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Abstract. Studies of vector oblivious linear evaluation (VOLE)-based
zero-knowledge (ZK) protocols flourish in recent years. Such ZK protocols
feature optimal prover computation and a flexibility for handling arith-
metic circuits over arbitrary fields. However, most of them have linear
communication, which constitutes a bottleneck for handling large state-
ments in a slow network. The pioneer work AntMan (CCS’22), achieved
sublinear communication for the first time within VOLE-based ZK, but
lost the advantage of fast proving. In this work, we propose two new
VOLE-based ZK constructions that achieve sublinear communication and
linear computation, simultaneously. Let C be a circuit with size S, input
size n, and depth d. In particular, our first ZK, specialized for layered cir-
cuits, has communication O(n+ d logS), while our second ZK can be used
to prove general circuits and has communication O

(
n+ d logS + d2

)
.

Our results are obtained by introducing the powerful sum-check techniques
from the mature line of works on interactive proofs into the context of
VOLE-based ZK for the first time. Reminiscent of the non-interactive line-
point zero-knowledge proof system (ITC’21), we introduce an interactive
line-point zero-knowledge (ILPZK) proof system, which closely connects
with VOLE-based ZK protocols. In addition, our works also enrich the
studies of ZK based on interactive proofs, with new interesting features
(e.g., having information-theoretic UC-security, naturally supporting any
field) achieved.

1 Introduction

A proof system allows a prover to convince a verifier that a given input x belongs
to some language L. In the literature, circuit satisfiability is a popular NP
language, where the prover proves to the verifier that a given circuit C : Fn → Fn′

is satisfiable (i.e., there exists some witness w ∈ Fn such that C(w) = 1).
Furthermore, a zero-knowledge (ZK) proof of knowledge system guarantees a
valid proof can only be generated by the one who holds the witness w, and it
reveals nothing about w beyond C(w) = 1.

Though studies of ZK proof systems date back to 1980s [20], they have not
been brought into real-life applications until past few years ago. There are two
mainstream focuses on improving the concrete efficiency of ZK proofs, prover



time, and proof size(which constitutes a bottleneck of verification time). For
prover time, the best one can hope for is that generating a proof is as fast as
verifying the witness in the clear. For proof size, proofs with proof size as small as
possible (e.g., constant) are preferred, so that fast verification for large statements
becomes possible. However, achieving both goals simultaneously is generally very
challenging, in the sense that compressing the proof size is usually accompanied
by consumption of prover’s computation resources. To our best knowledge, there
are a few existing ZK proof systems that achieve linear prover time1 and sublinear
(in the circuit size) proof size simultaneously. We give a brief overview on them
as follows.
ZK with linear prover time and sublinear proof size. The first such
proof system falls within the scope of interactive oracle proofs (IOP), with a line
of works [8,9,34,21]. Brakedown [21], as the state-of-the-art, exploits a tensor
structure of linear combinations, and makes use of linear-time encodable codes.
Due to the asymptotic nature of known constructions for linear-time encodable
codes [18,21], the prover’s computational overhead might be relatively large for
small or medium-sized statements. Moreover, these works operate over large fields
with field size at least Ω(|C|), restricting the application scenarios.

The second approach follows the GKR interactive proof (IP) protocol [19], with
a line of works [30,33,38,37]. At a high level, these works start with optimizations
of GKR that have linear prover time, and incorporate a commitment scheme
to achieve zero-knowledge. The prover computation in original GKR is around
cubic in the circuit size, dominated by evaluating multi-variate polynomials at
multiple points. The computational overhead was finally optimized to constant
due to efforts in a series of works [14,29,28,33], through exploiting that these
polynomials and points are highly structured. On a separate note, original GKR
assumes a layered circuit, in which each gate takes input only from gates in the
previous layer. The recent breakthrough [37] extends GKR to general circuits and
maintains a linear time prover, by carefully describing the much more complicated
relations among layers. We finally summarize the different commitment schemes
used in these works2. In Hyrax [30], the underlying commitment is Pedersen
commitment [25], while in Libra [33] and Virgo++ [37], the authors use a pairing-
based polynomial commitment. Therefore, all these three protocols are not
post-quantum. Moreover, the use of a pairing-based polynomial commitment not
only leads to an inherent trusted setup, but also incurs a bigger computational
overhead when the witness size is close to the circuit size.
VOLE-based Zero-Knowledge Proofs. Very recently, a line of works [10,11,12]
studying how to efficiently generate pseudorandom correlations between parties
gave birth to ZK proofs based on random vector oblivious linear evaluation
(VOLE) correlations. In general, VOLE-based ZK protocols [31,17,16,5,35,2,23]
have fascinating performance on the prover side, where the prover only pays

1 We say a ZK proof has linear prover time, if the prover’s computation is only a
constant times larger than that of verifying the witness in the clear.

2 We remark that Virgo [38] uses a polynomial commitment based on FRI [6], leading
to prover computation O(|C|+ n logn), where n is the input size.
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a very small constant computational overhead, and proving can be done in
a streaming fashion to reduce memory cost. One typical example is the line-
point zero-knowledge (LPZK) [17], with only 4× to 7× prover computational
overhead. LPZK requires sending one field element per multiplication gate and
its followup work [16] reduced the communication complexity to 1/2 field element
per multiplication gate for layered circuits, which is still linear in the circuit size3.
Another optimization of LPZK proposed the QuickSilver [35] demonstrating
an important advantage of VOLE-based ZK protocols compared against other
proof systems. That is VOLE-based ZK protocols can be easily adapted to
prove arithmetic circuits over small fields (even Boolean circuits) with online
communication independent of the security parameter. We refer to a recent
survey [4] for more details of the VOLE-based ZK literature.

Most VOLE-based ZK protocols are not succinct, with linear proof size
and verifier costs almost the same as the prover. The only one exception is
AntMan [32], which achieves sublinear proof size but at the cost of increasing
prover time to quasi-linear and relying on an additively homomorphic encryption
(AHE) scheme. To our best knowledge, there is no VOLE-based ZK protocol
achieving linear prover time and sublinear proof size simultaneously. As previous
ZK proofs with such properties are realized under frameworks of succinct proofs
(either requires a trusted setup, or assumes strong cryptographic assumptions, or
only supports larges fields), we ask the following question:

Can we realize ZK protocols with linear prover time and sublinear proof size
in the context of VOLE-based ZK?

1.1 Our Contributions

We bring the powerful sum-check protocol [24] along with multi-linear extensions
(MLE) into the study of VOLE-based ZK protocols. This is the first time a
non-trivial (compressing) classical proof technique is used in this new paradigm.
To distinguish from the conventional VOLE-based ZK protocols, we formulate
our protocols under a new framework that we dub interactive line-point zero-
knowledge (ILPZK). In an LPZK proof, the prover P independently generates an
affine line v(x) := a ·x+b in an ℓ-dimensional vector space Fℓ from the circuit C
and the witness w. Then the verifier V queries a single point v(∆) := a ·∆+ b
on this line, which allows V to check the correctness of the computation of every
gate. This “gate-by-gate” nature leads to a barrier of squashing the proof length
(i.e., the dimension ℓ) to sublinear.

In our protocols, due to the introduction of interactive sum-check, the affine
line v(x) := a · x+ b is generated collectively by the prover P and the verifier V ,
where V’s participation is in the form of providing random challenges in each
round of sum-check. The involvement of V in the generation of the affine line
makes it possible for implementing probabilistic checking within v(x), in the
sense that wire values are “compressed” by MLE encodings. This is the reason
3 For special type of statements, sublinear proof size constructions were reported, for

example, conjunctions [5,36] and low-degree polynomials [35].
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why the proof size can be made sublinear in the circuit size and the verifier can
be light-weight. We believe that ILPZK (see Definition 2 for a formal description)
captures the essence of our new protocols and may have independent interest in
its own right.
ILPZK for layered arithmetic circuits. Our ILPZK proof for satisfiability of
layered arithmetic circuits achieves linear prover time and strict sublinear proof
size O(n+ d logS), where n is the witness length and S is the circuit size.

Theorem 1 (ILPZK for layered arithmetic circuit satisfiability). Let
C : Fn → Fn′

be a layered (log-space uniform) arithmetic verification circuit with
depth d and number of gates S. There exists an ILPZK proof that proves the
satisfiability of C with the following features:

• The prover runs in time O(S).
• The verifier runs in time O(n+ n′ + d logS + T ), where O(T ) is the time

for evaluating MLEs, and is sublinear for log-space uniform circuits.
• Round complexity is O(d logS).
• Proof length is O(n+ d logS).
• Soundness error is O

(
d logS
|F|

)
.

ILPZK for generic arithmetic circuits. Our ILPZK construction for general
arithmetic circuits achieves linear prover time as well and mostly has sublinear
proof size except some extreme cases. While each gate of a generic circuit may
take inputs from all previous layers, one can still separate a generic circuit into d
“layers” where each gate takes at least one input from the previous layer, and d
also refers to the depth of the circuit.

Theorem 2 (ILPZK for generic arithmetic circuit satisfiability). Let
C : Fn → Fn′

be a generic arithmetic verification circuit with depth d and number
of gates S. There exists an ILPZK proof that proves the satisfiability of C with
the following features:

• The prover runs in time O(S).
• The verifier runs in time O

(
n+ n′ + d2 + d logS + T

)
, where O(T ) is the

time for evaluating MLEs.
• Round complexity is O(d logS).
• Proof length is O

(
n+ d logS + d2

)
.

• Soundness error is O
(

d logS
|F|

)
.

We remark that here the O
(
d2
)

term in the proof length is always upper
bounded by O(S). And only in some extremely bad cases (e.g., a narrow circuit
with each layer connected to all its previous layers), the upper bound is reached.
Support circuits over small fields. Both of our ILPZK constructions for
layered and generic circuits can be adapted to yield significant savings in proof
size when proving circuits over small fields (e.g. Boolean circuits) through the
use of subfield VOLE. More concretely, taking the Boolean layered circuits for
example, the proof size counted in bits is O(n+ d logS log|F|), shaving off a

4



log|F| = O(κ) factor from the witness length n, where κ is the security parameter.
This is a big advantage compared against the non-VOLE-based proof systems,
as the usual way adapting such a protocol to work for small fields, is to view
the small field computations as computations over its extension field, which not
only incurs an overall O(κ) overhead, but also possibly demands attentions to
guarantee that computations of circuits are indeed over the small field. On the
other hand, our protocols still have significant asymptotic advantage compared
to O(n+ S)-bit communication of conventional VOLE-based ZK protocols (e.g.,
QuickSilver [35]).
NIZK from compiling ILPZK with VOLE protocols. Both of our ILPZK
constructions for layered and generic circuits indeed satisfy additional properties
of public-coin and round-by-round soundness, which allow us to squash interactions
via the Fiat-Shamir transform. We first transform an ILPZK into an interactive
VOLE-based ZK in the random VOLE-hybrid model, for which we prove security
in UC-framework. Then we show that we can obtain designated verifier NIZK
arguments from a pseudorandom correlation generator (PCG) instantiation of
random VOLE. In addition, we can obtain publicly verifiable NIZK arguments
from the VOLE-in-the-head (VOLEitH) [26,3] technique. In general, the former
has smaller computation, while the latter has smaller communication. This allows
our constructions to find applications in a wider range of scenarios.

1.2 Technical Overview

We provide more details about how we achieve sublinear communication while
maintaining linear prover computation in the context of VOLE-based ZK.
“Gate-by-gate” limitations of LPZK. VOLE-based ZK proofs essentially lie in
the scope of “commit-and-prove” paradigm, where VOLE serves as a commitment
scheme. A vector x is committed via VOLE in the sense that, the prover obtains
random M and the verifier obtains random K, ∆ such that K = x · ∆ + M,
denoted by [x]. VOLE naturally satisfies a linearly homomorphic property, which
is the key to allowing to evaluate circuits underneath VOLE. For instance, given
[x], [y] for two values x, y and a scalar a, the commitment [z] is obtained by P
setting Mz := aMx +My and V setting Kz := aKx +Ky, where z := ax+ y.

Most conventional VOLE-based ZK protocols follow “gate-by-gate” paradigm.
We take LPZK [17] for example, as the works [31,17,16,35] differ slightly on
low level details concerning how multiplication gates are verified. The prover
first commits to the witness and all the intermediate values individually via
VOLE as described above. The linear homomorphism property of VOLE implies
that verification of addition gates can be realized for free, in the sense that
the output commitment can be locally computed from input commitments.
For multiplication gates, the prover needs to provide evidences supporting the
claim that each multiplication gate is computed correctly, which is done by
appending additional entries to VOLE. It is not hard to see that witness, outputs
of multiplication gates, and evidences for multiplications should all be included
in the VOLE. This gives an intuition that the proof size has to be linear in the
circuit size.

5



“Layer-by-layer” via sum-check protocol. Suppose for simplicity that we
have a layered circuit. If we could commit to a whole layer of intermediate
wire values using a small number of entries in a VOLE instance, and check
relations layer-by-layer with a cost strictly smaller than verifying each gate, this
should be sufficient for breaking the linear proof size barrier. This is in fact
how the GKR [19] interactive proof protocol proceeds. We emphasise that no
zero-knowledge is required there and the prover can reveal committed values
directly to the verifier in plaintext. In a bare-bone sketch, GKR proceeds from
output layer to input layer sequentially, and employs a sum-check protocol for the
layer-by-layer reduction. In more detail, for each layer, GKR starts with a claim
about the values of this layer, applies sum-check, and ends with a claim about
the values of the previous layer. The final claim about the input layer is actually
a claim about the witness, and in fact a much simpler statement to prove.

Cast in our ILPZK framework, and recall that the prover and the verifier are
allowed to collectively generate an affine line v(x) := a · x+ b, the whole affine
line v then can be intuitively divided into d blocks v(0)(x),v(1)(x), . . . ,v(d−1)(x),
each specifying a “layer-by-layer” reduction. For simplicity, we call every v(i) a
sub-line of v. Essentially, each sub-line consists of a part serves as commitments of
sum-check messages, and a part that proves in zero-knowledge the commitments
are honestly generated. These together convince V that P has generated a valid
GKR proof that a GKR verifier would accept. As the length of each sub-line is
sublinear in the number of gates in the corresponding layer, we indeed obtain an
ILPZK with sublinear proof size as desired. The generic circuit case is similarly
handled incorporating the recent breakthrough results from [37].
Linear time prover. The techniques for achieving a linear time prover in our
ILPZK constructions for layered circuits and generic circuits follow closely from
Libra [33] and Virgo++ [37], respectively. In addition to costs of running GKR
in the clear, extra prover computational costs essentially come from proving all
commitments of sum-check messages are correctly generated, which is linear (a
small constant multiplicative overhead) in the number of sum-check messages.
Therefore, our constructions maintain a linear time prover.
Support arithmetic circuits over any field. We next sketch how our ILPZK
constructions can benefit from utilizing subfield VOLE. In a subfield VOLE
instance K = x ·∆ +M, x is over a small field Fp, while K,M, ∆ are over a
large extension field Fpr . In fact, subfield VOLE can be viewed as a commitment
scheme for elements of a subfield Fp. Directly replacing the random VOLE in
VOLE-based ZK protocols (e.g., QuickSilver [35]) with a random subfield VOLE
allows to prove circuits over Fp, with the same asymptotic communication but
counted in the number of Fp elements. However, for the affine line v(x) := a ·x+b
in our ILPZK protocols, due to the use of MLEs in sum-check, part of a entries
are Fpr elements even though the arithmetic circuit is over Fp. Intuitively, in
order to apply the subfield VOLE techniques, we need an efficient construction
of a mixture of standard VOLE and subfield VOLE, where they share the same
random ∆. This seems a rather interesting variant of VOLE and might be useful
in other application scenarios. We observe that to construct the desired variant of
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VOLE, it suffices to show that standard VOLE can be constructed from subfield
VOLE. We provide a natural construction by fixing a basis of Fpr over Fp.

1.3 Comparison with related works

On the one hand, our constructions are within the context of VOLE-based ZK.
On the other hand, as we distill ideas from the IP literature, our constructions es-
sentially follow the insightful idea of Cramer and Damgård [15], where they show
how to obtain zero-knowledge arguments from IPs by using a cryptographic com-
mitment scheme. We now briefly compare our techniques with related techniques
from the literature and carefully argue the pros and cons.
Existing ZK protocols with linear prover time and sublinear proof
size. As techniques used in IOP-based ZK protocols are quite different, we omit
the detailed comparison. Compared to the state-of-the-art Brakedown [21], our
constructions have lower computational overhead for small and medium-sized
circuits, and have no restriction on the field size.

Essentially, our constructions share high-level similarities with ZK protocols
based on sum-check, e.g., Hyrax [30], Libra [33], Virgo [38], Virgo++ [37], Spar-
tan [27], and Cerberus [22]. In a high-level, the main difference is that here
we use a lightweight linearly homomorphic commitment scheme (from VOLE)
instead of a heavy one (Pedersen commitment [25]) in Hyrax, or a more powerful
polynomial commitment based on FRI [6] in Virgo, or a pairing-based polynomial
commitment in Libra and Virgo++, or a discrete-logarithm-based polynomial
commitment in Spartan4, or a Ligero-based polynomial commitment [1] in Cer-
berus5. This brings us the following features.

In addition to standalone-security, our constructions are statistically UC-
secure in the random VOLE-hybrid model. As random VOLE correlations can be
efficiently generated either from learning parity with noise (LPN) assumption [7]
or assuming a pseudo-random generator (PRG), our ZK protocols are post-
quantum when implemented. Finally, our constructions natively support proving
statements over arbitrary-sized fields, by using the subfield VOLE technique.
To our best knowledge, no previous protocol has achieved all these features
simultaneously in the context of sum-check-based ZK.

For circuits over sufficiently large fields, our constructions have almost the
same asymptotic performance as Libra and Virgo++. Our constructions instead
use a light-weight VOLE-based commitment scheme. A consequence is that, when
the circuit size is not significantly larger than the witness size, our constructions
have slightly larger proof size, while they have larger computational overhead.
For Boolean circuits, we offer much better concrete efficiency than Libra and
Virgo++ in both communication and computation.
VOLE-based ZK. Wolverine [31] was the first VOLE-based ZK that works for
arbitrary-sized fields with communication of 4 field elements per multiplication
4 Spartan actually has prover computation Oκ(|C|).
5 Cerberus can achieve linear prover time by using linear-time encodable codes, while

they implement with Reed-Solomon codes, leading to a quasi-linear time prover.
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gate. The work LPZK [17] and its follow-up work QuickSilver [35] reduced the
communication to 1 field element per multiplication. Next, improved LPZK [16]
showed that the communication can be further reduced by half when considering
layered circuits. All these works proceed an arithmetic circuit in a “gate-by-gate”
flavor, from which they gain benefits of linear prover time and small memory.
However, this also incurs proof size inherently linear in the circuit size. Compared
to these works, our constructions instead have a “layer-by-layer” flavor, and
in general have significantly smaller communication, at the cost of increasing
prover computation up to roughly 2×, memory increased to O(|C|), and round
complexity increased to O(d log |C|).

Several works consider optimizing communication complexity in special cases.
Mac’n’Cheese [5] focused on proving the disjunction of statements, with communi-
cation cost only proportional to the longest one. QuickSilver [35] also proposed a
VOLE-based ZK for proving the computation of multiple polynomials, with com-
munication cost linear to the highest degree of these polynomials. AntMan [32]
started with a construction that allows for simultaneously proving B evaluations
of a circuit C, with communication of O(B + |C|) field elements, and prover
computation of O(B|C| logB). Then, they showed how to turn this construction
into a VOLE-based ZK for a general circuit case, which has communication
complexity O

(
|C|3/4

)
, and prover computation O(|C| log |C|).

Compared to AntMan (for general circuits), our construction has linear prover
time, smaller communication in most application scenarios, the same asymptotic
memory consumption, and more rounds. Besides, our construction is information-
theoretic in the random VOLE-hybrid model and is public-coin, while AntMan
relies on an additively-homomorphic encryption scheme and is not public-coin.

2 Preliminaries

Notations. In this paper, bold letters (e.g. a,b,M,K) are used to denote vectors.
Besides, we use xi to denote the ith-component of the vector x. We use [a, b] (or
[a, b + 1) sometimes) to denote the set of integers in the range from a to b. A
commitment of some value x is denoted by [x]. We use x

$← F to denote that x
is uniformly sampled from a field F. We identify the set {0, 1}ℓ and the set [0, 2ℓ)
through the natural bijection between the two sets.
Security Model and Functionalities. We provide security proofs of our ZK
protocols in the universal composability (UC) framework [13]. In particular, we
consider active adversary and static corruption. More details can be found in
Appendix A. We formally define a zero-knowledge functionality FZK in Figure 5.

2.1 VOLE-based Commitment

Random vector oblivious linear evaluation (VOLE) is a functionality that allows
two parties PS , PR to obtain random correlated values. In more detail, the sender
PS obtains two vectors M,x, while the receiver PR obtains a scalar ∆ and a
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vector K such that K = M+x ·∆. We formalize the ideal functionality of random
VOLE over finite field F in Figure 1.

The above VOLE correlation naturally induces a commitment scheme over F.
In the commit phase, the values x are committed in the sense that through a
VOLE functionality the sender obtains M, and the receiver obtains ∆,K, such
that K = M + x · ∆, denoted by [x]. In the unveil phase, [x] are opened by
the sender sending x,M to the receiver, who then checks K = M+ x ·∆. Such
VOLE-based commitment schemes satisfy perfect hiding and statistical binding.
Intuitively, the receiver learns nothing about x before the unveil phase and the
sender cannot open [x] to x′ ̸= x unless he succeeds in guessing the ∆ of the
receiver.

It can be observed that the above commitment scheme also satisfies a linearly-
homomorphic property. Given commitments [x1], . . . , [xℓ] and public coefficients
c, c1, . . . , cℓ ∈ F, the two parties can locally compute [y] = c+

∑
i∈[ℓ] ci · [xi] by

setting y = c+
∑

i∈[ℓ] ci ·xi, My =
∑

i∈[ℓ] ci ·Mxi
, and Ky = ∆ · c+

∑
i∈[ℓ] ci ·Kxi

.
In particular, we have [y] = [x] + (y − x). This allows the sender to commit some
y of his choice by sending y − x to the receiver, given a commitment [x] of a
random x produced by a random VOLE functionality. From this observation, we
also define a chosen-input VOLE functionality in Figure 6, which can be easily
realized by a random VOLE functionality.

Functionality FF
rVOLE

Init: Upon receiving (Init) from both parties, sample ∆
$← F if PR is honest, and

receive ∆ ∈ F from the adversary A otherwise. Store ∆ and send it to PR. All
further (Init) commands will be ignored.
Extend: Upon receiving (Extend, N) from both parties, proceed as follows:

1. If PR is honest, sample K
$← FN . Otherwise receive K from A.

2. If PS is honest, sample x
$← FN and compute M := K−∆ ·x ∈ FN . Otherwise,

receive x ∈ FN and M ∈ FN from A and then recompute K := M+∆ · x.
3. Send (x,M) to PS and K to PR.

Fig. 1: Ideal functionality for random VOLE over F.

2.2 Multi-Linear Extension

The multi-linear extension (MLE) plays a crucial role in the study of interactive
proofs. We give a formal definition as follows:

Definition 1 (Multi-Linear Extension). Let f : {0, 1}ℓ → F be a function
that maps the ℓ-dimensional binary hypercube to a field F. The multi-linear
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extension of f is the unique polynomial f̃ : Fℓ → F such that f̃(x1, . . . , xℓ) =

f(x1, . . . , xℓ) for all x1, . . . , xℓ ∈ {0, 1}, where the degree of f̃ in each variable
is 1. Moreover, f̃ has the form

f̃(x1, . . . , xℓ) =
∑

ω∈{0,1}ℓ

f(ω) · χω(x1, . . . , xℓ),

where, for any ω = (ω1, . . . , ωℓ),

χω(x1, . . . , xℓ) :=

ℓ∏
i=1

(xiωi + (1− xi)(1− ωi)).

The set {χω : Fℓ → F}ω∈{0,1}ℓ is referred to as the set of multi-linear Lagrange
basis polynomials with interpolating set {0, 1}ℓ.

W.l.o.g., assume n is a power of two, then a vector W := (w0, . . . , wn−1) over F
can be naturally viewed as a function W : {0, 1}logn → F such that W (i) = wi

for all i ∈ [0, n). Hence, we define the multi-linear extension of a vector W in
this way, similarly denoted by W̃ . To evaluate the multi-linear extension W̃ of
W efficiently, we employ the algorithm proposed in [29], which takes O(n) time
and O(n) memory usage.

Lemma 1 ([29]). Assume n = 2ℓ and given W ∈ Fn and r ∈ Fℓ, one can
compute W̃ (r) in O(n) time and O(n) space.

2.3 Sum-check Protocol and GKR protocol

Our ILPZK proof systems distill ideas from the well-known GKR protocol [19],
which involves a multi-variate sum-check protocol [24]. We overview the two pro-
tocols here, and detailed descriptions of sum-check can be found in Appendix A.

Sum-check protocols are used to sum up polynomial evaluations on a specific
set in a verifiable way, and play a crucial role in designing succinct arguments.
We focus on multi-variate sum-check problems, which refer to, given some public
ℓ-variate polynomial f : Fℓ → F, the prover P wants to convince the verifier V
such that

H =
∑

b1,...,bℓ∈{0,1}

f(b1, . . . , bℓ),

without V computing H by evaluating f at 2ℓ points on her own. Assuming
the maximum degree of f in each variable is d, the sum-check protocol has
communication complexity O(dℓ), round complexity ℓ, and soundness error
O(dℓ/|F|). Moreover, if one uses a linear time algorithm of evaluating MLEs (e.g.,
Lemma 1), sum-check can be realized with linear prover time as shown in [28].

Lemma 2 ([28]). Assume n = 2ℓ and given ℓ-variate multi-linear polynomials
f1, . . . , fd : Fℓ → F. Applying sum-check on the ℓ-variate polynomial g := f1 · · · fd
takes prover time O(dn).

10



The GKR protocol is an interactive proof protocol, and can be used for evaluating
layered arithmetic circuits in a verifiable way. More specifically, given a layered
circuit C and inputs w known to both parties, through invoking GKR, P can
convince V that h is indeed the evaluation of C on w without V computing C(w)
by herself. In a high level, GKR proceeds the circuit from output to input, in
a layer-by-layer fashion. For each layer, GKR starts with a claim about values
in this layer and employs a multi-variate sum-check protocol, which reduces
the claim to claims about the previous layer. Then to proceed the previous
layer, a condensing technique was designed in GKR that allows to combine
multiple claims to one claim. The final claim about the input layer can be checked
by V directly. Assuming the layered circuit C has depth d and S gates, GKR
has communication complexity O(d logS), round complexity O(d logS), and
soundness error O(d logS/|F|). In [33], GKR is optimized to have a linear prover
time. Furthermore, if C is log-space uniform, authors of [19] showed that the
GKR verifier can run in time O(logS).

2.4 LPZK [17] and QuickSilver [35]

The LPZK proof system essentially follows the “commit-and-prove” paradigm.
Intuitively, the proof consists of two parts, where the first part serves as (linearly-
homomorphic) commitments of the extended witness (i.e., wire values in the
case of circuit satisfiability), and the second part proves (in zero-knowledge) that
values underneath the commitments are exactly the extended witness. In the
case of proving arithmetic circuit satisfiability, the extended witness consists of
all wire values and it suffices to prove the satisfiability of a degree-2 relation
dependent on the circuit topology. To start with, we show two simple examples
of LPZK proof [17], which together allow to prove arbitrary degree-2 constraints.

1. Linear constraint : Let α, β ∈ F be two coefficients known to each other,
and suppose P wants to convince V that he holds some a1, a2 ∈ F such that
a1 = α · a2 + β. The corresponding LPZK works as follows:
– P constructs an affine line v(x) := a · x+ b of dimension-3 with v1(x) :=

a1 ·x+b1, v2(x) := a2 ·x+b2 (as commitments of a), and v3(x) := 0·x+b3,
where b1, b2

$← F and b3 = b1 − α · b2.
– Given an evaluation v(∆), V checks that v3(∆)

?
= v1(∆)−α·v2(∆)−β ·∆6.

2. Multiplicative constraint: Suppose P wants to convince V that he holds
some a1, a2, a3 ∈ F such that a3 = a1 · a2. The corresponding LPZK is as
follows:
– P constructs an affine line v(x) := a · x+ b of dimension-4 with v1(x) :=

a1 · x+ b1, v2(x) := a2 · x+ b2, v3(x) := a3 · x+ b3 (as commitments of
a), and v4(x) := a4 · x+ b4, where b1, b2, b3

$← F, a4 := a1b2 + a2b1 − b3,
and b4 := b1b2.

– Given an evaluation v(∆), V checks that v1(∆)·v2(∆)
?
= v3(∆)·∆+v4(∆).

6 We remark that a3 must be 0, which can be guaranteed by P sending b3 to V in the
clear, which also shortens the VOLE length.
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As any degree-2 constraint can be represented by combinations of linear con-
straints and multiplicative constraints, one can naturally extend the above two
constructions and give a construction that proves arbitrary degree-2 relations. In
addition, the completeness and security directly follow those of the underlying
two simple constructions, on which we defer a detailed discussion to Appendix A.

In this paper, we mainly focus on degree-2 relations consisting of individual
t1 linear constraints and t2 multiplicative constraints with n inputs. For proving
such degree-2 relations, the above LPZK construction requires the affine line v(x)
to have length at least n+ t1 + t2.
Batch-Check Linear/Multiplicative Constraints. Let C be an arithmetic
circuit over F with n inputs, t multiplication gates, and arbitrary addition gates.
For proving the satisfiability of C, both LPZK [17] and QuickSilver [35] first
transform it into a degree-2 relation consisting of one linear constraint and
t multiplicative constraints with n + t inputs. Thus, the length in LPZK is
n + 2t + 1 (n + t for “committing”, and t + 1 for “proving”). QuickSilver is
essentially a two-round ILPZK construction, which reduces the length to n+ t+1
by introducing one additional round of interaction. Instead of building one sub-
line per multiplicative constraint in LPZK, QuickSilver builds a sub-line that is
the random linear combination of these t sub-lines. Similarly, the random linear
combination technique also works for compressing linear constraints. Therefore,
for proving a degree-2 relation consisting of individual t1 linear constraints and
t2 multiplicative constraints with n inputs, it suffices to construct an affine line
v(x) of length n+ 2 in the ILPZK setting.

3 Interactive Line-Point Zero-Knowledge Proof

In this section, we first give a formal definition of our new notion of Interactive
LPZK proof system. Then we show how to compile such a proof system into a
publicly verifiable NIZK argument via the VOLE-in-the-Head technique.

3.1 Defining ILPZK

We define interactive LPZK proof systems for arithmetic circuit satisfiability.
The interactive LPZK proof system generalizes the original LPZK proof system,
in the sense that an LPZK is essentially a 1-round interactive LPZK.

Definition 2 (ILPZK). A t-round interactive line-point zero-knowledge (ILPZK)
proof system for arithmetic circuit satisfiability over F is given by a pair of algo-
rithms (P,V) with the following syntax:

– P(C,w, i, ri) is a PPT algorithm that given an arithmetic verification circuit C :
Fn → Fn′

, a witness w ∈ Fn, a round index i ∈ [1, t] and a sequence of strings
ri with each ri being a prefix of ri+1, outputs a pair of vectors a(i),b(i) ∈ Fℓi .
Let ℓ :=

∑t
i=1 ℓi and a := (a(1), . . . ,a(t)),b := (b(1), . . . ,b(t)) ∈ Fℓ, which

specify an affine line v(x) = a · x+ b of dimension ℓ.
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– V(C, rt, ∆,v∆) is a polynomial time algorithm that, given a string rt and
an evaluation v∆ of the line v(x) at some point ∆ ∈ F, outputs accept or
reject.

With the above ILPZK algorithms, we formally define the ILPZK protocol.

ILPZK Protocol. Given a t-round ILPZK proof system with algorithms (P,V)
as defined in Def. 2, and a chosen-input VOLE functionality FVOLE in Figure 6,
there exists a t-round interactive protocol Π(P,V) proceeding as follows:

1. At the beginning, the verifier V picks a ∆ ∈ F, and sends it to FF
VOLE. Let

r0 be an empty string.
2. In each round i, where i = 1, 2, . . . , t,

– V picks a string si and sends it to the prover P . Then P and V compute
ri by appending si to the end of ri−1.

– P runs (a(i),b(i)) ← P(C,w, i, ri). Then P sends (a(i),b(i)) to FF
VOLE,

which returns v
(i)
∆ := a(i) ·∆+ b(i)7 to V.

3. After t-round of interactions, V already obtains v∆ := (v
(1)
∆ , . . . ,v

(t)
∆ ). Finally,

V outputs V(C, rt, ∆,v∆).

The ILPZK algorithms (P,V) should at least satisfy the following:

– Perfect Completeness. For any arithmetic circuit C : Fn → Fn′
and witness

w ∈ Fn such that C(w) = 1, the verifier V in Π(P,V) outputs accept with
probability 1, if the prover P honestly follows Π(P,V).

– ε-Soundness. For every arithmetic circuit C : Fn → Fn′
such that C(w) ̸= 1

for all w ∈ Fn, a malicious P with arbitrary cheating strategies in Π(P,V)
convinces V with probability at most ε.

– Perfect Zero-Knowledge. There exists a PPT simulator Sim such that, for
any arithmetic circuit C : Fn → Fn′

, any witness w ∈ Fn such that C(w) = 1,
any rt, and any ∆ ∈ F, the output distribution of Sim(C, rt, ∆) is distributed
identically to v∆, where v(x) is the affine line generated in Π(P,V) with P
holding w and V sending rt.

Furthermore, our ILPZK constructions also satisfy the following stronger notions:
Public-coin. An ILPZK proof with algorithms (P,V) is public-coin, if each bit
of V’s messages (i.e., rt, ∆) in Π(P,V) is independently and uniformly random.
ε-Knowledge Soundness. An ILPZK proof with algorithms (P,V) has ε-
knowledge soundness, if there exists an efficient extractor Ext such that, for any
arithmetic circuit C : Fn → Fn′

, any rt selected by V, and any v generated by
(malicious) P that makes V accept with > ε probability, Ext(C, rt,v) outputs a
valid witness w.

7 For our constructions in Section 4.1&5.1, we abuse the notation v(i) for stage i, and
denote by v(i,j) the sub-line generated in round j of stage i.
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3.2 Compiling ILPZK to NIZK

Given a t-round public-coin ILPZK proof system with algorithms (P,V), we show
how to compile it into a NIZK argument via a two-step approach. As already
shown above, from algorithms (P,V), we can immediately obtain an interactive
protocol Π(P,V), assuming the existence of a chosen-input VOLE functionality.
In sketch, the first step is to transform Π(P,V) into an interactive protocol
Π ′(P,V), with a sufficient number of random VOLE correlations generated at
the very beginning (say, offline phase). In the second step, we instantiate random
VOLE in two ways, yielding two different types of compiling.

In the first step, we rely on the linearly-homomorphism of VOLE. Recall
that in each round i of Π(P,V), V is supposed to learn v(i)(∆). Assume P holds
random x(i),M(i), and V holds random K(i) such that K(i) = x(i) ·∆ +M(i).
Let P send δ(i) := a(i)−x(i) and θ(i) := b(i)−M(i) to V , who then can compute

v(i)(∆) : = K(i) + δ(i) ·∆+ θ(i)

= (x(i) ·∆+M(i)) + (a(i) − x(i)) ·∆+ (b(i) −M(i))

= a(i) ·∆+ b(i),

as desired. Since x(i),M(i) are uniformly random, V learns nothing about v(i)(x)
except for v(i)(∆). By applying the above transformation for every round of
Π(P,V), we obtain a t-round public-coin ZK protocol Π ′(P,V) in the random
VOLE-hybrid model. We briefly state the security that Π ′(P,V) could satisfy.
Malicious security in UC-framework. For our ILPZK constructions in this
paper, not only the stand-alone security is satisfied, but also the UC-security. For-
mally speaking, for the ILPZK proof (P,V) in Section 4.1 or 5.1, the corresponding
ZK protocol Π ′(P,V) UC-realizes FZK with malicious information-theoretic se-
curity in the random VOLE-hybrid model.

Below we introduce the two approaches of the second step.
Instantiating rVOLE with PCG. Boyle et al. [10,12] introduced the cryp-
tographic primitive of pseudorandom correlation generator (PCG), which is an
extension of pseudorandom generator (PRG) from generating a batch of ran-
domness to a batch of correlated randomness between some parties. PCG offers
a concretely efficient candidate for generating random VOLE correlations in
the offline phase. The authors of [11] presented a two-round maliciously secure
construction of PCG for VOLE, and showed that one can obtain a designated
verifier NIZK from combining it with a non-interactive online phase. Hence, by
applying Fiat-Shamir transform to the online phase of Π ′(P,V) and instantiating
rVOLE with PCG, we can obtain a designated-verifier NIZK argument.
Applying VOLEitH. Given a public-coin rVOLE-based ZK protocol Π ′(P,V)
defined as above, one can typically obtain a publicly-verifiable NIZK argument
through applying the VOLEitH technique proposed by Baum et al. [3]. In a high
level, in the VOLEitH framework, random VOLE correlations are instantiated
from a (two-round) all-but-one OT protocol, where the prover is the OT sender
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and the verifier the OT receiver. Then via the Fiat-Shamir transform, the
interactive ZK protocol based on OT is turned into a non-interactive ZK8.

4 Interactive LPZK for Layered Arithmetic Circuits

In this section, we describe an ILPZK proof system for proving the satisfiability
of layered arithmetic circuits, and we show that it achieves all properties as
indicated in Theorem 1. In addition, based on this ILPZK, we are able to provide
a self-contained VOLE-based ZK protocol ΠF

ZKl in Figure 3. Finally, we prove
that, when restricted to layered arithmetic circuits, our protocol ΠF

ZKl UC-realizes
FZK in the rVOLE-hybrid model with information-theoretic malicious security.

4.1 Our ILPZK construction

Our ILPZK proof system for layered circuits is inspired by the well-known
interactive proof protocol GKR [19], and we employ optimizations from Libra [33]
to achieve a linear time prover. In a high level, the core idea of GKR is to reduce
a claim about the output layer to a claim about the input layer in an iterative
layer-by-layer sense. In [19], the authors discovered a brilliant equation that
captures adjacent layers of the circuit, which allows the reduction to be done by
employing a sum-check protocol on multi-variate polynomials [24]. For a better
readability, let us first explicitly list some notations used in this section.
Notations. In this section, we consider as a layered (log-space uniform) arithmetic
circuit over F of depth d, size S, and fan-in two. Each layer of C is labeled by
a number from 0 to d, with 0 being the output layer and d being the input
layer. More precisely, in a layered circuit C, layer i ∈ [0, d) consists of add/mult
gates, which take input from outputs of layer i + 1, and layer d consists of
input gates. W.l.o.g., we always assume each layer i of C contains in total
si = 2ki gates (thus S =

∑d−1
i=0 si), and we label them in a pre-defined order. In

addition, given the pre-defined order, we denote values on the output wires of
gates in each layer i by Wi ∈ Fsi . We also define two functions for each layer
i ∈ [0, d), addi,multi : {0, 1}ki+2ki+1 → {0, 1}, referred as “wiring predicates”.
Each addi (multi) takes one gate label z ∈ {0, 1}ki in layer i and two gate labels
x, y ∈ {0, 1}ki+1 in layer i+ 1, and outputs 1 if and only if gate z in layer i is an
addition (multiplication) gate that takes the output of gate x, y in layer i+ 1 as
input. We view each Wi ∈ Fsi as a function Wi : {0, 1}ki → F, and denote the
multi-linear extension of Wi,multi, addi by W̃i, m̃ulti, ãddi, respectively.

With Wi,multi, addi defined as above, it holds for all i ∈ [0, d) that

Wi(z) =
∑

x,y∈{0,1}ki+1

multi(z, x, y)Wi+1(x)Wi+1(y)+addi(z, x, y)
(
Wi+1(x)+Wi+1(y)

)
,

8 We remark that for statements defined over large fields, we need to apply the so-called
subspace VOLE technique of [3] to significantly reduce the prover computation on
generating random VOLE correlations. We omit the details as they are not the focus
of this work, and refer to [26,3].
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where z ∈ {0, 1}ki . This immediately implies the following equation

W̃i(z) =
∑

x,y∈{0,1}ki+1

m̃ulti(z, x, y)W̃i+1(x)W̃i+1(y)+ãddi(z, x, y)
(
W̃i+1(x)+W̃i+1(y)

)
,

(1)
holds for all z ∈ Fki .

Our ILPZK is also within the commit-and-prove paradigm. In the “commit”
phase, the prover commits to the values that capture the full evaluation of C(w)
(also depend on messages received from the verifier), while in the “prove” phase,
the prover “opens” those commitments in zero-knowledge, thus the verifier can
check whether the prover holds a witness w such that C(w) = 1.

In a high level, our ILPZK proof for layered circuits can be divided into
d sequential stages, each consisting of a “sub-commit” phase and a “sub-prove”
phase (jumping ahead, each stage contains several rounds in our constructions).
Intuitively, in each stage i ∈ [0, d), the prover P proves a sub-statement (indexed
by i) to the verifier V that he knows some W̃i+1 such that Eq.(1) holds for W̃i

evaluated at a random point ri ∈ Fki chosen by V . However, the sub-statement i
is never completely proved, unless P proves the sub-statement i+ 1. Until they
reach stage d− 1, P completely prove to V that he knows the witness W̃d such
that Eq.(1) holds for W̃d−1 evaluated at a random point rd−1 ∈ Fkd−1 chosen by
V . Eventually, these d sub-proofs together convince V that P knows a witness w
such that C(w) = 1.

Since the underlying commitment scheme is statistical binding, the sub-prove
phase of each stage i ∈ [0, d) can be deferred to stage d− 1 (i.e., when all sub-
commit phases are completed). Hence, let us first describe how P and V proceed
in the sub-commit phase of each stage i, and explain the arithmetic constraints
that values underneath the commitments should satisfy. We remark that in fact,
details of the first and the last stages are slightly different from the rest of the
stages, which we will explain later. Essentially, P and V perform a two-phase
(linear time) sum-check protocol on Eq.(1) underneath the commitment in each
stage i.
In each stage i ∈ [0, d), suppose that P and V start with an agreement on ri
and a commitment vi := W̃i(ri) ·∆+ bi (with P holds W̃i(ri), bi and V holds
vi, ∆), denoted by [W̃i(ri)], where ri ∈ Fki is a random point selected by V
(jumping ahead, ri is determined over several rounds of interactions during the
previous stage). At the end of stage i, they will agree on a point ri+1 ∈ Fki+1 and
obtain a commitment vi+1 := W̃i+1(ri+1) ·∆+ bi+1, denoted by [W̃i+1(ri+1)],
so that they can move to the next stage.

According to Eq. (1), P can define a 2ki+1-variate polynomial

f (i)
ri

(X,Y) := m̃ulti(ri,X,Y)W̃i+1(X)W̃i+1(Y)+ãddi(ri,X,Y)
(
W̃i+1(X)+W̃i+1(Y)

)
.

(2)
Essentially, P wants to convince V that

∑
x,y∈{0,1}ki+1 f

(i)
ri (x, y) = W̃i(ri). We let

P and V interact 2ki+1 rounds to capture the summation of f (i)
ri (X,Y) evaluated

on the binary cube. Intuitively in each round, they sum-up one variable of
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f
(i)
ri (X,Y). For the first ki+1 rounds, P defines two univariate polynomials

Ari
(X) :=

∑
y∈{0,1}ki+1

m̃ulti(ri,X, y) · W̃i+1(y) + ãddi(ri,X, y),

and
Bri

(X) :=
∑

y∈{0,1}ki+1

ãddi(ri,X, y) · W̃i+1(y).

This immediately implies that∑
x,y∈{0,1}ki+1

f (i)
ri

(x, y) =
∑

x∈{0,1}ki+1

Ari(x) · W̃i+1(x) +Bri(x).

In round j9, where j = 1, . . . , ki+1, P can compute a univariate polynomial
g(i,j)(Xj) from Ari(X), W̃i+1(X), Bri(X) as follows:

g(i,j)(Xj) :=
∑

xj+1,...,xki+1
∈{0,1}

(Ari
· W̃i+1 +Bri

)(x̄
(i)
1 , . . . , x̄

(i)
j−1, Xj , xj+1, . . . , xki+1

)

=
∑

xj+1,...,xki+1
∈{0,1}

∑
y∈{0,1}ki+1

f (i)
ri

(x̄
(i)
1 , . . . , x̄

(i)
j−1, Xj , xj+1, . . . , xki+1

, y),

(3)
where x̄

(i)
1 , . . . , x̄

(i)
j−1 ∈ F are sent by V in the previous j− 1 rounds. Since Ari

(X)

and W̃i+1(X) are multi-linear polynomials, g(i,j)(Xj) has degree 2. Then P
computes three coefficients of g(i,j)(Xj), denoted by g(i,j) := (g

(i,j)
0 , g

(i,j)
1 , g

(i,j)
2 ),

and samples b(i,j) $← F3. The interaction of round j proceeds as follows:

– P sends (g(i,j),b(i,j)) to FF
VOLE, which then returns v(i,j)

∆ := g(i,j) ·∆+b(i,j)

to V.
– Upon receiving v

(i,j)
∆ , V sends x̄

(i)
j

$← F to P.

Essentially, P commits to a polynomial g(i,j)(Xj), denoted by [[g(i,j)(·)]], from
which they can obtain [g(i,j)(α)] for any given α ∈ F. This is crucial for the
sub-prove phase, and below we show arithmetic constraints on these [[g(i,j)(·)]].
Recall that in the first round, P builds an affine line v(i,1)(x) := g(i,1) · x+b(i,1),
where g(i,1) contains coefficients of g(i,1)(X1). By definitions of g(i,1), W̃i, we
have that W̃i(ri) = g(i,1)(0) + g(i,1)(1), which gives a linear constraint: given
[W̃i(ri)], [[g

(i,1)(·)]], P needs to convince V that

W̃i(ri) = 2g
(i,1)
0 + g

(i,1)
1 + g

(i,1)
2 .

In round j ∈ [2, ki+1], P builds an affine line v(i,j)(x) := g(i,j) · x + b(i,j). By
definitions of g(i,j−1)(Xj−1), g

(i,j)(Xj) (Eq.(3)), we have that g(i,j−1)(x̄
(i)
j−1) =

9 Here the interaction where P first sends a line, and then V replies a challenge is
viewed as one round, which is consistent with our ILPZK definition (Def. 2).
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g(i,j)(0) + g(i,j)(1), which gives a linear constraint: given [[g(i,j−1)(·)]], [[g(i,j)(·)]],
P needs to convince V that

g
(i,j−1)
0 + g

(i,j−1)
1 · x̄(i)

j−1 + g
(i,j−1)
2 · (x̄(i)

j−1)
2 = 2g

(i,j)
0 + g

(i,j)
1 + g

(i,j)
2 .

Now we move on to round ki+1+j, where j = 1, . . . , ki+1, P instead computes
a univariate polynomial h(i,j)(Yj) with degree-2 simply from f

(i)
ri (X,Y):

h(i,j)(Yj) :=
∑

yj+1,...,yki+1
∈{0,1}

f (i)
ri

(x̄(i), ȳ
(i)
1 , . . . , ȳ

(i)
j−1, Yj , yj+1, . . . , yki+1), (4)

where x̄(i), ȳ
(i)
1 , . . . , ȳ

(i)
j−1 are sent by V in the previous (ki+1 + j − 1) rounds.

Similarly, P computes h(i,j) and samples b(i,ki+1+j) $← F3. The interaction of
round (ki+1 + j) proceeds as follows:

– P sends (h(i,j),b(i,ki+1+j)) to FF
VOLE, which then returns to V a v

(i,ki+1+j)
∆ :=

h(i,j) ·∆+ b(i,ki+1+j).
– Upon receiving v

(i,ki+1+j)
∆ , V sends ȳ

(i)
j

$← F to P.

Intuitively, P commits to polynomials h(i,j)(Yj) for j ∈ [1, ki+1], and below
we show arithmetic constraints on these [[h(i,j)(·)]]. Very similarly, in the round
(ki+1 + 1), we have the following linear constraint: given [[g(i,ki+1)(·)]], [[h(i,1)(·)]],
P needs to convince V that

g
(i,ki+1)
0 + g

(i,ki+1)
1 · x̄(i)

ki+1
+ g

(i,ki+1)
2 · (x̄(i)

ki+1
)2 = 2h

(i,1)
0 + h

(i,1)
1 + h

(i,1)
2 .

And in the following round (ki+1 + j), where j ∈ [2, ki+1], we have the following
linear constraint: given [[h(i,j−1)(·)]], [[h(i,j)(·)]], P needs to convince V that

h
(i,j−1)
0 + h

(i,j−1)
1 · ȳ(i)j−1 + h

(i,j−1)
2 · (ȳ(i)j−1)

2 = 2h
(i,j)
0 + h

(i,j)
1 + h

(i,j)
2 .

Note that after round 2ki+1, the prover P has committed to a polynomial
h(i,ki+1)(Yki+1

), which leads to a commitment [h(i,ki+1)(ȳ
(i)
ki+1

)]. By definition, we

have h(i,ki+1)(ȳ
(i)
ki+1

) = f
(i)
ri (x̄

(i), ȳ(i)). Suppose P has committed to W̃i+1(x̄
(i)),

W̃i+1(ȳ
(i)). According to Eq.(2), we have the following degree-2 constraint: given

[hi,ki+1(ȳ
(i)
ki+1

)], [W̃i+1(x̄
(i))], [W̃i+1(ȳ

(i))], P needs to convince V that

h(i,ki+1)(ȳ
(i)
ki+1

) = m̃ulti(ri, x̄
(i), ȳ(i)) · W̃i+1(x̄

(i)) · W̃i+1(ȳ
(i))

+ ãddi(ri, x̄
(i), ȳ(i)) ·

(
W̃i+1(x̄

(i)) + W̃i+1(ȳ
(i))

)
.

In order to move to the next stage, we could let P and V perform stage i+1 twice
on respective inputs [W̃i+1(x̄

(i))], [W̃i+1(ȳ
(i))]. However, this naive approach will

incur an exponential blow-up in the circuit depth d.
To avoid this issue, we adapt the technique proposed in GKR [19], which

allows for combining the above two sub-statements to one sub-statement i+ 1.

18



The strategy requires one more round of interaction, and employs an observation
that x̄(i), ȳ(i) ∈ Fki+1 determine an affine line L(i) such that L(i)(0) = x̄(i) and
L(i)(1) = ȳ(i). Then P can obtain a univariate polynomial q(i)(·) with degree-
ki+1 by restricting W̃i+1(·) to L(i), which satisfies that q(i)(0) = W̃i+1(x̄

(i)) and
q(i)(1) = W̃i+1(ȳ

(i)). Therefore, by P committing to q(i)(X), the two commit-
ments [W̃i+1(x̄

(i))], [W̃i+1(ȳ
(i))] can be replaced by [q(i)(0)], [q(i)(1)]. We let

P compute q(i) and sample b(i,2ki+1+1) $← Fki+1+1. Now the additional round
2ki+1 + 1 proceeds as follows:

– P sends (q(i),b(i,2ki+1+1)) to FF
VOLE, which then returns to V a v

(i,2ki+1+1)
∆ :=

q(i) ·∆+ b(i,2ki+1+1).
– Upon receiving v

(i,2ki+1+1)
∆ , V sends r(i)

$← F to P.

Now the corresponding degree-2 constraint is as follows: given [[h(i,ki+1)(·)]],
[[q(i)(·)]], P needs to convince V that

2∑
l=0

h
(i,ki+1)

l (ȳ
(i)
ki+1

)l = m̃ulti(ri, x̄
(i), ȳ(i))q

(i)
0 (

ki+1∑
l=0

q
(i)
l )+ãddi(ri, x̄

(i), ȳ(i))
(
q
(i)
0 +(

ki+1∑
l=0

q
(i)
l )

)
As for moving to the next stage, they can set ri+1 := L(i)(r(i)), with P , V locally
computing

bi+1 :=

ki+1∑
j=0

b
(i,2ki+1+1)
j · (r(i))j , vi+1 :=

ki+1∑
j=0

v
(i,2ki+1+1)
∆,j · (r(i))j ,

respectively. Note that it is supposed to hold that vi+1 = W̃i+1(ri+1) · ∆ +

bi+1, (i.e., they can obtain [W̃i+1(ri+1)] in this way). For simplicity, we denote
(v(i,1)(x), . . . ,v(i,2ki+1+1)(x)) by v(i)(x).
In the first stage, P and V need to run a setup at first. According to the
definition of ILPZK, V picks a random ∆ ∈ F and sends it to FVOLE. Jumping
ahead, P will be required to generate a line that captures the witness w before
he received challenges in the last stage. As the line is only dependent on the
witness, we let P do this at the very beginning of stage 0. Thus, the one round
of interaction for setup proceeds as follows:

– P samples b(0,0) $← Fsd , and sends (w,b(0,0)) to FF
VOLE. Then FF

VOLE returns
v
(0,0)
∆ := w ·∆+ b(0,0) to V.

– Upon receiving v
(0,0)
∆ , V sends r0

$← Fk0 to P.

Note that as in this paper we focus on the circuit satisfiability problem, the
output values of layer 0 should be all 1’s (i.e., W0 = 1 ∈ Fs0) as long as P inputs
a witness w. Hence, we let V locally set v0 = W̃0(r0) ·∆, and P locally set b0 = 0.
This completes the setup, and they can move on. For simplicity, we let v(0)(x)
also include v(0,0)(x).
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In the last stage, to complete the whole proof, P remains to convince V that
all previous affine lines v(0)(x), . . . ,v(d−1)(x) are honestly generated (i.e., run
the deferred sub-prove phases.). In addition to the arithmetic constraints we have
specified above, there is an arithmetic constraint on [W̃d(rd)] (obtained in stage
d− 1) and [Wd] (obtained in stage 0), where P needs to convince V that

W̃d(rd) =
∑

ω∈{0,1}kd

Wd(ω) · χω(rd),

which is induced by the Lagrange interpolation of Def 1.
So far we have shown the arithmetic constraints that v(0)(x), . . . ,v(d−1)(x)

need to satisfy are actually degree-2 constraints. Therefore, we can introduce
one more round of interaction to efficiently check these constraints in a batch, as
indicated in the end of Section 2.4. For simplicity, we let v(d−1)(x) include the
extra two entries for batch checking linear and multiplication constraints.

4.2 Complexity

Here we analyze the complexity of our construction in Section 4.1.
Round complexity. Our construction can be divided into d stages, with each
stage i ∈ [1, d−2] having 2ki+1+1 rounds. In particular, stage 0 has 2k1+2 rounds,
and stage d−1 has 2kd+2 rounds. Thus, there are 2+

∑d
i=1(ki+1) = O(d logS)

rounds in total.
Proof size. The proof size is the summation of length of v(0)(x), . . . ,v(d−1)(x).
For i ∈ [1, d− 2], each v(i) has length 6ki+1 + ki+1 + 1 = 7ki+1 + 1, while v(0)(x)
has length sd + 7k1 + 1, and v(d−1)(x) has length 7kd + 1 + 2. Thus, the total
proof size is O

(
sd + 2 +

∑d
i=1(7ki + 1)

)
= O(n+ d logS).

Prover time. Applying “sum-check” dominates the prover time. By Lemma 2,
for each stage i, performing a two-phase sum-check for generating sub-statements
costs prover time 2

∑ki+1

j=0 O
(
2ki+1−j

)
= O

(
2ki+1

)
= O(si+1), and according

to [33], computing the univariate polynomial q(i)(·) of degree-ki+1 can be done
in O

(
2ki+1

)
= O(si+1) time. Thus, it takes the prover overall

∑d−1
i=0 (O(si+1) +

O(si+1)) = O(S) time.
Verifier time. The verifier V needs to at least read the entire proof, which
takes time O(n+ d logS). In addition, V also needs to evaluate multi-linear
polynomials at some specific points, including computing [W̃0(r0)], [W̃d(rd)]

and m̃ulti(ri, x̄
(i), ȳ(i)), ãddi(ri, x̄(i), ȳ(i)) for each i ∈ [0, d). By Lemma 1, the

former two computations cost time in total O(n+ s0). Evaluating m̃ulti and
ãddi can be done in time O(logS) for several types of circuits [14,28], as they
are usually very sparse. Also, [19] proposed a method for log-space uniform
circuit, which takes verifier time O(d logS) by outsourcing the computation to
the prover. In summary, for layered log-space uniform circuits, V runs in time
O(n+ s0 + d logS).
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4.3 Security Proof in UC-framework

We present in Figure 3 a self-contained zero-knowledge protocol ΠF
ZKl in the

random VOLE-hybrid model, which is based on our ILPZK proof in Section 4.1.
In the offline phase, the prover P and the verifier V invoke the random

VOLE functionality FF
rVOLE, and they obtain a certain number of random VOLE

correlations (i.e., VOLE commitments of random values). Due to the linearity of
VOLE correlations, P can commit to a value w by sending δ := w − ν to V and
computing [w] := [ν] + δ, where [ν] is a random VOLE correlation.

In the online phase, P and V follow the instructions of our ILPZK construction
except that P commits to values through random VOLE instead of VOLE. For a
cleaner presentation, we design two tailored procedures for batch-checking linear
and multiplicative constraints, with details in Figure 2. In the case of checking
linear constraints, it suffices to allow V to check the value underneath a certain
commitment is zero. More specifically, given a VOLE-based commitment [x] with
Kx = x ·∆+Mx, V can check [0]

?
= [x] by P revealing Mx and checking Kx

?
= Mx.

Hence, applying this procedure would not increase the number of random VOLE
correlations. While for the case of checking multiplicative constraints, they need to
consume one random VOLE correlation. More specifically, recall the multiplicative
constraint check in Section 2.4, V needs to obtain v4(∆) so that she can complete
the verification. But directly revealing the two coefficients of v4(x) certainly
leaks information about P’s inputs. To prevent this leakage, one can mask it by
an additional entry of random VOLE. Therefore, by using the random linear
combination technique, performing the two checking procedures only consumes
one additional entry of random VOLE.

The following theorem asserts the security of our protocol ΠF
ZKl with its proof

deferred to Appendix B.1. Moreover, Theorem 3 implies Theorem 1.

Theorem 3. Our ZK protocol ΠF
ZKl UC-realizes the ZK functionality FZK in the

FF
rVOLE-hybrid model with information-theoretic malicious security. In particular,

the environment Z’s advantage is O
(

d logS
|F|

)
.

Extending to any field. Recall that random subfield VOLE allows to commit
elements of a small field Fp over a large enough extension field Fpr . Therefore,
to prove the satisfiability of a circuit C over Fp, one can substitute VOLE with
subfield VOLE for “gate-by-gate” VOLE-based ZK protocols as all wire values
are over Fp. However, for our “layer-by-layer” protocol ΠF

ZKl, the multi-linear
extensions of layers must be evaluated at Fpr points for security guarantee (hence
are over Fpr ), while the witness w is over Fp. Therefore, we intuitively hope for a
mixture of random VOLE and random subfield VOLE, where the verifier holds the
same random ∆. We formalize the required functionality as FFp,Fpr

sVOLE in Figure 11.
On top of FFp,Fpr

sVOLE, we can easily extend our ZK protocols to any field and for
completeness we present the adaption of the above protocol ΠF

ZKl in Figure 12
in Appendix D. It remains to show an efficient construction of FFp,Fpr

sVOLE. In fact,
we observe that by fixing a basis of Fpr over Fp, denoted by λ1, . . . , λr, standard
VOLE correlations can be locally computed from subfield VOLE correlations. For
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Procedure Batch-Lin: on input {[mi], [[g
(i,j)]], [[h(i,j)]]}i∈[0,d),j∈[1,ki+1].

1. For i ∈ [0, d − 1], j ∈ [1, ki+1], P and V compute ([g(i,j)(0)], [g(i,j)(1)],
[g(i,j)(x̄

(i)
j )]) and ([h(i,j)(0)], [h(i,j)(1)], [h(i,j)(ȳ

(i)
j )]).

2. The verifier V wants checks that [0]
?
= [mi] − [g(i,1)(0)] − [g(i,1)(1)], [0]

?
=

[g(i,ki+1)(x̄
(i)
ki+1

)]− [h(i,1)(0)]− [h(i,1)(1)] and [0]
?
= [g(i,j)(x̄

(i)
j )]− [g(i,j+1)(0)]−

[g(i,j+1)(1)], [0] ?
= [h(i,j)(ȳ

(i)
j )]− [h(i,j+1)(0)]− [h(i,j+1)(1)] for j ∈ [1, ki+1). For

simplicity, we naturally view these N := 2
∑d

i=1 ki constraints as ([xi], [yi], [zi])
such that zi = xi + yi should hold for all i ∈ [N ].

3. V samples λ
$← FN , and sends it to P.

4. P computes Mlin :=
∑N

i=1 λi(Mzi −Mxi −Myi), and sends it to V.
5. V computes Klin :=

∑N
i=1 λi(Kzi −Kxi −Kyi), and checks that Klin

?
= Mlin.

Procedure Batch-Mult: on input {[[q(i)(·)]], [[h(i,ki+1)(·)]]}i∈[0,d).

1. For i ∈ [0, d − 1], P and V compute [xi] := [q(i)(0)], [yi] := [q(i)(1)], [zi] :=
[h(i,ki+1)(ȳ

(i)
ki+1

)], and ai := m̃ulti(ri, x̄
(i), ȳ(i)), bi := ãddi(ri, x̄

(i), ȳ(i)).

2. V wants to check that zi
?
= aixiyi + bi(xi + yi) for all i.

3. V samples α
$← Fd and sends it to P.

4. They consume a random VOLE correlation [π] in the sense that P computes
Mmult := Mπ +

∑d−1
i=0 αi(aiMxiMyi), and

xmult := π +

d−1∑
i=0

αi(ai(yiMxi + xiMyi) + bi(Mxi +Myi)−Mzi),

while V computes

Kmult := Kπ +

d−1∑
i=0

αi(aiKxiKyi + (bi(Kxi +Kyi)−Kzi) ·∆).

5. P sends (xmult,Mmult) to V, who then checks that Kmult
?
= Mmult + xmult ·∆.

Fig. 2: Procedures for batch-checking linear and multiplicative constraints.
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Protocol ΠF
ZKl

Notations follow Section 4.1. The prover P wants to convince the verifier V that
he holds a witness w ∈ Fn such that C(w) = 1.
Offline phase

1. The prover P and the verifier V send (Init) to FF
rVOLE, and V receives ∆ ∈ F.

2. P and V send (Extend, n +
∑d

i=1(7ki + 1) + 1) to FF
rVOLE, which returns

commitments on random values, denoted by [ν], [µ], [π], where ν ∈ Fn, π ∈ F.
For simplicity, we view µ as {µi,j}i∈[0,d),j∈[7ki+1+1].

Online phase

1. The prover P and the verifier V obtain [w] (by P sending δ := w − ν to V).
2. For each layer i, P computes Wi and stores them. V sends a random r0 ∈ Fk0

to P, then they locally compute m0 := W̃0(r0) (Note that W0 = 1 ∈ Fs0).
3. For i = 0, 1, . . . , d− 1,

(a) The prover P defines the 2ki+1-variate polynomial f
(i)
ri (X,Y) :=

m̃ulti(ri,X,Y)W̃i+1(X)W̃i+1(Y) + ãddi(ri,X,Y)(W̃i+1(X) + W̃i+1(Y)).
(b) For j = 1, . . . , ki+1,

i. P computes a univariate polynomial g(i,j)(Xj) of degree-2, writing as
g
(i,j)
0 + g

(i,j)
1 ·Xj + g

(i,j)
2 ·X2

j . P sends g
(i,j)
0 − µi,3j−2, g(i,j)1 − µi,3j−1,

g
(i,j)
2 − µi,3j to V. They essentially obtain a triple of commitments

([g
(i,j)
0 ], [g

(i,j)
1 ], [g

(i,j)
2 ]), denoted by [[g(i,j)(·)]].

ii. V samples x̄
(i)
j

$← F and sends it to P.
(c) For j = 1, . . . , ki+1,

i. P computes a single variable polynomial h(i,j)(Yj) of degree 2, writing
as h(i,j)

0 +h
(i,j)
1 ·Yj +h

(i,j)
2 ·Y 2

j . P sends h(i,j)
0 −µi,3ki+1+3j−2, h

(i,j)
1 −

µi,3ki+1+3j−1, h
(i,j)
2 −µi,3ki+1+3j to V. They essentially obtain a triple

of commitments ([h
(i,j)
0 ], [h

(i,j)
1 ], [h

(i,j)
2 ]), denoted by [[h(i,j)(·)]].

ii. V samples ȳ
(i)
j

$← F and sends it to P.
(d) Let L(i) be the unique line satisfying L(i)(0) = x̄(i), L(i)(1) = ȳ(i). P

computes a univariate polynomial q(i)(X) by restricting W̃i+1 to L(i),
writing as

∑ki+1

j=0 q
(i)
j ·X

j . P sends (q(i)0 −µi,6ki+1+1, . . . , q
(i)
ki+1
−µi,7ki+1+1)

to V, and similarly, they obtain ([q
(i)
0 ], . . . , [q

(i)
ki+1

]), denoted by [[q(i)(·)]].

(e) V selects r(i)
$← F and sends it to P. P computes mi+1 := q(i)(r(i)). Then

they set ri+1 := L(i)(r(i)) ∈ Fki+1 , and compute [mi+1] := [q(i)(r(i))].
4. P and V perform the following checks.

(a) P and V run the procedure Batch-Lin in Figure 2 on input tuples
{([mi], [[g

(i,j)(·)]], [[h(i,j)(·)]])}i∈[0,d),j∈[1,ki+1].
(b) P and V run the procedure Batch-Mult in Figure 2 on input tuples
{([[q(i)(·)]], [[h(i,ki+1)(·)]])}i∈[0,d).

(c) P opens [md] −
∑

ω∈{0,1}kd [Wd(ω)] · χω(rd), where χω(·) is a Lagrange
basis as defined in Def. 1. V checks whether it is a valid opening of [0].

5. V accepts if and only P passes all the checks above. Otherwise, V rejects.

Fig. 3: Our ZK for layered arithmetic circuits in the FF
rVOLE-hybrid model.
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instance, given [x1], . . . , [xr], where x1, . . . ,xr are over Fp, the commitment of
x :=

∑r
i=1 xiλr over Fpr can be computed from [x] :=

∑r
i=1 λr · [xi]. We remark

that there exist optimizations when considering concrete instantiations of subfield
VOLE. As it is beyond the scope of paper, details of optimizations are omitted.

5 Interactive LPZK for General Arithmetic Circuits

In this section, we first describe an ILPZK proof system for proving the satisfia-
bility of general arithmetic circuits, which satisfies all properties as indicated in
Theorem 2. With this new ILPZK, we also construct a self-contained VOLE-based
ZK protocol ΠF

ZKg in Figure 4. Finally, we prove that our protocol ΠF
ZKg UC-

realizes FZK in the rVOLE-hybrid model with information-theoretic malicious
security.

5.1 Our ILPZK construction

In contrast to layered circuits, gates of generic circuits may take inputs from all
the previous layers. Due to this nature, it remained unclear over ten years how to
adapt GKR to generic circuits without an O(d) overhead induced by arranging
generic circuits into layered circuits. Virgo++ [37] is a recent breakthrough,
extending GKR to generic circuits with linear prover time, and without O(d)
overhead, from which we distill ideas. As usual, we first explicitly list notations
used in this section here.
Notations. Let C : Fsd → Fs0 be a general circuit over F of depth d, size S, and
fan-in two. We also label each layer of C from 0 to d, with 0 being the output
layer and d being the input layer. Each layer i ∈ [0, d) of C contains gates that
each takes one input from layer i+ 1 and another input from previous layer j,
where j = i + 1, . . . , d. Let Wi be the outputs of gates in layer i ∈ [0, d] and
define si := |Wi|. Let Wi,j be the subset of outputs of gates in layer j that
connect to layer i, and define si,j := |Wi,j |, for i ∈ [0, d), j ∈ [i+ 1, d]. By above
definitions, S =

∑d−1
i=0 si, and sj ≥ si,j for all j ∈ [1, d], i ∈ [0, d). W.l.o.g., we

always assume si,j = 2ki,j , and si = 2ki . Since each (add/mult) gate has only two
inputs, there are at most 2si gates (from previous layers) connecting to gates in
layer i, i.e., 2si ≥

∑d
j=i+1 si,j . We always assume that ki,i+1 is the largest among

{ki,i+1, . . . , ki,d}. We also re-define addi,j ,multi,j : {0, 1}ki+ki,i+1+ki,j → {0, 1},
satisfying addi,j(z, x, y) = 1 (multi,j(z, x, y) = 1) if and only if gate z is an
addition (multiplication) gate in layer i (corresponds to Wi(z)) that takes one
input from gate x in layer i+ 1 (corresponds to Wi,i+1(x)) and another input
from gate y in layer j (corresponds to Wi,j(y)).

We view each Wi ∈ Fsi (Wi,j ∈ Fsi,j ) as a function Wi : {0, 1}ki → F (Wi,j :
{0, 1}ki,j → F), and denote the multi-linear extension of Wi,Wi,j ,multi,j , addi,j

by W̃i, W̃i,j , m̃ulti,j , ãddi,j , respectively. With above definitions, it holds for all
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i ∈ [0, d) that

W̃i(z) =

d∑
j=i+1

∑
x∈{0,1}ki,i+1

∑
y∈{0,1}ki,j

(
m̃ulti,j(z, x, y)W̃i,i+1(x)W̃i,j(y)

+ ãddi,j(z, x, y)
(
W̃i,i+1(x) + W̃i,j(y)

))
.

(5)

Protocol Overview. The ILPZK proof for general circuits shares the same
bare-bone structure with that of Section 4, and now Eq.(5) is the key to the
layer-by-layer reduction. Observe that for layer i, performing a sum-check on
Eq.(5) would induce in total d − i + 1 sub-statements for the previous layers
i+ 1, . . . , d (in contrast to 2 sub-statements for layer i+ 1 in the layered circuit
setting). This in turn implies that when proceeding to layer i, there would be in
total i+1 sub-statements from layers 0, . . . , i−1 (in contrast to 2 sub-statements
from layer i− 1 in the layered circuit setting). Therefore, a more sophisticated
procedure of combining these sub-statements to one needs to be applied before
sum-check.

The full construction also consists of d stages, and suppose in each stage
i ∈ [0, d), the prover P and the verifier V start with a commitment [W̃i(ri)],
where ri ∈ Fki is determined by V. They run sum-check on Eq.(5) underneath
commitments, reducing to d− i+1 sub-statements for previous layers i+1, . . . , d.
Then, they aggregate all sub-statements about layer i + 1 via applying “sum-
check” on another equation (will be explained later), obtaining a commitment on
W̃i+1(ri+1). This allows P and V move to stage i+ 1.
From one statement to multiple sub-statements. Observe that directly
perform “sum-check” on Eq.(5) would incur asymptotic overhead, since there are
in total ki,i+1 +

∑d
j=i+1 ki,j variables to be summed over. To maintain a linear

time prover, we rewrite Eq.(5) as in [37], by padding each y of length ki,j to
ki,i+1(as we assume ki,i+1 is the largest among {ki,i+1, . . . , ki,d}).

W̃i(z) =
∑

x∈{0,1}ki,i+1

d∑
j=i+1

∑
y∈{0,1}ki,j

(
m̃ulti,j(z, x, y) W̃i,i+1(x) W̃i,j(y)

+ ãddi,j(z, x, y)
(
W̃i,i+1(x) + W̃i,j(y)

))
=

∑
x,y∈{0,1}ki,i+1

d∑
j=i+1

(

ki,i+1∏
l=ki,j+1

yl) ·
(
m̃ulti,j(z, x, y

(i,j))W̃i,i+1(x)W̃i,j(y
(i,j))

+ ãddi,j(z, x, y
(i,j))

(
W̃i,i+1(x) + W̃i,j(y

(i,j))
))

,

(6)
where each y(i,j) refers to the first ki,j bits of a y ∈ {0, 1}ki,i+1 . Correctness of
Eq.(6) follows from the fact that∑

y∈{0,1}ki,j

f(y) =
∑

y∈{0,1}ki,i+1

yki,j+1 · · · yki,i+1
f(y(i,j))
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holds for any f : Fki,j → F.

Then P and V apply a two-phase “sum-check” on Eq.(6) very similar to
that in Section 4, which takes O

(
2ki,i+1

)
= O(si,i+1) computation. Details

are deferred to Appendix C due to space constraint. In the end, they obtain
sub-statements [mi+1,i+1], [mi,i+1], . . . , [mi,d], where it is supposed to hold that
mi+1,i+1 = W̃i+1,i+1(x̄

(i)) and mi,j = W̃i,j(ȳ
(i,j)), for j ∈ [i+ 1, d].

Aggregate multiple sub-statements to one statement. For simplicity, we de-
fine Wi,i = Wi−1,i and ki,i = ki,i+1. Suppose for layer i, the i+1 sub-statements
from above layers are [m0,i], . . . , [mi,i], where m0,i = W̃0,i(ȳ

(0,i)), . . . ,mi−1,i =

W̃i−1,i(ȳ
(i−1,i)) and mi,i = W̃i,i(x̄

(i−1)) all hold, and ȳ(0,i), . . . , ȳ(i−1,i), x̄(i−1)

are challenges from V in previous stages. The goal is to aggregate them to one
statement for Wi.

As W0,i, . . . ,Wi,i are subsets of Wi, these [m0,i], . . . , [mi,i] can be computed
from Wi and the previous challenges. Intuitively, this computation can be
modeled as a layered arithmetic circuit Ci with private input Wi and output
(m0,i, . . . ,mi,i), on which it suffices to apply original GKR. More concisely,
observe that the evaluation of a multi-linear extension can be interpreted as
simple as an inner product, e.g., W̃j,i(ȳ

(j,i)) =
∑

ω∈{0,1}k0,i Wj,i(ω) · χω(ȳ
(j,i)),

j ∈ [0, i). So Ci essentially do the following things: select subsets of Wi, compute
expansions, and finally output the inner productions.

However, this conceptually simple approach would incur O(logS) overhead
in proof size, as computing expansions of ȳ(j,i) requires circuits of depth O(kj,i).
In fact, there exists a more efficient solution by fully exploiting the summation
structure involved in the inner-product. Define EQj,i : {0, 1}ki × {0, 1}kj,i → F,
where j ∈ [0, i), which takes as input a label z that indicates gates in layer i
(corresponds to Wi(z)), and a label y that indicates gates in layer i that connect
to layer j (corresponds to Wj,i(y)), outputs 1 if and only if they are exactly the
same gate. The following holds:

mj,i = W̃j,i(ȳ
(j,i)) =

∑
ω∈{0,1}kj,i

W̃j,i(ω) · χω(ȳ
(j,i))

=
∑

ω∈{0,1}kj,i

∑
z∈{0,1}ki

W̃i(z) · EQj,i(z, ω) · χω(ȳ
(j,i))

=
∑

z∈{0,1}ki

W̃i(z) · ẼQj,i(z, ȳ(j,i)).

(7)
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This allows to combine the sub-statements by taking a random linear combination
on Eq.(7). Let V samples α(0,i), . . . , α(i,i) $← F, we have the following.

i∑
j=0

α(j,i)mj,i︸ ︷︷ ︸
m(i)

=
∑

z∈{0,1}ki

(
α(i,i)W̃i(z)ẼQi−1,i(z, x̄

(i−1)) +

i−1∑
j=0

α(j,i)W̃i(z)ẼQj,i(z, ȳ
(j,i))

)

=
∑

z∈{0,1}ki

W̃i(z) ·
(
α(i,i)

ẼQi−1,i(z, x̄
(i−1)) +

i−1∑
j=0

α(j,i)
ẼQj,i(z, ȳ

(j,i))
)

︸ ︷︷ ︸
I(i)(z)

(8)
Note that I(i)(z) only depends on the circuit topology and randomness selected
by V, it can be locally computed by each party. Therefore, it suffices for P and
V to perform a “sum-check” on Eq.(8), and in the end, they would agree on a
commitment [mi] := [W̃i(z̄

(i))], where z̄(i) ∈ Fki is selected by V. Details are
deferred to Appendix C due to space constraint.

5.2 Complexity

Here we analyse the complexity of our ILPZK construction for general circuits.
Round complexity. Our construction can be divided into d stages, with each
stage i ∈ [1, d− 2] having 2ki,i+1 + 1+ ki+1 rounds, stage 0 having 2k0,1 + 2+ k1
rounds, and stage d − 1 having 2kd−1,d + 2 + kd rounds. Thus, there are 2 +∑d−1

i=0 (ki,i+1 + 1 + ki+1) = O(d logS) rounds in total.
Proof size. The proof size is the summation of length of sub-lines generated in
each stage i, where i ∈ [0, d). For each stage i, performing a two-phase sum-check
on Eq.(6) and a sum-check on Eq.(8) incurs length of 6ki,i+1 + 3ki+1 in total,
and committing to sub-statements incurs length of d− i+ 1. Thus, the overall
proof size is

∑d−1
i=0 (6ki,i+1 +3ki+1 + d− i+1) = O

(
n+ d2 + d logS

)
. We remark

that here the O
(
d2
)

term is always upper bounded by O(S). This is due to the
fact that only if layer i connects to layer j, where j < i, then the sub-statement
[mj,i] needs to be generated, yielding the number of sub-statements bounded by
2S. This implies that only when the circuit is very narrow and almost every two
layers are connected, then the proof size should be recognized as O(S).
Prover time. Applying “sum-check” dominates the prover time. By Lemma 2,
for each stage i, performing a two-phase sum-check for generating sub-statements
costs prover time 2

∑ki,i+1

j=0 O
(
2ki,i+1−j

)
= O

(
2ki,i+1

)
= O(si,i+1), and performing

a sum-check for combining sub-statements costs prover time
∑ki+1

j=0 O
(
2ki+1−j

)
=

O
(
2ki+1

)
= O(si+1). Thus, it takes the prover overall O(S) time.

Verifier time. By a similar argument as in Section 4.2, the verifier V runs in
time O

(
n+ s0 + d logS + d2 + T

)
, where O(T ) is the total time of evaluating

m̃ulti,j , ãddi,j and Ĩ(i). In general, V runs in time O(S).
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5.3 Security Proof in UC-framework

We present in Figure 4 a self-contained ZK protocol ΠF
ZKg in the random VOLE-

hybrid model, which is based on our ILPZK proof in Section 5.1 (and more details
can be found in Appendix C). In addition, we explicitly present two sum-check
like sub-protocols, one for generating sub-statements (ΠSC1, Figure 8), and the
other for combining sub-statements (ΠSC2, Figure 9). We also design two tailored
procedures for batch-checking linear and multiplicative constraints for this setting
in Figure 10. In each stage i, where i ∈ [0, d), protocol ΠF

ZKg sequentially invokes
ΠSC1 and ΠSC2, proceeding from layer i to layer i+1. At the end of stage d−1, P
and V perform checks on the degree-2 arithmetic constraints given by challenges
from V and the circuit. We remark that ΠF

ZKg can be also extended to support
any field, via building upon subfield VOLE.

The following theorem guarantees the security of our protocol ΠF
ZKg with its

proof deferred to Appendix B.2. Also, Theorem 4 implies Theorem 2.

Theorem 4. Our ZK protocol ΠF
ZKg UC-realizes the ZK functionality FZK in the

FF
rVOLE-hybrid model with information-theoretic malicious security. In particular,

the environment Z’s advantage is O
(

d logS
|F|

)
.
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Protocol ΠF
ZKg

Notations follow Section 5.1. The prover P wants to convince the verifier V that
he holds a witness w ∈ Fn such that C(w) = 1.
Offline phase

1. The prover P and the verifier V send (Init) to FF
rVOLE, and V receives ∆ ∈ F.

2. P and V send (Extend, n +
∑d−1

i=0 (6ki,i+1 + (d − i + 1) + 3ki+1) + 1) to
FF

rVOLE, which returns VOLE-based commitments on random values, denoted
by [ν], [µ], [ρ], [π], where ν ∈ Fn, µ viewed as {µi,j}i∈[0,d),j∈[6ki,i+1+d−i+1], ρ
viewed as {ρi,j}i∈[1,d],j∈[3ki], and π ∈ F.

Online phase

1. The prover P and the verifier V obtain [w] (by P sending δ := w − ν to V).
2. For each layer i, P computes Wi and stores them. Note that for layer 0, P

and V agree on W0 := 1 ∈ Fs0 . V picks a random r0 ∈ Fk0 and sends it to P,
then they compute m0 := W̃0(r0). For simplicity, we view m0 as [m0] in the
sense that P sets Mm0 = 0 and V sets Km0 = m0 ·∆.

3. For i = 0, 1, . . . , d− 1,
(a) Generate sub-statements from layer i. P and V run ΠC

SC1 on input i,
[µi], [mi] and ri. They obtain [mi+1,i+1] := [W̃i+1,i+1(x̄

(i))] and [mi,j ] :=

[W̃i,j(ȳ
(i,j))], where j = i+ 1, . . . , d.

(b) Combine sub-statements on layer i+ 1. P and V run ΠC
SC2 on input i+ 1,

[ρi+1], ȳ
(0,i+1), . . . , ȳ(i,i+1), x̄(i) and ([m0,i+1], . . . , [mi,i+1], [mi+1,i+1]). In

the end, they obtain [mi+1] := [W̃i+1(z̄
(i+1))], and set ri+1 := z̄(i+1).

4. P and V perform the following checks.
(a) P and V run the procedure Batch-Lin in Figure 10 on input tu-

ples {([mi], [[g
(i,j)(·)]], [[h(i,j)(·)]])}i∈[0,d),j∈[1,ki,i+1] (from Step 3.a), and

{([m(i)], [[I(i,j)(·)]])}i∈[1,d],j∈[1,ki] (from Step 3.b).
(b) P and V run the procedure Batch-Mult in Figure 10 on input tuples
{([[h(i,ki,i+1)(·)]], [mi+1,i+1], [mi,i+1], . . . , [mi,d])}i∈[0,d).

(c) P opens [md]−
∑

ω∈{0,1}kd [Wd(ω)] · χω(z̄
(d)), where χω(·) is a Lagrange

basis as defined in Def. 1. V checks whether it is a valid opening of [0].
5. V accepts if and only P passes all the checks above. Otherwise, V rejects.

Fig. 4: Our ZK for general arithmetic circuits in the FF
rVOLE-hybrid model.
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Supplementary Material

A Missing Functionalities and Constructions

Security Model. In UC framework [13], security is defined via the comparison
of an ideal world and a real world. In the real world, the parties interact with
each other following the protocol. In the ideal world, the parties interact with an
ideal functionality F that is designed to ideally realize the protocol rather than
each other. There exists an environment Z, who lives both in the real world and
the ideal world, provides inputs to the parties and can read the outputs. The
corrupted party A, controlled by the environment Z, interacts with honest parties
in the real world. We consider active adversary and static corruption, namely the
adversary A’s behavior is arbitrary and not necessarily according to the protocol
specification and corruption occurs before the protocol execution. Further, the
environment Z is allowed to interact with A at any point throughout the protocol
execution. The UC-security is guaranteed, if there is a simulator S plugged to the
ideal world that interacts with A such that the environment Z, who can observe
A’s view along with all parties’ inputs and outputs, can not distinguish S and the
honest parties. More formally, We say a protocol Π UC-realizes a functionality
F with security parameter κ, if there is a probabilistic polynomial-time (PPT)
simulator S such that no PPT environment Z can distinguish the ideal world
and the real world with advantage 1/poly(κ).
Functionalities. We present the ideal ZK functionality in Figure 5, and the
chosen-input VOLE functionality in Figure 6.

Functionality FZK

Upon receiving (prove, C,w) from a prover P and (verify, C) from a verifier V,
where the same circuit C is input by both parties, send (true) to V if C(w) = 1
and (false) otherwise.

Fig. 5: Functionality for zero-knowledge proofs for circuit satisfiability.

Sum-Check. We present the well-known sum-check protocol [24] in Figure 7.
More Details of LPZK. Security of our constructions relies on the following
Schwartz-Zippel Lemma.

Lemma 3 (Schwartz-Zippel Lemma). Let f : Fℓ → F be a non-zero ℓ-variate
polynomial of total degree at most d, then

Pr
[
f(x) = 0 | x $← Sℓ

]
≤ d

|S|
,

where S is an arbitrary set of F.
10 We remark that it is equivalent to receive a random ∆ from honest V.
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Functionality FF
VOLE

Init: Upon receiving (Init, N) from PR and (Init, N) from PS , sample ∆
$← F if

PR is honest10, and receive ∆ ∈ F from the adversary A otherwise. Send ∆ to V.
Set counter = 0, and store ∆,N . All further (Init) commands will be ignored.
Extend: Upon receiving (Extend, a,b) from PS , where a,b ∈ Fℓ, if counter+ ℓ ≤
N , add counter by ℓ and compute v∆ := a ·∆+b. If counter+ ℓ > N , reserve the
first (N − counter) entries of a,b, denoted by a′,b′, and compute v∆ := a ·∆+b.
Send v∆ to PR. If counter < N , continue and wait for next (Extend) command
from PS , otherwise halt.

Fig. 6: Ideal functionality for chosen-input VOLE over F.

Protocol Sum-check
Given an ℓ-variate polynomial f : Fℓ → F. Let degi(f) denote the degree of
f(X1, . . . , Xi, . . . , Xℓ) in variable Xi. The protocol proceeds as follows.

– At the beginning, the prover P sends to the verifier V a value H claimed to
equal the summation of f on the binary hypercube.

– In the first round, P sends to V the univariate polynomial f1(X1) of degree at
most deg1(f) claimed to equal∑

b2,...,bℓ∈{0,1}

f(X1, b2, . . . , bℓ).

V checks that H = f1(0) + f1(1). V sends a random r1
$← F to P.

– In the ith round, where 1 < i < ℓ, P sends to V the univariate polynomial
fi(Xi) of degree at most degi(f), claimed to equal∑

bi+1,...,bℓ∈{0,1}

f(r1, . . . , ri−1, Xi, bi+1, . . . , bℓ).

V checks that fi−1(ri−1) = fi(0) + fi(1). V sends a random ri
$← F to P.

– In the ℓth round, P sends to V the univariate polynomial fℓ(Xℓ) of degree at
most degℓ(f), claimed to equal

f(r1, . . . , rℓ−1, Xℓ).

V checks that fℓ−1(rℓ−1) = fℓ(0) + fℓ(1). Finally, V selects rℓ
$← F, and checks

that f(r1, . . . , rℓ) = fℓ(rℓ). V will accept if and only if all the above checks
pass. Otherwise, V rejects and aborts.

Fig. 7: Protocol for sum-check.
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We first analyse the LPZK construction for proving linear constraints in Sec-
tion 2.4. We give a deterministic extractor that extracts valid inputs w∗ :=
(w∗

1 , w
∗
2) from the line (a∗,b∗) generated by a malicious prover, and prove the ex-

tractor and protocol satisfy completeness, binding, soundness, and zero-knowledge.
The extractor is simple: it reads off w∗ as the first two entries of a∗ if and only
if the third entry of a∗ is 0.

– Completeness. If the prover is honest, we have

v3(∆) = b1 − α · b2
= (a1 − α · a2 − β) ·∆+ b1 − α · b2
= v1(∆)− α · v2(∆)− β ·∆

identically, as long as a1 = α · a2 + β.
– Binding. For any w′ ̸= w∗, the verifier’s values v∗(∆) are consistent with

w′ only if a∗i · ∆ + b∗i = a′i · ∆ + b′i, for i = 1, 2. For any choice (a′,b′) ̸=
(a∗,b∗) where these equality condition hold, there exists an index i with
a∗i ≠ a′i and b∗i ≠ b′i, and the prover can compute a corresponding guess
∆∗ = (b∗i −b′i)/(a

∗
i −a′i). Since ∆ is chosen uniformly at random, independent

of the prover, the probability that ∆ = ∆∗ is at most 1/|F|.
– Soundness. If the extracted input w∗ does not satisfy that a∗1 = α · a∗2 + β,

then the expression

v1(x)− α · v2(x)− β · x− v3(x) = (a∗1 − α · a∗2 − β) · x+ b∗1 − α · b∗2 − b∗3

is a non-trivial linear polynomial in x. This polynomial has only one root in
F, which gives a soundness error of at most 1/|F|.

– Zero-knowledge. V can simulate their view by generating v1, v2 uniformly
at random, and computing v3 = v1 − α · v2 − β −∆. We know that v1, v2 are
uniformly random because of the uniform randomness of b1, b2, respectively.

Here we analyse the LPZK construction for proving multiplicative constraints
in Section 2.4. Similarly, we give a deterministic extractor that extracts valid
inputs w∗ := (w∗

1 , w
∗
2 , w

∗
3) from the line (a∗,b∗) generated by a malicious prover,

and prove the extractor and protocol satisfy completeness, binding, soundness,
and zero-knowledge. The extractor is simple: it reads off w∗ as the first three
entries of a∗.

– Completeness. If the prover is honest, we have

v4(∆) = (b1a2 + a1b2 − b3) ·∆+ b1b2

= (a1a2 − a3) ·∆2 + (b1a2 + a1b2 − b3) ·∆+ b1b2

= (a1 ·∆+ b1) · (a2 ·∆+ b2)− (a3 ·∆+ b3) ·∆
= v1(∆) · v2(∆)− v3(∆) ·∆

identically, as long as a3 = a1 · a2.
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– Binding. For any w′ ̸= w∗, the verifier’s values v∗(∆) are consistent with
w′ only if a∗i ·∆+ b∗i = a′i ·∆+ b′i, for i = 1, 2, 3. For any choice (a′,b′) ̸=
(a∗,b∗) where these equality condition hold, there exists an index i with
a∗i ≠ a′i and b∗i ≠ b′i, and the prover can compute a corresponding guess
∆∗ = (b∗i −b′i)/(a

∗
i −a′i). Since ∆ is chosen uniformly at random, independent

of the prover, the probability that ∆ = ∆∗ is at most 1/|F|.
– Soundness. If the extracted input w∗ does not satisfy that a∗3 = a∗1 · a∗2,

then the expression

v1(x)v2(x)−v3(x)x−v4(x) = (a∗1a
∗
2−a∗3)x2+(b∗1a

∗
2+a∗1b

∗
2−b∗3−a∗4)x+b∗1b

∗
2−b∗4

is a non-trivial degree-2 polynomial in x. This polynomial has at most two
roots in F, which gives a soundness error of at most 2/|F|.

– Zero-knowledge. V can simulate their view by generating v1, v2, v3 uni-
formly at random, and computing v4 = v1v2− v3 ·∆. We know that v1, v2, v3
are uniformly random because of the uniform randomness of b1, b2, b3, respec-
tively.

The above two checks admit LPZK constructions for checking arbitrary
degree-2 constraints. Let f(X) be an ℓ-variate polynomial of total degree-2 that
captures a general degree-2 relation on a, i.e., f(a) = 0. This implies a degree-2
relation on v = a · x+ b, written by f̂(v) = f(a) · x2 + f ′(a,b) · x+ f ′′(a,b),
where f̂(·) is obtained by multiplying x to the linear terms of f(·), and x2 to
the constant term of f(·), and f ′(·), f ′′(·) are degree-2 multi-variate polynomials
determined by f(·). Then it suffices for P to define an additional entry with
vℓ+1(x) := f ′(a,b) · x + f ′′(a,b), and V can check by f̂(v1(∆), . . . , vℓ(∆))

?
=

vℓ+1(∆), incurring a soundness error of at most 2/|F| by Lemma 3.

B Missing Protocols & Proofs

B.1 Security Proof for Layered Circuits

Theorem 5 (Theorem 3, re-stated). Our ZK protocol ΠF
ZKl UC-realizes the

ZK functionality FZK (for proving satisfiability of layered circuits) in the FF
rVOLE-

hybrid model with information-theoretic malicious security. In particular, the
environment Z’s advantage is O

(
d logS
|F|

)
.

Proof. Completeness. Completeness directly follows our ILPZK construction
in Section 4.1 and is omitted here.
Security. We divide our proof into two parts. First, we consider P is corrupted,
then we consider V is corrupted. In each case, we build a PPT simulator S to
interact with the corrupted party in the ideal world, such that the environment
Z can distinguish the two worlds with advantage at most 5N+2d+3

|F| , where N :=∑d
i=1 ki = O(d logS).

Corrupted P: S interacts with the adversary A as follows:
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1. In the offline phase, S emulates FF
rVOLE by recording M,x ∈ Fn+d+1+7N re-

ceived from A. Parse M as {{M
g
(i,j)
l

,M
h
(i,j)
l

}j∈[1,ki+1],l∈[0,2], {Mq
(i)
l

}l∈[0,ki+1]}i∈[0,d),
{Mwi}i∈[1,n] and M∗. Parse x as {{x

g
(i,j)
l

, x
h
(i,j)
l

}j∈[1,ki+1],l∈[0,2], {xq
(i)
l

}l∈[0,ki+1]}i∈[0,d),
{xwi}i∈[1,n] and x∗.

2. At the beginning of the online phase, upon receiving δ ∈ Fn from A, S
computes ŵi := xwi + δi, for i ∈ [1, n]. Then S samples r0

$← Fk0 and sends
it to A. As C is public, S sets W0 := 1 ∈ Fs0 and computes m0 := W̃0(r0).

3. For stage i ∈ [0, d), S proceeds as follows:

(a) S samples x̄(i), ȳ(i) $← Fki+1 .

(b) For j = 1, . . . , ki+1, upon receiving {δ
g
(i,j)
l

}l=0,1,2 from A, S sends x̄
(i)
j

to A. S computes ĝ(i,j)(x̄
(i)
j ) :=

∑2
l=0(xg

(i,j)
l

+ δ
g
(i,j)
l

) · (x̄(i)
j )l, ĝ(i,j)(0) :=

x
g
(i,j)
0

+ δ
g
(i,j)
0

, and ĝ(i,j)(1) :=
∑2

l=0(xg
(i,j)
l

+ δ
g
(i,j)
l

). Also S computes

M̂
g(i,j)(x̄

(i)
j )

:=
∑2

l=0 Mg
(i,j)
l

·(x̄(i)
j )l, M̂g(i,j)(0) := M

g
(i,j)
0

, and M̂g(i,j)(1) :=∑2
l=0 Mg

(i,j)
l

.

(c) For j = 1, . . . , ki+1, upon receiving {δ
h
(i,j)
l

}l∈[0,2] from A, S sends ȳ
(i)
j to

A. S computes ĥ(i,j)(ȳ
(i)
j ) :=

∑2
l=0(xh

(i,j)
l

+ δ
h
(i,j)
l

) · (ȳ(i)j )l, ĥ(i,j)(0) :=

x
h
(i,j)
0

+ δ
h
(i,j)
0

, and ĥ(i,j)(1) :=
∑2

l=0(xh
(i,j)
l

+ δ
h
(i,j)
l

). Also S computes

M̂
h(i,j)(ȳ

(i)
j )

:=
∑2

l=0 Mh
(i,j)
l

·(ȳ(i)j )l, M̂h(i,j)(0) := M
h
(i,j)
0

, and M̂h(i,j)(1) :=∑2
l=0 Mh

(i,j)
l

.

(d) Upon receiving {δ(i)l }l∈[0,ki+1] from A, S samples r(i)
$← F and sends it to

A. S defines the unique line L(i) such that L(i)(0) = x̄(i) and L(i)(1) =

ȳ(i). S computes ri+1 := L(i)(r(i)) ∈ Fki+1 . S computes q̂(i)(0) := δ
(i)
0 +

x
q
(i)
0

, q̂(i)(1) :=
∑ki+1

l=0 (δ
(i)
l + x

q
(i)
l

), and m̂i+1 :=
∑ki+1

l=0 (δ
(i)
l + x

q
(i)
l

) ·

(r(i))l. Also, S computes M̂q(i)(0) := M̂
q
(i)
0

, M̂q(i)(1) :=
∑ki+1

l=0 M
q
(i)
l

, and

M̂mi+1
:=

∑ki+1

l=0 M
q
(i)
l

· (r(i))l.

4. Emulating the Batch-Lin procedure. There are 2N linear constraints. S
samples λ $← F2N and sends it to A. S parses λ as {λi,j}i∈[0,d−1],j∈[0,2ki+1−1],
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and computes M̂lin as follows:

M̂lin : =

d−1∑
i=0

ki+1−1∑
j=1

λi,j(M̂g(i,j)(x̄
(i)
j )
− M̂g(i,j+1)(0) − M̂g(i,j+1)(1))

+

d−1∑
i=0

ki+1−1∑
j=1

λi,ki+1+j(M̂h(i,j)(ȳ
(i)
j )
− M̂h(i,j+1)(0) − M̂h(i,j+1)(1))

+

d−1∑
i=0

λi,0(M̂mi
− M̂g(i,1)(0) − M̂g(i,1)(1))

+

d−1∑
i=0

λi,ki+1(M̂g(i,ki+1)(x̄
(i)
ki+1

)
− M̂h(i,1)(0) − M̂h(i,1)(1)).

Upon receiving Mlin from A, S checks that Mlin
?
= M̂lin. S also computes x̂lin

as follows:

x̂lin : =

d−1∑
i=0

ki+1−1∑
j=1

λi,j(ĝ
(i,j)(x̄

(i)
j )− ĝ(i,j+1)(0)− ĝ(i,j+1)(1))

+

d−1∑
i=0

ki+1−1∑
j=1

λi,ki+1+j(ĥ
(i,j)(ȳ

(i)
j )− ĥ(i,j+1)(0)− ĥ(i,j+1)(1))

+

d−1∑
i=0

λi,0(m̂i − ĝ(i,1)(0)− ĝ(i,1)(1))

+

d−1∑
i=0

λi,ki+1
(ĝ(i,ki+1)(x̄

(i)
ki+1

)− ĥ(i,1)(0)− ĥ(i,1)(1)).

S checks that x̂lin
?
= 0.

5. Emulating the Batch-Mult procedure. There are d multiplicative constraints.
S samples α ∈ Fd and sends it to A, S computes x̂mult, M̂mult as follows:

M̂mult := M∗ +

d−1∑
i=0

αi ·
(
m̃ulti(ri, x̄

(i), ȳ(i)) · M̂q(i)(0) · M̂q(i)(1)

)
,

and

x̂mult : = x∗ +

d−1∑
i=0

αi ·
(
m̃ulti(ri, x̄

(i), ȳ(i))
(
q̂(i)(0)M̂q(i)(0) + q̂(i)(1)M̂q(i)(1)

)
+ ãddi(ri, x̄

(i), ȳ(i))(M̂q(i)(0) + M̂q(i)(1))− M̂
h(i,ki+1)(ȳ

(i)
ki+1

)

)
.

Upon receiving (xmult,Mmult) from A, S checks that xmul
?
= x̂mult and

Mmult
?
= M̂mult.
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6. Emulating the opening of [0]. S computes

M̂0 : = M̂md
−

∑
ω∈{0,1}kd

M̂Wd(ω) · χω(rd),

x̂0 : = m̂d −
∑

ω∈{0,1}kd

Ŵd(ω) · χω(rd),

S checks that x̂0
?
= 0. Upon receiving M0 from A, S checks that M̂0

?
= M0.

7. If A passes all the checks above, S sends ŵ to FZK.

(I) We first claim that if A passes the checks of S, then an honest verifier V would
always accept. In step 4, 5 and 6, one can view S is running an honest prover
P’s program to produce M̂lin, M̂mult, x̂mult, M̂0 based on the previous generated
transcripts. Therefore, checks of S guarantee that Mlin,Mmult, xmult,M0 sent by
A are honestly generated from these transcripts. By linear homomorphism of
VOLE-based commitments, it should always hold that K̂lin = M̂lin + x̂lin · ∆,
K̂mult = M̂mult + x̂mult ·∆, and K̂0 = M̂0 + x̂0 ·∆ for K̂lin, K̂mult, K̂0 computed
by an honest V based on the same transcripts. Since xlin, x0 are supposed to
be zero, xlin, x0 do not need to be transferred, and it suffices for S to check
that x̂lin

?
= 0, and x0

?
= 0. More specifically, we already show that if Mlin =

M̂lin,Mmult = M̂mult, xmult = x̂mult, x̂lin = 0, M0 = M̂0 and x̂0 = 0, then
K̂lin = Mlin, K̂0 = M0 and K̂mult = Mmult + xmult ·∆. This completes the claim.

(II) We consider the case that A passes the checks of S with ŵ such that
C(ŵ) ̸= 1. Recall that we use two random linear combination checks to batch-
check 2N linear constraints and d multiplicative constrains, respectively. By the
well-known Schwartz-Zippel Lemma, if there is some tuple that dissatisfies the
linear (multiplicative) constraint, then A will pass the linear (multiplicative)
constraint batch-check of S with advantage at most 1/|F|. By a union bound, the
random linear combination procedure increases the advantage of A by at most
2/|F|. From now on, we can assume that all the linear (multiplicative) constraints
are satisfied, with ŵ satisfying C(ŵ) ̸= 1. This allows us to bound the soundness
error in a very similar way to that in the GKR protocol [19], since S can be
viewed as a special “GKR verifier”! We sketch the idea of GKR soundness analysis
below.

Suppose the prover of the GKR protocol begins with a false ŵ such that
C(ŵ) ̸= 1, then the verifier will accept only if there is at least one round i in
which the following occurs. The prover sends a univariate polynomial that differs
from the prescribed polynomial but they agree on a random point later chosen by
the verifier. Within the jth invocation of the sum-check protocol in round i of
the GKR protocol, the prover sends a degree-2 polynomial, thus he has advantage
at most 2/|F| by the Schwartz-Zippel Lemma. In the end of round i of the GKR
protocol, the prover sends a degree-ki+1 polynomial, thus he has advantage at
most ki+1/|F|. By a union bound, the soundness error of the GKR protocol is
upper bounded by O(d log |C|/|F|).
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Let us turn back to our case. We first observe that given M ∈ Fn+d+1+7N ,
those M̂ are determined by the randomness chosen by S. Therefore, A has no
advantage at fooling S about linear constraints on M̂. In addition, we note that S
differs from an original GKR verifier in the last sum-check of each stage i. In more
detail, the GKR verifier checks f (i,ki+1)

ri (ȳ
(i)
ki+1

)
?
= m̃ulti(ri, x̄

(i), ȳ(i))q(i)(0)q(i)(1)+

ãddi(ri, x̄
(i), ȳ(i))(q(i)(0) + q(i)(1)) directly, while we instead apply a checking

multiplicative constraints procedure implied by Eq.(1). Again by the Schwartz-
Zippel Lemma, this incurs a soundness error 2/|F| in each stage (thus 2d/|F| for d
stages by a union bound). The advantage of A at fooling S about linear constraints
on x̂ follows by the soundness of GKR protocol. Fooling S in each round j of stage
i, where j ∈ [1, 2ki+1] (e.g., by providing g′(i,j) ≠ g(i,j) such that g′(i,j)(x̄(i)

j ) =

g(i,j)(x̄
(i)
j )) succeeds with probability at most 2

|F| by the Schwartz-Zippel Lemma.
In addition, fooling S by providing a q′(i) ≠ q(i) such that q′(i)(r(i)) = q(i)(r(i))

succeeds with probability at most ki+1

|F| by the Schwartz-Zippel Lemma. These
together lead to A’s advantage at most 5N/|F|. By a union bound, A’s advantage
at this condition is upper bounded by (5N + 2d)/|F|.

(III) Finally, we consider that A fails to pass the checks of S with ŵ such that
C(ŵ) ̸= 1, but succeeds to pass the check of a honest verifier. This is essentially
due to the statistical binding property of the VOLE-based commitments. Namely,
in the opening phase, A can open a committed value [x] to a value x′ ̸= x with
probability at most 1/|F| by guessing ∆ of V.

By a union bound, the environment Z can distinguish between the real world
and the ideal world with advantage at most (5N + 2d+ 3)/|F|.

Corrupted V: If S receives false from FZK, then it just aborts. Otherwise, S
interacts with the adversary A as follows:

1. In the offline phase, S emulates FF
rVOLE by recording ∆ and K ∈ Fn+d+1+7N

received from A. Parse K as {{K
g
(i,j)
l

,K
h
(i,j)
l

}j∈[1,ki+1],l∈[0,2], {Kq
(i)
l

}l∈[0,ki+1]}i∈[0,d−1],
{Kwi}i∈[1,n] and K∗.

2. At the beginning of the online phase, S samples a random δ
$← Fn and sends

it to A, then S waits until receiving r0 ∈ Fk0 from A. Note that as C is
public, S sets W0 := 1 ∈ Fs0 and computes m0 := W̃0(r0). S computes
K̂m0 := m0 ·∆, and K̂wi := Kwi + δi ·∆, for i = 1, . . . , n.

3. For i = 0, 1, . . . , d− 1, S proceeds as follows:

(a) S picks random polynomials g(i,j)(Xj) =
∑2

l=0 g
(i,j)
l ·X l

j and h(i,j)(Yj) =∑2
l=0 h

(i,j)
l ·Y l

j , by independently choosing their three coefficients uniformly
at random, where j ∈ [1, ki+1].

(b) For j = 1, . . . , ki+1, S sends g(i,j)0 , g
(i,j)
1 , g

(i,j)
2 to A. S waits until receiving

x̄
(i)
j from A. Then S sets K̂g(i,j)(0) := K

g
(i,j)
0

+ g
(i,j)
0 · ∆, K̂g(i,j(1) :=∑2

l=0 Kg
(i,j)
l

+g
(i,j)
l ·∆, and K̂

g(i,j)(x̄
(i)
j )

:=
∑2

l=0(Kg
(i,j)
l

+g
(i,j)
l ·∆)·(x̄(i)

j )l.
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(c) For j = 1, . . . , ki+1, S sends h
(i,j)
0 , h

(i,j)
1 , h

(i,j)
2 to A. S waits until receiv-

ing ȳ
(i)
j from A. Then S sets K̂h(i,j)(0) := K

h
(i,j)
0

+ h
(i,j)
1 ·∆, K̂h(i,j)(1) :=∑2

l=0 Kh
(i,j)
l

+h
(i,j)
l ·∆, and K̂

h(i,j)(ȳ
(i)
j )

:=
∑2

l=0(Kh
(i,j)
l

+h
(i,j)
l ·∆)·(ȳ(i)j )l.

(d) S picks a random univariate polynomial q(i)(·) over F of degree at most
ki+1, by independently choosing its ki+1 + 1 coefficients uniformly at
random. S sends coefficients of q(i)(·) (denoted by {q(i)l }l∈[0,ki+1]) to A. S
defines the unique line L(i) such that L(i)(0) = x̄(i) and L(i)(1) = ȳ(i). S
records r(i) ∈ F received from A and computes ri+1 := L(i)(r(i)) ∈ Fki+1 .
S also computes K̂q(i)(0) := K

q
(i)
0

+ q
(i)
0 · ∆, K̂q(i)(1) :=

∑ki+1

l=0 (K
q
(i)
l

+

q
(i)
l ·∆), K̂mi :=

∑ki+1

l=0 (K
q
(i)
l

+ q
(i)
l ·∆) · (r(i))l.

4. Emulating the Batch-Lin procedure. There are 2N linear constraints. Upon
receiving λ ∈ F2N from A, S parses λ as {λi,j}i∈[0,d−1],j∈[0,2ki+1−1], and
computes K̂lin as follows:

K̂lin : =

d−1∑
i=0

ki+1−1∑
j=1

λi,j(K̂g(i,j)(x̄
(i)
j )
− K̂g(i,j+1)(0) − K̂g(i,j+1)(1))

+

d−1∑
i=0

ki+1−1∑
j=1

λi,ki+1+j(K̂h(i,j)(ȳ
(i)
j )
− K̂h(i,j+1)(0) − K̂h(i,j+1)(1))

+

d−1∑
i=0

λi,0(K̂mi
− K̂g(i,1)(0) − K̂g(i,1)(1))

+

d−1∑
i=0

λi,ki+1(K̂g(i,ki+1)(x̄
(i)
ki+1

)
− K̂h(i,1)(0) − K̂h(i,1)(1))

Then S sends K̂lin to A.
5. Emulating the Batch-Mult procedure. There are d linear constraints. Upon

receiving α ∈ Fd from A, S computes K̂mult as follows:

K̂mult : = K∗ +

d−1∑
i=0

αi ·
(
m̃ulti(ri, x̄

(i), ȳ(i))K̂q(i)(0)K̂q(i)(1)

+
(
ãddi(ri, x̄

(i), ȳ(i))(K̂q(i)(0) + K̂q(i)(1))− K̂
h(i,ki+1)(ȳ

(i)
ki+1

)

)
·∆

)
.

Then S samples a random x̂mult
$← F and computes M̂mult := K̂mult−x̂mult ·∆.

In the end, S sends (x̂mult, M̂mult) to A.
6. Emulating the opening of [0]. S computes

K̂0 := K̂md
−

∑
ω∈{0,1}kd

K̂Wd(ω) · χω(rd).

Then S sends K̂0 to A.
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Recall that messages sent by an honest prover during the “commit” phases
(i.e., step 1 and step 3 in ΠF

ZKl) are uniformly random as they are masked by
µi,j . Also, messages for performing multiplicative checks, i.e., (xmult,Mmult), are
uniformly random under the condition Kmult = xmult ·∆+Mmult. Besides, as for
linear checks, K̂lin, K̂0 from S are equal to Mlin,M0 from an honest P. Therefore,
the above simulation is perfect. This completes the proof. ⊓⊔

B.2 Security Proof for General Circuits

Theorem 6 (Theorem 4, restated). Our ZK protocol ΠF
ZKg UC-realizes the

ZK functionality FZK in the FF
rVOLE-hybrid model with information-theoretic

malicious security. In particular, the environment Z’s advantage is O
(

d logS
|F|

)
.

Proof. The proof shares many similarities with that of Theorem 3, and for com-
pleteness, we still provide a detailed proof here. Completeness. Completeness
follows our ILPZK construction in Section 5.1, and is omitted here.
Security. We divide our proof into two parts. First, we consider P is corrupted,
then we consider V is corrupted. In each case, we build a PPT simulator S to
interact with the corrupted party in the ideal world, such that the environment
Z can distinguish the two worlds with advantage at most 4N1+2N2+2d+3

|F| , where

N1 :=
∑d−1

i=0 ki,i+1 = O(d logS) and N2 :=
∑d

i=1 ki = O(d logS)
Corrupted P: S interacts with the adversary A as follows:

1. In the offline phase, S emulates FF
rVOLE by recording M,x ∈ Fn+d(d+3)/2+1+6N1+3N2

received from A. Parse M as
{
{M

g
(i,j)
l

,M
h
(i,j)
l

}j∈[1,ki,i+1], {MI
(i+1,j)
l

}j∈[1,ki+1]

}
i∈[0,d),l∈[0,2]

,{
{Mmi,j

}j∈[i+1,d], {Mmi+1,i+1
}
}
i∈[0,d)

, {Mwi
}i∈[1,n] and M∗. Parse x as x∗,{

{x
g
(i,j)
l

, x
h
(i,j)
l

}j∈[1,ki+1], {xI
(i,j)
l

}j∈[1,ki+1]

}
i∈[0,d),l∈[0,2]

,
{
{xmi,j

}j∈[i+1,d], {xmi+1,i+1
}
}
i∈[0,d)

,
and {xwi

}i∈[1,n].
2. At the beginning of the online phase, upon receiving δ ∈ Fn from A, S

computes ŵi := xwi + δi, for i ∈ [1, n]. Then S samples r0
$← Fk0 and sends

it to A. As C is public, S sets W0 := 1 ∈ Fs0 and computes m0 := W̃0(r0).
3. For stage i ∈ [0, d), S proceeds as follows:

(a) S samples x̄(i), ȳ(i) $← Fki,i+1 , and z̄(i+1) $← Fki+1 .
(b) For j = 1, . . . , ki,i+1, upon receiving {δ

g
(i,j)
l

}l=0,1,2 from A, S sends x̄
(i)
j

to A. S computes ĝ(i,j)(x̄
(i)
j ) :=

∑2
l=0(xg

(i,j)
l

+ δ
g
(i,j)
l

) · (x̄(i)
j )l, ĝ(i,j)(0) :=

x
g
(i,j)
0

+ δ
g
(i,j)
0

, and ĝ(i,j)(1) :=
∑2

l=0(xg
(i,j)
l

+ δ
g
(i,j)
l

). Also S computes

M̂
g(i,j)(x̄

(i)
j )

:=
∑2

l=0 Mg
(i,j)
l

·(x̄(i)
j )l, M̂g(i,j)(0) := M

g
(i,j)
0

, and M̂g(i,j)(1) :=∑2
l=0 Mg

(i,j)
l

.

(c) For j = 1, . . . , ki,i+1, upon receiving {δ
h
(i,j)
l

}l∈[0,2] from A, S sends ȳ
(i)
j

to A. S computes ĥ(i,j)(ȳ
(i)
j ) :=

∑2
l=0(xh

(i,j)
l

+ δ
h
(i,j)
l

) · (ȳ(i)j )l, ĥ(i,j)(0) :=

x
h
(i,j)
0

+ δ
h
(i,j)
0

, and ĥ(i,j)(1) :=
∑2

l=0(xh
(i,j)
l

+ δ
h
(i,j)
l

). Also S computes
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M̂
h(i,j)(ȳ

(i)
j )

:=
∑2

l=0 Mh
(i,j)
l

·(ȳ(i)j )l, M̂h(i,j)(0) := M
h
(i,j)
0

, and M̂h(i,j)(1) :=∑2
l=0 Mh

(i,j)
l

.

(d) Upon receiving δmi+1,i+1
, δi,i+1, . . . , δi,d from A, S samples random α(i+1,i+1),

α(i,i+1), . . . , α(i,d) $← F, and sends them to A. S computes m̂i+1,i+1 :=
xmi+1,i+1

+ δmi+1,i+1
, and m̂i,i+1 := xmi,i+1

+ δmi,i+1
, . . . , m̂i,d := xmi,d

+
δmi,d

.

(e) For j = 1, . . . , ki+1, upon receiving {δ
I
(i+1,j)
l

}l∈[0,2] from A, S sends z̄(i+1)
j

to A. S computes Î(i+1,j)(z̄
(i+1)
j ) :=

∑2
l=0(xI

(i+1,j)
l

+ δ
I
(i+1,j)
l

) · (z̄(i+1)
j )l,

Î(i+1,j)(0) := x
I
(i+1,j)
0

+ δ
I
(i+1,j)
0

, and Î(i+1,j)(1) :=
∑2

l=0(xI
(i+1,j)
l

+

δ
I
(i+1,j)
l

). Also S computes M̂
I(i+1,j)(z̄

(i+1)
j )

:=
∑2

l=0 MI
(i+1,j)
l

· (z̄(i+1)
j )l,

M̂I(i+1,j)(0) := M
I
(i+1,j)
0

, and M̂I(i+1,j)(1) :=
∑2

l=0 MI
(i+1,j)
l

.

(f) Finally, S computes m̂i+1 := Î(i+1,ki+1)(z̄
(i+1)
ki+1

) ·
(
I(i+1)(z̄

(i+1)
j )

)−1, and

M̂mi+1
:= M̂

I(i+1,ki+1)(z̄
(i+1)
ki+1

) ·
(
I(i+1)(z̄(i+1))

)−1.

4. Emulating the Batch-Lin procedure. There are 2N1+N2 linear constraints. S
samples λ $← F2N1+N2 and sends it to A. S parses λ as {λi,j}i∈[0,d),j∈[0,2ki,i+1+ki+1),
and computes M̂lin as follows:

M̂lin : =

d−1∑
i=0

ki,i+1−1∑
j=1

λi,j(M̂g(i,j)(x̄
(i)
j )
− M̂g(i,j+1)(0) − M̂g(i,j+1)(1))

+

d−1∑
i=0

ki,i+1−1∑
j=1

λi,ki,i+1+j(M̂h(i,j)(ȳ
(i)
j )
− M̂h(i,j+1)(0) − M̂h(i,j+1)(1))

+

d−1∑
i=0

ki+1−1∑
j=1

λi,j(M̂I(i+1,j)(z̄
(i+1)
j )

− M̂I(i+1,j+1)(0) − M̂I(i+1,j+1)(1))

+

d−1∑
i=0

λi,0(M̂mi
− M̂g(i,1)(0) − M̂g(i,1)(1))

+

d−1∑
i=0

λi,ki,i+1
(M̂

g(i,ki+1)(x̄
(i)
ki+1

)
− M̂h(i,1)(0) − M̂h(i,1)(1))

+

d−1∑
i=0

λi,2ki,i+1

(
(

i+1∑
j=0

α(j,i+1) · M̂mj,i+1)− M̂I(i+1,1)(0) − M̂I(i+1,1)(1)

)
.
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Upon receiving Mlin from A, S checks that Mlin
?
= M̂lin. S also computes x̂lin

as follows:

x̂lin : =

d−1∑
i=0

ki,i+1−1∑
j=1

λi,j(ĝ
(i,j)(x̄

(i)
j )− ĝ(i,j+1)(0)− ĝ(i,j+1)(1))

+

d−1∑
i=0

ki,i+1−1∑
j=1

λi,ki,i+1+j(ĥ
(i,j)(ȳ

(i)
j )− ĥ(i,j+1)(0)− ĥ(i,j+1)(1))

+

d−1∑
i=0

ki+1−1∑
j=1

λi,j(Î
(i+1,j)(z̄

(i+1)
j )− Î(i+1,j+1)(0)− Î(i+1,j+1)(1))

+

d−1∑
i=0

λi,0(m̂i − ĝ(i,1)(0)− ĝ(i,1)(1))

+

d−1∑
i=0

λi,ki,i+1
(ĝ(i,ki+1)(x̄

(i)
ki+1

)− ĥ(i,1)(0)− ĥ(i,1)(1))

+

d−1∑
i=0

λi,2ki,i+1

(
(

i+1∑
j=0

α(j,i+1) · m̂j,i+1)− Î(i+1,1)(0)− Î(i+1,1)(1)
)
.

S checks that x̂lin
?
= 0.

5. Emulating the Batch-Mult procedure. There are d multiplicative constraints.
Let ri denote z̄(i) ∈ Fki for i ∈ [1, d]. S samples β ∈ Fd and sends it to A,
S computes x̂mult, M̂mult as follows:

M̂mult := M∗+

d−1∑
i=0

βi

( d∑
j=i+1

ki,i+1∏
l=ki,j+1

(ȳ
(i)
l )

(
m̃ulti,j(ri, x̄

(i), ȳ(i,j))M̂mi+1,i+1M̂mi,j

))
,

and

x̂mult : = x∗ +

d−1∑
i=0

βi ·
( d∑

j=i+1

ki,i+1∏
l=ki,j+1

(ȳ
(i)
l )·

(
m̃ulti,j(ri, x̄

(i), ȳ(i,j)) · m̂i+1,i+1 · m̂i,j

+ ãddi,j(ri, x̄
(i), ȳ(i,j)) · (m̂i+1,i+1 + m̂i,j)

))
.

Upon receiving (xmult,Mmult) from A, S checks that xmul
?
= x̂mult and

Mmult
?
= M̂mult.

6. Emulating the opening of [0]. S computes

M̂0 : = M̂md
−

∑
ω∈{0,1}kd

M̂Wd(ω) · χω(rd),

x̂0 : = m̂d −
∑

ω∈{0,1}kd

Ŵd(ω) · χω(rd),
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S checks that x̂0
?
= 0. Upon receiving M0 from A, S checks that M̂0

?
= M0.

7. If A passes all the checks above, S sends ŵ to FZK.

(I) We first claim that if A passes the checks of S, then an honest verifier V would
always accept. In step 4, 5 and 6, one can view S is running an honest prover
P’s program to produce M̂lin, M̂mult, x̂mult, M̂0 based on the previous generated
transcripts. Therefore, checks of S guarantee that Mlin,Mmult, xmult,M0 sent by
A are honestly generated from these transcripts. By linear homomorphism of
VOLE-based commitments, it should always hold that K̂lin = M̂lin + x̂lin · ∆,
K̂mult = M̂mult + x̂mult ·∆, and K̂0 = M̂0 + x̂0 ·∆ for K̂lin, K̂mult, K̂0 computed
by an honest V based on the same transcripts. Since xlin, x0 are supposed to
be zero, xlin, x0 does not need to be transferred, and it suffices for S to check
that x̂lin

?
= 0, and x0

?
= 0. More specifically, we already show that if Mlin =

M̂lin,Mmult = M̂mult, xmult = x̂mult, x̂lin = 0, M0 = M̂0 and x̂0 = 0, then
K̂lin = Mlin, K̂0 = M0 and K̂mult = Mmult + xmult ·∆. This completes the claim.

(II) We consider the case that A passes the checks of S with ŵ such that
C(ŵ) ̸= 1. Recall that we use two random linear combination checks to batch-
check 2N1 +N2 linear constraints and d multiplicative constrains, respectively.
By the well-known Schwartz-Zippel Lemma, if there is some tuple that dissatisfies
the linear (multiplicative) constraint, then A will pass the linear (multiplicative)
constraint batch-check of S with advantage at most 1/|F|. By a union bound, the
random linear combination procedure increases the advantage of A by at most
2/|F|. From now on, we can assume that all the linear (multiplicative) constraints
are satisfied, with ŵ satisfying C(ŵ) ̸= 1. This allows us to bound the soundness
error in a very similar way to that in the GKR protocol [19], since S can be
viewed as a special “GKR verifier”!

In this case, we first observe that given M ∈ Fn+d(d+3)/2+1+6N1+3N2 , those M̂
are determined by the randomness chosen by S. Therefore, A has no advantage at
fooling S about linear constraints on M̂. In addition, we note that we essentially
apply a checking multiplicative constraints procedure implied by Eq.(6) for each
stage i. Again by the Schwartz-Zippel Lemma, this incurs a soundness error
2/|F| in each stage (thus 2d/|F| for d stages by a union bound). The advantage
of A at fooling S about linear constraints on x̂ follows by the soundness of
sum-check protocol. Since at each stage i of our protocol, there are 2ki,i+1 + ki+1

invocations of sum-check protocol, these together lead to A’s advantage at most
(4N1 + 2N2)/|F|. By a union bound, A’s advantage at this condition is upper
bounded by (4N1 + 2N2 + 2d)/|F|.

(III) Finally, we consider that A fails to pass the checks of S with ŵ such that
C(ŵ) ̸= 1, but succeeds to pass the check of a honest verifier. This is essentially
due to the statistical binding property of the VOLE-based commitments. Namely,
in the opening phase, A can open a committed value [x] to a value x′ ̸= x with
probability at most 1/|F| by guessing ∆ of V.

By a union bound, the environment Z can distinguish between the real world
and the ideal world with advantage at most (4N1 + 2N2 + 2d+ 3)/|F|.
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Corrupted V: If S receives false from FZK, then it just aborts. Otherwise,
S interacts with the adversary A as follows:

1. In the offline phase, S emulates FF
rVOLE by recording ∆ and K ∈ Fn+d(d+3)/2+1+6N1+3N2

received from A. Parse K as
{
{K

g
(i,j)
l

,K
h
(i,j)
l

}j∈[1,ki,i+1], {KI
(i+1,j)
l

}j∈[1,ki+1]

}
i∈[0,d),l∈[0,2]

,{
{Kmi,j

}j∈[i+1,d], {Kmi+1,i+1
}
}
i∈[0,d)

, {Kwi
}i∈[1,n] and M∗

2. At the beginning of the online phase, S samples a random δ
$← Fn and sends

it to A, then S waits until receiving r0 ∈ Fk0 from A. Note that as C is
public, S sets W0 := 1 ∈ Fs0 and computes m0 := W̃0(r0). S computes
K̂m0

:= m0 ·∆, and K̂wi
:= Kwi

+ δi ·∆, for i = 1, . . . , n.

3. For i = 0, 1, . . . , d− 1, S proceeds as follows:

(a) S picks random polynomials g(i,j)(Xj) =
∑2

l=0 g
(i,j)
l ·X l

j and h(i,j)(Yj) =∑2
l=0 h

(i,j)
l · Y l

j , by independently choosing their three coefficients uni-
formly at random, where j ∈ [1, ki,i+1]. In addition, S picks random
polynomials I(i,j)(Zj) =

∑2
l=0 I

(i,j)
l · Zl

j, by independently choosing their
three coefficients uniformly at random, where j ∈ [1, ki+1].

(b) For j = 1, . . . , ki,i+1, S sends g
(i,j)
0 , g

(i,j)
1 , g

(i,j)
2 to A. S waits until receiv-

ing x̄
(i)
j from A. Then S sets K̂g(i,j)(0) := K

g
(i,j)
0

+ g
(i,j)
0 ·∆, K̂g(i,j(1) :=∑2

l=0 Kg
(i,j)
l

+g
(i,j)
l ·∆, and K̂

g(i,j)(x̄
(i)
j )

:=
∑2

l=0(Kg
(i,j)
l

+g
(i,j)
l ·∆)·(x̄(i)

j )l.

(c) For j = 1, . . . , ki,i+1, S sends h(i,j)
0 , h

(i,j)
1 , h

(i,j)
2 to A. S waits until receiv-

ing ȳ
(i)
j from A. Then S sets K̂h(i,j)(0) := K

h
(i,j)
0

+ h
(i,j)
1 ·∆, K̂h(i,j)(1) :=∑2

l=0 Kh
(i,j)
l

+h
(i,j)
l ·∆, and K̂

h(i,j)(ȳ
(i)
j )

:=
∑2

l=0(Kh
(i,j)
l

+h
(i,j)
l ·∆)·(ȳ(i)j )l.

(d) S samples mi+1,i+1,mi,i+1, . . . ,mi,d
$← F and sends them to A. S waits

until receiving α(i+1,i+1), α(i,i+1), . . . , α(i,d)F from A. Then S sets K̂mi+1,i+1
:=

Kmi+1,i+1
+mi+1,i+1 ·∆ and K̂mi,j

:= Kmi,j
+mi,j ·∆ for j ∈ [i+ 1, d].

(e) For j = 1, . . . , ki+1, S sends I
(i+1,j)
0 , I

(i+1,j)
1 , I

(i+1,j)
2 to A. S waits until

receiving z̄
(i+1)
j from A. Then S sets K̂I(i+1,j)(0) := K

I
(i+1,j)
0

+ I
(i+1,j)
1 ·

∆, K̂I(i+1,j)(1) :=
∑2

l=0 KI
(i+1,j)
l

+ I
(i+1,j)
l · ∆, and K̂

I(i+1,j)(z̄
(i+1)
j )

:=∑2
l=0(KI

(i+1,j)
l

+ I
(i+1,j)
l ·∆) · (z̄(i)j )l.

(f) Finally, S computes K̂mi+1 := K̂
I(i+1,ki+1)(z̄

(i+1)
ki+1

) ·
(
I(i+1)(z̄(i+1))

)−1.

4. Emulating the Batch-Lin procedure. There are 2N1 +N2 linear constraints.
Upon receiving λ ∈ F2N1+N2 from A, S parses λ as {λi,j}i∈[0,d−1],j∈[0,2ki,i+1+ki+1−1],

46



and computes K̂lin as follows:

K̂lin : =

d−1∑
i=0

ki,i+1−1∑
j=1

λi,j(K̂g(i,j)(x̄
(i)
j )
− K̂g(i,j+1)(0) − K̂g(i,j+1)(1))

+

d−1∑
i=0

ki,i+1−1∑
j=1

λi,ki,i+1+j(K̂h(i,j)(ȳ
(i)
j )
− K̂h(i,j+1)(0) − K̂h(i,j+1)(1))

+

d−1∑
i=0

ki+1−1∑
j=1

λi,j(K̂I(i+1,j)(z̄
(i+1)
j )

− K̂I(i+1,j+1)(0) − K̂I(i+1,j+1)(1))

+

d−1∑
i=0

λi,0(K̂mi − K̂g(i,1)(0) − K̂g(i,1)(1))

+

d−1∑
i=0

λi,ki,i+1
(K̂

g(i,ki+1)(x̄
(i)
ki+1

)
− K̂h(i,1)(0) − K̂h(i,1)(1))

+

d−1∑
i=0

λi,2ki,i+1

(
(

i+1∑
j=0

α(j,i+1) · K̂mj,i+1
)− K̂I(i+1,1)(0) − K̂I(i+1,1)(1)

)
.

Then S sends K̂lin to A.
5. Emulating the Batch-Mult procedure. There are d linear constraints. Let ri

denote z̄(i) ∈ Fki for i ∈ [1, d]. Upon receiving β ∈ Fd from A, S computes
K̂mult as follows:

K̂mult : = K∗ +

d−1∑
i=0

βi ·
(( d∑

j=i+1

ki,i+1∏
l=ki,j+1

(ȳ
(i)
l )·

(m̃ulti,j(ri, x̄
(i), ȳ(i,j)) · K̂mi+1,i+1 · K̂mi,j

+ ãddi,j(ri, x̄
(i), ȳ(i,j)) · (K̂mi+1,i+1

+ K̂mi,j
) ·∆)

)
− K̂

h(i,ki,i+1 )
(ȳ

(i)
ki,i+1

) ·∆
)
.

Then S samples a random x̂mult
$← F and computes M̂mult := K̂mult−x̂mult ·∆.

In the end, S sends (x̂mult, M̂mult) to A.
6. Emulating the opening of [0]. S computes

K̂0 := K̂md
−

∑
ω∈{0,1}kd

K̂Wd(ω) · χω(rd).

Then S sends K̂0 to A.

Recall that messages sent by an honest prover during the “commit” phases (i.e.,
step 1 and step 3 in ΠF

ZKg) are uniformly random as they are masked by µi,j , ρi,j .
Also, messages for performing multiplicative checks, i.e., (xmult,Mmult), are
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uniformly random under the condition Kmult = xmult ·∆+Mmult. Besides, as for
linear checks, K̂lin, K̂0 from S are equal to Mlin,M0 from an honest P. Therefore,
the above simulation is perfect. This completes the proof. ⊓⊔

C Our ILPZK construction for general circuits.

The construction basically consists of three parts, generating sub-statements,
combining sub-statements, and checking.

C.1 Generate sub-statements in stage i

In each stage i, where i ∈ [0, d), suppose P and V start with a commitment
[mi] := [W̃i(z̄

(i))], where z̄(i) ∈ Fki is selected by V. P first defines a 2ki,i+1-
variate polynomial as follows

f (i)
ri

(X,Y) : =

d∑
j=i+1

(

ki,i+1∏
l=ki,j+1

Yl) ·
(
m̃ulti,j(ri,X,Y(i,j))W̃i,i+1(X)W̃i,j(Y

(i,j))

+ ãddi,j(ri,X,Y(i,j))
(
W̃i,i+1(X) + W̃i,j(Y

(i,j))
))

,

where each Y(i,j) refers to the first ki,j variables of Y. Then P also defines two
univariate polynomials

Ari(X) :=

d∑
j=i+1

∑
y∈{0,1}ki,i+1

(

ki,i+1∏
l=ki,j+1

yl)
(
m̃ulti,j(ri,X, y(i,j))W̃i,j(y

(i,j))+ãddi,j(ri,X, y(i,j))
)
,

and

Bri
(X) :=

d∑
j=i+1

∑
y∈{0,1}ki,i+1

(

ki,i+1∏
l=ki,j+1

yl) · ãddi,j(ri,X, y(i,j)) · W̃i,j(y
(i,j)).

With f
(i)
ri (X,Y), Ari(x), Bri(x) defined as above, we have the following∑
x,y∈{0,1}ki,i+1

f (i)
ri

(x, y) =
∑

x∈{0,1}ki,i+1

Ari
(x) · W̃i,i+1(x) +Bri

(x).

For j = 1, . . . , ki,i+1, P defines a univariate polynomial

g(i,j)(Xj) :=
∑

xj+1,...,xki,i+1
∈{0,1}

(Ari
·W̃i,i+1+Bri

)(x̄
(i)
1 , . . . , x̄

(i)
j−1, Xj , xj+1, . . . , xki,i+1

).

We have that

g(i,j)(Xj) =
∑

xj+1,...,xki+1
∈{0,1}

∑
y∈{0,1}ki+1

f (i)
ri

(x̄
(i)
1 , . . . , x̄

(i)
j−1, Xj , xj+1, . . . , xki,i+1 , y).
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Similarly, for j = 1, . . . , ki,i+1, P defines a univariate polynomial

h(i,j)(Yj) :=
∑

yj+1,...,yki,i+1
∈{0,1}

f (i)
ri

(x̄(i), ȳ
(i)
1 , . . . , ȳ

(i)
j−1, Yj , yj+1, . . . , yki,i+1

).

The construction. The interaction of round j proceeds as follows, where
j ∈ [1, ki,i+1],

– P computes g(i,j) := (g
(i,j)
0 , g

(i,j)
1 , g

(i,j)
2 ) and samples b(i,j) $← F3. Then P

sends (g(i,j),b(i,j)) to FF
VOLE, which then returns v

(i,j)
∆ := g(i,j) ·∆+ b(i,j)

to V.
– Upon receiving v

(i,j)
∆ , V sends x̄

(i)
j

$← F to P.

The interaction of round ki,i+1 + j proceeds as follows, where j ∈ [1, ki,i+1],

– P computes h(i,j) := (h
(i,j)
0 , h

(i,j)
1 , h

(i,j)
2 ) and samples b(i,ki,i+1+j) $← F3.

Then P sends (h(i,j),b(i,ki+1+j)) to FF
VOLE, which then returns v(i,ki+1+j)

∆ :=
h(i,j) ·∆+ b(i,ki+1+j) to V.

– Upon receiving v
(i,ki+1+j)
∆ , V sends ȳ

(i)
j

$← F to P.

The interaction of round 2ki,i+1 + 1 proceeds as follows,

– P computes mi+1,i+1 := W̃i+1,i+1(x̄
(i)) and mi,j := W̃i,j(ȳ

(i,j)), where j ∈
[i+1, d]. P samples b(i,2ki,i+1+1) $← Fd−i+1. Then P sends (m(i),b(i,2ki,i+1+1))

to FVOLE, which then returns to V a v
(i,2ki+1+1)
∆ := m(i) ·∆+ b(i,ki+1+j).

– Upon receiving v
(i,2ki+1+1)
∆ , V sends α(i+1,i+1), α(i,i+1), . . . , α(i,d) $← F to P.

C.2 Combine sub-statements for layer i + 1 in stage i

For layer i+ 1, there are i+ 2 sub-statements, [m0,i+1], . . . , [mi,i+1], [mi+1,i+1],
where mj,i+1 = W̃j,i+1(ȳ

(j,i+1)) for j ∈ [0, i] and mi+1,i+1 = W̃i+1,i+1(x̄
(i)). The

prover P defines the ki+1-variate polynomial as follows:

I(i+1)(Z) :=
(
α(i+1,i+1) · ẼQi,i+1(Z, x̄

(i)) +

i∑
j=0

α(j,i+1) · ẼQj,i+1(Z, ȳ
(j,i+1))

)
.

For each j ∈ [1, ki+1], P computes a univariate polynomial of degree-2 as follows:

I(i+1,j)(Zj) :=
∑

zj+1,...,zki+1
∈{0,1}

I(i+1)(z̄
(i+1)
1 , . . . , z̄

(i+1)
j−1 , Zj , zj+1, . . . , zki+1

).

The prover P and the verifier V also compute [m(i+1)] :=
∑i+1

j=0 α
(j,i+1)[mj,i+1].

The construction. The interaction of round 2ki,i+1 + 1 + j proceeds as follows,
where j ∈ [1, ki+1],
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– P computes I(i+1,j) := (I
(i+1,j)
0 , I

(i+1,j)
1 , I

(i+1,j)
2 ) and b(i,2ki,i+1+1+j) $← F3.

Then P sends (I(i+1,j),b(i,2ki,i+1+1+j)) to FF
VOLE, which then returns to V a

v
(i,2ki+1+1+j)
∆ := I(i+1,j) ·∆+ b(i,2ki,i+1+1+j).

– Upon receiving v
(i,2ki+1+1+j)
∆ , V sends z̄

(i+1)
j

$← F to P.

In the end of round 2ki,i+1+1+ki+1, they compute [mi+1] := [I(i+1,ki+1)(z̄
(i+1)
ki+1

)]·(
I(i+1)(z̄(i+1))

)−1, which is supposed to be [W̃i+1(z̄
(i+1))].

C.3 Checking the constraints.

For each stage i, where i ∈ [0, d), arithmetic constraints that the affine line v(i)

should satisfy are as follows.

[0] = [mi]− [g(i,1)(0)]− [g(i,1)(1)],

and
[0] = [g(i,j−1)(x̄

(i)
j−1)]− [g(i,j)(0)]− [g(i,j)(1)],

for j = 2, . . . , ki,i+1. And

[0] = [g(i,ki,i+1)(x̄
(i)
ki,i+1

)]− [h(i,1)(0)]− [h(i,1)(1)],

and,
[0] = [h(i,j−1)(ȳ

(i)
j−1)]− [h(i,j)(0)]− [h(i,j)(1)],

for j = 2, . . . , ki,i+1. And

[0] = [m(i+1)]− [I(i+1,1)(0)]− [I(i+1,1)(1)],

and
[0] = [I(i+1,j−1)(z̄

(i+1)
j−1 )]− [I(i+1,j)(0)]− [I(i+1,j)(1)],

for j = 2, . . . , ki+1. The above are all linear constraints, and there also exist mul-
tiplicative constraints. Given [h(i,ki,i+1)(ȳ

(i)
ki,i+1

)] and [mi+1,i+1], [mi,i+1], [mi,i+2],
. . ., [mi,d], it should hold that

h(i,ki,i+1)(ȳ
(i)
ki,i+1

) = f (i)
ri

(x̄(i), ȳ(i))

=

d∑
j=i+1

(

ki,i+1∏
l=ki,j+1

ȳ
(i)
l ) ·

(
m̃ulti,j(ri, x̄

(i), ȳ(i,j)) ·mi+1,i+1 ·mi,j

+ ãddi,j(ri, x̄
(i), ȳ(i,j))

(
mi+1,i+1 +mi,j

))
=

d∑
j=i+1

αi,j ·mi+1,i+1 ·mi,j + βi,j · (mi+1,i+1 +mi,j)

= mi+1,i+1 · (
d∑

j=i+1

αi,j ·mi,j + βi,j) + (

d∑
j=i+1

βi,j ·mi,j),
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where αi,j := (
∏ki,i+1

l=ki,j+1 ȳ
(i)
l ) · m̃ulti,j(ri, x̄

(i), ȳ(i,j)) and βi,j := (
∏ki,i+1

l=ki,j+1 ȳ
(i)
l ) ·

ãddi,j(ri, x̄
(i), ȳ(i,j)).

There remains a constraint for the witness. More concisely, it should hold
that

[0] = [md]−
∑

ω∈{0,1}kd

[Wd(ω)] · χω(z̄
(d)),

where [Wd] := [w] is generated at the beginning of stage 0. All degree-2 constraints
can be guaranteed by an LPZK proof, increasing the dimension of v by a small
constant. Note that the length for checking can be significantly compressed to 2
by taking a random linear combination on them.

Sub-protocol ΠC
SC1

Notations follow Section 5.1. Let i, [µi], [mi] and ri ∈ Fki be the input, where
i ∈ [0, d). Note that we always assume ki,i+1 is the largest among {ki,i+1, . . . , ki,d}.

1. The prover P defines the 2ki,i+1-variate polynomial f (i)
ri (X,Y) as follows:

f (i)
ri

(X,Y) :=

d∑
j=i+1

(

ki,i+1∏
l=ki,j+1

Yl) ·
(
m̃ulti,j(ri,X,Y(i,j))W̃i,i+1(X)W̃i,j(Y

(i,j))

+ ãddi,j(ri,X,Y(i,j))
(
W̃i,i+1(X) + W̃i,j(Y

(i,j))
))

.

2. For j = 1, . . . , ki,i+1,
(a) P computes a univariate polynomial g(i,j)(Xj) of degree-2, writing as

g
(i,j)
0 + g

(i,j)
1 · Xj + g

(i,j)
2 · X2

j . P sends g
(i,j)
0 − µi,3j−2, g

(i,j)
1 − µi,3j−1,

g
(i,j)
2 − µi,3j to V. They essentially obtain a triple of commitments

([g
(i,j)
0 ], [g

(i,j)
1 ], [g

(i,j)
2 ]), denoted by [[g(i,j)(·)]].

(b) V samples x̄
(i)
j

$← F and sends it to P.
3. For j = 1, . . . , ki,i+1,

(a) P computes a single variable polynomial h(i,j)(Yj) of degree-2, writing
as h

(i,j)
0 + h

(i,j)
1 · Yj + h

(i,j)
2 · Y 2

j . P sends h
(i,j)
0 − µi,3ki,i+1+3j−2, h

(i,j)
1 −

µi,3ki,i+1+3j−1, h
(i,j)
2 − µi,3ki,i+1+3j to V. They essentially obtain a triple

of commitments ([h
(i,j)
0 ], [h

(i,j)
1 ], [h

(i,j)
2 ]), denoted by [[h(i,j)(·)]].

(b) V samples ȳ
(i)
j

$← F and sends it to P.
4. For each j ∈ [i + 1, d], let ȳ(i,j) ∈ Fki,j be the vector that contains the first

ki,j entries of ȳ(i). P commits to W̃i,i+1(x̄
(i)), and W̃i,j(ȳ

(i,j)) by sending
W̃i,i+1(x̄

(i))− µi,6ki,i+1+1, and W̃i,j(ȳ
(i,j))− µi,6ki,i+1+1+j−i to V.

5. Output [mi+1,i+1] := [W̃i+1,i+1(x̄
(i))], [mi,j ] := [W̃i,j(ȳ

(i,j))], for j ∈ [i+ 1, d].

Fig. 8: Sub-protocol for generating sub-statements in the rVOLE-hybrid model.
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Sub-protocol ΠC
SC2

Notations follow Section 5.1. Let i, [ρi], y(0,i), . . . ,y(i−1,i),x(i−1) and
([m0,i], . . . , [mi−1,i], [mi,i]) be the input, where i ∈ [1, d]. Note that we always
assume ki,i+1 is the largest among {ki,i+1, . . . , ki,d}.

1. The verifier V samples α(0,i), . . . , α(i,i) $← F, and sends them to V.
2. The prover P defines the ki-variate polynomial as follows:

I(i)(Z) :=
(
α(i,i) · ẼQi−1,i(Z, x̄

(i−1)) +

i−1∑
j=0

α(j,i) · ẼQj,i(Z, ȳ(j,i))
)
.

3. For j = 1, . . . , ki,
(a) P computes a univariate polynomial of degree-2 as follows:

I(i,j)(Zj) :=
∑

zj+1,...,zki
∈{0,1}

I(i)(z̄
(i)
1 , . . . , z̄

(i)
j−1, Zj , zj+1, . . . , zki).

(b) Writing I(i,j)(Zj) := I
(i,j)
0 +I

(i,j)
1 ·Zj +I

(i,j)
2 ·Z2

j , and sends I(i,j)0 −ρi,3j−2,
I
(i,j)
1 − ρi,3j−1, I

(i,j)
2 − ρi,3j to V. They essentially obtain a triple of

commitments ([I
(i,j)
0 ], [I

(i,j)
1 ], [I

(i,j)
2 ]), denoted by [[I(i,j)(·)]].

(c) V samples z̄
(i)
j

$← F and sends it to P.
4. Output [mi] := [I(i,ki)(z̄

(i)
ki

)] ·
(
I(i)(z̄(i))

)−1, which is supposed to be [W̃i(z̄
(i))].

Fig. 9: Sub-protocol for combining sub-statements in the rVOLE-hybrid model.
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Procedure Batch-Lin: on input {[mi], [[g
(i,j)]], [[h(i,j)]]}i∈[0,d),j∈[1,ki,i+1], and

{([m(i)], [[I(i,j)(·)]])}i∈[1,d],j∈[1,ki].

1. For i ∈ [0, d),
–for j ∈ [1, ki,i+1], P and V compute ([g(i,j)(0)], [g(i,j)(1)], [g(i,j)(x̄(i)

j )]) and
([h(i,j)(0)], [h(i,j)(1)], [h(i,j)(ȳ

(i)
j )]).

–for j ∈ [1, ki+1], P and V compute ([I(i+1,j)(0)], [I(i+1,j)(1)], [I(i+1,j)(z̄
(i+1)
j )]).

–The verifier V wants checks that [0]
?
= [mi] − [g(i,1)(0)] − [g(i,1)(1)], [0] ?

=

[g(i,ki+1)(x̄
(i)
ki+1

)]− [h(i,1)(0)]− [h(i,1)(1)] and [0]
?
= [g(i,j)(x̄

(i)
j )]− [g(i,j+1)(0)]−

[g(i,j+1)(1)], [0] ?
= [h(i,j)(ȳ

(i)
j )] − [h(i,j+1)(0)] − [h(i,j+1)(1)] for j ∈ [1, ki,i+1).

And [0]
?
= [mi+1] − [I(i,j+1)(0)] − [I(i+1,j+1)(1)], [0]

?
= [I(i+1,j)(z̄

(i+1)
j )] −

[I(i+1,j+1)(0)] − [I(i+1,j+1)(1)] for j ∈ [1, ki+1). For simplicity, we naturally
view these 2N1 +N2 constraints as ([xi], [yi], [zi]) such that zi = xi + yi should
hold for all i ∈ [N ], where N1 :=

∑d−1
i=0 ki,i+1 and N2 :=

∑d−1
i=0 ki+1.

2. V samples λ
$← F2N1+N2 , and sends it to P.

3. P computes Mlin :=
∑2N1+N2

i=1 λi(Mzi −Mxi −Myi), and sends it to V.
4. V computes Klin :=

∑2N1+N2
i=1 λi(Kzi −Kxi −Kyi), and checks that Klin

?
=

Mlin.

Procedure Batch-Mult: on input {([[h(i,ki,i+1)(·)]], [mi+1,i+1], [mi,i+1], . . . , [mi,d])}i∈[0,d).

1. For i ∈ [0, d), P and V compute [zi] := [h(i,ki,i+1)(ȳ
(i)
ki,i+1

)], [xi] :=

[mi+1,i+1], [yi,j ] := [mi,j ], and ai,j := (
∏ki,i+1

l=ki,j+1) · m̃ulti,j(ri, x̄
(i), ȳ(i)),

bi,j := (
∏ki,i+1

l=ki,j+1) · ãddi,j(ri, x̄
(i), ȳ(i)), where j = i+ 1, . . . , d.

2. V wants to check that zi
?
=

∑d
j=i+1 ai,jxiyi,j + bi,j(xi + yi,j) for all i.

3. V samples β
$← Fd and sends it to P.

4. They consume a random VOLE correlation [π] in the sense that P computes
Mmult := Mπ +

∑d−1
i=0 βi(

∑d
j=i+1 ai,jMxiMyi,j ), and

xmult := π+

d−1∑
i=0

βi

(( d∑
j=i+1

ai,j(yi,jMxi +xiMyi,j )+bi,j(Mxi +Myi,j )
)
−Mzi

)
,

while V computes

Kmult := Kπ +

d−1∑
i=0

βi

(( d∑
j=i+1

ai,jKxiKyi,j + bi,j(Kxi +Kyi,j )
)
−Kzi ·∆

)
.

5. P sends (xmult,Mmult) to V, who then checks that Kmult
?
= Mmult + xmult ·∆.

Fig. 10: Procedures for batch-checking linear and multiplicative constraints.
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D VOLE-based ZK for circuits over a small field Fp.

Functionality FFp,Fpr
sVOLE

Init: Upon receiving (Init) from both parties, sample ∆
$← Fpr if PR is honest,

and receive ∆ ∈ Fpr from the adversary A otherwise. Store ∆ and send it to PR.
All further (Init) commands will be ignored.
Extend-Subfield: Upon receiving (Extend-Subfield, N) from both parties, pro-
ceed as follows:

1. If PR is honest, sample K
$← FN

pr . Otherwise receive K from A.

2. If PS is honest, sample x
$← FN

p and compute M := K−∆ ·x ∈ FN
pr . Otherwise,

receive x ∈ FN
p and M ∈ FN

pr from A and then recompute K := M+∆ · x.
3. Send (x,M) to PS and K to PR.

Extend: Upon receiving (Extend, N) from both parties, proceed as follows:

1. If PR is honest, sample K
$← FN . Otherwise receive K from A.

2. If PS is honest, sample x
$← FN and compute M := K−∆ ·x ∈ FN . Otherwise,

receive x ∈ FN and M ∈ FN from A and then recompute K := M+∆ · x.
3. Send (x,M) to PS and K to PR.

Fig. 11: Ideal functionality for random subfield VOLE.

54



Protocol ΠFp
ZKl

Notations follow Section 4.1. The prover P wants to convince the verifier V that
he holds a witness w ∈ Fn

p such that C(w) = 1.
Offline phase

1. The prover P and the verifier V send (Init) to FFp,Fpr
sVOLE, and V receives ∆ ∈ Fpr .

2. P and V send (Extend-Subfield, n) to FFp,Fpr
sVOLE, which returns commitments

on random values, denoted by [ν], where ν ∈ Fn
p .

3. P and V send (Extend,
∑d

i=1(7ki + 1) + 1) to FFp,Fpr
sVOLE, which returns com-

mitments on random values, denoted by , [µ], [π], where µ ∈ F
∑d

i=1(7ki+1)
pr ,

π ∈ Fpr . For simplicity, we view µ as {µi,j}i∈[0,d),j∈[7ki+1+1].

Online phase

1. The prover P and the verifier V obtain [w] (by P sending δ := w − ν to V).
2. For each layer i, P computes Wi and stores them. V sends a random r0 ∈ Fk0

pr

to P, then they locally compute m0 := W̃0(r0) (Note that W0 = 1 ∈ Fs0
pr ).

3. For i = 0, 1, . . . , d− 1,
(a) The prover P defines the 2ki+1-variate polynomial f

(i)
ri (X,Y) :=

m̃ulti(ri,X,Y)W̃i+1(X)W̃i+1(Y) + ãddi(ri,X,Y)(W̃i+1(X) + W̃i+1(Y)).
(b) For j = 1, . . . , ki+1,

i. P computes a univariate polynomial g(i,j)(Xj) of degree-2, writing as
g
(i,j)
0 + g

(i,j)
1 ·Xj + g

(i,j)
2 ·X2

j . P sends g
(i,j)
0 − µi,3j−2, g(i,j)1 − µi,3j−1,

g
(i,j)
2 − µi,3j to V. They essentially obtain a triple of commitments

([g
(i,j)
0 ], [g

(i,j)
1 ], [g

(i,j)
2 ]), denoted by [[g(i,j)(·)]].

ii. V samples x̄
(i)
j

$← Fpr and sends it to P.
(c) For j = 1, . . . , ki+1,

i. P computes a single variable polynomial h(i,j)(Yj) of degree 2, writing
as h(i,j)

0 +h
(i,j)
1 ·Yj +h

(i,j)
2 ·Y 2

j . P sends h(i,j)
0 −µi,3ki+1+3j−2, h

(i,j)
1 −

µi,3ki+1+3j−1, h
(i,j)
2 −µi,3ki+1+3j to V. They essentially obtain a triple

of commitments ([h
(i,j)
0 ], [h

(i,j)
1 ], [h

(i,j)
2 ]), denoted by [[h(i,j)(·)]].

ii. V samples ȳ
(i)
j

$← Fpr and sends it to P.
(d) Let L(i) be the unique line satisfying L(i)(0) = x̄(i), L(i)(1) = ȳ(i). P

computes a univariate polynomial q(i)(X) by restricting W̃i+1 to L(i),
writing as

∑ki+1

j=0 q
(i)
j ·X

j . P sends (q(i)0 −µi,6ki+1+1, . . . , q
(i)
ki+1
−µi,7ki+1+1)

to V, and similarly, they obtain ([q
(i)
0 ], . . . , [q

(i)
ki+1

]), denoted by [[q(i)(·)]].

(e) V selects r(i) $← Fpr and sends it to P. P computes mi+1 := q(i)(r(i)). Then
they set ri+1 := L(i)(r(i)) ∈ Fki+1

pr , and compute [mi+1] := [q(i)(r(i))].
4. P and V perform the following checks.

(a) P and V run the procedure Batch-Lin in Figure 2 on input tuples
{([mi], [[g

(i,j)(·)]], [[h(i,j)(·)]])}i∈[0,d),j∈[1,ki+1].
(b) P and V run the procedure Batch-Mult in Figure 2 on input tuples
{([[q(i)(·)]], [[h(i,ki+1)(·)]])}i∈[0,d).

(c) P opens [md] −
∑

ω∈{0,1}kd [Wd(ω)] · χω(rd), where χω(·) is a Lagrange
basis as defined in Def. 1. V checks whether it is a valid opening of [0].

5. V accepts if and only P passes all the checks above. Otherwise, V rejects.

Fig. 12: Our ZK protocol for layered circuits over Fp in the FFp,Fpr

sVOLE-hybrid model.
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