Another Walk for MoNCHI

Riccardo Taiello!, Emre Tosun?, Alberto Ibarrondo®, Hervé Chabanne?, and
Melek Onen?

! Inria, Sophia Antipolis
2 Eurecom, Sophia Antipolis
3 Arcium, Zurich
4 Idemia & Telecom Paris, Paris

Abstract. MONCHI is a new protocol aimed at privacy-preserving bio-
metric identification. It begins with scores computation in the encrypted
domain thanks to homomorphic encryption and ends with comparisons
of these scores to a given threshold with function secret sharing. We
here study the integration in that context of scores computation tech-
niques recently introduced by Bassit et al. that eliminate homomorphic
multiplications by replacing them by lookup tables. First, we extend this
lookup tables biometric recognition solution by adding the use of function
secret sharing for the final comparison of scores. Then, we introduce a
two-party computation of the scores with lookup tables which fits nicely
together with the function secret sharing scores comparison. Our solu-
tions accommodate well with the flight boarding use case introduced by
MONCHLI.

Keywords: Privacy-Preserving biometric systems, Homomorphic Encryption,
Two-Party Computation, Function Secret Sharing, MFBR schemes

1 Introduction

We investigate the use of biometric identification in an airplane boarding use
case, where passengers are authorized to enter the plane only if their faces are
identified with respect to an early prepared, privacy-preserving database of reg-
istered passengers’ faces. Set on this scenario, MONCHI [11,12] makes use of
(i) a homomorphic encryption (HE) scheme and relevant packing solutions to
protect both the live templates and the reference ones stored in the database
and enable the computation of scalar products between them, and, inspired by
FUNSHADE [10], (ii) a Function Secret Sharing (F'SS) scheme to obliviously com-
pare the score obtained from the scalar product to a threshold. Combining these
two primitives enables MONCHI to only reveal the final authorization decision
without disclosing the identification scores.

We revisit that same goal, aiming to optimize even further the computation
cost incurred by the scalar products over encrypted templates. In [3,4], authors
propose a method to compute these identification scores over encrypted data

2 Taiello et al.

through the use of lookup tables that entirely replace the multiplication opera-
tions. [1] reports a faster runtime by a factor of 2 to 3 orders of magnitude on
facial features while keeping the biometric accuracy of the system. We integrate
this multiplication-free scheme while making it compatible with the underlying
BFV encryption scheme [1,7,8] and the FSS scheme [10].

To ensure the confidentiality of the values in the table and the computations
of the scores, we also propose — in addition to HE — to study the use of two-
party computation (2PC), and more specifically, additive secret sharing [16]. As
no multiplications are needed, no interactions between the two parties are nei-
ther required. In the next section 2, we detail how multiplication-free recognition
(MFBR) biometric schemes in the encrypted domain work. Sec. 3 describes our
first proposal, named MONCHILUTS, where MFBR LUTSs replace multiplications
with HE. Sec. 4 gives our second proposal, called MONCHICHI, where we imple-
ment scores computation in 2PC. Sec. 5 is devoted to the confidentiality of live
templates. Finally, Sec. 7 gives conclusive remarks.

2 Multiplication-Free Biometric Recognition (MFBR)

In biometric systems, discriminative features are extracted from images of cap-
tured biometric traits (e.g., faces, fingerprints. ..) and transformed into vectors
called templates via the execution of a neural network model. Two templates
are assumed belonging to the same person if they are close with respect to
some distance. To check whether a person is present in a database, scores of his
live template against existing reference templates are computed — in MONCHI,
scores for faces’ templates are computed by a scalar product measuring their
cosine similarity — and then compared with a given threshold which depends of
the underlying biometric system (see [14] for more details).

To ease their use with cryptographic techniques, components of templates
are often quantized. We denote Y = (y1,...,yq4) (resp. X = (21,...,24)) to a
quantized reference (resp. live) template with d components of n bits each.

The first Multiplication-Free Biometric Recognition scheme was introduced
in [2] by Bassit et al. This work has then been extended in [3] and further in
[4]. MFBR schemes substitute scalar products for the scores computation with
well-crafted LookUp Tables (LUT) and additions. These system-dependent LUT
provide, for each of the i€ {1,...,d} components, a "local” score between a live
template component x; and its corresponding reference template component ;.
The partial scores are stored in a 2D matrix T;, accessible by indexing the desired
row with the value of y; and the column with z;. We compute the score s as:

s=Ti(y1,x1) + ...+ Ta(ya, xq) (1)

where T;(y;, x;) represents the lookup (indexing) operation.

Equation 1 can be easily adopted in the encrypted domain by virtue of homo-
morphic encryption (HE) or arithmetic secret sharing [16]. Instead of encrypting
the plain reference templates directly, rows T;(y;,.) Vi are stored in database,
now returning the corresponding looked-up values encrypted or secret-shared

Another Walk for MONCHI 3

Xi
0 1 2 3 .. 2™1
T,(0,0)| T;(0,1) 7;(0,2)T;(0,3) SRS
T;(LO| Ty (LU Ty (1,2) T;(1,3) O
T;(2,0)| Ty (2, T;(2,2) T;(2,3) ™ N
Vi
T; 30| Ti(3, 1) T:(3,2) T;(3,3) e o
N
I§
= \\
Tl Tz Ti Td

Fig. 1: Look-Up Table visualization.

when queried. A cleartext® live template (z1,...,74) triggering a verification,
leads to picking all T;(y;, z;) and then adding together the encrypted or secret-
shared partial score. No multiplications are needed.

3 MoncHILuTs: MoncHI with MFBR LUTSs

This section describes our first proposal — called MONCHILUTS — that combines
the use of MFBR LUTSs and function secret sharing.

Participants Besides a trusted setup realized by a trusted key server, here are
the main participants of our identification protocol:

— BIP (Biometric Identity Provider) holding the database containing LUTSs
corresponding to the reference templates and responsible for the computation
of the encrypted masked scores between a freshly live template and each
reference template.

— Gate, in charge of capturing the live biometric template of the users request-
ing access and forwarding them to the BIP, after protection, during the
identification phase. Later on, Gate receives the final decision on this actual
identification and allows or not the user to access the plane.

— P, (two) parties who decrypt the masked score and evaluate its comparison
operation to the threshold following the FSS Funshade scheme.

® Much like in [3], the use-case must support this requirement.

4 Taiello et al.

Notations We use the same notations as in [11]:

— The nlog(d)-bit identification score is denoted by s.

— Each evaluation of the FSS Funshade scheme requires the use of a fresh
mask, which we denote by r. Let § = s + r be the masked score, i.e., the
input of the FSS Interval Containment gate [| employed for comparison.

— The encryption of the masked score is: ¢; = Enc(§,pk) where pk stands
for the public key of the system. The corresponding private key is sk. The
decryption is denoted as Dec(.,sk). In practice, as in MONCHI, the private
key is shared among the P, j = 0,1, each P; holding the share (sk);.

— The parameters associated with the BFV scheme are:

e The plaintext space consists of polynomials of degree at most N — 1 with
coefficients in Z;.

e The ciphertext modulus R, = Z,[X]/(X" +1) is set based on the secu-
rity parameter q.

® ¢; < Xr, stands for some error term (see Appendix A of [15]).

ﬁ B

Enrollment +
. . 1|7 = e ra —.lp____o__l— \/ ®
3 _B I:JE@ s ®|<c§,,>, @ i@

Lo]
:«,I BIP
(MONCHILUT)
i L1 —
BIP, BIP; P,

(MoONCHICHI)

Fig. 2: Biometric access control system using MONCHICHI’s protocol.

Score Evaluation by the BIP For one reference and one live template Y =
(y1,--.,9q) and X = (a1, ..., 24), BIP has to obliviously compute the encryption
of a score s masked with 7 in Zgn. This operation is no longer performed with
multiplications as in the original MONCHI scheme but instead by using LUTs.
For each reference template, Y = (y1,...,94), let Sy(.) = Ti(yi,.) + 74

mod 2",4 = 1,...,d with r; + ...+ rq = r. The masked score between a live
template X = (x1,...,24) and Y, § = s +r mod 2" can thus be computed as:
§ = Sy}l(xl) + ...+ Sy,d(xd) mod 2" (2)

We write ESy,;,i = 1,...,d to denote their encrypted counterparts, i.e.

ESy i(x;) = Enc(Sy,(z;),pk), for all the x;’s (for the sake of simplicity, mentions
to mask r have been omitted).

Another Walk for MONCHI 5

Hence, given one live template X, for each of its d features, the BIP will
look-up and retrieve the relevant cells from the corresponding LUT.

FUNSHADE [10], i.e. the F'SS protocol also used in [11] to compare scores with
a pre-defined threshold, requires as input the masked score which is defined in
Zon where n is a small integer; typically, n = 16.

Correctness Our first proposal can be described as follows:

1. The Gate gets a new live quantized template X = (z1,...,24) and sends it
to the BIP.

For each reference template:

2. The BIP computes the encrypted masked score and sends this ¢z to the P;’s.
3. The two P,’s decrypt the result. Let ¢; = (cs,,cs,). Each P; computes:
(cs,); = (sk); cs, +€; with e; <= xg, and then sends it to the other®. Finally,

each P; gets the masked score as: § = Hé [(cs, + {c3,)0 + <c§b>1)]q} }
tlon

4. Each P; evaluates whether the score is under a threshold or not thanks to
the FSS FUNSHADE scheme, and sends shares of this result to the Gate.

Step 4 is the same as the one in MONCHI and FUNSHADE [11]. Step 3 dis-
tributes BFV decryption [13,15] of the masked score. The correctness of our
scheme thus comes from the correctness of Step 2. We know that:

d
5= Dec(z Sy,i(z;)) mod 2"
i=1
Hence, our first proposal is correct.

4 MonNcHICHI: MONCHI with two-party look-up tables

We now describe MONCHICHI, our second proposal where the Biometric Identity
Provider is implemented by 2 entities, denoted as BIP*, k = 0, 1. LUTSs are now
secret shared among the two BIP*s, for k = 0,1, we define S{il(), S.t.

59/1() + 531,1() mod 2" = Sy ;(.)

for all ¢ = 1,...,d and all reference templates Y. Score computation (2) is
implemented by each BIP* which locally computes:

gk = S{“/’l(ml) +... 4 Sf/,d(xd) mod 2"

With the introduction of the two BIPs, P;’s now receive shares of the masked
scores that first need to be reconstructed by simple addition: § = 8°+3' mod 2".
P;’s can then launch the F'SS operation and output the result of the comparison.

5 A finer choice of noise distribution might be required to prevent certain key recovery
attacks to threshold BF'V schemes[6].

6 Taiello et al.

5 Confidentiality of live templates

[3,4] make use of client secret permutations to hide live template X as they are
otherwise leaked by which indexes in the rows T;(y;,.) are used. The boarding
scenario of [11] cannot accommodate these permutations kept by passengers as
we want them to come to cross the gates hand-free. In our scheme, LUTs are
renewed at each score computation and we can implement secret permutations
both at the Gate and in LUTs stored by Biometric Identity Provider(s). We thus
turn the constraint to have to cope with the need to only consume single-use
pre-processed data for F'SS to our advantage

Permutations are not picked by clients/passengers anymore but are rather
generated during the trusted setup by the system. At Step 1, Gate takes a new
secret permutation for the BIP or BIP* and applies it to the live template before
sending the permuted live template to the BIP or BIP¥’s. The Gate and the BIP
or BIP*’s have to be synchronized as the LUTSs held by BIP*’s have to take into
account these permutations.

6 Performance Evaluation

We implement MONCHILUTS and MONCHICHI in Golang like the MONCHI so-

lution [11]. Similar to MONCHI, these implementations use: (i) the Lattigo im-
plementation [13] of the (2,2) threshold-variant of BFV, the LUT implemen-
tation from [4] the FUNSHADE library [10] and a native Golang implementa-

tion for additive secret sharing. The code can be found in https://github.
com/emretosn/another-walk-for-monchi. The performance of both solutions
is evaluated through experiments executed on a single core machine with an
Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz and 126 GB of RAM.

For MoNcHILUTS, BFV parameters are set to: polynomial degree N = 21,
ciphertext modulus size ¢ = 183 bits, and plaintext modulus ¢ = 32 bits, with
default values for noise distributions”. For MONCHICHI, the two-party secret-
sharing is executed in Zsis. Regarding the implementation of LUTSs, we use the
same parameters as in [4], specifically the quantization factor is set to 3 bits for
LUT creation, reference, and live template. Finally, for the FSS instantiation,
we also use 16-bit modular arithmetic.

To study and evaluate the performance of our protocols in the context of the
airport use case (< 1000 IDs), we use the publicly available Labeled Faces in the
Wild (LFW) dataset [9], which includes 13,233 facial images of 5,749 individuals.
The same pre-processing steps proposed by [11] are applied, obtaining templates
of d = 128 features per face.

Table 1 presents the execution time (in ms) and the communication overhead
(in bytes) of the BIP for the different steps of an identification operation of one
fresh template in MONCHILUTS and MONCHICHI. The measurements are the
result of an average across 20 executions.

" The final choices of noise distributions for both smudging and fresh encryption re-
quire extra care to avoid recently highlighted pitfalls [6].

https://github.com/emretosn/another-walk-for-monchi
https://github.com/emretosn/another-walk-for-monchi

Another Walk for MONCHI 7

Table 1: Benchmark between MONCHILUTS and MONCHICHI protocols in terms
of execution time (LUTs/FSS/Total) and communication overhead for varying
dataset sizes T

MonNcHILUTS MONCHICHI

Time (ms) Comm. Time (ms) Comm.
DB Size (T)| LUT | FSS | Total |(Bytes)| LUT | FSS | Total |(Bytes)

1 8.86 | 0.12 | 898 |196730|< 0.00| 0.12 | 0.12 | <10
200 1772 24 1796 |196730|< 0.01] 24 [24.01| <10
1024 9072.64|122.88|9195.52|196730| 0.5 |122.93]122.88| < 10

Table 2: Performance metrics for multiplication, rotation, and addition.

Multiplication Time (us) ‘ Rotation Time (ms) ‘ Addition Time (us)

415.81 + 15.38 \ 6.89 + 0.40 \ 98.96 + 5.89

Regarding the bandwidth cost, MONCHICHI only requires the transmission of
a secret-shared masked score (a single value in Zsis) and the final masked score,
which is again a scalar value. Although as opposed to MONCHICHI, MONCHILUTS
involves a single BIP, the latter sends two encrypted values to the P;’s which
results in a non-negligible overhead compared to MONCHICHI.

In the flight boarding scenario with a database with 1,000 faces, MONCHICHI
(with 1-core machine) outperforms the original MONCHI scheme (with 4-core
machine) by 60% leveraging the comparatively lightweight look-up operations
over secret shares (no HE rotations). On the other hand, MONCHILUTS exhibits
significant overhead compared to MONCHI.

7 Conclusion

This work introduces two new protocols:

— MonNcHILUTS which is an extension of the work by Bassit et al. [3,4] to
handle secure scores comparison to a threshold;

— MoNcHICHI a full 2PC biometric identification solution combining MFBR
LUTs and FSS.

These two schemes enable us to integrate at a system level the permutations
needed to protect the confidentiality of live templates. These permutations were
originally given to the users which forbids the hand-free boarding plane sce-
nario introduced by MONCHI. Our experiments confirm the practicability of both
MoncHILUTS and MONCHICHI for this use case.

Taiello et al.

Acknowledgements We thank Amina Bassit for her assistance by sharing her
expertise in the topic, as well as the reviewers’ constructive remarks. Hervé
Chabanne has been partially supported for this work by Horizon Europe project
ATHENA (Grant agreement ID: 101139941).

References

1.

10.

11.

12.

13.

14.

15.

16.

BAJARD, J., EYNARD, J., HASAN, M. A., AND ZuccA, V. A full RNS variant of
FV like somewhat homomorphic encryption schemes. In SAC (2016), vol. 10532
of LNCS.

BassiT, A., HAHN, F., PEETERS, J., KEVENAAR, T., VELDHUIS, R. N. J.; AND
PETER, A. Fast and accurate likelihood ratio-based biometric verification secure
against malicious adversaries. IEEE Trans. Inf. Forensics Secur. 16 (2021).
Bassit, A., HAnN, F., VELDHUIS, R. N. J., AND PETER, A. Multiplication-
free biometric recognition for faster processing under encryption. In IJCB (2022),
IEEE.

Bassit, A., Haun, F., VELDHUIS, R. N. J., AND PETER, A. Improved
multiplication-free biometric recognition under encryption. In IEEE Transactions
on Biometrics, Behavior, and Identity Science (2023), IEEE, p. Advance online
publication. https://doi.org/10.1109/TBIOM.2023.3340306.

BovLE, E., CHANDRAN, N., GiLBOA, N., Gupta, D., IsHal, Y., KuMaAR, N.,
AND RATHEE, M. Function secret sharing for mixed-mode and fixed-point secure
computation. In EUROCRYPT (2) (2021), vol. 12697 of LNCS.

CHECRI, M., SIRDEY, R., Boubcuica, A., AND BULTEL, J.-P. On the practical
cpa d security of “exact” and threshold fhe schemes and libraries. In Annual
International Cryptology Conference (2024), Springer, pp. 3-33.

FAN, J., AND VERCAUTEREN, F. Somewhat practical fully homomorphic encryp-
tion. JACR Cryptol. ePrint Arch. (2012).

HALEVI, S., PoLYAKOV, Y., AND SHOUP, V. An improved RNS variant of the
BFV homomorphic encryption scheme. In CT-RSA (2019), vol. 11405 of LNCS.
Huang, G. B., RamMESH, M., BErG, T., AND LEARNED-MILLER, E. Labeled
faces in the wild: A database for studying face recognition in unconstrained envi-
ronments. Tech. Rep. 07-49, University of Massachusetts, Amherst, October 2007.
IBARRONDO, A., CHABANNE, H., AND ONEN, M. Funshade: Function secret shar-
ing for two-party secure thresholded distance evaluation. Proc. Priv. Enhancing
Technol. 2023, 4 (2023).)
IBARRONDO, A., KERENCILER, I., CHABANNE, H., DESPIEGEL, V., AND ONEN, M.
Monchi: Multi-scheme optimization for collaborative homomorphic identification.
In THEMMSec (2024), ACM. B
IBARRONDO, A., KERENCILER, I., CHABANNE, H., DESPIEGEL, V., AND ONEN, M.
Monchi: Multi-scheme optimization for collaborative homomorphic identification.
In TACR Cryptol. ePrint Arch. (2024).

InsiguT, T. Lattigo v5. Online: https://github.com/tuneinsight/lattigo,
Nov. 2023. EPFL-LDS, Tune Insight SA.

Jain, A. K., FLynN, P., AND Ross, A. A. Handbook of biometrics. Springer
Science & Business Media, USA, 2007.

MoucHET, C., TRONCOSO-PAsTORIZA, J. R., Bossuar, J., AND HuUBAUX, J.
Multiparty homomorphic encryption from ring-learning-with-errors. Proc. Priv.
Enhancing Technol. 2021, 4 (2021).

SHAMIR, A. How to share a secret. Commun. ACM 22, 11 (1979).

https://github.com/tuneinsight/lattigo

	Another Walk for Monchi

