
Actively Secure Polynomial Evaluation from Shared Polynomial
Encodings

Pascal Reisert1 , Marc Rivinius1 , Toomas Krips2 , Sebastian Hasler1 , and Ralf Küsters1

1 Institute of Information Security, University of Stuttgart, Germany
{pascal.reisert,marc.rivinius,sebastian.hasler,ralf.kuesters}@sec.uni-stuttgart.de

2 University of Tartu, Estonia
toomas.krips@ut.ee

Abstract. Many of the currently best actively secure Multi-Party Computation (MPC) protocols
like SPDZ (Damgård et al., CRYPTO 2012) and improvements thereof use correlated randomness
to speed up the time-critical online phase. Although many of these protocols still rely on classical
Beaver triples, recent results show that more complex correlations like matrix or convolution triples
lead to more efficient evaluations of the corresponding operations, i.e. matrix multiplications or
tensor convolutions. In this paper, we address the evaluation of multivariate polynomials with a
new form of randomness: polytuples. We use the polytuples to construct a new family of randomized
encodings which then allow us to evaluate the given multivariate polynomial. Our approach can be
fine-tuned in various ways to the constraints of applications at hand, in terms of round complexity,
bandwidth, and tuple size. We show that for many real-world setups, a polytuples-based online
phase outperforms state-of-the-art protocols based on Beaver triples.

Keywords: Multi-party computation · randomized encodings · SPDZ

This report is a major extension of our previous eprint [Rei+22].

1 Introduction

Multi-Party Computation (MPC) enables multiple parties to perform computations on private
inputs without revealing any information about the inputs apart from what can be deduced from
the result. State-of-the-art actively secure MPC protocols, like SPDZ [DKL+13, DPSZ12] and
related protocols [BCS20,KOS16,KPR18], follow a two-phase approach, where correlated ran-
domness is precomputed in an offline phase, and later consumed in an online phase to efficiently
evaluate a function on private inputs. In this setup, a less efficient offline phase is normally con-
sidered acceptable since the offline phase can start well before the input data becomes available.
Efficiency in two-phase protocols (and generally in MPC protocols) depends on the number of
communication rounds needed and the bandwidth, i.e. the amount of data that has to be trans-
mitted between the parties. Local computations, which can be performed without interaction, are
usually considered less problematic as long as hardware requirements, e.g. memory requirements,
remain manageable.

In MPC protocols based on additive secret sharing like SPDZ, addition and multiplication
with public values are local operations and therefore fast, while the multiplication of secret
values requires interaction and correlated randomness. The most common and widely used form
of correlated randomness is classical Beaver triples [Bea92]. The standard approach is to represent
a function, e.g. a matrix multiplication, as a series of additions and multiplications and then to use
a Beaver triple for each multiplication and to add locally. However, this approach is often not the
most efficient choice and for several common operations like matrix multiplication [MZ17,Rei+23]

https://orcid.org/0000-0003-1808-6140
https://orcid.org/0000-0001-8005-8365
https://orcid.org/0000-0003-0981-3553
https://orcid.org/0000-0003-0300-8350
https://orcid.org/0000-0002-9071-9312
mailto:pascal.reisert@sec.uni-stuttgart.de
mailto:marc.rivinius@sec.uni-stuttgart.de
mailto:sebastian.hasler@sec.uni-stuttgart.de
mailto:ralf.kuesters@sec.uni-stuttgart.de
mailto:toomas.krips@ut.ee

2 Reisert et al.

or tensor convolutions [CKR+20,RRHK23] there are by now more efficient actively secure MPC
solutions that rely on different forms of correlated randomness like matrix or convolution triples.

Many of these operations like simple field multiplication (Beaver triples), matrix multipli-
cation (matrix triples) and tensor convolution (convolution triples) have in common that they
are at most quadratic in the secret inputs. Using this property the protocols achieve a low on-
line communication complexity. Additionally, the quadratic nature can be used in the offline
phase, e.g. by using the linear homomorphic structure of lattice-based encryption schemes like
BGV [BGV12] to generate the correlated randomness efficiently.

For higher-order operations, like the evaluation of (high-degree) multivariate polynomials, the
situation is more difficult, and comparable constructions do not exist. We want to address this
problem and present a new actively secure MPC protocol and a suitable new form of correlated
randomness called polytuples, which speeds up the online evaluation of multivariate polynomials
compared to the Beaver triples based approach and still has a reasonably fast offline phase.

We want to briefly describe the high-level idea of our approach. A SPDZ-like online phase
has the following characteristics: at the beginning n parties P1, . . . , Pn possess (among others)
additive shares of the input variables x0, . . . , xm−1, they perform local computations and com-
municate until each party Pi has a share [y]i of the result y = f(x0, . . . , xm−1) (cf. Section 3.2
for the definition of additive shares [·]). To open the result, the parties exchange the [y]i and
locally reconstruct the result Rec([y]1 , . . . , [y]n) :=

∑n
i=1 [y]i = y. 3

This scheme is, however, by no means the only possible construction. In fact, it is enough for
the parties to construct any randomized encoding [IK00,AIK06] of f . A randomized encoding is a
set of terms y0, . . . , yk−1 that depend on the inputs (and some randomness) and a reconstruction
algorithm Rec such that Rec(y0, . . . , yk−1) = f(x0, . . . , xm−1). Additionally, y0, . . . , yk−1 and Rec
are chosen in a way to not leak more information than the actual output f(x0, . . . , xm−1) (cf.
the formal Definition 1). Note that randomized encodings contain the classical SPDZ-setup as
the special case yi = [y]i for 0 ≤ i < k = n where the parties do almost all of the computation
in the interactive phase and only a simple sum in the final reconstruction phase. In particular,
the evaluation of a degree d multivariate polynomial then requires around log2(d) rounds of
communication, which might be too much, especially in networks with high latency. It is then
advantageous to reduce the round complexity by shifting more of the overall computation into a
then more complex reconstruction Rec, since this reconstruction is done locally by each party and
therefore nevertheless cheap. Naturally, certain limitations apply to this shift of computation. For
example, the size k of the encoding should still remain within practical range for two reasons: (i)
For a very large k (e.g. exponential) the local evaluation of Rec might still slow down the overall
multi-party computation and (ii) all the encodings y0, . . . , yk−1 have to be created either by the
offline phase or through communication with the other parties and hence a large k increases the
bandwidth or the offline runtime.

One of the main contributions of this paper is the construction of a new family of efficient
randomized encodings of arbitrary multivariate polynomials f which satisfies these constraints
and allows an efficient MPC protocol with only one round of communication. To this end, we
follow an iterative approach, where we first construct an encoding y0, . . . , yk−1 such that each
yl is of degree at most d1 < deg(f) in the inputs. We next construct a randomized encoding
(yll′) for each yl of even smaller degree d2 < d1. The idea is that if the parties have a degree d2
randomized encoding of each yl, then they can locally reconstruct all yl and if they have all yl

3 In order to get actively secure protocols, the opening protocols additionally include a MAC check (see our full
version Protocol 5 or [DPSZ12]).

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 3

Table 1: Comparison for the computation of [x
d/m
1 · · ·xd/mm−1] of degree d with d/m ∈ N, for Beaver triples,

binomial tuples, and polytuples.

Approach Rounds Bandwidth Tuple Size

Beaver Triples ⌈log d⌉ 2(m−1)⌈log d
m
⌉ 3(m−1)⌈log d/m⌉

e.g. for d = m = 16 4 30 45

Binomial Tuples4 [CWB18] 1 m (d
m

+ 1)m − 1
e.g. for d = m = 16 1 16 65535

Example Intermediate Polytuple 1 O(m log(m)) O(d(logm)2)
e.g. for d = m = 16 1 41 149

then they can reconstruct the result f(x0, . . . , xm−1). Hence the collection of all yll′ is a degree
d2 randomized encoding of f itself.

While the composition (cf. Lemma 2) of randomized encodings is a well-known result [AIK06],
we add a twist. Namely, we construct the encodings yll′ in a way that they can be used in the
reconstruction of multiple yl, e.g. yll′ occurs in the randomized encoding of yl and yℓ for some l, ℓ.
We prove that the multiple use of such an encoding does not affect the security of the resulting
overall randomized encoding of f of degree d2. Thus we need less encodings (of degree d2) to
construct all yl and hence f(x0, . . . , xm−1).

In the next iteration step, we replace the degree d2 encoding yl of f by an encoding yll′l′′ of
even smaller degree d3 < d2. Again we can find yll′l′′ which can be used in the reconstruction
of multiple yll′ and we only need to construct a small number of these yll′ by the previous step.
Hence iterating further the advantage of our multipurpose encodings becomes more significant
and allows us to e.g. construct a degree 3 encoding of f(x0, . . . , xm−1) = x0 · · ·xm−1 with output
size in O(m log(m)). Previous results like [CFIK03] reached O(m2).

In order to use the new randomized encodings to locally reconstruct the results, the parties
first need to construct the components yl in an interactive protocol. We therefore build a new
MPC online protocol based on a new form of correlated randomness, i.e. our polytuples. Polytuples
are specially crafted to allow the computation of the shares [yl] in only one round of online
communication. These shares are then (partly) opened and each party can locally reconstruct
the output f(x0, . . . , xm−1) (or a share thereof).

Our new family of randomized encodings contains a large number of randomized encodings
for each single polynomial f . While all these randomized encodings use the aforementioned
optimization with multipurpose encodings, they differ in the number of iteration steps and the
degree of the final overall encoding. Moreover, we can use encodings of different degrees for
different components, e.g. a degree 4 encoding for y1 and a degree 3 encoding for y2.

The choice of a randomized encoding for a given polynomial f and the resulting number and
shape of the encodings yl and of the polytuples, strongly influence various aspects of the online
and offline phase for the parties. For example, a low number of iteration steps and/or overall
encodings of high degree reduce the output size k. Since all encodings have to be opened this
decreases the bandwidth. The tradeoff is a larger tuple size and hence a more complex offline
phase (see Section 4 for the explicit formulas for tuple size and bandwidth).

Table 1 shows one specific kind of randomized encoding and polytuple. This tuple lies between
the linear size for Beaver multiplication and the exponential size of the more straightforward one-

4 Reisert et al.

0 5 10 15 20 25 30
0

100

200

300

400

m

tu
p
le

si
ze

/e
le

m
en

ts 1 round

2 rounds

3 rounds

4 rounds
Beaver

0 5 10 15 20 25 30
0

20

40

60

80

100

m

b
an

d
w

id
th

/e
le

m
en

ts

Fig. 1: Multi-round example to evaluate a product of m factors with polytuples with optimal tuple size.

round approach from [CWB18,Cou19].4 It has minimal round complexity and a higher bandwidth
cost than the other approaches. Almost all other trade-offs are however possible. The exact
relation will be explained in Section 4.

Moreover, our protocol is also composable, i.e. we can write a multivariate polyno-
mial f(x0, . . . , xm−1) = g(g1(x0, . . . xm−1), . . . , gj(x0, . . . xm−1)) for multivariate polynomials
g, gl (1 ≤ l ≤ j) and then compute [gl(x0, . . . xm−1)] in the first round with our one-round
protocol applied to all gl and then compute f(x0, . . . , xm−1) in the second round with the pro-
tocol applied to g for inputs [gl(x0, . . . xm−1)]. This feature adds additional flexibility since it
allows us to trade round complexity and bandwidth/tuple size; Figure 1 illustrates that adding
just one round can already make a big difference.

Altogether, we can fine-tune our randomized encodings and polytuples for optimal perfor-
mance in the concrete setting where the protocol is deployed w.r.t. bandwidth, tuple size, and/or
round complexity. For example, if network latency is (moderately) high, we should try to min-
imize round complexity. Similarly, bandwidth/data rate restrictions imply that one should use
polytuples with lower bandwidth. If the runtime of the offline phase, local memory or local com-
putation time are important, striving for small tuple sizes is recommended. Our first experiments
show that strategic deployment of polytuples can significantly speedup the performance of the
online phase.

Our Contributions. In summary, our contributions are as follows:

– We introduce a new family of randomized encodings for the evaluation of multivariate poly-
nomials as well as suitable correlated randomness, i.e. polytuples, to integrate the randomized
encodings into a dishonest majority actively secure MPC protocol. Our randomized encod-
ings have the smallest known output size for arbitrary monomials. Our approach evaluates a
multivariate polynomial in just one round of online communication plus one opening round.

– We compute the tuple size and bandwidth needed in the online phase for all new randomized
encodings and corresponding polytuples. Our tuple size is significantly lower than for existing
single-round approaches and also multi-round computations yield improvements (e.g. lower
bandwidth and round complexity than Beaver multiplication).

– We evaluate the performance of our approach for sample applications (evaluation of polyno-
mials, comparisons of secret-shared values, simple machine learning algorithms) in Section 5
which shows that polytuples speed-up these computations compared to Beaver multiplication.

4 To the best of our knowledge no name has been fixed for the [CWB18] underlying correlated randomness—we
therefore chose binomial tuples to refer to this type of randomness within our paper (cf. also Section 3.4 for a
definition).

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 5

2 Related Work

We see our work as an improvement over the common online phase of SPDZ [DPSZ12] and
related protocols [KOS16, KPR18, BCS20]. We therefore concentrate our discussion on recent
progress applicable to SPDZ-like papers, rather than classical theoretical results like e.g. [CD01],
or other MPC approaches like garbled circuits.

A first small optimization of the Beaver triple-based online phase in SPDZ already appeared
in [DKL+13] where square pairs are used to improve the squaring of secret shared values. This idea
has been picked up by Morten Dahl who describes in [Dah17] power tuples for the computation
of a monomial xd for a secret-shared value x, which are binomial tuples (cf. Section 3.4) for a
single variable. Dahl [Dah17] also presents matrix triples and convolution triples which have also
been discussed in [MZ17] in the passively secure domain, too. Matrix (and convolution) triples
have since then seen further attention and are by now available as part of an actively secure
protocol [CKR+20, RRHK23, HRRK24]. The multivariate version of binomial tuples appears
in the passively secure protocol of [CWB18] with additional trust assumptions on the dealer,
whereas the authenticated binomial tuples in this paper provide active security. Ohata and
Nuida [ON20] as well as Couteau [Cou19] use a slight variation of a binomial tuple in the
passively secure setup.

Another classical approach to the secure evaluation of a polynomial is included in [BB89] and
again in [DFK+06]. The more recent extension presented in [LYKM22] uses multiplicative mask-
ing. Their combined passively-secure protocols need 4+ 1+ 2 rounds of (online) communication
(cf. [CdH10]). The general idea of using a multiplicative structure in the underlying primitives,
e.g. a multiplicative secret sharing as in [BD19,GPS12], is quite tempting. However, these multi-
plicative sharings generally cannot compute additions in a cheap way, and conversion techniques
back to an additive sharing as it is used in SPDZ-like protocols are costly. While these protocols
have a constant round complexity and small tuple size, making them actively secure (if possible)
usually comes with considerable overhead. Furthermore, there are many papers optimizing the
use of maskings/tuples. For example, Boura et al. [BCG+18] reuse their masks for certain input
variables for different multiplication gates. Moreover, function-dependent preprocessing can be
used to decrease the required tuple size and bandwidth in the online phase [BENO19,PSSY21].
Also note that with a pseudo-random generator, as in [BCG+19], structured randomness can be
produced without further communication. Special solutions also exist for more complex struc-
tured random data like the matrix triples mentioned before.

Randomized Encodings. Results on randomized encodings reach far back to the works of Ishai
and Kushilevitz [IK00] who proved that every polynomial has a degree-3 randomized encoding.
The complexity results of [IK00] have since been improved by [CFIK03] for general branching
programs, e.g. for products of m variables they achieve randomized encodings of output size
O(m2). In comparison, our randomized encoding reduces the output complexity to O(m log(m)).
Other papers like [Kol05] focus on the binary case (which is less related to our arithmetic setup)
or relax the correctness or privacy requirements like [AIK06] to achieve better efficiency. We refer
to [Ish13] for further classical references on randomized encodings. At the same time [IKM+13]
presents new actively secure protocols with linear bandwidth and constant round complexity, but
with exponential tuple size. Moreover, [Cou19] considers a multi-round approach which improves
the bandwidth from linear in the classical Beaver triple-based approach to O(m/

√
log(m)).

More recently, a new multi-party adapted version of randomized encodings (MPRE) evolved
in [ABT18], where preprocessing and the first communication round are more flexible than in

6 Reisert et al.

our SPDZ-like setup—the latter is (almost completely) restricted to exchange masked inputs
xj − aj in the first communication round. The MPRE approach has led to new passively secure
and actively secure MPC protocols [ABT18,ABT19,LLW20,LL22]. The currently best actively
secure protocol [LL22] uses Oblivious Linear Evaluation (OLE) correlated randomness, needs two
rounds of communication but bandwidth at least cubic in the number of parties n and in O(m1.5)
in the online phase. In comparison, our protocols are linear in n and require only O(m log(m))
communication in the same number of rounds in the online phase.

3 Preliminaries

For our theoretical considerations in Sections 4.2 to 4.5 we are working on a commutative base
ring R. For all other parts, we choose R a finite field as in [DPSZ12]. We call a computation
local if the parties can perform it without interaction.

3.1 Performance Measures

When we analyze the theoretical performance of our protocols, bandwidth is measured in the
number of ring elements sent. Analogously, the size of the structured randomness needed for
one polynomial evaluation in the online phase, i.e. the tuple size, is the number of ring elements
contained in the tuple. The round complexity of a protocol is the number of communication
rounds. One communication round consists of all information that can be sent in parallel. In
particular, if in a protocol party P1 has to wait for a message from P2 before P1 can send her
message, the protocol has round complexity 2. The opening phase in actively secure SPDZ-
like protocols comes with an additional invocation of a MAC check subroutine (cf. Section 3.2
and Protocol 7)—to account for the different structures of an opening round we will count
opening rounds separately, usually indicated by a “+1” in the round/bandwidth count. It is quite
common to ignore the opening round completely for composable protocols since to compute the
composition of two or more functions the parties need only one global opening round. E.g. if
parties can compute a function f in kf + 1 rounds and function g in kg + 1 rounds, they can
compute g ◦ f in kf + kg + 1 rounds. To simplify notation, we sometimes drop the “+1”.

3.2 Secret-Sharing and SPDZ-MACs

As we focus on MPC in the dishonest majority setting, we use classical additive secret-sharing,
denoted by [·]. A secret x is shared among n parties such that x =

∑n
i=1 [x]i where [x]i is the

share of party Pi. All shares are needed to reconstruct a secret and n − 1 or less shares do not
reveal any information. This secret sharing scheme is linear, i.e., we can set [x+ y]i := [x]i+[y]i,
[cx]i := c · [x]i, [x+ c]i := [x]i + c · δi1 for shared values x, y and a publicly known constant c,
where δij is the Kronecker delta. To open (or reconstruct) a secret-shared value, parties simply
broadcast their shares and compute the sum of all shares. Our techniques are independent of the
secret-sharing scheme.

In SPDZ and related protocols, shares are additionally authenticated to verify the outputs
of the protocol using a MAC key [DKL+13,DPSZ12]. The MAC key α ∈ R is shared in the pre-
processing phase. Secret shared values (including inputs and structured randomness like Beaver
triples or polytuples) are authenticated in the offline phase—we use JxK := ([x] , [αx]) to denote
authenticated shares of x and JXK = (Jx1K, . . . , JxkK) for a tuple X = (x1, . . . , xk). Linear op-
erations on authenticated shares are a trivial extension of linear operations on shares with the

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 7

exception of Jx + cKi := ([x+ c]i , [αx]i + c · [α]i). A MAC check enables parties to verify the
integrity of previously opened shares (cf. Protocol 7 or [DKL+13,DPSZ12]). The soundness of
the MAC check is proportional to 1

|R| if R is a field, can be aggregated over many opened values,
and does not reveal the MAC key [DKL+13].

3.3 Randomized Encodings and Randomizing Polynomials

In our protocols we use randomized encodings [IK00] to reduce the communication rounds,
bandwidth, and tuple size.

Definition 1. Let X,Y, Ŷ , A be finite sets and let f : X → Y . A function f̂ : X × A → Ŷ is
called randomized encoding of f if the following holds:

– Correctness. There exists a reconstruction algorithm Rec : Ŷ → Y such that Rec◦f̂ = f ◦pr1
where pr1 : X ×A→ X, (x, a) 7→ x is the projection.

– Privacy. There exists a simulator Sim such that Sim(f(x)) and f̂(x, a) are identically dis-
tributed for all x ∈ X if a is sampled uniformly from A.

If Ŷ = Rk, we call the component functions of a randomized encoding, simply encodings or ran-
domizing polynomials. An encoding y0 of f̂ = (yl)0≤l<k which is only added by the reconstruction
algorithm, i.e. Rec(0, y1, . . . , yk−1) + y0 = Rec(y0, y1, . . . , yk−1), is called additive.

In this paper, we usually have X = Rm, Y = R, Ŷ = Rk. The randomness space A is generally
more complicated since it is a subvariety of some Rt defined by the structure of our randomness,
e.g. for Beaver triples we would choose A = {(a, b, c) ∈ R3 : ab = c} ⊂ R3. We remark that for
our MPC application, we also include components that are completely deterministic in the other
components, e.g. c = ab in the Beaver triple case, since we have to construct this randomness in
the offline phase. For possible other applications of our randomized encodings, these deterministic
components of A can be omitted.

Moreover, in our arithmetic setup we only need to consider randomized encodings
where the entries yl of f̂ are randomizing polynomials in m + t variables, i.e. yl :
X × A → R, ((xj)0≤j<m, (aj)0≤j<t) 7→ yl(x0, . . . , xm−1, a0, . . . , at−1) is a polynomial in
x0, . . . , xm−1, a0, . . . , at−1. To simplify the notation we usually drop the explicit dependency
of the yl on xj and aj .

A randomized encoding f̂ is said to be of (total) degree-d, if the entries yl of f̂ are of total
degree at most d—both the xj and the aj count towards the total degree, e.g. 2x0a20 has total
degree 3. We write f̂ is of x-degree d if it is of degree d in the variables xj and of a-degree d if
it is of degree d in the randomness aj , i.e. 2x0a20 is of x-degree 1 and a-degree 2.

The output size of a randomized encoding is the R-rank of Ŷ , i.e. in this paper the size k. In
our protocols, the output size usually coincides (up to an addition by m) with the bandwidth of
the corresponding MPC protocol. The randomness size t on the other hand corresponds to the
tuple size of the employed polytuple.

For later use we recall some fundamental properties for the concatenation and composition
of randomized encodings [AIK06]:

Lemma 1. Let f̂i(x, ai) be randomized encodings for fi(x) with reconstruction algorithm Reci
and 0 ≤ i < k, then f̂(x, (ai)0≤i<k) = (f̂i(x, ai))0≤i<k is a randomized encoding of f(x) =
(fi(x))0≤i<k with reconstruction Rec = (Reci)0≤i<k.

8 Reisert et al.

Lemma 2. Let (f̂(x, a),Rec) be a randomized encoding of f(x) and (f̂ ′((x, a), a′),Rec′) a
randomized encoding of f̂(x, a) (as a deterministic function of (x, a)). Then f̃(x, (a, a′)) =
f̂ ′((x, a), a′) is a randomized encoding of f(x) with reconstruction Rec ◦ Rec′.

3.4 Binomial Tuples

As mentioned before, our new MPC protocols5 for the evaluation of a multivariate polynomial
f rely on suitable randomized encodings (y0, . . . , yk−1) of f . Here, the single encodings yl are
built by an interactive one-round protocol that uses structured randomness. Since the yl might
have a degree larger than 2, Beaver triples are not enough and we need a type of structured
randomness that allows us to build higher degree terms yl in one round. The solution is what
we call binomial tuples (for yl) since their construction is (just like Beaver triples) based on
binomial expansion. We want to briefly present binomial tuples and the corresponding MPC
online protocol. A passively secure version of this protocol was used in [CWB18,Cou19].

The goal of the binomial tuple approach is to compute a polynomial f in m variables
x0, . . . , xm−1 ∈ R of total degree d =

∑m−1
j=0 dj with one round of communication plus one

opening round.
Let x = (x0, . . . , xm−1) and denote by fa(x) = fa0,...,am−1(x) = f(x0 + a0, . . . , xm−1 + am−1)

a randomization. As a multi-variate polynomial fa has the general form
∑

e∈E bex
e for xe :=∏m−1

j=0 x
ej
j and multi-index e = (e0, . . . , em−1) ∈×m−1

j=0 {0, . . . , dj} =: E and some coefficients
be ∈ R (which depend on the aj). Now each party Pi receives (from the offline phase) a share
JbeKi for all e ∈ E. We call the (be)e∈E (or the sharing JbeKe∈E) a binomial tuple.

Additionally, assume that the parties already hold shares JxjK, JajK of the input variables xj
and masks aj . In the first round of (online) communication the parties exchange [xj] − [aj] =
[xj − aj] for 0 ≤ j < m and reconstruct x− a = (x0− a0, . . . , xm−1− am−1). Subsequently, each
party Pi can locally compute a share

Jf(x)Ki = Jfa(x− a)Ki =
∑
e∈E

JbeKi(x− a)e (1)

i.e. the parties can reconstruct f(x) in the opening round.

Remark 1. If f(x) = x(d0,...,dm−1) is a monomial, then

fa(x) = (x+ a)(d0,...,dm−1) =
∑
e∈E

(m−1∏
j=0

(
dj
ej

))
a(d0,...,dm−1)−exe.

Hence, we have be =
(∏m−1

j=0

(
dj
ej

))
a(d0,...,dm−1)−e. Thus, each party needs to receive a share of

be from the preprocessing, i.e. the tuple size is
∏m−1
j=0 (dj + 1)− 1, where the dj + 1 comes from

running through the powers 0 to dj and the final −1 corresponds to the case e = (d0, . . . , dm−1)
where be = 1 is constant and does not have to be shared explicitly. We see that the structured
randomness (be)e∈E has a small size if m = 1, but becomes exponential for monomials of many
different factors, e.g. for dj = 1 for all 0 ≤ j < m one has size 2m − 1 = 2d − 1.

Although binomial tuples come with a minimal round complexity of 1+1 rounds and small
bandwidth, e.g. m+1 ring elements for the polynomial

∏m−1
j=0 xj , the often large tuple size makes

5 The protocol will be presented later in Protocol 5.

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 9

binomial tuples too inefficient for most higher degree multivariate polynomial evaluations. Our
polytuples (cf. Definition 2) will therefore not contain binomial tuples for high-degree polynomials,
but rather combine and correlate low-degree binomial tuples to retain a small tuple size and
bandwidth while keeping the round complexity minimal.

4 Our MPC Protocols for the Evaluation of Multivariate Polynomials

We now present our main technical results on randomized encodings and polytuples. In Sec-
tion 4.1 we explain first what kind of randomized encodings are compatible with our MPC pro-
tocol and how they can be used in an online phase. Sections 4.2 to 4.5 construct our new family
of suitable randomized encodings. It also analyzes the complexity of the randomized encodings
and connects it to the bandwidth and tuple size of our MPC protocols. Finally, Section 4.6 con-
tains our MPC protocols and the main theorems. We refer to Section 4.7 and Appendix C for a
discussion on the polytuple generation in the offline phase.

4.1 MPC With Randomized Encodings

Our MPC online protocols (just like SPDZ) consider n parties P1, . . . , Pn that receive shares of
the input variables x = (x0, . . . , xm−1) as well as shares of (structured) random data in the form
of a structured random tuple â = (a0, . . . , at−1) with t ≥ m from an offline phase. The parties
can locally add the shares, but they need to interact to compute the product of two secrets like
x0x1 or x0a0. In order to compute these products the parties have to exchange their shares,
obviously not in plain, but in some masked form. Therefore, as in SPDZ (and for the binomial
tuples in Section 3.4) we assume that the parties open xj − aj , 0 ≤ j < m, in an initial round of
communication. Thus after the initial communication round, all parties know the public values
xj − aj , 0 ≤ j < m, in addition to the shares already provided by the offline and input phase.

The parties can use this information to construct new shares [yl]i between the initial com-
munication round and the final opening round. They can locally multiply and add the public
values xj − aj , but they cannot locally multiply the shares (in a meaningful way). Hence the
[yl]i can be polynomials in the xj − aj with coefficients that have at most total degree 1 in
[x0]i , . . . , [xm−1]i , [a0]i , . . . , [at−1]i. E.g. [a2]i (x1 − a1)2 can be computed locally by party Pi af-
ter the initial round of communication. However, [a1]i · [a2]i (x1 − a1)2 ̸=

[
a1a2(x1 − a1)2

]
i
, i.e.

the degree 2 coefficient [a1]i · [a2]i is not sufficient to compute a share of the product locally.
Instead, we need to include structure randomness a3 = a1a2 in the tuple. Then Pi easily com-
putes [a3]i (x1 − a1)2 = [a1a2]i (x1 − a1)2 =

[
a1a2(x1 − a1)2

]
i
, which now has a coefficient [a3]i

of degree 1.
After the local computation, the parties open the [yl]i and each party gets yl =

∑n
i=1 [yl]i.

Note that the degree condition ensures that yl turns into a polynomial in the xj and aj since the
shares dissolve, e.g.

∑n
i=1 [a2]i (x1−a1)2 = a2(x1−a1)2. In order to compute f(x0, . . . , xm−1) pri-

vately the yl (together with the xj−aj) must be a randomized encoding for a suitable reconstruc-
tion algorithm Rec, i.e. f̂(x0, . . . , xm−1, a0, . . . , at−1) = (x0 − a0, . . . , xm−1 − am−1, y0, . . . , yk−1)
in the notation of Definition 1.6 In particular, the parties can then locally apply Rec to xj−aj and
the now public yl, to compute f(x0, . . . , xm−1). Hence for a randomized encoding f̂ = (yl)0≤l<k
of f with

6 In our encodings f̂ we usually do not include the xj − aj explicitly, since we can directly include polynomials
in the xj − aj in the yl.

10 Reisert et al.

(I) yl is a polynomial
∑

e(l)∈E(l) be(l)(x, â) · (x − a)e(l) where E(l) ⊂ Nm some finite set of
multi-indices and a = (a0, . . . , am−1) the input masks, and

(II) all coefficients be(l)(x, â) have total degree at most 1 in R[x0, . . . , xm−1, a0, . . . , at−1],

the parties P1, . . . , Pn can compute f(x0, . . . , xm−1) with Protocol 1 and option continuation =
open. To later use our randomized encodings in multi-round online protocols (cf. Protocol 1 and
Protocol 5) we furthermore require that

(III) y0 is an additive component in the sense of Definition 1.

This allows the options continuation = share in Protocol 1 below to output a share
Jf(x0, . . . , xm−1)Ki of the result to each party Pi or to output a masked result f(x0, . . . , xm−1)−b
if continuation is a shared random value JbK. We discuss the multi-round use in more detail
in Section 4.6. The protocol Πpolynomial for polynomial evaluations is the core part of our online
phase. All other parts, e.g. the input protocol, are identical to their counterparts in SPDZ. We
have included the full online protocol Πonline in Protocol 5.

Πpolynomial

Let f̂ = (yl)0≤l<k be a randomized encoding of f that satisfies (I), (II), (III) with randomness space A. Each
party has a share of x = (x0, . . . , xm−1) and of some â = (a0, . . . , at−1) ∈ A. On input (f̂ , JxK, JâK, continuation)
each party Pi does:

1. Pi locally computes and then opens JxjKi − JajKi for all 0 ≤ j < m. After receiving all shares, Pi locally
computes xj − aj .

2. Pi locally computes JylKi =
∑

e(l)∈E(l) be(l)(JxKi, JâKi)(x − a)e(l) for all 0 ≤ l < k, a = (a0, . . . , am−1). If
continuation = JbK then set Jy0Ki ← Jy0Ki − JbKi.

3. Pi opens JylKi for all i > 0 and locally computes yl =
∑n

i=1 [yl]i by summing up the received shares.
a. If continuation = share, Pi locally constructs Jf(x0, . . . , xm−1)Ki = Jy0 + Rec(0, y1, . . . , yk−1)Ki =

Jy0Ki + Rec(0, y1, . . . , yk−1)δ1i.
b. If continuation ̸= share, Pi opens and computes y0 =

∑n
i=1 [y0]i and locally reconstructs

f(x0, . . . , xm−1) = Rec(y0, . . . , yk−1).

Protocol 1: 1(+1) round interactive evaluation of a polynomial f .

Remark 2. As usual for SPDZ-like protocols, we get a passively secure version if we replace J·K
with a simple [·]. We note that all constructions in this paper still work in the passive setup with
this modification.

4.2 Our Randomized Encodings

We now want to construct suitable randomized encodings of arbitrary multivariate polynomials
compatible with our MPC online phase, i.e. randomized encodings that satisfy (I)–(III) above. We
already know from Section 3.4 that every multivariate polynomial can be computed with binomial
tuples and also that these binomial tuples become too large for high-degree polynomials. Hence
we will first construct low-degree randomized encodings and then use the binomial tuples from
Section 3.4 to construct these low-degree terms as in (1) and Protocol 1, respectively.

We will start with homogeneous monomials x0,...,m−1 := x0 · · ·xm−1, then lift our construction
to arbitrary monomials, i.e. xd00 · · ·x

dm−1

m−1 , and finally to arbitrary polynomials.

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 11

Idea of Our Construction. To construct a randomized encoding for f(x0, . . . , xm−1) =
x0,...,m−1 =

∏m−1
j=0 xj , we follow an iterative approach, where we first construct a degree d1

encoding f̂ (1) of f for some d1 < m, i.e. the components y(1)l of f̂ (1) are polynomials of degree
≤ d1. We next construct a lower degree encoding f̂ (2) of degree d2 < d1, of f̂ (1) and use the com-
position Lemma 2 to get a new degree-d2 encoding of f . Iteratively, we can reduce the degree of
the encoding to a target degree, e.g. a degree-3 encoding.

The straightforward approach to construct a randomized encoding of f̂ (1) is to construct
encodings for each of the component functions y(1)l of f̂ (1) and then to concatenate the encodings
with Lemma 1 to a randomized encoding of the whole f̂ (1). As mentioned before, in this paper
we follow a more efficient approach, where we construct encodings y(2)l that can be used in the
reconstruction of multiple y(1)l .

We want to illustrate our approach with the special case m = 2n. We use 3 types of encodings
each linear in some monic monomial xu,...,r−1 := xu · · ·xr−1 with u < r:

(i) with constant prefactor 1, i.e. of the form fau,...,r−1(xu, . . . , xr−1) = xu,...,r−1−au,...,r−1 and
an au,...,r−1 ∈ A;

(ii) with one randomized prefactor a ∈ A, i.e. of the form gabu,...,r−1
(xu, . . . , xr−1) = axu,...,r−1−

bu,...,r−1 and a bu,...,r−1 ∈ A;
(iii) with two randomized prefactors a, b ∈ A, i.e. of the form ha,bcu,...,r−1(xu, . . . , xr−1) =

abxu,...,r−1 − cu,...,r−1 and a cu,...,r−1 ∈ A.

We now want to construct randomized encodings for each of these three types of encodings which
again consist of terms of type (i), (ii), or (iii), but of lower degree, i.e. with smaller r − u. Since
our monomial f(x0, . . . , xm−1) is of type (i) with u = 0, r = m, this will allow us to construct
a degree d1 encoding f̂ (1) = (y

(1)
l) where all y(1)l are of type (i), (ii) or (iii) with x-degree < r.

Then we can iterate.
To simplify notation we use a helper function

φ(x, y, a, b, c) := (x− a, y − b, bx+ ay − ab− c)

on R5. Moreover, we choose a reconstruction Rec(y0, y1, y2) := y0y1+y2 for output size 3 random-
ized encodings. Please note that y2 is then an additive component in the sense of Definition 1.
We get

Rec ◦ φ(x, y, a, b, c)=φ0φ1+φ2=(x− a)(y − b)+bx+ay−ab−c=xy−c. (∗)

Hence, we find for v = (u+ r)/2 randomized encodings of f∗, ga∗ , h
a,b
∗ :

(1) f̂au,...,r−1(xu, . . . , xr−1, a0, a1) = φ(xu,...,v−1, xv,...,r−1, a0, a1, au,...,r−1)
7,

(2-1) ĝabu,...,r−1
(xu, . . . , xr−1, b0, b1) = φ(axu,...,v−1, xv,...,r−1, b0, b1, bu,...,r−1),

(2-2) ĝbbu,...,r−1
(xu, . . . , xr−1, b0, b1) = φ(xu,...,v−1, bxv,...,r−1, b0, b1, bu,...,r−1),

(3) ĥa,bcu,...,r−1(xu, . . . , xr−1, c0, c1) = φ(axu,...,v−1, bxv,...,r−1, c0, c1, cu,...,r−1),

where a0, a1, b0, b1, c0, c1 ∈ A are random numbers (not necessarily different). Note that for g
we have two different cases depending on whether a randomized prefactor comes from the first
component or the second.
7 To simplify the notation we often write ∗ for the additive constant index if the index is clear from context.

12 Reisert et al.

While correctness follows in all four cases directly from (∗), we omit the security proof for
now and refer to the general cases discussed in Section 4.3.

Please note that in all of these randomized encodings the components (given by some
φ0, φ1, φ2) are in fact linear combinations of terms of types (i), (ii) or (iii) and of x-degree
(r − u)/2 = 2n−1. Hence, we can iteratively apply the four randomized encodings again to get
to an even smaller x-degree.

The first two components of (1), (2-1), (2-2), (3) (which come from some φ0, φ1) are simple
terms of types (i)–(iii). For these we can iterate immediately, i.e. apply (1), (2-1), (2-2), (3)
with either u ← u, r ← v, v ← (u + r)/2 or u ← v, r ← r, v ← (u + r)/2 to get encodings
of the components of x-degree (r − u)/2 = 2n−1 and output size 3. In the third components
(corresponding to φ2) we have sums of type (i)–(iii) terms. Here, we construct a randomized
encoding for each summand (using suitable instances of (1), (2-1), (2-2), (3)) and then combine
them to a randomized encoding of the sum.8 Overall, this leads to four randomized encodings
of output size 3 (as above) and x-degree 2n−1: two for the first two components and two for the
two summands of the third component. If we follow this path and reduce the x-degree iteratively
by a factor 2 in each round, then we quickly see that we get (using concatenation Lemma 1
and composition Lemma 2) an overall randomized encoding of x-degree 1 (and a-degree ≤ 2) of
output size in O(4n) = O(m2) similar to the results in [CFIK03].

However, if we investigate our randomized encodings above a bit closer, then we see that
we produce a significant amount of identical encodings multiple times. For example, if we set
a1 = b1 then the second component of both f̂∗(xu, . . . , xr−1, a0, a1) and ĝa∗(xu, . . . , xr−1, b0, a1)
is xv,...,r−1 − a1. Analogously, we get a joined component for (1) and (2-2) if a0 = b0. Simi-
larly, we see that for b0 = c0 the first components of both (2-1) ĝa∗(xu, . . . , xr−1, b0, b1) and (3)
ĥa,b∗ (xu, . . . , xr−1, b0, c1) are identical: axu,...,v−1 − b0. Analogously, for (2-2) and (3) for b1 = c1.
See also Fig. 2. Thus, if we choose the randomness suitably, it is enough to produce some
of the encodings in (1), (2-1), (2-2), (3) only once and then use them in multiple reconstruc-
tions. E.g. this allows us to save 4 components when constructing a randomized encoding of
(f∗(xu, . . . , xr−1), g

a
∗(xu, . . . , xr−1), g

b
∗(xu, . . . , xr−1), h

a,b
∗ (xu, . . . , xr−1)). Please note that while

in general one cannot use the same encoding in different reconstructions without losing privacy,
our construction allows the multiple use of encodings—we refer to Corollary 1 for the formal
result. We can now conclude that we need for a randomized encoding of

(a) f∗(xu, . . . , xr−1): 2 type (i) terms (1st, 2nd component of f̂) and 2 type (ii) terms (sum-
mands in the 3rd component of f̂),

(b) each ga∗(xu, . . . , xr−1), gb∗(xu, . . . , xr−1) : 2 additional type (ii) terms (1st (2-1) or 2nd (2-2)
component of ĝ + one summand in the 3rd component) plus 1 type (iii) term (summand
in the 3rd component).

(c) ha,b∗ (xu, . . . , xr−1): 2 additional type (iii) terms (summands in the 3rd component of ĥ).

Please note that (b) assumes that (a) has been already produced; (c) assumes that both
(a) and (b) have been produced. Fortunately, this is the only case that occurs in our iterative
construction, i.e. whenever we need to construct a term ha,b∗ we also need to construct the
corresponding ga∗ , gb∗, f∗ linear in the same monomial. Analogous, whenever we need to construct
a ga∗ or gb∗ we also need to construct an f linear in the same monomial.

8 We omit details for this combination, which is treated in general in Corollary 1.

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 13

f∗(xu, . . . , xr−1) ga∗(xu, . . . , xr−1) gb∗(xu, . . . , xr−1) ha,b
∗ (xu, . . . , xr−1)

f∗(xu, . . . , xv−1) ga∗(xu, . . . , xv−1) f∗(xu, . . . , xv−1) ga∗(xu, . . . , xv−1)

f∗(xv, . . . , xr−1) f∗(xv, . . . , xr−1) gb∗(xv, . . . , xr−1) gb∗(xv, . . . , xr−1)

ga1
∗ (xu, . . . , xv−1) ha,a1

∗ (xu, . . . , xv−1) gb1∗ (xu, . . . , xv−1) ha,b1
∗ (xu, . . . , xv−1)

ga0
∗ (xv, . . . , xr−1) gb0∗ (xv, . . . , xr−1) hb,a0

∗ (xv, . . . , xr−1) hb,b0
∗ (xv, . . . , xr−1)

Fig. 2: Components in the encodings (1) [left], (2-a) [left-middle], (2-b) [right-middle], (3) [right]. Identical colors
(apart from black) mark identical encodings, black/dashed boxed components are duplicates and therefore not
produced again.

We want to briefly look at two successive iteration steps to explain why this is the case.
We start with our monomial f(x0, . . . , xm−1) = x0,...,m−1. Then the randomized encoding
f̂∗(x0, . . . , xm−1, a0,...,2v−1, a2v,...,m−1) for v = 2n−2, r = m = 2n, u = 0 from (1) leads to

- 2 terms f∗(x0, . . . , x2v−1), f∗(x2v, . . . , xm−1) and 2 terms g
a2v,...,m−1
∗ (x0, . . . , x2v−1),

g
a0,...,2v−1
∗ (x2v, . . . , xm−1) in the 3rd component of f̂ (see also left column in Fig. 2).

If we go one iteration further, i.e. apply (1), (2-1), (2-2), (3) to these four terms,
f̂∗(x0, . . . , x2v−1, a0,...,v−1, av,...,2v−1) leads again to 2 terms f∗(x0, . . . , xv−1), f∗(xv, . . . , x2v−1)
and 2 terms g

av,...,2v−1
∗ (x0, . . . , xv−1), g

a0,...,v−1
∗ (xv, . . . , x2v−1). But now we also get from

ĝ
a2v,...,m−1
∗ (x0, . . . , x2v−1, b0,...,v−1, av,...,2v−1) in the case (2-1):9

- 2 additional terms g
a2v,...,m−1
∗ (x0, . . . , xv−1), g

b0,...,v−1
∗ (xv, . . . , x2v−1), and one term

h
av,...,2v−1,a2v,...,m−1
∗ (x0, . . . , xv−1) (see Fig. 2, right-middle column).

We see that we get in fact the 4 terms f∗, g
av,...,2v−1
∗ , g

a2v,...,m−1
∗ , h

av,...,2v−1,a2v,...,m−1
∗ all linear in

x0,...,v−1. Furthermore, observe that each type (ii) term only occurs with a corresponding type (i)
term linear in the same monomial and that each ha,b∗ only occurs with corresponding ga∗ , gb∗ and
f∗ terms all linear in the same monomial. Finally note that a type (iii) term ha,b∗ (xu, . . . , xr−1)

again leads to two type (iii) terms ha,b1∗ (xu, . . . , xv−1), h
b,b0
∗ (xv, . . . , xr−1) (Fig. 2, right). As

we have seen, we also have ga∗(xu, . . . , xr−1), g
b
∗(xu, . . . , xr−1). Then we have to apply (2-1) to

ga∗(xu, . . . , xr−1) and (2-2) to gb∗(xu, . . . , xr−1) (or vice versa) to ensure that ga∗(xu, . . . , xv−1) and
gb∗(xv, . . . , xr−1) (or gb∗(xu, . . . , xv−1) and ga∗(xv, . . . , xr−1)) are already available for the recon-
struction of ha,b∗ (xu, . . . , xr−1). The two different cases are (dashed) underlined in Fig. 2.

Overall we see that the number of needed encodings as described by (a), (b), (c) hold generally
in our construction. Hence we can deduce the output complexity of our iterative approach,

9 Analogously for (2-2).

14 Reisert et al.

namely:

f 1
·2 //
·2

""

2
·2 //
·2
""

4
·2 //
·2
""

8
·2 //
·2
##

16
·2 //
·2
$$

32
·2 //
·2
%%

64
·2 //
·2
$$

· · ·

g − 2
·2 //
·1
""

8
·2 //
·1
##

24
·2 //
·1
##

64
·2 //
·1
$$

160
·2 //
·1
%%

384
·2 //
·1
$$

· · ·

h − − 2
·2 // 12

·2 // 48
·2 // 160

·2 // 480
·2 // · · ·

We easily see that the number of type (i) terms f is in O(2n) = O(m), of type (ii) terms g is
in O(2nn) = O(m log(m)) and type (iii) terms h is in O(2nn2) = O(m(log(m))2). Hence we get
overall complexity O(m(log(m))2) since we have to construct all of these terms. This is already
a significant improvement over the currently best-known result O(m2) [CFIK03].

However, the result is not ideal yet. We can further improve it by combining additive com-
ponents: Consider Rec′(y0, y1, y2, y3, y4) = y0y1 + y2y3 + y4 and

φ′(x, y, a, b, x′, y′, a′, b′, c)

:= (x− a, y − b, x′ − a′, y′ − b′, bx+ ay + b′x′ + a′y′ − ab− a′b′ − c)

Then Rec′ ◦ φ′ = xy + x′y′ − c. Thus for v = r/4:

f̂add(x0, . . . , xr−1, a0,...,v−1, av,...,2v−1, a2v,...,3v−1, a3v,...,r−1)

= φ′(x0,...,v−1, a2v,...,r−1xv,...,2v−1, a0,...,v−1, bv,...,2v−1, x2v,...,3v−1,

a0,...,v−1x3v,...,r−1, a2v,...,3v−1, b3v,...,r−1, a0,...,2v−1a2v,...,r−1)

is a randomized encoding of the additive 3rd component of f̂∗ (from (1)), i.e. of
a2v,...,r−1x0,...,2v−1+a0,...,2v−1x2v,...,r−1−a0,...,2v−1a2v...,r−1. Note that f̂add only has 5 components
compared to 6 that are needed if we construct each summand separately. Analogous results hold
for the additive components of ĝa∗ , ĝb∗, ĥ

a,b
∗ . Overall this reduces the output complexity down to

O(m log(m)).

4.3 Technical Lemmas and Formal Results

We now want to present a generalization of the previous construction. The proofs to all statements
in this section are available in Appendix A. We also refer to Appendix A for additional examples,
e.g. Examples 1, 2, 4 and 5.

We start with the main technical Lemmas 3 to 5. The three lemmas discuss the three cases
(i)–(iii) already presented above, i.e. no (Lemma 3), one (Lemma 4) or two randomized prefactors
(Lemma 5). While in the previous special case the randomized encoding of x0,...,m−1 consisted of
terms either linear in x0,...,t−1 or in xt,...,m−1, the more general lemmas instead allow to construct
a randomized encoding linear in any number 1 ≤ r1 ≤ m of monomials xS1,j

:=
∏
k∈S1,j

xk for

{0, . . . ,m − 1} =
⋃̇
j∈Zr1

S1,j any disjoint union.10 E.g. we can split x0,...,8 into terms linear in
the three monomials x0,...,2, x3,...,5 or x6,...,8.

We will first state the lemmas and then explain how they can be combined into a low-
degree encoding of any product x0 · · ·xm−1. Since we later apply the lemmas several times
10 We use indices in Zr because they wrap around nicely. To be more formal, we will sometimes use i for the

unique representative of i ∈ Zr in {0, . . . , r − 1}.

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 15

in different degrees, they are stated in a generic degree r instead of m to avoid confusion.
Furthermore, we use the following notation: For ∅ ̸= J = {j0, . . . , js} ⊂ Zr with representatives
0 ≤ j0 < · · · < js < r, js+1 := j0 and a set of functions {fij , (i, j) ∈ Z2

r}, define the product
fJ :=

∏s
v=0 fjv ,jv+1−1. E.g. the set J = Z5 leads to fJ = f0,0f1,1 · · · f4,4 and J = {2, 4, 5} ⊂ Z6

to fJ = f2,3f4,4f5,1.

Lemma 3. Let f(x0, . . . , xr−1) = x0,...,r−1 − c for some consant c ∈ R. There is a randomized
encoding f̂ with randomness and output size both r(r− 1) + 1. The randomized components of f̂
have the form fii = xi − ai, and fij = xiai+1,...,j − ai,...,j, and fadd =

∑
i∈Zr

xiai+1,...,i−1 − aadd
for randomness ai, ai+1,...,j for i ̸= j ̸= i− 1 and i, j ∈ Zr, and aadd = c+

∑
J⊂Zr,|J |>1(−1)|J |aJ

where aJ :=
∏s
v=0 ajv ,...,jv+1−1.The reconstruction function has the form Rec(fij , fadd) := fadd +∑

J⊂Zr,|J |>1 fJ .

Proof. We first note that there are exactly r2 − r different factors in products fJ associated
with sets J with |J | > 1, since a factor is defined by its start jt and end index jt+1, i.e. 2
ordered samples from Zr drawn without replacement. We show first that

∏
j∈Zr

xj − c = fadd +∑
J⊂Zr,|J |>1 fJ := Rec(fij , fadd) for a suitable structured randomness aadd (constant in the xj).11

Note that apart from
∏
j∈Zr

xj each non-constant summand in the expression on the right is of
the form xjaj+1,...,k−1g for some specific term g and some j, k.12 Each of these terms (for a fixed g,
j and k) occurs exactly once with a positive sign for a J which contains jl = j, jl+1 = k ̸= j + 1
for some l, i.e. as a summand in fjl,k−1g = (xjlajl+1,...,k−1 − ajl,...,k−1)g or fadd if k = j.13

It occurs exactly once with a negative sign for a J ′ = J ∪ {j + 1}, i.e. as a summand in
fjl,jlfjl+1,k−1g = (xjl − ajl)(xjl+1ajl+2,...,k−1 − ajl+1,...,k−1)g. Thus these terms cancel out. It
remains only

∏
j∈Zr

xj and constant random terms (in the xj) which add up to −c for a suitably
chosen (structured) randomness aadd. Namely, aadd = c+

∑
J⊂Zr,|J |>1 fJ(0, . . . , 0) if we consider

fJ as a function of the xi. This shows the correctness of the randomized encoding.
For privacy, we first choose uniformly random (and in particular mutually independent)

ai,...,j ∈ R for i ̸= j + 1 and only aadd structured, i.e. a (deterministic) polynomial in the ai,...,j .
Now the simulator samples its first r(r− 1) components f̃ij (corresponding to the fij) uniformly
from R. Since each fij contains an additive random mask (and all masks are independent),
the fij are also distributed uniformly if the ai,...,j are sampled uniformly (cf. Definition 1). For
the last component f̃add (corresponding to fadd), the simulator computes f̃add = −Rec(f̃ij , 0) +
f(x0, . . . , xm−1). By construction fadd = −Rec(fij , 0) + f(x0, . . . , xm−1) and f̃add are equally
distributed, which shows privacy.

Remark 3. Observe that r of the encodings have constant leading coefficient 1 as a polynomial in
x0, . . . , xr−1, i.e. the fii. Moreover, there are r(r− 2)+ 1 encodings where the leading coefficient
is one random element, i.e. the fij for i ̸= j ̸= i− 1 and fadd.

Lemma 4. Let ga(x0, . . . , xr−1) = ax0,...,r−1 − c for some a, c ∈ R. Let µ ∈ Zr be a fixed index
and define Tµ := {(i, j) ∈ Z2

r : j − µ ≤ i− µ− 1} and Sµ = Z2
r \ Tµ. Let fij , aij ,Rec be as in

Lemma 3. Then there is a randomized encoding ĝa,µ of ga with randomness and output size both
r(r − 1) + 1. The randomized components of ĝa,µ have the form
11 We remark that the sum is exponential in r. We will however usually use r small enough that this local

computation does not affect the overall runtime significantly.
12 Take j := min{i : xiai+1,...,k a factor of the summand for some k ̸= i+ 1}.
13 The other elements of J are uniquely determined by g.

16 Reisert et al.

(i) ga,µij = fij for (i, j) ∈ Sµ.
(ii) ga,µµµ = axµ − ba,µµ , ga,µµj = axµaµ+1,...,j − ba,µµ,...,j for j ̸= µ, µ− 1.
(iii) ga,µij = xib

a,µ
i+1,...,j − b

a,µ
i,...,j for (i, j) ∈ Tµ \ ({µ} × Zr) and j ̸= i− 1.

(iv) ga,µadd = axµaµ+1,...,µ−1 +
∑

i∈Zr\{µ} xib
a,µ
i+1,...,i−1 − b

a,µ
add.

for randomness ba,µi,...,j for (i, j) ∈ Tµ and j ̸= i− 1, and ba,µadd = c+
∑

J⊂Zr,|J |>1(−1)|J |b
a,µ
J where

ba,µi,...,j := ai,...,j for (i, j) ∈ Sµ.

Proof. We can simply copy the proof of Lemma 3 for the variables (axµ, xj , j ̸= µ) and coefficients
ba,µ∗ instead of a∗. Please note that again we have to choose the ba,µi,...,j uniformly random from R
and only ba,µadd is structured.

Remark 4. First note that we use the additional index µ to determine to which encoding the
prefactor a is assigned. Moreover, observe that r− 1 of the new terms have as leading coefficient
a product of two random elements, i.e. the axµaµ+1,...,j in ga,µµj , g

a,µ
add for j ̸= µ. The other new

encodings all have one random prefactor: |Tµ| − r encodings from (ii), (iii) as well as r − 1
summands in ga,µadd.

Lemma 5. Let ha,b(x0, . . . , xr−1) = abx0,...,r−1 − c for some a, b, c ∈ R. Let µ, ν ∈ Zr be two
fixed indices with µ ̸= ν. Let fij, g

a,µ
ij , gb,νij , ba,µij , bb,νij , Sµ, Sν , Tµ, Tν , Rec be as in Lemmas 3

and 4. Then there is a randomized encoding ĥa,b of ha,b with randomness and output size both
r(r − 1) + 1. The randomized components of ĥa,b have the form:

(i) hij = fij for (i, j) ∈ Sµ ∩ Sν
(ii) hij = ga,µij for (i, j) ∈ Tµ \ Tν , hij = gb,νij for (i, j) ∈ Tν \ Tµ
(iii) hµj = axµb

a,µ
µ+1,...,j − cµ,...,j for (µ, j) ∈ Tν , j ̸= µ, µ − 1; hνj = bxνb

b,ν
ν+1,...,j − cν,...,j for

(ν, j) ∈ Tµ, j ̸= ν, ν − 1;
(iv) hij = xici+1,...,j − ci,...,j for µ ̸= i ̸= ν and (i, j) ∈ Tµ ∩ Tν and j ̸= i, i− 1

(v) hadd = axµb
a,µ
µ+1,...,µ−1 + bxνb

b,ν
ν+1,...,ν−1 +

∑
i∈Zr\{µ,ν} xici+1,...,i−1 − cadd

for randomness ci,...,j for (i, j) ∈ Tµ ∩ Tν ∧ (j ̸= i − 1) and cadd = c +
∑

J⊂Zr,|J |>1(−1)|J |cJ
where ci,...,j := ai,...,j for (i, j) ∈ Sµ ∩ Sν , ci,...,j := ba,µi,...,j for (i, j) ∈ Tµ \ Tν , ci,...,j := bb,νi,...,j for
(i, j) ∈ Tν \ Tµ.

Proof. Note that we can in fact consistently set ci,...,j = ai,...,j for (i, j) ∈ Sµ ∩ Sν , since then
(i+ 1, j) ∈ Sµ ∩ Sν if i ̸= j. Set ci,...,j = ba,µi,...,j for (i, j) ∈ Tµ \ Tν , since then (i+ 1, j) ∈ Tµ \ Tν
apart from i ̸= µ. Analogously ci,...,j = bb,νi,...,j for (i, j) ∈ Tν \ Tµ. Furthermore, (i, j) ∈ Tµ ∩ Tν ⇒
(i+ 1, j) ∈ Tµ ∩ Tν for µ ̸= i ̸= ν. In particular, (i, i− 1) ∈ Tµ ∩ Tν . The claim now follows as in
Lemma 3 with variables (axµ, bxν , xj : µ ̸= j ̸= ν) and randomness c∗ instead of a∗.

Remark 5. Observe that the two indices µ and ν are again used to assign the two prefactors a and
b to the encodings linear in xµ and in xν . Moreover, note that the number of new terms with two
randomized prefactors is r, i.e. the terms hµj for j − ν ≤ µ− ν − 1 and hνj for j − µ ≤ ν − µ− 1.
All other new encodings and summands thereof have one variable prefactor.

Remark 6. Please also note that in the previous lemmas, we always get one (unstructured)
random number for each new component apart from the additive component. For the additive
component, we get one structured random number.

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 17

S1,0 ∪̇ S2,0 Sℓ−1,0 ∪̇ Sℓ,0

S0,0 ∪̇ S1,1 S2,0 Sℓ,1

S1,2 Sℓ,2

Fig. 3: Tree-like structure of a series of refinements of partitions.

The previous technical lemmas are combined as in the special case in Section 4.1. Namely, we
partition our variables x0, . . . , xm−1 into r1 ≤ m sets, i.e. we choose a partition {0, . . . ,m −
1} =: S0,0 =

⋃̇
i∈Zr1

S1,i and consider monomials xS1,i =
∏
j∈S1,i

xj . Obviously we have
f(x0, . . . , xm−1) = x0 · · ·xm−1 =

∏
j∈Zr1

xS1,i . Hence we can apply Lemma 3 with r ← r1, xi ←

xS1,i . We receive encodings (f (1)ij , f
(1)
add) which are linear in the xS1,i . Some of these encodings have

no randomized leading coefficient (e.g. the f (1)ii). For these terms, we can apply Lemma 3 again
by partitioning S1,i into smaller sets. For terms with one randomized leading coefficient like the
f
(1)
ij (i ̸= j ̸= i− 1) we analogously apply Lemma 4. By repeatedly applying the Lemmas 3 to 5

we then get encodings linear in some target elementary monomials xSℓ,i
.

Formally, this approach corresponds to a series of refinements S0,0 =
⋃̇
i∈Zrk

Sk,i of disjoint
unions of non-empty sets for 1 = r0 < r1 < · · · < rℓ ≤ m, i.e. ∀0 < k ≤ ℓ ∀i ∈ Zrk ∃i0 ∈
Zrk−1

: Sk,i ⊆ Sk−1,i0 . We get a tree structure visualized in Figure 3 where Ik,i := {j ∈ Zrk+1
:

Sk+1,j ⊆ Sk,i} is the number of children of Sk,i. To later map the indices of these refinements to
the generic indices in the lemmas, we fix a bijective map ψki : Z|Ik,i| → Ik,i for all 0 ≤ k ≤ ℓ and
0 ≤ i < rk.

In terms of these general refinements, our construction (so far) defines for each monomial
xSk,i

that occurs in the construction, a randomized encoding linear in the xSk+1,j
for j ∈ Ik,i.

Now in order to combine these single randomized encodings into a randomized encoding of
the whole f(x0, . . . , xm−1) = x0 · · ·xm−1 we need to use concatenation and composition as
described before. However, the classical concatenation Lemma 1 assumes independent random-
ized encodings to be concatenated. In constrast, our constructions in Lemmas 3 to 5 use the
same encodings, e.g. the fij in Lemma 3 and in Lemma 4 (i), for different components. For-
tunately, for the encodings that occur in Lemmas 3 to 5 this still leads to a secure concate-
nation, e.g. ((fij)i−1̸=j , fadd, (g

µ,a
ij)(i,j)/∈Sµ

, gµ,aadd) is a randomized encoding of the concatenation
(f, ga) = (x0 · · ·xr−1, ax0 · · ·xr−1).14 Formally, this property is described by:

Corollary 1. Let f, g be two functions. Let f̂ be a randomized encoding of f with additive com-
ponent f̂0 and simulator Simf . Furthermore, let ĝ be a randomized encoding of g with additive
component ĝ0 and simulator Simg. Assume that for all i, j > 0 (Simf)i and (Simg)j are indepen-
dent uniformly random numbers. Let J = {j > 0|∃i > 0 : f̂i = ĝj}. Then ((f̂i)0≤i, (ĝj)j /∈J) is a
randomized encoding of (f̂ , ĝ) with output size k + k′ − |J |. Moreover, if f̂0, ĝ0 map to the same
(additive) group then ((f̂i)0<i, (ĝj)j /∈J∪{0}, f̂0+ ĝ0) is a randomized encoding of f + g with output
size k + k′ − |J | − 1 and additive component f̂0 + ĝ0.
14 Using encodings in different reconstructions is in general not secure (at least not for the straightforward

combination of the simulators)—see Example 3.

18 Reisert et al.

Remark 7. We can repeatedly apply Corollary 1 to find a randomized encoding of the concate-
nation of many functions. E.g. if we use the randomized encoding of our monomial x0 · · ·xm−1

we get from Lemma 3 (beyond others) the components f ′ = (xS1,i − ai, (xS1,iai+1,...,j −
ai,...,j)j∈Zr1 :j ̸=i,i−1). If we now apply Lemma 3 to the first component and Lemma 4 (with some
fixed µ ∈ Z|I1,i|) to all other components, then Corollary 1 (applied (r1−2) times) leads to a ran-
domized encoding of the concatenation f ′ of output size |I1,i|2−|I1,i|+1+(r1−2)(|Tµ|−|I1,i|+1).
Please also note that exactly as in the special case, we see that the terms (i) in Lemma 4 are
always already constructed by the corresponding Lemma 3 randomized encoding linear in the
same terms; analogously for Lemma 5.

Remark 8. We can also use Corollary 1 to find a randomized encoding for additive terms like
fadd. For example, if we take a randomized encoding of our monomial x0 · · ·xm−1 using Lemma 3
we get the additive component fadd =

∑
i∈Zr1

xS1,iai+1,...,i−1−aadd. We assume that Lemma 3 has
already been applied to the xS1,i , e.g. as part of the randomized encoding of fii and we are only
interested, how many new outputs are needed to also construct fadd. Thus, if we apply Lemma 4
to each summand xS1,iai+1,...,i−1 (where we consider once xS1,0a1,...,−1 − aadd to account for the
final constant), then we only need to construct the terms from (ii),(iii),(iv), since we assumed
that (i) is already accounted for. Overall these are r1(|Tµ| − r1) + 1 (additional) terms, where
r1(|Tµ| − r1) comes from using Lemma 4 (ii), (iii) for each summand and the +1 comes from
the sum of the r1 additive (iv) terms that can be combined by Corollary 1 into one additive
component.

Remark 9. Please also note that the previous Corollary 1 also applies to the randomness used
in the additive components. Namely, if aadd is a summand of the additive component f̂0 and
badd is summand of the additive component ĝ0, then (aadd + badd) is obviously a summand of
f̂0+ĝ0, although slightly more structured. In particular, even after applying the Corollary, we still
have exactly one structured random number for each additive component and one unstructured
random number for each other component of the overall randomized encoding.

In summary, we generate with our Lemma 3 a randomized encoding f̂ (1) of f linear in the
xS1,j . We then generate for each component f̂ (1)j of f̂ (1) a randomized encoding f̂ (2)j linear in the
xS2,i using Lemmas 3 to 5 (and in the case of an additive term also Corollary 1). Corollary 1 allows
us to concatenate the f̂ (2)j into a randomized encoding f̂ (2) of f̂ (1). Finally the two encodings
f̂ (1) and f̂ (2) can be composed with Lemma 2 to a randomized encoding of f linear in the xS1,i .
We iterate over the previous steps until we arrive at a randomized encoding of f linear in the
xSℓ,j

. An algorithmic version of our construction is included in Protocol 2, where the output set
contains the encodings of f linear in xSℓ,j

. Please also consider Figure 8 which illustrates how
the different encodings are combined under concatenation and composition.

4.4 Recursive Formula for Output Size

We next want to compute the output and randomness for each of our randomized encodings of
xS0,0 , i.e. for each choice of a series of refinements of partitions of S0,0 or equivalently for each tree
structure as in Figure 3. Since our randomized encodings were constructed iteratively, we will
also develop an iterative formula first. To this end, let N0

Sk,j
be the number of level ℓ encodings

linear in xSℓ,i
, 0 ≤ i < rℓ, needed to compute xSk,j

− c for some c ∈ R. Furthermore, let N1
Sk,j

be the number of additional encodings needed to also construct axSk,j
− c′ for some a, c′ ∈ R.

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 19

Finally, let N2
Sk,j

be the number of yet additional encodings needed to construct abxSk,j
− c′′ for

some a, b, c′′ ∈ R. Recall that these are just the cases (a), (b), (c) discussed in the special case
above. From Lemma 3 we then get

N0
Sk,j

=
∑
i∈Ik,j

N0
Sk+1,i

+ (|Ik,j | − 2)
∑
i∈Ik,j

N1
Sk−1,i

+
∑
i∈Ik,j

(N1
Sk+1,i

− 1) + 1

=
∑
i∈Ik,j

N0
Sk+1,i

+ (|Ik,j | − 1)
∑
i∈Ik,j

N1
Sk+1,i

− |Ik,j |+ 1 (2)

where the first sum corresponds to the f
(k+1)
ii . The factor (|Ik,j | − 2) comes from choices of

j ̸= i, i−1 for each i in the f (k+1)
ij . The third sum accounts for the additive term as in Corollary 1

and Remark 8, i.e.
∑

i∈Ik,j (N
1
Sk+1,i

−1) for (ii),(iii) in Lemma 4 plus one additional additive term.
We further get

N1
Sk,j

=
∑

i∈Ik,j\{µ}

N1
Sk+1,i

|T ′
µ ∩Mi|+(|Ik,j | − 1)N2

Sk+1,µ
+N1

Sk+1,µ
−|Ik,j |+1 (3)

where Mι = {ι}× Ik,j and the T ′
µ := ψkj(Tψ−1

kj (µ)), T
′
ν := ψkj(Tψ−1

kj (ν)) are defined as in Lemma 4

using the natural identifications ψkj : Z|Ik,j | → Ik,j .15 We receive this term again from Lemmas 3
to 5, where the additive term contributes N2

Sk+1,µ
+
∑

i∈Ik,j\{µ}N
1
Sk+1,i

−|Ik,j |+1. The intersection
|T ′
µ∩Mi∩{(i, j) : j ̸= i−1}| = |T ′

µ∩Mi|−1 together with the sum over i ̸= µ accounts for the cases
(iii) in Lemma 4, the single N1

Sk+1,µ
for g(k+1),a,µ

µµ . We also have the additional (|Ik,j − 2|)N2
Sk+1,µ

for the g(k+1),a,µ
µj for j ̸= µ, µ−1 in (ii) of Lemma 4. Altogether we get Equation (3). Furthermore,

we have

N2
Sk,j

=
∑
i∈Ik,j

N
1+|{i}∩{µ,ν}|
Sk+1,i

|Mi ∩ T ′
µ ∩ T ′

ν | − |Ik,j |+ 1 (4)

The additive term is again constructed as before, where the −|Ik,j |+1 results from using a sum
over all (v) components as in Corollary 1. The summands of the additive term are combined as
before with the cases j ̸= i − 1 of (iii) and (iv) of Lemma 5. Similarly, the h(k+1)

µµ , h
(k+1)
νν terms

complement the exclusions j ̸= µ in the other cases. Using Mµ ∩ T ′
µ = Mµ and Mν ∩ T ′

ν = Mν

one can quickly deduce Equation (4).

4.5 Application in MPC Protocols and Asymptotic Behavior

From Protocol 1 we already know how to use the new randomized encodings f̂ = (yl)0≤l<k of
f(x0, . . . , xm−1) = xS0,0 in an MPC protocol. Following the discussion above, we know that the
yl consist of terms linear in xSk,ℓ

for j ∈ Zrℓ and are of the form f
(l)
∗ , g

(l),∗
∗ , h

(l)
∗ . Hence if we set

Nγ
Sℓ,j

= 1 for all γ = 0, 1, 2 (one for each yl) Equations (2) to (4) allows us to compute the output
size k. In our MPC Protocol 1 we have to send the resulting k = N0

S0,0
encodings plus the initial

|S0,0| = m masked values xj − aj , i.e. we get bandwidth N0
S0,0

+m.

15 While N1
S1,i

and N2
Sk,j

below depend on µ and ν, these indices can be chosen freely, i.e. we can choose to which
components we want to assign the prefactors. For this reason, we decided to not mark the two numbers with
another µ or ν index.

20 Reisert et al.

We have seen in Sections 4.2 and 4.3 that the yl are multivariate polynomials in the input
variables x0, . . . , xm−1. They do not necessarily satisfy (I)–(III) in Section 4.1 yet. However, recall
that we can rewrite multivariate polynomials like yl in terms of the masked values xj − aj as in
(1) and then (I)–(III) are satisfied. The coefficients be of this expansion in the xj−aj are binomial
tuples, which are polynomials in the aj and the randomized prefactors of yl. In addition to the
(structured) randomness in these binomial tuples, our construction also needs the randomness
from the aij , bij , cij , aadd, badd, cadd that result from Lemmas 3 to 5 and Corollary 1.16 Hence we
can define a polytuple as follows:

Definition 2. Let f be a multivariate polynomial in x0, . . . , xm−1 and
f̂(x0, . . . , xm−1, ã0, . . . , ãt′) = (yl)0≤l<k a randomized encoding of f constructed with our
iterative approach, i.e. the ãj are the ai,...,j , bi,...,j , ci,...,j , aadd, badd, cadd which result from Lem-
mas 3 to 5 and Corollary 1. Then a polytuple JâK to f̂ consists of a shared structured random
number JãjK for each ãj , 0 ≤ j ≤ t′, and one binomial tuple for each yl, 0 ≤ l < k.

Remark 10. Recall from Section 3.4 that a term xS−aS can be computed with a 2|S|−1 binomial
tuple for any finite set S; a term axS−bS , as well as a term abxS+cS for randomness a, b, bS , cS ∈
R, each need a binomial tuple of size 2|S| compensating for the additional prefactor(s), i.e. in the
notation of Section 3.4 a tuple (abe)e∈E or (abbe)e∈E .

Since we know from Lemmas 3 to 5 and the subsequent remarks that for each encoding we
get exactly one new (possibly structured) random variable, we can also use the iterative formulas
in Equations (2) to (4) to compute the polytuple size. Namely, if we replace Nγ

Sk,j
, γ = 0, 1, 2, in

Equations (2) to (4) by the corresponding tuple sizes T γSk,j
and set T 0

Sℓ,j
+ 1 = T 1

Sℓ,j
= T 2

Sℓ,j
=

2|Sℓ,j |, then T γS0,0
will be the tuple size needed to compute xS0,0 = x0 · · ·xm−1.

Please note that the size of a polytuple, as well as the output size of the randomized encoding
strongly depend on the chosen tree structure (cf. Figure 3), i.e. partitions. To better understand
how the tree structure affects the asymptotic behavior of the bandwidth and tuple size, we
consider trees with a fixed number b = |Ik,j | ≥ 1 of factors multiplied in each node. Hence we
can compute x0,...,m−1 for m = λbn iteratively with Sn−k,j = {λbk · j + i : 0 ≤ i < λbk}, 0 ≤ j <
bn−k, 0 ≤ k ≤ n, i.e. each degree bk term splits into b encodings of degree bk−1 until we reach
a level of elementary randomized encodings of degree λ ≥ 1. For an explicit calculation in the
special case b = 2, n = 3, λ = 2 we refer to Example 5. Now we can state the main result on the
asymptotic behavior, which we prove in Appendix A.

Theorem 1. Let λ, b, Sk,j be defined as before. A product of m = λbn shared inputs can be

constructed with a polytuple of size O
(
2λ
(
b2+1
2

)n)
with bandwidth O

((
b2+1
2

)n)
. In the special

case b = 2, one only needs a tuple of size 2n−2((2λ − 1)n2 + (2λ+2 − 2λ + 1)n+ 4(2λ − 2)) + 1.
For b = 2, the bandwidth becomes 2nn+ 1 +m.

Remark 11. If we fix λ small, e.g. λ ≤ 3, the case b = 2 leads to a bandwidth in O(m log(m))
and a tuple size in O(m log(m)2) while in all cases b > 2 both values are not even in O(m2)
(cf. Proof Theorem 1 and Lemma 6 in Appendix A). Furthermore, we remark that for a mixed
number of factors going into a node the complexity will be dominated by the largest degree that
occurs in a significant fraction of encodings. Finally, note that the complexity analysis also covers
the case of a binomial tuple for b = 1.
16 Recall from Section 3 that we also include terms deterministic in random variables in our randomness space.

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 21

Polynomials in Several Variables. Up to this point, we mainly discussed the computation of
products x0 · · ·xm−1. However, the previous results directly transfer to general monomials xd =

xd00 · · ·x
dm−1

m−1 ,d = (d0, . . . , dm−1) simply by replacing the variables xi in the randomized encoding
by xdii . A component of the randomized encoding will then be linear in

∏
s∈Sℓ,j

xdss and can still be
constructed using a binomial tuple. From Section 3.4 we know that T 0

Sℓ,j
= T 1

Sℓ,j
−1 = T 2

Sℓ,j
−1 =∏

s∈Sℓ,j
(ds + 1)− 1. For the special case where |Sℓ,j | = 1, e.g. Sℓ,j = {j}, we have T 0

{j} = dj + 1,

i.e. Jxdjj − a′j,dj K = −Ja′j,dj K +
∑dj

i=0Ja
i
jK(xj − aj)dj−i for a new mask a′j,dj . Then the tuple size

needed to compute xd00 · · ·x
dm
m−1 follows recursively from Equations (2) to (4). If dj = d/m ∈ N

the tuple size to compute xd00 · · ·x
dm−1

m−1 for m = 2n becomes 2n−2((dm)n2+(3 dm+4)n+4 dm−4)+1.
For details we refer to the proof of Theorem 1 in Appendix A which contains the formulas (and
proof thereof) whenever T 1

Sℓ,j
= T 2

Sℓ,j
. The result shows that in the total degree d =

∑m−1
j=0 dj we

can get down to complexity O(d log(m)2) in the tuple size. The same bound on the complexity
also holds for all other cases with d =

∑m−1
j=0 dj since we can choose µ, ν in Equations (3) and (4)

always such that the encodings with randomized coefficients are linear in those xSℓ,j
for which

T 1
Sℓ,j

= T 2
Sℓ,j

is minimal, i.e. from the cases with dj ≤ d/m. Please recall that xd00 · · ·x
dm−1

m−1 was
already discussed in the introduction in Table 1.

Finally, we can combine the randomized encodings (and corresponding polytuples) for differ-
ent monomials in a general polynomial f with Corollary 1. Namely, if we have two randomized
encodings f, g (as constructed before), we need to generate common components only once and
we can add the components corresponding to f̂0 and ĝ0 in Corollary 1. Observe that all our en-
codings have the specific form expected by Corollary 1, i.e. have an additive component. Overall
we find for any multivariate polynomial f a randomized encoding and a corresponding polytuple.

4.6 Composability and Security

From Section 4.2 we know how to evaluate a polynomial f(x0, . . . , xm−1) in a single round using
polytuples. With our MPC protocol Πpolynomial presented in Section 4.1 (cf. also Protocol 5),
we are able to do this in three different ways: (i) compute f(x0, . . . , xm−1) publicly (i.e. the
result is an output of the function to be evaluated with MPC), (ii) compute Jf(x0, . . . , xm−1)K
(this can be used in other subprotocols that require their inputs as shares), and (iii) compute
f(x0, . . . , xm−1)−b where b is part of the tuple for another polynomial g; this allows our protocol
to be used in a multi-round fashion. While (i) and (ii) are straightforward applications of the
results from the previous subsections, we want to take a closer look at the multi-round use, which
allows a different form of tradeoff. Namely, we allow a (slightly) larger number of communication
rounds but can therefore further reduce the tuple size and bandwidth.

Multi-Round Evaluation. Assume the parties have agreed on a series of polynomials
fj , 0 ≤ j < m with input tuples Xj (not-necessarily disjoint) and a polynomial f in m vari-
ables. They want to compute f(f0(X0), . . . , fm−1(Xm−1)). Thus, they agree on one of our
randomized encodings for each fj and f . The parties construct the corresponding polytuples
JAjK, 0 ≤ j < m (for each fj) and JAK (for f) in the preprocessing phase and receive inputs
JXjK in the input phase. They run Πpolynomial(Xj , fj , continuation := (f, j)) in parallel to receive
(xι − aι), 0 ≤ ι < |Xj |, 0 ≤ j < m in a single broadcast round. Then the parties locally compute
the shares of the elementary encodings and adjust an additive component by JajK such that after
the next broadcast every party can locally compute the public values zj := fj(Xj)− aj . Finally,

22 Reisert et al.

they call Πpolynomial((z1, . . . , zm), f, continuation := open). Observe that in this call, the first step
of Πpolynomial does not require any opening of elements as all zj are already public masked values.

Remark 12. Our protocol is also compatible with techniques used in Turbospeedz [BENO19] and
ABY2.0 [PSSY21] that use function-dependent preprocessing. This allows to reduce the online
bandwidth even more. As an extreme case, one would only have to open the randomized encoding
without the xj − aj which are then already accounted for. Using only Beaver multiplication (or
binomial tuples), this would exactly correspond to the complexity of ABY2.0 or Turbospeedz.

In Sections 4.2 to 4.5 we have seen that by suitably choosing the randomized encodings
and corresponding polytuples, we can trade-off bandwidth and tuple size while keeping the
round complexity minimal. The multi-round feature adds additional flexibility to our online
phase. In particular, it allows us to increase the round complexity slightly to prevent possible
performance bottlenecks in bandwidth and tuple size. Figure 1 illustrates this tradeoff between
round complexity, bandwidth, and tuple size. Please also see Example 1 in Appendix A for
an explicit example. We remark that once the polynomial to be evaluated and the network
setup are known, a compiler can use the exact calculations of tuple size and bandwidth from
Equation (2) to determine the best performing polytuple solution before the actual computation
starts. Furthermore, ideal solutions for classical and regularly used setups can be hard-coded.

Security. Our protocol Πpolynomial and the resulting full online protocol17 Πonline (cf. Proto-
col 5) are secure and composable in the sense of universal composability (UC) [Can01], i.e. they
can be combined with other MPC protocols, while still giving the same guarantees as an ideal-
ized protocol (a so-called functionality). The corresponding ideal functionalities are included in
Appendix B.

Let JXK be a tuple of authenticated inputs to a polynomial f and JAK the respective tuple.
Intuitively, the security of our approach can be argued as follows: All opened values apart from
one additive component of the randomized encoding are masked with a new random element
from JAK, i.e. they are encrypted with a one-time pad and hence are information-theoretically
secure. The final additive encoding contains the result minus a public constant (constructed from
the other (pseudo)random components of the randomized encoding). In particular, it contains
no more information than the result itself.

All values that are opened are authenticated and thus their integrity can be checked with
the usual aggregated MAC check (cf. Protocol 7; recall that we now consider R to be a finite
field). In particular, our MAC check ΠCheckMAC is chosen identical to the classical MAC-check
in [DKL+13]. Formally, we then have the following security result for the online protocol18Πonline
in Protocol 5:

Theorem 2. The protocol Πonline realizes Fonline in the (FJ·K,Frandom,Fcommit)-hybrid model
with statistical security against any active adversary corrupting up to n− 1 parties.

Proof. The proof of this theorem is mostly the same as the security proofs for the corresponding
online protocols in [DKL+13,DPSZ12]. Both construct a suitable simulator, e.g. [DKL+13, Fig.
22]. The only difference for a simulator in our protocol is in polynomial operations that are
opened (i.e. calls to Πpolynomial with continuation = open). Recall that the simulator works on

17 Recall that apart from the Πpolynomial subprotocol, our online protocol Πonline coincides with the online pro-
tocols from other SPDZ-like protocols like [DKL+13,KPR18].

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 23

random inputs (instead of the real inputs for honest (input) parties) and simulates the protocol
run with these inputs. It will then receive an output z of the simulation that is most likely
wrong. However, the ideal functionality Fonline provides the simulator with the real output y.
The simulator adjusts the share of the additive encoding19 y0 of one (simulated) honest party
Pi by ∆ = y − z, i.e. [y0]i → [y0]i +∆. Since the simulator also knows the MAC key α, it can
change [αy0]i → [αy0]i + α∆. Thus the MAC check for the result will pass (if corrupted parties
did not misbehave) and the result will be the same in the real and ideal world.

4.7 The Generation of Polytuples

In the previous paragraphs, we have seen how to build an actively secure MPC online Protocol 5
which consumes polytuples. Of course, the polytuples have to be generated first in an offline
phase, which can run well before the actual input data (the xj) becomes available. Since polytu-
ples are entry-wise just multivariate polynomials in random numbers, the parties can invoke any
MPC protocol that can provide (authenticated) shares of such terms. For example, for an actively
secure offline phase we can plug in any of the protocols [DPSZ12,KOS16,KPR18,Rei+23] to first
generate a sufficient number of Beaver triples. The parties can then use these Beaver triples to
multiply shared random numbers, e.g. they run the standard online protocol within the offline
phase on the random numbers (instead of actual inputs). Hence they can construct each entry
of the polytuple.

The number of Beaver triples needed for this approach can again be computed by an iterative
formula. The result are the Eqs. (2) to (4) each shifted +|Ik,j |. Recall from Corollary 1 that we
did combine all additive terms into one constant and hence reduced the output and tuple size
by −|Ik,j |. At the same time, the new additive term became more complex, namely a sum of
the original monomials in the separate additive components. Even after combining the additive
terms, we still need to build each of these monomials with Beaver triples. Thus the reduction of
output and tuple size does not carry over to this generic offline approach and we have to add
|Ik,j | in the iterative formulas.

Exactly as in the proof of Theorem 1 we can then deduce that the number of Beaver triples
needed (in the case b = 2 of binary trees) is still in O(m log(d)2) but with slightly larger constant.
For example, in the case b = 2 we then need 2n−2((dm+1)n2+(3 dm−1)n+4 dm)−1 Beaver triples
if we use di−1 Beaver triples to compute

[
ad1
]

from [a]—of course, this is a rough estimate given
that we often can compute the power with around log(d1) Beaver triples (cf. also Remark 14 in
Appendix A).

To simply plugin established offline protocols comes with certain advantages, e.g. that im-
plementations already exist and that we can profit from their future optimizations. However,
this approach is not optimized for the use with polytuples. In Appendices C and D we therefore
present different new solutions for an actively secure tuple generation (e.g. an extended sacrificing
Protocol 10).

Finally, please recall that our approach is not restricted to the case of binary trees or 1(+1)
round protocols. In particular, if the generation of O(m log(d)2) Beaver triples is too slow, the
parties can use a different number of rounds and different randomized encodings to get an ideal
performance for their use case.

19 Recall that our construction always comes with an additive encoding.

24 Reisert et al.

2 4 6 8 10 12 14 16 18 20
1

5

10

m

O
ve

rh
ea

d

2 4 6 8 10 12 14 16 18 20
1

5

10

m

O
ve

rh
ea

d

Fig. 4: The left diagram shows the bandwidth overhead of the polytuple plugin offline phase compared to classical
SPDZ-like protocols for the computation of x0 · · ·xm−1. The right diagram shows the corresponding runtime
overhead. For the blue line we used the LowGear offline protocol [KPR18], for the red dotted line the MASCOT
protocol [KOS16].

5 Implementation and Evaluation

To illustrate the practicality of our approach, we implemented the online phase in the MP-SPDZ
framework [Kel20] and ran several benchmarks. Furthermore, we implemented the plugin offline
phase from Section 4.7 which uses Beaver triples to generate the polytuples. Our implementations
are available at [Code]. These first benchmarks show that we can outperform the standard Beaver
triple-based approach in the online phase for all tested applications. Our benchmarks include (i)
evaluation of multivariate polynomials, (ii) establishing a ranking of inputs (e.g. for auctions
or e-voting), and (iii) evaluating neural networks. We ran the experiments on a single machine
(laptop with an i7-8565U CPU, 1.80GHz) where each party runs on a single core/thread. We
simulated different network settings for n = 2 parties with standard Linux tools (see Appendix G
for details). All tested latency settings are rather conservative and roughly correspond to parties
located in the same country or continent. The tested latencies are significantly lower than the
40ms assumed in the WAN setting (e.g. in [ON20]). The trends in all benchmarks show that our
approach will perform even better in such a setting.

With our implementation, we added elementary operations for powers and products to MP-
SPDZ. We use polytuples of minimal tuple size as in Theorem 1 for b = 2. Furthermore, we
implemented the case b = m, i.e. the case where polytuples become binomial tuples. For both
variants, we also implemented a prefix variant (along Appendix E) used for comparison in our
benchmarks below. Moreover, our implementation supports MP-SPDZ’s parallelism model: ar-
bitrarily many operations of the same type can be combined and executed in one step (reducing
the number of communication rounds).

Next, we describe our test applications and discuss the results of our benchmarks. We always
compare our implementation for b = 2 against the state-of-the-art implementation from MP-
SPDZ. We do not compare to the binomial tuples case since first benchmarks showed that the
local computation times for the tuple production are beyond practical (as expected by the large
tuple size).

Polynomial Evaluation. As an example of a polynomial evaluation, we chose the power series
expansion of a multivariate Gauss functions exp(−⟨x, x⟩/2) up to degree d in each variable. This
polynomial is then simply evaluated by computing all needed (prefix) powers of all variables and
multiplying them with our polytuples. We compare this to the same computation with standard
(Beaver triple-based) tools included in MP-SPDZ. Figure 5 and Figure 9 show the results for this
benchmark. Our approach has a clear advantage in runtime—even for very small network delays
of only 2ms. Note that also the bandwidth is lower with our approach. For the Beaver-based
implementation, we can clearly see the effect of a logarithmic number of rounds on the runtime,
while our approach has an almost constant runtime (in the degree of the polynomial).

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 25

5 7.5 10 12.5 15 17.5 20
30
35
40
45
50
55
60

degree

ti
m

e/
m

s

5 7.5 10 12.5 15 17.5 20

80

100

120

140

degree

ti
m

e/
m

s

5 7.5 10 12.5 15 17.5 20
120

155

190

225

260

degree

ti
m

e/
m

s

Fig. 5: Benchmarks for Gaussian with 32 variables with 2ms (left), 5ms (middle), 10ms (right) delay; (blue:
default MP-SPDZ implementation, orange/dashed: ours).

Rankings. For auctions (or e-voting), one often needs to compute a ranking of the bids (or
votes) and reveal the top k results (e.g. with k = 1 only the highest bid or the candidate
with the most votes). There are several established methods to compute these rankings. For our
evaluation, we chose two approaches, one purely based on inequality tests and one which uses
equality and inequality tests. In order to use our new protocols to speed up the comparison
we use bit-wise comparisons as in [DFK+06] which allow us to employ polytuples. For details,
we refer to Appendices E and F. We benchmarked both approaches with our polytuples-based
protocol and compare them to the respective default implementation in MP-SPDZ (based on the
protocols with logarithmic complexity in [CdH10]; with and without edabits [EGK+20] to speed
up the comparison). We compute rankings of m = 40 items (bids or candidates). The benchmark
results in Fig. 6 show that our new approach is faster than the others.

Remark 13. SPDZ is a protocol originally designed for an arithmetic circuit evaluation and not
for comparisons. In particular, there other MPC approaches better suited for some types of
comparisons. However, our goal is to extend SPDZ and hence in particular to avoid expensive
conversations to some other scheme. We therefore decided to compare our evaluation for com-
parisons also to SPDZ, although there are other competitive MPC protocols.

Neural Networks. Among others, MP-SPDZ [Kel20] contains examples of deep neural net-
works. For our benchmarks, we ran the networks labeled A [MZ17], B [LJLA17], C [LBBH98],
and D [RWT+18] (as in [KS21,WGC19]). Each of these networks has a final ArgMax layer (see
Appendix F for the specific layers). Replacing only this single layer with a polytuple-based com-
parison (see Appendix F for details) can already have a noticeable impact on the overall runtime
of the network, as can be seen in Fig. 7. We also remark that a bandwidth rate restriction
does not affect the performance and hence the theoretical bandwidth overhead of the polytuples
approach is negligible in our example (see e.g. Fig. 10 in Appendix G).

0 2.5 5 7.5 10 12.5 15 17.5 20
0

1

2

3

4

5

6

delay/ms

ti
m

e/
s

(a) Using pairwise inequality tests.

0 2.5 5 7.5 10 12.5 15 17.5 20
0

10

20

30

40

50

delay/ms

ti
m

e/
s

(b) Using inequality and equality tests.

Fig. 6: Benchmarks for rankings (blue: default MP-SPDZ implementation, orange/dashed: ours, green/dotted:
MP-SPDZ with edabits [EGK+20]).

26 Reisert et al.

(a) ArgMax Layer, unlimited rate. (b) Network A [MZ17].

Fig. 7: Benchmarks for an ArgMax layer and the evaluation of a sample neural network included in MP-
SPDZ [Kel20] as network A (cf. [RWT+18]; blue: default MP-SPDZ, orange: ours) both without bandwidth
restriction. For further benchmarks see Fig. 10.

Tuple Generation. Finally, we also benchmarked the offline phase for the plugin approach
described in Section 4.7. Our first results in Fig. 4 confirm our theoretical results of Section 4,
i.e. we get a log-linear overhead over SPDZ independent of the employed offline protocol (Over-
drive LowGear [KPR18] and MASCOT [KOS16]). As our focus is on applications where the
offline phase is not time-critical, we leave further benchmarking of the offline phase and possibly
improving the polytuple generation (e.g. as in Appendix C) to future work.

Overall, our evaluation shows that our approach has a clear performance advantage over
SPDZ in the online phase for classical sample applications like the evaluation of multivariate
polynomials or comparisons.

Acknowledgments. This research was supported by the CRYPTECS project founded by the
German Federal Ministry of Education and Research under Grant Agreement No. 16KIS1441
and by the French National Research Agency under Grant Agreement No. ANR-20-CYAL-0006
and by Advantest as part of the Graduate School “Intelligent Methods for Test and Reliabil-
ity” (GS-IMTR) at the University of Stuttgart. Additionally, this research was funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research Fundation) – 411720488. Toomas
Krips was partly supported by the Estonian Research Council, ETAG, through grant PRG 946.
We furthermore thank Simon Egger for his help and valuable remarks.

References

ABT18. B. Applebaum, Z. Brakerski, and R. Tsabary. Perfect secure computation in two rounds. In Theory
of Cryptography, pages 152–174. Springer, 2018.

ABT19. B. Applebaum, Z. Brakerski, and R. Tsabary. Degree 2 is complete for the round-complexity of
malicious mpc. In EUROCRYPT 2019, pages 504–531. Springer, 2019.

AIK06. B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC°. SIAM Journal on Computing,
36(4):845–888, 2006.

AKP20. B. Applebaum, E. Kachlon, and A. Patra. The round complexity of perfect MPC with active security
and optimal resiliency. In IEEE FOCS, pages 1277–1284, 2020.

BB89. J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in constant number of rounds
of interaction. In PODC 1989, pages 201–209. ACM, 1989.

BBC+19. D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and Y. Ishai. Zero-knowledge proofs on secret-
shared data via fully linear pcps. In CRYPTO 2019, pages 67–97. Springer, 2019.

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 27

BCG+18. C. Boura, I. Chillotti, N. Gama, D. Jetchev, S. Peceny, and A. Petric. High-precision privacy-
preserving real-valued function evaluation. In FC 2018, pages 183–202. Springer, 2018.

BCG+19. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Efficient Pseudorandom Correlation
Generators: Silent OT Extension and More. In CRYPTO 2019, pages 489–518. Springer, 2019.

BCS20. C. Baum, D. Cozzo, and N. P. Smart. Using TopGear in Overdrive: A more efficient ZKPoK for
SPDZ. In SAC 2019, pages 274–302. Springer, 2020.

BD19. D. Bitan and S. Dolev. Optimal-Round Preprocessing-MPC via Polynomial Representation and
Distributed Random Matrix (extended abstract). IACR Cryptol. ePrint Arch., 2019:1024, 2019.

BDG+17. X. Bultel, M. L. Das, H. Gajera, D. Gérault, M. Giraud, and P. Lafourcade. Verifiable Private
Polynomial Evaluation. In ProvSec 2017, pages 487–506. Springer, 2017.

BDO14. C. Baum, I. Damgård, and C. Orlandi. Publicly Auditable Secure Multi-Party Computation. In SCN
2014, pages 175–196. Springer, 2014.

BDOZ11. R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias. Semi-homomorphic Encryption and Multiparty
Computation. In EUROCRYPT, pages 169–188. Springer, 2011.

Bea92. D. Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO ’91, pages 420–
432. Springer, 1992.

BENO19. A. Ben-Efraim, M. Nielsen, and E. Omri. Turbospeedz: Double Your Online SPDZ! Improving SPDZ
Using Function Dependent Preprocessing. In ACNS 2019, pages 530–549. Springer, 2019.

BGV12. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) Fully Homomorphic Encryption Without
Bootstrapping. In ITCS 2012, pages 309–325. ACM, 2012.

BNTW12. D. Bogdanov, M. Niitsoo, T. Toft, and J. Willemson. High-performance secure multi-party computa-
tion for data mining applications. Int. J. Inf. Sec., 11(6):403–418, 2012.

BOS16. C. Baum, E. Orsini, and P. Scholl. Efficient Secure Multiparty Computation with Identifiable Abort.
In TCC 2016-B, pages 461–490, 2016.

Can01. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In
FOCS 2001, pages 136–145. IEEE Computer Society, 2001.

CB17. H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust, and scalable computation of aggregate
statistics. In NSDI 2017, pages 259–282. USENIX Association, 2017.

CD01. R. Cramer and I. Damgård. Secure Distributed Linear Algebra in a Constant Number of Rounds. In
CRYPTO 2001, pages 119–136. Springer, 2001.

CdH10. O. Catrina and S. de Hoogh. Improved Primitives for Secure Multiparty Integer Computation. In
SCN 2010, pages 182–199. Springer, 2010.

CFIK03. R. Cramer, S. Fehr, Y. Ishai, and E. Kushilevitz. Efficient multi-party computation over rings. In
E. Biham, editor, Advances in Cryptology — EUROCRYPT 2003, pages 596–613, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg.

CFY17. R. K. Cunningham, B. Fuller, and S. Yakoubov. Catching MPC Cheaters: Identification and Open-
ability. In ICITS 2017, pages 110–134. Springer, 2017.

CKR+20. H. Chen, M. Kim, I. P. Razenshteyn, D. Rotaru, Y. Song, and S. Wagh. Maliciously Secure Matrix
Multiplication with Applications to Private Deep Learning. In ASIACRYPT 2020, pages 31–59.
Springer, 2020.

Code. P. Reisert, M. Rivinius, T. Krips, S. Hasler, and R. Küsters. Implementation to Actively Secure Poly-
nomial Evaluation from Shared Polynomial Encodings, 2024. Website of the Insitute of Information
Security Stuttgart.

Cou19. G. Couteau. A note on the communication complexity of multiparty computation in the correlated
randomness model. In EUROCRYPT, pages 473–503. Springer, 2019.

CS10. O. Catrina and A. Saxena. Secure Computation with Fixed-Point Numbers. In FC 2010, pages 35–50.
Springer, 2010.

CWB18. H. Cho, D. Wu, and B. Berger. Secure genome-wide association analysis using multiparty computation,
supplementary notes 3. Nat. Biotechnol., 36(6):547–551, 2018.

CZC+21. H. Cui, K. Zhang, Y. Chen, Z. Liu, and Y. Yu. MPC-in-Multi-Heads: A Multi-Prover Zero-Knowledge
Proof System. In ESORICS, pages 332–351. Springer, 2021.

Dah17. M. Dahl. Cryptography and machine learning, 2017. Blog on the SPDZ protocol - part 2.
DFK+06. I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft. Unconditionally Secure Constant-Rounds

Multi-party Computation for Equality, Comparison, Bits and Exponentiation. In TCC 2006, pages
285–304. Springer, 2006.

DKL+13. I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical covertly secure
MPC for dishonest majority – or: Breaking the SPDZ limits. In ESORICS 2013, pages 1–18. Springer,
2013.

https://publ.sec.uni-stuttgart.de/asiacrypt2024-1-implementation.zip
https://publ.sec.uni-stuttgart.de/asiacrypt2024-1-implementation.zip
https://mortendahl.github.io/2017/09/10/the-spdz-protocol-part2

28 Reisert et al.

DMRY11. D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung. Secure Efficient Multiparty Computing of
Multivariate Polynomials and Applications. In ACNS 2011, pages 130–146, 2011.

DPSZ12. I. Damgård, V. Pastro, N. Smart, and S. Zakarias. Multiparty computation from somewhat homo-
morphic encryption. In CRYPTO, pages 643–662. Springer, 2012.

EGK+20. D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl. Improved Primitives for MPC over
Mixed Arithmetic-Binary Circuits. In CRYPTO 2020, pages 823–852. Springer, 2020.

EOYN21. R. Eriguchi, K. Ohara, S. Yamada, and K. Nuida. Non-interactive Secure Multiparty Computation
for Symmetric Functions, Revisited: More Efficient Constructions and Extensions. In CRYPTO 2021,
pages 305–334. Springer, 2021.

FM10. M. K. Franklin and P. Mohassel. Efficient and Secure Evaluation of Multivariate Polynomials and
Applications. In ACNS 2010, pages 236–254, 2010.

FM19. D. Falamas and K. Marton. Performance impact analysis of rounds and amounts of communication
in secure multiparty computation based on secret sharing. In RoEduNet 2019, pages 1–6. IEEE, 2019.

Gen09. C. Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford University, 2009.
GHM+21. K. Gjøsteen, T. Haines, J. Müller, P. B. Rønne, and T. Silde. Verifiable Decryption in the Head.

IACR Cryptol. ePrint Arch., page 558, 2021.
GHS12. C. Gentry, S. Halevi, and N. P. Smart. Fully homomorphic encryption with polylog overhead. In

EUROCRYPT 2012, pages 465–482. Springer, 2012.
GM09. G. Gavin and M. Minier. Oblivious Multi-variate Polynomial Evaluation. In INDOCRYPT 2009,

pages 430–442. Springer, 2009.
GMRW13. S. D. Gordon, T. Malkin, M. Rosulek, and H. Wee. Multi-party Computation of Polynomials and

Branching Programs without Simultaneous Interaction. In EUROCRYPT 2013, pages 575–591.
Springer, 2013.

GPS12. H. Ghodosi, J. Pieprzyk, and R. Steinfeld. Multi-party computation with conversion of secret sharing.
Des. Codes Cryptogr., 62(3):259–272, 2012.

HHPV21. S. Halevi, C. Hazay, A. Polychroniadou, and M. Venkitasubramaniam. Round-Optimal Secure Multi-
party Computation. J. Cryptol., 34(3):19, 2021.

HIJ+16. S. Halevi, Y. Ishai, A. Jain, E. Kushilevitz, and T. Rabin. Secure Multiparty Computation with
General Interaction Patterns. In ITCS, pages 157–168. ACM, 2016.

HIJ+17. S. Halevi, Y. Ishai, A. Jain, I. Komargodski, A. Sahai, and E. Yogev. Non-Interactive Multiparty
Computation Without Correlated Randomness. In ASIACRYPT 2017, pages 181–211. Springer,
2017.

HRRK24. S. Hasler, P. Reisert, M. Rivinius, and R. Küsters. Multipars: Reduced-Communication MPC over
Z2k. Proceedings on Privacy Enhancing Technologies, (2):5–28, 2024.

IK00. Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with applications to
round-efficient secure computation. In FOCS, pages 294–304, 2000.

IKM+13. Y. Ishai, E. Kushilevitz, S. Meldgaard, C. Orlandi, and A. Paskin-Cherniavsky. On the Power of
Correlated Randomness in Secure Computation. In TCC 2013, pages 600–620. Springer, 2013.

Ish13. Y. Ishai. Randomization techniques for secure computation. In Secure Multi-Party Computation,
2013.

KBTJ19. R. Karl, T. Burchfield, J. Takeshita, and T. Jung. Non-Interactive MPC with Trusted Hardware
Secure Against Residual Function Attacks. In SecureComm 2019, pages 425–439. Springer, 2019.

Kel20. M. Keller. MP-SPDZ: A Versatile Framework for Multi-Party Computation. In CCS ’20, pages
1575–1590. ACM, 2020.

KLM+20. R. Küsters, J. Liedtke, J. Müller, D. Rausch, and A. Vogt. Ordinos: A Verifiable Tally-Hiding E-Voting
System. In EuroS&P 2020, pages 216–235. IEEE, 2020.

Kol05. V. Kolesnikov. Gate evaluation secret sharing and secure one-round two-party computation. In
ASIACRYPT 2005, pages 136–155. Springer, 2005.

KOS16. M. Keller, E. Orsini, and P. Scholl. MASCOT: Faster malicious arithmetic secure computation with
oblivious transfer. In CCS 2016, pages 830–842. ACM, 2016.

KPR18. M. Keller, V. Pastro, and D. Rotaru. Overdrive: Making SPDZ great again. In EUROCRYPT 2018,
pages 158–189. Springer, 2018.

KS21. M. Keller and K. Sun. Secure Quantized Training for Deep Learning. CoRR, abs/2107.00501, 2021,
2107.00501.

KTM+21. R. Karl, J. Takeshita, A. Mohammed, A. Striegel, and T. Jung. Cryptonomial: A Framework for
Private Time-Series Polynomial Calculations. In SecureComm 2021, pages 332–351. Springer, 2021.

LBBH98. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

http://arxiv.org/abs/2107.00501

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 29

LJLA17. J. Liu, M. Juuti, Y. Lu, and N. Asokan. Oblivious Neural Network Predictions via MiniONN Trans-
formations. In CCS 2017, pages 619–631. ACM, 2017.

LL22. H. Lin and T. Liu. Two-Round MPC Without Round Collapsing Revisited – Towards Efficient
Malicious Protocols. In CRYPTO, pages 353–382. Springer, 2022.

LLW20. H. Lin, T. Liu, and H. Wee. Information-theoretic 2-round MPC without round collapsing: adaptive
security, and more. In TCC 2020, pages 502–531. Springer, 2020.

LNS21. V. Lyubashevsky, N. K. Nguyen, and G. Seiler. Shorter Lattice-Based Zero-Knowledge Proofs via
One-Time Commitments. In PKC 2021, pages 215–241. Springer, 2021.

LYKM22. D. Lu, A. Yu, A. Kate, and H. K. Maji. Polymath: Low-Latency MPC via Secure Polynomial Evalu-
ations and Its Applications. PETS 2022, (1):396–416, 2022.

MF06. P. Mohassel and M. K. Franklin. Efficient Polynomial Operations in the Shared-Coefficients Setting.
In PKC 2006, pages 44–57. Springer, 2006.

MZ17. P. Mohassel and Y. Zhang. SecureML: A System for Scalable Privacy-Preserving Machine Learning.
In SP 2017, pages 19–38. IEEE Computer Society, 2017.

NLV11. M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can homomorphic encryption be practical? In CCSW
2011, pages 113–124. ACM, 2011.

NO07. T. Nishide and K. Ohta. Multiparty Computation for Interval, Equality, and Comparison Without
Bit-Decomposition Protocol. In PKC 2007, pages 343–360. Springer, 2007.

NP99. M. Naor and B. Pinkas. Oblivious Transfer and Polynomial Evaluation. In STOC 1999, pages 245–254.
ACM, 1999.

ON20. S. Ohata and K. Nuida. Communication-Efficient (Client-Aided) Secure Two-Party Protocols and Its
Application. In FC 2020, pages 369–385. Springer, 2020.

Ore22. Ø. Ore. Über höhere kongruenzen. Norsk Mat. Forenings Skrifter, 1(7):15, 1922.
PSSY21. A. Patra, T. Schneider, A. Suresh, and H. Yalame. ABY2.0: Improved Mixed-Protocol Secure Two-

Party Computation. In USENIX Security 2021, pages 2165–2182. USENIX Association, 2021.
Rei09. T. I. Reistad. Multiparty Comparison - An Improved Multiparty Protocol for Comparison of Secret-

shared Values. In SECRYPT, pages 325–330. INSTICC Press, 2009.
Rei+22. P. Reisert, M. Rivinius, T. Krips, S. Hasler, M. Rivinius, and R. Küsters. Arithmetic Tuples for MPC.

Crypt. ePrint 2022/667, 2022.
Rei+23. P. Reisert, M. Rivinius, T. Krips, and R. Küsters. Overdrive LowGear 2.0: Reduced-Bandwidth MPC

without Sacrifice. In ACM ASIA CCS 2023, 2023.
RRHK23. M. Rivinius, P. Reisert, S. Hasler, and R. Küsters. Convolutions in Overdrive: Maliciously Secure

Convolutions for MPC. In PETS 2023, 2023.
RWT+18. M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider, and F. Koushanfar. Chameleon:

A Hybrid Secure Computation Framework for Machine Learning Applications. In AsiaCCS 2018,
pages 707–721. ACM, 2018.

SA19. S. Sahraei and A. S. Avestimehr. INTERPOL: Information Theoretically Verifiable Polynomial Eval-
uation. In ISIT 2019, pages 1112–1116. IEEE, 2019.

Sil21. T. Silde. Verifiable decryption for bgv. Crypt. ePrint 2021/1693, 2021.
TJB13. T. Tassa, A. Jarrous, and Y. Ben-Ya’akov. Oblivious evaluation of multivariate polynomials. J. Math.

Cryptol., 7(1):1–29, 2013.
Vai21. V. Vaikuntanathan. Secure Computation and PPML: Progress and Challenges. PPML 3rd Privacy-

Preserving Machine Learning Workshop 2021, 2021.
WGC19. S. Wagh, D. Gupta, and N. Chandran. SecureNN: 3-Party Secure Computation for Neural Network

Training. Proc. Priv. Enhancing Technol., 2019(3):26–49, 2019.

A Technical Proofs for Theoretical Bandwidth and Tuple Size Computations

In this appendix we present the proofs to results from Section 4. We will also include tuple-
size-optimized polytuples for the product of m ≤ 2 elements in Table 2. We will first recall the
statements of Section 4 and then prove them.

Corollary 1. Let f, g be two functions. Let f̂ be a randomized encoding of f with additive com-
ponent f̂0 and simulator Simf . Furthermore, let ĝ be a randomized encoding of g with additive
component ĝ0 and simulator Simg. Assume that for all i, j > 0 (Simf)i and (Simg)j are indepen-
dent uniformly random numbers. Let J = {j > 0|∃i > 0 : f̂i = ĝj}. Then ((f̂i)0≤i, (ĝj)j /∈J) is a

30 Reisert et al.

randomized encoding of (f̂ , ĝ) with output size k + k′ − |J |. Moreover, if f̂0, ĝ0 map to the same
(additive) group then ((f̂i)0<i, (ĝj)j /∈J∪{0}, f̂0+ ĝ0) is a randomized encoding of f + g with output
size k + k′ − |J | − 1 and additive component f̂0 + ĝ0.

Proof. Correctness follows trivially since one can still construct both f̂ and ĝ. For privacy sim-
ulate all component apart from f̂0 and ĝ0 by independent uniformly random numbers ri, r′j , i.e.
ri = (Simf)i, r

′
j = (Simg)j for i > 0 and j /∈ J ∪{0}. For simplicity set r′j := ri whenever fi = gj ,

i.e. j ∈ J . Then simulate f0 by f − Recf (0, (ri)1≤i) and g0 by g − Recg(0, (r
′
j)1≤j) where Recf is

the reconstruction of f̂ and Recg is the reconstruction of ĝ. For the sum we proceed analogously
but set the final component to f + g − Recf (0, (ri)1≤i)− Recg(0, (r

′
j)1≤j).

We will next prove our main theorem Theorem 1 from Section 4:

Theorem 1. Let λ, b, Sk,j be defined as before. A product of m = λbn shared inputs can be

constructed with a polytuple of size O
(
2λ
(
b2+1
2

)n)
with bandwidth O

((
b2+1
2

)n)
. In the special

case b = 2, one only needs a tuple of size 2n−2((2λ − 1)n2 + (2λ+2 − 2λ + 1)n+ 4(2λ − 2)) + 1.
For b = 2, the bandwidth becomes 2nn+ 1 +m.

Proof. We will only need the case N1
Sn

= N2
Sn

= 2N
1/2
Sn

to treat bandwidth and tuples size
simultaneously. Hence, we slightly restrict our setup to this case from now on. In fact using
binomial tuples we can construct the base encodings with tuple sizes T 0

Sn,j
= 2λ − 1, T 1

Sn,j
=

T 2
Sn,j

= 2λ. For the output size we trivially have N0
Sn,j

= N1
Sn,j

= N2
Sn,j

= 1. Now choose
µ = bj + b − 1 to get Tµ = {(ι, κ) ∈ {bj, . . . , bj + b − 1}2 : κ ≤ ι} and ν = bj + ⌊ b−1

2 ⌋ to get
Tµ ∩ Tν = {(ι, κ) ∈ {bj, . . . , bj + b− 1}2 : (κ ≤ ι ≤ ν)∨ (ν + 1 ≤ ι, κ ≤ ι− ν − 1)}. In particular,
|Tµ ∩Mbj+i| = i+1 and |Tµ ∩ Tν ∩Mbj+i| = i+1 for 0 ≤ i ≤ ν − bj, |Tµ ∩ Tν ∩Mi+ν+1| = i+1
for 0 ≤ i < µ− ν. Hence we have

N0
Sk

= bN0
Sk+1

+ (b− 1)(bN1
Sk+1

− 1) (5)

N1
Sk

=
(b− 1)b+ 2

2
N1
Sk+1

+ (b− 1)(N2
Sk+1

− 1) (6)

N2
Sk

= uN1
Sk+1

+ b(N2
Sk+1

− 1) + 1 (7)

with u = (b−1)2−1
4 for b even and u = (b−1)2

4 for b odd. Note that the we could remove unnecessary
indices due to the symmetry of the Sk := Sk,j . In order to get the required upper bound it will be
enough to consider the odd case, which obviously leads to higher numbers. For the case u = (b−1)2

4
we have

b(N2
Sn−k

− 1) = ((b+ 1)N
1/2
Sn
− 1)

(
b2 + 1

2

)k
+

(b2 − 1)(N
1/2
Sn
− 1)

2

(
b+ 1

2

)k−1

(8)

bN1
Sn−k

= 2
(
(b+ 1)N

1/2
Sn
− 1
)(b2 + 1

2

)k
− 2(N

1/2
Sn
− 1)

(
b+ 1

2

)k
(9)

(b− 1)(N0
Sk
− 1) = 4b(N2

Sk
− 1) + ((b− 1)(N0

Sn
− 1)− 4b(2N

1/2
Sn
− 1))bn−k (10)

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 31

Note that it is enough to proof these formulas for N0
Sn

= T 0
Sn

= 2λ − 1, N1
Sn

= T 1
Sn

= N2
Sn

=

T 2
Sn

= 2λ to get the estimates on the tuple size, and for N0
Sn

= N1
Sn

= N2
Sn

= 1 for the
bandwidth estimate. Recall that the bandwidth is just N0

S0
+m, which accounts for the outputs

of the randomized encoding as well as the bandwidth of the first round of interaction, i.e. the
m terms xi − ai. This does not affect the asymptotic behavior, but the special formula in the
case b = 2 discussed below. We will prove the explicit formula (8), (9), (10) by induction on
k → k − 1 with start k = n:20 b(N2

Sn
− 1) = (b + 1)N

1/2
Sn
− 1 + (b − 1)(N

1/2
Sn
− 1), bN1

Sn
=

2((b+1)N
1/2
Sn
−1)−2(N1/2

Sn
−1) and (b−1)(N0

Sn
) = 4b(N2

Sn
−1)+(b−1)(N0

Sn
−1)−4b(2N1/2

Sn
−1).

Hence, we get

b(N2
Sk−1

− 1)

= u · 2
(
(b+ 1)N

1/2
Sn
− 1
)(b2 + 1

2

)n−k
− u · 2(N1/2

Sn
− 1)

(
b+ 1

2

)n−k
+ b

(
((b+ 1)N

1/2
Sn
− 1)

(
b2 + 1

2

)n−k
+

(b2 − 1)(N
1/2
Sn
− 1)

2

(
b+ 1

2

)n−k−1
)

= ((b+ 1)N
1/2
Sn
− 1)

(
b2 + 1

2

)n−k+1

+
(b2 − 1)(N

1/2
Sn
− 1)

2

(
b+ 1

2

)n−k
where we used 2u + b = b2−2b+1+2b

2 = b2+1
2 and b(b2 − 1)N

1/2
Sn
− 1) − 2(N

1/2
Sn
− 1)u(b + 1) =

b+1
2 (N

1/2
Sn
− 1)(2b(b− 1)− (b− 1)2) = (b2 − 1)(N

1/2
Sn
− 1) b+1

2 . Analogously

b(N1
Sk−1

)

=
(b− 1)b+ 2

2

(
2
(
(b+ 1)N

1/2
Sn
− 1
)(b2 + 1

2

)n−k
− 2(N

1/2
Sn
− 1)

(
b+ 1

2

)n−k)

+
b− 1

2

(
2((b+ 1)N

1/2
Sn
− 1)

(
b2 + 1

2

)n−k
+ (b2 − 1)(N

1/2
Sn
− 1)

(
b+ 1

2

)n−k−1
)

where we used (b−1)b+b+1 = b2+1 and (b−1)b+2− 2(b−1)(b2−1)
2(b+1) = b(b−1)−(b−1)2+2 = b+1.

Finally,

(b− 1)(N0
Sk−1

− 1)

= b(b− 1)(N0
Sk
− 1) + b(b− 1)2N1

Sk

= 4b2(N2
Sk
− 1) + 4ubN1

Sk
+ ((b− 1)(N0

Sn
− 1)− 4b(2N

1/2
Sn
− 1))bn−k+1

= 4b(N2
Sk−1

− 1) + ((b− 1)(N0
Sn
− 1)− 4b(2N

1/2
Sn
− 1))bk+1

where we used the explicit formula for N2
Sk

which was already proved before. This completes the
proof of the first part of the statement.
The second part concerns the case b = 2. In particular, we have u = 0 in (7) and N1

Sk
and N1

Sk

decouple partly. Thus we get N2
Sk

= (2N
1/2
Sn
−1)·2n−k+1. Next, N1

Sk−1
= 2n−k((2N

1/2
Sn
−1)(n−k+

1)+4N
1/2
Sn

) = 2·2n−k−1((2N
1/2
Sn
−1)(n−k)+4N

1/2
Sn

)+((2N
1/2
Sn
−1)·2n−k+1)−1 = 2N1

Sk
+N2

Sk
−1

20 We will keep the N∗
∗ notation for the rest of the proof. For the tuple size substitute the corresponding T ∗

∗ .

32 Reisert et al.

follows inductively from induction start N1
Sn

= 2−1((2N
1/2
Sn
− 1)(−1 + 1) + 4N

1/2
Sn

) = 2N
1/2
Sn

.
Altogether we get the tuple size

N0
Sk−1

= 2n−k−1((2N
1/2
Sn
− 1)(n− k + 1)2 + (6N

1/2
Sn

+ 1)(n− k + 1)

+ 4(N0
Sn
− 1)) + 1

= 2n−k−1((2N
1/2
Sn
− 1)((n− k)2 + 2(n− k)) + (6N

1/2
Sn

+ 1)(n− k)

+ 8N
1/2
Sn

+ 4(N0
Sn
− 1)) + 1

= 2 · (2n−k−2((2N
1/2
Sn
− 1)(n− k)2 + (6N

1/2
Sn

+ 1)(n− k)

+ 4(N0
Sn
− 1)) + 1) + 2 · 2n−k−1((2N

1/2
Sn
− 1)(n− k) + 4N

1/2
Sn

)− 1

= 2N0
Sk

+ 2N1
Sk
− 1

where we started our induction with N0
Sn

= 1
4 · 4(N

0
Sn
− 1) + 1.

Remark 14. If we add |Ij,k| to Eqs. (2) to (4), e.g. to compute the number of Beaver triples needed
in the offline phase, the formulas change slightly. We then get for b = 2: N0

k−1 = 2N0
k + 2N1

k +

1, N1
k−1 = 2N1

k +N
1
k +1, N2

k−1 = 2N2
k +1. One easily sees that then N2

Sk
= (2N

1/2
Sn

+1) ·2n−k−1,

N1
Sk−1

= 2n−k((2N
1/2
Sn

+ 1)(n− k + 1) + 4N
1/2
Sn

). For N0
Sk−1

we get

N0
Sk−1

= 2n−k−1((2N
1/2
Sn

+ 1)(n− k + 1)2 + (6N
1/2
Sn
− 1)(n− k + 1)

+ 4(N0
Sn

+ 1))− 1

= 2n−k−1((2N
1/2
Sn

+ 1)((n− k)2 + 2(n− k)) + (6N
1/2
Sn
− 1)(n− k)

+ 8N
1/2
Sn

+ 4(N0
Sn

+ 1))− 1

= 2 · (2n−k−2((2N
1/2
Sn

+ 1)(n− k)2 + (6N
1/2
Sn
− 1)(n− k)

+ 4(N0
Sn

+ 1))− 1) + 2 · 2n−k−1((2N
1/2
Sn

+ 1)(n− k) + 4N
1/2
Sn

) + 1

= 2N0
Sk

+ 2N1
Sk

+ 1

where we started our induction this time with N0
Sn

= 1
4 · 4(N

0
Sn

+ 1)− 1.

We see that the case b = 2 leads to a tuple size in O(m(logm)2) while in all other cases b > 2
the tuple size is not even in O(n2). We did not show this last fact in the previous proof for even
b > 2 explicitly. It follows however from the next lemma—again we use N∗

∗ for both the output
and the tuple size:

Lemma 6. Let b > 2 be even. Define

Ñ2
Sk

=
1

2

(
b2

2

)n−k
+ 1, Ñ1

Sk
=

(
b2

2

)n−k
, Ñ0

Sk
=

(
b2

2

)n−k
Then Ñ l

Sk
≤ N l

Sk
for l = 0, 1, 2 and all k ≥ 0.

Proof. For the even case we have u = (b−1)2−1
2 . Also note, that the cases k = 0 are trivial. The

statement is by definition correct for k = n. Inductively we get

Ñ2
Sk−1

=
1

2

(
b2

2

)n−k+1

+ 1 =
b(b− 2) + 2b

4

(
b2

2

)n−k
+ 1 = u

(
b2

2

)n−k
+
b

2

(
b2

2

)n−k
+ 1

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 33

= uÑ1
Sk

+ b(Ñ2
Sk
− 1) + 1 ≤ uN1

Sk
+ b(N2

Sk
− 1) + 1 = N2

Sk−1

For Ñ1
Sk−1

we proceed similarly:

Ñ1
Sk−1

=

(
b2

2

)n−k+1

≤ (b− 1)b+ 2

2

(
b2

2

)n−k
+
b− 1

2

(
b2

2

)n−k
=

(b− 1)b+ 2

2
Ñ1
Sk

+ (b− 1)(Ñ2
Sk
− 1)

≤ (b− 1)b+ 2

2
N1
Sk

+ (b− 1)(N2
Sk
− 1) = bN1

Sk−1

Finally,

Ñ0
Sk−1

=

(
b2

2

)n−k+1

≤ b
(
b2

2

)n−k
+ (b2 − b)

(
b2

2

)n−k
− b+ 1

≤ bÑ0
Sk

+ (b− 1)(bÑ1
Sk
− 1) ≤ bN0

Sk
+ (b− 1)(bN1

Sk
− 1) = N0

Sk−1

since b− 1 ≤
(
b2

2

)k+1
for k ≥ 0, b ≥ 4.

Example 1. This example discusses different trade-off of round complexity, bandwidth and tuple
size in the special case of a product of m = 12 variables. There if we impose no restrictions
on the offline phase, e.g. if a trusted third party provides the offline data for the online phase,
then we can choose a binomial tuple (i.e. ℓ = 0 in our randomized encodings) which has the
small bandwidth of 13 ring elements and round complexity 1(+1), but a tuple size of 4095.
For time-critical offline phases the classical Beaver multiplication approach needs a comparably
small tuple size of 3(m− 1) = 33 but needs ⌈logm⌉(+1) = 4(+1) rounds of communication and
a bandwidth of 2m − 1 = 23 ring elements. Polytuples with only 2-factor multiplication gates
(cf. Table 2) provide an intermediate solution of tuple size 95, bandwidth 29 and 1(+1) round of
communication.21 If we accept slightly more communication rounds, say 2, then a combination
of 4 binomial tuples for degree 3 and one polytuple for degree 4 in the second round will only
need bandwidth 4 · 4+ 3 = 19 and tuple size 4 · 7+ 13 = 41. If we replace the second round with
two rounds of classical Beaver multiplication we still have bandwidth 4 · 4 + 3 = 19 but tuple
size 4 · 7 + 9 = 37.

Example 2. In this example we visualize Example 1 by diagrams. We will use double frames
for base encodings. To account for the sums in the additive parts fadd we will only mark one
summand of this encoding with the double frame and the other parts with a dashed frame to
make counting easier.

Take S0,0 = {0, . . . , 11}, S1,0 = {0, . . . , 5}, S1,1 = {6, . . . , 11} and set x(1)0 = xS1,0 , x
(1)
1 = xS1,1

x{0,...,11}

× // f
(1)
00 f

(1)
11

// +

OO

a
(1)
0,1 + a

(1)
1,0 − a

(1)
0 a

(1)
1

oo

f
(1)
00 = x

(1)
0 − a

(1)
0

OO

f
(1)
11 = x

(1)
1 − a

(1)
1

hh

f01 = x
(1)
0 a

(1)
1 − a

(2)
0,1

OO

f10 = x
(1)
1 a

(1)
0 − a

(1)
1,0

ii

21 Please see Example 2 for a visualization of the polytuple construction for m = 12.

34 Reisert et al.

Next set S2,0 = {0, . . . , 3}, S2,1 = {4, 5}, S2,2 = {6, . . . , 9}, S2,3 = {10, 11}. Consider first
x
(2)
0 = xS2,0 , x

(2)
1 = xS2,1 and

f
(1)
00

× // f
(2)
00 f

(2)
11

// +

OO

a
(2)
0,1 + a

(2)
1,0 − a

(2)
0 a

(2)
1 − a

(1)
0

oo

f
(2)
00 = x

(2)
0 − a

(2)
0

OO

f
(2)
11 = x

(2)
1 − a

(2)
1

ii

��

f
(2)
01 = x

(2)
0 a

(2)
1 − a

(2)
0,1

OO

x
(2)
1 a

(2)
0 − a

(2)
1,0

kk

g
(2),a

(1)
1 ,0

00 = a
(1)
1 x

(2)
0 − b

(2),0
0

))

g
(2),a

(1)
1 ,0

0,1 = a
(1)
1 x0a

(2)
1 − b

(2),0
0,1

��

= x1b
(2),0
0 − b(2),00,1

tt× // +

��

b
(2),0
0,1 + b

(2),0
1,0 − a

(2)
1 b

(2),0
0 − a(1)0,1

oo

f
(1)
01

Of course we get the analogous decomposition for f (1)11 and f
(1)
10 if we set x(2)0 = xS2,2 , x

(2)
1 =

xS2,3 . Finally consider S3,0 = {0, 1}, S3,1 = {2, 3}, S3,2 = {4, 5} = S2,1, S3,3 = {6, 7}, S3,4 =

{8, 9}, S3,5 = {10, 11} = S2,3. One first notes we do not further decompose f
(2)
11 , f

(2)
10 , g

(2),∗,0
1,0

for both choices S3,2 = S2,1, S3,5 = S2,3. Again by symmetry it will be enough to consider
x
(3)
0 = xS3,0 , x

(3)
1 = xS3,1 .

h
(3)
ij ∋ h

(3)
ı̃ȷ̃

5

ww

h
(4)
ij ∋ h

(4)
ı̃ȷ̃5oo

5

zz

h
(ℓ)
ij5oo

5

}}
g
(2),∗
ij ∋ g

(2),∗
ı̃ȷ̃

4

xx

g
(3),∗
ij ∋ g

(3),∗
ı̃ȷ̃4oo

4yy

g
(4),∗
ij ∋ g

(4),∗
ı̃ȷ̃4oo

4zz

5

gg

g
(ℓ),∗
ij4oo

4
}}

5

ee

xS0,0 f
(1)
ij ∋ f (1)

ı̃ȷ̃3oo f
(2)
ij ∋ f

(2)
ı̃ȷ̃3oo f

(3)
ij ∋ f

(3)
ı̃ȷ̃3oo

4

gg

f
(4)
ij ∋ f

(4)

ı̃ȷ̃′3oo

4

gg

5

]]

f
(ℓ)
ij3oo

4

ee
5

[[

Fig. 8: The diagram illustrates which types of lower-degree randomized polynomials are used to build higher degree
terms. E.g. g(k),∗ij denotes a type (ii) term linear term in xSk,i which arose after k iterations—a ∗ substitutes for
different choice of prefactor and µ, ν. Boxes, e.g. around f (k)

ij , denote sets over i, j ∈ Ik+1,ı̃ with ı̃ the specific index
one level higher, e.g. the index of f (k+1)

ı̃ȷ̃ ; round framings denote single elements. The labels of the arrows refer to
the numbers of the Lemmas 3 to 5. Note that in some special cases, e.g. f (k)

ii , not all arrows are necessary, e.g.
only Lemma 3. Furthermore, the g(k),∗ij already contain some f (k)

ij which will not be constructed multiple times.
Analogously for h(k)

ij . We omitted additive terms for clarity.

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 35

Let F̂ (k)
κ = F̂

(k)
add = ∅ be sets of functions for all 0 ≤ k ≤ l, 0 ≤ κ < 3. Set F̂ (0)

0 ← F̂
(0)
0 ∪ {(x0,...,m−1, 0)}.

for 0 ≤ k < l do
for 0 ≤ κ < 3 do

for (f, j) ∈ F (k)
κ do

if f has κ random prefactors as a polynomial in xSk,j then
Apply Lemma κ+ 2 with r ← Ik,j , xi ← xSk+1,ψkj(i)

for i ∈ Zr

Receive f̂ = (f̂iχ, f̂add) for i− 1 ̸= χ with terms linear in xSk+1,ψkj(i)
.

for 0 ≤ κ′ < 3 do
if f̂ij has κ′ random prefactors as a polynomial in xSk+1,ψkj(i)

then

F
(k+1)

κ′ ← F
(k+1)

κ′ ∪ {(f̂ij , ψkj(i))}
F

(k+1)
add ← F

(k+1)
add ∪ {(f̂add, k, j)}

for (fadd, k
′, j) ∈ F (k)

add , fadd =
∑

i:Sk,i⊂Sk′,j
gi + c with gi monomial in xSk,i do

for i such that Sk,i ⊂ Sk′,j do
for 0 ≤ κ < 3 do

if gi has κ random prefactors as a monomial in xSk,i then
Apply Lemma κ+ 2 with r ← Ik,i, xχ ← xSk+1,ψki(χ)

for χ ∈ Zr

Receive ĝi = (ĝi,χξ, ĝi,add) for χ− 1 ̸= ξ with terms linear in xSk+1,ψki(χ)
.

for 0 ≤ κ′ < 3 do
if ĝi,χξ has κ′ random prefactors as a monomial in xSk+1,ψki(χ)

then
F

(k+1)

κ′ ← F
(k+1)

κ′ ∪ {(ĝi,χξ, ψki(χ))}
F

(k+1)
add ← F

(k+1)
add ∪ {(

∑
i:Sk,i⊂Sk′,j

ĝi,add + c, k′, j)}
return F

(l)
add ∪ F

(l)

Protocol 2: Algorithm to construct our randomized encoding.

f
(2)
00

× // f
(3)
00 f

(3)
11

// +

OO

a
(3)
0,1 + a

(3)
1,0 − a

(3)
0 a

(3)
1 − a

(2)
0

oo

f
(3)
00 = x

(3)
0 − a

(3)
0

OO

f
(3)
11 = x

(3)
1 − a

(3)
1

ii

��

vv

x
(3)
0 a

(3)
1 − a

(3)
0,1

OO

x
(3)
1 a

(3)
0 − a

(3)
1,0

jj

g
(3),a

(2)
1 ,0

00 = a
(2)
1 x

(3)
0 − b

(3),0
0

))

a
(2)
1 x0a

(3)
1 − b

(3),0
0,1

��

x1b
(3),0
0 − b(3),00,1

uu
g
(3),a

(1)
1 ,0

0,0 = a
(1)
1 x0 − b(3),00

��

##

× // +

��

b
(3),0
0,1 + b

(3),0
1,0 − a

(3)
1 b

(3),0
0 − a(2)0,1

oo

× // g
(2),a

(1)
1 ,0

0,0
f
(2)
01 a

(1)
1 c

(3)
1 x0 −c(3)1,0

tt
h
(3)
1,1 = x1a

(2)
1 − c

(3)
1

// × // +

��

a
(2)
1 b

(3),0
0 x1 − c(3)0,1

oo

g
(2),a

(1)
1 ,0

0,1
c
(3)
1,0 + c

(3)
0,1 − b

(3),0
0 c

(3)
1 − b

(2),0
0,1

jj

36 Reisert et al.

Observe that we got 1 + 2 · 2 + 2 · 6 base encodings and hence with the initial 12 masked
inputs xi− ai we get as expected bandwidth 29. We leave it to the reader to check the tuple size
95. See also Table 2 below.

The following example shows that using one encoding to construct different terms generally
does not lead to a secure randomized encoding of the concatenation.

Example 3. Take f(x1, x2) = x1+x2, g(x1, x3) = x1+x3. Let f̂ = (x1−a1, x2−a2, a1+a2) and
Recf (y0, y1, y2) = y0 + y1 + y2 = x1 + x2 be a randomized encoding of f . Let ĝ = (x1 − a1, x3 −
a3, a1 + a3) and Recg = Recf be a randomized encoding of g. We have the following simulators
Simf = (a, b, f(x1, x2) − a − b) and Simg = (g(x1, x3) − a′ − b′, a′, b′) for randomness a, b, a′, b′

chosen by the simulator. Now (Simf,1, Simf,2, Simg,2, Simf,3, Simg,3) = (a, b, a′, f(x1, x2)−a−b, b′)
is not a simulator for (f̂1, f̂2, ĝ2, f̂3, ĝ3) of (f, g) since it contains no information on the actual
result g(x1, x3) but f̂1 + ĝ2 + ĝ3 = g(x1, x3).

The following example describe our MPC protocol in the special case m = 4:

Example 4. Consider f(x0, x1, x2, x3) = x0 · x1 · x2 · x3. Here, each party receives a structured
polytuple of size 13:

JaK := (Ja0K,Ja1K,Ja2K,Ja3K,Ja0a1K,Ja01K,Ja01a2K,Ja01a3K,Ja2a3K,
Ja23K,Ja23a0K,Ja23a1K,Ja01a2a3 + a23a0a1 − a01a23K) (11)

from the offline phase. The parties then proceed accorong to Section 4.1. In this special case
this reduces to Protocol 3. The randomized encoding is then f̂(x0, x1, x2, x3, a) = (y0, y1, y2)

1. Pi computes and opens JxjKi − JajKi for all 0 ≤ j < 4.
2. Pi computes locally and opens

(i) Jy1Ki = Jx0x1 − a01Ki = (x0 − a0)Jx1Ki + Ja0Ki(x1 − a1) + Ja0a1Ki − Ja01Ki
(ii) Jy2Ki = Jx2x3 − a23Ki = (x2 − a2)Jx3Ki + Ja2Ki(x3 − a3) + Ja2a3Ki − Ja23Ki
(iii) Jy0Ki = Ja23x0x1+a01x2x3−a01a23Ki = (x0−a0)(x1−a1)Ja23Ki+(x0−a0)Ja1a23Ki+ Ja0a23Ki(x1−a1)+

Ja01Ki(x2 − a2)(x3 − a3) + (x2 − a2)Ja3a01Ki + Ja2a01Ki(x3 − a3) + Ja0a1a23 + a01a2a3 − a01a23Ki.
3. Pi computes the result x0x1x2x3 = y01y23 + y0123.

Protocol 3: Protocol to compute the product x0 · · ·x3.

and the reconstruction algorithm is Rec(y0, y1, y2) = y1y2 + y0. This example corresponds to
the classical arithmetic circuit for the multiplication of four variables, i.e. we first compute (in
parallel) x0x1 and x2x3 and in the second step the product of all four variables. To stay secure
however, we cannot open x0x1 or x2x3, so we mask these products with fresh randomness a01
and a23, respectively. This leads to the unwanted mixed term a23x0x1 + a01x2x3 − a01a23 in the
second level multiplication. We remove this mixed term with the final encoding y0. The privacy
of the randomized encoding follows from the general results in Section 4.

The following example compute the bandwidth and polytuple size for a different number of
communication rounds:

Example 5. As an example we want to compute the product of x0, . . . , x15 using the partitions
by S3−k,j = {2k+1 · j + i : 0 ≤ i < 2k+1} and 0 ≤ j < 23−k. In particular, we will get elementary

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 37

Table 2: Polytuples to compute x0 · · ·xm−1 optimized for tuple size. Numbers indicate the degree of the polyno-
mial encodings (soley in xj), brackets are evaluated from the inside, e.g. ((2, 2), 3) first generates a degree 4 term
an then a degree 7 term.

m Tuple Size Bandwidth Circuit

1 1 1 (1)
2 3 3 (1,1)
3 7 4 (1,1,1)
4 13 7 (2,2)
5 21 8 (3,2)
6 29 9 (3,3)
7 38 13 ((2,2),3)
8 47 17 ((2,2),(2,2))
9 59 18 ((3,2),(2,2))
10 71 19 ((3,2),(3,2))
11 83 24 (((2,2),2),(3,2))
12 95 29 (((2,2),2),((2,2),2))
13 108 34 (((2,2),2),((2,2),(2,1)))
14 121 39 (((2,2),(2,1)),((2,2),(2,1)))
15 135 40 (((2,2),(2,2)),((2,2),(2,1)))
16 149 41 (((2,2),(2,2)),((2,2),(2,2)))
17 165 42 (((3,2),(2,2)),((2,2),(2,2)))
18 180 48 ((((2,2),2),(2,2)),((2,2),(2,2)))
19 196 49 ((((2,2),2),(2,2)),((3,2),(2,2)))
20 211 55 ((((2,2),2),(2,2)),(((2,2)),2),(2,2)))

encodings linear in x{2j,2j+1}, 0 ≤ j < 8. For the cases y{2j,2j+1} we need a 22 − 1 = 3-tuple,
for the one prefactor case ax{2j,2j+1} − b{2j,2j+1} a 4-tuple. Thus we can construct the degree 4
terms xS2,j − aS2,j by a tuple of size T 0

S2,j
= 3 + 3 + (2 − 1)(4 + 4) − 2 + 1 = 13. Moreover, for

µ = 2j +1 we have Tµ = {(ι, κ) ∈ {2j, 2j +1}2 : κ ≤ ι} and T 1
S2,j

= 4 · 1+ 1 · 4+ 4− 2+ 1 = 11.
Thus T 0

S1,j
= 13 + 13 + (2− 1) · 22− 2 + 1 = 47. Next, we compute again the mixed terms with

µ = 2j + 1, ν = 2j and hence Tµ ∩ Tν = {(µ, µ), (ν, ν)}: T 2
S2,j

= T 2
S3,j

+ T 2
S3,j
− 2 + 1 = 7 and

T 1
S1,j

= 11 · 1 + (2− 1) · 7 + 11− 2 + 1 = 28. Thus, T 0
S0,0

= 47 + 47 + (2− 1) · 56− 2 + 1 = 149,
i.e. we can construct a x{0,...,15} in one masking round and one opening round with a 149-tuple.
In comparision, a binomial tuple for the computation of x{0,...,15} has size 216 − 1.

B Functionalities

In this section we present the ideal functionalities and security proofs. We assume that the parties
have access to a functionality Frandom to produce random elements from R and a commitment
functionality Fcommit—possible realization can be found e.g. in [DKL+13].

Remark 15. To describe Fonline, we used a modification of the functionality FAMPC from
[DPSZ12]. One can also use FOnline from [DKL+13] or similar functionalities.

Remark 16. The functionality FJ·K can be realized as in [KPR18, Fig. 4].

Lemma 7. The protocol CheckMAC is correct and sound. It rejects with probability 1 − 2
|R| if

at least one value is not computed correctly.

Proof. Identical to the corresponding proof in [DPSZ12].

38 Reisert et al.

Fonline

Initialize. On input (Initialize, p) from all parties, the functionality stores p.

Input. On input (Input, Pi, idx, x) from Pi and (Input, Pi, idx) from all others, the functionality stores (idx, x).
idx has to be a new identifier.

Polynomial. On input (Polynomial, (idxk)0≤k<m, f, idz) for a polynomial f (with m inputs) from all parties
with idz new, the functionality retrieves (idxk , xk)1≤k<m and stores (idz, f(x0, . . . , xm−1)).

Output. On input (Output, idx) for idx defined, from all honest parties, the functionality retrieves (idx, x) and
outputs it to the adversary. If the adversary replies by ok, then x is output to all players, otherwise output ⊥ to
all players.

Protocol 4: Ideal functionality for the online phase.

Πonline

Initialize. The parties agree on a multivariate polynomial f to be evaluated and a randomized encodings f̂ of
f . The parties call FJ·K to get a sufficient number of (shared) random data (including (poly)tuples, MAC key
shares).
Input. On input a tuple Xi of inputs of party Pi, the parties invoke FJ·K. Input. They receive JXiK. Denote x
the tuple of all inputs (from all parties).
Polynomial. The parties invoke Protocol 1 with (f̂ , JxK, JâK, continuation).
Check. Call ΠCheckMAC for all values opened up until now.

Protocol 5: Online Protocol.

C Tuple Production

There are various established methods for generating correlated randomness in the offline
phase. The most prominent ones are the following: somewhat homomorphic encryption (SHE;
SPDZ [DKL+13, DPSZ12] utilizes BGV [BGV12]), oblivious transfer (as used in MASCOT
[KOS16]), or linear homomorphic encryption (LHE; as used in Overdrive [KPR18, Rei+23]).
These mostly focus on generating Beaver triples. We present two ways to generate polytuples
based on these following methods: one directly uses the generated Beaver triples for tuple pro-
duction and the other generalizes the underlying techniques to generate higher order randomness.
We focus on a LHE-based offline phase based on Overdrive for the latter and present a leveled
homomorphic polytuple generation in Appendix D.3.

C.1 Plugin Approach

We can use the structured randomness, i.e. Beaver triples, generated by existing protocols to
construct polytuples in an actively secure offline phase. Each entry of a polytuple is a sharing of
some polynomial in random variables, i.e. the additive masks for the single encoding components.
These polynomials can be computed with the SPDZ online phase. This means, we produce in our
offline phase a sufficient number of Beaver triples to run the SPDZ online phase (still within our
offline phase) to compute the tuple entries. This straightforward generation corresponds nicely
with the idea to shift as much computation from the online phase into the offline phase. The
advantage of using already existing offline phases is that efficient implementations like [Kel20]
available and that further improvements of these offline phases will be directly available to the
production of polytuples as well.

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 39

FJ·K

Initialize. On input (Initialize, p) from all parties, store p and compute [α]i for honest Pi and receive [α]j for
corrupted Pj ; then set α :=

∑n
i=1 [α]i.

Input. On input (Input, Pi, idx, x) from Pi and (Input, Pi, idx) from all others, sample [x]i for honest Pi under
the constraint x =

∑n
i=1 [x]i (for [x]j received by Adv for corrupted Pj) and authenticate the shares. Send JxKi

to the respective Pi.

Tuple. On input (Tuple, f) by all parties for a polynomial f : Rm → R. Sample random masks (a1, . . . , am)
and compute the tuple (a1, . . . , ak) for the respective randomized encoding.a Authenticate the tuple and send
J(a1, . . . , ak)Ki to the respective Pi.

Abort. On input ⊥ from Adv, send ⊥ to all parties.

a m ≤ k to mask at least all inputs. To construct the randomized encoding one usually needs more entries k > m.

Protocol 6: Preprocessing functionality.

ΠCheckMAC

Every party Pi has JyjKi = ([yj]i , [αyj]i [α]i), 1 ≤ j ≤ m. y = (y1, . . . , ym) ∈ Rm is public and has to be checked.a

1. The parties sample a random r ∈ Rm.
2. Every party computes [σ]i = rt([αy]i − [α]i y) for rt the transpose of r.
3. Call Fcommit with (Commit, [σ]i) and receive handle τi.
4. After each party has committed, call Fcommit with (Open, τi) to open [σ]i.
5. If

∑n
i=1 [σ]i ̸= 0 then abort.

a [αy]i = ([αy1]i , . . . , [αym]i).

Protocol 7: CheckMAC

Remark 17. Please also note that a polytuple does not have to contain complex correlated ran-
domness of high degree. In fact, as we have seen in Section 4, we often only need randomized
encodings with up to two random prefactors linear in a monomial of some low degree d. E.g. for
d = 2 to compute abx1x2 a polytuple contains Ja1K, Ja2K, JabK, Jaba1K, Jaba2K, Jaba1a2K.

C.2 Linear Homomorphic Encryption

We now propose a new multi-round offline protocol for generating polytuples based on linear
homomorphic encryption. We construct a protocol similar to Overdrive’s multiplication proto-
col [KPR18] but which extends it to multiple rounds (to compute higher order randomness). In
contrast to Appendix C.1, where Overdrive is one method to produce Beaver triples, one can
also run several rounds of Overdrive to produce higher order randomness. E.g. after one round of
Overdrive, which needs two rounds of communication, the parties have shares [ab], [cd] and after
a second round of Overdrive they get shares of [abcd] and so on. To produce a degree m term
we then need ⌈log(m)⌉ rounds of Overdrive resulting in 2⌈log(m)⌉ rounds of communication—in
each Overdrive round a party Pj first sends a ciphertext Encpkj ([a]j) to Pi and then receives
back a term Encpkj ([a]j) [b]i + Enc′pkj (rji) which they decrypt to [aj] [b]i + rji. Here, Enc′ has
larger noise than Enc (cf. [KPR18] for further details).

Our adaption removes the second step. Instead of returning Encpkj ([a]j [b]i + rij) to Pj , this
ciphertext is sent on to all parties that multiply their secrets onto the ciphertext. By the linear

40 Reisert et al.

property of the encryption scheme, the new factors again move into the ciphertext. When the
ciphertext of the product arrives back at the initial party, they can decrypt the product. Thus far,
this description mostly resembles the original Overdrive multiplication protocol. In our multi-
round version, we additionally make the parties prove (in zero-knowledge) that the resulting
ciphertext Encpkj ([a]j [b]i+ rij) is still “fresh enough” (i.e. contains a low amount of noise) to be
used in another round. An example of this approach is shown in Protocol 8, where the parties
have to prove correct multiplication (and adding of “small” additional noise) which implies that
the total noise in the ciphertext is small as well. Correctness and privacy of our construction
follows similarly to Overdrive [KPR18]. The additional ZKP of correct multiplication (using
FZK-mul) guarantees privacy by giving parties provable upper-bounds on the noise contained in
ciphertexts. Then, they can choose the randomness in Enc′ large enough to hide any information
about their own shares. Observe that after one round of ΠLHE-rd every party Pi has their share
[c]i of the product c and encryptions of all shares Encpkj ([c]j) for each 1 ≤ j ≤ n, i.e. we can
iterate protocol ΠLHE-rd, as seen in Protocol 9. In particular, each product of m shares can be
computed in ⌈log(m)⌉ rounds.

ΠLHE-rd

Each party Pi holds Encpkj ([a]j) for each 1 ≤ j ≤ n, [b]i. Each Pi does:

1. For each j ̸= i sample rij . Set rii := −
∑

j ̸=i rij .
2. Broadcast d̂ji := Encpkj ([a]j) [b]i − Enc′pkj (rij) for each 1 ≤ j ≤ n with FZK-mul.
3. Decrypt d̂ij to dij for all 1 ≤ j ≤ n.

Set [c]i =
∑n

j=1 dij and Encpkj ([c]j) =
∑n

k=1 d̂jk for all 1 ≤ j ≤ n.

Protocol 8: Multiplication using an LHE scheme.

We have included several variations of our technique in Appendix D.2 that achieve provable
upper bounds on the ciphertext noise but are based on ZKPs for different relations (e.g. ZKPs
for verifiable decryption). With this, we can benefit from future improvements of various types
of zero-knowledge proofs which are then also transferable to our approach. The tradeoff of our
construction is a larger ciphertext size: Since noise adds up every round and is not canceled out by
intermediate decryptions, the ciphertext size will grow more and more. However, as mentioned in
Remark 17, we generally do not need to compute randomness of very high degree. Additionally,
if the noise reaches a level that is too high to continue the computation on ciphertexts, the
secret-key holder can decrypt and provide a new ciphertext with fresh small randomness at cost
of one intermediate communication round. Also note that the reduction in round complexity,
which was the main motivation for our adaption to Overdrive, suggests that our approach is best
employed in settings with (moderately) high network latency and sufficient bandwidth to handle
the larger ciphertexts.

Once the shares of the tuples are created, they are authenticated using FJ·K. The parties then
use the new extended sacrificing technique to check that the tuples are well formed. Details can
be found in Appendix D.1.

Remark 18. Our MP-SPDZ implementation [Code] currently only covers the online phase. Based
on the log-linear overhead in tuple size, the overhead in runtime for the offline phase will be in
the same range (e.g. based on Beaver triples as discussed in Appendix C). As our focus in on

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 41

ΠLHE

Let f be a degree d polynomial in m variables x0, · · · , xm−1. Each party Pi holds [xj]i for each 0 ≤ j < m and
computes [f(x0, . . . , xm−1)]i with the following protocol:

1. Broadcast Encpki([xj]i) for 0 ≤ j < m and proof that it is well-formed with the zero-knowledge proof FS
ZKPoP

from [KPR18].
2. Compute [f(x0, . . . , xm−1)]i in ⌈log d⌉ rounds of ΠLHE-rd.

Protocol 9: Triple production with multi-round LHE.

applications where the offline phase is not time-critical, we leave benchmarking (and optimizing)
the offline phase to future work.

D Further Results on the Offline Phase

This section contains results that can be used in our offline phase. It starts with a subsection on
sacrificing for binomial and polytuples which can be applied to most of the currently implemented
actively secure offline phases like the once in [DPSZ12] or [KPR18]. In Appendix D.2 we offer
options on how to realize the ZKP functionality used in Appendix C.2. Finally we shortly discuss
polytuple production with leveled homomorphic encryption.

D.1 Extended Sacrificing Technique

This appendix contains a new sacrificing technique for binomial and polytuples which can also
be applied to most of the currently implemented actively secure offline phases like the once
in [DPSZ12] or [KPR18].

To make sure that the binomial tuples are indeed in the right form, we need to extend the
well-know sacrificing technique from [DPSZ12] in Protocol 10.22

Πsacrificing

Let (re) and (r′e) be two binomial tuples for e = (e0, . . . , em−1), 0 ≤ ej ≤ dj , 0 ≤ j < m.

1. The parties use Frand to get random s0, . . . , sm−1.
2. The parties compute and open tj = sj

[
r′j
]
i
− [rj]i for 0 ≤ j < m.

3. The parties compute

[sac]i =
∑

0≤j<m
0≤ej≤dj

se · [re′]i − ∑
0≤j<m
0≤fj≤ej

[
rf

]
i

m−1∏
k=0

t
ek−fk
k


with se =

∏m
j=1 s

ej
j . The parties commit to and open [sac]i with Fcommit.

4. If
∑n

i=1 [sac]i = 0 return (r′e), otherwise abort.

Protocol 10: Verification for binomial tuples by sacrificing.

22 We will use the index notation from Section 3.4.

42 Reisert et al.

Inspecting Protocol 10, we see that it is obviously correct. We use the simple identity

∑
0≤j<m
0≤fj≤ej

[
rf
]
i

m−1∏
k=0

tek−fkk =

m−1∏
j=0

(sjr
′
j)
ej =

n∑
i=1

se ·
[
re′
]
i

where the first equality holds if (re) is correct and the second one if (re′) is a correct binomial
tuple. Then we get

∑n
i=1 [sac]i = 0. On the other hand, if

∑n
i=1 [sac]i = 0, s is a zero of a

polynomial in m variables. If at least one party is honest, the coefficients of the polynomial
are random (by the guarantees of Frand). The Schwartz-Zippel Lemma for finite fields [Ore22]
guarantees that the probability that a random s is a zero of a total degree d ≥ 0 polynomial f
is smaller than d

p : Pr(f(s0, . . . , sm−1) = 0 | rs ∈ Fp) ≤ d
p for f ̸= 0 and d =

∑m−1
j=0 dj . For a

sufficiently large field size, this probability is negligible, which shows the security of our sacrificing
protocol.

Remark 19. Recall from Section 4 that elementary encodings in our protocol are constructed
using binomial tuples — respectively tuples of the form (a, aae) or (ab, abae) for additional
random tuple entries a, b plus some random additive terms. For all these binomial tuple within
two polytuple of the same type for the same function, we can simply apply the sacrificing step
for two binomial tuples from Protocol 10.

D.2 Further Results For A Linear Homomorphic Offline Phase

In this section, we present three approaches to efficiently construct a linear homomorphic offline
phase. All these approaches require the parties to prove certain parts of their computation in zero-
knowledge in each round.23 Protocols 11, 13 and 15 depict the (exposition-only) functionalities
used in Protocols 8, 12 and 14, respectively. The main reason for the ZKPs is that the parties
need to know that the ciphertexts Encpkj ([c]j) can be used in the next round. For this, an upper
bound on the noise contained in these ciphertexts has to be known. This enables maskings with
rij in the next round to be chosen large enough so d̃ji does not leak information about [b]i to Pj .

The first approach (Protocol 12) requires parties to prove correct decryption in zero-
knowledge. This protocol leaves the responsibility for proving that Encpkj ([c]j) has small noise
with Pj . Verifiable decryption can be achieved efficiently with recent protocols [GHM+21,LNS21,
Sil21].

FZK-dec

On input Encpki(a) by party Pi:
Send (Encpki(a), Pi, ok) to all parties Pj if the noise in the ciphertext is small wrt. the bound Bdec (also send a
to Pi). Otherwise, send (Encpki(a), Pi, fail).

Protocol 11: Ideal functionality for verifiable decryption.

The second approach (Protocol 14) requires parties to prove correct decryption in zero-
knowledge but it is done differently to the approach taken in Protocol 12. Instead of proving
23 Results that are not used as the input to subsequent rounds do not require proofs. As Overdrive is a one-round

protocol, it only needs ZKPs for the initial ciphertexts.

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 43

ΠLHE-rd-dec

Each party Pi holds Encpkj ([a]j) for each 1 ≤ j ≤ n, [b]i. Each Pi does:

1. For each j ̸= i sample rij . Set rii := −
∑

j ̸=i rij .
2. Broadcast d̂ji := Encpkj ([a]j) [b]i − Enc′pkj (rij) for each 1 ≤ j ≤ n.
3. Set Encpkj ([c]j) =

∑n
k=1 d̂jk for all 1 ≤ j ≤ n.

Decrypt Encpki([c]i) to [c]i with FZK-dec (and broadcast the proof).

Protocol 12: Multiplication using an LHE scheme with ZKP of decryption.

that they can decrypt Encpkj ([c]j) with small noise, Pj could instead prove knowledge of a small
witness (plaintext and randomness) that encrypts to Encpkj ([c]j). For this, we would need a
decryption algorithm that also recovers (some) randomness that matches the ciphertext. This is
modelled in Protocol 13.

FZK-dec

On input Encpki(a) by party Pi:
Send (a, ã) to Pi with Encpki(a, ã) = Encpki(a).

Protocol 13: Ideal functionality for decryption with extraction.

ΠLHE-rd-ext

Each party Pi holds Encpkj ([a]j) for each 1 ≤ j ≤ n, [b]i. Each Pi does:

1. For each j ̸= i sample rij . Set rii := −
∑

j ̸=i rij .
2. Broadcast d̂ji := Encpkj ([a]j) [b]i − Enc′pkj (rij) for each 1 ≤ j ≤ n.
3. Set Encpkj ([c]j) =

∑n
k=1 d̂jk for all 1 ≤ j ≤ n.

Decrypt Encpki([c]i) to ([c]i , ρ) with Fdec-ext.
Use FZK to prove Encpki([c]i) = Enc([c]i , ρ) (and broadcast the proof).

Protocol 14: Multiplication using an LHE scheme with randomness extraction.

The third and maybe most straighforward approach (used in Protocol 8) requires parties to
prove correct multiplication in zero-knowledge. Examples for protocols that provide verifiable
multiplication can, for example, be found in the BDOZ [BDOZ11] and below.

A Modified Zero-Knowledge Proof. In order for the protocol ΠLHE to be secure we have to
realize the functionality FZK-mul used in Protocol 9. This can be done by slightly adapting existing
zero-knowledge proofs, e.g. from [DPSZ12], [DKL+13], [KPR18] or [BCS20]. As an example we
present suitable modifications to [DPSZ12], Fig. 9 with slight simplifications to the bounds
similar to [KPR18], Fig. 10. Note that this interactive proof can be transformed into a non-
interactive proof in the usually way using the Fiat-Shamir heuristic—we refer to [DPSZ12] for
non-interactive variants.

44 Reisert et al.

FZK-mul

On input (Encpk(a),Encpk(c), b, r, r̃) by party Pi:
Send (Encpk(a),Encpk(c), Pi, ok) to all parties Pj if Encpk(c) = Encpk(a) ·b−Encpk(r, r̃) and b, r, r̃ are short w.r.t.
the respective bounds Bplain, B

′
plain, B

′
rand. Otherwise, send (Encpk(a),Encpk(c), Pi, fail).

Protocol 15: Ideal functionality for verifiable multiplication.

Let Bτ
plain and Bρ

rand be the ZKP bounds introduced in [DPSZ12], i.e. Bτ
plain = 2secρ and

Bρ
rand = 2secρ. Let V = 2 sec−1, Me ∈ {0, 1}V×sec the matrix associated to a challenge e ∈
{0, 1}sec with (Me)ij = ei−j+1 for 1 ≤ i− j + 1 ≤ sec and zero otherwise. Let U,X ∈ Rsec be a
plaintext vector, R ∈ Rsec×3 the encryption randomness. Encpk(X,R) = (Encpk(Xi, Ri))1≤i≤sec

denotes a vector where each row is a ciphertext. The ciphertext Encpk(b) with ∥b∥∞ ≤ Bτ
plain is

public and has been verified as in [KPR18] or with some previous instance of this proof—note
that Encpk(b) is one-dimensional in the ciphertext space. We want to give a zero-knowledge proof
of plaintext-knowledge for the following relation

Relξ,χρ = {(E,w) : E = (pk, C), w = (X,U,R) ∈ Rsec ×Rsec ×Rsec×3 s.t.

C ← Encpk(B)U + Encpk(X,R), ∥U∥∞ ≤ Bξ
plain,

∥X∥∞ ≤ Bχ
plain, ∥R∥∞ ≤ B

ρ
rand}

Completeness and zero-knowledge are only guaranteed for ∥U∥∞ ≤ ξ, ∥X∥∞ ≤ χ and ∥R∥∞ ≤ ρ.
τ, ξ, χ, ρ are negligible w.r.t sec compared to Bτ

plain, B
ξ
plain, B

χ
plain, B

ρ
rand.

ΠZKP

1. The prover samples W,Y ∈ RV and randomness S ∈ RV ×3 such that ∥Wi∥∞ ≤ Bξ
plain, ∥Yi∥∞ ≤ Bχ

plain and
∥Si∥∞ ≤ Bρ

rand for all 1 ≤ i ≤ V . The prover sends A = Encpk(b)W + Encpk(Y, S) to the verifier.
2. The verifier selects e ∈ {0, 1}sec and sends it to the prover.
3. The prover sets Z = Y +MeX, T = S +MeR, Q =W +MeU and sends it to the verifier.
4. The verifier setsD = Encpk(b)Q+Encpk(Z, T) and accepts if Q,Z represent valid plaintexts andD = A+MeC

and ∥Qi∥∞ ≤ Bξ
plain, ∥Zi∥∞ ≤ Bχ

plain, ∥Ti∥∞ ≤ Bρ
rand.

Protocol 16: The Zero-Knowledge Protocol.

Proof. Completeness follows as in [DPSZ12], Theorem 5:

D = Encpk(b)Q+ Encpk(Z, T)

= Encpk(b)(W +MeU) + Encpk(Y +MeX,S +MeR)

= Encpk(b)W + Encpk(Y, S) +Me(Encpk(b)U + Encpk(X,R))

= A+MeC

Also Q,Z, T are in the correct range with overwhelming probability. Given two transcripts one
can find suitable X,R as in [DPSZ12]. To account for the additional U , we note that (Me −
Me′)U = Q obviously has a solution. Hence we get soundness. Finally, honest verifier zero
knowledge follows since W and W +MeU are indistinguishable.

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 45

Please note that the increase in noise will result in a larger ciphertext modulus and hence
will inrease bandwidth.

Remark 20. Please note that Enc(b) is the same in all components. In particular, the aggregated
proof technique only uses its full potential if the parties need bUi + Xi for a high number of
different Ui and Xi. This is e.g. the case for high degree polynomials.

At the end of this section we want to point to less oblivious techniques that work under
certain circumstances, e.g. in an honest majority setup. For example, approaches like [CB17]
and [BBC+19] use single-prover-multi-verifier proof systems where the statement is t-secret-
shared between the verifiers and thus no group of t − 1 verifiers knows anything about the
statement. This suggests an approach where we would make all the intermediate results part of
the statement in which case the verifying circuit would be quite straightforward and short. One
party, Pj , could be the prover and all the others would be the verifiers. However, since we are
interested in the case where n − 1 out of n parties might be malicious, we run into a problem.
Namely, [BBC+19] gives a negative result stating that it is unlikely that we obtain a protocol
where both the prover and all-but-one of the verifiers are malicious.

Yet another alternative approach is to use multi-prover-single-verifier proof systems. The
paper [CZC+21] suggests a proof system where for a publicly known statement x, the witness is
split into several parts w1, . . . , wk where every prover knows just one of the witness parts. The
provers prove that for a verifying circuit C, C(x,w1, . . . , wk) = 1. This seems again naturally
applicable to our case, as here Pi knows ai and the randomness used to encrypt ai, Pj knows
bj , ri,j and the randomness used to encrypt ri,j and so on. However, it is based on the MPC-
in-the-head approach which suggests a considerable overhead as the protocol must be rerun a
significant amount of times for privacy amplification.

Remark 21. To reduce the overhead introduced by noise flooding is an ongoing research task.
There are however promising results as the ones announced in [Vai21] that might be applied in
our setup, too.

D.3 Leveled Homomorphic Enryption

Given an encryption scheme Enc that is homomorphic with respect to at least m− 1 multiplica-
tions, a binomial tuple can be produced by Protocol 17:24

ΠSHE

1. Each player Pi generates [aj]i ∈ R for 0 ≤ j < m and [fe]i ∈ R for e = (e0, . . . , em−1) and 0 ≤ ej ≤ dj .
2. Pi computes and broadcasts Enc([aj]i) and Enc([fe]i) for all j and e as above.
3. Pi invokes a zero-knowledge functionality of plaintext knowledge FZK as a prover for the created ciphertexts

(cf. [DPSZ12]).
4. Compute locally Enc(aj)←

∑n
i=1 Enc([aj]i), Enc(f

e)←
∑n

i=1 Enc([f
e]i).

5. Compute locally Enc(ae) =
∏m−1

j=0 Enc([aj])
ej and Enc(ae + fe) = Enc(ae) + Enc(fe).

6. Decrypt Enc(ae + fe) to get ae + fe.
7. Set [ae]1 ← ae + fe − [fe]1 and [ae]i ← − [fe]i for 2 ≤ i ≤ n.

Protocol 17: Protocol for generation of [a]e for all 0 ≤ ej ≤ dj using leveled homomorphic encryption.

24 We use the index notation from Section 3.4.

46 Reisert et al.

Once the shares of the tuples are created, they are authenticated using FJ·K. The parties then
use the new extended sacrificing technique to check that the tuples are well formed. Details can
be found in Appendix D.1.

As in Remark 17 we remark that for our construction it is often enough to consider low
degree polynomials that contain products with at most 5 factors. In these cases a homomorphic
encryption scheme that supports 4 homomorphic multiplications is enough. The lowest degree
polytuples that can be used to evaluate an arbitrary multivariate polynomial have entries which
need at most 2 multiplications.

We remark that this approach profits from future improvements of the encryption scheme.
Already existing optimizations like packing methods (e.g. [NLV11]) or using the natural action
of the Galois group in case R is a underlying cyclotomic field extension (cf. [GHS12]), can be
used to improve the performance of the offline phase.

E Prefix Products with Polytuples

Here, we describe how one can add on the approach presented in Section 4 to additionally get
all the prefix products. For simplicity, we assume that we have to compute prefix products for
m factors where m is a power of two. This is usually the case for comparisons where m is the
number of bits used to represent values (e.g. when working with 32 bit or 64 bit numbers) and
the construction presented next applies (with small modifications) to m of any shape.

First, note that the polytuples approach gives us x0 − a0, x0x1 − a01, . . . , x0 · · ·xm′−1 −
a0,...,m′−1 for all m′ < m that are again powers of two. x0 − a0 is an initial masked value
and the other terms are randomized endodings or are publicly computed from them. We get
similarly structured terms (again as masked value, randomized encoding, or publicly computed)
with shifted indices, e.g. x2x3 − a23, x4x5 − a45, x4x5x6x7 − a4567. The following construction
either converts these terms directly to shares, or uses them with binomial tuples to compute
the remaining terms. Note that all these terms are already masked and we can compute prod-
ucts with binomial tuples without an additional computation round. For example, we compute
Jx0x1K = x0x1 − a01 + Ja01K and Jx0x1x3K by multiplying x0x1 − a01 and x3 − a3 (by treating
these values as the ones opened for normal multiplication with binomial tuples).

With the following (recursive) construction, we can compute all the prefix products: Assume
we can get shares of the prefix products pl,h,i of xl, . . . , xh with pl,h,i =

∏i
j=l xj , l ≤ i ≤ h and

have masked values as described above (computed with the polytuples approach of Section 4).
Then, we can compute the shared prefix products of x0, . . . , x2m−1 as follows:

1. Compute shares of the prefix products for x0, . . . , xm−1 and xm, . . . , x2m−1.
2. Compute Jp0,2m−1,m+iK = Jp1,m−1,m−1K · Jpm,2m−1,m+iK, 0 ≤ i < m− 1.
3. The final Jp0,2m−1,2m−1K can be computed from an opened value as above.

Instead of computing these products in step 2 directly, we simply add one factor to the binomial
tuple (or add a new degree-2 binomial tuple if pm,2m−1,i − a (for some mask a) was directly
computed by our approach of Section 4).

By construction, we know that we need binomial tuples of a logarithmic degree. Additionally,
we see that if the degree of the tuple for p0,m−1,i is smaller than the one for p0,m−1,i+1, it is
already covered by the latter one, decreasing the number of tuples we need to add. For powers
of two (m = 2n), we observe that we need 2n−1− 1 additional binomial tuples of degree at most
n. We prove the latter (the number of additional tuples; the degree is fixed by construction) by

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 47

induction: The number of tuples for the case 2n+1 is what we need for p0,2n−1,i (2n−1 − 1) and
for p2n,2n+1−1,i. For the latter, we need 2n−1 tuples. This has the following reason. Of the 2n− 1
remaining prefixes to cover, 2n−1 − 1 already have a tuple candidate assigned to them. Of the
remaining 2n−1 prefixes, 2n−1 − 1 are covered when expanding the previously mentioned tuples
by one factor (p0,2n−1,2n−1; this factor is also the only factor required for terms that did not have
a tuple assigned to them before). In total, we have to add 2n−1 tuples for p2n,2n+1−1,i and get
2n − 1 tuples to compute prefixes p0,2n+1−1,i.

F Applications

Our polytuple approach is clearly relevant for applications where polynomials, arithmetic circuits,
or products (of many factors) need to be computed. But it can also be used in applications which
might seem less obvious.

Here, we present some example scenarios where polytuples can be used and in Section 5 we
sketch our implementation and first benchmarks. These show improvements due to our approach
for all tested applications.

As mentioned, the most natural application is to use our tuples as primitives in MPC protocols
(e.g. SPDZ [DPSZ12] and similar protocols) to compute polynomials in Fp. Most applications that
perform operations on integer-valued data can benefit from polytuples directly. In certain real-
world applications, e.g. to compute the soft-max function in privacy-preserving machine learning,
polynomials are also evaluated on fixed-point representations of real numbers R. Since fixed-point
numbers often require rescaling intermediate results (truncation) after a few multiplications to
avoid overflow in the underlying finite field representation. Polytuples of small polynomial degree
as discussed in Theorem 1 and Remark 17 could be a good fit for these applications. A detailed
discussion on polynomial evaluations over R with polytuples is, however, left to future work. As
we demonstrate next, there are applications where our polytuples approach can be applied to
both integer-valued and fixed-point data immediately.

Comparisons. Our approach can also be used to speed-up comparisons, i.e. equality tests
(x = y) and inequality tests (x < y, x ≤ y, etc.). Comparisons are an ubiquitous operation
in MPC, for example, in secure online auctions, linear programming, secure clustering, secure
floating-point addition, private decision tree schemes, private sorting, and electronic voting, to
name just a few. Also in machine learning applications, we find comparisons, e.g. in ReLU,
MaxPool, or ArgMax layers of deep neural networks.

Classical approaches for comparisons are built on evaluating k-ary symmetric boolean func-
tions (e.g., AND and OR; cf. [CdH10, CS10, NO07]). They often use (not maliciously secure)
techniques as in [BB89,DFK+06,LYKM22] to get constant-round protocols. Instead, we can ex-
press these boolean operations as multiplications (Jx∧yK = Jx ·yK, Jx∨yK = J1−(1−x) ·(1−y)K)
and evaluate them with our tuples. Some also need prefix operations, e.g. prefix-ORs, which we
can simply represent as prefix products. Details on how to use our polytuples to compute prefix
products can be found in Appendix E.

To give a concrete example, we briefly look at a standard approach for equality and less-
than tests [CdH10, NO07], where comparing two secret-shared values is reduced to two basic
operations: bit-wise equality tests and bit-wise less-than tests with one shared and one public
input (see Protocols 18 and 19).

Checking equality of JxKi and JyKi is a straightforward zero test of Jx− yKi, which in turn is
an equality test of a public value c = x− y+ r and a (bit-wise) shared value r (cf. Protocol 18).

48 Reisert et al.

ΠEQ

1. Let JrjKi and cj be the inputs (bit-decomposed; index 0 ≤ j < k for the jth bit).
2. Let JejKi = (cj = JrjKi) = 1− JrjKi − cj + 2cjJrjKi for 0 ≤ j < k.
3. Let JeKi =

∧k−1
j=0 JejKi =

∏k−1
j=0 JejKi.

4. Return JeKi.

Protocol 18: Bit-wise equality test protocol [NO07].

ΠLT

1. Let JrjKi and cj be the inputs (bit-decomposed; index 0 ≤ j < k for the jth bit).
2. Let JdjKi = cj ⊕ JrjKi = cj + JrjKi − 2cjJrjKi for 0 ≤ j < k.
3. Let Jfk−1Ki, . . . , Jf0Ki = PrefixOR(Jdk−1Ki, . . . , Jd0Ki).
4. Let Jgk−1Ki = Jfk−1Ki and JgjKi = JfjKi − Jfj+1Ki for 0 ≤ j < k − 1.
5. Let JhjKi = cjJgjKi for 0 ≤ j < k.
6. Let JhKi =

∑k−1
j=0 JhjKi.

7. Return JhKi.

Protocol 19: Bit-wise less-than protocol [DFK+06].

We see that this protocol involves two operations with communication: (i) a masked opening (not
pictured in Protocol 18) and (ii) a multiplication of k shares. The latter is a native operation
with our tuple-based approach. All other operations are local operations on shares.

Inequality tests of JxKi and JyKi (to compute Jx ≤ yKi) can be done as in [CdH10]. This also
involves a masked opening and a bit-wise comparison. We only depict the core of the inequality
protocol, the bit-wise less-than protocol (Protocol 19). The version shown here is based on
the classical less-than protocol in [DFK+06] and turns out to be more efficient than the ones
of [CdH10, Rei09] (as we can avoid one round of communication that is needed to work with
information-leaking (passively secure) constant-round multiplication protocols). Only the single
prefix-OR in Protocol 19, which can be expressed as a single prefix multiplication with inverted
inputs and outputs, requires communication—the other operations are linear, and thus, can be
done locally on shares. A prefix-OR is again a native operation with our tuples.

Evaluating comparisons with our tuples is more efficient standard techniques in SPDZ-like
protocols as we can now use constant-round techniques based on our constant-round (prefix)
multiplication. Please note that there are MPC protocols specically crafted to optimize compar-
isions. However, to use these protocols together with SPDZ expensive conversations are needed
and separate benchmarks for comparision can hence not be easily compared. We therefore decided
to restrict our comparision to two efficient protocols for comparision included in MP-SPDZ.

Rankings. For auctions (or e-voting), one often needs to compute a ranking of the bids (or
votes) and reveal the top k results (e.g. with k = 1 only the highest bid or the candidate with
the most votes). Obviously, one can also compute arbitrary functions in MPC of this result
before revealing it (e.g. for tally-hiding e-voting [KLM+20]). Note that e-voting (or auctions)
might require additional security properties (e.g. public verifiability or identifiable abort) that
are not directly provided by our protocol. However, this can be achieved with extension to SPDZ
that have these properties [BDO14,BOS16,CFY17]. Our approach is fully compatible with these
SPDZ-based protocols.

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 49

There are several ways to compute a ranking. Computing a comparison matrix (containing
x ≤ y for all pairs x, y) is most versatile as one can compute many functions from it [KLM+20].
Two straightforward ways of computing the matrix include computing the matrix directly and
computing it from two triangular matrices (xi ≤ xj)0<i<j and (xi = xj)0<i<j . Hence we can use
the construction above compute the (in)equality test with polytuples. We tested both approaches
and compare them to the respective default implementation in MP-SPDZ (based on the protocols
with logarithmic complexity in [CdH10]; with and without edabits [EGK+20] to speed up the
comparison). The benchmark results were included in Fig. 6.

Neural Networks. We also provide benchmarks for ML Applications. Namely, we use 4 bench-
mark programs available in MP-SPDZ. These programs combine different ML layers to reflect
different architecture common in dense and convolutional network:

- Benchmark Net A contains the following layers in this order: Dense, Square, Dense, Square,
Dense, ArgMax.

- Benchmark Net B contains the following layers in this order: 2d Convolution, MaxPool, ReLU,
2d Convolution, MaxPool, ReLU, Dense, ReLU, Dense, ArgMax.

- Benchmark Net C has layers as B but with different dimensions.
- Benchmark Net D contains the following layers in this order: 2d Convolution, ReLU, Dense,

ReLU, Dense, ArgMax.

For further specifics on the layers, e.g. number of inputs, we refer to the corresponding programs
in MP-SPDZ [Kel20]. Please note that each program comes with an ArgMax layer and hence
uses comparisons. With the previous construction we can therefore use polytuples to speed of
these computations. The benchmarks were/are included in Fig. 7 and Fig. 10.

G Further Specifics of the Implementation and Evaluation

The results of Figs. 5 to 7 were obtained by averaging 32 program runs for each parameter
setting (e.g. fixed delay, number of variables and, degree). In all our experiments we introduced
an artificial network delay/latency using the tc(8) Linux tool. This gives us control to simulate
various network settings. Our first benchmark (evaluation of multivariate polynomials) was tested
with 2ms, 5ms and 10ms delay to also show the effect parameters besides the delay (the number
of variables and the maximum degree in each variable).

5.0 7.5 10.0 12.5 15.0 17.5 20.0
degree

0.030

0.035

0.040

0.045

tim
e

/ s

runtime with 4 variables and 2 ms delay

5.0 7.5 10.0 12.5 15.0 17.5 20.0
degree

0.06

0.07

0.08

0.09

0.10

tim
e

/ s

runtime with 4 variables and 5 ms delay

5.0 7.5 10.0 12.5 15.0 17.5 20.0
degree

0.12

0.14

0.16

0.18

0.20

tim
e

/ s

runtime with 4 variables and 10 ms delay

Fig. 9: Further Benchmarks for polynomial evaluation (blue: default MP-SPDZ implementation, orange: ours).

50 Reisert et al.

The other benchmarks (rankings and neural networks) were run with delays from 0ms to
20ms (in steps of 1ms below 10ms and 2ms steps above 10ms delay). For the ranking benchmark,
we chose to compare our implementation to MP-SPDZ with edabits [EGK+20] as it is MP-SPDZ’s
recommendation for our test program. We can see that this is indeed an improvement over the
standard implementation,25 however our new tuple-based approach clearly beats both existing
approaches.

For the Machine Learning benchmark, we chose to not vary any parameters of the models.
Instead, networks A and D correspond to smaller/simpler models, while networks B and C are
larger/more complex (approximately ordered by size/complexity: A < D < B < C).

Finally, our implementation lacks certain features that would (when implemented correctly)
only speed-up any application. This includes finding optimal partitions for products; currently,
polytuples are created naively by simply splitting products in half recursively instead of finding
tree structures (cf. Figure 3) with optimal size and/or better bandwidth. Bandwidth and/or
size optimal partitions could be implemented on top of our results from Section 4 instead. An-
other optimization opportunity is the one shown in Protocol 5 (combining the evaluation of a
polynomial with the masking step of the next polynomial evaluation). This would allow us to
combine the opening round of one computation with polytuples and the input round of another
computation. Currently, every operation based on polytuples26 takes two rounds as we always
create a share of the result; the sequential composition of two such operations takes four rounds
and so on.

Effect of Bandwidth Rate Restrictions. To better understand the effect of our approach on
neural networks we also give the benchmarks for the ArgMax Layer seperately. Additionally this
evalution was done with different bandwidth restrictions imposed—50 Mbit/s, 1 GB/s, unlimited.
The results in Figures 7 and 10 show that there is no significant impact of the bandwidth overhead
in this example. Similar results hold for all our evaluations.

Benchmarks for Different Numbers of Parties Please recall from Section 3 that we assume
(similar to [DPSZ12]) that parties broadcast their shares to all other parties (to open a value).
Hence our benchmarks are expected to scale linearly in the number of parties n. Note, that the
final MAC check is not linear in n, but it has to be done only once and is circuit-independent.
However, just like in MP-SPDZ the MAC checks in our implementation are done more regularly
to simplify the code. In particular, the non-linear contribution of the MAC check then becomes
circuit-dependent. We illustrate the behavior for different numbers of parties in Fig. 11. We
remark that the slight circuit-dependence of the MAC check is usually considered acceptable.

H Further Related Literature

In this appendix we extend our exposition of related work in Section 2.
Since polynomial evaluation is one of the most fundamental arithmetic tasks, several solu-

tions outside of SPDZ-like protocols or even MPC have been suggested over the last 30 years.
To mention only a few different ideas: [MF06] uses shared polynomials, [FM10, DMRY11] use
homomorphic encryption in the online phase, [GMRW13] also uses homomorphic encryption but
in a single centralized server setup. Of course any fully homomorphic encryption scheme like the
25 Note that edabits are an improvement in Fig. 6b only for very low latency.
26 Except operations with binomial tuples; these are implemented in one round.

Actively Secure Polynomial Evaluation from Shared Polynomial Encodings 51

(a) Network B [LJLA17]. (b) Network C [LBBH98].

(c) Network D [RWT+18]. (d) ArgMax Layer, 50 Mbit/s rate restriction.

(e) ArgMax, 1 Gbit/s rate restriction. (f) Combination of ArgMax.

Fig. 10: Figures (a), (b), (c) contain the benchmarks for the evaluation of the neural networks B, C, D included
in MP-SPDZ [Kel20] (cf. [RWT+18]; blue: default MP-SPDZ implementation, orange: ours). (d), (e) contain
benchmarks for the ArgMax layer with bandwidth restrictions. (f) places (d), (e) and the ArgMax layer in Fig. 10
in one diagram to show that the bandwidth restriction has no visible effect on the runtime.

52 Reisert et al.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

degree d

B
yt

e

2 parties 3 parties
4 parties 5 parties

Fig. 11: Online bandwidth for the computation of x0 · · ·xd−1 for a different number of parties.

original protocol by Gentry [Gen09] can also be used to evaluate a polynomial. Another idea
is to use oblivious transfer-based techniques like in [NP99] or [GM09,TJB13] where one party
holds the polynomial f and the other party holds the input variables x0, . . . , xm−1. Yet another
recent idea is to compute multivariate polynomials of time-series data utilizing private stream
aggregation (PSA) and trusted execution environments (TEEs) as in [KTM+21].

In [BDG+17] or [SA19], public verifiability of a polynomial evaluation is studied. We remark
that our protocols can be extended to support (public) verifiability or (publicly) identifiable
abort similarly to known extensions of [DPSZ12], e.g. [BDO14,BOS16,CFY17].

Since our paper aims at minimizing communication, we also want to shortly point to a
more detailed discussion on the importance of communication rounds in MPC, e.g. in [AKP20,
BNTW12] or [FM19].

Finally, there is also the recent research direction of non-interactive MPC (cf. [EOYN21,
HHPV21, HIJ+17, HIJ+16, KBTJ19]) where parties send data online once and reconstruct the
result locally without an opening round. However, these protocols are either vulnerable to residual
function attacks or use trusted hardware (e.g., TEEs).

	Actively Secure Polynomial Evaluation from Shared Polynomial Encodings
	Introduction
	Related Work
	Preliminaries
	Performance Measures
	Secret-Sharing and SPDZ-MACs
	Randomized Encodings and Randomizing Polynomials
	Binomial Tuples

	Our MPC Protocols for the Evaluation of Multivariate Polynomials
	MPC With Randomized Encodings
	Our Randomized Encodings
	Technical Lemmas and Formal Results
	Recursive Formula for Output Size
	Application in MPC Protocols and Asymptotic Behavior
	Composability and Security
	The Generation of Polytuples

	Implementation and Evaluation
	Technical Proofs for Theoretical Bandwidth and Tuple Size Computations
	Functionalities
	Tuple Production
	Plugin Approach
	Linear Homomorphic Encryption

	Further Results on the Offline Phase
	Extended Sacrificing Technique
	Further Results For A Linear Homomorphic Offline Phase
	Leveled Homomorphic Enryption

	Prefix Products with Polytuples
	Applications
	Further Specifics of the Implementation and Evaluation
	Further Related Literature

