.

[CRR21] Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Silver: Silent VOLE
and oblivious transfer from hardness of decoding structured LDPC codes. In Tal
Malkin and Chris Peikert, editors, CRYPTO 2021, Part III, volume 12827 of LNCS,
pages 502–534, Virtual Event, August 2021. Springer, Cham.

[DCW13] Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets big
data: an efficient and scalable protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung, editors, ACM CCS 2013, pages 789–800. ACM Press, November 2013.

[DT10] Emiliano De Cristofaro and Gene Tsudik. Practical private set intersection protocols
with linear complexity. In Radu Sion, editor, FC 2010, volume 6052 of LNCS, pages
143–159. Springer, Berlin, Heidelberg, January 2010.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985.

[GMR+21] Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian, and Jas-
pal Singh. Private set operations from oblivious switching. In Juan Garay, editor,
PKC 2021, Part II, volume 12711 of LNCS, pages 591–617. Springer, Cham, May
2021.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Alfred Aho, editor,
19th ACM STOC, pages 218–229. ACM Press, May 1987.

[GPR+21] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Obliv-
ious key-value stores and amplification for private set intersection. In Tal Malkin and
Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages 395–425,
Virtual Event, August 2021. Springer, Cham.

[gRP] Google Remote Procedure Call (gPRC). https://grpc.io.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled
circuits better than custom protocols? In NDSS 2012. The Internet Society, February
2012.

28

https://grpc.io

[HFH99] Bernardo A. Huberman, Matthew K. Franklin, and Tad Hogg. Enhancing privacy
and trust in electronic communities. In Stuart I. Feldman and Michael P. Wellman,
editors, Proceedings of the First ACM Conference on Electronic Commerce (EC-99),
Denver, CO, USA, November 3-5, 1999, pages 78–86. ACM, 1999.

[IKN+20] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn
Seth, Mariana Raykova, David Shanahan, and Moti Yung. On deploying secure com-
puting: Private intersection-sum-with-cardinality. In IEEE European Symposium on
Security and Privacy, EuroS&P 2020, Genoa, Italy, September 7-11, 2020, pages 370–
389. IEEE, 2020.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–
161. Springer, Berlin, Heidelberg, August 2003.

[Key] Password Monitoring – Apple Platform Security. https://support.apple.com/

en-al/guide/security/sec78e79fc3b/web.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient
batched oblivious PRF with applications to private set intersection. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 2016, pages 818–829. ACM Press, October 2016.

[KMRS14] Seny Kamara, Payman Mohassel, Mariana Raykova, and Saeed Sadeghian. Scaling pri-
vate set intersection to billion-element sets. In Nicolas Christin and Reihaneh Safavi-
Naini, editors, Financial Cryptography and Data Security, pages 195–215, Berlin, Hei-
delberg, 2014. Springer Berlin Heidelberg.

[KRS+19] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and Chris-
tian Weinert. Mobile private contact discovery at scale. In Nadia Heninger and Patrick
Traynor, editors, USENIX Security 2019, pages 1447–1464. USENIX Association, Au-
gust 2019.

[Mea86] Catherine Meadows. A more efficient cryptographic matchmaking protocol for use in
the absence of a continuously available third party. In Proceedings of the 1986 IEEE
Symposium on Security and Privacy, Oakland, California, USA, April 7-9, 1986, pages
134–137. IEEE Computer Society, 1986.

[MIC] Password Monitor: Safeguarding passwords in Microsoft
Edge. https://www.microsoft.com/en-us/research/blog/

password-monitor-safeguarding-passwords-in-microsoft-edge/.

[MPR+20] Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung. Two-sided
malicious security for private intersection-sum with cardinality. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS,
pages 3–33. Springer, Cham, August 2020.

[OOS17] Michele Orrù, Emmanuela Orsini, and Peter Scholl. Actively secure 1-out-of-N OT
extension with application to private set intersection. In Helena Handschuh, editor,

29

https://support.apple.com/en-al/guide/security/sec78e79fc3b/web
https://support.apple.com/en-al/guide/security/sec78e79fc3b/web
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/

CT-RSA 2017, volume 10159 of LNCS, pages 381–396. Springer, Cham, February
2017.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, Advances in Cryptology - EUROCRYPT ’99, In-
ternational Conference on the Theory and Application of Cryptographic Techniques,
Prague, Czech Republic, May 2-6, 1999, Proceeding, volume 1592 of Lecture Notes in
Computer Science, pages 223–238. Springer, 1999.

[PJC] Private Join and Compute. https://github.com/google/

private-join-and-compute.

[PRTY19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. SpOT-light: Lightweight
private set intersection from sparse OT extension. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 401–431.
Springer, Cham, August 2019.

[PRTY20] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from PaXoS: Fast,
malicious private set intersection. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part II, volume 12106 of LNCS, pages 739–767. Springer, Cham, May
2020.

[PSSZ15] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private
set intersection using permutation-based hashing. In Jaeyeon Jung and Thorsten Holz,
editors, USENIX Security 2015, pages 515–530. USENIX Association, August 2015.

[PSTY19] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Efficient
circuit-based PSI with linear communication. In Yuval Ishai and Vincent Rijmen, ed-
itors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 122–153. Springer,
Cham, May 2019.

[PSWW18] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Efficient
circuit-based PSI via cuckoo hashing. In Jesper Buus Nielsen and Vincent Rijmen, ed-
itors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 125–157. Springer,
Cham, April / May 2018.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection
based on OT extension. In Kevin Fu and Jaeyeon Jung, editors, USENIX Security
2014, pages 797–812. USENIX Association, August 2014.

[RR] Srinivasan Raghuraman and Peter Rindal. VOLE-PSI. https://github.com/

Visa-Research/volepsi.

[RR17] Peter Rindal and Mike Rosulek. Improved private set intersection against mali-
cious adversaries. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EU-
ROCRYPT 2017, Part I, volume 10210 of LNCS, pages 235–259. Springer, Cham,
April / May 2017.

30

https://github.com/google/private-join-and-compute
https://github.com/google/private-join-and-compute
https://github.com/Visa-Research/volepsi
https://github.com/Visa-Research/volepsi

[RR22] Srinivasan Raghuraman and Peter Rindal. Blazing fast PSI from improved OKVS and
subfield VOLE. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors,
ACM CCS 2022, pages 2505–2517. ACM Press, November 2022.

[RRT23] Srinivasan Raghuraman, Peter Rindal, and Titouan Tanguy. Expand-convolute codes
for pseudorandom correlation generators from LPN. In Helena Handschuh and Anna
Lysyanskaya, editors, CRYPTO 2023, Part IV, volume 14084 of LNCS, pages 602–632.
Springer, Cham, August 2023.

[RS21] Peter Rindal and Phillipp Schoppmann. VOLE-PSI: Fast OPRF and circuit-PSI
from vector-OLE. In Anne Canteaut and François-Xavier Standaert, editors, EU-
ROCRYPT 2021, Part II, volume 12697 of LNCS, pages 901–930. Springer, Cham,
October 2021.

[Sig] Technology preview: Private contact discovery for Signal. https://signal.org/

blog/private-contact-discovery/.

[SvS+13] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. Path ORAM: an extremely simple oblivious
RAM protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,
ACM CCS 2013, pages 299–310. ACM Press, November 2013.

[TSS+20] Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri, and Dawn Song. Epione:
Lightweight contact tracing with strong privacy. IEEE Data Eng. Bull., 43(2):95–107,
2020.

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient Multi-
Party computation toolkit. https://github.com/emp-toolkit, 2016.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

A Addition-Only Plain UPSI

One-sided addition-only plain UPSI with worst-case complexity can be achieved with slight modifi-
cations of the protocol in [BMX22] and we present a protocol ΠUPSI-Addpsi in Figure 11. By plugging
in our new oblivious data structure, the worst-case communication and computation can be reduced
to O(Nd · logN) from O(N). Benchmarks for this protocol can be found in Table 4.

B Proof of Theorem 3.2

Correctness. We first show correctness of our protocols by induction. On day 0, all sets are
initialized as empty sets so correctness trivially holds. Next, on any day d, our goal is to compute
Id = (X ∪Xd)∩ (Y ∪Yd). First, from the correctness of the subroutines GetPath and UpdateTree as
well as the threshold additive homomorphic encryption scheme, one can observe that in the output

31

https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/
https://github.com/emp-toolkit

Initialization:
1. P0 and P1 independently generate key pairs for an additive homomorphic encryption scheme

(pk0, sk0)← KeyGen(1λ) and (pk1, sk1)← KeyGen(1λ) and share the public keys. P0 and P1 sample

k0, k1
$←− Zq, respectively. Both parties agree on a randomly sampled PRF key k

$←− {0, 1}λ.
2. P0 and P1 generate initial trees with only an empty root and stash: (D̃, S̃) and (D,S), respectively.

Initialize I0 = ∅.
Day d : P0 and P1 hold (D̃, S̃) and (D,S), respectively. Let L be the tree height of D and D̃. Both parties
update L as they update the trees below. P0 also holds HX . Let X,Y denote the two parties’ sets at the
end of the previous day, respectively. P0 holds a new input set Xd and P1 holds a new input set Yd. Let
n = |Xd| and m = |Yd|.

1. P0 learns X ∩ Yd.

(a) P1 computes H(Yd)
k1 and sends to P0.

(b) P0 raises each element by k0 to obtain H(Yd)
k0k1 and compares against HX (which equals

H(X \ Id−1)
k0k1) to learn IY = X ∩ Yd.

2. Y tree update. P1 sends ({(˜updatesi, ℓi)}mi=1, S̃ ′1)← UpdateTree(Y,⊥,D,S, Fk(·),Encpk1(·)) to P0.

P0 replaces each path P(ℓj) with ˜updatesj in D̃, and replaces S̃ with S̃ ′.

3. P0 learns Xd ∩ (Y ∪ Yd). P0 samples a random mask α
$←− Zq and sends Encpk0(α) to P1, then for

every element xi ∈ Xd:

(a) P0 obtains {Encpk1(yi,j)}
σ·L+ρ
j=1 ← GetPath(D̃, S̃, Fk(·), xi), samples a random mask βi, and

homomorphically computes p̃ath = {βi ⊙ (Encpk1(yi,j)⊖ Encpk1(xi))⊕ Encpk1(α)}
σ·L+ρ
j=1 and

sends p̃ath to P1.

(b) For each ctj ∈ p̃ath, P1 decrypts the ciphertext to obtain γj = Decsk1(ctj), samples a random

mask δj
$←− Zq, and homomorphically computes r̃esj = δj · (Encpk0(γj)⊖ Encpk0(α).

(c) P1 samples a random permutation π from [σ · L+ ρ] and sends π({r̃esj}σ·L+ρ
j=1) to P0.

(d) P0 adds xi to IX if Decsk0(r̃esj) = 0 for any r̃esj .

4. Output Generation. P0 outputs Id = IY ∪ IX .

5. HX updates.

(a) P0 creates a set X ′
d = (Xd \ IX) and then pads it with dummy elements until |X ′

d| = |Xd|. He
then samples ε← Zq and sends H(X ′

d)
εk0 to P1.

(b) P1 raises each element in H(X ′
d)

εk0 to the power k1 to obtain H(X ′
d)

εk0k1 which she sends back
to P0.

(c) P0 raises each element in H(X ′
d)

εk0k1 to the power of ε−1 to obtain H(X ′
d)

k0k1 from which he
derives H(Xd \ IX)k0k1 .

(d) P0 updates HX = (HX \H(IY)
k0k1) ∪H(Xd \ IX)k0k1 .

Figure 11: Protocol ΠUPSI-Addpsi for addition-only plain UPSI FUPSI-Addpsi .

generation, in Step 6, the output computed is indeed using the candidates from Step 2 and Step 3.
In particular, we can expand Id as

Id = (X ∪Xd) ∩ (Y ∪ Yd)

= ((X ∪Xd) ∩ Y) ∪ ((X ∪Xd) ∩ Yd)

= (X ∩ Y) ∪ (Xd ∩ Y) ∪ ((X ∪Xd) ∩ Yd)

32

Recall that Xd ∩X = ∅ and Yd ∩ Y = ∅. Hence the new elements to be added to the intersection
consists of two disjoint sets, (Xd ∩ Y) obtained in Step 2 and ((X ∪Xd) ∩ Yd) obtained in Step 3.

Imported Lemma B.1 (Theorem 1 from [SvS+13]). Let {xi}Ni=1 be any sequence of elements
being added to a binary tree via UpdateTree. Let tree node size σ = 5, tree height L = ⌈logN⌉,
and stash size ρ. If the function F (·) is a random function, namely F (xi) outputs a random leaf
node, then the probability of failure (abort in Step 2d) after a sequence of UpdateTree operations
corresponding to {xi}Ni=1 can be bounded by Pr [|S| > ρ] < 14 · (0.6002)ρ.

Security Against Corrupted P0. The simulator Sim0 can be constructed that simulates P0’s
view as follows. On input (1λ, X[D],F0(X[D], Y[D])), Sim0 runs the honest P0 to generate its view
and behaves on behalf of an honest P1 with the following exceptions on each day d ∈ [D]:

• In Step 5, Sim0 will change m3 depending on the functionality. Let Γd be the number of
elements in m3 for an honest P1 on day d, which is derivable from the public parameters.

– In FUPSI-Addca , F0(X[D], Y[D]) = {C1, C2, . . . , CD} where Cd is the number of elements

in the intersection after day d. Let C := Cd − Cd−1. Sim0 samples αi
$←− Zq for all

i ∈ [Γd − C] and a random permutation π over [Γd], and sends the message:

m3 = π
(
{PartDecsk1(Encpk(αi))}Γd−C

i=1 ∪ {PartDecsk1(Encpk(0))}
C
j=1

)
.

– In FUPSI-Addsum , F0(X[D], Y[D]) = {(C1, V1), (C2, V2), . . . , (CD, VD)} where Cd is the num-
ber of elements in the intersection and Vd is the sum of associated values in the intersec-

tion after day d. Let C := Cd −Cd−1. Sim0 samples αi, βi
$←− Zq for all i ∈ [Γd −C] and

γj
$←− Zq for all j ∈ [C] . It also sample a random permutation π over [Γd] and sends the

message:

m3 = π

({(
PartDecsk1(Encpk(αi)),
Encpk(βi)

)}Γd−C

i=1

⋃{(
PartDecsk1(Encpk(0)),
Encpk(γj)

)}C

j=1

)
.

– In FUPSI-Addcircuit , F0(X[D], Y[D]) = {(C1, Z1), (C2, Z2), . . . , (CD, ZD)} where Cd is the
number of elements in the intersection, Zd = {[[z1]]0, [[z2]]0, . . . , [[zCd−Cd−1

]]0} is a set of
P0’s secret shares for elements added to the intersection on day d. Let C := Cd −Cd−1.

Sim0 samples αi, βi
$←− Zq for all i ∈ [Γd−C] and γj

$←− Zq for all j ∈ [C]. It also samples
a random permutation π over [Γd] and sends the message:

m3 = π

({(
PartDecsk1(Encpk(αi)),
Encpk(βi)

)}Γd−C

i=1

⋃{(
PartDecsk1(Encpk(0)),
Encpk(γj)

)}C

j=1

)
.

• In Step 6, an honest P1 sends a message m′4 in ΠUPSI-Addsum , where Sim0 will instead send
m′4 = PartDecsk1(Encpk(V)) where V := Vd − Vd−1 on day d.

• In Step 7, Sim0 samples a random set Y ′d
$←− Z|Yd|

q and sends m5 = ({(˜updatesj , ℓj)}mj=1, S̃1)←
UpdateTree(Y ′d,⊥,D1,S1, Fk(·),Encpk(·)).

Finally, Sim0 outputs P0’s view. Using a hybrid argument, we can prove for any D ∈ N and any
inputs (X[D], Y[D]), (

ViewΠ,D
0 (X[D], Y[D]),Out

Π,D
1 (X[D], Y[D])

)
c
≈

(
Sim0(1

λ, X[D],F0(X[D], Y[D])),F1(X[D], Y[D])
)
.

33

Hyb0: P0’s view together with P1’s output in the real protocol.

Hyb1: Same as Hyb0 except that P1’s output is replaced with F1(X[D], Y[D]). This follows from the
correctness of the protocol.

Hyb2: Same as Hyb1 except that in ΠUPSI-Addsum , m
′
4 is replaced with PartDecsk1(Encpk(V)) for V =

Vd − Vd−1 on each day d ∈ [D]. This hybrid is statistically indistinguishable from Hyb1 by
the re-randomization of the encryption scheme.

Hyb3,i: Same as Hyb2 except the first element in each tuple of m3 is replaced with a partial decryption
of a fresh encryption of αk · (ak − bk). This is actually a series of hybrids where the element
in the i-th tuple is replaced in Hyb3,i. Each hybrid is statistically indistinguishable by the
re-randomization of the encryption scheme. Let Hyb3 be the last hybrid in this series.

Hyb4,i: Same as Hyb3 except that the first element in each tuple of m3 is either replaced with partial
decryption of a fresh encryption of 0 if ak − bk = 0 or of a uniformly random element
in Zq otherwise. In the first case, Hyb4,i is statistically indistinguishable from Hyb4,i−1 by
the re-randomization of the encryption scheme. In the second case, Hyb4,i is statistically
indistinguishable from Hyb4,i−1 because αk · (ak−bk) has a uniform distribution over Zq when

αk
$←− Zq and ak − bk ̸= 0. This is also a series of hybrids where the element in the i-th tuple

is replaced in Hyb4,i. Let Hyb4 be the last hybrid in this series.

Hyb5,i: Same as Hyb4 except that the second element in each tuple of m3 is replaced depending on
the functionality, where the i-th tuple has its element replaced in Hyb5,i.

In ΠUPSI-Addsum and ΠUPSI-Addcircuit , it is replaced with a fresh encryption of a random value. This
hybrid is computationally indistinguishable by the CPA security of the encryption scheme.

In ΠUPSI-Addca , nothing changes in these hybrids.

Let Hyb5 be the last hybrid in this series of hybrids.

Hyb6: Same as Hyb5 except that P1 never aborts in Step 2d of UpdateTree. This hybrid computa-
tionally indistinguishable from Hyb5 because of the pseudorandomness of Fk(·). If one can
distinguish between Hyb5 and Hyb6, then it means the abort probability in Hyb5 is non-
negligible. By Imported Lemma B.1, if the function F (·) used in UpdateTree is a random
function, then the probability of abort is negligible. Hence we can use the abort probability
to distinguish between a pseudorandom function Fk(·) and a random function F (·).

Hyb7: Same as Hyb6 except that Yd is replaced with Y ′d in UpdateTree for m5. By the construction
of UpdateTree and CPA security of the encryption scheme, this hybrid is computationally
indistinguishable. P0’s view in this hybrid is exactly Sim0’s output, concluding the proof.

Security Against Corrupted P1. Sim1 can be constructed that simulates P1’s view as follows.
On input (1λ, Y[D],F1(X[D], Y[D])), Sim1 runs the honest P1 to generate its view and behaves on
behalf of an honest P0 with the following exceptions on each day d ∈ [D]:

• In Step 2, Sim1 samples a random set X ′d
$←− Z|Xd|

q and random associated values P ′d
$←− Z|Xd|

q

and sends m1 = ({(˜updatesi, ℓi)}ni=1, S̃0)← UpdateTree(X ′d, P
′
d,D0,S0, Fk(·),Encpk(·)).

• In Step 3, Sim1 will sample random values αi, βi
$←− Zq for all i ∈ [Λd] where Λd = |m2| is the

number of elements inm2 for an honest P0, and sends the messagem2 = {(Encpk(αi),Encpk(βi))}Λd
i=1.

34

• In Step 6, in ΠUPSI-Addsum , Sim1 samples a random value γ ← Zq and sends m4 = Encpk(γ).

In ΠUPSI-Addcircuit , F0(X[D], Y[D]) = {(C1, Z1), (C2, Z2), . . . , (CD, ZD)} where Cd is the number
of elements in the intersection, Zd = {[[z1]]1, [[z2]]1, . . . , [[zCd−Cd−1

]]1} is a set of P1’s secret
shares for elements added to the intersection on day d. Sim1 sends the message

m4 = {PartDecsk0(Encpk([[zi]]1))}
Cd−Cd−1

i=1 .

Finally, Sim1 outputs P1’s view. Using a hybrid argument, we can prove for any D ∈ N and any
inputs (X[D], Y[D]), (

ViewΠ,D
1 (X[D], Y[D]),Out

Π,D
0 (X[D], Y[D])

)
c
≈

(
Sim1(1

λ, Y[D],F1(X[D], Y[D])),F0(X[D], Y[D])
)
.

Hyb0: P1’s view together with P0’s output in the real protocol.

Hyb1: Same as Hyb0 except that P0’s output in ΠUPSI-Addcircuit is replaced with F0(X[D], Y[D]). This
follows from the correctness of the protocol.

Hyb2,i: Same as Hyb1 except that in ΠUPSI-Addcircuit , Sim1 replaces m4 with a partial decryption of a
fresh encryption of pk − [[zk]]0. This is actually a series of hybrids where the i-th element is
replaced in Hyb2,i. These hybrids are statistically indistinguishable by the re-randomization
of the encryption scheme. Note that pk − [[zk]]0 = [[zk]]1 so this can also be seen as a fresh
encryption of [[zk]]1. Let Hyb2 be the last hybrid in this series of hybrids.

Hyb3: Same as Hyb2 except that in ΠUPSI-Addsum ,m4 is replaced by a fresh encryption of Encpk(
∑

k∈K pk).
This is statistically indistinguishable by the re-randomization of the encryption scheme.

Hyb4: Same as Hyb3 except that in ΠUPSI-Addsum , Sim1 samples γ
$←− Zq and replacesm4 with Encpk(γ).

This is computationally indistinguishable by the CPA security of the encryption scheme.

Hyb5,i,b: Same as Hyb4 except that each tuple in m2 is replaced with a tuple of fresh encryptions:
(Enc(yi,j − xi),Encpk(pi)). This is a series of hybrids where the b-th element of the i-th tuple
is replaced in Hyb5,i,b. These are statistically indistinguishable by the re-randomization of the
encryption scheme. Let Hyb5 be the last hybrid in this series of hybrids.

Hyb6,i,b: Same as Hyb5 except that each tuple in m2 is replaced with a tuple of fresh encryptions of
random values. This is a series of hybrids where the b-th element of the i-th tuple is replaced
in Hyb6,i,b. These are computationally indistinguishable by the CPA security of the encryption
scheme. Let Hyb6 be the last hybrid in this series of hybrids.

Hyb7: Same as Hyb6 except that P0 never aborts in Step 2d of UpdateTree. This hybrid computa-
tionally indistinguishable from Hyb6 because of the pseudorandomness of Fk(·) and Imported
Lemma B.1.

Hyb8: Same as Hyb7 except that Xd is replaced with X ′d and Pd is replaced with P ′d in UpdateTree
for m1. By the construction of UpdateTree and CPA security of the encryption scheme, this
hybrid is computationally indistinguishable. P1’s view in this hybrid is exactly Sim1’s output,
concluding the proof.

35

C Proof for Subprotocol ΠCombinePath

In this section, we prove correctness and security of the subprotocol ΠCombinePath presented in
Section 4.2.

Correctness. Given the correctness of the additively homomorphic encryption scheme and Flookup,
we prove that ΠCombinePath correctly outputs shares [[

∑
x=yi

(p · qi)]] over Zq where (x, p) are inputs

to the subroutine and (yi, qi) are input as encrypted ciphertexts in p̃ath. Consider first i such
that x ̸= yi. Per the homomorphic operations done in Step 1, γi = yi − x + αi over Zq and so
Flookup will receive a = yi − x + αi and b = αi. Because x ̸= yi, αi ̸= yi − x + αi over Zq and so
Responder will receive mi,1 from Flookup. Per Step 4, [[ri]]1 = Decsk(mi,1) = −βi and [[ri]]0 = βi and
so ri = [[ri]]0+ [[ri]]1 = β− β = 0. In the case where x = yi, αi = yi−x+αi, the Responder receives
mi,0, and [[ri]]1 = Decsk(mi,0) = p · qi − β. Therefore ri = p · qi. In Step 5, each party will output∑

i[[ri]]k = [[
∑

i ri]]k. Because ri = p · qi if and only if yi = x and 0 otherwise, this correctly results
in shares of [[

∑
x=yi

(p · qi)]].

Security. For the security of our addition and deletion protocols, it suffices to show that the
ΠCombinePath subroutine can be simulated against an adversarial Responder. Let ViewCP

R (x, p, p̃ath, sk, pk)
be the Responder’s view, and we can construct a simulator SimCP like so:

• In Step 1, SimCP samples γi
$←− Zq for all i ∈ [k] and sets reqi = Encpk(γi).

• In Step 4, SimCP samples δi ← Zq for all i ∈ [k] such that
∑

i δi = [[z]]1 and sends mi =
Encpk(δi) to Responder on behalf of Flookup.

Given that, we present the following lemma:

Lemma C.1. In the Flookup-hybrid model, there exists a PPT simulator SimCP such that, for any

inputs x, p, p̃ath, sk, public key pk, and Responder output [[z]]1,

ViewCP
R (x, p, p̃ath, sk, pk)

c
≈ SimCP(1

λ, [[z]]1, pk, k).

Proof. We prove the lemma with a hybrid argument:

Hyb0: P0’s real view — i.e., ViewCP
R (x, p, p̃ath, sk, pk).

Hyb1,i: This is a series of hybrids where, in Hyb1,i, mi,0 is replaced with a fresh encryption of (p·qi−βi).
This is indistinguishable by the re-randomization property of the encryption scheme.

Hyb2,i: This is a series of hybrids where in Hyb2,i SimCP samples δi
$←− Zq such that

∑k
i=1 δi = [[z]]1 and

sends Encpk(δi) to the Responder as the output of Flookup. In the case where mi = mi,0, this is
statistically indistinguishable because p · qi−βi has a uniform distribution over Zq because βi
is sampled uniformly from it. In the case where mi = mi,1, this is indistinguishable because
−βi has a uniform distribution over Zq for the same reason.

Hyb3,i: This is a series of hybrids where, in Hyb3,i, SimCP samples γi
$←− Zq and sends reqi = Encpk(γi)

in Step 2. This is statistically indistinguishable because yi−x+αi has a uniform distribution
over Zq because αi is sampled uniformly from it.

The Responder’s view in this hybrid is exactly SimCP’s output, concluding the proof.

36

D Proof of Theorem 4.3

Correctness. As before, we prove correctness by induction. On day 0, all sets are initialized as null
sets so correctness trivially holds. Now, on any day d, our goal is to compute Id =

(
X ∪X+

d \X
−
d

)
∩(

Y ∪ Y +
d \ Y

−
d

)
. First, similar to the addition only protocols in Section 3, from the correctness

of the subroutines UpdateTree,GetPath and subprotocol ΠCombinePath, the additive homomorphic
encryption scheme and the secret sharing scheme, one can observe that in the output generation,
in Step 3c, the output computed is indeed using the reconstruction of the intersections listed in
Steps Step 1b, Step 1c of the deletion phase and steps Step 2b, Step 2c of the addition phase. That
is, in those 4 steps, after the reconstruction, we compute

I1 = X−d ∩ Y, I2 =
(
X \X−d

)
∩ Y −d ,

I3 = X+
d ∩

(
Y \ Y −d

)
, I4 =

(
X ∪X+

d \X
−
d

)
∩ Y +

d .

Elements in I1 and I2 are removed from Id (since the reconstructed share is negative) and elements
in I3 and I4 are added to Id (since the reconstructed share is positive). That is, our protocol
computes Id = ((Id−1 ∪ I3 ∪ I4) \ I1) \ I2, where Id−1 = X ∩ Y .

Recall that we assume no element can be added and deleted on the same day. That is, X+
d ∩

X−d = Y +
d ∩ Y −d = ∅. Now, let’s expand Id as follows:

Id =
(
X ∪X+

d \X
−
d

)
∩
(
Y ∪ Y +

d \ Y
−
d

)
=

((
X ∪X+

d \X
−
d

)
∩
(
Y \ Y −d

))
∪
((
X ∪X+

d \X
−
d

)
∩
(
Y +
d

))
=

((
X ∪X+

d \X
−
d

)
∩
(
Y \ Y −d

))
∪ I4 (by definition)

=
((
X \X−d

)
∩
(
Y \ Y −d

))
∪
((
X+

d \X
−
d

)
∩
(
Y \ Y −d

))
∪ I4

=
((
X \X−d

)
∩
(
Y \ Y −d

))
∪ I3 ∪ I4 (by definition since X+

d ∩X−d = ∅)

Now, let’s rewrite things a bit more. Observe that:

X ∩ Y =
((
X \X−d

)
∩
(
Y \ Y −d

))
∪
(
X−d ∩ Y

)
∪
((
X \X−d

)
∩ Y −d

)
Id−1 =

((
X \X−d

)
∩
(
Y \ Y −d

))
∪ I1 ∪ I2

In other words,
(
X \X−d

)
∩
(
Y \ Y −d

)
= (Id−1 \ I1) \ I2. Putting this back into the first equation

above, we get:

Id = ((Id−1 \ I1) \ I2) ∪ I3 ∪ I4

= ((Id−1 ∪ I3 ∪ I4) \ I1) \ I2

Since I3 ∩ I1 = I3 ∩ I2 = I4 ∩ I1 = I4 ∩ I2 = ∅ (by definition and by the assumption that
X+

d ∩X−d = Y +
d ∩ Y −d = ∅). This concludes the proof of correctness.

Lemma D.1 (Corollary of Imported Lemma B.1). Let {xi}Ni=1 be a sequence of elements being
added or removed to a binary tree via UpdateTree where any single element is added and removed
at most t times. By increasing the node size σ and stash size ρ by a factor of min(2t, logN), the
probability of abort is negligible.

Proof. By Imported Lemma B.1, abort is negligible after adding N elements with node size σ and
stash size ρ. Let us first consider the case where we allow arbitrary additions or deletions. Note

37

that because UpdateTree removes duplicates before placing elements into the tree, only a single
additions or deletions for xi will appear in any node. Additionally, UpdateTree keeps the invariant
that additions and deletions for any element xi in the tree will appear either in the root to leaf
path P(Fk(xi)) or in S. Therefore, for any xi, the maximum number of additions and deletions
that can appear in the tree or stash is logN + 1 — one for each node in P(Fk(xi)) and one for
S. In the worse case, every element appears logN times in the tree and once in the stash, so they
can be added to a tree with node size logN · σ and stash size logN · ρ without abort. In the case
where elements can be added and removed at most t times and 2t < logN , in the worst case any
element xi will be duplicated in the tree 2t times. Therefore, a tree with node size 2t · σ and stash
size 2t · ρ will suffice.

Security against Corrupted P0. Sim0 can be constructed that simulates P0’s view as follows.
Let F0(X[D], Y[D]) = {Z1, Z2, . . . , ZD} where Zd is the set of elements added to the intersection

on day d. On input (1λ, X[D],F0(X[D], Y[D])), Sim0 runs the honest P0 to generate its view and
behaves on behalf of an honest P1 with the following exceptions on each day d ∈ [D]:

• In the deletion phase Step 1c, Sim0 runs SimCP(1
λ, [[z−y,j]]0, pk0, kd) to simulate P0’s view of

ΠCombinePath for all j ∈ [m−] where kd = σ · L0 + ρ.

• In the deletion phase Step 1d, Sim0 samples a random set Y ′−d
$←− Z|Y

−
d |

q and sends ({(˜updatesj , ℓj)}m
−

j=1,

S̃ ′1)← UpdateTree(Y ′−d , {−y′j : y′j ∈ Y ′−d }
m−
j=1D1,S1, pk1, Fk(·)).

• In the addition phase Step 2c, Sim0 runs SimCP(1
λ, [[z+y,j]]0, pk0, kd) to simulate P0’s view of

ΠCombinePath for all j ∈ [m+] where kd = σ · L0 + ρ.

• In the addition phase Step 2d, Sim0 samples a random set Y ′+d
$←− Z|Y

+
d |

q and sends ({(˜updatesj , ℓj)}m
+

j=1,

S̃ ′1)← UpdateTree(Y ′+d , {y′j : y′j ∈ Y ′+d }
m+

j=1D1,S1, pk1, Fk(·)).
• In the output generation phase Step 3, Sim0 does the following.

– In Step 3b, for 1 ≤ i ≤ |Zd|, Sim0 sets [[zi]]0 = 0 and [[zi]]1 = zi where zi ∈ Zd. For

|Zd| ≤ i ≤ Γ, Sim0 samples shares of zero uniformly ([[zi]]0
$←− Zq and [[zi]]1 = −[[zi]]0).

– In Step 3c, Sim0 encrypts the all [[zi]]0 set in Step 3b and uses that in their response.
Finally, Sim0 outputs P0’s view. Using the below hybrid argument, we show that the real and ideal
worlds are indistinguishable.

Hyb0: This is the real world.

Hyb1: This is same as Hyb0 except that the message in Step 3b is computed using the shares set
by Sim0. Since {αi}i∈[N] are randomly sampled and π is a random permutation, the set of
shares that P0 learns are identically distributed in both hybrids. Hence, they are statistically
indistinguishable.

Hyb2: Same as Hyb1 except that P1 never aborts in Step 2d of UpdateTree. This hybrid computa-
tionally indistinguishable from Hyb1 because of the pseudorandomness of Fk(·). If one can
distinguish between Hyb1 and Hyb2, then it means the abort probability in Hyb2 is non-
negligible. By Lemma D.1, if the function F (·) used in UpdateTree is a random function, then
the probability of abort is negligible. Hence we can use the abort probability to distinguish
between a pseudorandom function Fk(·) and a random function F (·).

38

Hyb3: Same as Hyb2 except in the addition phase Step 2d, Y +
d is replaced with Y ′+d in UpdateTree.

By the construction of UpdateTree and CPA security of the encryption scheme, this hybrid is
computationally indistinguishable.

Hyb4,i: This is a series of hybrids where, in Hyb4,i, P0’s view of the ith ΠCombinePath in Step 2c

is simulated with SimCP(1
λ, [[z+y,i]]0, pk0, kd). This is computationally indistinguishable by

Lemma C.1. Let Hyb4 be the last hybrid in this series of hybrids.

Hyb5: Same as Hyb4 except that P1 never aborts in Step 2d of UpdateTree. This hybrid computation-
ally indistinguishable from Hyb4 because of the pseudorandomness of Fk(·) and Lemma D.1.

Hyb6: Same as Hyb5 except in the addition phase Step 1d, Y −d is replaced with Y ′−d in UpdateTree.
By the construction of UpdateTree and CPA security of the encryption scheme, this hybrid is
computationally indistinguishable.

Hyb6,i: This is a series of hybrids where, in Hyb6,j , P0’s view of the jth ΠCombinePath in Step 1c

is simulated with SimCP(1
λ, [[z−y,j]]0, pk0, kd). This is computationally indistinguishable by

Lemma C.1.

P0’s view in the last hybrid of this series is exactly Sim0’s output, concluding the proof.

Security Against Corrupted P1. Sim1 can be constructed that simulates P1’s view as follows.
On input (1λ, Y[D]), Sim1 runs the honest P1 to generate its view and behaves on behalf of an honest
P0 with the following exceptions on each day d ∈ [D]:

• In the deletion phase Step 1a, Sim1 samples a random setX ′−d
$←− Z|X

−
d |

q and sends ({(˜updatesi, ℓi)}n
−

i=1,

S̃ ′0)← UpdateTree(X ′−d , {−x′i : x′i ∈ X ′−d }
n−
i=1D0,S0, pk0, Fk(·)).

• In the deletion phase Step 1b, Sim1 runs SimCP(1
λ, [[z−x,i]]1, pk1, kd) to simulate P1’s view of

ΠCombinePath for all i ∈ [n−] where kd = σ · L1 + ρ.

• In the addition phase Step 2a, Sim1 samples a random setX ′+d
$←− Z|X

+
d |

q and sends ({(˜updatesi, ℓi)}n
+

i=1,

S̃ ′0)← UpdateTree(X ′+d , {x′i : x′i ∈ X ′+d }
n+

i=1D0,S0, pk0, Fk(·)).
• In the addition phase Step 2b, Sim1 runs SimCP(1

λ, [[z+x,i]]1, pk1, kd) to simulate P1’s view of

ΠCombinePath for all i ∈ [n+] where kd = σ · L1 + ρ.

• In the output generation phase Step 3a, Sim1 samples random shares [[zi]]0 for i ∈ [Γ] and
sends {Encpk0([[zi]]0)}

Γ
i=1 to P1.

Finally, Sim1 outputs P1’s view. Using the below hybrid argument, we show that the real and ideal
worlds are indistinguishable.

Hyb0: This is the real world.

Hyb1: Same as Hyb0 except that in the output generation phase Step 3a, the ciphertexts Encpk0([[zi]]0)
is a tuple of fresh encryptions of random values. This is actually a series of sub-hybrids where
each ciphertext is replaced in each sub-hybrid. These are computationally indistinguishable
by the CPA security of the encryption scheme.

Hyb2,i: This is a series of hybrids where, in Hyb2,i, P1’s view of the ith ΠCombinePath in Step 2b

is simulated with SimCP(1
λ, [[z+x,i]]1, pk1, kd). This is computationally indistinguishable by

Lemma C.1. Let Hyb2 be the last hybrid in this series of hybrids.

39

Hyb3: Same as Hyb2 except that P1 never aborts in Step 2d of UpdateTree. This hybrid computation-
ally indistinguishable from Hyb2 because of the pseudorandomness of Fk(·) and Lemma D.1.

Hyb4: Same as Hyb3 except in the addition phase Step 2a, X+
d is replaced with X ′+d in UpdateTree.

By the construction of UpdateTree and CPA security of the encryption scheme, this hybrid is
computationally indistinguishable.

Hyb4,i: This is a series of hybrids where, in Hyb4,i, P1’s view of the ith ΠCombinePath in Step 1b

is simulated with SimCP(1
λ, [[z−x,i]]1, pk1, kd). This is computationally indistinguishable by

Lemma C.1. Let Hyb4 be the last hybrid in this series of hybrids.

Hyb5: Same as Hyb4 except that P1 never aborts in Step 2d of UpdateTree. This hybrid computation-
ally indistinguishable from Hyb4 because of the pseudorandomness of Fk(·) and Lemma D.1.

Hyb6: Same as Hyb5 except in the addition phase Step 1a, X−d is replaced with X ′−d in UpdateTree.
By the construction of UpdateTree and CPA security of the encryption scheme, this hybrid is
computationally indistinguishable.

P0’s view in this hybrid is exactly Sim0’s output, concluding the proof.

E Proof of Theorem 4.2

Correctness. As before, we prove correctness by induction. On day 0, all sets are initialized as
null sets so correctness trivially holds. Now, on any day d, let’s define a function f(xi, yj) = pi · qj
where for any xi ∈ (X∪X+

d ∪X
−
d), yj ∈ (Y ∪Y +

d ∪Y
−
d) (pi, qj) are defined as in the protocol. Then,

as in the correctness of the previous protocol, by definition, observe that, for both functionalities:

Outd =
∑

xi∈(X∪X+
d ∪X−

d),

yj∈(Y ∪Y +
d ∪Y −

d)

f(xi, yj)

=
∑

xi∈X,
yj∈Y

f(xi, yj) +
∑

xi∈(X+
d ∪X−

d),
yj∈Y

f(xi, yj) +
∑

xi∈(X∪X+
d ∪X−

d),

yj∈(Y +
d ∪Y −

d)

f(xi, yj).

We can observe the following in the protocol from the correctness of the underlying primitives:

• In Step 3, the outputs are secret shares of
∑

xi∈(X+
d ∪X

−
d),

yj∈Y
f(xi, yj).

• In Step 4, the outputs are secret shares of
∑

xi∈(X∪X+
d ∪X

−
d),

yj∈(Y +
d ∪Y

−
d)

f(xi, yj).

and by induction, Outd−1 =
∑

xi∈X,
yj∈Y

f(xi, yj). Then, by the correctness of the reconstruction of the

secret sharing scheme, Outd is correctly computed and this completes the proof.

Security Against Corrupted P0. Sim0 can be constructed that simulates P0’s view as follows.
On input (1λ, X[D],F0(X[D], Y[D])), Sim0 runs the honest P0 to generate its view and behaves on
behalf of an honest P1 with the following exceptions on each day d ∈ [D]:

• In Step 4, Sim0 runs SimCP(1
λ, [[zy,j]]0, pk0, kd) to simulate P0’s view of ΠCombinePath for all

j ∈ [m] where kd = σ · L0 + ρ.

40

• In Step 5, Sim0 samples a random set (Y ′−d ∪Y
′+
d)

$←− Z|Y
−
d |+|Y

+
d |

q and sends ({(˜updatesj , ℓj)}mj=1, S̃ ′1)←
UpdateTree(Y ′−d ∪ Y ′+d , {q′j}mj=1D1,S1, pk1, Fk(·)) where q′j is defined as in the real world.

• In the output generation phase Step 7, Sim0 does the following.

– First, let F0(X[D], Y[D]) = {Out1,Out2, . . . ,OutD} where Outd is different for FUPSI-Delca

and FUPSI-Delsum respectively.

– Since Sim0 knows P0’s input (and randomness), it can compute the value [[zd]]0 that P0

would have computed in Step 6.

– Sim0 computes and sends [[zd]]1 = Outd − Outd−1 − [[zd]]0.

Finally, Sim0 outputs P0’s view. Using the below hybrid argument, we show that the real and ideal
worlds are indistinguishable.

Hyb0: This is the real world.

Hyb1: This is same as Hyb0 except that the the output generation phase Step 7 happens as in the
ideal world. That is, [[zd]]1 is set as (Outd−Outd−1− [[zd]]0) where [[zd]]0 is P0’s share computed
in Step 6.

From the correctness of ΠCombinePath and security of the secret sharing scheme, the share [[zd]]1
that P0 learns is identically distributed in both hybrids and so are statistically indistinguish-
able.

Hyb2: Same as Hyb1 except that P1 never aborts in Step 2d of UpdateTree. This hybrid computation-
ally indistinguishable from Hyb4 because of the pseudorandomness of Fk(·) and Lemma C.1.

Hyb3: Same as Hyb2 except in Step 5, (Y +
d ∪ Y −d) is replaced with (Y ′−d ∪ Y ′+d) in UpdateTree. By

the construction of UpdateTree and CPA security of the encryption scheme, this hybrid is
computationally indistinguishable.

Hyb4,i: This is a series of hybrids where, in Hyb4,i, P0’s view of the ith ΠCombinePath in Step 4

is simulated with SimCP(1
λ, [[zy,i]]0, pk0, kd). This is computationally indistinguishable by

Lemma C.1.

P0’s view in the last hybrid of this series is exactly Sim0’s output, concluding the proof.

Security Against Corrupted P1. Sim1 can be constructed that simulates P1’s view as follows.
On input (1λ, Y[D]), Sim1 runs the honest P1 to generate its view and behaves on behalf of an honest
P0 with the following exceptions on each day d ∈ [D]:

• In Step 2, Sim1 samples a random set (X ′−d ∪X
′+
d)

$←− Z|X
−
d |+|X

+
d |

q and sends ({(˜updatesi, ℓi)}ni=1, S̃ ′0)←
UpdateTree(X ′−d ∪X ′+d , {p′i}ni=1D0,S0, pk0, Fk(·)) where p′i is defined as in the real world.

• In Step 3, for each run of ΠCombinePath, while setting its input, Sim1 replaces (xi, pi) by

sampling a random tuple (x′i, p
′
i), random values αj , βj

$←− Zq for 1 ≤ j ≤ |ld| and sets

p̃athi = {(Encpk1(αj),Encpk1(βj))}
ld
j=1 where ld = σ · L1 + ρ.

Finally, Sim1 outputs P1’s view. Using the below hybrid argument, we show that the real and ideal
worlds are indistinguishable.

Hyb0: This is the real world.

41

Hyb1,i: This is a series of hybrids where, in Hyb1,i, P1’s view of the ith ΠCombinePath in Step 3

is simulated with SimCP(1
λ, [[zx,i]]1, pk1, kd). This is computationally indistinguishable by

Lemma C.1. Let Hyb1 be the last hybrid in this series of hybrids.

Hyb2: Same as Hyb1 except that P1 never aborts in Step 2d of UpdateTree. This hybrid computation-
ally indistinguishable from Hyb1 because of the pseudorandomness of Fk(·) and Lemma C.1.

Hyb3: Same as Hyb2 except in Step 2, (X+
d ∪X−d) is replaced with (X ′−d ∪X ′+d) in UpdateTree. By

the construction of UpdateTree and CPA security of the encryption scheme, this hybrid is
computationally indistinguishable.

P0’s view in this hybrid is exactly Sim0’s output, concluding the proof.

42

	Introduction
	Our Results
	Technical Overview
	Related Work

	Preliminaries
	Addition-Only UPSI
	Definition
	Construction
	Complexity, Correctness and Security

	UPSI with Addition and Deletion
	Definition
	Construction
	Complexity, Correctness and Security

	Implementation Details and Optimizations
	Evaluation
	Experimental Setup
	Addition-Only UPSI with Extended Functionalities
	UPSI-Cardinality/Sum with Addition and Deletion
	UPSI for Plain PSI
	Worst-Case Logarithmic Complexity

	Addition-Only Plain UPSI
	Proof of Theorem 3.2
	Proof for Subprotocol CombinePath
	Proof of Theorem 4.3
	Proof of Theorem 4.2

