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Abstract

Secure Multi-party Computation (MPC) provides a promising solu-
tion for privacy-preserving multi-source data analytics. However,
existing MPC-based collaborative analytics systems (MCASs) have
unsatisfying performance for scenarios with dynamic databases.
Naïvely running an MCAS on a dynamic database would lead to
significant redundant costs and raise performance concerns, due to
the substantial duplicate contents between the pre-updating and
post-updating databases.

In this paper, we propose Shortcut, a framework that can work
with MCASs to enable efficient queries on dynamic databases that
support data insertion, deletion, and update. The core idea of Short-
cut is to materialize previous query results and directly update
them via our query result update (QRU) protocol to obtain cur-
rent query results. We customize several efficient QRU protocols
for common SQL operators, including Order-by-Limit, Group-by-
Aggregate, Distinct, Join, Select, and Global Aggregate. These proto-
cols are composable to implement a wide range of query functions.
In particular, we propose two constant-round protocols to support
data insertion and deletion. These protocols can serve as important
building blocks of other protocols and are of independent interest.
They address the problem of securely inserting/deleting a row in-
to/from an ordered table while keeping the order. Our experiments
show that Shortcut outperforms naïve MCASs for minor updates
arriving in time, which captures the need of many realistic appli-
cations (e.g., insurance services, account data management). For
example, for a single query after an insertion, Shortcut achieves
up to 186.8× improvement over those naïve MCASs without our

∗Siyi Lv is the corresponding author of this paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690314

QRU protocols on a dynamic database with 216 ∼ 220 rows, which
is common in real-life applications.
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1 Introduction

Analyzing data collected from multiple sources can benefit or even
spawn various applications, such as medical studies [8], credit inves-
tigation [33], account data managements [36], and commercial sup-
ports [1]. However, many data owners are reluctant to disclose raw
data to others, due to privacy concerns [30]. Systems, that perform
collaborative analytics on data contributed by mutually distrustful
data owners without sacrificing their privacy, have attracted much
attention from both academic and industrial communities.

Secure Multi-party Computation (MPC) [17] provides a promis-
ing solution for this topic. It enables multiple parties to securely
evaluate a function together with cryptographic guarantee. A stan-
dard MPC-based Collaborative Analytics System (MCAS) (e.g., [8,
19, 22, 33, 39]) can consist of several secure SQL protocols that evalu-
ate SQL queries on a database contributed by multiple data owners.
Since there is a notable performance gap between MPC-based sys-
tems and plaintext systems, known MCASs attempt to mitigate
this gap by considering various optimizations or trade-offs. For
example, MPC costs can be reduced by using local computation as
much as possible [8, 28, 31], reordering operators as per rules [22],
optimizing secure operators [5, 19], or allowing more information
leakage that is well-bounded by differential privacy (DP) [9, 10].
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Table 1: Asymptotic communication per query after an update in existing secret-sharing-based MCASs and Shortcut. Here, 𝑛

is the table size, 𝑙 ≤ ℎ ≤ 𝑛, where 𝑙 is the limit size of Order-by-Limit. l denotes the size of the secret shares.

Methods Order-by-Limit Group-by-Aggregate1 Join2 Select
Comm. (bits) Rounds Comm. (bits) Rounds Comm. (bits) Rounds Comm. (bits) Rounds

Secrecy [22] 𝑂 (l𝑛 log2𝑛) 𝑂 (log llog2𝑛) 𝑂 (l𝑛 log2𝑛) 𝑂 (log llog2𝑛) − − 𝑂 (l𝑛) 𝑂 (log l)

AHK+ [5]3 𝑂 (l𝜆𝑛) 𝑂 (𝜆) 𝑂 (l𝜆𝑛) 𝑂 (𝜆) 𝑂 (l𝜆𝑛) 𝑂 (𝜆) − −

Scape [19] 𝑂 (l𝑛 log2𝑛) 𝑂 (log l log2 𝑛) 𝑂 (l𝑛 log2𝑛) 𝑂 (log l log2 𝑛) 𝑂 (l𝑛 log𝑛) 𝑂 (log l log𝑛) 𝑂 (l𝑛) 𝑂 (log l)

Shortcut Insert 𝑂 (lℎ) 𝑂 (log l) 𝑂 (l𝑛) 𝑂 (log l) 𝑂 (l𝑛) 𝑂 (log l) 𝑂 (l) 𝑂 (log l)
Delete 𝑂 (lℎ) 𝑂 (log l) 𝑂 (l𝑛) 𝑂 (log l) 𝑂 (l𝑛) 𝑂 (log l) 𝑂 (l𝑛) 𝑂 (log l)

1 The cost of Distinct is consistent with that of Group-by-Aggregate.
2 Shortcut considers unique-key Join, while Secrecy considers general Join. Hence, we omit their comparison of Join.
3 𝜆 denotes the size of the ordered, joined, or grouped keys.

Table 2: Asymptotic number of gates per query after an up-

date in existing garbled-circuit-based MCASs and Shortcut.

Here, 𝑛 is the table size, 𝑙 ≤ ℎ ≤ 𝑛, where 𝑙 is the limit size of

Order-by-Limit. We treat the size of secret shares as constant.

Methods Number of Gates
Order-by-Limit Group-by-Aggregate1 Join2 Select

SMCQL [8] 𝑂 (𝑛 log2𝑛) 𝑂 (𝑛 log2𝑛) − 𝑂 (𝑛)

Senate [28] 𝑂 (𝑛 log2𝑛) 𝑂 (𝑛 log2𝑛) 𝑂 (𝑛 log2 𝑛) 𝑂 (𝑛)

Shortcut Insert 𝑂 (ℎ) 𝑂 (𝑛) 𝑂 (𝑛) 𝑂 (1)
Delete 𝑂 (ℎ) 𝑂 (𝑛) 𝑂 (𝑛) 𝑂 (𝑛)

1 The cost of Distinct is consistent with that of Group-by-Aggregate.
2 We omit the comparison of Join with SMCQL since it also considers general Join.

However, these attempts are still far from efficient in scenarios
with dynamic databases. For example, consider the scenario of Pass-
word Reuse [22, 28, 36], where many users may reuse passwords
across different sites. If one of these sites is hacked, the attacker
could compromise the accounts of these users on other sites. As
pointed out by [28, 36], sites can arrange for salted hashes of pass-
words where the salts are deterministically computed from user
identifiers, and regularly perform the following query to identify
the users with the same password across different sites:

SELECT userid FROM R1 ∪ . . .∪ R𝑚

GROUP BY userid, password

HAVING COUNT(*)>1

In real life, the account databases are dynamic: a user can sign up or
delete its account at will. So, the regular queries should be launched
from scratch each time, leading to heavy MPC overhead.

In fact, there are substantial duplicate contents between the pre-
updating and post-updating databases. An intuition to save MPC
overhead is to reuse and update the previous query results to obtain
the result for the current query. Using this intuition, IncShrink [35]
provides a solution to an incremental database, which only allows
data insertion. It materializes the results of Join-Select queries and
proposes an algorithm to update query results with DP guarantee.
However, IncShrink only considers Join-Select queries after data
insertion, and its DP guarantee aims to protect the actual size of
materialized results (not the actual update manners for databases
since only data insertion is allowed therein).

In this paper, we further explore the power of the above intuition
and propose Shortcut, an MCAS framework that improves the
efficiency of SQL queries on dynamic databases with data insertion,
deletion, and update. Our contributions are as follows.

• To the best of our knowledge, Shortcut is the first framework
with the following characteristics: (i) it supports dynamic databases
with data insertion, deletion, and update, (ii) it enables a wide
range of queries, including Order-by-Limit, Group-by-Aggregate,
Distinct, Join, Select, Global Aggregate, and their compositions,
(iii) it is compatible with existing MPC frameworks [3, 21, 38]
(along with the MCASs [22, 28] atop them) to support standard
semi-honest and malicious security, and (iv) it can protect actual
update manners in an oblivious sense (i.e., the adversary learns
nothing about how a dynamic database changes each time).
To implement Shortcut, we propose several operator-level query
result update (QRU) protocols dedicated to dynamic databases.
These QRU protocols are constructed for common SQL operators,
including Order-by-Limit, Group-by-Aggregate, Distinct, Join,
Select, and Global Aggregate.
• We present a constant-round inserting protocol and a constant-
round push-down protocol. That is, in contrast to the naïve solu-
tion (i.e., the protocol based on bubbling circuits) whose round
complexity is linear in table size, the round complexities of our
protocols are independent of table size. These protocols are used
as the key building blocks of our QRU protocol for Order-by-
Limit. Meanwhile, their communication complexities are still
linear in table size.
Notably, our constant-round inserting protocol resolves the prob-
lem of securely inserting a new item into an ordered sequence
or table while maintaining the order. It is useful and may be of
independent interest. For example, in the secure binary search
protocol [11] over an incremental dataset, a constant-round in-
serting protocol can efficiently insert a new record into the sorted
dataset, avoiding a full-fledged secure sorting.
• We study the composition between our QRU protocols. This com-
position is necessary to combine these protocols to implement
and accelerate complex SQL queries, which are composed of
the above common SQL operators, over dynamic databases. Our
composition results complete the picture of these QRU protocols.
• We implement Shortcut and compare it with Secrecy [22] and
AHK+ [5], the state-of-the-art works also with characteristics (ii)
and (iii) on static databases, on several SQL operators and real-life
composite SQL queries. Our experiments show that Shortcut
outperforms these works, indicating the effectiveness of our QRU
protocols. For example, for operator Join, Shortcut achieves
142.4× ∼ 186.8× (resp. 14.5× ∼ 21×) improvement over Secrecy
(resp. AHK+) on a dynamic database containing 216 ∼ 220 rows,
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after an insertion. For real-life queries, Shortcut is 236.3× (resp.
26.5×) faster than Secrecy (resp. AHK+) over a 218-row dynamic
database for Credit Scores queries [28] after an insertion.
We compare Shortcut with several standard MCASs. Over

dynamic databases, this comparison is essentially between existing
secure SQL protocols and the QRU protocols in Shortcut. Secrecy,
AHK+, and Scape [19] employ secret-sharing-based MPC schemes.
In Table 1, we summarize their asymptotic communication per
query after an insertion/deletion. Note that, the cost of an update
equals that of an insertion plus a deletion. The communications of
Secrecy, AHK+, and Scape for Order-by-Limit, Group-by-Aggregate,
and Join are superlinear in table size 𝑛, while the communication
of Shortcut is linear in 𝑛. Moreover, the rounds of all operators
in Shortcut are independent of 𝑛. In contrast, SMCQL [8] and
Senate [28] employ garbled-circuit-based MPC schemes. In Table 2,
we summarize their asymptotic number of gates per query after an
insertion/deletion. Our improvements over these works are similar
to those over Secrecy and Scape.

2 Technical Overview

We focus on MCASs that securely compute SQL queries over dy-
namic databases with data insertion, deletion, and update. In Short-
cut, a data update is directly implemented by a data deletion fol-
lowed by a data insertion. In a real-life application where a dynamic
database varies slightly over time, there are substantial duplicate
contents between the pre-updating database and the post-updating
one. Intuitively, if every SQL query requires MPC from scratch,
these duplicate contents can result in significant redundant MPC
overhead and raise performance issues. The core idea of this work
is to materialize previous query results, i.e., the tables returned by
MPC-based SQL queries, and then directly update them to compute
the result for the current query, rather than running MPC protocols
on the entire dynamic database. We realize this idea by proposing a
series of QRU protocols that update the materialized tables based on
the update messages (which consist of data rows and update man-
ners) from data owners. We consider two challenges in the design
of QRU protocols: (i) concretely efficient QRU protocols customized
for common SQL operators, and (ii) the composition of QRU proto-
cols to support composite SQL queries over dynamic databases. In
this section, we first introduce the Shortcut workflow and then
outline how we address the above two challenges.

2.1 Shortcut Workflow

Similar to an existing MCAS, Shortcut has three types of roles:
(i) data owners, who upload databases and issue update messages,
(ii) computing parties, who run MPC protocols, and (iii) analysts,
who want to obtain query results. To perform a query, an analyst
sends its query to all computing parties, who parse this query as a
schedule. Using the databases uploaded by data owners via MPC
protocols, these computing parties run MPC protocols to execute
the schedule to compute the result of the query. If there are already
materialized results in the memories of the computing parties, this
execution also takes these materialized results as input. To update
an uploaded database, its data owner issues an update message to
the computing parties, who invoke the QRU protocols of Shortcut
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Figure 1: QRU protocols for Order-by-Limit.

to update related materialized results as per this message. All query
results can be revealed to analysts via MPC protocols.

2.2 QRU Protocols for Common SQL Operators

Order-by-Limit. On input a table, the operator Order-by-Limit
orders this table by a specified column and returns several rows at
the front [28]. The QRU protocol of this operator is to incorporate an
update message of the given table into a previous query result (also
called “materialized table”) to make it consistent with the updated
table. We consider two fundamental types of update messages:
insertion and deletion. We take for example a materialized table
with four ordered rows, which is sorted first in the descending order
of validity bit 𝑣 and then in the descending order of order key 𝑘 .
An insertion example is presented in Figure 1, where we want to
insert a new row (3, 𝑧, 1) to the underlying table and maintain the
materialized table. Meanwhile, a deletion example is presented in
Figure 1, where we want to delete an existing row (4, 𝑥, 1) from the
underlying table and maintain the materialized table. In particular,
to prevent information leakage, deletion needs to set bit 𝑣 = 1
of the deleted row to 0, through a linear scan. In the following,
we introduce how to maintain the materialized table under its
associated Order-by-Limit execution.

In previous works, the order of the materialized table can be
maintained via bubbling circuits that require a linear scan of this
table. Inserting a new row into the materialized table can be done
by a bottom-up bubbling while pushing a deleted dummy row (i.e.,
that newly with 𝑣 = 0) down in deletion can be done by a top-down
bubbling. However, such bubbling circuits suffer from an apparent
shortcoming: their depths are linear in the size of the materialized
table, yielding protocols with round complexity linear in this size
when secret-sharing-based MPC paradigms are used.

We deal with this shortcoming by proposing a constant-depth
inserting circuit (CDIC) and a constant-depth push-down circuit
(CDPC) for insertion and deletion, respectively. By replacing the
above bubbling circuits with CDIC and CDPC, we obtain constant-
round protocols to maintain the materialized table. Both CDIC and
CDPC consist of a masking stage and a rewriting stage.

For CDIC, (i) in the masking stage, a new row is appended at the
end of the materialized table, and the rows whose orders are lower
than the new row are all replaced by it, and (ii) in the rewriting stage,
the previously replaced rows are rewritten back to their original
positions shifted down by one. For CDPC, (i) in the masking stage,
the deleted dummy row (if exists) and the rows below it are marked
as dummies, and (ii) in the rewriting stage, the previously marked
rows, except the deleted dummy row, are rewritten back to their
original positions shifted up by one. More details about the two
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constant-depth circuits and the QRU protocol of Order-by-Limit
are presented in Section 5.1.
Group-by-Aggregate. On input a table, the operator Group-by-
Aggregate [22] groups this table by a specified column (called group
key), aggregates the values of a specified column (called aggregate
attribute) within each group, and stores these values in a new col-
umn (called result attribute) to obtain a materialized table. In the
following, we provide an overview of the QRU protocol of Group-
by-Sum. This QRU protocol can be slightly modified to obtain the
QRU protocols of Group-by-Count/Max/Min and Distinct. Figure
2 illustrates the QRU protocol of Group-by-Sum, where 𝑘 is the
group key, 𝑎 is the aggregate attribute, 𝑟 is the result attribute, 𝑣 is
the validity bit, and 𝑓 is the flag bit.

Let a target row in thematerialized table denote such a row that (i)
has the same group key as that in a valid row to be inserted/deleted,
and (ii) has validity bit 𝑣 = 1. In insertion, there are two possible
cases: (i) Case 1: if a target row exists, then the value 𝑎 of the
inserted row should be added to the value 𝑟 of the target row, or (ii)
Case 2: if no target row exists, then this inserted row forms a new
group in the materialized table. More specifically, the insertion is
as follows. First, we compute a flag bit 𝑓 for each row to locate the
target row (i.e., 𝑓 = 1 if and only if for the target row). Then, we
append the inserted row to the end of the materialized table. At
this time, if Case 1 holds, we obliviously set 𝑣 = 0 in the appended
row; otherwise, we keep its 𝑣 unchanged. Finally, we add the value
of 𝑎 of the appended row to the value of 𝑟 of the target row indexed
by a flag bit 𝑓 = 1 (if exists). Insertion under Case 1 is presented
in Figure 2. Meanwhile, deletion is straightforward according to
Figure 2, where we locate the target row and subtract the value of
𝑎 of the deleted row from the value of 𝑟 of the target row.
Join. Shortcut considers unique-key Join in [8, 28]. On input
two table 𝐿 and 𝑅, the join result between 𝐿 and 𝑅 on join key 𝑘 is
𝐽 = 𝐿 Z𝑘 𝑅 = {(𝑘, 𝑡𝐿 [¬𝑘], 𝑡𝑅 [¬𝑘]) | 𝑡𝐿 ∈ 𝐿, 𝑡𝑅 ∈ 𝑅, 𝑡𝐿 [𝑘] = 𝑡𝑅 [𝑘]},
where 𝑡 [¬𝑘] denotes the row without attribute 𝑘 . We note that
each value of 𝑘 is unique in each table to identify rows. Shortcut
materializes not only query result 𝐽 but also two inputs 𝐿 and 𝑅.

Consider the QRU protocol for inserting a new row to table 𝐿
(symmetric to table 𝑅). First, we append the inserted row to the
end of 𝐿, which is a part of the materialized table. Then, we join
the inserted row with the row having the same key in table 𝑅 via
a linear scan. Finally, the joined row is appended to the end of 𝐽 .
For the QRU protocol of deleting a row from table 𝐿 (symmetric to
table 𝑅), we linearly scan 𝐿 (resp. 𝐽 ) to set the validity bit to 0 for
the deleted row (resp. the joined row w.r.t. the deleted row).
Select. Given an input table 𝑅 and a predicate 𝜎 (·), the operator
Select [22] computes a validity bit 𝑡 [𝑣] = 𝜎 (𝑡) for each row 𝑡 ∈ 𝑅.
In the QRU protocol for insertion, the materialized table can be

updated by filtering the inserted row with predicate 𝜎 (·) and then
appending the result to the end of the materialized table. In the
QRU protocol for deletion, we linearly scan the materialized table
to set the validity bit to 0 for the deleted row.
Global Aggregate. On input a table, the operator Global Aggre-
gate [22] aggregates all values of a specified column and returns
an aggregated value. Shortcut materializes this aggregated value.
For Sum/Count/Max/Min-based aggregation, the QRU protocol for
inserting a new row into the underlying table can be realized by
additionally aggregating the value in this row into the materialized
aggregated value. For Sum/Count-based aggregation, the QRU pro-
tocol for deleting a row from the underlying table is to subtract
the value in this row from the materialized aggregated value. For
Max/Min-based aggregation, we use existing secure SQL protocols
to query the underlying table from scratch after deletion.

2.3 Composition of QRU Protocols

In the composition of two QRU protocols, the former protocol can
compute an output updatemessage from its associated SQL operator
and an input update message. Then, the latter protocol can compute
the latest materialized table as per its associated SQL operator and
the update message computed from the former protocol. In essence,
the output update message of the former protocol describes the
difference between the materialized tables before and after the
protocol execution. Note that this composition depends on the two
SQL operators underlying the two QRU protocols, respectively. We
refer readers to Section 4 for the formalized composition rule.

3 Preliminaries

3.1 Notations and Definitions

Given table 𝑅 and 𝑖 ≥ 0, let 𝑅𝑖 denote its 𝑖-th row, 𝑅 [𝑎] denote the
column of attribute 𝑎, and 𝑅𝑖 [𝑎] denote the value of attribute 𝑎 in
𝑖-th row. Given row 𝑢, let 𝑢 [𝑎] denote the value of attribute 𝑎 in
row 𝑢. Throughout this paper, let 𝑣 ∈ {0, 1} denote the validity
attribute indicating whether a row is valid or not: this row is valid
if 𝑣 = 1 or dummy if 𝑣 = 0. If an attribute column 𝑐 contains
Boolean values, let 𝑐 denote the attribute column that flips each
bit of 𝑐 . Given table 𝑅, row 𝑡 , and element 𝑥 , we write 𝑅 ∪ 𝑡 for
appending 𝑡 to the end of table 𝑅 and 𝑡 ∪ 𝑥 for appending 𝑥 to the
end of row 𝑡 . Let 𝜅 denote the computational security parameter
and 𝑠 denote the statistical security parameter. We write [𝑚,𝑛] for
finite set {𝑚, . . . , 𝑛}, where𝑚,𝑛 ∈ Z and𝑚 ≤ 𝑛. Given permutation
𝜋 , we write 𝜋 (𝑅) for applying permutation 𝜋 to the rows of table
𝑅. Two dummy rows 𝑎, 𝑏 are regarded as identical, also denoted by
𝑎 = 𝑏 as two valid rows. We also say that two 𝑛-row tables 𝐴, 𝐵
are identical, denoted by 𝐴 = 𝐵, if 𝐴𝑖 = 𝐵𝑖 for each 𝑖 ∈ [0, 𝑛 − 1].
Given table 𝑅, let Compact(𝑅) denote its compaction that removes
all dummy rows in 𝑅 but preserves the order of other rows.

Definition 3.1 (Equivalence of two tables under a query). De-
pending on whether query 𝑞 returns an ordered result or not, the
equivalence of two tables 𝑅 and 𝑇 under 𝑞 is defined as follows:
• If the result is ordered, the equivalence holds if and only if 𝑅 = 𝑇 .
• Otherwise, the equivalence holds if and only if there exists a per-
mutation 𝜋 such that Compact(𝑅) = 𝜋 (Compact(𝑇 )).
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Let 𝑅 ∼𝑞 𝑇 denote this equivalence. When it is clear in the context
whether the result of 𝑞 is ordered or not, we simply write 𝑅 ∼ 𝑇 .

This equivalence captures that, if two equivalent tables 𝑅 and
𝑇 are returned by the same query whose output is ordered, they
are identical row-by-row (where dummy rows are identical to each
other). Otherwise, it is sufficient to consider that all valid rows in
table 𝑅 are exactly the valid rows in table 𝑇 , regardless of their
order in either table. In this work, only Order-by-Limit queries will
produce ordered outputs. Thus, we mostly use the notation in its
simplified form, i.e., 𝑅 ∼ 𝑇 , for ease of notation.
Update message. We define an update message of data owners
as um : (𝑟𝑜𝑤,𝑚𝑎𝑛𝑛𝑒𝑟 ), where 𝑟𝑜𝑤 is an data row and𝑚𝑎𝑛𝑛𝑒𝑟 ∈
{𝑖𝑛𝑠𝑒𝑟𝑡, 𝑑𝑒𝑙𝑒𝑡𝑒} represents its update manner. In this work, a data
update is directly implemented by a data deletion plus a data inser-
tion. We write ums for a queue of update messages.
Plain update. We define PlainUpdate(um, 𝑅), a macro that means
plainly updating table 𝑅 using update message um. If um.𝑚𝑎𝑛𝑛𝑒𝑟

is 𝑖𝑛𝑠𝑒𝑟𝑡 , um.𝑟𝑜𝑤 is directly appended to 𝑅; if um.𝑚𝑎𝑛𝑛𝑒𝑟 is 𝑑𝑒𝑙𝑒𝑡𝑒 ,
um.𝑟𝑜𝑤 within 𝑅 (if exists) is set as dummy.

3.2 Security Model and Guarantees

Security model. We rely on black-box computations of several
common circuit evaluation protocols. Therefore, we can support
semi-honest/malicious security with an honest/dishonest major-
ity, as long as the underlying MPC protocol allows. A semi-honest
adversary can see all the internal states of the corrupted parties
but without altering its protocol execution. In contrast, a malicious
adversary, in addition to observing the internal states of the cor-
rupted parties, may arbitrarily deviate from the protocol. Typically,
we follow the security model of the MCAS that we work with.
Security guarantees.We treat the data schema and query state-
ments as public. It relies on the underlying MPC protocol to protect
data throughout the entire lifecycle. The MPC protocol provides
two types of guarantees: (i) privacy, meaning that computing parties
do not learn anything about the data, and (ii) correctness, meaning
that all participants are convinced that the computation output is
accurate. The adversary cannot learn anything beyond the size of
the input data (which can also be padded by the data owners). Only
the designated analyst learns the result of the query.

3.3 Background on MPC

General-purpose MPC [24, 40] supports Boolean and arithmetic
operations on encrypted data, or more precisely, shared data. We
use ⟨𝑥⟩ to uniformly denote data 𝑥 shared by a general-purpose
MPC scheme. In our instantiation, we consider a three-party honest-
majority scheme, i.e. at most one corrupted party is allowed, similar
to several state-of-the-art MCASs [5, 19, 22]. In particular, we use
the semi-honest three-party replicated secret sharing scheme [3]
for our instantiation.
Replicated secret sharing. This scheme consists of three parties:
𝑃1, 𝑃2, 𝑃3. A private data 𝑥 ∈ {0, 1}l is split into three random
elements 𝑥1, 𝑥2, 𝑥3 ∈ {0, 1}l , and 𝑃1’s share is (𝑥1, 𝑥2), 𝑃2’s share
is (𝑥2, 𝑥3), 𝑃3’s share is (𝑥3, 𝑥1). There are two sharing types with
different constraints: arithmetic sharing with 𝑥 = 𝑥1 + 𝑥2 + 𝑥3
mod 2l , and Boolean sharing with 𝑥 = 𝑥1 ⊕ 𝑥2 ⊕ 𝑥3 for 𝑥 ∈ Zl2. Any
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Figure 3: Workflow of QRU protocols.

two parties 𝑃𝑖 and 𝑃 𝑗 can reconstruct 𝑥 from their shares, while
any single party learns nothing about 𝑥 . Conversions between
arithmetic share and Boolean share are done by evaluating a ripple-
carry adder [2, 24].
Circuit evaluation. Given arithmetic sharing data ⟨𝑥⟩ and ⟨𝑦⟩,
parties evaluate the addition circuit (denoted as ⟨𝑥⟩ + ⟨𝑦⟩) locally. A
multiplication circuit (denoted as ⟨𝑥⟩ · ⟨𝑦⟩) needs one communica-
tion round. The equality circuit (=?) and comparison circuit (<, >,
≤, ≥) between ⟨𝑥⟩ and ⟨𝑦⟩ are done on Boolean sharing, and need
𝑂 (l)-bit communication in 𝑂 (log l) rounds for data defined in Zl2.
Multiplexer. Let ⟨𝑥⟩ and ⟨𝑦⟩ be input, ⟨𝑠⟩ be output, we implement
the multiplexer (MUX) as ⟨𝑠⟩ = ⟨𝑦⟩ + ⟨𝑏⟩ · (⟨𝑥⟩ − ⟨𝑦⟩), where
⟨𝑏⟩ is the select bit. Specially, minimum circuit is implemented as
min(⟨𝑥⟩, ⟨𝑦⟩) = ⟨𝑦⟩+ (⟨𝑥⟩ < ⟨𝑦⟩) · (⟨𝑥⟩−⟨𝑦⟩), and maximum circuit
is implemented as max(⟨𝑥⟩, ⟨𝑦⟩) = ⟨𝑥⟩ + (⟨𝑥⟩ < ⟨𝑦⟩) · (⟨𝑦⟩ − ⟨𝑥⟩).

4 Composition of QRU Protocols

4.1 Single QRU Protocol

The core of MCASs is their secure SQL protocols used to securely
evaluate SQL operators. Shortcut’s QRU protocol aims to directly
update the output of the secure SQL protocol, achieving the same
goal as using the secure SQL protocol from scratch, i.e., plainly
updates the input table first and then invokes secure SQL protocol.

Let SSQL(·) denote a secure SQL protocol,𝑜𝑢𝑡𝑇𝑎𝑏𝑙𝑒 = SSQL(𝑖𝑛𝑇 -
𝑎𝑏𝑙𝑒), where 𝑖𝑛𝑇𝑎𝑏𝑙𝑒 and 𝑜𝑢𝑡𝑇𝑎𝑏𝑙𝑒 represent the input and output
table of the protocol respectively. For any update messages ums, let

𝑖𝑛𝑇𝑎𝑏𝑙𝑒𝑢 = PlainUpdate(ums, 𝑖𝑛𝑇𝑎𝑏𝑙𝑒)
𝑜𝑢𝑡𝑇𝑎𝑏𝑙𝑒𝑢 = SSQL(𝑖𝑛𝑇𝑎𝑏𝑙𝑒𝑢 )

where superscript “𝑢” indicates that the table has been updated by
ums. Then, the associated QRU protocol satisfies:

QRU(ums, 𝑜𝑢𝑡𝑇𝑎𝑏𝑙𝑒) ∼ 𝑜𝑢𝑡𝑇𝑎𝑏𝑙𝑒𝑢

= SSQL(PlainUpdate(ums, 𝑖𝑛𝑇𝑎𝑏𝑙𝑒)) (1)

4.2 Composition Rule

When data owners initiate data updates, Shortcut recursively
invokes QRU protocols along the route map of the directed acyclic
graph to update the materialized tables. If there is more than one
SQL operator in the directed acyclic graph, their associated QRU
protocols must be composited. Taking an example of a directed
acyclic graph with two operators connected end-to-end, Figure 3
shows the workflow of the QRU protocols. 𝑡𝑎𝑏𝑙𝑒𝑖 is the output table,
i.e., the materialized table, of 𝑖-th operator. QRU_1(·) and QRU_2(·)
are the QRU protocols of the first and the second operators respec-
tively. The QRU protocol pops the update message from the queue,
and invokes the associated insert protocol or delete protocol based
on the update manner to update materialized tables. Note that, up-
date messages uploaded by data owners are semantically targeted
towards the underlying databases, i.e., the input tables of the first
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operator here. Therefore, the input update messages for the first
protocol are those uploaded by data owners, while the input update
messages for the remaining protocols should be provided by their
former protocol. This means that each QRU protocol, except for the
final one, not only updates the materialized tables but also computes
the output update messages offered to its next protocol. Informally
speaking, we let each protocol inform its next protocol through the
output update messages about what changes the current update
has made to the input table of the next protocol. Thereby, enabling
the composition of any QRU protocols. In addition, the concrete
efficiency of QRU protocols can be optimized through a pipelined
execution when multiple update messages are waiting in the queue.

Throughout this paper, we uniformly denote the output update
messages as ums′. We introduce the property of ums

′ and further
show the correctness of composited QRU protocols below.
The correctness of composited QRU protocols. Before dis-
cussing the correctness of composited QRU protocols, we provide
an important observation of the secure SQL protocol.

Observation 4.1. The correctness of secure SQL protocol is indepen-
dent of the row order of its input table. In other words, inputting two
equivalent tables under a query into a secure SQL protocol can result
in the equivalent output tables. For any 𝑡𝑎𝑏𝑙𝑒 ∼ 𝑡𝑎𝑏𝑙𝑒′, we have

SSQL(𝑡𝑎𝑏𝑙𝑒) ∼ SSQL(𝑡𝑎𝑏𝑙𝑒′) (2)

We start with any two operators connected end-to-end. Let
SSQL_1(·) and SSQL_2(·) denote the secure SQL protocol of the for-
mer and the latter operator respectively, QRU_1(·) and QRU_2(·)
denote the QRU protocol of the former and the latter operator re-
spectively. Let 𝑡𝑎𝑏𝑙𝑒1 = SSQL_1(𝑡𝑎𝑏𝑙𝑒0), 𝑡𝑎𝑏𝑙𝑒2 = SSQL_2(𝑡𝑎𝑏𝑙𝑒1).
We ensure the ums

′ computed by QRU_1(·) satisfies Property 4.1.

Property 4.1. Let ums denote any input updatemessages of QRU_1(·).
The ums

′ describes the differences between 𝑡𝑎𝑏𝑙𝑒1 before and after
updated by ums. Formally, plainly updating 𝑡𝑎𝑏𝑙𝑒1 by ums

′ results
in an equivalent table to QRU_1(ums, 𝑡𝑎𝑏𝑙𝑒1), that is

PlainUpdate(ums
′, 𝑡𝑎𝑏𝑙𝑒1) ∼ QRU_1(ums, 𝑡𝑎𝑏𝑙𝑒1) (3)

Note that, the correctness of the composited QRU protocols
holds, if the output table of QRU_2(·) is equivalent to that of using
the secure SQL protocols from scratch. In the following, we show
that this is guaranteed if ums

′ satisfies Property 4. First, for any
ums, the process of using the secure SQL protocols from scratch to
generate the current results is:

𝑡𝑎𝑏𝑙𝑒𝑢0 = PlainUpdate(ums, 𝑡𝑎𝑏𝑙𝑒0)
𝑡𝑎𝑏𝑙𝑒𝑢1 = SSQL_1(𝑡𝑎𝑏𝑙𝑒𝑢0 )
𝑡𝑎𝑏𝑙𝑒𝑢2 = SSQL_2(𝑡𝑎𝑏𝑙𝑒𝑢1 )

Second, known that ums
′ serves as the input update messages for

QRU_2(·). Base on Eq 1, Eq 2, and Eq 3, we have what we want:
QRU_2(ums

′, 𝑡𝑎𝑏𝑙𝑒2) ∼ SSQL_2(PlainUpdate(ums
′, 𝑡𝑎𝑏𝑙𝑒1))

∼ SSQL_2(QRU_1(ums, 𝑡𝑎𝑏𝑙𝑒1))
∼ SSQL_2(𝑡𝑎𝑏𝑙𝑒𝑢1 ) = 𝑡𝑎𝑏𝑙𝑒𝑢2

When compositing more than two QRU protocols, the effects
of the update messages uploaded by data owners are transmitted
pairwise between adjacent protocols and finally to the materialized
tables of the last one.

5 Detailed QRU Protocols

Let um be an input update message of a QRU protocol. Recall that
the QRU protocol invokes the associated insert protocol or delete
protocol based on um.𝑚𝑎𝑛𝑛𝑒𝑟 . In this section, we present the insert
protocol and delete protocol for each SQL operator.
Notation.We denote the data row of an update message as 𝑢𝑟
(i.e., um.𝑟𝑜𝑤 ). We sometimes refer to 𝑢𝑟 as an insertion row (resp.
deletion row) when um.𝑚𝑎𝑛𝑛𝑒𝑟 is 𝑖𝑛𝑠𝑒𝑟𝑡 (resp. 𝑑𝑒𝑙𝑒𝑡𝑒).

5.1 Order-by-Limit

Recall that the secure SQL protocol of Order-by-Limit (OBL) first
sorts input table by the descending order of validity bit 𝑣 and then
by the ascending/descending (we use descending in this paper)
order of order key 𝑘 , to get ordered table 𝑅𝑠 , and finally outputs the
top 𝑙 rows of 𝑅𝑠 (i.e., the query result) where 𝑙 is the limit size.

In Shortcut, we can indeed materialize just the top 𝑙 rows of
𝑅𝑠 , if the input update messages for OBL are insertion-only. This
is because the valid rows below top 𝑙 (if any) will never be ranked
into top 𝑙 in this case, so discarding them is reasonable. However, if
the incoming updates involve deletions, we cannot materialize just
the top 𝑙 rows of 𝑅𝑠 . When the valid rows in top 𝑙 are deleted, it is
possible that the valid rows below the top 𝑙 need to be ranked into
top 𝑙 , but they are unfortunately discarded. To avoid introducing
errors in the query result, we should materialize the entire 𝑅𝑠 . If 𝑅𝑠
is large, performance concerns arise since securely maintaining an
ordered table is not trivial.
Parameterize the size of materialized table.We propose a strat-
egy for OBL to parameterize the size of materialized table. In this
strategy, wematerialize the topℎ rows of𝑅𝑠 , where 𝑙 ≤ ℎ = 𝑙+𝑑 ≤ 𝑛,
𝑑 is the deletion threshold, 𝑛 is the size of 𝑅𝑠 . We denote the materi-
alized table as𝐷 . In subsequent updates, regardless of how𝐷 grows,
Shortcut only materializes the top ℎ rows. When the number of
deletions reaches the threshold 𝑑 , we use the secure SQL protocol
of OBL from scratch to refresh 𝐷 . With this strategy, data owners
can adjust the size of 𝐷 based on their deletion requirements in
different scenarios. The lower the requirement for deletion, the
more compact 𝐷 can be set by reducing 𝑑 . Specially, the parameter
𝑑 can be “unlimited”. This implies that the number of deletions is
unlimited, and Shortcut always materializes the entire table.

We note that as long as 𝐷 is promptly refreshed before the num-
ber of deletions exceeds 𝑑 , our materialization strategy does not
introduce any errors to the query result of OBL. We provide some
intuition below to help understand why this is true. If there are ≤ 𝑑

deletions on the database, we can attempt to delete these rows in
the materialized table without changing the order, ensuring that the
resulting table 𝑇 contains at least 𝑙 rows (i.e., 𝑇 is a valid result of
OBL with parameter 𝑙 ). However, if the number of deletions exceeds
𝑑 , this strategy fails because: (i) the resulting table 𝑇 will contain
fewer than 𝑙 rows, and (ii) the rows (of 𝑅𝑠 ) that can “patch” this
resulting table are unfortunately discarded. A formal analysis is
provided in Appendix C.

5.1.1 Insert protocol. The materialized table 𝐷 is an ordered table.
Upon receiving an insertion row 𝑢𝑟 , the goal of the insert protocol
of OBL is to securely insert 𝑢𝑟 into 𝐷 while keeping 𝐷 ordered.
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Figure 4: The illustration of constant-depth inserting circuit.

Assuming 𝑛 = 4 and 𝐴0 ≥ 𝐴1 ≥ 𝑎∗ > 𝐴2 ≥ 𝐴3.

Before that, if OBL is not the output operator in the directed
acyclic graph, we prepare the output update messages ums

′ for
the next QRU protocol based on the aforementioned Property 4.1
(Protocol 1, line 3-6). Bit 𝑓 𝑙𝑎𝑔 indicates whether𝑢𝑟 should be ranked
into the top 𝑙 of 𝐷 . If and only if the 𝑣 ∥ 𝑘 of 𝑢𝑟 is greater than
that of the lowest ranking row in top 𝑙 (i.e., 𝐷𝑙−1), 𝑢𝑟 should be
ranked into top 𝑙 . Then, we compute 𝑢𝑟

′
1 = 𝐷𝑙−1 and 𝑢𝑟

′
2 = 𝑢𝑟 , if

𝑓 𝑙𝑎𝑔 = 1; otherwise, both𝑢𝑟
′
1 and𝑢𝑟

′
2 are set to dummy row. The𝑢𝑟

′
1

and 𝑢𝑟
′
2 are pushed into ums

′ along with 𝑑𝑒𝑙𝑒𝑡𝑒 and 𝑖𝑛𝑠𝑒𝑟𝑡 manner,
respectively.

Intuitively, ums
′ contains update messages that describe the

changes to be made to the result of OBL (i.e., the top 𝑙 rows of 𝐷),
specifically: if 𝑢𝑟 has a higher rank than 𝐷𝑙−1, 𝑢𝑟 should be added
to the top 𝑙 and 𝐷𝑙−1 should be kicked out; otherwise, nothing
should be changed in the top 𝑙 . These changes will be made in
the follow-up steps. In this way, the computation of ums

′ satisfies
Property 4.1.

Finally, we securely insert 𝑢𝑟 into 𝐷 via an inserting protocol
while keeping 𝐷 ordered, and re-materialize top ℎ rows (see Pro-
tocol 1, line 7-8). Now, what remains is the implementation of the
inserting protocol. Efficiently inserting a new row into an ordered
table while keeping the table ordered is not easy. To prevent privacy
leakage through access patterns, the amount of work should be at
least equal to the table size (if do not use costly ORAM techniques
[15]). Let us start with a simpler case that obliviously inserts a new
element 𝑎∗ into an ordered sequence𝐴 = (𝐴0, 𝐴1, . . . , 𝐴𝑛−1), where
𝐴0 ≥ 𝐴1 ≥ . . . ≥ 𝐴𝑛−1. A naïve solution is a bubbling circuit that
requires a linear scan, which we call bubbling inserting circuit (BIC).
BIC involves maximum/minimum circuits linear in sequence size 𝑛.
Precisely, BIC first do:𝐴← 𝐴∪𝑎∗, then for 𝑖 = 𝑛, . . . , 1, do: 𝑟𝑒𝑔 = 𝐴𝑖 ,
𝐴𝑖 = min(𝐴𝑖−1, 𝐴𝑖 ) and 𝐴𝑖−1 = max(𝐴𝑖−1, 𝑟𝑒𝑔). However, a major
shortcoming of BIC is its deep circuit depth, because its non-free
operations (maximums/minimums) must be performed sequentially.
In the context of secret-sharing-based MPC paradigms, this results
in communication rounds linear in 𝑛, leading to unacceptable time
costs as 𝑛 increases and highlighting the poor scalability of BIC.
Constant-depth inserting circuit. The depth of BIC is discourag-
ing. Fortunately, we observe the fixed pattern of ordered sequences
and propose a clever highly-parallel circuit that perfectly solves
this problem. We refer to this circuit as constant-depth inserting
circuit (CDIC).

The CDIC can be implemented in two stages, each performing 𝑛
fully parallel maximums/minimums. As shown in Figure 4, CDIC

Protocol 1: Insert protocol (Order-By-Limit)
1 function Insert_OBL(⟨𝑢𝑟 ⟩, ⟨𝐷⟩)
2 if 𝑂𝑢𝑡𝑝𝑢𝑡𝑂𝑝𝑡 ≠ 𝑂𝐵𝐿 then

3 ⟨𝑓 𝑙𝑎𝑔⟩ ← (⟨𝑢𝑟 [𝑣 ∥ 𝑘]⟩ > ⟨𝐷𝑙−1 [𝑣 ∥ 𝑘]⟩)
4 ⟨𝑢𝑟 ′1 ⟩ ← ⟨𝐷𝑙−1⟩ · ⟨𝑓 𝑙𝑎𝑔⟩
5 ⟨𝑢𝑟 ′2 ⟩ ← ⟨𝑢𝑟 ⟩ · ⟨𝑓 𝑙𝑎𝑔⟩
6 ums

′ .push({⟨𝑢𝑟 ′1 ⟩, 𝑑𝑒𝑙𝑒𝑡𝑒}, {⟨𝑢𝑟 ′2 ⟩, 𝑖𝑛𝑠𝑒𝑟𝑡})
7 ⟨𝐷⟩ ←CDIC(⟨𝑢𝑟 ⟩, ⟨𝐷⟩)
8 ⟨𝐷⟩ ← ⟨𝐷0,1,...,ℎ−1⟩
9 return ums

′, ⟨𝐷⟩

Protocol 2: Constant-depth inserting circuit
1 function CDIC(⟨𝑢𝑟 ⟩, ⟨𝐷⟩)

// Masking.

2 for 𝑖 ∈ [0, ℎ − 1] do
3 ⟨𝐷′

𝑖
⟩ ← ⟨𝐷𝑖 ⟩ + (⟨𝐷𝑖 [𝑣 ∥ 𝑘]⟩ < ⟨𝑢𝑟 [𝑣 ∥

𝑘]⟩) · (⟨𝑢𝑟 ⟩ − ⟨𝐷𝑖 ⟩)
4 ⟨𝐷′

ℎ
⟩ ← ⟨𝑢𝑟 ⟩

// Rewriting.

5 ⟨𝐷′′0 ⟩ ← ⟨𝐷
′
0⟩

6 for 𝑖 ∈ [1, ℎ] do
7 ⟨𝐷′′

𝑖
⟩ ← ⟨𝐷′

𝑖
⟩ + (⟨𝐷𝑖−1 [𝑣 ∥ 𝑘]⟩ < ⟨𝐷′𝑖 [𝑣 ∥

𝑘]⟩) · (⟨𝐷𝑖−1⟩ − ⟨𝐷′𝑖 ⟩)
8 return ⟨𝐷′′⟩

consists of a masking stage and a rewriting stage. In the masking
stage, CDIC performs 𝑛 maximums: for 𝑖 = 0, 1, . . . , 𝑛 − 1, do 𝐴′

𝑖
←

max(𝐴𝑖 , 𝑎
∗), and 𝐴′𝑛 ← 𝑎∗. All maximums can be implemented in

parallel, meaning that all maximum protocols can be batched when
performing communication. The masking stage marks all elements
that are greater than 𝑎∗ with 𝑎∗ and appends an additional 𝑎∗ at
the end, to generate a new sequence 𝐴′.

In the rewriting stage, CDIC performs 𝑛 minimums: for 𝑖 =

1, . . . , 𝑛, do 𝐴′′
𝑖
← min(𝐴𝑖−1, 𝐴′𝑖 ), and 𝐴′′0 ← 𝐴′0. All minimums

can also be implemented in parallel. The rewriting stage rewrites
the previously replaced elements back to their original positions,
shifted down by one. Theorem 5.1 shows the correctness of this
“sequence-version” CDIC.

Theorem 5.1. Let 𝐴 = (𝐴0, 𝐴1, . . . , 𝐴𝑛−1) be an ordered sequence,
i.e., ∀𝑖 ∈ [0, 𝑛 − 2], 𝐴𝑖 ≥ 𝐴𝑖+1. Let 𝑎∗ be an element in the same
field, ∀𝑗 ∈ [0, 𝑛 − 1], there are ∀𝑖 ∈ [0, 𝑗 − 1], 𝐴𝑖 ≥ 𝑎∗ and ∀𝑖 ∈
[ 𝑗, 𝑛 − 1], 𝐴𝑖 ≤ 𝑎∗. The output sequence 𝐴′′ of CDIC satisfies: (1)
∀𝑖 ∈ [0, 𝑗 − 1], 𝐴′′

𝑖
= 𝐴𝑖 , (2)𝐴′′𝑗 = 𝑎∗, (3) ∀𝑖 ∈ [ 𝑗 + 1, 𝑛], 𝐴′′

𝑖
= 𝐴𝑖−1.

Proof. The masking stage of CDIC computes a sequence 𝐴′

with 𝑛 + 1 elements, such that
(1) ∀𝑖 ∈ [0, 𝑗 − 1], 𝐴′

𝑖
= max(𝐴𝑖 , 𝑎

∗) = 𝐴𝑖 ,
(2) ∀𝑖 ∈ [ 𝑗, 𝑛 − 1], 𝐴′

𝑖
= max(𝐴𝑖 , 𝑎

∗) = 𝑎∗,
(3) 𝐴′𝑛 = 𝑎∗.
Next, the rewriting stage of CDIC computes the output sequence
𝐴′′ with 𝑛 + 1 elements, such that
(1) Since ∀𝑖 ∈ [0, 𝑗 − 1], 𝐴′

𝑖
= 𝐴𝑖 , then

• 𝐴′′0 = 𝐴′0 = 𝐴0,
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Figure 5: The rewriting stage of CDPC.

• ∀𝑖 ∈ [1, 𝑗 − 1], 𝐴′′
𝑖
= min(𝐴𝑖−1, 𝐴′𝑖 ) = min(𝐴𝑖−1, 𝐴𝑖 ) = 𝐴𝑖 .

(2) Since ∀𝑖 ∈ [ 𝑗, 𝑛], 𝐴′
𝑖
= 𝑎∗, then

• 𝐴′′
𝑗
= min(𝐴 𝑗−1, 𝐴′𝑗 ) = min(𝐴 𝑗−1, 𝑎∗) = 𝑎∗,

• ∀𝑖 ∈ [ 𝑗 + 1, 𝑛], 𝐴′′
𝑖

= min(𝐴𝑖−1, 𝐴′𝑖 ) = min(𝐴𝑖−1, 𝑎∗) =

𝐴𝑖−1. □

Here we treat the size of the element as constant. Both BIC-based
protocol and CDIC-based protocol need 𝑂 (𝑛) bits communication,
but the round complexity of BIC-based protocol and CDIC-based
protocol are 𝑂 (𝑛) and 𝑂 (1) respectively. The round complexity of
CDIC-based protocol eliminates the factor 𝑛 (sequence size) which
is a significant improvement.

In Protocol 2, we generalize the sequence-version CDIC to table-
version. The core idea of table-version CDIC remains consistent
with that of sequence-version CDIC, with the difference being the
use of MUX to select rows based on 𝑣 ∥ 𝑘 . Note that, the comparison
strictness of MUXs in two stages must be consistent. In Protocol 2,
only the rows with 𝑣 ∥ 𝑘 strictly less than that of 𝑢𝑟 are masked in
the masking stage, and then rewritten back in the rewriting stage.
In other words, the rows with 𝑣 ∥ 𝑘 equal to 𝑢𝑟 [𝑣 ∥ 𝑘], are treated
as the rows with 𝑣 ∥ 𝑘 greater than 𝑢𝑟 [𝑣 ∥ 𝑘]. The correctness of
table-version CDIC can be easily derived from Theorem 5.1.

5.1.2 Delete protocol. There are two cases: (i) Case 1, a valid 𝑢𝑟 is
within 𝐷 , then the delete protocol needs to delete 𝑢𝑟 from 𝐷 and
then restores its order, (ii) Case 2, no such valid 𝑢𝑟 is within 𝐷 ,
then the protocol keeps 𝐷 identical as before. The identifier 𝑖𝑑 (also
known as the primary key) is used to uniquely identify rows.

The protocol first computes flag bit 𝑓 for each row that locates
the valid 𝑢𝑟 in 𝐷 , i.e., 𝑓 = 1 if and only if for the valid row that its
𝑖𝑑 equal to 𝑢𝑟 [𝑖𝑑] (Protocol 3, line 2-3). If OBL is not the output
operator in the directed acyclic graph, in lines 5-8 of Protocol 3, we
prepare ums

′ for the next QRU protocol. The computation of ums
′

follows from the following idea. If a valid 𝑢𝑟 exists in the top 𝑙 of 𝐷 ,
we should delete it from the top 𝑙 and insert the candidate row 𝐷𝑙

into the top 𝑙 . Thus we compute 𝑢𝑟
′
1 = 𝑢𝑟 and 𝑢𝑟

′
2 = 𝐷𝑙 . Otherwise,

nothing should be changed in the top 𝑙 , thus we set 𝑢𝑟
′
1 and 𝑢𝑟

′
2 as

dummy rows. The 𝑢𝑟
′
1 and 𝑢𝑟

′
2 are pushed into ums

′ with 𝑖𝑛𝑠𝑒𝑟𝑡

and 𝑑𝑒𝑙𝑒𝑡𝑒 manner, respectively. This ensures that ums
′ satisfies

Property 4.1.
Next, we begin to update the materialized table 𝐷 . In principle,

the protocol should first scan𝐷 to delete the rowwhere 𝑓 = 1. Since
this operation is implicitly included in the follow-up constant-depth
push-down circuit we propose, it can be omitted. Since deleting a
row means setting it to a dummy row, 𝐷 will be disrupted by the
generated dummy row. We need a protocol to securely restore the

Protocol 3: Delete protocol (Order-By-Limit)
1 function Delete_OBL(⟨𝑢𝑟 ⟩, ⟨𝐷⟩)
2 for 𝑖 ∈ [0, ℎ − 1] do
3 ⟨𝐷𝑖 [𝑓 ]⟩ ← (⟨𝐷𝑖 [𝑖𝑑]⟩ =?⟨𝑢𝑟 [𝑖𝑑]⟩) · ⟨𝑢𝑟 [𝑣]⟩ · ⟨𝐷𝑖 [𝑣]⟩
4 if 𝑂𝑢𝑡𝑝𝑢𝑡𝑂𝑝𝑡 ≠ 𝑂𝐵𝐿 then

5 ⟨𝑓𝑠 ⟩ =
∑𝑙−1
𝑖=0 ⟨𝐷𝑖 [𝑓 ]⟩

6 ⟨𝑢𝑟 ′1 ⟩ ← ⟨𝑢𝑟 ⟩ · ⟨𝑓𝑠 ⟩
7 ⟨𝑢𝑟 ′2 ⟩ ← ⟨𝐷𝑙 ⟩ · ⟨𝑓𝑠 ⟩
8 ums

′ .push({⟨𝑢𝑟 ′1 ⟩, 𝑑𝑒𝑙𝑒𝑡𝑒}, {⟨𝑢𝑟 ′2 ⟩, 𝑖𝑛𝑠𝑒𝑟𝑡})
9 ⟨𝐷′′⟩ ←CDPC(⟨𝐷⟩)

10 return ums
′, ⟨𝐷′′⟩

Protocol 4: Constant-depth push-down circuit
1 function CDPC(⟨𝐷⟩)

// Masking.

2 ⟨𝐷′⟩ ← ⟨𝐷⟩
3 for 𝑖 ∈ [0, ℎ − 2] do
4 ⟨𝐷′

𝑖+1 [𝑓 ]⟩ ← ⟨𝐷
′
𝑖
[𝑓 ]⟩ + ⟨𝐷𝑖+1 [𝑓 ]⟩

5 for 𝑖 ∈ [0, ℎ − 1] do
6 ⟨𝐷′

𝑖
[𝑣]⟩ ← ⟨𝐷′

𝑖
[𝑣]⟩ · ⟨𝐷′

𝑖
[𝑓 ]⟩

// Rewriting.

7 for 𝑖 ∈ [0, ℎ − 2] do
8 ⟨𝐷′′

𝑖
⟩ ← ⟨𝐷𝑖+1⟩ + (⟨𝐷′𝑖 [𝑣 ∥ 𝑘]⟩ ≥ ⟨𝐷𝑖+1 [𝑣 ∥

𝑘]⟩) · (⟨𝐷′
𝑖
⟩ − ⟨𝐷𝑖+1⟩)

9 ⟨𝐷′′
ℎ−1⟩ ← ⟨𝐷

′
ℎ−1⟩

10 return ⟨𝐷′′⟩

order of𝐷 . The naïve solution is also a bubbling circuit that requires
a sequential linear scan. Instead of using a bottom-up bubbling like
BIC, it performs a top-down bubbling to push the generated dummy
row down and restore the order of 𝐷 . We refer to this circuit as
bubbling push-down circuit (BPC). It is evident that BPC shares the
same “deep-depth” shortcoming as BIC, which limits its scalability
in secret-shared-based MPC paradigms.

Since all dummy rows are regarded as identical, we propose a
constant-depth push-down circuit (CDPC) by maintaining a “re-
laxed ordered” 𝐷 . In relaxed ordered, instead of requiring 𝐷 strictly
ordered by 𝑣 and then by 𝑘 , we do not require the dummy rows to
be ordered among themselves.

Definition 5.1. A relaxed ordered table𝐷 satisfies: (1)∀𝑖 ∈ [0, ℎ−2],
if 𝐷𝑖 is valid row, 𝐷𝑖 [𝑣 ∥ 𝑘] ≥ 𝐷𝑖+1 [𝑣 ∥ 𝑘], (2) ∀𝑖 ∈ [0, ℎ − 2], if 𝐷𝑖

is dummy row, then 𝐷𝑖+1 is dummy row.

Similar to CDIC, CDPC also consists of two stages. In themasking
stage (Protocol 4, line 2-6), CDPC computes a new table 𝐷′, such
that the potentially deleted valid row and the rows below it are
marked as dummy. Formally, the masking stage satisfies Claim
5.1. In the rewriting stage (Protocol 4, line 7-9), the dummy row
generated from the potentially deleted valid row is pushed down,
and the output𝐷′′ restores to be relaxed ordered. Figure 5 illustrates
an example of the rewriting stage of CDPC. In this example, the row
with 𝑖𝑑 = 𝑐 is deleted and becomes the newly generated dummy
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row. The rewriting stage implements ℎ − 1 parallel MUXs. CDPC is
used in Protocol 3 line 9.

Given a relaxed ordered table, Theorem 5.2 states that if a valid
row is deleted, CDPC can restore the table to be relaxed ordered. If
no row is deleted, Theorem 5.3 states that CDPC keeps the table
identical as before.

Claim 5.1. For the following two cases, the 𝐷′ computed by the
masking stage of CDPC holds different properties.

C1. If a valid row𝐷 𝑗 is deleted from the relaxed ordered𝐷 ,𝐷 𝑗 [𝑓 ] = 1.
After the masking stage, the 𝐷′ satisfies:
• ∀𝑖 ∈ [0, 𝑗 − 1], 𝐷′

𝑖
= 𝐷𝑖 and they are valid rows,

• ∀𝑖 ∈ [ 𝑗, ℎ − 1], 𝐷′
𝑖
are dummy rows.

C2. If no row is deleted, ∀𝑖 ∈ [0, ℎ − 1], there is 𝐷𝑖 [𝑓 ] = 0. After the
masking stage, 𝐷′ = 𝐷 .

Theorem 5.2. If a valid row𝐷 𝑗 is deleted from the relaxed ordered𝐷 .
CDPC’s output table 𝐷′′ = (𝐷0, . . . , 𝐷 𝑗−1, 𝐷 𝑗+1, . . . , 𝐷ℎ−1, 𝑑𝑢𝑚𝑚𝑦).

Proof. Holding the following two pieces of knowledge:
(a) 𝐷 still satisfies: ∀𝑖 ∈ [0, ℎ − 2], if 𝐷𝑖 is valid row, 𝐷𝑖 [𝑣 ∥ 𝑘] ≥

𝐷𝑖+1 [𝑣 ∥ 𝑘].
(b) The MUXs circuit in rewriting stage computes: ∀𝑖 ∈ [0, ℎ − 2],

if 𝐷′
𝑖
[𝑣 ∥ 𝑘] ≥ 𝐷𝑖+1 [𝑣 ∥ 𝑘], 𝐷′′𝑖 = 𝐷′

𝑖
; otherwise, 𝐷′′

𝑖
= 𝐷𝑖+1.

Then, we prove Theorem 5.2 from three intervals:
(1) ∀𝑖 ∈ [0, 𝑗−1], according toC1 of Claim 5.1,𝐷′

𝑖
= 𝐷𝑖 and they are

valid rows. Thus we have𝐷′
𝑖
[𝑣 ∥ 𝑘] = 𝐷𝑖 [𝑣 ∥ 𝑘] ≥ 𝐷𝑖+1 [𝑣 ∥ 𝑘],

then 𝐷′′
𝑖
= 𝐷′

𝑖
= 𝐷𝑖 .

(2) ∀𝑖 ∈ [ 𝑗, ℎ − 2], according to C1 of Claim 5.1, 𝐷′
𝑖
is dummy.

• If 𝐷𝑖+1 is valid row, there must be 𝐷𝑖+1 [𝑣 ∥ 𝑘] > 𝐷′
𝑖
[𝑣 ∥ 𝑘],

thus 𝐷′′
𝑖
= 𝐷𝑖+1,

• If 𝐷𝑖+1 is dummy row, 𝐷′′
𝑖
must be dummy row. 𝐷′′

𝑖
= 𝐷𝑖+1.

Thus, we have 𝐷′′
𝑖
= 𝐷𝑖+1 for ∀𝑖 ∈ [ 𝑗, ℎ − 2].

(3) According to C1 of Claim 5.1, 𝐷′
ℎ−1 is dummy row. CDPC sets

𝐷′′
ℎ−1 = 𝐷′

ℎ−1 (line 9). □

Theorem 5.3. If no row is deleted, 𝐷 is still a relaxed ordered table.
CDPC’s output table 𝐷′′ = 𝐷 .

Proof. Holding the following two pieces of knowledge:
(a) Since 𝐷 is relaxed ordered, we have

• ∀𝑖 ∈ [0, ℎ − 2], if 𝐷𝑖 is valid row, 𝐷𝑖 [𝑣 ∥ 𝑘] ≥ 𝐷𝑖+1 [𝑣 ∥ 𝑘],
• ∀𝑖 ∈ [0, ℎ − 2], if 𝐷𝑖 is dummy row, then 𝐷𝑖+1 is dummy.

(b) The MUXs circuit in rewriting stage computes: ∀𝑖 ∈ [0, ℎ − 2],
if 𝐷′

𝑖
[𝑣 ∥ 𝑘] ≥ 𝐷𝑖+1 [𝑣 ∥ 𝑘], 𝐷′′𝑖 = 𝐷′

𝑖
; otherwise, 𝐷′′

𝑖
= 𝐷𝑖+1.

According to C2 of Claim 5.1, 𝐷′ = 𝐷 , then
(1) ∀𝑖 ∈ [0, ℎ − 2],

• If 𝐷′
𝑖
is valid row, 𝐷′

𝑖
[𝑣 ∥ 𝑘] = 𝐷𝑖 [𝑣 ∥ 𝑘] ≥ 𝐷𝑖+1 [𝑣 ∥ 𝑘],

then 𝐷′′
𝑖
= 𝐷′

𝑖
= 𝐷𝑖 .

• If 𝐷′
𝑖
is dummy row, then 𝐷𝑖 , 𝐷𝑖+1 and 𝐷′′𝑖 are dummy rows.

Thus we have 𝐷′′
𝑖
= 𝐷𝑖 for ∀𝑖 ∈ [0, ℎ − 2].

(2) 𝐷′′
ℎ−1 = 𝐷′

ℎ−1 = 𝐷ℎ−1. □

CDPC inherently deletes 𝒖𝒓 . Claim 5.1 and Theorem 5.2 imply
the fact that CDPC sets the row with 𝑓 = 1 as dummy row while

Protocol 5: Insert protocol (Group-by-Sum)
1 function Insert_GBS(⟨𝑢𝑟 ⟩, ⟨𝐺⟩)
2 for 𝑖 ∈ [0, 𝑛 − 1] do
3 ⟨𝐺𝑖 [𝑓 ]⟩ ← (⟨𝐺𝑖 [𝑘]⟩ =? ⟨𝑢𝑟 [𝑘]⟩) · ⟨𝐺𝑖 [𝑣]⟩ · ⟨𝑢𝑟 [𝑣]⟩
4 ⟨𝐺⟩ ← ⟨𝐺⟩ ∪ ⟨𝑢𝑟 ⟩
5 ⟨𝐺𝑛 [𝑣]⟩ ← ⟨𝐺𝑛 [𝑣]⟩ ·

∑𝑛−1
𝑖=0 ⟨𝐺𝑖 [𝑓 ]⟩

6 for 𝑖 ∈ [0, 𝑛 − 1] do
7 ⟨𝐺𝑖 [𝑟 ]⟩ ← ⟨𝐺𝑖 [𝑟 ]⟩ + ⟨𝐺𝑖 [𝑓 ]⟩ · ⟨𝑢𝑟 [𝑎]⟩
8 if 𝑂𝑢𝑡𝑝𝑢𝑡𝑂𝑝𝑡 ≠ 𝐺𝐵𝑆 then

9 ⟨𝑢𝑟 ′1 ⟩ ← ∑𝑛−1
𝑖=0 (⟨𝐺𝑖 [𝑓 ]⟩ · ⟨𝐺𝑖 ⟩)

10 ⟨𝑢𝑟 ′2 ⟩ ← ⟨𝑢𝑟 ′1 ⟩
11 ⟨𝑢𝑟 ′2 [𝑟 ]⟩ ← ⟨𝑢𝑟 ′2 [𝑟 ]⟩ − ⟨𝑢𝑟 [𝑎]⟩
12 ⟨𝑢𝑟 ′3 ⟩ ← ⟨𝐺𝑛⟩
13 ums

′ .push({⟨𝑢𝑟 ′1 ⟩, 𝑖𝑛𝑠𝑒𝑟𝑡}, {⟨𝑢𝑟 ′2 ⟩, 𝑑𝑒𝑙𝑒𝑡𝑒}, {⟨𝑢𝑟 ′3 ⟩, 𝑖𝑛𝑠𝑒𝑟𝑡})
14 return ums

′, ⟨𝐺⟩

pushes it to the bottom of 𝐷 . Therefore, we can eliminate the pre-
ceding linear scan that serves to delete the row with 𝑓 = 1 (i.e., sets
it as a dummy row), and indeed, we have done so.
CDIC can also maintain a relaxed ordered table. If the input
update messages involve both insertion and deletion, Shortcut has
to implement CDIC and CDPC sequentially. The above discussions
indicate that CDPC maintains a relaxed ordered table, while CDIC
maintains a strictly ordered table. In fact, CDIC can also maintain
a relaxed ordered table to be compatible with CDPC.

Informally, the core observation is that different dummy rows
used as the input of MUX do not affect its output. Any two identical
tables, where one is relaxed ordered and the other is strictly ordered,
only differ in the contents of dummy rows. After computing by
CDIC (a set of MUXs), they are still identical. Then we can conclude
that CDIC can also correctly maintain any relaxed ordered table.

5.2 Group-by-Aggregate

Let 𝑘 denote group key, 𝑎 denote aggregate attribute, and 𝑟 denote
result attribute. Shortcut supports both insert and delete protocols
for Group-by-Sum/Count and only supports insert protocol for
Group-by-Max/Min.We provide protocols for Group-by-Sum (GBS),
which also yield protocols for Group-by-Count if the validity bit 𝑣
is treated as the aggregate attribute 𝑎. Moreover, we discuss how to
get the protocols for other SQL operators with minor adjustments.
Let 𝐺 denote a 𝑛-row materialized table of GBS.

5.2.1 Insert protocol. Recall that the insert protocol of GBS aims
to meet two cases: (i) Case 1: if a target row exists, 𝑢𝑟 [𝑎] should
be added to the value 𝑟 of the target row, (ii) Case 2: if no target
row exists, 𝑢𝑟 forms a new group in 𝐺 . We first compute flag bit 𝑓
for each row to locate the target row, i.e., 𝑓 = 1 if and only if for
the target row (Protocol 5, line 2-3). Then, we append 𝑢𝑟 to the end
of 𝐺 and reset its validity bit (Protocol 5, line 4-5). If Case 1 holds,
𝐺𝑛 is set to a dummy row; otherwise, 𝐺𝑛 remains unchanged. In
line 6-7, the protocol adds 𝑢𝑟 [𝑎] to the value 𝑟 of the target row (if
exists). If GBS is not the output operator, we prepare ums

′ for the
next QRU protocol (Protocol 5, line 8-13). When Case 1 holds, 𝑢𝑟

′
1

equals the updated target row and 𝑢𝑟
′
2 equals the target row before
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Protocol 6: Delete protocol (Group-by-Sum)
1 function Delete_GBS(⟨𝑢𝑟 ⟩, ⟨𝐺⟩)
2 for 𝑖 ∈ [0, 𝑛 − 1] do
3 ⟨𝐺𝑖 [𝑓 ]⟩ ← (⟨𝐺𝑖 [𝑘]⟩ =?⟨𝑢𝑟 [𝑘]⟩) · ⟨𝐺𝑖 [𝑣]⟩ · ⟨𝑢𝑟 [𝑣]⟩
4 for 𝑖 ∈ [0, 𝑛 − 1] do
5 ⟨𝐺𝑖 [𝑟 ]⟩ ← ⟨𝐺𝑖 [𝑟 ]⟩ − ⟨𝐺𝑖 [𝑓 ]⟩ · ⟨𝑢𝑟 [𝑎]⟩
6 if 𝑂𝑢𝑡𝑝𝑢𝑡𝑂𝑝𝑡 ≠ 𝐺𝐵𝑆 then

7 ⟨𝑢𝑟 ′1 ⟩ ← ∑𝑛−1
𝑖=0 (⟨𝐺𝑖 [𝑓 ]⟩ · ⟨𝐺𝑖 ⟩)

8 ⟨𝑢𝑟 ′2 ⟩ ← ⟨𝑢𝑟 ′1 ⟩
9 ⟨𝑢𝑟 ′2 [𝑟 ]⟩ ← ⟨𝑢𝑟 ′2 [𝑟 ]⟩ + ⟨𝑢𝑟 [𝑎]⟩

10 ums
′ .push({⟨𝑢𝑟 ′1 ⟩, 𝑖𝑛𝑠𝑒𝑟𝑡}, {⟨𝑢𝑟 ′2 ⟩, 𝑑𝑒𝑙𝑒𝑡𝑒})

11 return ums
′, ⟨𝐺⟩

Protocol 7: Insert protocol (Join)
1 function Insert_Join(⟨𝑢𝑟 ⟩, ⟨𝐴⟩, ⟨𝐵⟩, ⟨𝐽 ⟩)
2 ⟨𝐴⟩ ← ⟨𝐴⟩ ∪ ⟨𝑢𝑟 ⟩
3 for 𝑖 ∈ [0,𝑚 − 1] do
4 ⟨𝐵𝑖 [𝑓 ]⟩ ← (⟨𝐵𝑖 [𝑘]⟩ =? ⟨𝑢𝑟 [𝑘]⟩) · ⟨𝐵𝑖 [𝑣]⟩
5 ⟨𝑢𝑟 ′ ⟩ ← ⟨𝑢𝑟 ⟩
6 ⟨𝑢𝑟 ′ [𝑝𝐵]⟩ ←

∑𝑚−1
𝑖=0 (⟨𝐵𝑖 [𝑝]⟩ · ⟨𝐵𝑖 [𝑓 ]⟩)

7 ⟨𝑢𝑟 ′ [𝑣]⟩ ← ⟨𝑢𝑟 [𝑣]⟩ ·∑𝑚−1
𝑖=0 ⟨𝐵𝑖 [𝑓 ]⟩

8 ⟨𝐽 ⟩ ← ⟨𝐽 ⟩ ∪ ⟨𝑢𝑟 ′ ⟩
9 if 𝑂𝑢𝑡𝑝𝑢𝑡𝑂𝑝𝑡 ≠ 𝐽𝑜𝑖𝑛 then

10 ums
′ .push({⟨𝑢𝑟 ′ ⟩, 𝑖𝑛𝑠𝑒𝑟𝑡})

11 return ums
′, ⟨𝐴⟩, ⟨𝐵⟩, ⟨𝐽 ⟩

updated. When Case 2 holds, 𝑢𝑟
′
1 and 𝑢𝑟

′
2 are dummy rows. The 𝑢𝑟

′
3

always equals the appended row. The update manners of 𝑢𝑟
′
1 , 𝑢𝑟

′
2

and𝑢𝑟
′
3 are 𝑖𝑛𝑠𝑒𝑟𝑡 ,𝑑𝑒𝑙𝑒𝑡𝑒 , and 𝑖𝑛𝑠𝑒𝑟𝑡 , respectively. The computation

of ums
′ satisfies Property 4.1.

5.2.2 Delete protocol. The delete protocol of GBS locates the target
row and then subtracts 𝑢𝑟 [𝑎] from the value 𝑟 of the target row
(Protocol 6, line 2-5). If GBS is not the output operator, we prepare
ums

′ for the next QRU protocol (Protocol 6, line 6-10). If a target
row exists in𝐺 ,𝑢𝑟

′
1 equals the updated target row and𝑢𝑟

′
2 equals the

target row before update. Otherwise, 𝑢𝑟
′
1 , 𝑢𝑟

′
2 are dummy rows. The

update manners of 𝑢𝑟
′
1 and 𝑢𝑟

′
2 are 𝑖𝑛𝑠𝑒𝑟𝑡 and 𝑑𝑒𝑙𝑒𝑡𝑒 respectively.

The computation of ums
′ satisfies Property 4.1.

5.2.3 Distinct. Distinct can be seen as a special case of Group-by-
Count [22]. We directly reuse the secure SQL protocol and insert
protocol of Group-by-Count for this operator. The delete protocol
of Distinct is obtained by adding a step (That is, scanning the
materialized table to delete the rows with zero counts) at the end
of the delete protocol of Group-by-Count.

5.2.4 Group-by-Max/Min. The insert protocol of Group-by-Max/
Min can be obtained by replacing the aggregate operation that
updates the target row with Maximum/Minimum. We don’t pro-
vide the delete protocol for this operator. If the update manner is
𝑑𝑒𝑙𝑒𝑡𝑒 , we apply the secure SQL protocol of Group-by-Max/Min
from scratch on its plainly updated input table.

Protocol 8: Delete protocol (Join)
1 function Delete_Join(⟨𝑢𝑟 ⟩, ⟨𝐴⟩, ⟨𝐵⟩, ⟨𝐽 ⟩)
2 for 𝑖 ∈ [0,𝑚 − 1] do
3 ⟨𝐴𝑖 [𝑣]⟩ ← (⟨𝐴𝑖 [𝑘]⟩ =?⟨𝑢𝑟 [𝑘]⟩) · ⟨𝑢𝑟 [𝑣]⟩ · ⟨𝐴𝑖 [𝑣]⟩
4 for 𝑖 ∈ [0, 𝑛 − 1] do
5 ⟨𝐽𝑖 [𝑓 ]⟩ ← (⟨𝐽𝑖 [𝑘]⟩ =? ⟨𝑢𝑟 [𝑘]⟩) · ⟨𝑢𝑟 [𝑣]⟩ · ⟨𝐽𝑖 [𝑣]⟩
6 if 𝑂𝑢𝑡𝑝𝑢𝑡𝑂𝑝𝑡 ≠ 𝐽𝑜𝑖𝑛 then

7 ⟨𝑢𝑟 ′ ⟩ ← ⟨𝑢𝑟 ⟩
8 ⟨𝑢𝑟 ′ [𝑝𝐵]⟩ ←

∑𝑛−1
𝑖=0 (⟨𝐽𝑖 [𝑝]⟩ · ⟨𝐽𝑖 [𝑓 ]⟩)

9 ⟨𝑢𝑟 ′ [𝑣]⟩ ← ∑𝑛−1
𝑖=0 ⟨𝐽𝑖 [𝑓 ]⟩

10 ums
′ .push({⟨𝑢𝑟 ′ ⟩, 𝑑𝑒𝑙𝑒𝑡𝑒})

11 for 𝑖 ∈ [0, 𝑛 − 1] do
12 ⟨𝐽𝑖 [𝑣]⟩ ← ⟨𝐽𝑖 [𝑓 ]⟩ · ⟨𝐽𝑖 [𝑣]⟩
13 return ums

′, ⟨𝐴⟩, ⟨𝐵⟩, ⟨𝐽 ⟩

Protocol 9: Insert protocol & Delete protocol (Select)
1 function Insert_Select(⟨𝑢𝑟 ⟩, ⟨𝑆⟩)
2 ⟨𝑢𝑟 [𝑣]⟩ ← ⟨𝑢𝑟 [𝑣]⟩ · 𝜎 (⟨𝑢𝑟 ⟩)
3 ⟨𝑆⟩ ← ⟨𝑆⟩ ∪ ⟨𝑢𝑟 ⟩
4 if 𝑂𝑢𝑡𝑝𝑢𝑡𝑂𝑝𝑡 ≠ 𝑆𝑒𝑙𝑒𝑐𝑡 then

5 ums
′ .push({⟨𝑢𝑟 ⟩, 𝑖𝑛𝑠𝑒𝑟𝑡})

6 return ums
′, ⟨𝑆⟩

7 function Delete_Select(⟨𝑢𝑟 ⟩, ⟨𝑆⟩)
8 for 𝑖 ∈ [0, 𝑛 − 1] do
9 ⟨𝑆𝑖 [𝑣]⟩ ← ⟨𝑆𝑖 [𝑣]⟩ · (⟨𝑆𝑖 [𝑖𝑑]⟩ =? ⟨𝑢𝑟 [𝑖𝑑]⟩)

10 if 𝑂𝑢𝑡𝑝𝑢𝑡𝑂𝑝𝑡 ≠ 𝑆𝑒𝑙𝑒𝑐𝑡 then

11 ums
′ .push({⟨𝑢𝑟 ⟩, 𝑑𝑒𝑙𝑒𝑡𝑒})

12 return ums
′, ⟨𝑆⟩

5.3 Join

In operator Join, We denote the materialized table targeted by the
input update message as 𝐴 and the other materialized table as 𝐵.
Let𝑚 be the size of 𝐴 and 𝐵, 𝑛 be the size of output table 𝐽 .

5.3.1 Insert protocol. The insert protocol of Join first attaches 𝑢𝑟
to the end of𝐴. The flag bit 𝑓 detects whether there is any valid row
in 𝐵 that joins with𝑢𝑟 , i.e., 𝑓 = 1 if and only if for the valid row that
joins with 𝑢𝑟 (Protocol 7, line 3-4). Then, the protocol constructs
the joined row 𝑢𝑟

′
and attaches it to the end of 𝐽 (Protocol 7, line

5-8). If Join is not the output operator, the protocol pushes 𝑢𝑟
′
into

ums
′ with 𝑖𝑛𝑠𝑒𝑟𝑡 manner (Protocol 7, line 9-10).

5.3.2 Delete protocol. The delete protocol of Join first deletes a
valid 𝑢𝑟 from𝐴 (Protocol 8, line 1-2). The flag bit 𝑓 detects whether
there is a joined row introduced by a valid 𝑢𝑟 in 𝐽 (Protocol 8, line
3-4). Then, if Join is not the output operator, we fetch the joined row
and push it into ums

′ with 𝑑𝑒𝑙𝑒𝑡𝑒 manner (Protocol 8, line 6-12).
Finally, we delete the joined row from 𝐽 (Protocol 8, line 13-14).

5.4 Select

Let 𝑆 denote a𝑛-rowmaterialized table of Select. The insert protocol
of Select (Protocol 9, line 1-6) filters 𝑢𝑟 by 𝜎 (·) and appends it to
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Protocol 10: Insert protocol & Delete protocol (Global Ag-
gregate)
1 function Insert_GA(⟨𝑢𝑟 ⟩, ⟨𝑧⟩)
2 ⟨𝑧⟩ ← Agg(⟨𝑧⟩, ⟨𝑢𝑟 ⟩) // where Agg(⟨𝑧⟩, ⟨𝑢𝑟 ⟩)

= ⟨𝑧⟩ + ⟨𝑢𝑟 [𝑎]⟩ for Sum, ⟨𝑧⟩ + ⟨𝑢𝑟 [𝑣]⟩ for
Count, max(⟨𝑧⟩, ⟨𝑢𝑟 [𝑎]⟩) for Max,
min(⟨𝑧⟩, ⟨𝑢𝑟 [𝑎]⟩) for Min.

3 return ⟨𝑧⟩

4 function Delete_GA(⟨𝑢𝑟 ⟩, ⟨𝑧⟩)
5 ⟨𝑧⟩ ← Sub(⟨𝑧⟩, ⟨𝑢𝑟 ⟩) // where Sub(⟨𝑧⟩, ⟨𝑢𝑟 ⟩)

= ⟨𝑧⟩ − ⟨𝑢𝑟 [𝑎]⟩ for Sum, Sub(⟨𝑧⟩, ⟨𝑢𝑟 ⟩)
= ⟨𝑧⟩ − ⟨𝑢𝑟 [𝑣]⟩ for Count.

6 return ⟨𝑧⟩

the bottom of 𝑆 . If Select is not the output operator, we push the
filtered 𝑢𝑟 into ums

′ with 𝑖𝑛𝑠𝑒𝑟𝑡 manner.
The delete protocol of Select (Protocol 9, line 7-12) scans 𝑆 to set

the validity bit to 0 for the row with the same 𝑖𝑑 as 𝑢𝑟 . If Select is
not the output operator, we push 𝑢𝑟 into ums

′ with 𝑑𝑒𝑙𝑒𝑡𝑒 manner.

5.5 Global Aggregate

We show the insert protocol and the delete protocol of Global Ag-
gregate in Protocol 10. Let 𝑎 denote aggregate attribute, 𝑧 denote the
materialized aggregated value. For Sum/Count/Max/Min-based ag-
gregation, the insert protocol is realized by additionally aggregating
the value in 𝑢𝑟 into 𝑧 (Protocol 10, line 1-3). For Sum/Count-based
aggregation, the delete protocol subtracts the value in 𝑢𝑟 from 𝑧

(Protocol 10, line 4-6). For Max/Min-based aggregation, we use
existing secure SQL protocols to query the underlying table from
scratch after deletion. The Global Aggregate is usually not followed
by other SQL operators, as its output is a single aggregated value.

5.6 Summary

As shown in Table 1 and Table 2, Shortcut’s QRU protocols achieve
performance improvements over MCAS’s secure SQL protocols
for one query after an update. However, there is a performance
crossover between the QRU protocols and the secure SQL protocols
as the input update messages grow, since the secure SQL proto-
col is more suitable for processing update messages in bulk. The
performance crossover occurs when a large number of update mes-
sages are uploaded by data owners in a short period causing a big
backlog of unprocessed update messages. Therefore, Shortcut is
more suitable for minor updates arriving in time. Fortunately, due
to the nature of Observation 4.1, the materialized table remains
compatible with secure SQL protocol regardless of how many times
the QRU protocol is invoked. Hence, we can simply turn around to
use secure SQL protocol from scratch, when performance crossover
occurs. This can be done by a cost-based scheduling. From this
perspective, Shortcut and MCASs are complementary.
Storage overhead. The initial size of materialized tables is pro-
portional to the size of underlying databases, with a factor close to
the number of SQL operators in the directed acyclic graph, which
is acceptable. The growth in rows introduced by data updates is
proportional to the number of update messages uploaded by data

owners. When the number of update messages is not particularly
large, this growth is acceptable; otherwise, we can use secure SQL
protocol to reinitialize the materialized tables, or reduce the size
of materialized tables by providing DP guarantee [9], with either
periodic or threshold-based trigger mechanism.

6 Security Analysis

We formalize the security of Shortcut using the standard simulation-
based security [18, 20]. In the presence of a semi-honest adversary
(the case of our instantiation), this is modeled by showing that
the real-world joint distribution of the views of corrupted parties
and the outputs of honest parties is indistinguishable from its ideal-
world counterpart, where the ideal-world views of corrupted parties
are generated by a simulator given only the inputs and outputs
of corrupted parties. Since the parties in our QRU protocols have
no output in plaintext and the overall circuit composed of QRU
protocols captures a deterministic functionality, we can use the
following simplified definition of semi-honest security, which only
considers the views of corrupted parties in both worlds.

Definition 6.1 ([20]). Let parties 𝑃1, . . . , 𝑃n engage in protocol Π
that computes deterministic functionality 𝑓 (𝑖𝑛1, . . . , 𝑖𝑛n), where 𝑖𝑛𝑖
denotes the input of party 𝑃𝑖 . Let VIEWΠ (𝑃𝑖 ) denote the view of
party 𝑖 during protocol Π, which consists of its input 𝑖𝑛𝑖 , its inter-
nal random coins 𝑟𝑖 , and messages 𝑚𝑖 that were received by 𝑃𝑖 in
the execution. Let 𝐶 = {𝑃𝑖1 , 𝑃𝑖2 , . . . , 𝑃𝑖t } denote a subset of the par-
ties for t < n, VIEWΠ (𝐶) denote the combined view of parties in
𝐶 during protocol Π (i.e., the union of the views of the parties in
𝐶), and 𝑓𝐶 (in1, . . . , inn) denote the projection of 𝑓 (in1, . . . , inn) on
the coordinates in 𝐶 (i.e., 𝑓𝐶 (in1, . . . , inn) consists of the 𝑖1-th, . . . , 𝑖t-
th element that 𝑓 (in1, . . . , inn) outputs). We say that protocol Π se-
curely computes deterministic functionality 𝑓 in the presence of a
semi-honest adversary that corrupts parties in 𝐶 , if there exists prob-
abilistic polynomial time simulator S for every coalition 𝐶 such that
{S(𝐶, 𝑖𝑛𝐶 , 𝑓𝐶 (in1, . . . , inn))} ≡ {VIEWΠ (𝐶)}, where ≡ denotes in-
distinguishability and in𝐶 =

⋃
𝑃𝑖 ∈𝐶 {in𝑖 }.

In this work, we instantiate our QRU protocols with the 2-out-
of-3 secret sharing scheme. Moreover, we prove the security of the
QRU protocols in the hybrid model, where parties run a protocol
with pairwise communication and also have access to a trusted
party computing a sub-functionality for them. The sequential com-
position theorem of [12] states that security is preserved when such
a trusted party is replaced by a sub-protocol securely realizing this
sub-functionality. Given a sub-functionality 𝑔, a QRU protocol is
said to work in the 𝑔-hybrid model.

The high-level intuition of the semi-honest security of our pro-
tocols is as follows. We rely on a set of functionalities provided
by the MPC protocols, which have been proven to be secure in
prior works (such as in [3, 24]), to perform data sharing, data recon-
struction, and circuit evaluations using 2-out-of-3 secret sharing
scheme. In QRU protocols, addition, subtraction, and bit inversion
only consist of local computation. Multiplication, equality, and
comparison are computed via sub-functionalityFCE. Functionality
FCE and the ideal functionality FQRU of QRU protocols can be
found in Appendix D. Loosely speaking, our QRU protocols call the
sub-functionalities of circuit evaluations in a modular black-box
fashion while all intermediate values between these functionalities
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are secret-shared. Then the modular sequential composition theo-
rem directly implies the security of QRU protocols. The semi-honest
security is formalized in Theorem 6.1, with the proof postponed to
Appendix A.

Theorem 6.1. According to Definition 6.1, Protocol 1, Protocol 3,
Protocol 5, Protocol 6, Protocol 7, Protocol 8, Protocol 9, and Protocol
10 jointly securely compute deterministic functionality FQRU in the
FCE-hybrid model, where FQRU and FCE are given in Appendix D.

So far, we treat the update manners and the number of update
messages as public. When these pieces of information have the
potential to leak private data, we should consider them as part of
privacy and take measures to protect them. We discuss this below.
Protecting update manner. Two measures can protect the ac-
tual update manner in an oblivious sense and prevent privacy
leakage through it. First, the most straightforward measure is re-
stricting the update manner uploaded by data owners, such as
allowing data owners to initiate update messages involving only
insertion. Another measure hides the update manners via dummy
padding, i.e., padding the update messages uploaded by data own-
ers as a continuous queue of insert-delete pairs. Such as, padding
{(𝑡𝑢0 , 𝑖𝑛𝑠𝑒𝑟𝑡), (𝑡𝑢1 , 𝑖𝑛𝑠𝑒𝑟𝑡), (𝑡𝑢2 , 𝑑𝑒𝑙𝑒𝑡𝑒)} as {(𝑡𝑢0 , 𝑖𝑛𝑠𝑒𝑟𝑡), (𝑑𝑢𝑚𝑚𝑦,

𝑑𝑒𝑙𝑒𝑡𝑒), (𝑡𝑢1 , 𝑖𝑛𝑠𝑒𝑟𝑡), (𝑡𝑢2 , 𝑑𝑒𝑙𝑒𝑡𝑒)}.
Protecting the number of update messages. The problem of
privacy leakage through the number of update messages is first
presented in DP-Sync [34]. Data owners can mitigate this problem
by padding update messages based on DP, similar to DP-Sync, or
even by directly padding update messages to a fixed maximum
size. At a high level, the DP-based method in [34] asks data owners
to store their update messages in their local storage. When a data
update is needed, they retrieve a number of stored update messages,
where the number is perturbed by Laplacian noise. If this number
is greater than the number of stored update messages, dummy
messages will be padded to the retrieved ones.

7 Experiment

This section describes the experimental results of Shortcut.We im-
plement Shortcut on the top of MP-SPDZ [21], a well-knownMPC
framework that supports various state-of-the-art MPC schemes. We
implement Secrecy [22] and the semi-honest version of AHK+ [5]
as our baselines. Secrecy can be easily extended to other models, e.g.
two-party model, because it only uses black-box computations of
simple circuits. AHK+ achieves the best performance in the three-
party honest majority setting among prior MCASs, since it relies on
an efficient sorting protocol in this setting [4]. In all experiments,
the size of the secret-shared data is 64 bits.
Experimental Setup. We implement the experiments on three
connected machines. Each machine offers Intel Xeon Platinum
8375C 2.90GHz CPU and 256GB RAM. These machines perform
their computation on a single thread. The network condition of
these machines is controlled by tc command where the local area
network (LAN) has 5Gbps of bandwidth and 0.3ms of RTT, and the
wide area network (WAN) has 500Mbps of bandwidth and 20ms of
RTT. Our experiments evaluate the end-to-end performance.
Datasets. We conduct all experiments with randomly sampled
data. Note that the performance of oblivious protocols is solely
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Figure 6: Oblivious inserting circuit & push-down circuit.
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Figure 8: The performance of SQL operators after a deletion

(Shortcut vs. Secrecy).

dependent on data size and is independent of specific data values.
Since all protocols in Shortcut and Secrecy are oblivious, using
randomly sampled data is no different than real-life data, and data
distribution does not affect protocol overhead.

7.1 Single Operator

In this section, (i) we compare our two building blocks, CDIC and
CDPC, respectively, with their corresponding naïve solutions, BIC
and BPC, (ii) we compare Shortcut with Secrecy and AHK+ on
three operators, including OBL, GBS, and Join, for one query after
an update.

Let the input tables of CDIC and CDPC contain 3 attributes, and
the input tables of BIC and BPC contain 2 attributes. Figure 6 shows
that CDIC and CDPC significantly surpass BIC and BPC in runtime
performance. For instance, CDIC (resp. CDPC) can maintain a 106-
row table in 2.47 seconds (resp. 3.34 seconds) in the LAN setting,
while BIC and BPC need more than 1.63 hours.

In the following experiments of OBL, GBS, and Join, we let each
input table contain 4 attributes and use the LAN setting. We first
compare Shortcut with Secrecy on the runtime of one query after
an update with a growing table size. The results are shown in Figure
7 and Figure 8. For OBL, Shortcut is up to 67.9× (resp. 57.7×) faster
than Secrecy per query after an insertion (resp. a deletion).

In terms of GBS, Shortcut is up to 108.1× (resp. 150.9×) faster
than Secrecy for one query after an insertion (resp. a deletion). On
a 220-row materialized table of GBS, Shortcut can complete a
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query after an insertion (resp. a deletion) in 1.57 seconds (resp. 1.43
seconds).

We do not implement the nested-loop Join for Secrecy (which
it does) due to its high asymptotic cost, but rather implement the
sort-compare-shuffle Join [28] which is more efficient in unique-key
Join. In terms of Join, Shortcut achieves up to 186.8× and 108.9×
improvements than Secrecy for one query after an insertion and
a deletion, respectively. On a 220-row materialized table of Join,
Shortcut can complete a query after an insertion and a deletion
in 1 second and 2 seconds, respectively.

Then, we compare Shortcut with AHK+ on the runtime of
one query after an update with a growing table size. The results
are shown in Figure 9 and Figure 10. The advantage of Shortcut
over AHK+ is smaller than its advantage over Secrecy. In terms of
OBL, Shortcut is up to 6.6× (resp. 6×) faster than AHK+ for one
query after an insertion (resp. a deletion). For GBS, Shortcut is
up to 14.8× (resp. 18.7×) faster than AHK+ for one query after an
insertion (resp. a deletion). For Join, Shortcut is up to 21× (resp.
11.9×) faster than AHK+ for one query after an insertion (resp. a
deletion).

7.2 Real-Life Queries

Queries. We test Shortcut via several real-life queries. The de-
tailed query statements can be found in Appendix B. The first query
is the aforementioned Password Reuse, we set the user identifier as
64 bits, the password hash as 256 bits, and the input table contains
218 rows. Comorbidity [8] is a medical query that returns the ten
most common diagnoses of individuals in a cohort. It first executes
Select, followed by GBA, and then OBL. We let the input table con-
tain 218 rows. Credit Scores [28] finds persons whose credit scores
across different agencies have significant discrepancies in a particu-
lar year. This query consists of multiple table Joins and then Select.
We use 4 input tables each has 216 rows in our benchmark. We refer
to the last query as Logistics Efficiency, which is adapted from the
use case in [35]. Assuming that a courier company partners with
a local retail store to help deliver products. The retail store has its
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Figure 11: The performance of real-life queries after

insertion-only updates (Shortcut vs. Secrecy).
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Figure 12: The performance of real-life queries after deletion-

only updates (Shortcut vs. Secrecy).

sales data, and the courier company has its delivery records. Logis-
tics Efficiency finds the twenty products with the nearest delivery
distance among those that are overdue for delivery. It consists of
two table Joins, followed by Select and then OBL. We let the two
input tables contain 217 rows.
Runtime performance. The above queries involve the compo-
sition of QRU protocols, thus we can use pipelined execution to
improve the practical efficiency of Shortcut. Given that Shortcut
and MCAS are known to cross performance when the update mes-
sages accumulate to a certain threshold, we evaluate the real-life
queries with growing update messages. We abuse to denote the
ratio of insertions to deletions in a set of updates as insert : delete.
The evaluations are conducted in LAN setting.

We first compare Shortcut with Secrecy. Figure 11 and Figure
12 show the runtime of one query after insertion-only updates (i.e.,
insert : delete = 1) and deletion-only updates (i.e., insert : delete =
0), respectively. When insert : delete = 1, Shortcut achieves the
best improvement on Credit Scores. In this case, Shortcut is 236.3×
faster than Secrecy per query after an insertion. Benefiting from
pipelined execution, the performance crossover is deferred to the
point that the number of accumulated insertion rows is 355. When
insert : delete = 0, Shortcut achieves the best improvement on
Password Reuse. In this case, Shortcut is 99× faster than Secrecy
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Figure 14: The performance of real-life queries after deletion-

only updates (Shortcut vs. AHK
+
).

after a deletion, and the performance crossover occurs when the
number of accumulated deletion rows is 121.

As shown in Figure 13, Shortcut achieves the best advantage
over AHK+ in Credit Scores when insert : delete = 1. In this case,
Shortcut is 26.5× faster than AHK+ for one query after an in-
sertion. The performance crossover is deferred to the point that
the number of accumulated insertion rows is 39. Figure 14 shows
that Shortcut achieves the best advantage over AHK+ in Pass-
word Reuse when insert : delete = 0. In this case, Shortcut is 12.5×
faster than AHK+ for one query after a deletion. The performance
crossover occurs when the number of accumulated deletion rows
is 15. In addition, Table 3 lists the performance crossover points of
Shortcut over Secrecy and AHK+ respectively, in different ratios
of mixed insertion rows and deletion rows.
Storage overhead. Table 4 lists the storage of Shortcut’s mate-
rialized tables on real-life queries after inserting 103, 104, and 105
new rows to the underlying databases. Several tens of megabytes
of storage will not be a barrier to the application of Shortcut.

8 Related Work

General-purpose MPC. Many general-purpose MPC frameworks
are proposed to support secure computation in semi-honest [14,
23] and malicious [21, 24, 38] settings. Shortcut can build upon

Table 3: The performance crossover point of Shortcut over

Secrecy or AHK
+
, i.e., the maximum number of accumulated

update messages that make Shortcut slower than Secrecy

or AHK
+
, in different ratios of insert : delete.

Perf. Crossover Point

Baseline Query insert : delete
7:3 5:5 3:7

Secrecy [22]

Password R. 119 120 120
Comorbidity 41 44 47
Credit S. 275 239 211
Logistics E. 109 103 99

AHK+ [5]

Password R. 14 14 14
Comorbidity 4 5 5
Credit S. 30 26 23
Logistics E. 12 12 11

Table 4: Materialized tables size (MB) after data insertions.

Inserted Rows Password R. Comorbidity Credit S. Logistics E.
103 48.27 36.09 48.18 48.12
104 50.74 36.91 49.83 49.22
105 75.46 45.15 66.31 60.2

any general-purpose MPC framework to support different security
models since we invoke the basic circuit evaluation protocols in a
black-box manner.
MPC-based collaborative analytics systems. MCASs provide a
set of SQL interfaces with cryptographic guarantees. SMCQL [8],
Senate [28] and Conclave [33] reduce the usage of MPC by splitting
the query plan into plaintext part and ciphertext part. Senate also
uses local computation as much as possible, but more importantly, it
proposes a technique that decomposes circuits among parties to re-
duce the size of circuit input. Secrecy [22] optimizes the query cost
via reordering SQL operators based on their compositing character-
istics. Some works [5, 6, 19, 25] introduce asymptotically efficient
protocols for SQL operators. In addition, some works [9, 10] focus
on reducing the workload of MPC by allowing more information
leakage that is well-bounded by DP. However, these MCASs are
originally designed for static databases and exhibit limitations in
dynamic database scenarios due to their redundant cost. Our Short-
cut framework can work with MCASs to mitigate their limitations
and enable efficient collaborative analytics on dynamic databases.
Collaborative analytics systems on incremental databases.

Recently, several systems have provided query capabilities for incre-
mental database [13, 35, 41], i.e., the insertion-only dynamic data-
base. IncShrink [35] and Longshot [41] maintain previous query
results to achieve efficient queries. These systems support only a
few simple query functions and lack the capabilities of data deletion
or data update that are provided in Shortcut.
Other techniques. Systems based on trusted hardware [7, 16, 29,
42] suffer from side-channel attacks [32, 37]. Some systems [26, 27]
allow data leakage bounded by DP and suffer from query errors.

9 Conclusion

In this work, we present the Shortcut framework that works
with MPC-based collaborative analytics systems to enable efficient
queries on dynamic databases and support a wide range of query
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functions. This is achieved by our composable query result up-
date protocols that support data insertion, deletion, and update on
previous query results. Furthermore, the proposed constant-depth
inserting circuit and push-down circuit may be of independent in-
terest. We hope this work will inspire researchers to further explore
the topic of leveraging intermediate results to accelerate secure
computations.
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A Security Proof

In this section, we prove the security of the QRU protocols based
on Definition 6.1. To simplify the expression, we assume that the
SQL operators associated with each QRU protocol are not output
operators. When dealing with output operators, security can be
easily obtained by omitting parts of the subfunctionalities calls.

Theorem 6.1. According to Definition 6.1, Protocol 1, Protocol 3,
Protocol 5, Protocol 6, Protocol 7, Protocol 8, Protocol 9, and Protocol
10 jointly securely compute deterministic functionality FQRU in the
FCE-hybrid model.

Proof. This theorem is derived from the combination of Lemma
A.1, Lemma A.2, Lemma A.3, Lemma A.4, Lemma A.5, Lemma A.6,
Lemma A.7, Lemma A.8, Lemma A.9, and Lemma A.10. □

Lemma A.1. According to Definition 6.1, Protocol 1 securely com-
putes command insert_obl of the deterministic functionality FQRU
in the FCE-hybrid model.

Proof. In this protocol, the parties hold no private inputs and
obtain no output. The implication is that it is required that no
information about private update row 𝑢𝑟 and table 𝐷 is revealed
to the corrupted party during the protocol execution. This input
formulation also means that, upon protocol initiation, the input
shares available to the corrupted party are uniformly distributed at
random, i.e., they information-theoretically reveal no information
about the underlying input. We simulate the input shares upon
protocol initiation by distributing random elements to the corrupted
party and proceed to build simulator S as follows:
(1) In line 3, the trusted party computes subfunctionality comp. S

simulates the messages received by the corrupted party from
comp.

(2) In line 4 and line 5, the trusted party computes subfunctional-
ity mult once each. S simulates the messages received by the
corrupted party from mult.

(3) In line 7, the trusted party first computes subfunctionalities
comp andmult ℎ times, then computes comp andmult ℎ times
again. S simulates the messages received by the corrupted
party from comp and mult.

Now, we need to show that the real and simulated views are indis-
tinguishable. The first component of the view is the input shares
available to the corrupted party, which has identical distributions
(i.e., distributed uniformly at random) in the real and simulated
worlds, making this component indistinguishable. Second, accord-
ing to the modular sequential composition theorem, the messages
received by the corrupted party from the subfunctionalities comp

and mult have identical distribution to the messages received from
the secure protocols computing these subfunctionalities. Therefore,
we can say that the simulator-generated view of the corrupted party
is indistinguishable from that of a real execution.

Note that because this protocol produces no private output to
the corrupted party, there is no need to demonstrate the output
correctness in the simulated view. However, if this protocol is fol-
lowed by another operation that discloses a value to the corrupted
party (e.g., an open operation), it will always be possible for the
simulator to generate the view that will lead to the corrupted party
reconstructing the right output. This is due to the properties of

three-party replicated secret sharing, which allow the shares held
by a single party to reconstruct to any possible value in the ring. □

The security of other QRU protocols is proved in a similar skill.

Lemma A.2. According to Definition 6.1, Protocol 3 securely com-
putes command delete_obl of the deterministic functionality FQRU
in the FCE-hybrid model.

Proof. The parties hold no private inputs and obtain no output.
In this protocol, multiplication, comparison, and equality are com-
puted via subfunctionalities. As before, the input shares of a single
party are distributed uniformly at random and can be reconstructed
to any possible values with the same probability. Thus we begin
with simulating the input shares by distributing random elements
to the corrupted party.

We proceed to build simulator S as follows:
(1) In line 3, the trusted party repeats ℎ times: computes eq, mult,

and then mult. S simulates the messages received by the cor-
rupted party from these subfunctionalities.

(2) In line 6 and line 7, the trusted party computes subfunctional-
ity mult once each. S simulates the messages received by the
corrupted party from mult.

(3) In line 9, the trusted party first computes mult ℎ times, then
computes comp andmult ℎ−1 times. S simulates the messages
received by the corrupted party from these subfunctionalities.

The simulated view now consists of the input shares available to
the corrupted party and the messages received by the corrupted
party from eq, comp, and mult. As before, the input shares in both
real and simulated views are random elements, which are therefore
indistinguishable. In addition, because the protocols in the real exe-
cution that compute the subfunctionalities are secure, the simulator
is guaranteed to generate messages indistinguishable from the real
ones. Thus, all components of the view are indistinguishable, and
as a result, the overall simulation is indistinguishable as well. □

Lemma A.3. According to Definition 6.1, Protocol 5 securely com-
putes command insert_gbs of the deterministic functionality FQRU
in the FCE-hybrid model.

Proof. The parties hold no private inputs and obtain no output.
In this protocol, multiplication and equality are computed via sub-
functionalities. Simulator S first distributes random elements to
the corrupted party to simulate the input shares, and continues to
work as follows:
(1) In line 3, the trusted party repeats 𝑛 times: computes eq, mult,

and then mult. S simulates the messages received by the cor-
rupted party from these subfunctionalities.

(2) In line 5, the trusted party computes mult and S simulates the
messages sent back.

(3) In line 7, the trusted party computes mult 𝑛 times. S simulates
the messages sent back.

(4) In line 9, the trusted party also computes mult 𝑛 times. S sim-
ulates the messages sent back.

The simulated view now consists of the input shares available to
the corrupted party and the messages received by the corrupted
party from eq and mult. As before, the input shares in both real
and simulated views are random elements, which are therefore
indistinguishable. Since the protocols computing eq and mult are
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secure, the simulator is guaranteed to generate messages indis-
tinguishable from the real ones. Therefore, the overall simulated
view of the corrupted party is indistinguishable from that of a real
execution. □

Lemma A.4. According to Definition 6.1, Protocol 6 securely com-
putes command delete_gbs of the deterministic functionality FQRU
in the FCE-hybrid model.

Proof. The parties hold no private inputs and obtain no output.
As before, we simulate the input shares by distributing random
elements to the corrupted party and continue to build simulator S
as follows:
(1) In line 3, the trusted party repeats 𝑛 times: computes eq, mult,

and then mult. S simulates the messages sent back.
(2) In line 5, the trusted party computes mult 𝑛 times. S simulates

the messages sent back.
(3) In line 7, the trusted party also computes mult 𝑛 times. S sim-

ulates the messages sent back.
As before, the input shares in both real and simulated views have
identical distributions. Moreover, the simulator is guaranteed to
generate messages sent back from eq and mult to be indistinguish-
able from the real ones. Thus, the simulator-generated view of
the corrupted party is indistinguishable from that of a real execu-
tion. □

Lemma A.5. According to Definition 6.1, Protocol 7 securely com-
putes command insert_join of the deterministic functionality FQRU
in the FCE-hybrid model.

Proof. The parties hold no private inputs and obtain no output.
As before, simulator S first distributes random elements to the
corrupted party to simulate the input shares, and proceeds to work
as follows:
(1) In line 4, the trusted party repeats𝑚 times: computes eq and

mult. S simulates the messages sent back.
(2) In line 6, the trusted party computesmult𝑚 times. S simulates

the messages sent back.
(3) In line 7, the trusted party computes mult and S simulates the

messages sent back.
The input shares in both real and simulated views have identical
distributions. In addition, the simulator is guaranteed to generate
messages sent back from eq and mult to be indistinguishable from
the real ones. Thus, the simulator-generated view of the corrupted
party is indistinguishable from that of a real execution. □

Lemma A.6. According to Definition 6.1, Protocol 8 securely com-
putes command delete_join of the deterministic functionality FQRU
in the FCE-hybrid model.

Proof. The parties hold no private inputs and obtain no output.
As before, we simulate the input shares by distributing random
elements to the corrupted party and continue to build simulator S
as follows:
(1) In line 3, the trusted party repeats𝑚 times: computes eq, mult,

and then mult. S simulates the messages sent back.
(2) In line 5, the trusted party repeats 𝑛 times: computes eq, mult,

and then mult. S simulates the messages sent back.

(3) In line 8 and line 12, the trusted party computes mult 𝑛 times
each. S simulates the messages sent back.

The input shares in both real and simulated views have identical
distributions. In addition, the simulator is guaranteed to generate
messages sent back from eq and mult to be indistinguishable from
the real ones. Therefore, the simulator-generated view of the cor-
rupted party is indistinguishable from that of a real execution. □

Lemma A.7. According to Definition 6.1, the line 1-6 of Protocol 9
securely computes command insert_select of the deterministic func-
tionality FQRU in the FCE-hybrid model.

Proof. The parties hold no private inputs and obtain no output.
Simulator S begins with simulating the input shares by distributing
random elements to the corrupted party. In line 2, the trusted party
computes (1) the subfunctionalities used to implement predicate 𝜎 ,
such as eq or comp, and (2) then mult. S simulates the messages
sent back.

As before, indistinguishability follows from (1) information-
theoretic security of the replicated secret sharing scheme in the
presence of at most one corrupted party and (2) security of pro-
tocols (that compute the subfunctionalities) which must result in
indistinguishable views from the simulated ones. □

Lemma A.8. According to Definition 6.1, the line 7-12 of Proto-
col 9 securely computes command delete_select of the deterministic
functionality FQRU in the FCE-hybrid model.

Proof. Simulator S begins with simulating the input shares
by distributing random elements to the corrupted party. In line 9,
the trusted party repeats 𝑛 times: computes eq and then mult. S
simulates the messages sent back.

As before, indistinguishability follows from (1) information-
theoretic security of the replicated secret sharing scheme in the
presence of at most one corrupted party and (2) security of pro-
tocols (that compute the subfunctionalities) which must result in
indistinguishable views from the simulated ones. □

Lemma A.9. According to Definition 6.1, the line 1-3 of Protocol 10
securely computes command insert_ga of the deterministic function-
ality FQRU in the FCE-hybrid model.

Proof. The parties hold no private inputs and obtain no output.
SimulatorS first distributes random elements to the corrupted party
to simulate the input shares. Because the replicated secret sharing
scheme is information-theoretically secure in the presence of at
most one corrupted party, the simulated and the real input shares
are indistinguishable. Next, if the protocol realizes aMax/Min-based
aggregation, the trusted party computes comp and then mult. S
simulates the messages sent back. The security of protocols that
compute the above subfunctionalities ensures the indistinguisha-
bility of the simulated and the real views. Therefore, the whole
simulated view is indistinguishable from the real view. □

Lemma A.10. According to Definition 6.1, the line 4-6 of Proto-
col 10 securely computes command delete_ga of the deterministic
functionality FQRU in the FCE-hybrid model.

Proof. The parties hold no private inputs and obtain no out-
put. This protocol only involves local subtraction. Therefore, the
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real view contains no information. This protocol is secure because
the simulator has nothing to simulate, and the simulated view is
indistinguishable from the real view, of cause. □

B Real-word Queries

Here we list the query statements used in Section 7.2.

Comorbidity:

SELECT diag, COUNT(*) cnt

FROM diagnoses

WHERE patient_id IN cdiff_cohort

GROUP BY diag

ORDER BY cnt LIMIT 10

Credit Scores:

SELECT c1.ssn

FROM credit_scores|P1 AS c1

...

JOIN credit_scores|Pm AS cm ON c1.ssn = cm.ssn

WHERE GREATEST(c1.credit, ..., cm.credit) −
LEAST(c1.credit, ..., cm.credit) > threshold

AND c1.year = 2019 ... AND cm.year = 2019

Logistics Efficiency:

SELECT PID, distance

FROM Sales JOIN Deliverys ON Sales.PID = Deliverys.PID

WHERE Sales.DeliverDate − Deliverys.CompleteDate >= 10

ORDER BY distance LIMIT 20

C Analysis of Materialization Strategy

Recall that Shortcut materializes the top ℎ rows of the ordered
input table 𝑅𝑠 as 𝐷 , where ℎ = 𝑙 +𝑑 , 𝑙 is the limit size, 𝑑 is the delete
threshold. We aim to prove that, the query result of Order-by-Limit
will not introduce any errors, provided the number of invocations
of the delete protocol (Protocol 3) does not exceed 𝑑 . The conditions
under which errors are introduced are as follows: (i) there are valid
rows are discarded (i.e., not materialized) during the process, and
(ii) subsequent updates result in the number of valid rows in 𝐷

being less than 𝑙 . Errors are introduced because the discarded valid
rows, which should be used to patch the top 𝑙 rows of 𝐷 at this
point, cannot be included due to their removal.

We can now turn to prove that, when valid rows are discarded,
subsequent updates always ensure that the number of valid rows
in 𝐷 remains greater than or equal to 𝑙 , provided the number of in-
vocations of the delete protocol does not exceed 𝑑 . In the following,
we introduce Theorem C.2 via a gradual progression to prove this
property.
Notations. ∥𝐷 [𝑣] ∥ denotes the L1 norm of the vector 𝐷 [𝑣], which
represents the number of valid rows in 𝐷 . We use 𝑑𝑒𝑙 (𝑡 ) (𝐷) to de-
note that performing 𝑡 consecutive delete protocols on𝐷 , 𝑖𝑛𝑠 (𝑡 ) (𝐷)
denotes that performing 𝑡 consecutive insert protocols (Protocol 1)
on 𝐷 , and 𝑢𝑝𝑑 (𝑡 ) (𝐷) denotes that performing arbitrary 𝑡 updates
involving insertion and deletion on 𝐷 .

Property C.1. The delete protocol decreases at most one valid row
from 𝐷 . Thus, after 𝑡 consecutive deletions, there is




𝑑𝑒𝑙 (𝑡 ) (𝐷) [𝑣]



≥ ∥𝐷 [𝑣] ∥ − 𝑡 .

Property C.2. The insert protocol may increase, but not decrease
the valid rows on 𝐷 . Therefore, after 𝑡 consecutive insertions, there is


𝑖𝑛𝑠 (𝑡 ) (𝐷) [𝑣]


 ≥ ∥𝐷 [𝑣] ∥.
Theorem C.1. After 𝑡1 consecutive deletions and then 𝑡2 consecutive
insertions, there is




𝑖𝑛𝑠 (𝑡2 ) (𝑑𝑒𝑙 (𝑡1 ) (𝐷)) [𝑣]


 ≥ ∥𝐷 [𝑣] ∥ − 𝑡1.
Proof. According to Property C.1 and Property C.2, we have


𝑖𝑛𝑠 (𝑡2 ) (𝑑𝑒𝑙 (𝑡1 ) (𝐷)) [𝑣]


 ≥ 


𝑑𝑒𝑙 (𝑡1 ) (𝐷) [𝑣]


 ≥ ∥𝐷 [𝑣] ∥ − 𝑡1

□

Theorem C.2. Let 𝐷 be any materialized table at the moment when
valid rows are discarded. After arbitrary 𝑎 + 𝑏 updates involving
insertion and deletion, where 𝑎 ≤ 𝑑 is the total deletion times and 𝑏 is
the total insertion times, we always have




𝑢𝑝𝑑 (𝑎+𝑏 ) (𝐷) [𝑣]


 ≥ 𝑙 .

Proof. At themomentwhen valid rows are discarded,𝐷 consists
entirely of valid rows, without any dummy rows, i.e., ∥𝐷 [𝑣] ∥ = ℎ.
The subsequent arbitrary 𝑎 + 𝑏 updates can be represented as the
composition of consecutive delete protocols followed by consecu-
tive insert protocols:

𝐷1 = 𝑖𝑛𝑠 (𝑏1 ) (𝑑𝑒𝑙 (𝑎1 ) (𝐷))
𝐷2 = 𝑖𝑛𝑠 (𝑏2 ) (𝑑𝑒𝑙 (𝑎2 ) (𝐷1))

· · ·
𝑢𝑝𝑑 (𝑎+𝑏 ) (𝐷) = 𝑖𝑛𝑠 (𝑏𝑛 ) (𝑑𝑒𝑙 (𝑎𝑛 ) (𝐷𝑛))

where 𝑎 = 𝑎1 + 𝑎2 + ... + 𝑎𝑛 , 𝑏 = 𝑏1 + 𝑏2 + ... + 𝑏𝑛 . According to
Theorem C.1,


𝑢𝑝𝑑 (𝑎+𝑏 ) (𝐷 [𝑣])


 = 


𝑖𝑛𝑠 (𝑏𝑛 ) (𝑑𝑒𝑙 (𝑎𝑛 ) (𝐷𝑛 [𝑣]))





≥


𝐷𝑛 [𝑣]



 − 𝑎𝑛 ≥ 

𝐷𝑛−1 [𝑣]


 − (𝑎𝑛 + 𝑎𝑛−1) ≥ . . .

≥ ∥𝐷 [𝑣] ∥ − (𝑎𝑛 + 𝑎𝑛−1 + . . . + 𝑎1)
≥ ℎ − 𝑎 ≥ ℎ − 𝑑 = 𝑙

□
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D Functionalities

Functionality FQRU

Insert_OBL: On input (insert_obl, rowid0, rowid1, rowid2, tabid0, tabid1) from all parties, the functionality retrieves (rowid0, 𝑢𝑟 ) and
(tabid0, 𝐷) from memory, where 𝐷 is descendingly ordered by 𝑣 and then descendingly ordered by 𝑘 . The functionality first stores
(tabid1, sort𝑣↑𝑘↑ (𝐷 ∪ 𝑢𝑟 )), where sort𝑣↑𝑘↑ represents sorting the two-dimensional table by the descending order of 𝑣 and then by
the descending order of 𝑘 . Then, if 𝑢𝑟 [𝑣 ∥ 𝑘] is greater than 𝐷𝑙−1 [𝑣 ∥ 𝑘], the functionality stores (rowid1, 𝐷𝑙−1) and (rowid2, 𝑢𝑟 );
otherwise, the functionality stores (rowid1, 𝑑𝑢𝑚𝑚𝑦) and (rowid2, 𝑑𝑢𝑚𝑚𝑦).
Delete_OBL:On input (delete_obl, rowid0, rowid1, tabid0, tabid1) from all parties, the functionality retrieves (rowid0, 𝑢𝑟 ) and (tabid0, 𝐷)
from memory, where 𝐷 is descendingly ordered by 𝑣 and then descendingly ordered by 𝑘 . If 𝑢𝑟 is a valid row and there exists one and
only one valid row 𝑡 ∈ 𝐷 , such that 𝑡 [𝑖𝑑] equals 𝑢𝑟 [𝑖𝑑], the functionality stores (tabid1, (𝐷 \ 𝑡) ∪𝑑𝑢𝑚𝑚𝑦); otherwise, the functionality
stores (tabid1, 𝐷). Then, if 𝑢𝑟 is a valid row and there exists one and only one valid row 𝑡 ∈ 𝐷0,1,...,𝑙−1, such that 𝑡 [𝑖𝑑] equals 𝑢𝑟 [𝑖𝑑],
the functionality stores (rowid1, 𝑢𝑟 ); otherwise, the functionality stores (rowid1, 𝑑𝑢𝑚𝑚𝑦).
Insert_GBS:On input (insert_gbs, rowid0, rowid1, rowid2, rowid3, tabid0, tabid1) from all parties, the functionality retrieves (rowid0, 𝑢𝑟 ),
(tabid0,𝐺) from memory.
(1) If 𝑢𝑟 is a valid row and there exists one and only one valid row 𝑡 ∈ 𝐺 , such that 𝑡 [𝑘] equals 𝑢𝑟 [𝑘], the functionality (i) first stores
(rowid1, 𝑡), (ii) then sets 𝑡 [𝑟 ] = 𝑡 [𝑟 ] + 𝑢𝑟 [𝑎] and stores (rowid2, 𝑡), (iii) then sets 𝑢𝑟 [𝑣] = 0 and stores (rowid3, 𝑢𝑟 ). Otherwise, the
functionality directly stores (rowid1, 𝑑𝑢𝑚𝑚𝑦), (rowid2, 𝑑𝑢𝑚𝑚𝑦) and (rowid3, 𝑢𝑟 ).

(2) Finally, the functionality stores (tabid1,𝐺 ∪ 𝑢𝑟 ).
Delete_GBS: On input (delete_gbs, rowid0, rowid1, rowid2, tabid0, tabid1) from all parties, the functionality retrieves (rowid0, 𝑢𝑟 ),
(tabid0,𝐺) from memory.
(1) If 𝑢𝑟 is a valid row and there exists one and only one valid row 𝑡 ∈ 𝐺 , such that 𝑡 [𝑘] equals 𝑢𝑟 [𝑘], the functionality (i) first stores
(rowid1, 𝑡), (ii) then sets 𝑡 [𝑟 ] = 𝑡 [𝑟 ] − 𝑢𝑟 [𝑎] and stores (rowid2, 𝑡). Otherwise, the functionality directly stores (rowid1, 𝑑𝑢𝑚𝑚𝑦)
and (rowid2, 𝑑𝑢𝑚𝑚𝑦).

(2) Finally, the functionality stores (tabid1,𝐺).
Insert_Join: On input (insert_join, rowid0, rowid1, tabid0, tabid1, tabid2, tabid3, tabid4) from all parties, the functionality retrieves
(rowid0, 𝑢𝑟 ), (tabid0, 𝐴), (tabid1, 𝐵), (tabid2, 𝐽 ) from memory. If there exists one and only one valid row 𝑡 ∈ 𝐵, such that 𝑡 [𝑘] equals
𝑢𝑟 [𝑘], the functionality stores (tabid3, 𝐴 ∪ 𝑢𝑟 ), (tabid4, 𝐽 ∪ (𝑢𝑟 ∪ 𝑡 [𝑝])) and (rowid1, 𝑢𝑟 ∪ 𝑡 [𝑝]); otherwise, the functionality stores
(tabid3, 𝐴 ∪ 𝑢𝑟 ), (tabid4, 𝐽 ∪ 𝑑𝑢𝑚𝑚𝑦) and (rowid1, 𝑑𝑢𝑚𝑚𝑦).
Delete_Join: On input (delete_join, rowid0, rowid1, tabid0, tabid1, tabid2, tabid3, tabid4) from all parties, the functionality retrieves
(rowid0, 𝑢𝑟 ), (tabid0, 𝐴), (tabid1, 𝐵), (tabid2, 𝐽 ) from memory.
(1) If 𝑢𝑟 is valid and there exists one and only one valid row 𝑡 ∈ 𝐴, such that 𝑡 [𝑘] equals 𝑢𝑟 [𝑘], the functionality sets 𝑡 as a dummy row.
(2) If𝑢𝑟 is a valid row and there exists one and only one valid row 𝑠 ∈ 𝐽 , such that 𝑠 [𝑘] equals𝑢𝑟 [𝑘], the functionality stores (rowid1, 𝑠)

and then sets 𝑠 as a dummy row; otherwise the functionality stores (rowid1, 𝑑𝑢𝑚𝑚𝑦).
(3) Finally, the functionality stores (tabid3, 𝐴) and (tabid4, 𝐽 ).
Insert_Select: On input (insert_select, rowid0, rowid1, tabid0, tabid1) from all parties, the functionality retrieves (rowid0, 𝑢𝑟 ) and
(tabid0, 𝑆) from memory. The functionality computes 𝑢𝑟 [𝑣] = 𝑢𝑟 [𝑣] · 𝜎 (𝑢𝑟 ), then stores (tabid1, 𝑆 ∪ 𝑢𝑟 ) and (rowid1, 𝑢𝑟 ).
Delete_Select: On input (delete_select, rowid0, rowid1, tabid0, tabid1) from all parties, the functionality retrieves (rowid0, 𝑢𝑟 ) and
(tabid0, 𝑆) from memory. If there exists row 𝑡 ∈ 𝑆 , such that 𝑡 [𝑖𝑑] equals 𝑢𝑟 [𝑖𝑑], the functionality sets 𝑡 as a dummy row. The
functionality then stores (tabid1, 𝑆) and (rowid1, 𝑢𝑟 ).
Insert_GA: On input (insert_ga, rowid, varid0, varid1) from all parties, the functionality retrieves (rowid, 𝑢𝑟 ) and (varid0, 𝑧) from
memory. The functionality computes 𝑧 = 𝑧 + 𝑢𝑟 [𝑎] for Sum-based aggregation, 𝑧 = 𝑧 + 𝑢𝑟 [𝑣] for Count-based aggregation, 𝑧 =

max(𝑧,𝑢𝑟 [𝑎]) for Max-based aggregation, and 𝑧 = min(𝑧,𝑢𝑟 [𝑎]) for Min-based aggregation. The functionality stores (varid1, 𝑧).
Delete_GA: On input (delete_ga, rowid, varid0, varid1) from all parties, the functionality retrieves (rowid, 𝑢𝑟 ) and (varid0, 𝑧) from
memory. The functionality computes 𝑧 = 𝑧 − 𝑢𝑟 [𝑎] for Sum-based aggregation, and 𝑧 = 𝑧 − 𝑢𝑟 [𝑣] for Count-based aggregation. The
functionality stores (varid1, 𝑧).

Figure 15: The ideal functionality of query result update protocols.
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Functionality FCE

Multiplication: On input (mult, varid1, varid2, varid3) from all parties, the functionality retrieves (varid1, 𝑥), (varid2, 𝑦) from memory
and stores (varid3, 𝑥 · 𝑦 mod Z2l ).
Equality: On input (eq, varid1, varid2, varid3) from all parties, the functionality retrieves (varid1, 𝑥), (varid2, 𝑦) from memory and
stores (varid3, 𝑥 =? 𝑦).
Comparison: On input (comp, varid1, varid2, varid3) from all parties, the functionality retrieves (varid1, 𝑥), (varid2, 𝑦) from memory
and stores (varid3, 𝑥 < 𝑦), (varid3, 𝑥 > 𝑦), (varid3, 𝑥 ≤ 𝑦) or (varid3, 𝑥 ≥ 𝑦) according to specific instructions.

Figure 16: The ideal functionality of circuit evaluation protocols.
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