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Abstract. Garbled circuits are a powerful and important cryptographic
primitive, introduced by Yao [FOCS 1986] for secure two-party compu-
tation. Beaver, Micali and Rogaway (BMR) [STOCS 1990] extended the
garbled circuit technique to construct the first constant-round secure
multiparty computation (MPC) protocol. In the BMR protocol, the gar-
bled circuit size grows linearly and the online computation time grows
quadratically with the number of parties. Previous solutions to avoid this
relied on key-homomorphic PRFs, incurring a large garbled circuit size
and slow online computation time.
We present MYao, a new multiparty protocol for achieving a “Yao” gar-
bled circuit, i.e., the garbled circuit size and online computation time
are independent of the number of parties. The key innovation is that the
parties collaboratively compute the PRF in MPC, which was previously
believed to be inefficient. In this paper, we challenge this long-standing
assumption by basing the garbled circuit construction on “MPC-friendly”
PRFs. One of the highlights of our new technique is that we are able to
achieve, for the first time, full row-reduction in multiparty garbled cir-
cuits. To achieve this optimization without increasing the number of
rounds, we utilize free-XOR and half gates, presenting a new technique
for choosing the keys, based on a naturally occurring relation between
the 2 keys of the 2 half-gates.
MYao reduces the garbled circuit size by more than 90%, the total com-
munication by more than 75%, and the online computation time by more
than 10%, compared to all known solutions based on key-homomorphic
PRFs, thus substantially improving the overall efficiency in both the of-
fline and the online phases. Furthermore, MYao significantly improves
over semi-honest BMR in online phase efficiency when the number of
parties exceeds 80.

Keywords: Multiparty Garbled Circuits· Multiparty Row Reduction·
Offline-Online MPC.
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1 Introduction

Secure multiparty computation (MPC) protocols allow mutually distrusting par-
ties to jointly compute a function of their private inputs, while guaranteeing
various security properties, the most basic being correctness (i.e., the correct
function is computed) and privacy (i.e., nothing but the output is revealed).
The two mainly considered types of adversaries are semi-honest (i.e., follows
the protocol, but may try to infer additional information from its view) and
malicious (i.e., may arbitrarily deviate from the protocol).

In his seminal work, Yao [37] proposed a general-purpose secure two-party
protocol in the semi-honest setting. In Yao’s protocol, the two parties jointly
evaluate the circuit that describes the function to be computed, where one party
(the garbler) encrypts the circuit in a way that allows the second party (the
evaluator) holding the keys (corresponding to their inputs) to decrypt (only)
the output of the circuit. A key feature of Yao’s protocol is that it runs in a
constant number of rounds.

Yao’s result was generalized to the multiparty setting by Goldreich et al. [19]
and by Beaver et al.[5]. These two works followed the circuit evaluation paradigm
of Yao’s protocol, but differed in the manner this is performed. The GMW
protocol of [19] introduced the secret sharing paradigm, where parties compute
the circuit gate by gate, with the invariant that in coming to compute each gate
the parties hold a secret sharing of the inputs for that gate. The BMR protocol
of [5] extended the protocol of Yao following the garbled circuit paradigm, letting
parties jointly garble the circuit (a task that can be done securely using a fairly
simple MPC protocol). After the garbled circuit is computed, each of the parties
obtains the appropriate keys and can locally evaluate the circuit on the inputs
of all parties.

The shortcoming of existing solutions in the setting with high-latency and large
number of parties. In the past couple of decades, MPC has shifted from a purely
theoretical research area to one that also has much real-world necessity and prac-
ticality. Indeed, extremely concretely efficient protocols (i.e., protocols providing
fast run-times in practice) exist for the setting of very few parties. In particular,
secure two-party protocols have become very practical and are being deployed
in various real-world solutions. However, real-life scenarios often require that a
large number of parties perform the computation over a high-latency network
(e.g., the Internet). This setting still poses significant challenges in practice as
we further explain below.

Almost all known concretely efficient general-purpose MPC constructions fol-
low either the secret sharing paradigm or the garbled circuit paradigm. Another
common and useful paradigm is the offline-online paradigm. The idea is that in
many scenarios, much of the heavy lifting computation can be done ahead of
time, i.e., in the offline (preprocessing) phase, before parties know their inputs.
Then, the actual (presumably, much lighter) computation is performed in the
online phase, after the parties learn their inputs.
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In the secret sharing paradigm [19], the parties compute the circuit in the
online phase, layer by layer, where the inputs to the gates at each layer are secret
shared. Therefore, the number of communication rounds depends on the depth
of the circuit. Hence, the online phase of MPC protocols in the secret-sharing
paradigm is inherently slow in high-latency networks for deep circuits.

One of the main advantages of the garbled circuit paradigm [37, 5] is that it
allows the entire MPC protocol to be computed in a constant number of rounds.
In addition, the garbling of the circuit does not depend on the inputs of the
parties and can be pushed to the offline phase, leaving only key revelation to
the online phase. While this seems very promising for high latency networks,
it turns out that for BMR based constructions [5, 6, 9, 22, 35], the size of the
garbled circuit grows linearly in the number of parties and online computation
time grows quadratically in the number of parties. Thus, these constructions
become impractical as the number of parties grows.

A “naïve” approach for tackling this issue is for the parties to jointly construct
a Yao garbled circuit in the preprocessing phase, hence making the garbled
circuit size optimal. This solution was considered impractical, as it would render
a very inefficient preprocessing phase. A somewhat similar idea, based on key-
homomorphic PRFs, was introduced in [10, 8, 18]. However, their constructions
still fell short in providing overall efficiency.

In this paper, we suggest a way, based on “MPC-friendly” PRFs with cer-
tain properties, to advance towards a concretely efficient MPC protocol in the
many-party high latency setting – a joint construction of a “Yao” garbled circuit
(i.e., independent of the number of parties). Somewhat surprisingly, our proto-
col benefits from optimizations that were thus far only achievable in two-party
garbled circuit based constructions. We implement this general idea using the
“MPC-friendly” PRFs of Dinur et al. [14], which we show to possess the required
properties. This results in a concretely-efficient protocol with competitive run-
time.

Semi-honest Security. In this work we consider only semi-honest security. In real
situations, malicious security is of course always preferable. Nevertheless, it has
been shown time and again that introducing techniques to improve efficiency in
the semi-honest setting, soon brings similar improvements for the more involved
malicious setting. Furthermore, there are known generic semi-honest to malicious
compilers, e.g., [19, 23, 13].

We believe the techniques and results presented in this paper are significant,
and will prove highly beneficial in constructing maliciously secure protocols en-
joying similar qualities. Below, we refer to the semi-honestly secure versions in
all explained protocols.

1.1 Background on Garbled Circuits

Before explaining our results and techniques, we first give a more detailed overview
of the garbled circuit paradigm and its optimizations, in the semi-honest setting.
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Garbled circuits. Yao’s garbled circuit protocol consists of two parties: a garbler
and an evaluator. The garbler assigns two keys to each wire of the circuit, cor-
responding to its two possible values, i.e., kw,0, kw,1 for the 0 and 1 value of the
wire w, respectively.

Each gate is then constructed as a table of four ciphertexts, corresponding to
the gate’s truth table. In each row the appropriate output wire key is encrypted
by the corresponding input wire keys. To avoid revealing any information about
the true values on the wires, the garbler can use the point-and-permute technique,
where it chooses a random masking bit λw ∈ {0, 1} for every wire w. During
evaluation, the evaluator will learn only the external value ew = vw⊕λw, where
vw is the real value on the wire w. Using a 2-keyed Encryption scheme Enc, a
garbled AND-gate, with input wires in1, in2 and output wire out, consists of the
four ciphertexts

g̃α,β = Enckin1,α,kin2,β

(
kout,eα,β

out
||eα,βout

)
, (1)

for α, β ∈ {0, 1}, where eα,βout = λout ⊕ (α⊕ λin1)(β ⊕ λin2) is the conditional ex-
ternal value on wire out, i.e., the external value in the case this row is decrypted.
Garbling of other gate types can be similarly defined, but as explained below,
XOR gates can in fact be computed “for free” using the free-XOR technique.
Implementations of Yao’s protocol use a variety of encryption schemes for Enc,
the most common technique being XORing with the output of a pseudo-random
function (PRF).

Upon receiving from the garbler the garbled circuit, the masking bits for
the output wires, and the keys and external values corresponding to the input
wires (for the inputs of the evaluator these are received via oblivious transfer),
the evaluator can decrypt the circuit locally. This is computed gate by gate in
topological order, by choosing the appropriate row of the gate according to the
external values and using the corresponding keys to decrypt the output wire’s
key and external value. After decrypting all the gates, the evaluator can recover
the true outputs by XORing with the masking bits of the output wires.

Garbled circuits were extended to the multiparty setting by Beaver, Micali
and Rogaway [5]. In the BMR protocol, for each wire w of the circuit, each party
Pi for i ∈ [n] has two keys: kiw,0 and kiw,1. The wire keys (or superseeds, as called
in [5]) are the tuple of keys belonging to all the parties, i.e., kw,b = {kiw,b}ni=1

for b ∈ {0, 1}. Furthermore, the masking bits λw are secret-shared, as they must
remain hidden from an evaluating party, even if some of the parties are colluding.
For input and output wires, the masking bits are revealed to the relevant parties.

Garbling an AND gate in the BMR protocol is achieved by the parties com-
puting shares for the output keys for each row in MPC, and then each party
encrypting its shares, by XORing it with a 2-keyed PRF F 2. These are then
reshared between the parties, XORed, and reconstructed, resulting in the BMR
garbled gates:

g̃α,β =

{
n⊕

i=1

(
F 2
ki
u,α,ki

v,β
(gj)

)
⊕ kj

w,eα,β
w

}n

j=1

, (2)
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for α, β ∈ {0, 1}, where gj is a unique index corresponding to the gate g and
party index j, and eα,βw is as above. An important observation is that all the
garbled gates can be computed in parallel, leading to a constant round protocol.

The BMR online phase has two rounds of communication: in the first, the
parties broadcast the external values on their input wires, computed using their
inputs and masking bits. In the second, all the parties broadcast their keys of
the input wires that correspond to the external values on those wires.

Upon receiving the garbled BMR circuit along with keys corresponding to
the input wires and permutation bits of the output wires, an evaluating party
can decrypt the garbled circuit locally in topological order, using its own pair of
keys to decide the external value at each wire.

Notice that the length of the garbled rows (Equation (2)) grows linearly in
the number of parties n. Furthermore, each key of each party is encrypted by
the keys of all the parties. Thus, decrypting a single row requires n2 decryptions
(i.e., invocations of the PRF F 2). As a consequence, evaluation time in the BMR
protocol grows quadratically in the number of parties.

Free-XOR The free-XOR technique was introduced by Kolesnikov and Schnei-
der [25] for Yao’s protocol, and later extended to the BMR protocol by Ben-
Efraim et al. [9]. It is also used in several other multiparty garbled circuit pro-
tocols, e.g., [28, 35, 8, 36]. Free-XOR allows XOR gates to be garbled “for free”,
meaning that they require no communication and no encryption or decryption.

To achieve this, for every wire of the circuit, the key corresponding to the
‘1’ value is set to be kw,1 = kw,0 ⊕ ∆, where ∆ is a global uniformly random
constant. For wires that are not output wires of XOR gates, the key kw,0 and
masking bit are chosen uniformly at random as before. For output wires of XOR
gates, the key kw,0 and the wire mask are set to be the XOR of those of the
input wires, i.e., kout,0 = kin1,0 ⊕ kin2,0 and λout = λin1 ⊕ λin2. Then, during
evaluation, output keys and external values of an XOR gate can be similarly
computed via XOR operations by the evaluator.

As observed by [12], the free-XOR technique requires an additional security
requirement on the PRF used for the encryption, termed circular correlation
robustness. Intuitively, this is due to the fact that the same global ∆ is used
both in the encrypting keys and the encrypted keys, and therefore the PRF used
must protect against exploiting this. The formal definition of circular correlation
robustness can be found in Section 3.1. Furthermore, as commented in [9], free-
XOR in the multiparty setting requires the secret-sharing schemes used to be
linear over a characteristic 2 field (for example, using XOR secret sharing).
Hence, works that used schemes over fields of characteristic ̸= 2, e.g., [6, 10],
could not incorporate free-XOR.

Row Reduction. Row reduction, introduced for Yao’s protocol by Naor et al. [29],
allows to reduce communication and garbled circuit size by fixing the first row
of each garbled gate to a public constant, usually 0. Thus, the first row in each
garbled gate does not need to be sent to the evaluator, as it is always 0. This
can be achieved from Equation (1) by setting kout,e0,0out

||e0,0out = Enc−1
kin1,0,kin2,0

(0).



6 A. Ben-Efraim et al.

It is important to observe that this implies that the keys and masking bits
are not chosen randomly, but rather “derived” from the keys of the input wires.
This implies that the gates are computed sequentially and not in parallel. This
is problematic for a constant round protocol in the multiparty setting, and is
perhaps one of the main reasons why, prior to this work, there has been almost
no advance in row reduction for the multiparty setting. In fact, to the best of
our knowledge, the best known result in this regard is by Yang et al. [36], which
achieves only a 2/n-row reduction.

Half-gates. The above row-reduction technique was later extended by Zahur et
al. [38], to reduce the size of the garbled gates to only 2 ciphertexts, using half
gates. The main idea of half gates is that instead of computing a single garbled
gate, the garbler computes two “half”-gates, each encrypted with a single input
key, such that the XOR of the outputs of both halves equals the required output
of the original gate. As each half-gate is encrypted using only a single key, it
requires only 2 ciphertexts, while XOR requires no ciphertexts, assuming free-
XOR. Then, using the above row-reduction technique on each of the half-gates,
each half gate requires only a single ciphertext to be sent, and in total only 2
ciphertexts are sent.

Half gates have been explored in the multiparty setting in [7, 36], but the
result for row-reduction has been extremely limited. In particular, [36] achieved
a 2/n-row reduction and [7] used half-gates only to reduce multiplication size in
characteristic > 2 and achieved no row-reduction.

BMR Alternatives via Key-Homomorphic PRFs. A solution for averting the
BMR asymptotic growth of the garbled circuit size and online computation
time was recently suggested in [10, 8, 18]. The idea is that the parties hold
additive shares of the garbled circuit keys and compute the garbled circuit us-
ing a key-homomorphic PRF F . A key-homomorphic PRF intuitively means
that there exist operations +, +̃ on the PRF key space domain and output
range, respectively, such that the homomorphic property Fk1

(x)+̃ · · · +̃Fkm
(x) =

Fk1+···+km
(x) holds for any Fk1

, . . . , Fkm
∈ F and input x.

To garble the gates each party locally computes the PRF on a public value us-
ing its share of the input key as the key, i.e., party Pi computes {Fki

u,α
(g)}α∈{0,1}

and {Fki
v,β

(g)}β∈{0,1}. Then, using the homomorphic property, the parties com-
pute in MPC additive shares of

Fk1
u,α

(g)+̃ · · · +̃Fkn
u,α

(g) = Fk1
u,α+···+kn

u,α
(g) = Fku,α

(g) (3)

for α ∈ {0, 1}, and similarly for the input keys of wire v. Additive shares of
the key that needs to be encrypted are securely computed similarly to the BMR
protocol, along with shares of the conditional external value, and thus the parties
can locally obtain shares of the garbled gates g̃α,β = Fku,α

(gα,β) +Fkv,β
(gα,β) +(

kw,eα,β
w
||eα,βw

)
, for α, β ∈ {0, 1}. Notice that the parties only need to compute in

MPC the homomorphic property (the +̃ operations in Equation (3) left), which
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is usually significantly easier than securely computing the PRF on the shared
key directly (Equation (3) right).

The upside of this technique is that the PRFs are computed only locally
by each party, also in the offline phase. On the downside, key-homomorphic
PRFs usually depend on public key encryption techniques, implying that they
require relatively large key and encryption sizes and have slow computation time.
Thus, the key-homomorphic PRF garbled circuit schemes presented in [10, 8, 18]
have large garbled circuit size and increased online communication. Furthermore,
the online computation time, although independent of the number of parties, is
relatively slow.

1.2 Our Results and Techniques

The above discussion raises several interesting questions.

New Method for Multiparty Garbling. As observed in [9], the garbled circuit size
and online computation time in the BMR protocol grow linearly and quadrati-
cally in the number of parties, respectively. This becomes problematic when the
number of parties is very large. The known solution to avoid these asymptotics is
by using key-homomorphic PRFs [10, 8, 18], but the suggested key-homomorphic
PRFs have long keys and encryption sizes, and also slow decryption time.

Thus, it is natural to ask whether key-homomorphic PRFs are essential for
efficiently constructing a multiparty “Yao” garbled circuit. By multiparty “Yao”
garbled circuit, we mean a garbled circuit that has size and online computation
time independent of the number of parties, and the keys and masking bits are
secret-shared amongst the parties.

Question 1 Can a “Yao” garbled circuit be efficiently constructed by a secure
multiparty protocol without key-homomorphic PRFs?

The main difficulty in constructing a “Yao” garbled circuit in the multiparty
setting is computing the encryption on the secret-shared keys. As the keys are
not known to any party, without the homomorphic property, the encryption
scheme itself needs to be computed in MPC. Thus, it was widely believed to be
impractical.

However, recently there has been significant progress in “MPC-friendly” PRFs
[20, 1, 3, 15, 2, 16]. The term “MPC-friendly” implies that these PRFs can be com-
puted efficiently in MPC on shared keys. By using “MPC friendly” PRFs, we show
that a multiparty “Yao” garbled circuit can be efficiently constructed in MPC;
we call this construction MYao. In order to minimize the number of offline com-
munication rounds, while also achieving free-XOR and row-reduction (explained
below), we chose to concretely instantiate MYao with the “MPC-friendly” PRFs
by alternating moduli of Dinur et al. [15]. Dinur et al.’s constructions can be
computed extremely efficiently in MPC in the correlated randomness model,
where the required correlated randomness is a simple primitive – uniformly ran-
dom bits doubly shared over the fields Z2 and Z3. This primitive is a specific case
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of dBits (or daBits in the malicious model), i.e., doubly-shared bits, which is a
well studied primitive [7, 11, 33, 4, 27, 17, 26, 15]. There are several suggested
efficient protocols for computing dBits and daBits, some of which are constant
round.

We show that MYao results in approximately 90% smaller garbled circuit
sizes, compared to garbled circuits from key-homomorphic PRFs [10, 8, 18]. To
fully compare the online time, we implemented the online computation phase of
MYao. As part of the implementation process, we made the following observation
overlooked by [15]: there are some Z3 elements whose value is actually limited
to 0, 1. This observation allows us to significantly optimize the local wPRF com-
putation; the details appear in Section 11. Our experiments show that MYao
improves the online computation time by at least 10% compared to solutions
based on key-homomorphic PRFs, and in circuits containing XOR gates the im-
provement is even greater. Additionally, MYao’s online time is faster than BMR’s
online time when the number of parties exceeds 80.

We also show that MYao improves by more than 70% in offline communi-
cation compared to key-homomorphic PRFs solutions. To this end, we observe
that the main bottleneck in offline communication in MYao is the preprocessing
of dBits. Although efficient constant round protocols for computing dBits and
daBits exist, these protocols were designed for general fields. Hence, we suggest
an alternative preprocessing protocol, specifically tailored for the case of dBits
over Z2 and Z3.

The protocol goes roughly as follows: each party randomly chooses its random
share bi in Z2 and each party Pi except Pn chooses its random share ti in Z3. The
parties then compute, using a simple MPC protocol based on OT, the correct
share tn for the party Pn, such that

⊕n
i=1 b

i =
∑n

i=1 t
i mod 3. To minimize

communication, the computation proceeds in a “tournament-style” manner, and
each party participates only in the parts where its shares are required. The full
details appear in Section 10.

Although our alternative preprocessing protocol has O(log n) rounds, it re-
quires less communication than the constant round protocols mentioned above.
We remark that it seems there is still significant room for improvement in pre-
processing dBits. We leave this as an open question for future work.

Garbled Circuit Optimizations. As already mentioned, free-XOR can be incor-
porated into multiparty garbled circuits, if the secret-sharing scheme is linear
over a field of characteristic 2 and the PRF used for encrypting is circular-
correlation robust. MYao’s encryption scheme has Binary keys and requires only
XOR sharing for the construction. Therefore, if it is possible to construct a circu-
lar correlation-robust “MPC friendly” PRF with binary keys, which we believe
is a reasonable assumption, free-XOR can be naturally incorporated into the
MYao garbled circuit.

However, regarding other garbled circuit optimizations, such as row reduction
and half gates, the situation is less clear. Prior to this work, it was not known
whether row reduction can be incorporated into multiparty garbled circuits –
below we explain why straightforward attempts did not succeed. Additionally,
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as the benefit of half-gates seems to rely on row-reduction, it also raises the
question of whether using half-gates can give any real benefit in multiparty
garbled circuits. Thus, the following two questions are natural:

Question 2 Can full row reduction be achieved efficiently in a constant number
of rounds in multiparty garbled circuit protocols?

Question 3 Can half gates significantly aid in garbling Boolean circuits in the
multiparty setting?

At first glance, it may seem that row reduction should not be possible for
the general multiparty setting, for two main difficulties:

1. In the row reduction technique the gates are computed sequentially, as out-
put keys are derived from the input ones. Computing the gates in parallel
is crucial for achieving a constant round protocol. Yang. et al. [36] bypassed
this problem and achieved a 2

n -row reduction in BMR, by letting one of
the parties compute its PRFs sequentially. This is possible as in BMR the
PRFs are computed locally, but this technique cannot be extended to a full
row-reduction.

2. The row reduction technique implies that the size of the key used for the
encryption and the size of the garbled row (i.e., the size of the ciphertext)
should be the same. Therefore, it seems not possible to incorporate row-
reduction in the LPN-based protocol of [8], as it requires error-correcting
codes, and, hence, the garbled rows are significantly longer than the keys.
This point also raises a question on the feasibility of achieving full row-
reduction in BMR.

Without row-reduction, it might seem that half gates have little, if any, positive
effect. Thus, it may appear that the answer to both questions should be negative.

Nevertheless, we show that row-reduction is indeed possible for multiparty
garbled circuits, by using half-gates in MYao. We introduce a technique for
choosing the output keys of each gate independently of all other gates. This is
done by determining the output 0-key for one of the half-gates by the output of
the PRF, while the 0-key on the output wire of the AND gate remains uniformly
random. This allows us to construct a constant round protocol for computing
the half-gates such that the first row of one of them is 0. The key shares for the
output wire of the first half gate are computed using the shares of the PRF value.
Then, the key shares on the output wire of the second half gate are computed
using the shares of the keys on the output wires of the first half gate and the
(overall) AND gate. Using this construction, we achieve row-reduction without
increasing the number of rounds. We note that the reliance on free-XOR implies
that this technique cannot be used for the key-homomorphic protocols of [10].

Additionally, we show that in some cases, such as when constructing the PRF
using the LPN-style “MPC-friendly” PRF of [15], half-gates are beneficial even
without row-reduction, as they reduce the offline computation and communica-
tion, without significantly increasing the online computation. The reason is that
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when garbling using only a single-keyed PRF, a regular AND gate requires 8
computations of the PRF in the offline phase, while the half-gates AND gate
requires only 4 computations of the PRF. Thus, the offline phase computation
and communication are significantly reduced when using half-gates. In the on-
line phase, both regular AND gates and half-gate based AND gates require 2
PRF invocations for decryption. As the overwhelmingly dominant factor in the
online computation is computing the PRF, the online computation time remains
almost the same for both constructions (despite half-gates requiring significantly
more XOR operations).

Thus, we answer both questions affirmatively. We also discuss scenarios in
which it is possible to achieve even a double row reduction for all or some of the
gates, with all other gates still maintaining a single row reduction.

1.3 Other Relevant Works

We mention that many garbled circuit optimizations remained outside the scope
of this paper, e.g., double-row reduction was first achieved by Pinkas et al. [31],
but their technique is not compatible with free-XOR. The FleXOR technique [24]
improves over free-XOR in some cases, but was superseded by half-gates [38].
There are some recent improvements over half-gates, most notably the “slicing
and dicing” technique of [32] that reduces garbled AND gates to almost 1.5 rows
and are compatible with free-XOR.

Regarding the reduction of BMR garbled circuit size, the so-called “Tinykeys”
technique, introduced by Hazay et al. [21], showed how the BMR garbled circuit
size can be significantly reduced when some portion of the parties are assumed to
be honest. Although the reduction is remarkable, we show it still results in bigger
garbled circuits than MYao, even though MYao does not make any assumption
on the number of honest parties.

Paper Organization. In Section 2 we review some basic definitions and construc-
tions necessary for understanding our work. In Section 4 we give the basic MYao
protocol. In Section 5 we explain how to incorporate half-gates and row-reduction
into the MYao protocol. In Section 9 we give the details of jointly computing the
garbled gate efficiently using an “MPC friendly” PRF from [15]. In Section 11 we
give the details of our implementation and compare MYao with state-of-the-art
solutions based on garbled circuits.

2 Preliminaries

In this section, we briefly explain the security model, notation, and some well
known definitions and protocols necessary for understanding our work.

Notation. We denote concatenation by ||. The number and set of parties are
denoted by n and P = {P1, ...,Pn}, respectively. We denote the computational
security parameter by κ, and the length of the key for a PRF which ensures κ-bit
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security by ℓ(κ). Note that, depending on the PRF, ℓ(κ) might be significantly
longer than κ. Bit-string multiplication is denoted by ·, i.e. for b ∈ {0, 1} and
s = (s1, ..., sκ) ∈ {0, 1}κ, b · s def

= (bs1, ..., bsκ).

2.1 Basic Functionalities and Protocols

In this section, we describe the main building blocks of our construction such as
secret sharing, oblivious transfer, secure bit multiplication.

The two basic operations which parties from P compute jointly, are bit-
bit and bit-string multiplications. In this section, following the work [9], we
show two protocols for such operations that are secure in the presence of a
static semi-honest adversary corrupting up to n − 1 parties. These protocols
are built on a folklore two-party bit-bit and bit-string multiplication OT-based
protocols given in this section. Before bringing the multiplication functionalities
and protocols, we’ll give the short explanation of the 1-out-of-2 Oblivious transfer
(OT) functionality and XOR additive secret sharing which are necessary for the
multiparty multiplication protocols we use.

Oblivious Transfer. The bit 1-out-of-2 Oblivious Transfer 2-party functionality,
or further bit-OT, allows two parties P1 and P2 to securely compute a function
fOT ((a0, a1), b) = (·, ab), where P1 is called a sender with inputs a0, a1 ∈ {0, 1},
and P2 is called a receiver, with his choice bit b ∈ {0, 1} as the input. The
sender’s output is empty, and the receiver’s output is only a single of sender’s
input bits ab.

The κ-bit string-OT is defined in a similar way as fκ
OT ((s0, s1), b) = (·, sb),

where s0, s1 ∈ {0, 1}κ are two strings.

XOR Secret Sharing A bit x is XOR-shared, if every Pi ∈ P holds a random
bit xi ∈ {0, 1} such that x1 ⊕ · · · ⊕ xn = x. For two XOR-shared bits x and
y, a XOR-sharing of their sum, x ⊕ y, can be locally computed by each party
computing xi ⊕ yi. Similarly, a bitstring s ∈ {0, 1}ℓ is XOR-shared if each party
Pi holds a random string si ∈ {0, 1}ℓ such that

⊕n
i=1 si = s.

Secure two-party bit-bit multiplication. We define the two-party functionality
f×(b1, b2) = (c1, c2), where b1b2 = c1 ⊕ c2. The protocol computing f× for
parties P1 with the input b1 ∈ {0, 1}, and P2 with the input b2 ∈ {0, 1}, works
as follows:

1. P1 chooses a random r ∈ {0, 1}, sets x0 = r, x1 = r ⊕ b1.
2. P1 as a sender with input (x0, x1), and P2 as a receiver with input b2 run a

bit oblivious transfer. P2 receives xb2 .
3. P1 outputs r, and P2 outputs xb2 = r ⊕ b1b2.

The (semi-honest) security of this protocol is trivial in the OT-hybrid model,
since the only communication is done via the OT, hence P1 learns nothing, and
P2 learns only it’s output. This protocol requires only a single OT call.
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Secure two-party bit-string multiplication. The two-party functionality fκ
×(s, b) =

(s1, s2), where s · b = s1 ⊕ s2, and s, s1, s2 ∈ {0, 1}κ, b ∈ {0, 1} can be securely
computed using a single string-OT in the same way as f×, where P1 inputs
(r, r ⊕ s), and P2 inputs b in the fκ

OT functionality. Here, r ← {0, 1}κ.

Secure multiparty bit-bit multiplication. Now we show how n parties P = {P1, . . . ,
Pn} having the additive shares of two bits a and b could securely compute the
shares of their product c = ab in the f×-hybrid model. We denote this function-
ality as fmult((a1, b1), ... , (an, bn)) = (c1, ..., cn). Notice, that every Pi holds two
bits ai and bi such that a = a1 ⊕ ...⊕ an, b = b1 ⊕ ...⊕ bn, and

c = ab =

(
n⊕

i=1

ai

)(
n⊕

i=1

bi

)
=

(
n⊕

i=1

aibi

)
⊕

⊕
i ̸=j

aibj

 . (4)

Each Pi can locally compute aibi. Every Pi and Pj (where i ̸= j) run f×(ai, bj)
and f×(bi, aj), and obtain output shares of aibj and ajbi respectively. Finally,
each party Pi XORs it’s local share product aibi together with all it’s output
shares from f× instances. Denote the result as ci. By (4), c = c1 ⊕ ...⊕ cn.

This protocol requires n(n − 1) parallel bit-OT instances, thus its round
complexity is constant and equals to the round complexity of the underlying
(two-party, semi-honest) bit-OT. Each party participates in 2(n − 1) OT in-
stances.

Security of this protocol relies on the fact that all communications occur in
f× instances, and everything each party sees is a random share of terms in (4),
hence is easy simulated.

Secure multiparty bit-string multiplication. The n-party bit-string multiplication
functionality fκ

mult when each Pi ∈ P holds XOR-additive shares bi and si of
the bit b and the κ-bit string s, and obtains the XOR-additive share of b · s, can
be securely computed in the similar way as the n-party bit-bit multiplication in
a fκ

× hybrid model and requires n(n − 1) parallel string-OT calls, where each
party takes part in 2(n− 1) OT’s.

We denote bit-bit and bit-string multiplication by Πmult and Πℓ
mult, respec-

tively.

Pseudorandom Functions (PRF) and weak Pseudorandom Functions (wPRF)
Informally, a PRF is a function family F , such that for a randomly chosen
function f ← F and any input x, the value f(x) is indistinguishable from a
random string. A wPRF is similarly defined, except that the input x must also
be random, i.e., for a randomly chosen function f ← F and a random known
input x, the output f(x) is indistinguishable from a random string. A formal
definition for wPRFs is given in Section 3.2.

LPN-style “MPC-friendly" wPRF from alternating moduli [15]. We implemented
MYao using the LPN-style wPRF of [15], which is defined as follows: Let B ∈
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Zt×m
2 be a public matrix. For a key k ∈ Zℓ

2, let K ∈ Zm×ℓ
2 be the circulant

matrix1 defined by setting its first row equal to k. On an input x ∈ Zℓ
2, the

wPRF fk ∈ F is defined by

fk(x) = B · [K · x⊕ (K · x mod 3) mod 2] , (5)

where in (K ·x mod 3), both K and x are first reinterpreted over Z3. According
to [15], by setting ℓ = m = 2κ and t = κ, this results in a weak PRF candidate
with approximately κ-bit security that withstands known attacks. See [15] for
more details and Section 9 for how we use this wPRF in the MYao garbled circuit
construction.

3 Security Definitions

3.1 Circular Correlation Robustness

As was shown by Choi et al. [12], a useful cryptographic primitive for proving
the security of a garbled circuit type construction with free-XOR is a circular 2-
correlation robust encryption scheme. This property ensures security even if the
adversary has multiple AND-gates where the pairs of input and output keys have
the same difference ∆. For the half-gates optimization, each half-gate has only
a single key. The required security definition for an underlying cryptographic
primitive was revisited by Zahur, et al. in [38], who replaced it with circular
correlation robustness. In MYao, as we show below, the property of circular
correlation robustness for the wPRF F is sufficient, not only for the half-gates
version, but even for the basic MYao. We next give the definition of circular
correlation robustness for a single-keyed PRF.

For a function family F =
{
Fk : {0, 1}2ℓ(κ) → {0, 1}(ℓ(κ)+1) |k ∈ {0, 1}ℓ(κ)

}
,

for F ∈ F , and ∆̃ ∈ {0, 1}ℓ(κ), we define the oracle CircF
∆̃

as follows. For
b ∈ {0, 1}, the output of CircF

∆̃
(k, g, b) is F(k⊕∆̃)(g) ⊕ b · (∆̃||1).2 The oracle

Rand has the same input and output domain as CircF
∆̃

, and returns fresh random

responses from {0, 1}ℓ(κ)+1 for new queries, while on previously queried values,
it returns the same answer. We say that a distinguisher D makes legal queries
to the oracle O ∈

{
CircF

∆̃
, Rand

}
, if for any values k, g, it doesn’t make both

queries (k, g, 0) and (k, g, 1).

Definition 1 (Circular Correlation Robustness). A function family{
Fk : {0, 1}2ℓ(κ) → {0, 1}(ℓ(κ)+1) |k ∈ {0, 1}ℓ(κ)

}
is circular correlation robust if,

1 A circulant matrix is a matrix in which each row after the first is a cyclic rotation
of the first row by one place. Note that a circulant matrix is a Toeplitz matrix, and
is fully defined by its first row and its dimensions.

2 The definition of Zahur et al. was given for hash-functions, where CircH
∆̃
(k, g, b)

outputs H(k ⊕ ∆̃||g)⊕ b · (∆̃||1).
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for every non-uniform polynomial-time distinguisher D, making only legal queries
to its oracle, ∣∣∣Pr[DCircF

∆̃(1κ) = 1]− Pr[DRand(1κ) = 1]
∣∣∣ (6)

is negligible in κ when ∆̃← {0, 1}ℓ(κ).

As we prove in Theorem 2, the property of circular correlation robustness for
a single-keyed PRF F is enough even for the security of basic MYao (without
the half-gates optimization), when F 2

k1,k2
(g) = Fk1

(g) ⊕ Fk2
(g), and we never

allow the duplicated input wire to any AND gate in the circuit, such that the
case k1 = k2 could appear only at random with the negligible probability.

3.2 Weak Pseudorandom Functions (wPRF)

Definition 2 (Weak Pseudorandom Function (wPRF), [15]). Let K =
{Kκ}κ∈N, X = {Xκ}κ∈N, and Y = {Yκ}κ∈N be ensembles of finite sets indexed
by a security parameter κ. Consider an efficiently computable function family
{Fκ}κ∈N where each function is given by Fκ : Kκ × Xκ −→ Yκ. We say that
{Fκ}κ∈N is an (l, t, ε)-weak pseudorandom function, if for infinitely many κ ∈ N
and all adversaries A running in time at most t(κ), the following holds:

Let fκ, k, and x1, . . . , xl be sampled uniformly at random from Funcs[Xκ,Yκ],
Kκ, and Xκ correspondingly, where Funcs[Xκ,Yκ] denotes the set of all function
from Xκ to Yκ. Then∣∣Pr [A(1κ, {xi,Fκ(k, xi)}i∈[l])

]
− Pr

[
A(1κ, {xi, fκ(xi)}i∈[l])

]∣∣ ≤ ε(κ).

3.3 Definitions of Secure Multiparty Computation

We first give the basic definitions of secure multiparty computation.

Definition 3 (computational indistinguishability). Let X = {Xw}w∈{0,1}∗

and Y = {Yw}w∈{0,1}∗ be two ensembles. We say that X and Y are compu-

tationally indistinguishable, denoted X
c
≈Y, if the following holds: For every

polynomial-size circuit family, {Cn}n∈N , every positive polynomial p, every suf-
ficiently large n, and every w ∈ {0, 1}n,

|Pr[Cn(Xw) = 1]− Pr[Cn(Yw) = 1]| < 1

p(n)
(7)

Definition 4 (outputs; views). Let Π be a multiparty protocol for comput-
ing a functionality f . The view of party Pi during an execution of Π on in-
puts (x1, . . . , xn), denoted viewΠ

i is (xi, ri,mi,1, . . . ,mi,t), where ri represents
the outcome of Pi’s internal coin tosses, and mi,j represents the jth message it
has received.

The output of the party Pi after an execution of Π on (x1, . . . , xn) denoted
by outputΠi (x1, . . . , xn) is implicit in the party’s own view of the execution, and

outputΠ(x1, . . . , xn)
def
= (outputΠ1 (x1, . . . , xn), . . . , output

Π
n (x1, . . . , xn))
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For a subset A = {i1, . . . , in} ⊂ [n] of parties, we define their joint view,

viewΠ
A

def
= (A, viewΠ

i1 , . . . , view
Π
in).

Definition 5 (semi-honest multiparty security). Let f = (f1, ..., fn) be a
functionality. We say that π securely computes a deterministic function f in the
presence of static semi-honest adversaries if there exists probabilistic polynomial-
time algorithms {SA}A⊂[n] such that

{outputπ(x1, . . . , xn)}x1,...,xn∈{0,1}∗
c
≈{f(x1, . . . , xn)}x1,...,xn∈{0,1}∗ , (8)

and for each A ⊂ [n]

{SA((xi)i∈A, (fi(x1, . . . , xn))i∈A)}x1,...,xn∈{0,1}∗
c
≈

{viewπ
A(x1, . . . , xn))}x1,...,xn∈{0,1}∗ . (9)

4 The Basic MYao Protocol

In this section we explain the basic MYao protocol, without the row-reduction
and half-gates optimizations: In Section 4.1 we give the details of MYao’s of-
fline functionality Fgarble that creates a MYao garbled circuit. In Section 4.2
we describe MYao’s offline phase, an efficient MPC protocol that implements
functionality Fgarble. In Section 4.3 we explain the MYao online phase. Security
is explained in Section 6.

In Section 5 we explain the changes required for applying the row-reduction
and half-gates optimizations. The details of the LPN-style wPRF of [15], which
allows MYao to be computed efficiently, and the protocol for computing this
wPRF, are given in Section 9.

4.1 The Garbled Circuit Functionality

The garbling functionality of MYao essentially creates a Yao garbled circuit,
and outputs it to each of the parties along with the masking bits for this party’s
respective input wires, the masking bits for the output wires of the circuit, and
XOR shares of the keys for all input wires of the circuit. We next explain this
in detail. The formal description is given in Figure 1. For simplicity, we consider
a circuit C containing only AND and XOR gates, with no duplicated inputs
(see [30] for security issues from duplicated inputs).

For each wire w of the circuit, the functionality associates:

– 2 keys, kw,0, kw,1 ∈ {0, 1}ℓ(κ), corresponding to the two values 0 and 1,
respectively, and

– A masking bit λw ∈ {0, 1}, used to mask the real value of the wire during
the evaluation phase.
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Functionality Fgarble Constructing a MYao Garbled Circuit

Input: The circuit C to be garbled.

1. Sample a global offset ∆← {0, 1}ℓ(κ).
2. For every wire w that is not an output wire of a XOR-gate, sample kw,0 ←
{0, 1}ℓ(κ) and λw ← {0, 1}, and compute kw,1 = kw,0 ⊕∆.

3. In topological order, for every XOR-gate with output wire w and input wires
u, v, compute kw,0 = ku,0 ⊕ kv,0, kw,1 = kw,0 ⊕∆, and λw = λu ⊕ λv.

4. For every AND-gate with input wires u, v and output wire w, compute the
garbled gate {g̃α,β}α,β∈{0,1} as follows: For every α, β ∈ {0, 1}, compute the
conditional external value

eα,β
w = λw ⊕ (λu ⊕ α) · (λv ⊕ β) (10)

and the garbled row:

g̃α,β = Fku,α(gα,β)⊕ Fkv,β (gα,β)⊕
(
k
w,e

α,β
w
||eα,β

w

)
, (11)

where gα,β is a unique public index corresponding to the gate index and the
row, and F is a circular-correlation robust PRF.a

Output:

– To all the parties, the garbled gates {g̃α,β}α,β∈{0,1} for all AND gates.b

– To all the parties, on each output wire out of the circuit, the masking bit λout,
– To each party Pi, a random share ∆i such that ∆ =

⊕n
i=1 ∆

i, and, for every
input wire w of the circuit, a random share ki

w,0, such that kw,0 =
⊕n

i=1 k
i
w,0.

– To each party Pi, on each input wire in of the party, the masking bit λin.

a If F is a wPRF, gα,β should be random; See Section 9 for more details.
b See Remark 1 on page 31.

Fig. 1. Functionality Fgarble

As the MYao protocol uses only XOR secret-sharing, it can utilize the free-
XOR optimization. To enable free-XOR, the functionality sets kw,1 = kw,0 ⊕∆

on all the wires, where ∆ ∈ {0, 1}ℓ(κ) is a uniformly random global offset. Notice
that this implies that for every b ∈ {0, 1}, on all wires it holds that

kw,b = kw,0 ⊕ b ·∆. (12)

Additionally, for all wires that are not output wires of XOR gates, kw,0 ∈
{0, 1}ℓ(κ) and λw ∈ {0, 1} are chosen uniformly at random. Then, in topological
order, for all XOR gates with output wire w and input wires u, v, the function-
ality sets the 0-key and masking bit of wire out to be the XOR of the 0-keys and
masking bits, respectively, of the input wires. I.e.,

kw,0 = ku,0 ⊕ kv,0 (13)
λw = λu ⊕ λv. (14)

The functionality then computes the garbled AND gates as follows:
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g̃α,β = Fku,α
(gα,β)⊕ Fkv,β

(gα,β)⊕
(
kw,eα,β

w
||eα,βw

)
, (15)

where F is a circular-correlation robust PRF (see Section 3.1 for the definition
of circular-correlation robustness), gα,β is a unique index corresponding to the
gate and row,3 and

eα,βw = λw ⊕ (α⊕ λu)(β ⊕ λv) (16)

is the conditional external value (i.e., the external value the evaluator will see
on the wire if this row is decrypted).

The functionality then outputs to the parties the garbled gates and the mask-
ing bits on the output wires. Additionally, it distributes to the parties XOR
shares of the keys on all the input wires of the circuit, and to each party Pi the
masking bits on its input wires.

4.2 The MYao Offline Phase Protocol

In this section, we describe the garbling protocol that creates the MYao garbled
circuit. This protocol is independent of the actual inputs of parties, and can
therefore be run beforehand, in an offline phase. Since all the gates can be
computed in parallel, the entire protocol has a constant number of rounds. The
MYao garbling protocol Πoffline realizes the functionality Fgarble, and is explained
below. The formal description is given in Figure 2.

In the first local step of Πoffline, the parties choose random shares ∆i of the
global offset ∆, and choose random shares kiw,0 and λi

w for the wire key kw,0

and masking bit λw, respectively, for every wire w that is not the output of a
XOR-gate. For every input wire in, attributed to Party Pj , every other party
Pi (i ̸= j) sets its share of the mask λi

in to 0, resulting in λw = λj
w. Then, for

every XOR-gate of the circuit in topological order, the parties locally compute
the shares of the output keys and masks, by XORing the input ones. I.e., for an
XOR-gate with the input wires u, v and output wire w, each party Pi computes
kiw,0 = kiu,0⊕ kiv,0, and λi

w = λi
u⊕ λi

v. Notice that this step does not require any
interaction.

In the second step, the parties compute the garbling of all the AND-gates in
parallel. In the basic MYao protocol (without row-reduction and half-gates),
this is computed as follows: The parties compute secret-shares of the PRFs
Fku,α

(gα,β) and Fkv,β
(gα,β) used for the encryption. As the parties only hold

shares of the keys ku,α and kv,β , for a general PRF this would be inefficient.
Therefore, we build F using the LPN-style “MPC-friendly" wPRF of [15]. The
exact definition of F and the protocol for securely computing this wPRF are
given in Section 9.

In parallel to the PRF computation, the parties compute shares of the key
and external value that should be encrypted

3 As we use a wPRF, gα,β will need to be a (pseudo)-random value; see Section 9.
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– The parties compute shares of λuλv by invoking Πmult on their shares of λu

and λv. Then, using the linearity property, the parties locally compute shares
of eα,βw for α, β ∈ {0, 1} by the equation eα,βw = λw⊕λuλv⊕αλv⊕βλu⊕αβ.

– The parties compute shares of eα,βw ·∆ for α, β ∈ {0, 1} by invoking Π
ℓ(κ)
mult

on the shares computed above and their share of ∆.4 By locally summing
these with their shares of kw,0 they obtain shares of kw,eα,β

w
.

Following Equation (15), shares of the garbled gates are then computed by XOR-
ing the shares of the PRF with the shares of the keys and masking bits to be
encrypted. The garbled gates can thus be obtained by a reconstruction round.
The formal description of Protocol ΠAND for garbling a single AND-gate appears
in Figure 3.

In the final step of Πoffline, parties output the garbled gates and reconstruct
the output wire masks λout for every output wire out.

Protocol for Constructing a MYao Garbled Circuit

Input: The circuit C to be garbled.

1. Each party Pi ∈ P chooses its share ∆i ← {0, 1}ℓ(κ) of the offset ∆. For every
wire w in topological order:
(a) if w is not an output wire of an XOR-gate, Pi samples ki

w,0 ← {0, 1}ℓ(κ),
λi
w ← {0, 1}, and computes ki

w,1 = ki
w,0 ⊕∆i;

(b) if w is an input wire of Pj , j ̸= i, then Pi sets λi
w = 0. Thus, λw = λj

w.
(c) if w is an output wire of a XOR-gate with input wires u, v, it computes

ki
w,0 = ki

u,0 ⊕ ki
v,0, and ki

w,1 = ki
w,0 ⊕∆i, λi

w = λi
u ⊕ λi

v.
2. The parties run the protocol ΠAND in Fig. 3 on all the AND gates, in parallel,

to compute and output all the garbled gates.a

3. For every output wire w of the circuit, the parties reconstruct λw = ⊕n
i=1λ

i
w.

Remark: Steps 2 and 3 can be run in parallel.

a See remark 1 on page 31.

Fig. 2. Protocol Πoffline

4.3 The MYao Online Protocol

In this section, we explain the online phase protocol for evaluating a MYao
garbled circuit. A formal description of the MYao online phase protocol Πonline

is given in Figure 4.
Similarly to the BMR protocol, the first step of the online protocol involves

two communication rounds, in which the parties learn the external values and
corresponding keys on all the circuit input wires. This is achieved by each party

4 As observed in [9], this part can in fact be computed using only 3 invocations of
Π

ℓ(κ)
mult.
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Protocol ΠAND for computing a garbled AND gate (Equation (15))

Inputs: The parties hold secret-shares of the global offset ∆. For input wires u, v
and output wire w of the AND gate, the parties hold secret-shares of the 0 keys
ku,0, kv,0, and kw,0, and of the masking bits λu, λv, and λw.
Computation: The parties compute the following 2 steps in parallel:

1. PRF computation: For each α, β ∈ {0, 1}, the parties call ΠF , using their
shares of the keys ku,α and kv,β as inputs, to obtain shares of Fku,α(gα,β) and
Fkv,β (gα,β), respectively, where gα,β is a unique index corresponding to the
gate and the row; The details of ΠF are given in Section 9. Then, the parties
locally compute shares of the value F 2

α,β = Fku,α(gα,β)⊕ Fkv,β (gα,β).
2. Computation of the plaintext shares:

(a) Parties call Πmult with their shares of λu and λv to obtain shares of λu ·λv.
The parties can then locally compute shares of eα,β

w = λw⊕ (λu⊕α)(λv⊕
β).

(b) The parties use the computed shares above and their shares of ∆ as inputs
to Π

ℓ(κ)
mult to compute shares of eα,β

w · ∆, then locally compute shares of
k
w,e

α,β
w

= kw,0 ⊕ eα,β
w ·∆ by XORing the result with their share of ki

w,0.

Output Step: Using the above results, the parties can locally obtain shares g̃iα,β

of the garbled gate g̃α,β = F 2
α,β ⊕

(
k
w,e

α,β
w
||eα,β

w

)
. By broadcasting their shares

and XORing it with the received shares, they reconstruct the garbled gate.

Fig. 3. Protocol ΠAND

Pi broadcasting ew = vw⊕λw on each wire w of its input wires, where vw is Pi’s
input. Recall that the masking bit λw is known to Pi on its input wires. The
parties then reconstruct kw,ew by broadcasting their shares and XORing.

After this step, each party can locally evaluate the circuit, similarly to the
evaluator in Yao’s protocol. The evaluation is gate by gate, in topological order:

– For XOR-gates, the external value and corresponding key on the output wire
are computed by XORing the external values and keys on the input wires,
i.e., eout = ein1 ⊕ ein2 and kout = kin1 ⊕ kin2.

– For AND gates, the output wire’s external value and corresponding key
are computed by choosing the row in the garbled gate according to the
external values, and decrypting it using the keys it has of the input wires,
i.e., kout,eout ||eout = g̃ein1,ein2 ⊕ Fku,ein1

(gein1,ein2)⊕ Fkv,ein2
(gein1,ein2).

Correctness. The correctness of the MYao protocol follows from the following
observation: During evaluation, at each wire w of the circuit, the external value
seen by an evaluating party corresponds to ew = vw ⊕ λw, where vw is the real
value on the wire (in an ungarbled circuit computation). From this it follows
that for each output wire out of the circuit, an evaluating party correctly outputs
vout = eout ⊕ λout at the output step of the online protocol. To show that the
observation holds we proceed as follows:

1. On input wires the observation follows from Step 1a.
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2. We proceed by induction on the output wires of the gates. Let g be a gate
with input wires u, v and output wire w.
– If g is an XOR gate, we observe that ew = vw ⊕ λw = (vu ⊕ vv)⊕ (λu ⊕

λv) = (vu ⊕ λu)⊕ (vv ⊕ λv) = eu ⊕ ev
– If g is an AND gate, the observations follows by the definition of the

conditional external value in Equation (16), replacing α, β with eu, ev,
respectively (note that this is the decrypted conditional external value).

Online Protocol for Evaluating a MYao Garbled Circuit

Input: The parties receive as input the output of Πoffline. Additionally, each party
receives its inputs xw on each of its input wires of the circuit.

1. Exchanging input wires’ external values and corresponding keys: for
every input wire w associated with input xw of Party Pi:
(a) Pi sends ew = xw ⊕ λw to all the parties.
(b) Each Pj sends its share kj

w,ew to all other parties.
(c) Each party computes kw,ew = ⊕n

j=1k
j
w,ew .

2. Local evaluation of the circuit: The circuit is evaluated gate by gate in
topological order. For a gate g with input wires u and v and output wire w,
the output external value and key are computed as follows:
(a) If g is an XOR-gate, then ew = eu ⊕ ev, and kw,ew = ku,eu ⊕ kv,ev .
(b) If g is an AND-gate, then kw,ew ||ew = g̃eu,ev ⊕ Fku,eu

(geu,ev ) ⊕
Fkv,ev

(geu,ev )

Output: For each circuit output wire out, output yout = eout ⊕ λout.

Fig. 4. Protocol Πonline

5 Row Reduction and Half-Gates

In this section we describe how we incorporate Half-Gates [38] and Row Reduc-
tion [29] into the MYao protocol to reduce the size of the garbled circuit and
optimize the offline phase. We first explain the half-gates construction, and then
the required changes to the offline and online protocols. Additionally, we explain
specific situations where it is possible to achieve even a double row-reduction for
some or all of the gates.

Half-gates. Using half-gates requires Free-XOR. Thus, to incorporate the half-
gates optimization into MYao, all that is changed is how AND gates are garbled.
For an AND gate with output wire w and input wires u and v, instead of comput-
ing one four-row garbled table for an AND gate as in Equation (15), two two-row
garbled tables are computed corresponding to two (non-symmetric) “half-gates”.

We formally denote the two half gates by G̃ and Ĝ, which correspond to the
“garbler half gate” and “evaluator half gate” in two party terminology; note that
in the multiparty setting there are no “different roles” in the computation of the
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garbled half gates, but the two half-gates are not symmetric, i.e., each of the
two half gates is computed differently. We denote the corresponding garbled half
gates by g̃ and ĝ, respectively. The half-gate G̃ will be encrypted (and decrypted)
only with the keys of input wire u (i.e., ku,0, ku,1), while the half-gate Ĝ will be
encrypted only with the keys of input wire v (i.e., kv,0, kv,1). At evaluation, an
evaluating party will decrypt both half gates, and use the results to obtain the
external value ew and corresponding key kw,ew on the output wire w, matching
the regular protocol.

To compute the garbled gates g̃ and ĝ, the 0-key kw,0 and the masking bit
λw on the output wire w are partitioned to random k̃w,0, k̂w,0 ∈ {0, 1}ℓ(κ) and
λ̃w, λ̂w ∈ {0, 1}, respectively, such that kw,0 = k̃w,0 ⊕ k̂w,0 and λw = λ̃w ⊕ λ̂w.
The garbled gates are then computed by the equations:

g̃α = Fku,α(g0,α)⊕
(
k̃w,ẽαw

||ẽαw
)

(17)

ĝβ = Fkv,β
(g1,β)⊕

([
k̂w,êβw

⊕ β · ku,0
]
||êβw

)
(18)

where ẽαw = λ̃w ⊕ (λu ⊕ α)λv and êβw = λ̂w ⊕ βλu. It can now be observed
from Equation (16) that for the conditional external values eα,βw (in the regular
garbled AND gate) it holds that

eα,βw = ẽαw ⊕ êβw ⊕ αβ. (19)

To understand why the above construction works, first observe that by Equa-
tions (17), (18), and by repeatedly using Equations (12), (19) and rearrangement:

g̃α ⊕ ĝβ =
(
Fku,α (g0,α) ⊕

(
k̃w,ẽαw

||ẽαw
))

⊕
(
Fkv,β

(g1,β) ⊕
([

k̂
w,ê

β
w

⊕ β · ku,0

]
||êβw

))
= Fku,α (g0,α) ⊕ Fkv,β

(g1,β)⊕

⊕
([(

k̃w,0 ⊕ k̂w,0

)
⊕ (ẽ

α
w ⊕ ê

β
w) · ∆ ⊕ β · ku,0

]
||
[
ẽ
α
w ⊕ ê

β
w

]
)
)

= Fku,α (g0,α) ⊕ Fkv,β
(g1,β) ⊕

([
kw,0 ⊕ β · ku,0 ⊕ (e

α,β
w ⊕ αβ) · ∆

]
||
[
e
α,β
w ⊕ αβ

])
= Fku,α (g0,α) ⊕ Fkv,β

(g1,β) ⊕
(
kw,0 ⊕ e

α,β
w · ∆||eα,β

w

)
⊕ β · (ku,0 ⊕ α · ∆||α)

= Fku,α (g0,α) ⊕ Fkv,β
(g1,β) ⊕

(
k
w,e

α,β
w

||eα,β
w

)
⊕ β · (ku,α||α).

Thus, for every α, β ∈ {0, 1}, it holds that

(kw,eα,β
w
||eα,βw ) = g̃α ⊕ ĝβ ⊕ Fku,α

(g0,α)⊕ Fkv,β
(g1,β)⊕ β · (ku,α||α). (20)

Hence, at the online phase, an evaluating party holding external values eu, ev and
corresponding keys ku,eu , kv,ev , decrypts g̃eu and ĝev by XORing with Fku,eu

(g0,eu)
and Fkv,ev

(g1,ev ), respectively. Then, the evaluating party XORs the decrypted
results along with ev · (ku,eu ||eu). By Equation (20), this results in kw,ew ||ew for
any ev, eu ∈ {0, 1}, matching the expected result.

So far, we have not made any saving to the garbled circuit size, as the two
half-gates require 2 garbled rows each, so 4 garbled rows in total for an AND
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gate. However, we first observe that in MYao, using half-gates is beneficial even
without row reduction: the number of PRF invocations required for computing a
garbled half-gate based AND gate is 4, whereas computing the standard garbled
AND gate requires 8 invocations of the PRF. The difference from standard Yao
is that we are not using a 2-keyed PRF/Encryption. Furthermore, in MYao,
the online time for half-gate based AND is only marginally more than standard
AND, as in both cases decrypting an AND gate requires 2 local PRF invocations,
which is the overwhelmingly dominant factor of the online computation.

We next explain how the number of rows is reduced to 3 using row reduction.

Row reduction via half gates. To achieve row reduction, the first row of the
garbled half-gate g̃ is set to be the default value 0, i.e., g̃0 = 0. By Equation (17)
it follows that

Fku,0
(g0,0) = k̃w,ẽ0w

||ẽ0w. (21)

Hence, ẽ0w and k̃w,0 are now decided by Fku,0(g0,0) and the global offset ∆.
Similarly, other parts of the partitioned output key and conditional external
value are decided by the above and the 0-key kw,0 and masking bit λw on output
wire w of the AND gate:

ê0w = λw ⊕ λuλv ⊕ ẽ0w; ẽ1w = ẽ0w ⊕ λv; ê1w = ê0w ⊕ λu; (22)

k̂w,0 = kw,0 ⊕ k̃w,0. (23)

It might be tempting to try to get a double row reduction in MYao, by
setting the first row of the garbled gate ĝ to the default value as well. However,
this turns out to create complications for constructing a constant round MPC
protocol; We discuss this at the end of this section and in Section 8.

The offline functionality for MYao with row reduction via half-gates, FHG
garble,

is identical to the basic MYao functionality Fgarble apart from Step 4, i.e., com-
puting the garbled gates. Thus, we give only the alternative Step 4 of FHG

garble in
Figure 5. Observe that in Figure 5, g̃1 appears instead of g̃α – this is because for
α = 0 we have g̃α = g̃0 = 0 due to the row reduction, and so we omit it.

The offline protocol with half gates and row reduction. The offline protocol com-
puting a MYao garbled circuit with the half gates and row reduction optimiza-
tions differs from the basic MYao offline protocol only in Step 2, i.e., securely
computing the garbled gates.

To securely compute the garbled gates, parties first compute in parallel:

1. Shares of the outputs of PRF, i.e., of the values Fku,α
(g0,α) and Fkv,β

(g1,β)
for α, β ∈ {0, 1}

2. Shares of λuλv using their shares of λu and λv on Πmult. Then, using addi-
tionally their shares of ∆, the parties compute by invoking Π

ℓ(κ)
mult shares of

the multiplications: λw ·∆, λu ·∆, λv ·∆, and (λuλv) ·∆

From the first computation above, the parties parse the result as (k̃iw,ẽ0w
||ẽ0,iw ),

where k̃iw,ẽ0w
∈ {0, 1}ℓ(κ), ẽ0,iw ∈ {0, 1}, i.e., their shares of ẽ0w and k̃w,ẽ0w

are
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Functionality for MYao Garbled Circuit with Half-Gates

4. For every AND-gate with input wires u, v and output wire w, compute the
garbled half-gates g̃1 and ĝβ for β ∈ {0, 1} as follows.
(a) Compute Fku,0(g0,0) and parse it as (k̃w,ẽ0w

||ẽ0w), where k̃w,ẽ0w
∈ {0, 1}ℓ(κ),

ẽ0w ∈ {0, 1}.
(b) Compute the partition of the external values ẽ1w = ẽ0w⊕λv, ê0w = ẽ0w⊕λw⊕

λuλv, ê1w = ê0w⊕λu, and of the keys k̃w,0 = k̃w,ẽ0w
⊕ẽ0w ·∆, k̃w,1 = k̃w,0⊕∆,

k̂w,0 = kw,0 ⊕ k̃w,0, k̂w,1 = k̂w,0 ⊕∆.
(c) Compute and output to the parties the reduced half gates

g̃1 = Fku,1(g0,1)⊕
(
k̃w,ẽ1w

||ẽ1w
)
;

ĝβ = Fkv,β (g1,β)⊕
(
k̂
w,ê

β
w
⊕ β · ku,0||êβw

)
,

(24)

where β ∈ {0, 1}.

Remark: All other steps are identical to Functionality Fgarble. The change to the
output is that the garbled gates are different (garbled half-gate AND gates instead
of regular garbled AND gates).

Fig. 5. Functionality FHG
garble

determined by this computation. Notice that by Equation (21), this implies that
(k̃w,ẽ0w

||ẽ0w) = Fku,0
(g0,0).

The rest of the required shares for the garbled gates, i.e., the shares of ẽ1w,
ê0w, ê1w, k̃w,ẽ1w

, k̂w,ê0w
, and k̂w,ê1w

can now be computed by linear combinations of
the shares they already have, using Equations (22), (23), and (12). E.g.,

k̃w,ẽ1w
= k̃w,0 ⊕ ẽ1w ·∆ = k̃w,0 ⊕ (ẽ0w ⊕ λv) ·∆ = k̃w,ẽ0w

⊕ λv ·∆ (25)

k̂w,ê0w
= k̂w,0 ⊕ ê0w ·∆ = kw,0 ⊕ k̃w,0 ⊕ (λw ⊕ λuλv ⊕ ẽ0w) ·∆

= kw,0 ⊕ k̃w,ẽ0w
⊕ (λw ⊕ λuλv) ·∆ (26)

and

k̂w,ê1w
= k̂w,0 ⊕ ku,0 ⊕ ê1w ·∆ = k̂w,0 ⊕ ku,0 ⊕ (ê0w ⊕ λu) ·∆

= k̂w,ê0w
⊕ ku,0 ⊕ λu ·∆. (27)

Notice that this avoids multiplying ẽ1w, ê0w, ê1w with ∆ directly, which would
require adding another multiplication round, as it cannot be computed in parallel
with Step 1a. The parties can now recover the garbled gates g̃1 and ĝβ for
β ∈ {0, 1} by a reconstruction round.

The online protocol. The online phase of MYao with half-gates and row-reduction
is the same as the online phase for basic MYao, except for Step 2b, i.e., the
evaluation of the garbled half-gate based AND gates replaces the evaluation of
regular garbled AND gates.
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Protocol ΠHG
AND for computing the garbled half-gate with a row

reduction.

Inputs: The private inputs of each party Pi are same as for ΠAND.
Computation:

1. The parties perform the following two steps in parallel:
(a) The parties call the multiparty protocol ΠF four times in parallel to com-

pute shares F̃ i
α, F̂ i

β of four values F̃α = Fku,α(g0,α), F̂β = Fkv,β (g1,β) as
PRF’s on the secret-shared keys ku,α, kv,β of the public inputs (for every
α, β ∈ {0, 1}). Each Pi parses F̃ i

0 as (k̃i
w,ẽ0w
||ẽ0,iw ), where k̃i

w,ẽ0w
∈ {0, 1}ℓ(κ),

ẽ0,iw ∈ {0, 1}.
(b) Using the multiplication protocols Πmult and Π

ℓ(κ)
mult the parties:

i. The parties call Πmult on their inputs λi
u and λi

v to obtain λi
uv.

ii. In parallel, they call three instances of Πℓ(κ)
mult. The first input of Pi to

each instance is ∆i, and the second are λi
u, λi

v, and (λi
w ⊕ λi

uv). The
outputs are the shares Λi

u, Λi
v and Λi

∗, respectively. I.e., Λi
u, Λi

v and
Λi

∗ are their shares of λu ·∆, λv ·∆, and (λw ⊕ λuλv) ·∆ respectively.
2. Computation of the outputs’ shares (local): Each Pi locally computes

the following shares: ẽ1,iw = ẽ0,iw ⊕ λi
v, ê0,iw = ẽ0,iw ⊕ λi

w ⊕ λi
uv, ê1,iw = ê0,iw ⊕ λi

u,
k̃i
w,ẽ1w

= k̃i
w,ẽ0w

⊕ Λi
v, k̂i

w,ê0w
= ki

w,0 ⊕ k̃i
w,ẽ0w

⊕ Λi
∗, k̂i

w,ê1w
= ki

u,0 ⊕ k̂i
w,ê0w

⊕ Λi
u.

Output Reconstruction: Each Pi locally computes g̃i1 = F̃ i
1⊕

(
k̃i
w,ẽ1w
||ẽ1,iw

)
, and

ĝiβ = F̂ i
β ⊕

(
k̂i

w,ê
β
w
||êβ,iw

)
for every β ∈ {0, 1}, and sends them to any Pj , j ̸= i.a

Then, each party locally reconstructs the garbled half gates as g̃1 =
⊕n

i=1 g̃
i
1, and

ĝβ =
⊕n

i=1 ĝ
i
β for β ∈ {0, 1}.

a See remark 1 on page 31.

Fig. 6. Protocol ΠHG
AND

As explained, to evaluate the garbled half-gates based AND, an evaluating
party decrypts both half gates according to the external values on the input
wires and the corresponding keys. When using row-reduction, if eu = 0, the
evaluating party uses g̃0 = 0 as the garbled half-gate. The key and external
value on the AND output wire is then computed as the XOR of both values
XORed with ev · (ku,eu ||eu) (which the evaluating party can compute at this
stage). The formal description of Step 2b in the online protocol with half-gates
is formally given in Figure 7.

Half Gate AND Evaluation Protocol

2.(b) For an AND gate g with input wires u and v and output wire w, the output
external value and key are computed as follows:

kw,ew ||ew = g̃eu ⊕ Fku,eu
(g0,eu)⊕ ĝev ⊕ Fkv,ev

(g1,ev )⊕ ev · (ku,eu ||eu).

Fig. 7. Replacement Step 2b in ΠHG
online



MYao – Multiparty “Yao” Garbled Circuits 25

Double row reduction. It is also possible to apply row reduction to both halves,
by setting both ĝ0 = 0 and g̃0 = 0. This would reduce the garbled AND gate size
down to only two rows, one from each half. However, as a result, the AND gate’s
output wire’s keys and masks become dependent on those of its input wires.
Hence, using a double row-reduction seems to require computing the AND gates
sequentially (in layers). The resulting protocol has number of rounds linear in
the depth of the circuit. We give the details in Section 8. Notice, however, that
the online phase remains constant round, with only two rounds of interaction.

Additionally, we observe that in certain circuits it is possible to achieve double
row-reduction in constant rounds for some or even the majority of the gates. For
example, in layered circuits, where the AND gates are layered and outputs of
AND gates of layer i are used as inputs only in layer i+1. Due to free-XOR, we
also require that all XOR gate chains have inputs from some layer i and output
to layer i+1. We give the details of this construction, as well as generalizations,
in Section 8.

6 Proof of Security

In this section, we prove the security of MYao. First, we prove that the protocol
Πoffline securely computes the “Yao"’s circuit, i.e. securely realizes the function-
ality Fgarble in presence of a semi-honest adversary corrupting any number of
parties from P. Then, we prove security of MYao in the Fgarble-hybrid model
assuming that the PRF F is circular correlation robust, according to Definition 1.

In this section, by PA,PH ⊂ P we denote the set of corrupt and honest
parties respectively, and by A,H ⊂ [n] sets of their indexes.

6.1 Security of the Garbling

In this section we prove the security of the garbling process. We assume the
following ideal functionalities: FF for a secure multiparty evaluation of the PRF
F , f

ℓ(κ)
mult for a multiparty bit-string multiplication for ℓ(κ)-long strings, and

fmult for the multiparty bit-bit multiplication. These functionalities are securely
realized by the protocols ΠF , Πℓ(κ)

mult, and Πmult respectively in the presence of
a static semi-honest adversary corrupting any number of parties. Each of these
functionalities takes the XOR secret shared inputs from the parties in P, and
gives the XOR secret shared outputs from the correspondent function.

The multiplication protocols and functionalities are given in Section 2.1. Pro-
tocol ΠF is given in Appendix A. For completeness, we give the gate encryption
functionality FAND in Figure 8.

Lemma 1. The protocol ΠAND securely computes the n-party functionality FAND

in the (FF , f
ℓ(κ)
mult, fmult)-hybrid model in the presence of a static semi-honest ad-

versary corrupting any number of parties.
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Functionality FAND for Encrypting an AND-gate

Inputs: Each party Pi inputs ki
u,0, ki

v,0, ki
w,0, ∆i ∈ {0, 1}ℓ(κ), λi

u, λ
i
v, λ

i
w ∈ {0, 1}.

Computation:

1. The functionality reconstructs the wires’ keys and masks, and the global offset
as follows: ∆ = ∆1⊕ · · ·⊕∆n, ku,0 = k1

u,0⊕ · · ·⊕ kn
u,0, kv,0 = k1

v,0⊕ · · ·⊕ kn
v,0,

kw,0 = k1
w,0 ⊕ · · · ⊕ kn

w,0, ku,1 = ku,0 ⊕∆, kv,1 = kv,0 ⊕∆, λu = λ1
u ⊕ · · · ⊕ λn

u,
λv = λ1

v ⊕ · · · ⊕ λn
v , λw = λ1

w ⊕ · · · ⊕ λn
w.

2. For every α, β ∈ {0, 1}, compute the conditional external value eα,β
w = λw ⊕

(λu ⊕ α) · (λv ⊕ β), and the garbled row:

g̃α,β = Fku,α(gα,β)⊕ Fkv,β (gα,β)⊕
[(

kw,0 ⊕ (eα,β
w ·∆)

)
||eα,β

w

]
, (28)

where gα,β are unique public indexes correspondent to the AND-gate g’s rows,
and F is a PRF.

Outputs: The functionality outputs {g̃α,β}α,β∈{0,1} to every party Pi.

Fig. 8. Functionality FAND

Proof. The simulator S, in Step 1, simulates all the outputs of FF by sending
to the adversary the uniformly random strings F i

u,α,β and F i
v,α,β of length ℓ(κ)

for every Pi ∈ PA, and every α, β ∈ {0, 1}.
In Step 2(a), it simulates the output of fmult sending a uniformly random

bit as the share of λuλv of any Pi ∈ PA. In Step 2(b), S simulates the outputs
of f ℓ(κ)

mult sending the uniformly random binary strings diα,β of length ℓ(κ) as the
shares of eα,βw ·∆ for every Pi ∈ PA, and every α, β ∈ {0, 1}.

Finally, in the output step, for every g̃α,β obtained from the ideal functionality
FAND, the simulator computes

g̃Aα,β = g̃α,β ⊕
⊕
i∈A

(
F i
u,α,β ⊕ F i

v,α,β ⊕ (kiw,0 ⊕ diα,β ||eα,β,iw )
)
,

XOR-shares it for all Pj ∈ PH , and broadcast on their behalf.
In both real and ideal worlds the view of the adversary together with the

output of honest parties is distributed identically, hence the protocol ΠAND is
secure.

Lemma 2. The protocol Πoffline securely realizes the n-party functionality Fgarble

in the FAND-hybrid model in the presence of a static semi-honest adversary cor-
rupting any number of parties.

Proof. The simulator S, getting from the ideal functionality Fgarble the outputs
{g̃α,β}α,β∈{0,1} for all AND gates, ∆i, and kiw,0 for all input wires w, λout on each
output wire out, for all Pi ∈ PA, simulates the view of the adversary as follows.
First, it sets the randomness of all corrupt parties Pi according to the Fgarble’s
choice of ∆i, kiw,0, and λi

out. Notice, that, as the adversary is semi-honest, in the
real world parties would choose them uniformly at random, as Fgarble does in
the ideal world.
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The first step of the protocol is local, thus the simulator doesn’t send any
messages. In the second step of the simulation, S simulates the output of FAND

sending {g̃α,β}α,β∈{0,1} that it got from Fgarble to the adversary as the out-
put of any corrupt party. In the third step, the simulator XOR-shares the bit(
λout ⊕

⊕
i∈A λi

out

)
in |PH | shares, and broadcasts them on behalf of the parties

from PH .
In both real and ideal worlds the view of the adversary together with the

output of honest parties is distributed identically.

Theorem 1. The protocol Πoffline securely realizes the n-party functionality Fgarble

in the (FF , f
ℓ(κ)
mult, fmult)-hybrid model in the presence of a static semi-honest ad-

versary corrupting any number of parties.

Proof. By composition of Lemma 2 and Lemma 1.

6.2 Security of MYao

We denote by FC the function computed by a circuit C. We limit the circuit
to only the basis of XOR, AND and NOT gates with at most 2 input wires.
Also, we require that any gate’s input wires are not duplicated, as allowing such
duplications introduces a vulnerability for the garbled circuit in general, as was
shown by Nieminen and Schneider [30], and in particular for our construction of
the two-keyed PRF. This requirement does not easily imposed, as for any bit b,
it holds that b⊕ b = 0, and b · b = b, thus the gates with duplicated inputs can
simply be omitted.

For simplicity, we assume that any Pi ∈ P has only a single input bit xi, and
gets the output from the only output wire out of C. We’ll prove the security of
MYao in the Fgarble-hybrid model. In the real world, the view of the corrupt
parties are:

1. The output of Fgarble, i.e. the garbled circuit {g̃α,β}g∈C,α,β∈{0,1}, the global
offset’s shares ∆i, the input wire’s keys shares kiw,0, the wire mask λin for
any Pi’s input wire, for any i ∈ A and the output wire’s mask λout;

2. The messages of the online round, i.e. the input wire’s external values ew
and the correspondent keys’ shares kjw,ew for j ∈ H.

In the ideal world, the simulator receives yout = f(x1, . . . , xn) from the trusted
party, but learns only inputs of parties from PA. Without knowing inputs of hon-
est parties, it cannot construct the real garbled circuit together with appropriate
λout and input external values. The simulator builds the fake garbled circuit in-
stead, with fake external values and keys, and fake output wire mask. In every
fake garbled table, only a single row-on-the-evaluation-path is computed by en-
cryption. Other three rows are chosen by a simulator uniformly at random. The
proof of security, thus, is to show that no PPT distinguisher D can distinguish
between the real garbled circuit and the fake one.

The simulator SMYao is given in Figure 9.
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Simulator Algorithm SMYao

Inputs: The circuit C and the inputs for the corrupted parties {xi}i∈A.
Algorithm:

1. The simulator SMYao sends {xi}i∈A to the trusted party, and obtains
FC(x1, . . . , xn).

2. For any i ∈ A, SMYao performs the following computations:
(a) Sample the offset ∆̂i ← {0, 1}ℓ(κ);
(b) For each wire w which is not the output of an XOR-gate, sample k̂i

w,0 ←
{0, 1}ℓ(κ), and set k̂i

w,1 = k̂i
w,0 ⊕ ∆̂i.

(c) In topological order, for any XOR-gate with input wires u and v and
output w, compute k̂i

w,0 = k̂i
u,0 ⊕ k̂i

v,0, k̂i
w,1 = k̂i

w,0 ⊕ ∆̂i.
3. For each wire w which is not the output of an XOR-gate, sample the external

value êw ← {0, 1}, for any XOR-gate with input wires u and v, compute in
topological order êw = êu ⊕ êv.

4. For any j ∈ H:
(a) For each wire w which is not the output of an XOR-gate, sample k̂j

w,êw
←

{0, 1}ℓ(κ).
(b) In topological order, for any XOR-gate with input wires u and v and

output w, compute k̂j
w,êw

= k̂j
u,êu
⊕ k̂j

v,êv
.

5. For each i ∈ A, if w is the input wire of Pi, set λ̂w = λ̂i
w = xi ⊕ êw.

6. For an output wire, set λ̂out = f(x1, ..., xn)⊕ êout.
7. For each AND-gate with input wires u and v and output wire w, generate a

fake garbled gate {ĝα,β}α,β∈{0,1} as follows:
(a) Reconstruct the keys: k̂u,êu =

⊕n
i=1 k̂

i
u,êu , k̂v,êv =

⊕n
i=1 k̂

i
v,êv , k̂w,êw =⊕n

i=1 k̂
i
w,êw .

(b) Set ĝêu,êv = Fk̂u,êu
(gêu,êv )⊕ Fk̂v,êv

(gêu,êv )⊕
(
k̂w,êw ||êw

)
.

(c) For (α, β) ̸= (êu, êv), sample ĝα,β ← {0, 1}ℓ(κ)+1.

Outputs (Simulation of the real-world MYao protocol):

1. The simulator SMYao simulates the output of Fgarble to the corrupt parties by
sending the fake garbled circuit {ĝα,β}α,β∈{0,1}, together with the corrupted
parties’ randomness: ∆̂i, k̂i

w,0 for any input wire w of the circuit, λ̂ini for any
Pi’s input wire ini, for any i ∈ A, and λ̂out.

2. The simulator SMYao simulates the messages of the honest parties in the first
step of Πonline: external value êinj for all input wires of Pj ∈ PH , and input
key shares k̂j

w,êw
for any input wire w of the circuit, and all j ∈ H.

Fig. 9. Algorithm SMYao for generating a fake garbled circuit and simulation of a
real-world MYao protocol

Theorem 2. Let C be some circuit, and denote by FC the n-party functionality
computing it. Assuming F is circular correlation robust, the protocol Πonline

securely realizes the n-party functionality FC in the Fgarble-hybrid model in the
presence of a static semi-honest adversary corrupting any number of parties.
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Proof. The output of the protocol is fully determined by the inputs x1, . . . , xn

and equal in both worlds. Thus, in order to prove the semi-honest security of
MYao, we need to prove that for every input x1, . . . , xn, the ideal-world view
of the corrupt parties simulated by SMYao (Figure 9) is computationally indis-
tinguishable from the real-view of these parties in an execution of the protocol
in Fgarble-hybrid model.

The real-world view of the corrupt parties includes the garbled circuit
{g̃α,β}α,β∈{0,1}, and, additionally, the set{{

∆i, {kiw,0}w, λini

}
i∈A

, λout,
{
einj

,
{
kjw,ew

}
w

}
j∈H

}
, where w are input wires

of the circuit, and ini is the input wire, which belongs to Pi. The latter is
simulated by SMYao by the fake garbled circuit {ĝα,β}α,β∈{0,1} together with

the set
{{

∆̃i, {k̃iw,0}w, λ̃ini

}
i∈A

, λ̃out,
{
ẽinj

, {k̃jw, ẽw}w
}
j∈H

}
. Both sets are the

sets of a uniformly random strings of the appropriate length, thus it remains to
prove that the real and fake garbled circuits are indistinguishable for a PPT
adversary.

We prove that the real-world and the ideal-world are indistinguishable sim-
ilarly to [12, Thm. 3]. Namely, we assume towards a contradiction that there
exists a PPT DMYao (a distinguisher), which for some fixed inputs (x1, . . . , xn)
can distinguish between the ideal-world view of the adversary, created by the
simulator SMYao with the fake garbled circuit, and real-world view of the adver-
sary consisting of the real garbled circuit. To obtain a contradiction, we construct
the PPT distinguisher DCCR (Figure 10) that distinguishes between the oracles
CircF

∆̃
and Rand (defined in Section 3.1) with non-negligible probability, and

thus, breaks the circular correlation robustness of the wPRF F .
The distinguisher DCCR is given access to an oracle O ∈

{
CircF

∆̃
, Rand

}
and constructs an adversarial view, using only legal oracle queries as shown in
Figure 10. In every garbled gate with the input wires u and v and the output wire
w, DCCR chooses one row indexed by the external values eu and ev to encrypt
by calling F . For other rows indexed by (α, β) ̸= (eu, ev), it makes queries to the
oracle O as follows:

– if α = eu ⊕ 1, β = ev, it queries for O
gα,β
α = O(ku,eu , gα,β , bα,β);

– if α = eu, β = ev ⊕ 1, it queries for O
gα,β

β = O(kv,ev , gα,β , bα,β);
– if α = eu ⊕ 1, β = ev ⊕ 1, it queries for both O

gα,β
α = O(ku,eu , gα,β , bα,β),

and O
gα,β

β = O(kv,ev , gα,β , 0).

Notice that as gα,β is unique for any garbled table row in the circuit, and there
are no gates with duplicated inputs, each query of the form (k, g, ·) is made just
once for any pair (k, g), hence all queries are legal.5

The bit bα,β is 0 if, in a real garbled circuit, the rows (α, β) and (eu, ev)
encrypt the same output key. Otherwise, it is 1. In other words, bα,β=0, iff

5 If gα,β are created by the pseudorandom hash-function from the counter, the collision
is possible with the negligible probability.
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Distinguisher Algorithm DCCR

Inputs: The circuit C, a fixing of parties’ inputs x1 . . . xn.

1. The wires’ values extraction: In a topological order, for every wire w
compute the true value vw.

2. Setting the randomness for corrupt parties: For any Pi ∈ PA, sample
∆i ← {0, 1}ℓ(κ) and, for each wire w which is not the output of a XOR-gate,
sample ki

w,0 ← {0, 1}ℓ(κ).
3. Computing the keys for corrupt parties: For any Pi ∈ PA, and each

wire w, in topological order, if w is the output of an XOR-gate with the input
wires u, v, compute ki

w,0 = ki
u,0⊕ ki

v,0. Additionally, for each wire w, compute
ki
w,1 = ki

w,0 ⊕∆i.
4. Computing the keys and external values for the circuit:

(a) For each wire w which is not the output of an XOR-gate, sample ew ←
{0, 1}; for each w which is the output of an XOR-gate with the input wires
u, v, compute ew = eu⊕ev. If w is an input wire of a corrupt Pi, compute
λw = ew ⊕ xi.

(b) For each wire w which is not the output of an XOR-gate, and for each
Pj ∈ PH , sample kj

w,ew ← {0, 1}
ℓ(κ).

(c) For each wire w which is the output of an XOR-gate with the input wires
u, v, and for each Pj ∈ PH , compute kj

w,ew = kj
u,eu ⊕ kj

v,ev .
(d) For each wire w, compute kw,ew =

⊕n
i=1 k

i
w,ew .

5. Computing the circuit: For every AND-gate g with the input wires u and
v, and the output wire w, sample the uniformly random indexes gα,β for α, β ∈
{0, 1}, and compute four garbled rows:
(a) G̃g

eu,ev = Fku,eu
(geu,ev )⊕ Fkv,ev

(geu,ev )⊕ (kw,ew ||ew);
(b) For α = eu⊕1, β = ev, query the oracle O for Ogα,β

α = O(ku,eu , gα,β , vu⊕
1), and compute G̃g

α,β = O
gα,β
α ⊕ Fkv,ev

(gα,β)⊕ (kw,ew ||ew).
(c) For α = eu, β = ev⊕ 1, query the oracle O for Ogα,β

β = O(kv,ev , gα,β , vv⊕
1), and compute G̃g

α,β = Fku,eu
(gα,β)⊕O

gα,β

β ⊕ (kw,ew ||ew).
(d) For α = eu ⊕ 1, β = ev ⊕ 1, query the oracle O for O

gα,β
α =

O(ku,eu , gα,β , vu ⊕ vv ⊕ 1), and for O
gα,β

β = O(kv,ev , gα,β , 0), and com-
pute G̃g

α,β = O
gα,β
α ⊕O

gα,β

β ⊕ (kw,ew ||ew).
6. Computing the output permutation bit: for the output wire out, set

λout = eout ⊕FC(x1, . . . , xn).
7. Output to DMYao: Hand to DMYao the following: the corrupt parties’ ran-

domness ∆i, ki
w,0 for each Pi ∈ PA and for input wire w; the wire masks λini

for each input wire of Pi; the real/fake garbled circuit {G̃g
α,β}α,β∈{0,1} for all

AND-gates g, together with the public randomness gα,β ; the output wire mask
λout; the input wires external values and keys einj and kj

w,ew (where inj is the
input wire belonging to Pj ∈ PH , and w is the circuit’s input wire).

Output: Output whatever DMYao outputs.

Fig. 10. Algorithm DCCR for generating a garbled circuit for the distinguisher DMYao

vuvv = (α ⊕ λu)(β ⊕ λv). The distinguisher can compute the real wires’ values
vu and vv and extract the wires’ masks λu = eu ⊕ vu and λv = ev ⊕ vv. Then,
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bα,β can be computed as

bα,β = (α⊕ eu ⊕ vu)(β ⊕ ev ⊕ vv)⊕ vuvv,

hence bα,β = vu ⊕ 1, if α = eu ⊕ 1, β = ev; bα,β = vv ⊕ 1, if α = eu, β = ev ⊕ 1;
and bα,β = vu ⊕ vv ⊕ 1, if α = eu ⊕ 1, β = ev ⊕ 1.

From the construction of the distinguisher DCCR almost immediately follows
the reduction. If O = CircF

∆̃
, then the view of the adversary, which is given by

DCCR to DMYao, is distributed identical to the real-world view. In particular, the
constructed garbled circuit is identical to the garbled circuit computed by Fgarble.
IfO = Rand, then the adversarial view thatDCCR gives toDMYao, is distributed
identically to the ideal-world view of the adversary. In particular, the garbled
circuit is identical to the garbled circuit constructed by the simulator SMYao. The
PPT distinguisher DCCR then can distinguish between the oracles CircF

∆̃
and

Rand with the same non-negligible probability as DMYao distinguished between
the real and ideal worlds, in contradiction to F being circular correlation robust.

Lastly, we consider the probability of a bad case ku,0 = kv,0 or ku,0 = kv,1
which is not covered by the simulation. As in C there are no gates with duplicated
inputs, this case would only occur with overwhelmingly small probability.

– Bad case (illegal queries to O): there is an AND gate in C with two equal
input keys, i.e ku,0 = kv,0 or ku,0 = kv,0 ⊕∆. The probability of such case
for a single gate is 2−ℓ(κ)+1; for the entire circuit, by the union bound, the
probability is bounded by |C| · 2−ℓ(κ)+1, and is negligible.

Thus, apart from the negligible probability, the simulation works in the ideal
world.

Remark 1. As can be observed, our security theorem, as the security theorem
of [12], is not in the offline-online model. To turn our construction to be provable
in the offline-online model, it is possible to delay revealing the garbled circuit to
the online protocol.

7 Proof of Security for MYao with Half-Gates

In this section, for completeness, we prove the security of our half-gates MYao
with the row-reduction. We focus on the case of the parallel gate garbling, i.e.,
when the reduction occurs in only the first half-gate, i.e., when only g̃0 = 0. As
for the basic MYao, we first prove that the protocol ΠHG

offline securely computes
the “Yao"’s circuit, i.e., securely realizes the functionality Fgarble in the presence
of a semi-honest adversary corrupting any number of parties from P. Then, we
prove security of MYao in the Fgarble-hybrid model, assuming that the PRF F
is circular correlation robust, according to Definition 1.

7.1 Security of the Half-Gate Garbling

As well as for the basic MYao, we assume the ideal functionalities FF , f ℓ(κ)
mult,

and fmult, which are securely realized by the protocols ΠF , Πℓ(κ)
mult, and Πmult,
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respectively, in the presence of a static semi-honest adversary corrupting any
number of parties. For more details, see Section 2.1 and Appendix A. For com-
pleteness, we give the half-gate encryption functionality FHG

AND in Figure 11.

Functionality FHG
AND for Encrypting AND half-gates

Inputs: Each party Pi inputs ki
u,0, ki

v,0, ki
w,0, ∆i ∈ {0, 1}ℓ(κ), λi

u, λ
i
v, λ

i
w ∈ {0, 1}.

Computation:

1. The functionality reconstructs the wires’ keys and masks, and the global offset
as follows: ∆ = ∆1⊕ · · ·⊕∆n, ku,0 = k1

u,0⊕ · · ·⊕ kn
u,0, kv,0 = k1

v,0⊕ · · ·⊕ kn
v,0,

kw,0 = k1
w,0 ⊕ · · · ⊕ kn

w,0, ku,1 = ku,0 ⊕∆, kv,1 = kv,0 ⊕∆, λu = λ1
u ⊕ · · · ⊕ λn

u,
λv = λ1

v ⊕ · · · ⊕ λn
v , λw = λ1

w ⊕ · · · ⊕ λn
w.

2. The functionality computes the garbled half-gates g̃1 and ĝβ for β ∈ {0, 1} as
follows.
(a) Compute Fku,0(g0,0) and parse it as (k̃w,ẽ0w

||ẽ0w), where k̃w,ẽ0w
∈ {0, 1}ℓ(κ),

ẽ0w ∈ {0, 1}.
(b) Compute the partition of the external values: ẽ1w = ẽ0w ⊕ λv, ê0w =

ẽ0w ⊕ λw ⊕ λuλv, ê1w = ê0w ⊕ λu,
and of the keys: k̃w,0 = k̃w,ẽ0w

⊕ ẽ0w · ∆, k̃w,1 = k̃w,0 ⊕ ∆, k̂w,0 =

kw,0 ⊕ k̃w,0, k̂w,1 = k̂w,0 ⊕∆.
(c) Compute and output to the parties the reduced half gates

g̃1 = Fku,1(g0,1)⊕
(
k̃w,ẽ1w

||ẽ1w
)
; ĝβ = Fkv,β (g1,β)⊕

(
k̂
w,ê

β
w
⊕ β · ku,0||êβw

)
,

(29)
where β ∈ {0, 1}, and F is a PRF.

Outputs: The functionality outputs g̃1 and ĝβ for β ∈ {0, 1} to every party Pi.

Fig. 11. Functionality FHG
AND

Lemma 3. The protocol ΠHG
AND securely computes the n-party functionality FHG

AND

in the (FF , f
ℓ(κ)
mult, fmult)-hybrid model in the presence of a static semi-honest

adversary corrupting any number of parties.

Proof. The simulator S works as follows. While simulating Step 1(a) of the
protocol ΠHG

AND, it simulates all the outputs of FF by sending to the adversary
the uniformly random strings F i

u,α and F i
v,β of length ℓ(κ) for every Pi ∈ PA,

and every α, β ∈ {0, 1}. In step 1(b), it simulates the outputs of fmult and f
ℓ(κ)
mult

by sending uniformly random bits λi
u, λi

v, λi
uv, and uniformly random ℓ(κ)-long

strings Λi
u, Λi

v, Λi
∗, respectively, for any Pi ∈ PA.

Then, locally, for each Pi ∈ PA, the simulator computes the following shares:
ẽ1,iw = ẽ0,iw ⊕ λi

v, ê0,iw = ẽ0,iw ⊕ λi
w ⊕ λi

uv, ê1,iw = ê0,iw ⊕ λi
u, k̃iw,ẽ1w

= k̃iw,ẽ0w
⊕ Λi

v,

k̂iw,ê0w
= kiw,0 ⊕ k̃iw,ẽ0w

⊕ Λi
∗, k̂iw,ê1w

= kiu,0 ⊕ k̂iw,ê0w
⊕ Λi

u.
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In the output step, for the garbled gate {g̃1, ĝ0, ĝ1} obtained from the ideal
functionality FHG

AND, the simulator computes

g̃A1 = g̃1 ⊕
⊕
i∈A

(
F̃ i
1 ⊕

(
k̃iw,ẽ1w

||ẽ1,iw

))
, ĝAβ = ĝβ ⊕

⊕
i∈A

(
F̂ i
β ⊕

(
k̂i
w,êβw
||êβ,iw

))
,

for every β ∈ {0, 1}, XOR-shares them for all Pj ∈ PH , and broadcast on their
behalf.

In both real and ideal worlds, the view of the adversary together with the
output of honest parties are distributed identically, hence the protocol ΠHG

AND is
secure.

Lemma 4. The protocol ΠHG
offline securely realizes the n-party functionality FHG

garble

in the FHG
AND-hybrid model in the presence of a static semi-honest adversary cor-

rupting any number of parties.

Proof. The simulator S, getting from the ideal functionality FHG
garble the outputs

{g̃1, ĝ0, ĝ1} for all AND gates, ∆i, and kiw,0 for all input wires w, λout on each
output wire out, for all Pi ∈ PA, simulates the view of the adversary as follows.
First, it sets the randomness of all corrupt parties Pi according to the FHG

garble’s
choice of ∆i, kiw,0, and λi

out. Notice that, as the adversary is semi-honest, in the
real world parties would choose them uniformly at random, as FHG

garble does in
the ideal world.

The first step of the protocol is local, so the simulator doesn’t send any mes-
sages. In the second step of the simulation, S simulates the output of FHG

AND

sending {g̃1, ĝ0, ĝ1}, which it got from FHG
garble, to the adversary as the out-

put of any corrupt party. In the third step, the simulator XOR-shares the bit(
λout ⊕

⊕
i∈A λi

out

)
in |PH | shares and broadcasts them on behalf of the parties

from PH .
In both real and ideal worlds, the view of the adversary together with the

output of honest parties are distributed identically.

Theorem 3. The protocol ΠHG
offline securely realizes the n-party functionality FHG

garble

in the (FF , f
ℓ(κ)
mult, fmult)-hybrid model in the presence of a static semi-honest

adversary corrupting any number of parties.

Proof. By composition of Lemma 4 and Lemma 3.

7.2 Security of MYao with Half-Gates

As before, we denote by FC the function computed by a circuit C that contains
only XOR, AND, and NOT gates where the gate’s input wires are not duplicated,
and assume for simplicity that any Pi ∈ P has only a single input bit xi and
gets the output from the only output wire out of C. We’ll prove the security of
Half-Gates MYao in the FHG

garble-hybrid model. In the real world, the view of
the corrupt parties are:



34 A. Ben-Efraim et al.

1. The output of FHG
garble, i.e. the garbled circuit {g̃1, ĝ0, ĝ1}g∈C , the global

offset’s shares ∆i, the input wire’s keys shares kiw,0, the wire mask λini
for

any Pi’s input wire, for any i ∈ A and the output wire’s mask λout;
2. The messages of the online round, i.e. the input wire’s external values ew

and the correspondent keys’ shares kjw,ew for j ∈ H.

In the ideal world, the simulator receives yout = C(x1, . . . , xn) from the trusted
party but learns only the inputs of parties from PA. As well as for the basic
MYao, the simulator builds the fake garbled circuit, where only the sum of two
half gates (which are on-the-evaluation-path) is computed by encryption. Every
sum that completes any other full gate is chosen by the simulator uniformly at
random. As before, the simulator creates all the input keys’ and masks’ shares
uniformly at random. The proof of security, thus, is to show that no PPT dis-
tinguisher can distinguish between the real garbled circuit and the fake one.

The simulator SHG
MYao is given in Figure 12. As the simulator works exactly as

SMYao except from Step 7 and output, in Figure 12 we give only the replacement
for these steps in SMYao.

Simulator Algorithm SHG
MYao

Inputs: The circuit C and the inputs for the corrupted parties {xi}i∈A.
Algorithm:
Steps 1-6 are identical to Simulator SMYao.

7. For each AND-gate with input wires u and v and output wire w, generate a
fake garbled gate {g̃1, ĝ0, ĝ1} as follows:
(a) Reconstruct the keys: k̂u,êu =

⊕n
i=1 k̂

i
u,êu , k̂v,êv =

⊕n
i=1 k̂

i
v,êv , k̂w,êw =⊕n

i=1 k̂
i
w,êw .

(b) Sample g̃1 ← {0, 1}ℓ(κ)+1, ĝêv⊕1 ← {0, 1}ℓ(κ)+1

(c) Set g̃0 = 0, ĝêv = Fku,êu
(g0,êu) ⊕ Fkv,êv

(g1,êv ) ⊕ g̃êu ⊕ êv · (ku,êu ||1) ⊕
(kw,êw ||êw).

Outputs (Simulation of the real-world Half-Gates MYao protocol):

1. The simulator SHG
MYao simulates the output of FHG

garble to the corrupt parties
by sending the fake garbled circuit {g̃1, ĝ0, ĝ1}, together with the corrupted
parties’ randomness: ∆̂i, k̂i

w,0 for any input wire w of the circuit, λ̂ini for any
Pi’s input wire ini, for any i ∈ A, and λ̂out.

2. The simulator SHG
MYao simulates the messages of the honest parties in the first

step of ΠHG
online: external value êinj for all input wires of Pj ∈ PH , and input

key shares k̂j
w,êw

for any input wire w of the circuit, and all j ∈ H.

Fig. 12. Algorithm SHG
MYao for generating a fake garbled circuit with half-gates and

simulation of a real-world MYao protocol

Theorem 4. Let C be some circuit, and denote by FC the n-party functionality
computing it. Assuming F is circular correlation robust, the protocol ΠHG

online
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securely realizes the n-party functionality FC in the FHG
garble-hybrid model in the

presence of a static semi-honest adversary corrupting any number of parties.

Proof. The output of the protocol is fully determined by the inputs x1, . . . , xn

and equal in both worlds. Thus, in order to prove the semi-honest security of
MYao, it is only needed to prove that for every input x1, . . . , xn, the ideal-world
view of the corrupt parties simulated by SHG

MYao (Figure 12) is computationally
indistinguishable from the real-world view of these parties in an execution of the
protocol in FHG

garble-hybrid model.
The real-world view of the corrupt parties includes the garbled circuit

{g̃1, ĝ0, ĝ1}g∈C , and, additionally, the set{{
∆i, {kiw,0}w, λini

}
i∈A

, λout,
{
einj

,
{
kjw,ew

}
w

}
j∈H

}
, where w are input wires

of the circuit, and ini is the input wire, which belongs to Pi. The latter is
simulated by SHG

MYao by sending the fake garbled circuit together with the set{{
∆̃i, {k̃iw,0}w, λ̃ini

}
i∈A

, λ̃out,
{
ẽinj

, {k̃jw, ẽw}w
}
j∈H

}
. Both sets are the sets of

a uniformly random strings of the appropriate length, thus it remains to prove
that the real and fake garbled circuits are indistinguishable for a PPT adversary.

We assume towards a contradiction that there exists a PPT distinguisher
DHG

MYao which, for any fixed input (x1, . . . , xn), can distinguish between the ideal-
world view of the adversary, created by the simulator SHG

MYao with the fake gar-
bled circuit, and real-world view of the adversary consisting of the real garbled
circuit. To obtain a contradiction, we construct the PPT distinguisher DHG

CCR

which can distinguish between the oracles CircF
∆̃

and Rand (defined in Sec-
tion 3.1) with non-negligible probability, and, therefore, to break the circular
correlation robustness of the wPRF F .

The distinguisher DHG
CCR is given access to an oracle O ∈

{
CircF

∆̃
, Rand

}
and constructs an adversarial view, using only legal oracle queries as shown in
Figure 13. In every garbled gate with the input wires u and v and the output
wire w, DHG

CCR chooses one row in the evaluator half gate indexed by the external
value ev to encrypt by calling F . Note that if eu = 0 then the correspondent
half gate row g̃0 is fixed to be 0, and, therefore, ĝev is fully determined by the
encryption keys and the output key of the gate. Otherwise, if eu = 1, then the
correspondent halves g̃1 and ĝev are XOR-shares of such an encryption.

Note that from Equations (17), (18), and (22), and from the row reduction
g̃0 = 0, it follows that

g̃1 = Fku,0(g0,0)⊕ Fku,1(g0,1)⊕ λv(∆||1); (30)

ĝ0 ⊕ ĝ1 = Fkv,0(g1,0)⊕ Fkv,1(g1,1)⊕ λu(∆||1)⊕ (ku,0||0) =
= Fkv,0

(g1,0)⊕ Fkv,1
(g1,1)⊕ (ku,λu

||λu).
(31)

Thus, to compute the first half-gate g̃1 for the fake circuit, the distinguisher
makes query to the oracle O as Ou = O(ku,eu , g0,eu⊕1, vv ⊕ ev). If O = CircF∆
then Ou = Fku,eu⊕1(g0,eu⊕1) ⊕ (ev ⊕ vv)(∆||1) = Fku,eu⊕1(g0,eu⊕1) ⊕ λv(∆||1),
and a uniformly random ℓ(κ) + 1-bit string otherwise. Then the distinguisher,
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according to Equation (30), uses the response Ou to compute the first half as
follows:

g̃1 = Fku,eu
(g0,eu)⊕Ou.

For the second half, ĝ0 and ĝ1, the distinguisher computes

ĝev = g̃eu ⊕ Fku,eu
(g0,eu)⊕ Fkv,ev

(g1,ev )⊕ (kw,ew ||ew)⊕ ev(ku,eu ||eu).

The latter follows from Equation (20) taking α = eu, β = ev.
In order to compute ĝev⊕1, the distinguisher makes a query Ov = O(kv,ev ,

g1,ev⊕1, vu), and sets ĝev⊕1 as

ĝev⊕1 = ĝev ⊕ Fkv,ev
(g1,ev )⊕Ov ⊕ (ku,eu ||eu).

Note that if O = CircF∆, then Ov = Fkv,ev⊕1(g1,ev⊕1)⊕ vu(∆||1) =
= Fkv,ev⊕1(g1,ev⊕1)⊕(eu⊕λu)(∆||1), and a uniformly random ℓ(κ)+1-bit string,
otherwise. Which, in case O = CircF∆ is followed by ĝev⊕1⊕ ĝev = Fkv,ev

(g1,ev )⊕
Fkv,ev⊕1

(g1,ev⊕1) ⊕ (eu ⊕ λu)(∆||1) ⊕ (ku,eu ||eu) = Fkv,0
(g1,0) ⊕ Fkv,1

(g1,1) ⊕
(ku,λu

||λu), i.e. Equation (31).
Notice that for any gate g, the distinguisher makes only two legal queries,

as gα,β is unique for any g, α, β, and there are no gates with duplicated inputs.
Thus, each query of the form (k, g, ·) is made just once for any pair (k, g).6

From the construction of the distinguisher DHG
CCR almost immediately follows

the reduction. If O = CircF
∆̃

, then the view of the adversary, which is given by
DHG

CCR to DHG
MYao, is distributed identical to the real-world view. In particular,

the constructed garbled circuit is identical to the garbled circuit computed by
FHG

garble. If O = Rand, then the adversarial view DHG
CCR gives to DHG

MYao, dis-
tributes identically to the ideal-world view of the adversary. In particular, the
garbled circuit is identical to the garbled circuit constructed by the simulator
SHG
MYao. The PPT distinguisher DHG

CCR then can distinguish between the oracles
CircF

∆̃
and Rand with the same non-negligible probability as DHG

MYao distin-
guished between the real and ideal worlds, in contradiction to F being circular
correlation robust.

The formal description of the distinguisher DHG
CCR is given in Figure 13. Steps

1-4 are the same as for DCCR, therefore we omit them in the description of the
distinguisher algorithm.

Thus, apart from the negligible probability, the simulation works in the ideal
world.

8 Double Row-Reduction via Half-Gates.

In this section, we explain how to achieve the double row reduction in MYao.
This comes on the price of the sequential garbling of the gates, as the output
keys are derived from the input ones. Below we give the technique which allows
to perform the double row reduction in some fraction of the gates, while in the
6 The collision is possible with only the negligible probability.
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Distinguisher Algorithm DHG
CCR

Inputs: The circuit C, a fixing of parties’ inputs x1 . . . xn.
Steps (1)-(4) are same as those in Figure 10.

5. Computing the circuit: For every AND-gate g with the input wires u and
v, and the output wire w, sample the uniformly random indexes gα,β for α, β ∈
{0, 1}, and compute three half-gates’ garbled rows:
(a) Query the oracle O for Ou = O(ku,eu , g0,eu⊕1, vv ⊕ ev), and Ov =
O(kv,ev , g1,ev⊕1, vu).

(b) compute G̃1 = Fku,eu
(g0,eu)⊕Ou.

(c) compute Ĝev = G̃eu ⊕ Fku,eu
(g0,eu) ⊕ Fkv,ev

(g1,ev ) ⊕ (kw,ew ||ew) ⊕
ev(ku,eu ||eu).

(d) compute Ĝev⊕1 = Ĝev ⊕ Fkv,ev
(g1,ev )⊕Ov ⊕ (ku,eu ||eu).

6. Computing the output permutation bit: for the output wire out, set
λout = eout ⊕FC(x1, . . . , xn).

7. Output to DHG
MYao: Hand to DHG

MYao the following: the corrupt parties’ ran-
domness ∆i, ki

in,0 for each Pi ∈ PA and for input wire in; the wire masks
λin for each input wire of Pi; the real/fake garbled circuit {G̃1, Ĝ0, Ĝ1} for
all AND-gates g, together with the public randomness gα,β ; the output wire
mask λout; the input wires external values and keys einj and kj

w,ew (where inj

is the input wire belonging to Pj ∈ PH , and w is the circuit’s input wire).

Output: Output whatever DHG
MYao outputs.

Fig. 13. Algorithm DHG
CCR for generating a garbled circuit for the distinguisher DHG

MYao

rest of them reducing only a single row, and thus keeps the garbling phase a
constant round.

We start from the half-gates equations (17) and (18). From the equality (17)
due to g̃0 = 0, as in the case of the single row reduction, follows the equality (21).
Hence ẽ0w can be parsed, and k̃w,0 computed from Fku,0

(g) and ∆. Similarly, from
ĝ0 = 0 by Equation (18) it follows that

Fkv,0
(g1,0) = (k̂w,0 ⊕ ê0w ·∆||ê0w), (32)

from where in the same way one can get ê0w and k̂w,0. Then the output mask is
inevitably λw = ẽ0w⊕ ê0w⊕λuλv, and the output key is kw,0 = k̃w,0⊕ k̂w,0. Thus,
if all the AND-gates are encrypted with the double-row half-gates reduction, the
constant-round garbling protocol would be impossible, as the gates are encrypted
in a topological order, rather than in parallel.

We give the protocol ΠHG−2
AND to encrypt a single AND-gate with a double

row-reduction in Figure 14. We denote the input wires of the gate by u, v, and
the output wire by w. As an input, the gate encryption protocol ΠHG−2

AND takes
from each party Pi it’s shares of the input keys kiu,0, kiv,0, of the input wires’
masks λi

u, λi
v, and of the global offset ∆i. As the output, it gives not only the

reduced half-gate g̃1w, ĝ1w, but also the shares of the output key kw,0 and of the
permutation bit λw.
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First, similarly to ΠHG
AND, parties jointly compute the PRF’s for the public

gate indexes on the secret shared input keys, and get secret shares of the outputs,
which we denote in the same way as for the single-row reduction case by F̃ i

α,
and F̂ i

β for α, β ∈ {0, 1}.
In order to perform a double-row reduction, i.e. to set g̃0 = ĝ0 = 0, each

Pi parses F̃ i
0 and F̂ i

0 as shares of (k̃w,∗||ẽ0w) and (k̂w,∗||ê0w) respectively. From
Equations (17), (18), the parties can locally compute shares of

ẽ1w = ẽ0w ⊕ λv; ê1w = ê0w ⊕ λu. (33)

In order to compute shares of the output mask, parties need to perform a multi-
party bit multiplication over the shares of the input masks, and then to compute
shares of

λw = ẽ0w ⊕ ê0w ⊕ λuλv. (34)

For the output keys, the following relations hold:

k̃w,∗ = k̃w,0 ⊕ ẽ0w ·∆; k̂w,∗ = k̂w,0 ⊕ ê0w ·∆; kw,0 = k̃w,0 ⊕ k̂w,0. (35)

Then, the output partitioned keys are

k̃w,ẽ1w
= k̃w,0 ⊕ ẽ1w ·∆ = k̃w,0 ⊕ (ẽ0w ⊕ λv) ·∆ = k̃w,∗ ⊕ λv ·∆; (36)

k̂w,ê1w
= k̂w,0⊕ku,0⊕ê1w ·∆ = k̂w,0⊕ku,0⊕(ê0w⊕λu)·∆ = k̂w,∗⊕ku,0⊕λu ·∆. (37)

The parties can compute their shares of the output partitioned keys k̃w,ẽ1w
and

k̂w,ê1w
on the price of two instances of Πℓ(κ)

mult to obtain shares of λv ·∆ and λu ·∆.
The output wire’s key is

kw,0 = k̃w,0 ⊕ k̂w,0 = kw,0 = k̃w,∗ ⊕ k̂w,∗ ⊕ (ẽ0w ⊕ ê0w) ·∆, (38)

and the parties compute shares of kw,0 for the price of one more Π
ℓ(κ)
mult call.

Finally, according to the Equations (17), (18), parties locally compute shares
of

g̃1 = F̃1 ⊕ (k̃w,ẽ1w
||ẽ1w), and ĝ1 = F̂1 ⊕ (k̂w,ê1w

||ê1w),

and reconstruct the half-gates from them.
A garbled half-gate with a double-row reduction can be decrypted in the

online phase in the same way as the half-gate with no row reduction taking
g̃0 = ĝ0 = 0, i.e. applying the equality (20).

Combined row reduction for the layered and odd-even circuits. Next we consider a
row-reduction via half-gates for a layered circuits, i.e. circuits which are possible
to break in a multiplicative layers, where inputs of each layer are only outputs
from the previous one.7

Applying double-row reduction to all the AND-gates in the circuit would
result in increasing the number of rounds proportionally to the multiplicative
7 A XOR-gate belongs to the latest of the layers it gets the input from.
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Protocol ΠHG−2
AND for computing the garbled half-gate with a double-row

reduction.

Inputs: The private inputs of each party Pi are it’s shares of the input keys ki
u,0,

ki
v,0, of the input wires’ masks λi

u, λi
v, and of the global offset ∆i. Additionally,

each party holds the public numbers g0,0, g0,1, g1,0, and g1,1.
Computation:

1. The parties perform two parallel steps:
(a) Encryption of the gate number: The parties call a multiparty protocol

ΠF four times in parallel to compute shares F̄ i
α, F̂ i

β of four values F̄α =

Fku,α(g0,α), F̂β = Fkv,β (g1,β) as PRF’s on the secret-shared keys ku,α,
kv,β of the public inputs (for every α, β ∈ {0, 1}). Each Pi parses F̄ i

0 as
(k̄i

w,∗||ē0,iw ), and F̂ i
0 as (k̂i

w,∗||ê0,iw ),where k̄i
w,∗, k̂

i
w,∗ ∈ {0, 1}ℓ(κ), ē0,iw , ê0,iw ∈

{0, 1}.
(b) Secure multiplication-1: The parties call Πmult on their inputs λi

u and
λi
v and therefore obtain λi

uv. In parallel, they call two instances of Πℓ(κ)
mult.

The first input of Pi to each instance is ∆i, and the second are λi
u and

λi
v. The outputs are the shares Λi

u and Λi
v respectively.

2. Secure multiplication-2: The parties call Π
ℓ(κ)
mult on their inputs ∆i and

(ē0,iw ⊕ ê0,iw ), and get output shares Λi
w.

3. Computation of the outputs’ shares (local): Each Pi locally computes
the following shares: ē1,iw = ē0,iw ⊕ λi

v, ê1,iw = ê0,iw ⊕ λi
u, λi

w = ē0,iw ⊕ ê0,iw ⊕ λi
uv,

k̄i
w,ē1w

= k̄i
w,∗ ⊕ Λi

v, k̂i
w,ē1w

= ki
u,0 ⊕ k̂i

w,∗ ⊕ Λi
u, ki

w,0 = k̄i
w,∗ ⊕ k̂i

w,∗ ⊕ Λi
w.

4. Outputs reconstruction: Each Pi locally computes ḡi1 = F̄ i
1⊕

(
k̄i
w,ē1w
||e1,iw

)
,

and ĝi1 = F̂ i
1 ⊕

(
k̄i
w,ē1w
||e1,iw

)
, and sends them to any Pj , j ̸= i.

Outputs: Each Pi outputs ki
w,0, λi

w, ḡ1 = ḡ11 ⊕ · · · ⊕ ḡn1 , and ĝ1 = ĝ11 ⊕ · · · ⊕ ĝn1 .

Fig. 14. Protocol ΠHG−2
AND

depth of the circuit. This comes from the necessity of garbling reduced gates
layer by layer, as the output keys and permutation bits depend on the input
ones. Breaking a layered circuit in pairs of the consecutive layers, the parties
set all the input keys to the AND-gates in the first layer of the pair randomly,
as in Πoffline. Then, encrypting all AND-gates in the first layers in parallel by
ΠHG−2

AND , the parties obtain derived output wires’ keys and masks from the gates
of these layers, which become the input ones to the next, second, layers. After
that, parties call ΠHG

AND for every AND-gate in the second layers in parallel.
This combined approach allows to reduce the number of rows on every AND-

gate in the first layers down to two, and in the second layers to 3 while still
keeping the constant number of rounds.

Remark 2. The combined row reduction via half gates could be generalized for
the groups of s consecutive layers. The first layer of any group gets the randomly
chosen input wires’ keys and masks, while all the intermediate wires’ keys and
masks are derived layer by layer. In comparison with the single row reduction
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offline phase, it increases the number of rounds approximately s times, which is
still constant, as all the groups of layers are garbled in parallel.

Remark 3. Similar generalization is possible for the odd-even circuit, i.e. such
a layered circuits where the output of the odd layers come only to the even
layers, and vice versa. Then, the input wires’ keys and masks to the odd layers
are chosen uniformly at random, and all the AND-gates in the odd layers are
encrypted in a parallel invocations of ΠHG−2

AND . After that, all the AND-gates in
the even layers are encrypted in parallel by calling ΠHG

AND for every such a gate.

9 Efficient instantiation via weak PRF

In this section we explain the (weak) PRF we use for an efficient computation
of a MYao garbled circuit. To compute the garbled gates in MYao, the output
of a PRF F with an ℓ(κ)-long key on a public index gα,β is used for an XOR-
encryption. Computing a PRF in MPC is generally a very complicated task,
likely resulting in an inefficient protocol. Hence, the construction of F should be
based on “MPC friendly" PRFs.

To reduce the communication and number of rounds in the offline phase, we
base F on the LPN-style “MPC friendly" weak PRF of [15],8 which we denote by
f (see definition in Section 2, Equation (5)). According to [15], the recommended
key, plaintext, and output size of f should be 2κ, 2κ, and κ respectively. Hence,
ℓ(κ) = 2κ and we set κ = 128.9 Note that f uses Binary keys, as required for
free-XOR. However, it is a weak PRF and shrinking, as the output length is ℓ(κ)

2 .
Therefore, we next explain the required modifications:

Since a wPRF requires random inputs, it is mandatory to replace the unique
index gα,β in all protocols with a (pseudo)-random input. One method is to use
a hash function, such as SHA256, on gα,β , and use this as the input to f .10

In order to obtain a wPRF F with output length ℓ(κ), as required for Equa-
tion (15), we define the wPRF F on ℓ(κ) = 2κ-long keys and (pseudo)-random
2ℓ(κ)-long input g, parsed as g1||g2, as follows:

Fk(g) = fk(g1)||fk(g2), (39)

where f is the LPN-style wPRF of [15]. By simple hybrid arguments, it can be
shown that F is a secure wPRF with output length ℓ(κ).11

Lemma 5. If f is a wPRF, then F defined by Equation (39) is also a wPRF.

As we use free-XOR, we further assume F is circular correlation-robust. For
more details on the security of f and the MPC protocol for computing it see
in [15]; the protocol appears in Appendix A.
8 An alternative we considered is LowMC [2]; see Appendix A for a discussion on that.
9 Note that as we use f with 1 non-random bit in the key, we lose 1 bit of security

out of the κ = 128 bits of security.
10 We remark that [10] showed several methods to optimize over this method.
11 This construction does not work directly for PRFs as the inputs must be uncorre-

lated.
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10 Preprocessing Protocol

The offline (garbling) phase of MYao includes communications for encryption of
AND-gates, and for recovering the circuit, input keys and input/output masks.
The encryption of the gates calls three main building blocks: the multiparty
multiplication protocols Πmult and Π

ℓ(κ)
mult, and the multiparty wPRF compu-

tation protocol ΠF . The computation of F occurs in a correlated randomness
model, when for each bit conversion, parties need to have an additive sharing of
the same random bit over two fields Z2 and Z3 (dBits). Below we describe the
protocol which is possible to use for such a CR-generation, and give the commu-
nication complexity of the preprocessing according to it. Any future work which
obtains the significant improvement in dBits generation, would also improve the
efficiency of MYao.

10.1 Correlated Randomness Generation.

The correlated randomness which parties from P need for the bit conversion
protocols are two sharings of the same bit u ∈ {0, 1}. Each Pi needs to obtain
random bi ∈ Z2 and ti ∈ Z3 such that

n⊕
i=1

bi =

n∑
i=1

ti mod 3 = u. (40)

We suggest the following generic approach to construct a protocol for such a
correlated randomness computation. First, each Pi chooses a random bit bi.
Each party except from Pn also chooses a random ternary number ti ∈ Z3 and
represents it as a 2-bit string (i.e. ti ∈ {00, 01, 10}). Then, parties compute a
secure binary circuit to obtain shares of

tn =

(
u−

n−1∑
i=1

ti

)
mod 3. (41)

Finally, they send all shares of tn to Pn, who reconstructs its ternary share of u.

Ternary addition. The base operation in this circuit is the addition modulo
3 of two ternary numbers represented by a bitstring. Next we consider how
to compute c = a + b mod 3. For a ternary number x, we denote by x1 its
most significant, and by x0 – its lest significant bit. Also notice, that never
x0 = x1 = 1. Then c = c1||c0, where c1 = a1 ⊕ b1 ⊕ a0b0 ⊕ a0b1 ⊕ a1b0, and
c0 = a0⊕b0⊕a0b1⊕a1b0⊕a1b1. This operation requires 3 parallel calls of Πmult

for a secure multiparty computation of (a0 ⊕ a1)(b0 ⊕ b1), a0b0, and a1b1.

Ternary subtraction. The final operation in the MPC circuit is the subtraction
c = a− b mod 3, where a is a single bit, and b is a 2-bit string where never b0 =
b1 = 1. The result can be computed as c1 = b0⊕ab0⊕ab1, c0 = a⊕b1⊕ab0. This
operation requires 2 parallel calls of Πmult for a secure multiparty computation
of ab0 and ab1, or a single Π2

mult call to compute a · b.
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An MPC circuit to compute tn. The parties compute (41) in a layered circuit.
In the first layer, they compute pairwise sums (t2i+1 + t2i+2) mod 3 for i ∈
{0, ..., n/2− 1}. In each summation take part only parties holding these values,
i.e. P2i+1 and P2i+2. If some party has no value or its share, we set its share to
be 0. Each of (n − 1)/2 pairs call Π× three times to complete a ternary sum.
The first layer, in this way, requires a single OT-round, where each party takes
part in 3 bit-OTs.

In the second layer the parties, in groups by 4, compute a pairwise sums of
the results from the first layer. Out of each four parties {P4i+1, ...,P4i+4}, only
the first two have a non-zero shares of the first term, and only the last two have
a non-zero shares of the second term. To compute shares of 3 bit products, these
parties call a 4-party Πmult with 4 bit-OT calls, where each party takes part in
2 bit-OTs. In general, the second layer takes 3 · 4 · (n− 1)/4 = 3(n− 1) bit-OTs
when each party takes part in 6 of them.

Similarly, the third, fourth, etc., log(n−1)th layers work, where the jth layer
requires each party taking part in 3 · 2j−1 bit-OTs, with the overall OTs number
equal to 3 · 2j−2(n− 1).

The last layer of the circuit is the ternary subtraction computing tn and
recovering it to Pn. All n parties take part in it, which requires 2 calls to Πmult

with (n− 1)2 OTs each, where every party takes part in 2n− 3 out of them, and
Pn in only n− 1. The last round of the circuit is the recovering of the result to
Pn where all parties send a 2-bit long share of the result to Pn.

Overall, the computation of the MPC circuit requires log(n) + 1 OT-rounds
and 3 · (n− 1)

∑log(n)
j=1 2j−2 +2(n− 1)2 ≈ 3.5n2 bit-OTs, where each party takes

part in 3
∑log(n)

j=1 2j−1 + 2(2n− 3) ≈ 7n bit-OTs, or in 3.5n bit-OTs as a sender.
For Z3 → Z2 conversion, additionally to the shares of u in two fields, parties

need to hold the binary shares of (u + 1 mod 3) mod 2, which could be com-
puted by parties in a binary circuit using one multiparty ternary addition when
parties P1, ...Pn−1 reuse their shares of the sum

∑n−1
i=1 t(i) mod 3, and Pn holds

the value (t(n) + 1) mod 3 as its input. The ternary addition, as was explained
above, requires 3 bit multiplications, but in this case it is enough to multiply
only 2 bits, as the parties need to compute only the least significant bit of the
result. Thus, in the second correlated randomness for Z3 → Z2 conversion, each
party is involved in only 2 OTs with Pn, and only Pn performs 2(n−1) bit-OTs.
This round could be done after the last round of the source CR generation for
the same conversion, where Pn performs less OTs than other parties, thus we
can say that this computation is very cheap.

10.2 Communication and Round Complexity of Preprocessing.

The communication complexity of the preprocessing is overwhelmed by gener-
ating correlated random bits for ΠF . In Table 1 we summarize the number of
basic operations needed in the garbling phase to compute the wPRF calls for a
single AND-gate and, consequentially, the number of CR-bits, and bit-OTs per
party in the preprocessing phase. Data is given per AND-gate in MYao with
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no optimizations (NoOpt), with only row reduction (RR), and with half-gate
optimization (HG).

Table 1. Communication complexity of the preprocessing per AND-gate

Gate opt. # F # Z2 → Z3 # Z3 → Z2 # CR bits # bit-OT’s per party
NoOpt, RR 8 4ℓ(κ) 16ℓ(κ) 20ℓ(κ) 70nℓ(κ)

HG 4 4ℓ(κ) 8ℓ(κ) 12ℓ(κ) 42nℓ(κ)

11 Implementation and Comparison

In this section we describe our implementation, code optimizations, and compare
MYao with alternative multiparty garbled circuit solutions in terms of garbled
circuit size, online computation time, and offline and online communication. To
showcase the effect of free-XOR, we compare both on a circuit containing only
AND gates, and on the AES-128 circuit that is composed mainly of XOR gates.

Basic implementation. We implemented the online computation part of the basic
MYao protocol (Section 4) (without half-gates and row reduction), in C++. We
expect the running times to also be representative for the protocol with half-
gates and row reduction, as the overwhelming majority of the time is dedicated
to the decryption of the garbled rows, and the number of decryptions is equal
in both cases. We used building blocks taken from the implementation of [15]
for a basic implementation of the “LPN-style" wPRF.12 We then optimized the
wPRF implementation as explained below.

We ran experiments to test our implementation and the effect of our code
optimization, as well as to compare MYao with alternative multiparty garbled
circuit solutions. Experiments were run on an Intel i7-6500u CPU 2.5 GHz ma-
chine with 8 GB of RAM with Ubuntu 22.04 OS, running on a single thread.
Our code will be made public.

In our implementation, we used the following optimizations of [15]: (1) Bit
packing, (2) Mod-3 bit slicing used for the addition and multiplication of Z3

elements, which we optimized even further as we explain below, (3) Efficient
Toeplitz matrix representation, (4) Lookup table for multiplication with a con-
stant matrix.

Optimizing the LPN-syle wPRF Implementation. Due to the bit slicing opti-
mization, any Z3 element z is represented by 2 bits, the LSB lz = z mod 2,
and the MSB mz = 1 if z = 2 and 0 otherwise. As explained in [15], addition
12 We remark that [15] did not implement their “LPN-style" wPRF, only their (2, 3)-

wPRF. Nevertheless, it was possible to construct a basic implementation of the
LPN-style wPRF using their protocol and the implemented building blocks, e.g., of
Toeplitz matrix-vector multiplication and efficient Z3 operations.
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and multiplication could then be computed using 7 bit operations and 6 bit
operations, respectively.

To optimize the Toeplitz by vector multiplication even further, we make
the following key observation: in the algorithm, there is a step where a Binary
vector and a Binary Toeplitz matrix (represented by a vector) are viewed over
Z3 and multiplied element-wise. It follows that the values in them are in fact
limited to 0 and 1 only. This vector is then added to an accumulator vector with
general elements in Z3. This allows to optimize the following two operations:
multiplication of Z3 values where both values are limited to 0 or 1, and addition
of two Z3 values where one of them is limited to 0 or 1.

– Multiplication optimization - instead of using the Z3 multiplication proto-
col, a simple AND is enough. This reduces the bit operations needed for
multiplication from 6 to 1.

– Addition optimization - as the elements in the vector added to the accumu-
lator all have MSB 0, the required number of bit operations for addition is
reduced from 7 to 5.

As can be observed in Table 2, the above optimizations reduce the running time
of the wPRF computation by approximately 70%.

Table 2. Running time of the wPRF f in microseconds, averaged over 100000 runs.

Time(µ)
Baseline implementation 23.27
With optimized multiplication 11.02
With optimized addition and multiplication 7.17

11.1 Comparison

We next compare MYao to the following protocols and implementations: the
DDH-based key-homomorphic protocol of [10], which we call DDH, the LWE-
based key-homomorphic protocol of [10], which we call LWE, the LPN-based
key-homomorphic protocol of [8], which we call LPN, the AHE-BGV-based
key-homomorphic protocol of [18], which we call BGV and the standard BMR
(using the semi-honest implementation of [9]). We additionally explain on com-
parisons with the Tinykeys [21] protocol and the protocol of Yang et al. [36]. We
compare on 2 circuits: The AES-128 circuit, consisting of 6400 AND gates and
28176 XOR gates and a circuit consisting of 100000 AND gates.
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Garbled circuit size. The size in bits of a garbled gate is: MYao: 3 ·256; DDH:
4 · 2048;13 LPN: 4 · 4845;14 LWE: 4 · 10752;15 BGV: 4 · 184320;16 BMR:
4 · 128 · n. Notice that a MYao AND gate incorporates row-reduction (hence 3
instead of 4). Garbled circuit size is additionally affected by free-XOR; As LWE,
DDH and BGV cannot incorporate free-XOR, the garbled circuit size of these
protocols suffers significantly for XOR-heavy circuits such as AES.

The comparison is depicted in Table 3. It can be observed that MYao’s gar-
bled circuit is at least 90% smaller than protocols based on key-homomorphic
PRFs. The MYao garbled circuit size is significantly smaller than the BMR gar-
bled circuit size even for a medium number of parties. We mention that the
maliciously secure protocol of Yang et al. [36] achieved a 2

n -row reduction, and
had a designated evaluating party that does not have a key (hence, the external
value was added). However, asymptotically their garbled circuit size is almost
the same as regular BMR, with garbled gate size of 4 ·

(
128 · (n− 2

4 − 1) + 1
)

bits. The Tinykeys [21] protocol achieves significantly smaller garbled circuits
than BMR, but requires assuming some fraction of honest parties. Furthermore,
asymptotically, the circuit size behaves similarly to BMR. The smallest garbled
circuits for Tinykeys in [21] are for 20 parties, where 16 of them are honest,
requiring 1044 bits per AND gate. MYao’s garbled circuit size is approximately
26% smaller, while not making any assumption on the number of honest parties.
For a larger number of parties this advantage becomes much more significant.

Table 3. Sizes of garbled circuits for the AES-128 circuit and the 100000 AND gate
circuit, and the size of a single garbled AND gate for n parties.

Protocol Single AND gate 100000 AND gates AES-128
MYao 768 bits 9.2 MB 0.6 MB
DDH [10] 8, 192 bits 97.6 MB 33.8 MB
LPN [8] 19, 380 bits 231.0 MB 14.8 MB
LWE [10] 43, 008 bits 512.7 MB 177.3 MB
BGV [18] 737, 280 bits 8.6 GB 2.9 GB
BMR [9] 512n bits 6.1n MB 0.4n MB

Online computation time. The running times of our experiments are given in
Table 4. Observe that for the circuit with only AND gates, MYao is 13% faster
than LWE, while for AES-128 it is approximately 80% faster than LWE, as LWE
does not have free-XOR. We did not run the DDH code, as [10] reported it to

13 For DDH [10] we took the security hardness assumption of discrete log in a 2048-bit
safe prime group, as it most closely corresponds to 128-bit security [34].

14 For LPN [8] we took the parameters that resulted in minimal garbled circuit size.
15 In the LWE-based key-homomorphic protocol, the garbled row contain 512 elements,

each requiring 21 bits to represent (in the implementation they used 32 bits).
16 In [18], no implementation was made, authors suggest using AHE-BGV encryption

scheme where the ciphertext contains 4096 elements, each requiring ≥ 45 bits.
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be slower than LWE. We thus expect the margin between MYao and DDH to
be even bigger than the margin between MYao and LWE on both circuits.

Although the LPN code of [8] is not published, we can compare to their work:
they incorporate free-XOR but reported slower times than [10] for AND gates.
Therefore, as MYao outperforms LWE and incorporates free-XOR, we expect to
be more than 13% faster than the LPN implementation of [8] on both circuits.17
The online phase of the garbled circuit scheme of [18] wasn’t implemented, but we
estimate their online computation time to be significantly slower than LWE [10]
as the encryption schemes are similar, but [18]’s is more complex and has longer
keys. Therefore, we expect the online computation time of [18] to be much slower
than of MYao’s.

As can be observed from Table 4, the cut-off point against the BMR im-
plementation of [9] is around 75-80 parties. Due to the quadratic complexity of
the BMR online phase, the advantage increases rapidly as the number of parties
grows.

Table 4. Online computation runtime, in seconds, on a circuit with 100000 AND gates,
and the AES-128 circuit, averaged over 50 runs. Standard deviation was less then 5%.

Protocol Circuit n = 70 n = 80 n = 90 Circuit n = 70 n = 80 n = 90

MYao 100000 3.85 3.85 3.85 0.30 0.30 0.30
LWE [10] AND 4.42 4.42 4.42 AES-128 1.48 1.48 1.48
BMR (impl. of [9]) gates 3.16 3.93 5.30 0.22 0.31 0.39

Online communication. In MPC protocols based on garbled circuits, the online
communication consists of 2 rounds. The first round consists only of each party
sending the external value ew on each wire w of its input wires, and thus is very
cheap. The second round consists of each party Pi sending their keys (or their
shares of the keys) associated with these external values, i.e., kiw,ew for every
input wire w. Thus, the majority of the communication comes from the second
round and corresponds directly to the length of the keys. Since MYao has shorter
keys than protocols based on key-homomorphic PRFs, MYao requires less online
communication.

Offline communication. The offline communication is generally split into two
parts: The first part is the preprocessing, which can be computed before knowing
the function that is evaluated. In MYao, this consists of computing the correlated
randomness bits needed for the PRF computation, i.e., the Z2–Z3 dBits. This
is explained in detail in Section 10. The second part is the function-dependent
offline, which is detailed in Section 5.18

Aiming to fairly compare with [8], in the following we consider a semi-honest
version of their protocol, removing the added communication required in their
protocol for ensuring malicious security. We took here their parameters that
17 Note [8] achieve malicious security, whereas MYao is only semi-honestly secure.
18 Several methods to move even more of the communication from the function-

dependent phase to the preprocessing exist, but are outside the scope of this paper.
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give the smallest offline communication, in particular the parameters with key
length 664 bits, garbled row length 7140 bits, and error-rate of 1

8 . Thus, they
require preprocessing 28,560 secret-shared “error bits" per gate. We remark that
although preprocessing an “error bit" with error-rate 1

8 requires only 2 multipli-
cations (via OT), and thus is simpler than preprocessing a Z2–Z3 dBit required
for MYao, LPN [8] requires significantly more preprocessed bits than MYao due
to the large size of their garbled gates.

As can be observed in Table 5, MYao requires substantially less offline com-
munication than the key-homomorphic based garbled circuit solutions, with ap-
proximately five times less communication than [8] and orders of magnitude less
than the protocols of [10] (the protocols of [10] also do not have free-XOR). Due
to moving to a lookup-table + HE based protocol, rather than an OT based one,
the protocol of [18] requires less offline communication than MYao when n ≥ 60,
but comes with an additional cost of significant offline computation. Note that
the protocol of [18] does not support free-XOR, so for most circuits the above
threshold is even higher. We also note that the number of rounds in the offline
phase of [18] is linear in the number of parties, which would be very costly
in high latency networks where the number of parties is very large. It can also
be observed that the prominent bottleneck of MYao is the preprocessing phase,
taking up almost 95% of the total offline communication cost. Thus, a more effi-
cient method for generating dBits would greatly enhance the efficiency of MYao
and make it fully practical. We leave this as an open question.

Table 5. Comparison of the per party offline phase communication complexity, for a
single garbled gate.

Preprocessing Function-dependent offline Total offline
Protocol # bit-OT’s # bit-OT’s non-OT (approx.)
MYao 10, 752n 768n 11 Kb 23n Kb
LPN [8] 57, 120n 1, 992n 28.5 Kb 118.2n Kb

LWE [10] – 906nK 43 Kb 1.8n Mb
DDH [10] – 50nM 8.2 Kb 100.7n Mb
BGV [18] 2n – 1.32 Mb 1.32 Mb

11.2 Comparison to TinyKeys [21] and Yang et al. [36].

Comparison to TinyKeys [21] and Yang et al. [36] In this part, we compare
the size of garbled circuits with the TinyKeys protocol and with the protocol
of Yang et al. Like BMR, Tinykeys also incorporate free-XOR. We recall that
TinyKeys works for some portion of honest parties, though not necessarily an
honest majority. We compare to the setting with 20 parties, of which 16 are
honest, as this is the smallest garbled circuit size given in [21]. In this scenario,
the authors of [21] suggest using key length 13, which results in a garbled row
size of 13 ·20+1 = 261 bits, and a garbled AND gate size of 1044 bits. As can be
observed from Table 15, even when comparing to the TinyKeys protocol, MYao
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produced a garbled circuit smaller by approximately 26%, even though MYao
makes no assumption on the number of honest parties.

The maliciously secure protocol of Yang et al. [36] is similar to BMR with
free-XOR, but has additionally a 2/n-row reduction and a designated evalu-
ating party that does not have a key; therefore, the external value must be
added. Thus, its garbled gates are slightly smaller than BMR, and have only
4 ·
(
128 · (n− 2

4 − 1) + 1
)

bits. As in the case of BMR, the garbled circuit size
of [36] is significantly bigger than MYao’s even for a moderate number of parties.

Protocol Single AND gate 100000 AND gates AES-128
MYao 768 76.8M 4.91M

TinyKeys∗ [21] 1044 104.4M 6.68M
Yang et al. [36] 512(n− 3

2
) + 4 ∼ 51.2(n− 3

2
)M ∼ 3.27(n− 3

2
)M

Fig. 15. Sizes in bits of garbled circuits for the AES-128 circuit and the 100000 AND
gate circuit, and the size of a single garbled AND gate. ∗For Tinykeys the numbers are
for the specific case of 20 parties, of which 16 are honest.
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A The MPC-friendly (weak) PRF

When choosing the PRF for using in MYao, we look for PRFs that allow free-
XOR (i.e., binary keys), and also minimize the amount of communication and
number of communication rounds. Standard algorithms such as AES, although
providing much more efficient online time, would be inefficient to compute in
MPC, making MYao impractical. Therefore, we look at “MPC friendly” PRFs.
Note that some candidates, such as Farfalle [20] and MiMC [1], work in fields
with odd characteristic, and would therefore not be compatible with free-XOR.
The candidates we found which are compatible with free-XOR are the LPN-
style “MPC-friendly” wPRF of [15], LowMC [2], Rain [16], and Rescue [3]. Out
of these protocols, the wPRF of [15] and LowMC require the least amount of
communication for computing the garbled circuit. On the one hand, LowMC
generally requires more communication rounds, as it requires at least 14 rounds
which would have to be computed sequentially in MPC; some versions of LowMC
require even more rounds. On the other hand, the preprocessing of LowMC
requires computing only multiplication triples, which has been more extensively
studied and has more efficient protocols than dBits. We decided to instantiate
MYao with the wPRF of [15], though it seems that LowMC [2] is a possible
alternative that should also be considered.

The function on our choice, i.e., the LPN-style weak PRF (wPRF) by Dinur
et al. [15], is defined as follows. For a key k ∈ Zℓ

2, the matrix K ∈ Zm×ℓ
2 is

constructed by having k as its first row, and every other row of K is obtained
from the previous one by a cyclic rotation by one place, and therefore K is a
Toeplitz matrix. The public matrix B ∈ Zt×m, on an input x ∈ Zℓ

2, the wPRF
fk is defined by

fk(x) = B · [K · x⊕ (K · x mod 3) mod 2], (42)

where in (K · x mod 3) both K and x are reinterpret over Z3.
To withstand known attacks with κ-bit security, [15] recommend ℓ = m = 2κ,

t = κ. The wPRF, in this way, shrinks the input into the 2 times shorter output.

https://doi.org/10.1145/3372297.3417285
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1007/978-3-662-46803-6_8
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Moreover, the key is twice longer than the output of the function, therefore for
the garbling, where a PRF is used for the XOR-encryption of the output key,
we build the wPRF with the longer output from the LPN-style wPRF (42) as
follows:

Fk(g) = fk(g1)||fk(g2), (43)

where the 2m-long (pseudo)random input g is parsed as (g1||g2) with |g1| =
|g2| = m.

Protocol ΠF for securely computing the wPRF F (Equation (39))

Inputs: Each party Pi holds an XOR-share ki ∈ {0, 1}ℓ(κ) of the input key k.
Public input: A random g ∈ {0, 1}2ℓ(κ), and the constant matrix B ∈
Zℓ(κ)×(ℓ(κ)+1)/2

2 .
Correlated randomness: As required for Z2 → Z3 and Z3 → Z2 bit conversions.
Computation: The parties compute the following steps:

1. Z2 → Z3 key conversion: The parties call the protocol Convert
ℓ(κ)

(2,3)(k) using
their shares of the keys as inputs, to obtain additive Z3-shares of the same
key k∗i ∈ Zℓ(κ)

3 .
2. Local key-input multiplications: Every Pi locally constructs two circulant

matrices Ki ∈ Zℓ(κ)×ℓ(κ)
2 and K∗i ∈ Zℓ(κ)×ℓ(κ)

3 with first rows ki and k∗i

respectively. Then Pi parses g as (g1||g2), where g1, g2 ∈ {0, 1}ℓ(κ), and locally
computes xi = (Ki · g1||Ki · g2). Also, it locally computes x∗i = (K∗i · g1
mod 3||K∗i · g2 mod 3).

3. Z3 → Z2 intermediate vector conversion: The parties call the protocol
Convert

2ℓ(κ)

(3,2) (x
∗) using their shares x∗i as inputs, to obtain XOR-shares yi of

y = (y∗ mod 2) ∈ Z2ℓ(κ)
2 .

Output Step: Using the above results, every Pi locally computes zi = (xi ⊕ yi),
parses the result as (zi1||zi2), where zi1, z

i
2 ∈ {0, 1}ℓ(κ), and outputs the ℓ(κ)+1-long

share of the wPRF’s output F i
k(g) = (B · zi1||B · zi2).
Fig. 16. Protocol ΠF

The n-party semi-honest MPC protocol to compute f in the CR-model on
the public input is given in [15], and can be done in two rounds of communication
to recover two consequent masked values. Each of these recovery steps is needed
to convert the key and the intermediate result into the other field. However it
is more communication efficient to make it in four rounds using the single party
as the collector, who receives all the masked secret shares and sums them.

Also, we note that, according to Equation (43) for every key k, the parties
compute the function twice: for the input g1, and for the input g2. Hence, they
could convert the secret shares of k from Z2 to Z3 just once for both fk(g1) and
fk(g2). Moreover, for MYao without the half-gates optimization, it is possible
to reuse the same mod 3-sharing of k to compute Fk twice for two rows in the
garbled gate.
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For completeness, we give the protocol ΠF for computing the function Fk(·)
in Figure 16.

The protocol ΠF uses conversion protocols Convert
ℓ(κ)
(2,3)(·) and Convert

2ℓ(κ)
(3,2) (·)

that calls ℓ(κ) and 2ℓ(κ), respectively, parallel instances of the bit conversion
protocols Convert(2,3)(·) and Convert(3,2)(·), respectively, in the correlated ran-
domness model, which are given in Figure 17 and Figure 18, respectively.

Z2 → Z3 bit conversion protocol

Input: Each party Pi has the XOR-share xi shares of x ∈ {0, 1}.
Correlated randomness: Each party gets shares x̃i over Z2 and x̃∗i over Z3 of
the same random bit x̃.
Computation: Each party Pi sends to every other party Pj the masked input
share x̂i = xi ⊕ x̃i. By XORing all x̂i, each party reconstructs x̂.
Output reconstruction: Party Pi locally computes and outputs

x∗i = x̂i + x̃i + (x̂ · x̃i) mod 3.

Fig. 17. Protocol Convert(2,3)(x).

Z3 → Z2 bit conversion protocol

Input: Each party Pi has the mod-3 additive share x∗i of x∗ ∈ Z3.
Correlated randomness: Each party gets shares x̃i over Z2 and x̃∗i over Z3 of
the same random bit x̃. Additionally, it gets the share ỹi over Z2 of bit ỹ = (x̃+1
mod 3) mod 2.
Computation: Each party Pi sends to every other party Pj the masked input
share x̂∗i = (x∗i+ x̃∗i) mod 3. Summing all x̂∗i in Z3, each party reconstructs x̂∗.
Output reconstruction: Party Pi locally computes and outputs

xi =


1− x̃i − ỹi if x̂∗ = 0;

ỹi if x̂∗ = 1;

x̃i if x̂∗ = 2.

Fig. 18. Protocol Convert(3,2)(x
∗).

The conversion protocols Convert(2,3)(·) and Convert(3,2)(·) work in the cor-
related randomness preprocessing model, where the correlated randomness is the
same uniformly random bit shared in two different fields Z2 and Z3. This prim-
itive is a specific case of dBits studied in a number of works [7, 11, 33, 4, 27, 17,
26, 15]. Some of the suggested protocols for dBits are constant round, however,
for sake of the overall communication efficiency, we also suggest the O(log(n))-
round protocol with complexity 10, 5n bit-OT’s per encrypted bit, which we give
in Section 10.
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