
Attestation Proof of Association
– provability that attestation keys are bound to the same hardware

and person –

Eric R. Verheul
eric.verheul@logius.nl

Version 1.2, 19th January 2025

Abstract We specify a wallet provider issued attestation called Wal-
let Trust Evidence (WTE) and three related specific instructions for the
EUDI wallet cryptographic hardware, most notably the generation of a
Proof of Association (PoA). These allow the EUDI wallet providing veri-
fiable assurance to third parties (issuers, relying parties) that attestation
private keys are not only bound to conformant cryptographic hardware
but also that they are bound to the same such hardware. This allows
the EUDI wallet meeting eIDAS Level of Assurance “high” as well as
operating in a privacy friendly manner. The instructions specified in this
document cater for convenient implementation in all envisioned EUDI
wallet architectures including those based on a GlobalPlatform [23] based
Secure Element such as an eID-card or an embedded SIM (eSIM). By
their simplicity, the three instructions also allow for convenient Common
Criteria certification. This document is a further refinement and cryp-
tographic concretisation of the WTE/PoA logic specified in the wallet
Wallet Architecture and Reference Framework [1], which is based on the
EPIC-09 result developed in a cooperation between the NI-Scy consor-
tium and the eIDAS expert group. However, the present draft document
is meant for discussion only and not approved by the NI-Scy consortium,
the eIDAS expert group or Dutch government. This paper concentrates
on irrefutable PoAs but also indicates how refutable PoAs can be formed
providing plausible deniability which can be beneficial in some use cases.

As a side note this paper introduces in an annex the construction of Self
Generated Verifiable Pseudonyms (SGVPs). These allow a wallet/user to
generate pseudonyms based on information agreed with a relying party,
e.g. an URL, and to prove these are correctly formed. Together with the
proof of association this allows cryptographically binding (disclosed parts
of) attestations with these pseudonyms. This enables various use cases
such as an employee representing an organisation in a privacy friendly
way using an chamber of commerce attestation cryptographically bound
to a separate SGVP-pseudonym. Such functionality currently forms the
privacy basis of the Dutch eRecognition scheme (eherkenning.nl).

Keywords: eIDAS assurance level High, EUDI wallet, Key attestation,
Privacy friendly attestation issuance and presentation, Wallet Trust
Evidence

eherkenning.nl

Contents
1 Introduction . 1
2 Security problem description . 5

2.1 Three fundamental WSCD security requirements 5
2.2 Three fundamental WSCD instructions . 10

3 A proof of association proposal . 13
4 Further implementation notes . 24

4.1 Three example WTE architectures (efficient, privacy friendly,
PID-bound) . 24

4.2 Freshness of associated keys . 26
4.3 Relation to Idemix/BBS+ protocols . 26

5 References . 28
A Android StrongBox key-attestation . 30
B Use of WSCD instructions in PID issuance (informative) 31
C Use of WSCD instructions in PID based issuance (informative) 33
D Use of WSCD instructions in presentations of PID based attestations

(informative) . 34
E Cryptographic and mathematical background . 35
F Example applications of Proposition 3.5 (informative) 41
G ASN.1 format for Proof of Association (informative) 43
H Self Generated Verifiable Pseudonyms (SGVP) . 44

H.1 SGVP building blocks . 44
H.2 Sketches of how SGVP pseudonyms can be used in practice 47

List of Figures

1 EUDI wallet overview . 2
2 mDL outline . 6
3 PID and mDL trust relation . 8
4 Selectively combining and linking PID-bound attestations 8
5 Chamber of commerce (CoC) use case example . 9
6 The distributed WSCD . 22
7 Optimally efficient WTE architecture . 24
8 Privacy friendly WTE architecture . 25
9 PID-bound WTE architecture . 26
10 Android StrongBox attested key (leaf) . 30
11 Third party challenge in key attestation . 30
12 Straightforward application of Proposition 3.6 . 41
13 Demonstrating raw ECDSA signing without actually doing it 42
14 Application of Proposition 3.7 . 42

VERSION CONTROL

Version Date Description

0.1 2024-02-21 Initial Draft

0.2 2024-03-05 • Changed title
• Further clarification and typo fixing
• Added motivation and informative examples (annex)

0.3 2024-03-11 • Further clarification and typo fixing
• Added proof of association heuristics in Section 3
• Added Section 4.3 indicating compatibility with BBS+ and Idemix protocols

0.4 2024-03-19 • Processed first comments
• Added relevance of (WTE) attestation signature soundness to Section 3
• Only kept the Schnorr based PoA proposal and removed the ECDSA ones.

0.5 2024-04-10 • Added abstract
• Added ECDH-MAC specification to Annex E following ISO 18013-5
• Added the distributed WSCD (Figure 6)
• Added security proof to Section 3

0.6 2024-04-26 • Fixed typos
• Added further clarification and examples
• Added missing proofs of possession in informative Annexes B, C.

0.61 2024-05-03 • Added one extra mechanism in Section 3 avoiding the wallet to rawly sign an
issuer challenge

• Added new Annex F illustrating the three mechanisms avoiding the wallet to
rawly sign an issuer challenge in data flows

0.62 2024-05-26 • Illustrated the flexibility of the WTE/PoA logic in Section 4.1 by show-
ing three WTE architectures with different privacy and security properties
whereby also introducing the Issuer Trust Evidence (ITE) object; issuer spe-
cific WTEs avoiding linkability.

• Added the HSM based wallet in Figure 6.

0.63 2024-05-30 Added comparison with “simplified WTE/PoA” of the draft standard ISO
23220-3 [33, Annex C.6.5] at the end of Section 2.

0.64 2024-06-09 For simplicity the document now only discusses the attestation signature al-
gorithms specified in ISO 18013-5 [32], i.e. EdDSA, ECDSA and ECDH-MAC.

1.0 2024-09-18 Finalized for publication

1.1 2025-01-07 • Updated the motivation of security requirement SW1 by use case of crypto-
graphically binding mobile driving license photo to PID resident address

• Added in Annex G a pseudonym construction which together with the proof
of association can cryptographically bind any (part of) an attestation/PID
to a pseudonym

• Added references to the eIDAS implementation regulations published on 28
November 2024.

1.2 2025-01-19 Renamed the term Pseudonym Deriver to Pseudonymisation Domain follow-
ing the European Data Protection Board (EDPD) draft Guidelines on Pseud-
onymisation [20].

1. INTRODUCTION

1 Introduction
The update on 11 April 2024 [14] to the 2014 eIDAS regulation [13] introduces
an European Digital Identity Wallet (hereafter: EUDI wallet or for brevity some-
times simply wallet). According to [14], the EUDI wallet “shall enable the user,
in a manner that is user-friendly, transparent, and traceable by the user, to [..]
securely request, obtain, select, combine, store, delete, share and present, under
the sole control of the user, person identification data and, where applicable, in
combination with electronic attestations of attributes, to authenticate to relying
parties”.

These Relying Parties can be public and private services whereby the services
can be either in online or offline mode. In offline mode the interaction between
the user and relying party occurs at a physical location using close proximity
technologies. One can think of a user presenting the mobile driving license to a
police agent. The EUDI wallet is provided to users by a Wallet Provider. As every
European member state is required to provide an EUDI wallet to its citizens,
each member state shall have at least one Wallet Provider. An EUDI wallet
allows the user to present attributes to relying parties in the form of electronic
attestation of attributes (hereafter: attestations). According to [14] an attribute
means“a characteristic, quality, right or permission of a natural or legal person
or of an object. Also, “electronic attestation of attributes” means an attestation
in electronic form that allows attributes to be authenticated. Compare Figure 1
below.

Attestations are issued by Attestation Providers. Both provider types are con-
sidered trusted and can either be private or public. Public providers are typically
government or state-affiliated organizations offering services to the public, while
private providers are owned and operated by independent, non-governmental
entities. Particular public providers provide Personal Identification Data (PID)
which contain the basic identification data of the user comparable with a conven-
tional identity document but then usable online. Compare the annex of eIDAS
implementation regulation 2024/2977 [16] which specifies the mandatory and
optional PID data elements. Mandatory elements include first and last name,
date of birth, place of birth and nationality of the holder. Optional elements
include the holder resident address and portrait (facial image) in JPEG format.
Although a PID technically resembles an attestation it formally is not necessar-
ily an attestation. For ease of presentation we sometimes speak of the issuance
or presentation of (PID) attestations. Typically, the PID are the first data issued
to the EUDI wallet.

The update of the eIDAS regulation stipulates a “Common Interface” between
the EUDI wallet, attestation providers and relying parties. This interface is fur-
ther specified in eIDAS implementation regulation 2024/2982 [19] which refers
to ISO 18013-5 (’mdoc’) for offline mode and to ISO 18013-7 for online mode.
The latter further refers to OpenID for Verifiable Credentials [41]. The EUDI
wallet is described in more detail in the Architecture and Reference Framework
[1].

1

1. INTRODUCTION

Figure 1. EUDI wallet overview

Although [14] allows for other types of attestations, in the context of this doc-
ument a PID and attestations are functionally considered PKI-certificates. That
is, a PID/attestation is a collection of user attributes supplemented with a public
key and signed by a (PID) attestation provider. The user can prove attestation
ownership to a party by electronically signing a message, e.g. a challenge, gener-
ated by the party. We note that PID/attestation have a security/privacy feature
called “selective disclosure” specified in Article 5 of the eIDAS implementation
regulation 2024/2982 [19] on wallet protocols and interfaces. This feature is typ-
ically not supported by conventional PKI-certificates and allows a holder to only
reveal certain attributes from a PID/attestation, i.e. not all attributes. This al-
lows for instance to only reveal the resident address and nationality from the
PID to a relying party and not the other attributes such as last name and date of
birth. Cryptographically selective disclosure is implemented by not including the
attributes themselves in the PID/attestation but seeded hash values of those, cf.
[32]. During presentation the holder only provides the seeds/attributes it wants
to present.

In this paper focus on the signature algorithms stipulated in the mobile
driving licence standard [32], i.e., EdDSA [27,39], ECDSA [6,30,39] and “ECDH-
MAC” signing as defined in [32] itself. Strictly speaking ECDH-MAC is not a
digital signature scheme as it lacks the non-repudiation property which actually
is the reason it is part of the mobile driving licence standard. For convenience we
have also specified the generation and verification of ECDSA and ECDH-MAC
signatures in Annex E in Algorithms 5 - 8.

During issuance of the attestation to a user, the attestation provider per-
forms identity proofing of the user, ensuring that the issued attributes belong
to the user. Typically, the PID issuance could be based on a national eID-card
from whereas other attestations could be issued based on the PID itself. A fun-
damental security property of an attestation is that during attestation presence,

2

1. INTRODUCTION

the EUDI wallet user can cryptographically prove holdership to relying parties.
This is accomplished by proving possession of the private key of which the corres-
ponding public key is bound by the attestation issuer during attestation issuance.

The attestation public/private keypair are managed by the EUDI wallet in
a component called the Wallet Secure Cryptographic Device (WSCD) in the [1],
cf. Figure 1. The WSCD can perform basic key-management operations (e.g.,
generate signing public/private keypair, sign with certain private key, delete key),
whereby keys are managed and controlled in a secure fashion. This includes that
private keys managed in the WSCD (indicates as keys in Figure 1) cannot be
exported in plaintext from the WCSD and that they are protected against other
type of attacks on the WSCD. This property is fundamental for EUDI wallet
security as otherwise attestations could for instance be cloned.

Both the issuance and presentation of (PID) attestations need to conform to
[15] which includes that the EUDI wallet authentication mechanism should pro-
tect against attackers with a “high attack potential”. Although not formalized,
the general interpretation of this protection is that this implies that at least the
WSCD residing in the EUDI wallet is Common Criteria certified [31] at assur-
ance level EAL4+. For the EUDI wallet this interpretation is made explicit in
eIDAS implementation regulation 2024/2981 [18].

Next to security, also privacy protection plays an important role in the EUDI
wallet. Several articles of the eIDAS regulation update [14] stipulate specific
privacy requirements the EUDI wallet must adhere to. For instance, Article 12
stipulates adherence to the privacy by design principle. Also, adherence to data
minimisation is stipulated in the preamble of the eIDAS regulation. Four WSCD
architectures are envisioned:

External (“Smart Card”) The WSCD here is a chip external to the mobile
device, e.g., a GlobalPlatform [23] based Javacard Secure Element.

Internal (eUICC, eSIM, eSE) The WSCD here is based on a dedicated, in-
ternal chip integrated in the mobile device, e.g. eUICC, supporting Javacard
based on GlobalPlatform.

Remote HSM The WSCD here is based on a Hardware Security Module (HSM)
at the Wallet Provider and where the WSCA takes the form of a Wallet Pro-
vider Trusted Service Application interacting with the HSM.

Internal Native The WSCD is solely based on the native cryptographic hard-
ware of a mobile device (Apple iOS/Secure Enclave and Android/Hardware
Backed Keystore or Strongbox). In this situation it is hardest meeting the
high EUDI wallet security requirements.

This document
In this document we specify a wallet provider issued attestation called Wallet
Trust Evidence (WTE) and three related specific WSCD instructions. These
allow the EUDI wallet providing verifiable assurance to third parties (issuers,
relying parties) that attestation private keys are not only bound to a conformant
WSCD but also that they are bound to the same WSCD. This allows the EUDI
wallet meeting eIDAS Level of Assurance “high” as well as operating in a privacy
friendly manner. The instructions specified cater for convenient implementation

3

1. INTRODUCTION

in all envisioned EUDI wallet architectures including those based on a Global-
Platform [23] based Secure Element [23] such as an eID-card or an eSIM. By
their simplicity, the three instructions also allow for convenient Common Cri-
teria certification [31] of the EUDI wallet. as required in eIDAS implementation
regulation 2024/2981 [18]. This document is a further refinement and concretisa-
tion of the EPIC-09 result [36] developed in a cooperation between the NI-Scy
and the eIDAS expert group. The focus of this document are WSCD imple-
mentations allowing for trusted logic (e.g. Javacard), i.e. the first two WSCD
architectures. The first instruction (“key-attestation”) is quite common practice
for cryptographic hardware and the second is easily implemented in trusted lo-
gic. Therefore this document focusses on the cryptographic specification of the
third WSCD instruction, i.e., the generation of a Proof of Association.

Document outline

• Section 2 starts with a security problem description from which we derive
three fundamental WSCD security requirements leading us to three specific
WSCD instructions. The last instruction is the generation of a proof of as-
sociation.

• Section 3 is the core of the document. It proposes a proof of association
based on the Schnorr zero-knowledge proof. For simplicity we only work out
the non-interactive version which is irrefutable which can be beneficial in
some use cases and undesirable in other. However, we also indicate the use
of two interactive proof techniques which are refutable, cf. Note 5 on page
16.

• In Section 4 we provide further implementation notes including an indicating
that the WTE construction and the proof of association proposed in this
document can also be implemented in the context of anonymous credentials
such as based on BBS+ [2,8] or Idemix [9].

• Section 5 contains the references used in this document.
• Annex A is informative and contains an illustration of Android StrongBox

key-attestation.
• Annexes B, C and D are informative illustrations of the use of the three

WSCD instruction in three use cases.
• Annex E contains the cryptographic and mathematical background used in

Section 3.
• Annex F contains three example applications of Proposition 3.6, two of which

avoid the use of raw ECDSA signing.
• Annex G contains a proposal for a proof of association specification in ASN.1

format.
• Annex H specifies a pseudonym construction which together with the proof

of association can cryptographically bind any (part of) attestation/PID to
a pseudonym.

4

2. SECURITY PROBLEM DESCRIPTION

2 Security problem description

In Section 2.1 we first heuristically derive three fundamental WSCD security
requirements by analysing the following three common EUDI wallet use cases:

1. Attestation issuance (in general).
2. Issuance of another attestation based on the PID.
3. Presentation of multiple attestations to a relying party.

These security requirements then lead us in Section 2.2 to three fundamental
instructions a WSCD should support. We motivate that the first two instructions
are either common practice or easily implemented in cryptographic hardware
supporting trusted logic such as GlobalPlatform [23]. In Section 3 we propose
cryptographic specifications implementing the third instruction.

2.1 Three fundamental WSCD security requirements

Historically, high assurance (e.g. qualified) PKI-certificates are based on smart
cards, i.e. cryptographic hardware, holding private cryptographic keys in a non-
exportable fashion. The public/private key generation in the smartcard is under
full control of the certificate issuer taking place on the issuer premise. In this
way, the issuer is assured that the public key he binds in the certificate has its
private key residing in the smartcard and not for instance in a software based
keystore.

The nature of the EUDI wallet completely changes this setup. Here the pub-
lic/private key generation takes place in the WSCD based on an instruction from
the Wallet App which is under control of the user. Without further arrange-
ments, an attestation provider has no assurance that the public key he binds
in the attestation has its private key bound to the cryptographic hardware, i.e.
resides in it. Indeed, a fraudulent user or malicious software running on the user
mobile device could manipulate the key generation instruction from the Wallet
App to the WSCD and replace it with a software based key generation or by a
key generation instruction to a EUDI wallet/WSCD of another user. In the first
abuse case the attestation private key would be copyable making the attestation
clonable. In the second abuse case the other user could present the attestation
of the first user, e.g. a diploma, as being hers. Modern mobile operation sys-
tems support something called “Mobile App attestation” allowing parties (like
an issuer in our context) to assess that a mobile application or the device is not
tampered with (“rooted” or “jailbroken”). Both Apple’s devicecheck [10] and
Google’s Safetynet [11] provide for Mobile App attestation. However, as Mobile
App attestation is provided by the mobile operation system, i.e. software, it has
a large attack surface1 and it commonly accepted amongst experts that it can
never protect against a high attack potential as the eIDAS regulation requires.

In other words, an attestation provider cannot simply trust the EUDI wallet,
even when it is APP-attested, that the public key sent during attestation issuance
is indeed bound to a certified WSCD. This brings us to the first fundamental
WSCD security requirement:

1 Compare https://github.com/kdrag0n/safetynet-fix

5

https://github.com/kdrag0n/safetynet-fix

2. SECURITY PROBLEM DESCRIPTION

ICW (InCertWSCD) During issuance the PID/attestation provider must be
able to verify that the PID/attestation public key sent by the EUDI wallet
to be included in the attestation by the issuer, is bound to a certified WSCD.
That is, that the corresponding private key resides in a certified WSCD.

If the attestation provides assurance that the attestation private key is bound
to a WSCD, then the WSCD certification shall be such that it implies that the
attestation private key cannot be exported out of the WSCD. Requirement ICW
is well-known and is commonly addressed by a technique called key-attestation, a
somewhat overloaded term in our context given the use of the term “attestation”
in the eIDAS regulation and in Mobile App attestation.

A simple key-attestation implementation is that the cryptographic hardware
supplier places a certified signing key (“attestation key”) in the hardware dur-
ing its production. That is, the attestation private key is placed in the hardware
and the attestation public key is bound in an attestation signer certificate that
is part of trusted certificate chain. During key generation, the hardware not only
returns the newly generated public key but also a key-attestation certificate on
this key signed by the attestation key. This certificate can also include a chal-
lenge of a relying party ensuring freshness of the generated key. This technique
is supported by GlobalPlatform [23] but also by the Android Keystore for both
its Hardware Backed Keystore (TEE based) and its EAL4+ certified StrongBox
chip, cf. [45]. In Figure 10 of Annex A this setup and the introduced termino-
logy is shown based a StrongBox chip of a Google Pixel 3a. We also remark that
this key-attestation certificate can also be fulfilled by the Secure Area Attest-
ation Object (SAAO) specified in the emerging ISO 23220-3 standard [33]. In
the terminology of ISO 23220-3 the attested key is called the “SA-Attestation
PublicKey”.

Now assume that the EUDI wallet of a user has been issued a PID meeting
property ICW, i.e. the PID provider could verify that the PID private key is
bound to a certified WSCD. Suppose that the EUDI wallet user wants to have
issued a mobile driving license [32] based on her PID. A mobile driving license
can be considered an attestation of attributes holding basic holder identification
data, facial image and a set of attributes representing the holder permissions for
a driving a vehicle. Compare Figure 2 below.

Figure 2. mDL outline

The issuance of the mobile driving license starts with an identification of the
user based on her PID followed by a lookup in the national driving license data-

6

2. SECURITY PROBLEM DESCRIPTION

base. During issuance the issuer does not only need assurance that the mobile
driving public key sent by the EUDI wallet is bound to a certified WSCD, e.g.
Requirement ICW, but also that the public key is bound to the same WSCD
as the PID is. Indeed, without such assurance a fraudulent user or malicious
software running on the user mobile device could manipulate the key generation
instruction from the Wallet App to the WSCD and replace it with a key genera-
tion instruction to a EUDI wallet/WSCD of another user, or worse, to a software
keystore making the private key copyable. In this abuse case another user could
then present the mobile driving license of the first user, as being hers. If the
private key was generated in a software keystore, the mobile driving license is
freely distributable and could be presented by any user. In physical use cases,
e.g, the user presenting the mobile driving license to a police agent, the biomet-
ric validation against the facial image can be bypassed by techniques commonly
known as “look-alike fraud”. In fact, such techniques are the reason that conven-
tional RFID chip based driving licenses and passports support an anti-cloning
technique known as Active Authentication, cf. [25]. The avoidance of such abuse
cases brings us to the second fundamental WSCD security requirement.

SW1 (SameWSCD1) During attestation issuance an issuer must be able to
verify that the attestation public key sent by the EUDI wallet to be included
in the attestation is not only bound to a certified WSCD but is also bound
to the same certified WSCD as the PID public key is.

The third and last fundamental WSCD security requirement is the counterpart
of the second WSCD security requirement for relying parties. Assume that the
EUDI wallet user has been issued a PID and a mobile driving license and as
discussed above and that the issuer have been assured of Requirement SW1.
That is, that the mobile driving license private key resides in the same certified
WSCD as the PID private key. Now suppose that the user wants to present her
resident address from the PID together with the facial image from the mobile
driving license to a municipal waste collection facility. Compare Figure 3 below.

7

2. SECURITY PROBLEM DESCRIPTION

Figure 3. PID and mDL trust relation

The idea behind this use case is that this facility only provides its services to
persons having their residency in that municipality which is actually the case
in the Netherlands. Note that this use case deploys the selective disclosure fea-
ture of PID/attestations discussed in Section 1. The municipal waste collection
facility would need to be assured that the PID resident address and the mobile
driving license facial image correspond to one and the same user, i.e. that they
are bound to the same WSCD as the user PID is. Indeed, without such assur-
ance a fraudulent user or malicious software running on the user mobile device
could present the PID resident address of one user/wallet and the mobile driving
license facial image from another. Similar wallet use cases exist where attributes
from various (PID-bound) attestations need to reliably combined. Such security
functionality has value at its own, but is also a building block for the GDPR
data minimization principle as well as for the “need to know” principle practised
in high-end security applications. Compare Figure 4 below.

Figure 4. Selectively combining and linking PID-bound attestations

A more generic use case is related to Article 14 of eIDAS implementation reg-
ulation 2024/2979 [17]. This article stipulates that wallets must be able to gen-
erate unique user pseudonyms that are relying party specific and provide these
to these relying parties “either standalone or in combination with any person

8

2. SECURITY PROBLEM DESCRIPTION

identification data or electronic attribute attestation requested by that wallet-
relying party”. We note that pseudonyms allow relying parties recognizing the
user without identifying her, which is required in many use cases. Although,
Article 14 does not explicitly specify this, preamble (14) of implementation reg-
ulation 2024/2979 states that these pseudonyms “should enable wallet users
to authenticate themselves without providing wallet-relying parties with unne-
cessary information” (our underlining). From a cryptographic perspective, a nat-
ural implementation to meet these requirements is to let pseudonyms be derived
from some of the PID data and be provided to relying parties as separate at-
tribute attestations. These attestations can be either issued by a pseudonym
attribute attestation provider or by the user herself. The latter is more challen-
ging but feasible as is illustrated by the construction of Self Generated Verifiable
Pseudonyms (SGVP) specified in Annex H. When such pseudonym is combined
and provided with data from the PID (or another attribute attestation) to a
relying party as required by Article 14, it is vital that the relying party can be
assured that the pseudonym attestation is bound to same WSCD as the user PID
is. Such functionality would then for instance enable to reliable link a pseudonym
to a power of attorney attestation by the chamber of commerce. This allows an
employee of an organisation to act on behalf of that organisation to the tax au-
thority in a persistent way whereby only providing minimal personal data, e.g.
the name of the organisation, the pseudonym and (optionally) the last name of
the person. We remark that the Dutch e-recognition scheme (eHerkenning.nl)
functionally works this way, i.e. authenticates employees using a pseudonym and
the employee last name to governmental organisations. Compare Figure 5 be-
lows where this is illustrated for the CEO (James Quincey) of the Coca-Cola
company.

Figure 5. Chamber of commerce (CoC) use case example

An other application is based on a shareholder attestation issued by the chamber
of commerce allowing for anonymous online voting during shareholder meetings.
These applications bring us to the third fundamental WSCD security require-
ment.

SW2 (SameWSCD2) During presentation of multiple attestations a relying
party must be able to verify that public keys in different attestations are not
only bound to a certified WSCD but are also bound to the same certified
WSCD as the PID public key is.

9

2. SECURITY PROBLEM DESCRIPTION

Claim-based binding
One can also base a EUDI wallet on security requirement ICW only whereby
avoiding the necessity of security requirements SW1 and SW2 by a technique
called “claim-based binding”, cf. [41]. In this context only the PID contains a
WSCD bound public key, i.e. based on security requirement ICW. All other
attestations are linked to the PID by letting the attestation issuer copy all PID
data in the other attestations as well. So, during the issuance of, say, a diploma
attestation the user presents her PID to the issuer. After the appropriate veri-
fications the diploma issuer lets all PID data be part of the diploma attestation
itself. During diploma attestation presentation the user also presents her PID
and the diploma attestation. By verifying the common PID data the relying
party can determine the diploma belongs to the PID user. One does not need to
copy all PID data to the other attestations but only a part that is directly identi-
fying, e.g. a social security number. The PID issuer could also place specifically
designated data (‘linking attributes’) in the PID for this purpose.

In the discussed claim-based setup the non-PID attestations do not contain
a public key and security requirements SW1 and SW2 are met in an empty
way. Note that such non-PID attestations are not in scope of this document as
we assumed that all attestations contain their own public key. If in the discussed
claim-based setup the non-PID attestation would contain their own public key,
then security requirements SW1 and SW2 are not met as the second abuse
case discussed above would apply. Alternatively we could also reuse the PID
public key in all attestations but that would give linkability issues (the public
key becomes a “supercookie”) and conflicts with several key management good
practices, cf. [40]. One of the conflicting good practices is that cryptographic
keys should only have one purpose. As an EUDI wallet illustration for this: a
signature that verifies with the PID public key would then also verify with the
(diploma) attestation public key (as it is the same public key). This can give rise
to a dispute between user and a relying party on whether the user authenticated
with her PID or with the diploma attestation.

Although claim-based binding can be a valuable way of binding attestations
to the user, its use of shared linking data in claim-based binding introduces
privacy challenges related to linkability. The approach introduced in this doc-
ument is based on binding (PID) attestations cryptographically which has less
privacy and security challenges. Wallet implementations could use a mix of both
techniques.

2.2 Three fundamental WSCD instructions

We first discuss a basic method to meet all three WSCD security requirements
from Section 2.1 and motivate that method this is not suitable on ground of
insufficient privacy protection and complexity.

In this basic method the WSCD has the ability to generate attested keys as
indicated in Section 2.1. Each newly generated (PID) attestation key is part of

10

2. SECURITY PROBLEM DESCRIPTION

an attestation certificate that is part of a trusted certificate chain, cf. Figure
10 of Annex A. The key-attestation certificate holds a supplier statement on
the WSCD (eIDAS conformity) certification. From this statement an issuer can
also be assured that the attestation private key is WSCD bound and is properly
managed there. This would allow for adherence with security requirement ICW.
Additionally, to allow issuers and relying parties verification that two attesta-
tion private keys are bound to the same WSCD, the EUDI wallet sends along
a common attestation signer certificate. This would give adherence to security
requirements SW1 and SW2.

The basic method has the following issues:

(A) It conflicts with the EUDI wallet privacy by design and data minimisation
principles stipulated in the eIDAS regulation update [14]. Indeed, the com-
mon attestation signer certificate allows linking the user over various issuers
and relying parties.

(B) The basic method uses that key-attestations uniquely identify the WSCD,
e.g., to a serial number of the WSCD, which is avoided in modern key-
attestation methods, e.g. used by Android [12] or [22] exactly to avoid the
linking issue indicated in the previous point. That is, the basic method does
not work and in fact conflicts with current privacy friendly key-attestation
methods.

(C) The attestation signer certificate might contain WSCD information, e.g.
serial numbers, date of production that is unnecessary for the issuers and
relying parties. Such information might allow for further user linking or even
allow for identification of the EUDI wallet user. To illustrate, another mobile
application can also use the cryptographic hardware the WSCD is based on.
Then the other mobile application can link the user through the attestation
signer certificate. Actually, the other mobile application might be specifically
developed to facilitate this linking and designed such that users are tempted
to install it.

(D) It burdens issuers and relying parties as they would need to have access to
all WSCD supplier trust chains and to be able verify if the WSCD statement
in the attestation certificate is adequate for use in an eIDAS EUDI wallet.

To address issues (C) and (D) point we start by introducing the Wallet Trust
Evidence (WTE)). The WTE is an attestation itself issued by the Wallet Pro-
vider based on a WSCD specific key-attestation certificate. During WTE issu-
ance, the EUDI wallet generates an attested public/private key pair (PubWTE,PrivWTE)
on request of the wallet provider, i.e. a limited version of Requirement ICW.
The wallet provider verifies the key-attestation certificate, the WSCD conformity
statement therein and the trust chain. Additionally, the wallet provider requires
the wallet to prove possession of the private key PrivWTE. If these verifications
are successful, then the Wallet Provider issues the WTE attestation on the pub-
lic key PubWTE. The WTE only contains minimal data; essentially nothing more
than that the WSCD is eIDAS-conformant. Also, the WTE public key PubWTE

11

2. SECURITY PROBLEM DESCRIPTION

uniquely identifies the WTE and the WSCD it refers to. As indicated in Sec-
tion 2.1, such key-attestation certificate are supported by GlobalPlatform, the
Android Keystore and in the emerging ISO 23220-3 standard (“SAAO”).

For the WTE construction, we do require the WSCD to support general key-
attestation as in the basic method but only its use it as part of WTE issuance.
We formalize this as a first WSCD instruction.

WSCD-Instruction 1 Generate attested WTE-key
Input: key properties, challenge C
Output: WTE public key PubWTE,

WTE Key-Attestation Certificate K containing PubWTE, C

Return PubWTE, K // WSCD specific

Replacing the key-attestation certificate with the WTE addresses issues (C) and
(D) but not issues (A) and (B). For this we introduce the new mechanism of key
association. This mechanism avoids that each newly generated attestation key is
issued a new key-attestation certificate but instead builds further on the WTE
itself. Key association allows the EUDI wallet:

(a) to generate a new key in the WSCD that is associated to the WTE public
key, and

(b) to cryptographically prove this association to issuers and relying parties.

The WSCD trusted logic then ensures that the new key resides in the same
WSCD as is referred to by the WTE, or more specific referred to by the WTE
public key PubWTE. If a public key Pub is associated to a WTE public key
PubWTE, we will also allow the generation of new keypair that is associated to
Pub and then by inheritance also to the WTE public key PubWTE. In this way
we mathematically model association as a transitive relation.

The association mechanism is based on two additional WSCD instructions
formalized below. Instruction #2 allows the generation of a new key associated
with a given WTE key and Instruction #3 provides a proof of association for
two keys that are associated. To support association, the WSCD maintains a
secure association registration. One can think of an internal Association File
holding multiple lines each of which corresponds to the associated keys in the
WSCD. Instruction #1 (Generate attested WTE-key) then creates a new line in
the Association File holding a reference to the newly generated WTE-key.

WSCD-Instruction 2 Generate key associated to WTE
Input: Reference RfWTE to WTE key, key properties
Output: Generated public key Pub associated to WTE key

1: Look up Association File line of WTE key RfWTE // error on failure

2: Generate new keypair Pub,Priv with requested key properties

3: Write entry in Association File line reflecting that public key Pub
is associated with WTE key

4: Return public key Pub

12

3. A PROOF OF ASSOCIATION PROPOSAL

WSCD-Instruction 3 Generate Proof of Association
Input: Associated public keys Pub1,Pub2
Output: PoA(Pub1,Pub2)

1: Verify in Association File that public keys Pub1,Pub2 are associated

// error on failure

2: Generate proof of association PoA(Pub1,Pub2) // WSCD specific

3: Return proof of association PoA(Pub1,Pub2)

In Annexes B, C and D we show how the WTE and the three WSCD instructions
provide for the three fundamental WSCD security requirements formulated in
Section 2.1. In the next Section 3 we propose a cryptographic algorithm for the
generation of a proof of association, i.e. WSCD Instruction #3.

Draft ISO 23220-3 approach to WTE
We briefly discuss the approach in Annex C.6.5 of the emerging ISO 23220-3
standard [33] and compare it with the WTE/PoA approach. In the ISO 23220-
3 approach the “mdoc app provider”, i.e. the wallet provider in our context,
re-issues individually attested keys in the form of a public key array as part
of the issuing process. This approach implies that the wallet provider always
observes all attestation public keys as he puts them in the public key array.
This can be considered conflicting with [14, Article 5a(14)] and the GDPR data
minimalization principle. This issue is avoided in the WTE/PoA approach; the
wallet provider only observes the WTEs but not the attestation keys. Also, as
the ISO 23220-3 approach is dedicated to one issuer only, one cannot provide for
security objective SW2, cryptographically binding different attestations during
presentation. Finally, as indicated as Issue (B) on page 11 this approach does
not work with modern, privacy friendly key-attestation.

3 A proof of association proposal

In this section we specify a cryptographic method for the generation of a proof
of association. The cryptographic and mathematical background and notation
this section builds upon is placed in Annex E. In this proposal we only associate
public keys that are based on the same elliptic curve group represented in ad-
ditive notation as G = (〈G〉,+) of order q generated by a base point (generator)
G. That is, we can associate two public keys that are based on the same elliptic
curve, e.g. the NIST P-256 curve or the brainpoolP256r1 curve. However, we
cannot associate a NIST P-256 based public key with a brainpoolP256r1 based
public, nor can we associate RSA public keys. We think that this drawback is
acceptable in practice.

The cryptographic heuristic behind the association proposal is as follows. The
context is a WSCD that supports WSCD-Instruction 1 as discussed in Section
2.1. Let W = w·G be a certified WTE public key based on WSCD-Instruction
1. That is, the key W is bound to an attestation/certificate verifiably issued by
the wallet provider. From this attestation/certificate, parties can infer that the
private key w is managed in a WSCD that is certified to be compliant with the
updated eIDAS regulation [14]. What this means will be clarified later, but at

13

3. A PROOF OF ASSOCIATION PROPOSAL

this moment we assume that this at least includes that the WSCD adheres to
good practice key management and also that it supports the proof of associ-
ation trusted logic (which follows). For ease of reference we formulate this as a
definition.

Definition 3.1 A certified WSCD is compliant with the updated eIDAS regula-
tion [14], adheres to good practice key management, supports WSCD-Instruction
1 and also supports the proof of association trusted logic.

Now suppose that P = p·G is a public key bound to the same WSCD as the
WTE, i.e. the private key p is managed in the same WSCD as w is. The key
idea is that when the WSCD has registered that public key P is associated to
the WTE public key, the WSCD trusted logic will allow the computation of
the association key z = p·w−1 mod q. The proof of association is based on this
association key. It follows that

z·W = p·w−1·W = p·w−1·w·G = p·G = P.

That is, the key P can be considered a public key with respect to generator W
with private key z, i.e. the association key. Now suppose that a party can prove
to a verifying party that it has full control over both private keys z and p, i.e.,
can do arbitrary mathematical operations with these. Then this party can also
compute p·z−1 = w. That is, the party has full control over the private key w
too. By construction this means that this party must be the WSCD, as that is
the only party having full control over key w by construction.

Following this heuristic brings us to the following definition of proof of as-
sociation. The definition encompasses association between general public keys
and is thus broader than only between a WTE public key and an attestation
public key as in the heuristic. We formally define that a public key is associated
to itself, but we do not need a proof of association to prove this.

Definition 3.2 We use the context described above. A proof of association (PoA)
between different public keys P1 and P2 conveys to the verifier(issuer, relying
party) that the party that generated the PoA has full control over the association
key z = p2·p−11 , i.e., can do arbitrary mathematical operations with it.

In Algorithm 1 we have specified a proposal for the generation of a PoA based on
a Schnorr non-interactive zero-knowledge proof using the Fiat-Shamir heuristic
[21] similar to RFC 8235 [28].

14

3. A PROOF OF ASSOCIATION PROPOSAL

Algorithm 1 Proof of Association (PoA) generation
Input: optional verifier challenge C (byte array), two associated public keys
P1 = p1·G, P2 = p2·G with respective private keys p1, p2.
Output: PoA = {P1, P2, C, (r, s)}.
1: If P1 = P2 return error // P1, P2 need to be different

2: Compute association key z = p2·p−1
1 mod q. // note P2 = z·P1

3: Convert public keys P1 and P2 to byte arrays P̄1, P̄2 respectively

4: Select random k ∈ {1, ..., q − 1}.
5: Compute P ′1 = k·P1 = (x, y) and convert to byte array P̄ ′1. // commitment

6: Compute byte array H(P̄ ′1 ||P̄1 ||P̄2 ||C) and convert it to an integer r.
7: If r mod q = 0 then go to Line 4.

8: Compute s = k + r · z mod q.
9: If s = 0 then go to Line 4.

10: Return PoA = {P1, P2, C, (r, s)}.

The following algorithm specifies the verification of a PoA.

Algorithm 2 Proof of Association (PoA) verification
Input: WTE, PoA = {P1, P2, C, (r, s)}
Output: Acceptance of rejection of the PoA.

1: Verify P1 6= P2 on failure Return Error // P1, P2 need to be different

2: Verify the input, including that

r ∈ {1, 28·|q| − 1} and s ∈ {1, q − 1}, on failure Return False.

3: Convert public keys P1 and P2 to byte arrays P̄1, P̄2 respectively

4: Compute Q = s · P1 − r · P2 if Q = O Return False.

5: Convert Q to byte array Q̄. // i.e. of size 2·|p|
6: Compute byte array H(Q̄ ||P̄1 ||P̄2 ||C) and convert it to an integer v.
7: If v = r accept the PoA otherwise reject it.

The following proposition proves that the proof of attestation generated by Al-
gorithm 1 meets the requirements.

Proposition 3.3 The PoA generated by Algorithm 1 will be accepted by Al-
gorithm 2 and meets Definition 3.2.

Proof: For the first part of the proposition, let {P1, P2, C, (r, s)} be a PoA
generated by Algorithm 1. Then the following equalities hold for the point Q
appearing in Line 4 of Algorithm 2:

Q = s · P1 − r · P2 = (k + r · z)·P1 − r · P2 = k·P1 + r·(z·P1 − P2) = k·P1 (1)

The first equality is Line 4 of Algorithm 2, the second equality follows from the
construction of s in Line 8 of Algorithm 1, the third equality is straightforward
and the last equality follows as z·P1 = P2 by the definition of z in Line 2 of
Algorithm 1. From Equality (1) it follows that point Q is equal to point P ′1
appearing in Line 5 of Algorithm 1. It now follows that the hash inputs in Line
6 of both Algorithms 1 and 2 are equal and so are their outputs, i.e. r = v. It
follows that Algorithm 2 accepts the PoA.

15

3. A PROOF OF ASSOCIATION PROPOSAL

That the PoA generated by Algorithm 1 meets Definition 3.2 follows from
the soundness of the Schnorr non-interactive zero-knowledge proof. Compare [43,
Theorem 9.1]. �

We make some further notes on Algorithms 1 and 2:

1. As the Schnorr non-interactive zero-knowledge proof operates in zero-knowledge
the PoA based on it can be securely used in combination with various attest-
ation signing algorithms. Even simultaneous use is possible such as indicated
in ISO 18013-5 [32] that allows a signing key to be used for EdDSA, ECDSA
and ECDH-MAC signing.

2. The optional challenge choice in Algorithm 1 allows to make the PoA in-
teractive allowing a challenge of a verifier, e.g. a (PID) issuer in the EUDI
wallet context, to be included in the PoA. Compare the notes in Section 4.2.

3. One can naturally extend Algorithm 1 for an arbitrary number of associated
public keys by returning the pairwise proofs of association, e.g. PoA[P1, P2, P3]
consists of PoA[P1, P2] and PoA[P2, P3]. The order of the public keys is ir-
relevant.

4. Generation of a PoA (Algorithm 1)and verification of a PoA (Algorithm 2)
closely resembles the generation and a verification of an ECSDSA (Elliptic
Curve Schnorr Digital Signature Algorithm) signature [6,30,42]. This means
that if a platform supports ECSDSA then the proof of association is easily
implemented.

5. For simplicity of presentation we only work present a non-interactive proof.
This is quite efficient as this does not requires interaction with the verifier,
e.g. an issuer of relying party The non-interactive proof has the property of
being irrefutable, i.e. the user cannot deny on a later moment that certain
keys and thus the attestations they are bound to are associated. Depending
of the application this can be beneficial in some use cases and undesirable
in other. If the association is required to be refutable, one can use also the
interactive Schnorr zero-knowledge proof albeit at the expense of an extra
round between the wallet and the verifier. Alternatively on can only use the
“implicit zero-knowledge approach” from [3].

We require that a certified WSCD only generates a proof of association for public
keys that are bound to it and that are associated to the same WTE public key.
Conversely, if we have two public keys P1, P2 that are known to be bound to
certified WSCDs and for which a proof of association exists then the public
keys must be bound to the same certified WSCD. Indeed, if they were bound
to different certified WSCDs, then the party generating the proof of association
would be able to solve the Discrete Logarithm problem with respect to public
key P1 generated by the first WSCD and public key P2 generated by the second
WSCD. This is not possible as public keys P1, P2 are randomly generated as
certified WSCDs adhere to good key management practices (Definition 3.1). For
easy reference, we formulate this result as a proposition.

16

3. A PROOF OF ASSOCIATION PROPOSAL

Proposition 3.4 If two associated public keys are known to be bound to certified
WSCDs, then they must be bound to the same certified WSCD and associated to
the same WTE public key.

To solve the security problem described in Section 2 we need to show that this
proof of association implementation coincides with the WSCD notion of associ-
ation for which we need to prove the following fundamental result.

If a verifier is provided two proofs:

1. a proof of association passing Algorithm 2 between public key P = p·G and
a certified WTE public key W = w·G, and

2. a “suitable” proof of possession of the private key p,

then the public key P is bound to the WSCD the WTE refers to and is associated
to the WTE public key W .

Note that the part “and is associated to the WTE public key W” allows for
recursion whereby the public key P can take the role of W . Metaphorically
this resembles the folktale “Swan, stick on” whereby the WTE public key is
the swan and the public keys are the people recursively sticking to the swan.
What “suitable” means depends on the attestation signature algorithm used; we
distinguish EdDSA (or more generally “sound” signature algorithms), ECDSA
and ECDH-MAC. The corresponding results are respectively Propositions 3.5,
3.6 and 3.8.

A proof of association by itself does not provide any guarantee on the as-
sociation by the WSCD between the WTE public key W and public key P .
Indeed, the wallet user (or an attacker) can choose any association key z, com-
pute P = z·W and generate a proof of association following Algorithm 1. That is
why the above heuristic also requires that the verifier was also provided a proof
that the WSCD have full control over the private key p. In the situation where
the user/attacker chooses the association key z itself this private key is equal to
z·w to which the user/attacker has no full access.

This leads us to the question how the wallet can convey to the verifier (issuer,
relying party) it has full access to the private key p. One might expect that
by letting the wallet digitally sign a challenge of the verifier, i.e. a proof of
possession, would cater for that. This actually holds for the EdDSA signature
algorithm as explained in the proof of Proposition 3.5. However, it does not hold
for the ECDSA and ECDH-MAC signature algorithms: there the user can sign
with the private key p with only having partial access to it, cf. Algorithms 3 and
4. We will explain that this can be considered a feature too as it allows for an
easily implementable WSCD supporting association.

The following proposition shows that the proof of association Algorithm 1
in combination with EdDSA based attestation keys is meeting the PoA require-
ments.

Proposition 3.5 We use the context described above whereby the public key
P = p·G with private key p is an EdDSA keypair. Suppose a party provides to a
verifier a proof of association that passes Algorithm 2 and a proof of possession

17

3. A PROOF OF ASSOCIATION PROPOSAL

of private key p consisting of EdDSA signature on a random challenge generated
by the verifier. Then the public key P is bound to the WSCD the WTE refers to
and is associated to the WTE public key W .

Proof: Suppose that public key P is not managed in the WSCD the WTE refers
to. This means that the proof of association is not generated by the WSCD the
WTE refers to. As the PoA generated by Algorithm 1 meets Definition 3.1 (see
the notes following Algorithm 1) it follows there is another party than the WSCD
having full control over the key z for which it holds P = z·W . As public key P
is not managed in the WSCD it follows that the proof of possession of private
key p is also not generated by the WSCD the WTE refers to but by a second
party, perhaps the first and second party are the same. The EdDSA signature
algorithm is (like the Proof of Assocation) based on a Schnorr non-interactive
zero-knowledge proof and is thus sound. Compare the notes following Algorithm
1. So it follows that the second party has full control over the key p. This means
that if the first and second party work together they can compute p·z−1 = w
which contradicts that private key w is stored in the WSCD in a non-extractable
manner. We conclude that public key P is managed in the WSCD the WTE refers
to.

Now suppose that the proof of association was not generated by the WSCD.
As before this means there is another party than the WSCD having full control
over the key z for which it holds P = z·W . As the certified WSCD adheres
to good practice key management, public keys W,P are randomly generated.
This means that the other party is able to solve the Discrete Logarithm problem
of P with respect to W , which is not possible. We conclude that the proof of
association was generated by the WSCD and that public key P is associated to
public key W . �

The practical application of Proposition 3.5 is during the issuance of an at-
testation on the public key P . From this attestation parties can infer that public
key P is bound to a certified WSCD and associated to the WTE public key. This
allows the proof of association to be used recursively like in the folktale “Swan,
stick on” mentioned above. This also means that further proof of association
applications involving P can be based on Proposition 3.4.

We now show that an ECDSA proof of possession signature does not prove
that the signer has full control over the private key, i.e., can do arbitrary math-
ematical operations with it. We work in the same context as before: a wallet
user has generated an association key z itself and computed the corresponding
WTE associated key P = z·W . As the user has access to the association key,
he can also generate a proof of association using Algorithm 1. The following al-
gorithm from [44] shows the user is also able to generate ECDSA signatures on
messages with the private key corresponding to P , i.e. z·w, provided the WTE
key w allows for raw signing. Raw signing is the generation by the WSCD of a
signature directly on basis of a hash value input, i.e., without the WSCD de-
ploying the hash operation. In the remarks following Algorithm 5 in Annex E
we have provided background on this and its common use in practice. We show

18

3. A PROOF OF ASSOCIATION PROPOSAL

in Proposition 3.6 that by precluding ECDSA raw signing by the WTE key, it
can be proven that this ability is no longer possible.

Algorithm 3 Split-ECDSA (SECDSA) signature generation
Input: message M , WTE private key w ∈ F∗q supporting ECDSA raw signing,
association key z ∈ F∗q
Output signature (r, s).

1: Compute H(M) and convert this to an integer e.
2: Compute e′ = z−1·e mod q
3: Select random k ∈ {1, ..., q − 1}
4: Compute kG = (x, y) and convert x to integer x̄
5: Compute r = x̄ mod q. If r = 0 go to Line 3

6: If r mod q = 0 then go to Line 3

7: Compute s = k−1(e′ + w·r) mod q. If s = 0 go to Line 3

8: Compute s′ = z·s mod q
9: Return (r, s′)

It is shown in [44, Proposition 3.1] that Algorithm 3 returns a valid ECDSA
signature corresponding to public key P . Note that the pair (r, s) appearing in
Lines 3-7 of Algorithm 3 is just a ECDSA raw signature on e′ with respect to
the WTE private key w. Compare the remarks following Algorithm 5 describing
ECDSA. This means that Lines 3-7 simply consist of calling the WSCD to gen-
erate a raw signature on e′ with respect to the WTE private key w. In Line 2 the
input of the hardware generated signature is modified using association key as
is the outputted signature itself in Line 8. From [44, Proposition 3.2] it follows
that forging an ECDSA signature for private key p is equivalent to forging an
ECDSA signature for private key w.

Based on Algorithm 3 one can envision an ECDSA based distributed WSCD.
This wallet is based on only one (WTE) ECDSA hardware bound pubic key W
under PIN access control. All attestation keys are then constructed as P = z·W
with association keys w managed in the wallet mobile application. Compare
Figure 6. This model is not further explored in this document.

The following proposition shows that the proof of association generated by
Algorithm 1 in combination with ECDSA based attestation keys is meeting the
requirements provided the WTE private key does not provide for ECDSA raw
signing while the attestation keys do support this. That also means that by
precluding raw signing by the WTE key, the distributed WSCD is no longer
possible making it an option controllable by the WSCD configuration of the
WTE key. We remark that the WTE Key-Attestation Certificate produced by
WSCD Instruction 1 must convey to the wallet provider that the WTE key only
supports regular ECDSA signing where the WSCD performs the hash operation.
This obviously implies that the WTE key does not support raw signing. Indeed,
an attacker able to sign a chosen hashvalue not implicitly requested in a regular
ECDSA signing request would be able to break ECDSA signing.

Proposition 3.6 We use the context described above whereby the public key
P = p·G with private key p is an ECDSA key. The WTE private key w only

19

3. A PROOF OF ASSOCIATION PROPOSAL

supports ECDSA signing where the WSCD performs the hash operation, i.e. does
not support ECDSA raw signing. Suppose a party provides a verifier a proof of
association that passes Algorithm 2 and a proof that it can generate ECDSA raw
signatures based on private key p. Then public key P is bound to the WSCD the
WTE refers to and is associated to the WTE public key W .

Proof: Assume that the proof of association was generated by another party
than the WSCD the WTE refers to. As the PoA generated by Algorithm 1
meets Definition 3.1 (see the notes following Algorithm 1) it follows that this
party has full control over the key z for which it holds P = z·W , i.e. p = z·w. As
private key p allows for raw signing, it follows that also private key w allows for
raw signing by Algorithm 3. This contradicts that the WTE private key w does
not support raw signing. This means that the proof of association is generated by
the WSCD the WTE refers to and consequently that public key P is associated
to public key W . �

The practical application of Proposition 3.6 is during the issuance of an at-
testation on the public key P proposed by the EUDI wallet. The issuer indicates
in the attestation that public key P is bound to a certified WSCD, i.e. the res-
ult of Proposition 3.6. Further proof of association applications involving P by
relying parties can then be based on Proposition 3.4.

Proposition 3.6 is kept generic allowing for various ways the EUDI wallet can
prove to the issuer that it can compute raw ECDSA signatures. The simplest
way to prove this is, is letting the EUDI wallet rawly sign a challenge generated
by the attestation issuer with the private key p corresponding to the attestation
public key P proposed by the EUDI wallet. In this case the challenge is of
the byte size of the hash function used, e.g. 32 bytes in case of P-256 based
ECDSA. Note that this is required only during attestation issuance, i.e. only
once. This is indicated in Figure 12 in Appendix F. As argued in the remarks
following Algorithm 5 in Annex E, raw ECDSA signing is commonly use in
practice so one can argue that rawly signing an issuer generated challenge once
is not a security issue. Theoretically, there could exist an attack whereby a rogue
issuer sends such a challenge whereby secret information leaks in the resulting
signature. If desired this theoretical issue can be easily addressed by forcing
the issuer to generate the challenge as the hash of another challenge and to
prove that later on in the process. In this way the issuer only receives a regular
ECDSA signature on a challenge which is common practice. That is, the issuer
generates a challenge C, computes the hash C ′ = H(C) and requests a raw
ECDSA signature on challenge C ′ with private key p. Through the WSCD the
EUDI wallet computes this signature (r, s), computes hSig = H(r||s) and sends
this to the issuer. The issuer send challenge C to the EUDI wallet that verifies
that C ′ = H(C). If this correct, the EUDI wallet sends (r, s) to the issuer that
verifies that hSig = H(r||s) and that (r, s) is a correct signature for public key
P . In this way, the EUDI wallet can prove to the issuer it can rawly ECDSA
sign with p without actually doing it. This setup is indicated in Figure 13 in
Appendix F.

20

3. A PROOF OF ASSOCIATION PROPOSAL

The following proposition provides for another method avoiding raw signa-
tures and can also more be conveniently implemented; it is indicated in Figure
14 in Appendix F.

Proposition 3.7 We use the context described above whereby the public key
P = p·G with private key p is an ECDSA key. The WTE private key w only
supports ECDSA signing where the WSCD performs the hash operation, i.e. does
not support ECDSA raw signing. Suppose a party provides a verifier a proof of
association that passes Algorithm 2 and an ECDSA signature (r, s) for public
key P on the message M of form C||P where C is a random challenge generated
by the verifier. Then public key P is bound to the WSCD the WTE refers to and
is associated to the WTE public key W .

Proof: We argue as in Proposition 3.6. Assume that the proof of association
was generated by another party than the WSCD the WTE refers to. As the
PoA generated by Algorithm 1 meets Definition 3.1 (see the notes following
Algorithm 1) it follows that this party has full control over the key z for which
it holds P = z·W , i.e. p = z·w. By construction (r, s) is a raw signature on
H(C||P) mod q for public key P . From Algorithm 3 it follows z·H(C||P) mod q
is a raw signature for z−1·P = W . As the WTE private key w only supports
ECDSA signing where the WSCD performs the hash operation, there must be a
message M ′ such that H(M ′) = z·H(C||P) mod q. As P = z·W the hash value
H(C||P) commits to z and by the challenge C, the hash value H(C||P) cannot
be predicted by the party. That is, the message M ′ must be constructed after the
z has been chosen. As further z 6= 1 mod q the party cannot choose M ′ = C||P .
It follows that the party is able to find pre-images for hash function H(.) which
is not possible. �

Similary to ECDSA, we now show that an ECDH-MAC proof of possession
signature does not prove that the signer has full control over the private key,
i.e., can do arbitrary mathematical operations with it.. We work in the same
context as before: a wallet user that has generated an association key z itself
and the corresponding WTE associated key P = z·W . As the user has access to
the association key, he can generate a proof of association following Algorithm
1. The following algorithm shows the user is also able to generate ECDH-MAC
signatures on messages/challenges with the private key corresponding to P , i.e.
z·w, provided the WTE key allows for full Diffie-Hellman, i.e. returning the
full Diffie-Hellman key. See the remarks following Algorithm 8 in Annex E for
background. By precluding that the WTE key supports full Diffie-Hellman, we
prove in Proposition 3.8 that this is no longer possible.

21

3. A PROOF OF ASSOCIATION PROPOSAL

Algorithm 4 Split-ECDH-MAC signature generation
Input: message M , WTE private key w supporting full Diffie-Hellman, ephemeral
public key E, byte array SharedInfo, association key z ∈ F∗q ,
Output byte array MAC

1: Verify that E ∈ 〈G〉, on error algorithm stops

2: Compute E′ = z·E
3: Compute SAB = w·E′ // compute shared Diffie-Hellman key

4: Convert SAB to byte array ZAB

5: Compute K = HKDF(ZAB, SharedInfo) // derive MAC-key K
6: Compute HMAC = EMAC(K,M).
7: Return MAC.

Observe that the shared Diffie-Hellman key in Step 3 for public key E′ and
private key w is equal to the shared Diffie-Hellman key for ephemeral public
key E and private key z·w. One can easily verify that Algorithm 4 returns an
ECDH-MAC signature with respect to public key P . It is also easily verified
that forging an ECDH-MAC attestation signature corresponding to public key
P is equivalent to forging a WTE ECDH-MAC signature. That is, the security of
ECDH-MAC attestation signing using Algorithm 4 is equivalent to ECDH-MAC
WTE signing.

Based on Algorithm 4 one can envision an ECDH-MAC based distributed
WSCD, similar to the ECDSA based distributed WSCD. This wallet is based on
only one (WTE) ECDH-MAC hardware bound pubic key W under PIN access
control that supports full Diffie-Hellman. Compare Figure 6. All attestation keys
are then constructed as P = z·W with association keys w managed in the wallet
mobile application. This model is not further explored in this document.

Figure 6. The distributed WSCD

The following proposition shows that the proof of association generated by
Algorithm 1 in combination with ECDH-MAC based attestation keys is meet-

22

3. A PROOF OF ASSOCIATION PROPOSAL

ing the requirements providing the WTE private key does not provide for full
Diffie-Hellman but the attestation private keys do support that. The WTE Key-
Attestation Certificate produced by WSCD Instruction 1 must provide assurance
to the wallet provider that the WTE key only supports returning a derived key
from the exchanged Diffie-Hellman key SAB and does not provide for returning
the full Diffie-Hellman key. This can be arranged by letting the WTE key only
support returning the key derived from SAB using the X9.63 Key Derivation
Function [6, Section 4.3.3] or the HKDF algorithm [26] as in ISO 18013-5 [32].
As both derivation functions are based on hashing the exchanged Diffie-Hellman
key SAB it is guaranteed one cannot derive this key from the derived key.

Proposition 3.8 We use the context described above whereby the public key
P = p·G with private key p is an ECDH-MAC key. The WTE private key w does
not support for full Diffie-Hellman. Suppose a party can provide to a verifier a
proof of association that passes Algorithm 2 and a proof of possession of private
key p consisting of the full Diffie-Hellman key based on an ephemeral public key
E randomly generated by the verifier. Then the public key P is bound to this
WSCD and is associated to the WTE public key W .

Proof: Assume that the proof of association was generated by another party
than the WSCD the WTE refers to. As the PoA generated by Algorithm 1
meets Definition 3.1 (see the notes following Algorithm 1) it follows that this
party has full control over the key z for which it holds P = z·W , i.e. p = z·w.
As private key p supports for full Diffie-Hellman so does private key w, cf. the
observation after Algorithm 4. This contradicts that the WTE private key w
does not support full Diffie-Hellman. This means that the proof of association
is generated by the WSCD the WTE refers to and consequently that public key
P is associated to public key W . �

The practical application of Proposition 3.8 is during the issuance of an at-
testation on the public key P proposed by the EUDI wallet. The issuer indicates
in the attestation that public key P is bound to a certified WSCD, i.e. the res-
ult of Proposition 3.8. Further proof of association applications involving P by
relying parties can then be based on Proposition 3.4.

For proof simplicity we have chosen in Proposition 3.8 to let the wallet prove
to the verifier it can compute full Diffie-Hellman keys by simply sending them to
the verifier. This would constitute a Diffie-Hellman oracle allowing for a specific
recovery attack on private key d, cf. [4]. This attack can be argued not to be of
practical concern for the EUDI wallet context, e.g. as only one full Diffie-Hellman
key per new attestation key will be provided and only to the attestation issuer.
However, avoiding the attack could be considered beneficial from a theoretical
perspective. The essence of Proposition 3.8 is that a regular attestation private
key is able to show an essentially different use of the exchanged Diffie-Hellman
key SAB than can performed with the WTE key. This can be conveniently catered
for by letting regular attestation keys support ECDH-MAC signing using a de-
rived key of form K ′ = HKDF(ZAB||0x02,SharedInfo), i.e. different from the
regular derived key K = HKDF(ZAB,SharedInfo) used in ECDH-MAC signing

23

4. FURTHER IMPLEMENTATION NOTES

and verification. Here 0x02||ZAB represents concatenating the byte 0x02 to the
byte string ZAB. Note that the MAC-key is formed similarly as the MAC-key
used in electronic passport secure messaging based on Chip Authentication, cf.
the ICAO9303 specification [25]. Compare Algorithms 7, 8 in Annex E.

4 Further implementation notes

4.1 Three example WTE architectures (efficient, privacy friendly,
PID-bound)

In Section 2.2 we have introduced the WTE/Proof-of-Association logic and in
Section 3 we proposed a cryptographic method implementing this logic. In this
section we demonstrate that the WTE/Proof-of-Association logic can be used
to form different EUDI wallet architectures by varying the WTE role. Each
of these EUDI wallet architectures have a different tradeoff between efficiency,
privacy, functionality and security. That is, a WSCD supporting WTE/Proof-of-
Association allows wallet providers a broad choice in developing different EUDI
wallet architectures with very different properties. We demonstrate this flexibil-
ity by three example EUDI wallet architectures; further variants exist.

Optimally efficient WTE architecture
In an optimally efficient architecture the EUDI wallet uses the WTE for all
issuers, cf. Figure 7. It can be considered as the straightforward usage of the
WTE/Proof-of-Association logic.

Figure 7. Optimally efficient WTE architecture

Privacy friendly WTE architecture
In the previous (optimally efficient) architecture the WTE becomes an object
linking the EUDI wallet/user amongst the issuers. The resulting privacy risk
can be accepted, e.g. in the situation that issuers process information directly
identifying the user anyway, but can also be avoided. To this end, we introduce

24

4. FURTHER IMPLEMENTATION NOTES

Issuer Trust Evidences (ITEs) which are functionally the same as the WTE, i.e.,
hold the same information, but are not linkable to it. An ITE is issued by the
Wallet Provider based on (and associated to) the WTE similar to Protocol 1 in
Annex B. Figure 8 illustrates the role of the ITEs; each attestation issuer gets
it owns ITE.

Figure 8. Privacy friendly WTE architecture

PID-bound WTE architecture
It can be beneficial from a security, privacy and functional perspective to let
the PID issuer ensure that only one PID is associated to the WTE. This can be
easily accomplished by combining the WTE and PID issuance whereby a PID
challenge is part of the WTE and the key-attestation it is based on. By verifying
that the PID challenge is indeed part of the WTE, the PID issuer can be sure it
has never associated a PID to it. Such usage of challenges in key-attestation is
actually standard and supported in GlobalPlatform [23], the ISO 23220-3 SAAO
[33] and the Android Keystore. For the latter compare Figure 11 in Annex A.

As is indicated in Annexes B, C and D a uniquely associated PID gives
rise to PID-bound attestations. These are attestations whereby the issuer has
performed identity proofing using the PID and indicates this in the attestation.
If there is only one PID associated to the WTE, then two associated and PID-
bound attestations must then belong to the same PID holder. In other words,
when a relying party is presented two PID-bound attestations and a proof of their
association then they belong to the same PID holder, i.e. without having to show
this PID. This constitutes a “privacy preserving technique ensuring unlikeability,
where the attestation of attributes does not require the identification of the
user” as requested in [14, Article 5a(16b)]. Compare Annex D where this further
elaborated on. Figure 9 depicts the PID-bound WTE architecture.

25

4. FURTHER IMPLEMENTATION NOTES

Figure 9. PID-bound WTE architecture

4.2 Freshness of associated keys

The proposed proof of association Algorithm 1 can be bound to a verifier chal-
lenge. Like in regular key-attestation, such challenges can constitute a mechan-
ism to convey to a verifier that a proof and a certain key is fresh. For instance, we
can include a 16 byte challenge of the verifier whereas the proofs of association
binds to a 32 byte challenge where the last 16 bytes are chosen by the WSCD. By
letting these bytes be all zero, the WSCD conveys that the key attested through
the proof of association is fresh as otherwise it is not. For such fresh attested key
generation, it seems convenient to combine the key generation and the proof-of-
association in one WSCD instruction, i.e. a combination of WSCD instruction
#1 and #2. This functionality is not further explored in this document.

4.3 Relation to Idemix/BBS+ protocols

The WTE construction and the proof of association proposed in this document
can also easily implemented in the context of anonymous credentials such as
based on BBS+ [2,8] or Idemix [9]. This means that the WTE construction
and the proof of association are future proof constructions which are also in line
with the GSM Association (GSMA) vision of BBS+/Idemix support in the EUDI
wallet through the embedded SIM (eSIM). Compare [24]. Although the WTE/-
Proof of Concept functionality in the context of anonymous credentials is the
same, we note that the WTE format and the proof of association cryptographic
specifications are somewhat different.

To further elaborate; anonymous credentials attributes contain encrypted at-
tributes in such a way that the EUDI wallet can selectively disclose attributes

26

4. FURTHER IMPLEMENTATION NOTES

with the additional property of “multi-show unlinkablity”. This means that,
other than through the disclosed attributes themselves, the presentation leaves
no trace allowing relying parties to link various presentations at relying parties.
So if the user has shown she is over 18 years old at two relying parties, these
parties cannot link both presentations to one person. To show that multiple an-
onymous credentials belong to one EUDI wallet, one typically shares a common
secret attribute value over all the anonymous credentials. The user then uses a
zero-knowledge proof of knowledge to show the existence of the common secret
attribute value to verifying parties.

The WTE construction and the proof of association naturally extend to an-
onymous credentials. The wallet provider then provides a WTE in the form of a
anonymous credential holding a secret attribute value. The WSCD certification
as indicted by the Wallet Provider in the WTE then ensures all anonymous cre-
dential secrets are securely managed. Issuers of BBS+/Idemix credentials then
associate anonymous credentials to the WTE, by incorporating the common
secret attribute value. The proof of association then constitutes to the zero-
knowledge proof of knowledge showing existence of the common secret attribute
value in the anonymous credentials.

27

5. REFERENCES

5 References
1. The European Digital Identity Wallet Architecture and Refer-

ence Framework. https://github.com/eu-digital-identity-wallet/

eudi-doc-architecture-and-reference-framework

2. M. H. Au, W. Susilo, and Y. Mu. Constant-Size Dynamic k-TAA. In: Security and
Cryptography for Networks. Ed. by R. De Prisco and M. Yung. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 111–125. isbn: 978-3-540-38081-8.

3. Fabrice Benhamouda, Geoffroy Couteau, David Pointcheval, Hoeteck Wee, Implicit
Zero-Knowledge Arguments and Applications to the Malicious Setting, Crypto
2015, LNCS, Volume 9216, Springer, 2015.

4. Daniel R. L. Brown, Robert P. Gallant, The Static Diffie-Hellman Problem 2004.
See https://eprint.iacr.org/2004/306

5. BSI, Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve
Generation, Request for Comment (RFC) 5639, March 2010.

6. BSI, Elliptic Curve Cryptography, TR-03111, version 2.10, 2018-06-01, 2018.
7. BSI, Technical Guideline BSI TR-03181, Cryptographic Service Provider 2 (CSP2),

TR-03181, Version 0.94, 2023-04-03.
8. J. Camenisch, M. Drijvers, and A. Lehmann, Anonymous Attestation Using the

Strong Diffie Hellman Assumption Revisited”. In: Trust and Trustworthy Com-
puting. Ed. by M. Franz and P. Papadimitratos.

9. Jan Camenisch, Anna Lysyanskaya, An Efficient System for Non-transferable An-
onymous Credentials with Optional Anonymity Revocation, Proceedings of Euro-
crypt 2001, LNCS 2045, Springer-Verlag 2001, 93-118.

10. https://developer.apple.com/documentation/devicecheck

11. https://developer.android.com/training/articles/

security-key-attestation, https://developer.android.com/training/

safetynet

12. https://source.android.com/static/docs/security/overview/reports/

Android-Bootcamp-2016-Android-Keystore-Attestation.pdf

13. European Parliament and the Council of the European Union, Electronic identi-
fication and trust services for electronic transactions in the internal market and
repealing Directive 1999/93/EC, regulation 910/2014, 23 July 2014.

14. Regulation (EU) 2024/1183 of the European Parliament and of the Council of
11 April 2024 amending Regulation (EU) No 910/2014 as regards establishing
the European Digital Identity Framework. See https://eur-lex.europa.eu/eli/

reg/2024/1183/oj.
15. European Commission, eIDAS implementing regulation 2015/1502, 8 September

2015 (’minimum technical specifications and procedures for assurance levels for
electronic identification’).

16. European Commission, eIDAS implementing regulation 2024/2977, 28 November
2024 (’person identification data and electronic attestations of attributes issued to
European Digital Identity Wallets’).

17. European Commission, eIDAS implementing regulation 2024/2979, 28 November
2024 (’integrity and core functionalities of European Digital Identity Wallets’).

18. European Commission, eIDAS implementing regulation 2024/2981, 28 November
2024 (’EUDI wallet certification’).

19. European Commission, eIDAS implementing regulation 2024/2982, 28 November
2024 (’protocols and interfaces to be supported by the European Digital Identity
Framework’).

28

https://github.com/eu-digital-identity-wallet/eudi-doc-architecture-and-reference-framework
https://github.com/eu-digital-identity-wallet/eudi-doc-architecture-and-reference-framework
https://eprint.iacr.org/2004/306
https://developer.apple.com/documentation/devicecheck
https://developer.android.com/training/articles/security-key-attestation
https://developer.android.com/training/articles/security-key-attestation
https://developer.android.com/training/safetynet
https://developer.android.com/training/safetynet
https://source.android.com/static/docs/security/overview/reports/Android-Bootcamp-2016-Android-Keystore-Attestation.pdf
https://source.android.com/static/docs/security/overview/reports/Android-Bootcamp-2016-Android-Keystore-Attestation.pdf
https://eur-lex.europa.eu/eli/reg/2024/1183/oj
https://eur-lex.europa.eu/eli/reg/2024/1183/oj

5. REFERENCES

20. European Data Protection Board, draft Guidelines on Pseudonymisation, 16 Janu-
ary 2025. See https://www.edpb.europa.eu.

21. A. Fiat, A. Shamir, How To Prove Yourself: Practical Solutions to Identification
and Signature Problems, Crypto ’86, Lecture Notes in Computer Science, Volume
263, Springer, 1986.

22. See https://fidoalliance.org/specs/fido-v2.0-ps-20150904/

fido-key-attestation-v2.0-ps-20150904.html#privacy

23. See https://globalplatform.org.
24. See

https://github.com/eu-digital-identity-wallet/

eudi-doc-architecture-and-reference-framework/files/11891976/GSMA.

Official.Response.-.Privacy.for.eIDAS.-.June.2023.pdf

25. ICAO, Doc 2303, Machine Readable Travel Documents, Seventh Edition, part 11:
security mechanims for MRTDs, 2015. Available from www.icao.int/.

26. Internet Engineering Task Force (IETF), HMAC-based Extract-and-Expand Key
Derivation Function (HKDF), Request for Comment (RFC) 5869, May 2010.

27. Internet Engineering Task Force (IETF), Edwards-Curve Digital Signature Al-
gorithm (EdDSA), Request for Comment (RFC) 8032, January 2017.

28. Internet Engineering Task Force (IETF), Schnorr Non-interactive Zero-Knowledge
Proof, Request for Comment (RFC) 8235, September 2017.

29. D. Hankerson, A. Menezes and S. Vanstone, Guide to Elliptic Curve Cryptography,
Springer, 2004.

30. ISO, IT Security techniques — Digital signatures with appendix — Part 3: Discrete
logarithm based mechanisms, ISO/IEC ISO 14888-3, Fourth edition, 2018-11.

31. ISO, Information technology - Security techniques - Methodology for IT security
evaluation, ISO/IEC 18045, version 2014-01-15.

32. ISO, Mobile driving licence (mDL), ISO/IEC 18013 part 5, version 2021-09. ap-
plication

33. ISO, ISO/IEC TS WD13 23220-3 issuing phase, draft, version 2024-03-15.
34. ITU-T, Information technology – ASN.1 encoding rules: Specification of Basic En-

coding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encod-
ing Rules (DER), X.690, 08/2015.

35. J. Katz, Y. Lindell, Introduction to Modern Cryptography, CRC PRESS, 2008.
36. NI-Scy, Epic 09 - Wallet Trust Evidence, version 0.7.
37. NIST, The Keyed-Hash Message Authentication Code (HMAC), FIPS PUB 198-1,

July 2008.
38. NIST, Secure Hash Standard (SHS), FIPS PUB 180-4, August 2015.
39. NIST, Digital signature standard, FIPS PUB 186-5. February 3 2023.
40. NIST, Recommendation for Key Management Part 1: General, SP 800-57, May

2020.
41. https://openid.net/sg/openid4vc/

42. C. P. Schnorr, Efficient signature generation for smart cards, Journal of Cryptology
4, 1991.

43. D.G. Stinson, Cryptography: theory and practice, CRC press, 1995.
44. E.R. Verheul, SECDSA: Mobile signing and authentication under classical “sole

control”, 16 March 2024. See https://eprint.iacr.org/2021/910.
45. StrongBox specification in Section 9.11.2 of

https://source.android.com/compatibility/11/android-11-cdd.

29

https://www.edpb.europa.eu
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html#privacy
https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-20150904.html#privacy
https://globalplatform.org
https://github.com/eu-digital-identity-wallet/eudi-doc-architecture-and-reference-framework/files/11891976/GSMA.Official.Response.-.Privacy.for.eIDAS.-.June.2023.pdf
https://github.com/eu-digital-identity-wallet/eudi-doc-architecture-and-reference-framework/files/11891976/GSMA.Official.Response.-.Privacy.for.eIDAS.-.June.2023.pdf
https://github.com/eu-digital-identity-wallet/eudi-doc-architecture-and-reference-framework/files/11891976/GSMA.Official.Response.-.Privacy.for.eIDAS.-.June.2023.pdf
www.icao.int/
https://openid.net/sg/openid4vc/
https://eprint.iacr.org/2021/910
https://source.android.com/compatibility/11/android-11-cdd

A. ANDROID STRONGBOX KEY-ATTESTATION

A Android StrongBox key-attestation

Figure 10. Android StrongBox attested key (leaf)

Figure 11. Third party challenge in key attestation

30

B. USE OF WSCD INSTRUCTIONS IN PID ISSUANCE (INFORMATIVE)

B Use of WSCD instructions in PID issuance
(informative)

In Protocol 1 below we illustrate how we can use the WTE and the three WSCD
instruction to issue a PID that is associated to the WTE. This is just an illus-
tration on which many variants can be based. For simplicity we leave out the
user (consent) involvement. In this particular variant we have chosen to let the
WTE be fresh as it easily allows the PID issuer validation an issued PID is only
associated to one WTE which can be security beneficial.

Protocol 1 PID issuance
Input: -
Output: User PID

1: Wallet requests PID from PID issuer

2: PID Issuer performs ‘‘proofing’’ // could also be elsewhere in process

3: PID Issuer generates challenge C and requests WTE bound to C
// guaranteed fresh WTE

4: Wallet calls WSCD with Instruction #1 including challenge C
5: WSCD returns Attestation Cert K containing WTE public key PubWTE and C
6: Wallet requests WP for WTE and sends Attestation Cert K
7: WP verifies Attestation Cert K, if unsuccessful the protocol ends in error

8: WP returns WTE on containing WTE public key PubWTE and C
9: Wallet sends WTE on PubWTE and C to PID issuer in response to Step 3

10: PID Issuer verifies WTE, if unsuccessful the protocol ends in error

11: The PID issuer requests a PID public key associated with PubWTE
12: Wallet calls WSCD for a key associated with PubWTE // Instruction #2

13: WSCD returns public key PubPID associated with PubWTE
14: Wallet calls WSCD for a signature on challenge C with PrivPID // PoP

15: WSCD returns PoP

16: Wallet calls WSCD for PoA[PubWTE,PubPID] // Instruction #3

17: WSCD returns PoA[PubWTE,PubPID] // proof PubWTE,PubPID are associated

18: Wallet sends Pub, PoP and PoA[PubWTE,PubPID] to (PID) issuer

19: PID Issuer verifies PoP, PoA[PubWTE,PubPID], on failure protocol ends

20: PID Issuer issues PID on public key PubPID indicating it is WTE associated

21: PID Issuer sends PID to wallet

The PoP (proof of possession) in Step 14 (verified in Step 19) depends on the sig-
nature algorithm it is based on. For EdDSA there are no particular requirements
but for ECDSA (respectively ECDH-MAC) the requirements of Proposition 3.6
(respectively Proposition 3.8) apply.

As indicated in Section 4.2 we can arrange that the issuer can verify that the
PID keypair is fresh by combining WSCD Instructions #2 and #3 in Steps 16
and 17 and the use of an issuer challenge.

The PID issuer indication in Step 20 that the PID is associated with the WTE
is fundamental. It not only allows relying parties to verify that the PID private
key is WSCD bound but it also allows other issuers to further bind attestations
to this WSCD by associating their attestations to the PID public key. This makes
thus use of the transitivity property of association. If we further arrange that
there can only be one PID associated the WTE (as we have arranged in Protocol

31

B. USE OF WSCD INSTRUCTIONS IN PID ISSUANCE (INFORMATIVE)

1) then from the indication that two attestations are associated to a PID (and
implicitly to a WTE) a relying party infer that these attestations are bound to
the same PID, i.e. person. We further elaborate on this in Annexes C and D.

32

C. USE OF WSCD INSTRUCTIONS IN PID BASED ISSUANCE
(INFORMATIVE)

C Use of WSCD instructions in PID based issuance
(informative)

In Protocol 2 below we illustrate how we can use the WTE and the three WSCD
instructions to issue attestations based on the PID. For simplicity of presentation
we leave out the possibility of only selective disclose PID data and user (consent)
involvement. Protocol 2 is just an illustration on which many variants can be
based. In Step 10 of this protocol we use the proof of association of three public
keys as introduced in the notes following Algorithm 2.

Protocol 2 Attestation issuance based on PID
Input: WTE, User PID associated to WTE
Output: Attestation associated to both PID and WTE

1: Wallet sends WTE, PID and requests attestation from issuer based on PID

2: Issuer verifies validity WTE, PID // signatures etc.

3: Issuer generates challenge C and sends it to wallet

4: Wallet signs C with PrivPID and sends result to issuer

5: Issuer verifies signature with PubPID // Proof of Possession

6: Issuer uses PID data to form attestation attributes // e.g. diploma

7: Issuer requests for attestation public key associated to PubWTE
8: Wallet calls WSCD for keypair associated with PubWTE // Instruction #2

9: WSCD returns WTE associated public key Pub
10: Wallet calls WSCD for PoA[PubWTE,PubPID,Pub]
11: WSCD returns PoA[PubWTE,PubPID,Pub] // proof PubWTE,PubPID,Pub associated

12: Wallet calls WSCD for a signature on challenge C with Priv // PoP

13: WSCD returns PoP

14: Wallet sends Pub, PoP and PoA[PubWTE,PubPID,Pub] to issuer

15: Issuer verifies PoP, PoA[PubWTE,PubPID,Pub], on failure protocol ends

16: Issuer issues attestation on the attributes from Step 6 and Pub indicating

it is both PID & WTE associated

17: Issuer sends attestation to wallet

The PoP (proof of possession) in Step 12 (verified in Step 15) depends on the sig-
nature algorithm it is based on. For EdDSA there are no particular requirements
but for ECDSA (respectively ECDH-MAC) the requirements of Proposition 3.6
(respectively Proposition 3.8) apply.

33

D. USE OF WSCD INSTRUCTIONS IN PRESENTATIONS OF PID
BASED ATTESTATIONS (INFORMATIVE)

D Use of WSCD instructions in presentations of PID
based attestations (informative)

In Protocol 3 below we illustrate how we can use the third WSCD instruction
(proof of association) to prove to a Relying Party (hereafter: RP) that multiple
attestations originate from one EUDI wallet and correspond to one person. This
is just an illustration on which many variants can be based. For simplicity we only
have two attestations whereby the user only selectively discloses data. The first,
respectively second, attestations holds a public key Pub1, respectively Pub2, with
corresponding private key Priv1, respectively Priv2. Think of the first attestation
being the PID and whereby only the resident address is disclosed and second
attestation being the mobile driving license whereby only the facial image is
disclosed. Compare Section 2.1). For simplicity of presentation we leave out user
(consent) involvement. Protocol 3 is just an illustration on which many variants
can be based.

Protocol 3 Multiple attestation presentation to relying party
Input: two PID-bound attestations A1, A2 on public keys Pub1,Pub2
Output: Assurance attestations are bound to one WSCD and PID (person)

1: RP requests certain attributes // e.g. resident address, facial image

2: Wallet sends PID based attestations A1, A2 to RP whereby selectively disclosing

the requested attributes

3: RP verifies attestations A1, A2 // signatures, seeded hashes etc.

4: RP verifies A1, A2 are both WTE & PID based

// attestations state to be bound a WSCD and PID

5: RP generates challenge C and sends it to wallet

6: Wallet signs C with Priv1,Priv2 and sends results to RP

7: RP verifies signatures with Pub1,Pub2 // Proof of possession

8: RP requests for proof-of-association Pub1,Pub2
9: Wallet calls WSCD for PoA[Pub1,Pub2]

10: WSCD returns PoA[Pub1,Pub2] // proof Pub1 and Pub2 are associated

11: Wallet sends PoA[Pub1,Pub2] to RP

12: RP verifies PoA[Pub1,Pub2], on failure protocol ends

13: RP accepts attestations A1, A2 and infers attestations are bound to one

WSCD and one PID (person)

34

E. CRYPTOGRAPHIC AND MATHEMATICAL BACKGROUND

E Cryptographic and mathematical background

We let Fr denote the Galois field consisting of the integers modulo a prime num-
ber r. We let F∗r denote the multiplicative subgroup, i.e. the non-zero elements.
See [43]. We sometimes implicitly use that Fr, respectively F∗r , corresponds to
the integers in the interval [0, r − 1], respectively [1, r − 1] and write operations
in combination with “mod r”. We let |r| = dlog256(r)e denote the size in bytes
of r, i.e. the minimal number of bytes to represent r.

Central in our constructions is an additive group G = (〈G〉,+) of order q
generated by a base point (generator) G. We use additive notation as this is
customary in the context of elliptic curve groups we deploy in practice. We
require that q is prime. For any natural scalar n and element H ∈ 〈G〉 we
define the (point) multiplication nH as adding H n-times, e.g. 2H = H +H. As
nH = mH if and only if n = m mod q we can represent scalars as elements of Fq.
This allows for compact notation as x·G, −x·G for x ∈ Fq and y−1 ·G for y ∈ F∗q .
We sometimes omit the “·” symbol and simply write xG. A cryptographically
secure (pseudo) randomly chosen element from a set is denoted by ∈R.

The required cryptographic security of the group (〈G〉,+) can be formu-
lated in the intractability of three problems. The first one is the Diffie-Hellman
problem: computing the values of the function DHG(xG, yG) = xyG for any
x, y ∈ Fq (implicitly given but unknown). The second problem is the Decision
Diffie-Hellman (DDH) problem: given A,B,C ∈R 〈G〉 decide whether C =
DHG(A,B) or not. An equivalent definition is as follows. Any quadruple of
points (G,A,B,C) in 〈G〉 can be written as (G,A, xG, yA) for some (unknown)
x, y ∈ Fq. DDH amounts to deciding whether a random quadruple of points in G
is a DDH quadruple, i.e. if x = y. The DH problem is at least as difficult as the
DDH problem. The last related problem is the discrete logarithm (DL) problem
in 〈G〉: given A = xG ∈ 〈G〉, with x ∈ Fq then find x = DLG(A). It easily follows
that the DL problem is at least as difficult as the DH problem.

We assume that all three introduced problems in 〈G〉 are intractable which
implies that the size |q| of the group order should be at least 256 bits. A prom-
inent example of G is a group of points over a field Fp on a curve with simplified
Weierstrass equation

y2 = x3 + ax + b (2)

for some suitable a, b ∈ Fp. That is, each non-zero group element takes the form
(x, y) where 0 ≤ x, y < p satisfying Equation (2) modulo p. Compare [29]. We
denote the zero element (point at infinity) as O. For practical implementations
one can use one of the NIST curves [39], e.g. P-256 or Brainpool curves [5], e.g.
brainpoolP320r1.

35

E. CRYPTOGRAPHIC AND MATHEMATICAL BACKGROUND

Below we describe the working of the ECDSA [39] and ECDH-MAC [32]
signature generation and verification algorithms. In all settings the user has a
private key d ∈ F∗q and a corresponding public key D = d·G. In these specification
a secure hash function H(.) appears, cf. [43,38]. Such a function takes as input
byte arrays of arbitrary size and outputs a byte array of fixed length equal to |q|.
The latter can be accomplished by taking a secure hash function of appropriate
output size or one with larger output size and truncating its output.

Algorithms 5 and 6 below specify ECDSA signing and verification following [29].

Algorithm 5 ECDSA signature generation
Input: message M , private key d
Output: signature (r, s).

1: Compute H(M) and convert this to an integer e.
2: Select random k ∈ {1, ..., q − 1}.
3: Compute kG = (x, y) and convert x to integer x̄. // commitment

4: Compute r = x̄ mod q. If r = 0 go to Line 2.

5: Compute s = k−1(e + d·r) mod q. If s = 0 go to Line 2.
6: Return (r, s).

We remark that in the situations where cryptographic hardware is used, the cal-
culation of the hash value of message M in Line 1 of Algorithm 5 is typically not
performed by this hardware. This is typically due to communicational or com-
putational restrictions in using the hardware. In these circumstances the hash
value H of message M is pre-computed in the application calling the hardware
and then sent to the hardware as input. The hardware then converts the hash
value directly to the integer e of Line 1 of Algorithm 5 and performs the follow-
ing Lines 2-6. This setup is known as raw signing, i.e. generation of a signature
directly on basis of a hash value without a deploying a hash operation. Similarly
one has raw verification where the hash value is directly converted to the integer
e in Step 2 of Algorithm 6.

Algorithm 6 ECDSA signature verification
Input: message M , signature (r, s), public key D = d·G
Output: Acceptance or rejection of the signature.

1: Verify r, s are integers in [1, q − 1], on failure reject signature.

2: Compute H(M) and convert this to an integer e.
3: Compute w = s−1 mod q.
4: Compute t1 = e·w mod q and t2 = r·w mod q.
5: Compute X = t1·G + t2·D.
6: If X = O reject the signature.
7: Convert the x-coordinate of X to an integer x̄; compute v = x̄ mod q.
8: If v = r accept the signature otherwise reject it.

Algorithms 7 and 8 specify ECDH-MAC signing and verification based on ISO
18013-5 [32]. It is based on a Message Authentication Code (MAC) on a message
M generated using a conventional MAC Algorithm. ISO 18013-5 [32] stipulates

36

E. CRYPTOGRAPHIC AND MATHEMATICAL BACKGROUND

the use of the HMAC algorithm [37]. This MAC is based on a key K of type
byte array; the MAC computation is denoted by HMAC(K,M).

Key K is derived from a byte array representation ZAB of the Diffie-Hellman
key SAB shared between the signer and verifier and a byte array SharedInfo. The
latter holds additional information shared between the signer and the verifier. In
[32] the shared information includes a session transcript. For this key derivation,
ISO 18013-5 [32] stipulates the use of the HKDF algorithm [26]. In general
this algorithm takes as input a hash function, a byte array key IKM holding
input material, an optional salt byte array, an optional info byte array and an
parameter L representing the number of output bytes. ISO 18013-5 stipulates
using the SHA256 hash function from [38], no salt, letting IKM to be equal to
ZAB, letting the info byte array to be SharedInfo and L = 16. We denote this
instantiation of HKDF by HKDF(ZAB,SharedInfo).

ISO standard 18013-5 [32, Section 9.1.3.5] only implicitly defines ECDH-
MAC signing and verification. This is also done in the particular context of a
mobile driving license. Algorithms 7 and 8 are generic, explicit specifications
meeting the essence of [32]. The notation used is also in line with Section 4.3 of
BSI publication TR-03111 [6] specifying the Diffie-Hellman protocol. Algorithm
7 takes an ephemeral public key E as input, whereas Algorithm 8 takes an
ephemeral private key k as input. This ephemeral public key takes the form
E = k·G and is based on a (fresh) ephemeral private key k generated by the
verifying party, e.g. the issuer or relying party in the context of the EUDI wal-
let. The verifying party is guaranteed that the message is correctly signed by
the signer but cannot transfer this guarantee to another party. Compare the
comment following Algorithm 8. In other words ECDH-MAC signing supports
plausible deniability for the user, i.e. the opposite of non-repudiation, which can
be beneficial in certain use cases. As it lacks non-repudiation, an ECDH-MAC
signature is strictly speaking not a digital signature.

Algorithm 7 Generic ECDH-MAC signature generation
Input: message M , private key d, ephemeral public key E, byte array SharedInfo
Output: byte array MAC.

1: Verify that E ∈ 〈G〉, on error algorithm stops

2: Compute SAB = d·E // compute shared Diffie-Hellman key

3: Convert SAB to byte array ZAB

4: Compute K = HKDF(ZAB, SharedInfo) // derive MAC-key K
5: Compute MAC = HMAC((K,M).
6: Return MAC.

37

E. CRYPTOGRAPHIC AND MATHEMATICAL BACKGROUND

Algorithm 8 ECDH-MAC signature verification
Input: message M , ephemeral private key k, SharedInfo, byte array MAC, public
key D = d·G
Output: Acceptance of rejection of the MAC.

1: Compute SAB = k·D // shared Diffie-Hellman key

2: Convert SAB to byte array ZAB

3: Compute K = HKDF(ZAB, SharedInfo) // derive MAC-key K
4: Compute MAC’ = HMAC(K,M)
5: If MAC’ = MAC accept the MAC otherwise reject it

Note that in Algorithm 8 the verifier re-generates the MAC value itself based
on the public key of the signer. This means that signer can always deny having
generated the MAC.

When using cryptographic hardware, e.g. the WSCD in EUDI wallet context,
Steps 1-2 of Algorithm 7 are always performed there. In that context, an im-
portant design decision is where the MAC-key K in computed, i.e. Step 4. Step
4 can be performed in the cryptographic hardware or in the application calling
the hardware. In the second case the cryptographic hardware returns ZAB to
the calling application following Step 3 which then generates the MAC-key K
in Step 4. In the first case the calling application sends the ephemeral public
key E and the shared information SharedInfo to the cryptographic hardware.
The cryptographic hardware then performs Steps 2-4 and returns MAC-key K
to the calling application. If cryptographic hardware for a private key d sup-
ports the second case, i.e. returning the full Diffie-Hellman key ZAB, we say that
private key d supports full Diffie-Hellman. With saying that private key d does
not support full Diffie-Hellman we mean that it only returns the HKDF-derived
key from Step 4 in Algorithm 7, i.e., a hash based value of ZAB.

We note that with full Diffie-Hellman support, the cryptographic hardware
provides for a so-called Diffie-Hellman oracle allowing for a specific recovery
attack on private key d, cf. [4]. This attack can be argued not to be of practical
issue for the EUDI wallet context, but avoiding the attack could be considered
beneficial from a theoretical perspective.

It is fruitful to have techniques allowing a Prover to prove to a Verifier that
a certain private key exists and that he have possession of this private key. For
this we first deploy the technique of non-interactive zero-knowledge proofs of
knowledge (ZPK). In this section we recall the ZKPK techniques of Schnorr [42].
To this end, let d ∈ F∗q be a private key with public key D0 = d·G0. Here G0 can
be any generator of the group G but will typically be the standard generator
G. Let n be an integer and let Gi for i = 1, . . . , n be generators of the group
G, i.e. they can be different from the standard generator G. Let Di = d·Gi for
i = 1, . . . , n. That is, each Di can be considered a public key with respect to the
generator Gi and private key d. Note that these public keys have a particular
form: they all have the same private key as public key D0. That is, the following
statement holds:

∃d ∈ F∗q : D0 = d·G0 and Di = d·Gi i = 1, . . . , n. (3)

38

E. CRYPTOGRAPHIC AND MATHEMATICAL BACKGROUND

The simplest way to prove to a party that Statement (3) holds is to reveal
private key d. However, we want to convey this knowledge to the party without
revealing any information on d, i.e. in zero-knowledge. The data structure ZKP
generated in Algorithm 9 achieves this. This algorithm is based on the Schnorr
non-interactive zero-knowledge proof [42] using the Fiat-Shamir heuristic [21]
similar to RFC 8235 [28]. In Algorithm 9 we also bind this proof to a challenge
N (byte array) which is convenient in certain situations.

Algorithm 9 Generation of zero knowledge proof on Statement (3)
Input: Public key D0 = d·G0, private key d, generators Gi, public keys Di for
i = 1, 2, . . . , n, Challenge N (byte array)
Output: ZKP[(Gi, Di)

n
i=0, N]

1: For i = 1, . . . , n verify that Di = d·Gi, on failure return error

2: For i = 0, . . . , n convert Gi to byte array Ḡi and form Ḡ = Ḡ0|| . . . ||Ḡn

3: For i = 0, . . . , n convert Di to byte array H̄i and form D̄ = D̄0|| . . . ||D̄n

4: Select random k ∈ {1, . . . , q − 1}
5: For i = 0, 1, . . . , n compute G′i = k·Gi

6: For i = 0, 1, . . . , n convert G′i to byte array Ḡ′i
7: Form Ḡ′ = Ḡ′0|| . . . ||Ḡ′n
8: Compute byte array H(Ḡ||Ḡ′||D̄||N) and convert it to an integer r
9: If r = 0 then go to Line 4.

10: Compute s = k + r · d mod q
11: If s = 0 then go to Line 4

12: Return (r, s)

The following algorithm specifies the verification of the proof generated by Al-
gorithm 9. This is a classical result from [42,21].

Algorithm 10 Verification of zero knowledge proof on Statement (3)
Input: ZKP = (r, s)}
Output: Acceptance of rejection of Statement (3)

1: For i = 0 . . . , n verify that Gi, Hi ∈ G and that Gi is a group generator,

on failure Return False.

2: Verify that r ∈ {1, 28·|q| − 1} and s ∈ {1, q − 1}, on failure Return False.

3: For i = 0, . . . , n convert Gi to byte array Ḡi and form Ḡ = Ḡ0|| . . . ||Ḡn

4: For i = 0, . . . , n convert Di to byte array D̄i and form D̄ = D̄0|| . . . ||D̄n

5: For i = 0, . . . , n compute G′i = s·Gi − r·Di

6: If any G′i = O Return False.

7: For i = 0, . . . , n convert G′i to byte array Ḡ′i and form Ḡ′ = Ḡ′0|| . . . ||Ḡ′n
8: Compute byte array H(Ḡ||Ḡ′||D̄||N) and convert it to an integer v.
9: If v = r accept Statement 3 otherwise reject it

We make some notes on Algorithm 9:

1. By the nature of Schnorr based proofs of knowledge there is a negligible
probability (in the order or 2−8·|q|, i.e. 2−256 in the context of the NIST
curve P-256, that Algorithm 10 is erroneously successful. For simplicity we
do not further stipulate that in the algorithms.

39

E. CRYPTOGRAPHIC AND MATHEMATICAL BACKGROUND

2. For n = 0 Algorithm 9 generates a proof knowledge (also known as a proof
of possession) of private key d. This proof closely resembles the ECSDSA
(Schnorr signature) from [6,30,42].

3. The proof generated by Algorithm 9 provides a non-refutable proof that
Statement (3) holds. There might be situations where the prover wants to
convince a verifier that Statement (3) holds in a way refutable by the prover,
i.e. can be denied by the verifier on a later moment. In these situations, one
can use the original Schnorr interactive proof from [42]. Here the integer r
appearing in Algorithms 9 and 10 is formed as a challenge from the prover.
The proof knowledge is then refutable as verifier could have generated it
himself, cf. [42]. Alteratively, one can use the “implicit zero-knowledge ap-
proach” from [3].

40

F. EXAMPLE APPLICATIONS OF PROPOSITION 3.5 (INFORMATIVE)

F Example applications of Proposition 3.5 (informative)

Figure 12. Straightforward application of Proposition 3.6

41

F. EXAMPLE APPLICATIONS OF PROPOSITION 3.5 (INFORMATIVE)

Figure 13. Demonstrating raw ECDSA signing without actually doing it

Figure 14. Application of Proposition 3.7

42

G. ASN.1 FORMAT FOR PROOF OF ASSOCIATION (INFORMATIVE)

G ASN.1 format for Proof of Association (informative)

Below we have specified a proposal for the proof of association in ASN.1 format,
cf. [34]

43

H. SELF GENERATED VERIFIABLE PSEUDONYMS (SGVP)

H Self Generated Verifiable Pseudonyms (SGVP)
In this annex we introduce the concept of Self Generated Verifiable Pseudonyms
(SGVPs), specify its cryptographic details and sketch it practical use. In Annex
H.1 we first specify the SGVP building blocks. As a minimal implementation only
requires Diffie-Hellman support, SGVP is implementable on all WSCA/WSCD
architectures discussed in Section 1. We next provide sketches in Annex H.2 on
how the SGVP building blocks can be used in practice. This illustrates that
various implementations are possible as well as additional privacy enhancing
functionalities.

H.1 SGVP building blocks
As before we use the (mathematical) notation and terms from Annex E. Within
the concept of Self Generated Verifiable Pseudonyms (SGVP) each user has a
pseudonym secret x ∈R F∗q . This secret x is maintained in the wallet WSCD or
WSCA and there is a mechanism allowing the distribution of this secret to other
WSCDs/WSCAs of the user. This allows for persistent pseudonyms over all the
wallets of the user. In Annex H.2 we discuss some options for the distribution of
the pseudonym secret.

The user also has a PID-bound attestation holding an encrypted pseudonym
secret x which takes a particular form. This form consists of (H,x·H) where
H is a generator of the group G = (〈G〉,+). For simplicity we assume that this
attestation is the PID itself. The following two algorithms specify the generation
of the pseudonym secret and an encrypted pseudonym secret which are quite
straightforward.

Algorithm 11 Generation of user pseudonym secret
Input: -
Output: Reference to x ∈R F∗q in WSCA/WSCD

1: Wallet App instructs WSCA/WSCD to generate random integer x ∈ F∗q.
2: WSCA/WSCD returns reference to user pseudonym secret x

Algorithm 12 Generation of encrypted pseudonym secret
Input: reference to user pseudonym secret x
Output: encrypted pseudonym secret (H,x·H)

1: Wallet App chooses generator E1 of group G
// e.g., standard generator G

2: Wallet App instructs WSCA/WSCD to compute E2 = x·E1

3: Return pair (E1, E2)

We remark that the computation of E2 in Step 2 of Algorithm 12 constitutes a
full Diffie-Hellman operation we discussed in Annex E and which is available in
almost all cryptographic hardware most notably the native mobile cryptographic
hardware. This implies the Algorithm 12 is implementable on such cryptographic
hardware.

An important SGVP building block is that any party can randomize an
encrypted pseudonym secret resulting into a copy thereof that holds the same

44

H. SELF GENERATED VERIFIABLE PSEUDONYMS (SGVP)

pseudonym secret but that is not linkable to the original. This implies that issuers
can place different and non-linkable encrypted pseudonym secrets in different
PIDs/attestations of the holder that still contain the same pseudonym secret.
Such PIDs/attestations then all lead to compatible pseudonyms at relying parties
where the PIDs/attestations used do not contain any linkable information.

There are two versions of this randomization algorithm. The first version
(Algorithm 13) is basic and simply randomizes an encrypted pseudonym secret
whereas the second version (Algorithm 14) is more advanced and practically
relevant. This algorithm additionally provides a publicly verifiable proof that
the randomized encrypted secret contains the same secret as the original which
is relevant in some situations.

Algorithm 13 Randomization of encrypted pseudonym secret
Input: encrypted pseudonym secret (E1, E2)
Output: randomized version (E

′

1, E
′

2)

1: Choose random k in F∗q
2: Let E

′
1 = k·E1 and E

′
2 = k·E2

3: Return pair (E
′
1, E

′
2)

That the output (E
′

1, E
′

2) of Algorithm 13 contains the same pseudonym secret
as the input (E1, E2) is a simple verification. That the output is not linkable to
the input is due to the hardness of the Decision Diffie-Hellman (DDH) problem
discussed in the beginning of Annex E. Compare cf. [35, Theorem 10.20].

Algorithm 14 Provable randomization of encrypted pseudonym secret
Input: encrypted pseudonym secret (E1, E2)
Output: randomized version (E

′

1, E
′

2) plus proof ZKP
1: Choose k ∈R F∗q
2: Let E

′
1 = k·E1 and E

′
2 = k·E2

3: Generate ZKP = ZKP[(E1, E2) ,
(
E

′
1, E

′
2

)
, ∅] // Annex E Algorithm 9; d = k

4: Return (E
′
1, E

′
2) and ZKP

Algorithms 13 and 14 are typically ran in software so are efficiently implement-
able. Verification of the ZKP from Algorithm 14 follows Algorithm 10. If this
verification is successful then the verifier is assured there exists an integer k such
that simultaneously holds E

′

1 = k·E1 and E
′

2 = k·E2 implying that (E
′

1, E
′

2) holds
the same pseudonym secret as (E1, E2).

In Algorithm 16 we specify how a pseudonym is derived based on a pseud-
onym secret and a Pseudonymisation Domain (PD), i.e. any string agreed between
the wallet/user and relying party to derive pseudonyms from. This term is taken
from the guidelines on pseudonymisation of the European Data Protection Board
(EDPD) [20]. We do not further discuss these guidelines but remark that SGVP
pseudonymisation meets all requirements specified in these guidelines.

In wallet context, a Pseudonymisation Domain is typically envisioned to rep-
resent a relying party like an URL, a relying party service name or a cluster of
relying parties or services. Such a cluster could be ad-hoc but could also rep-
resent a sector of relying parties, e.g. the financial, medical, or social sector.

45

H. SELF GENERATED VERIFIABLE PSEUDONYMS (SGVP)

Algorithm 17 additionally provides a publicly verifiable proof that this pseud-
onym is correctly formed.

Both Algorithms 16 and 17 require a cryptographic mapping a string into
an element of the group G. In practice this group is based on an elliptic curve
group of prime order q over a finite field Fp for which an example of such a
map is specified in Algorithm 15. This algorithm uses the HDKF key derivation
function [26] we already discussed on page 37 in Section E in the context of
ISO 18013-5 [32]. Here we use a somewhat different and atypical instantiation
based on the SHA256 hash function from [38] and no salt or info byte array. This
means that this HKDF instantiation only takes as input the input key material
(IKM) and an parameter L representing the number of output bytes. We denote
this instance by HKDF(IKM, L).

Algorithm 15 MPD
Mapping of a Pseudonymisation Domain PD to a point P in group G
1: Represent string PD as byte array P̄D

2: Set i = 0
3: repeat
4: Represent i as byte array I
5: Compute HKDF(P̄D ||I, |p|+ 8) and represent as integer f
6: i = i + 1
7: until A non-zero point P in G exists with f as x-coordinate.

8: Return point P in G with f as x-coordinate and y-coordinate even.

Recall that |p| in Step 5 of Algorithm 15 denotes the size in bytes of the prime
number p defining the finite field Fp. The additional 8 bytes requested in Step
5 follows BSI publication TR-03111 [6] and avoid statistical bias in the HKDF
output.

Algorithm 16 Generation of SGVP pseudonym
Input: pseudonym secret x, Pseudonymisation Domain PD
Output: pseudonym Ps

1: Wallet App maps PD to element P1 in group G using Algorithm 15

2: Wallet App instructs WSCA/WSCD to compute P2 = x·P1

3: Return Ps = (P1, P2)

Algorithm 17 Provable generation of SGVP pseudonym
Input: pseudonym secret x, encrypted pseudonym secret (E1, E2), Pseud-
onymisation Domain PD
Output: pseudonym Ps plus proof ZKP
1: Wallet-APP maps PD to element P1 in group G using Algorithm 15

2: Wallet APP instructs WSCA/WSCD to compute P2 = x·P1

3: Wallet APP instructs WSCA/WSCD to compute

ZKP = ZKP[(E1, E2) , (P1, P2) , ∅] // Annex E Algorithm 9; d = x
4: Return Ps = (P1, P2) and ZKP

46

H. SELF GENERATED VERIFIABLE PSEUDONYMS (SGVP)

Public verification of the ZKP from Algorithm 17 follows Algorithm 10. If this
verification is successful then the verifier is assured there exists an integer x′

such that simultaneously holds

E2 = x′·E1 (4)

P2 = x′·P1 (5)

From Equality (4) it now follows that x′ is equal to the pseudonym secret x. It
then follows from Equality (5) that pseudonym Ps = (P1, P2) is well formed, i.e.
uses the same pseudonym secret as in encrypted pseudonym secret (E1, E2).

As we remarked above, Step 2 in Algorithm 16 and Algorithm 17 is imple-
mentable in most cryptographic hardware and all native mobile cryptographic
hardware. However, Step 3 of Algorithm 17, i.e. the generation of the Schnorr
zero knowledge proof, is typically not implementable in cryptographic hardware
but could be implementable in the WSCA outside the WSCD. Alteratively, one
can use the “implicit zero-knowledge approach” from [3] which only requires
Diffie-Hellman support. In this way the proof that a relying party receives on
pseudonym correctness is not transferable which can be considered a feature too.

H.2 Sketches of how SGVP pseudonyms can be used in practice

There are several ways how the SGVP building blocks from Annex H.1 can
be used in practice. In a simple implementation the wallet/user generates a
pseudonym secret x using Algorithm 11 and a first encrypted pseudonym secret
(E1, E2) using Algorithm 12 which could be based on the standard generator
G. The PID provider places the encrypted pseudonym secret (E1, E2) as an at-
tribute in the first PID. With this encrypted pseudonym secret attribute, the
wallet/user can now generate SGVP pseudonyms to relying parties following
Algorithm 17 based on any Pseudonymisation Domain (PD) as explained in An-
nex H.1. As explained, this Pseudonymisation Domain can be any string agreed
between wallet/user and the relying party, but is typically a string represent-
ing the relying party URL, a relying party service name, or a cluster of relying
parties or services. Such a cluster could be ad-hoc but could also represent a sec-
tor of relying parties, e.g. the financial, medical, or social sector. As indicated on
page 2.1 in Section 2.1, the SGVP-pseudonyms can be cryptographically linked
to other PID-bound attestations by using proofs of association between these
attestations and PID.

To avoid that the PID (or rather the encrypted pseudonym secret therein)
allows linking, the user presents different PIDs for different relying parties hold-
ing randomized versions of the encrypted pseudonym secret following Algorithm
14. It seems most efficient if these randomized versions of the encrypted pseud-
onym secret are generated by the PID provider based on the first PID. The PID
provider then sends the correctness proofs, i.e. the ZKP data from Algorithm
14 to the wallet/user. These proofs then enable the wallet/user verification that
the randomized encrypted pseudonym secrets in PID copies are indeed correctly

47

H. SELF GENERATED VERIFIABLE PSEUDONYMS (SGVP)

formed, i.e. hold the same pseudonym secret as the first encrypted pseudonym
secret. Alternatively, these randomized versions of the encrypted pseudonym
secret can also be generated by the wallet/user and then sent to the PID pro-
vider together with the correctness proofs. These proofs then enable the PID
provider to verify that the randomized encrypted pseudonym secrets to be in-
cluded in the PID copies are correctly formed.

We further note that the SGVP concept can also provide for additional pseud-
onymous functionality. For instance, under control of the user it allows a group of
relying parties to link their SGVP-pseudonyms without the relying parties get-
ting access to the pseudonyms of the other relying parties. This can be simply
accomplished by letting the wallet/user deploy the same PID (and thus the same
encrypted pseudonym secret) in the generation of the SGVP pseudonym for this
group of relying parties. In this way the PID (or only the encrypted pseudonym
secret therein) allows the relying parties to link their SGVP-pseudonyms. We
emphasize that only the encrypted pseudonym secret needs to be disclosed from
the PID to the relying parties, but in some cases it can be beneficial to also
disclose the user last name to allow for easy user support.

Instead of placing encrypted pseudonym secrets in the PID, these could be
placed in specific, PID-bound SGVP attestations provided by a specific SGVP
attestation provider. To allow for persistent pseudonyms over all the wallets of
the user, the wallet/user could make an encrypted backup of the pseudonym
secret x and restore that into new wallet of the user. The pseudonym secret
could also be maintained by the wallet provider, the PID provider, an SGVP
attestation provider or a backup/revovery service provider.

48

	Introduction
	Security problem description
	Three fundamental WSCD security requirements
	Three fundamental WSCD instructions

	A proof of association proposal
	Further implementation notes
	Three example WTE architectures (efficient, privacy friendly, PID-bound)
	Freshness of associated keys
	Relation to Idemix/BBS+ protocols

	References
	Android StrongBox key-attestation
	Use of WSCD instructions in PID issuance (informative)
	Use of WSCD instructions in PID based issuance (informative)
	Use of WSCD instructions in presentations of PID based attestations (informative)
	Cryptographic and mathematical background
	Example applications of Proposition 3.5 (informative)
	ASN.1 format for Proof of Association (informative)
	Self Generated Verifiable Pseudonyms (SGVP)
	SGVP building blocks
	Sketches of how SGVP pseudonyms can be used in practice

