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Abstract
We present novel Secure Multi-Party Computation (SMPC) proto-
cols to perform Breadth-First-Searches (BFSs) and determine maxi-
mal flows on dense secret-shared graphs. In particular, we introduce
a novel BFS protocol that requires only O (log=) communication
rounds on graphs with = nodes, which is a big step from prior
work that requires O (= log=) rounds. This BFS protocol is then
used in a maximal flow protocol based on the Edmonds-Karp al-
gorithm, which requires O

(
=3 log=

)
rounds. We further optimize

the protocol for cases where an upper bound * on the capacities is
publicly known by using a capacity scaling approach. This yields a
new protocol which requires O

(
=2 log= log*

)
rounds. Finally, we

introduce a novel max flow protocol based on algorithms by Dinic
and Tarjan with round complexity O

(
=3

)
.

All protocols presented in this paper use SMPC primitives as a
black-box, allowing our protocols to be used as building blocks in
a wide range of settings and applications. We evaluate our proto-
cols with semi-honest and malicious security in different network
settings. Our logarithmic BFS protocol is up to 69 times faster than
prior protocols on small graphs with less than 100 nodes, but is out-
performed by protocols with lower computational complexity on
graphs with thousands of nodes. Further, we find our Dinic-Tarjan
protocol to be faster than the Edmonds-Karp and capacity scaling
protocols in our evaluation, albeit trends indicating capacity scaling
protocols to be faster on graph sizes not reached in our evaluation.
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1 Introduction
Secure Multi-Party Computation (SMPC) allows multiple parties to
jointly compute functions with private inputs such that each party
learns no more than it could have from just the private input and
output. SMPC protocols have been used successfully for private
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biometric identification [10], privately finding bartering opportuni-
ties [41], auctions with secret prices [12], or even to prevent satellite
collisions [25]. To further extend the frontier of SMPC applications,
we investigate two well-known primitives of graph-theory, namely
Breadth-First-Search (BFS) and maximal flow (also known as max
flow). BFS is a widely used primitive to determine reachable nodes
and shortest paths, which is used by many algorithms including
the maximal flow algorithms used in this paper. Maximal flows are
useful for transportation problems [23], airline scheduling [18], or
solving further problems like bipartite matching [37] or the closure
problem [26]. Appendix A presents an example application, where
the maximal flow problem is used to compensate variations in the
production quantities of factories.

We present novel data-oblivious SMPC protocols to perform
BFSs and determine maximal flows of dense graphs. In partic-
ular, we present a BFS protocol which requires only O (log=)
communication rounds on graphs with = nodes, a big theoreti-
cal improvement from previous protocols that require O (= log=)
rounds [4]. This is important as the round complexity usually has
a high impact on runtimes [30]. The logarithmic BFS protocol is
used to improve upon prior maximal flow protocols based on the
Edmonds-Karp algorithm [21], yielding a maximal flow protocol
that requiresO

(
=3 log=

)
rounds. Assuming a publicly known upper

bound * on the capacities, we further reduce the round complex-
ity to O

(
=2 log= log*

)
, using capacity scaling techniques, which

were ignored by prior works. Similarly, Dinic’s algorithm [20] has
also been ignored by prior works. We combine it with Tarjan’s
algorithm [38], and introduce novel tricks that result in a protocol
that is fast in practice even with an asymptotically worse round
complexity of O

(
=3

)
.

Due to the general nature of BFSs andmaximal flows, we envision
our protocols to be used as building blocks in larger, application-
dependent protocols. Therefore, our protocols accept graphs that
are already secret-shared as input rather then specifying private
inputs and how they are used to build the graph shared amoung the
compute peers. As output, our protocols produce secret-shared BFS
trees and secret-shared flows. To allow future protocols to build
these secret-shared graphs from private data without revealing the
number of edges, we focus on dense graphs. We further improve
the applicability of our protocols by using SMPC primitives in a
black box manner, and only assume that primitives are based on
secret shares, which allows using our protocols in semi-honest as
well as malicious security settings depending on the chosen SMPC
primitive. The benefit of this flexibility is displayed in the example
application in Appendix A, which permits different setups with
individual advantages and drawbacks.

We evaluate our protocols with semi-honest and malicious se-
curity in different network settings. We find our logarithmic BFS
protocol to be very efficient on small graphs with less than 100
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nodes. On large graphs with thousands of nodes, the logarithmic
BFS protocol is outperformed by other protocols with lower com-
putational complexity. Nevertheless, the reduction from O (= log=)
to O (log=) rounds is a noteworthy theoretical advancement on its
own. Further, we show that our Dinic-Tarjan maximal flow protocol
to be up to seven times faster than the improved Edmonds-Karp
protocol on all evaluated graph sizes. We also show that our ca-
pacity scaling protocols are expected to eventually outperform the
Dinic-Tarjan protocol on large graphs, but we do not reach such
graph sizes in our evaluation.

2 Preliminaries
In this section, we briefly present relevant terminology of SMPC
(Section 2.2) protocols and graph theory (Section 2.3), as well as
the notation used in this paper (Section 2.1) and the square-and-
multiply algorithm (Section 2.4).

2.1 Notation
Toft’s notation [39] is used as base for our protocol descriptions:
[G] denotes a secret sharing of the value G . Publicly known values
that are not secret-shared are writtenwithout brackets.The addition
of two secret-shares is denoted as [0] + [1] and the multiplication
analogously as [0] · [1].

Further, the 8’th element of a secret-shared vector
[−→
+

]
is denoted

as
[−→
+ 8

]
. Analogously, the entry in the 8’th row and 9 ’th column

of a secret-shared matrix [S] is denoted as
[
S8, 9

]
.
[
S8,•

]
is the

8’th row of the secret-shared matrix [S].The transpose of [S] is
written as

[
ST] . The vector and matrix notation is analogous for

publicly known vectors and matrices.

Finally,
−−→
�8,= is the 8’th unit vector of length =, that is a vector of

length = that only contains zeroes except a single 1 at position 8 .

2.2 Secure Multi-Party Computation
SMPC protocols allow multiple parties to compute a functionality
on private inputs such that each party only learns the output of
the functionality, and what can be deduced from the private input
and the output. Such protocols can be built using different primi-
tives such as [6, 19]. The protocols presented in this paper do not
depend on specific SMPC primitives, but instead consider the used
primitive to be a black box that operates on secret-shares over Z2_
for sufficiently large _1.

We assume that the addition of secret-shares can be done effi-
ciently using local computation only, and that the multiplication
of secret-shares requires O (1) rounds and O (_) communication.
Further, we assume these operations are universally composable as
defined in [13], i.e., they can be securely performed in parallel.

These conditions are fulfilled by multiple SMPC primitives, for
example [6, 19, 22].These primitives offer different levels of security,
which can be categorized into the semi-honest or the malicious-
security adversary model. The former assumes that corrupted par-
ties correctly follow the protocol, whereas the latter model allows
corrupted parties to deviate arbitrarily. Further, the levels of se-
curity can be differentiated by the assumed number of corrupted

1We set _ = 64 in our evaluation.

parties. Most commonly, primitives assume that only a minority of
the parties is corrupted, which is called an honest majority setting,
or that all parties but one are corrupted, which is called a dishonest
majority setting. Due to the composition theorem [13], the proto-
cols presented in this paper “inherit” the level of security from the
used primitives. In other words, our protocols achieve the same
level of security as the used SMPC primitives2.

The complexity of protocols can be expressed using different
metrics. We mainly focus on the (communication) round complex-
ity, which is determined by the number of communication steps
performed during a protocol execution. The round complexity usu-
ally has a big impact on the runtime of protocols since each round
usually leads to idle time [30]. Other metrics are the communication
complexity, which is determined by the total amount of data sent,
and computational complexity, which is determined by the total
number of computation steps the protocol requires.

The protocols presented in this paper use several existing gates
for elementary operations, such as comparisons of secret-shared
values. As shown by [33], such comparisons can be realized in
constant (O (1)) communication rounds and O (_) communication.
A closely related gate is the bit decomposition, that returns secret-
shares of the individual bits of a secret-shared value. It too can be
realized in O (1) rounds and O (_) communication 3.

Further, we use a gate GMin to determine the smallest value in
a secret-shared vector. Anagreh et al. [4] introduced a gate with
O (log<) rounds and O (<) communication, where< is the size
of the vector.

Finally, we occasionally need to select one of two values based
on a secret-shared condition. In that case, we use [2] ? [0] : [1]
as shorthand notation for [1] + [2] · ( [0] − [1]). This results in [0]
if 2 = 1 and [1] if 2 = 0.

2.3 Graph theory
A graph� consists of a set of nodes+ and a set of edges � ⊆ + ×+ .
Further, = = |+ | denotes the number of nodes in the graph. We
assume (without loss of generality) that + = {1, . . . , =}. The graph
can also be expressed as adjacency matrix G ∈ {0, 1}=×= where

G8, 9 =

{
1 if (8, 9) ∈ �
0 otherwise

. When using the adjacency matrix, it might

be useful to encode nodes as vectors to express some operations as
vector-matrix-multiplications. In that case, a node E ∈ + is encoded
as
−−→
�E,= , that is a vector that only contains zeroes except as singe

one at position E ∈ + = {1, . . . , =}.
A path is a tuple (E1, . . . , E; ) such that (E8 , E8+1) ∈ � for all 8 from

1 to ; −1. A path is called a shortest path when there is no path in�
that connects E1 and E; while visiting fewer nodes. Furthermore, the
subgraph� ′ of� , i.e.,� ′ = (+ , �′) with �′ ⊆ �, that only contains
all shortest paths starting at a node E is called the layered subgraph
of � starting on E .

Further, edge capacities can be defined for a graph as a func-
tion 2 : + × + → N. All edges have a non-negative capacity, i.e.,

2There are SMPC primitives for both security setting and all number of parties ≥ 2.
3We use the stated complexities for the theoretical analysis. In our evaluation, we use
different gates from [33] with O (log_) rounds and O (_) communication, as they
are faster in practice for _ = 64.
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2 (8, 9) ≥ 0 for all (8, 9) ∈ �, while 2 (8, 9) = 0 for all (8, 9) ∉ �. Simi-
larly to the adjacency matrix, the capacities can also be expressed
as matrix I ∈ N=×= with I8, 9 = 2 (8, 9).

A flow sends “flow units” from a source node B ∈ + to a sink node
C ∈ + and is defined as functions 5 : + × + → Z that satisfy the
following constraints: First, the capacities have to be respected, i.e.,
5 (8, 9) ≤ 2 (8, 9) for all 8, 9 ∈ + . Further, the skew symmetry has to
hold, i.e., 5 (8, 9) = −5 ( 9, 8) for all 8, 9 ∈ + . Finally, flow conservation
is required for all nodes except the source and the sink, i.e., for
all nodes except source and sink, the inflow equals the outflow.
Formally,

∑
9∈+ 5 (8, 9) = 0 for 8 ∈ + \ {B, C} [11]. Flows can also be

represented using matrices L low ∈ Z=×= with L low8, 9 = 5 (8, 9).

2.4 Square-and-multiply algorithm
The square-and-multiply algorithm [32] calculates of14 in O (log 4)

steps. It first computes1
(
20
)
, . . . , 1

(
2blog4c

)
by repeated squaring, and

assembles these values into 14 . To do so, let � ⊆ {0, . . . , blog 4c} be
such that 4 =

∑
8∈ � 2

8 . Then 14 = 1
(∑

8∈ � 2
8
)
=
∏

8∈ � 1
(
28
)
. Note that

the algorithm also is applicable to compute H4 when H is a square
matrix.

3 Related work
In this section we provide an overview of algorithms for finding
maximal flows (Section 3.1) and discuss which approaches intro-
duce which challenges when turning an algorithm into a SMPC
protocol. Further, we present privacy-preserving protocols that
perform breadth-first-searches and find maximal flows on private
graphs (Section 3.2).

3.1 Non-privacy-preserving maximal flow
algorithms

The maximal flow problem is a classical and well studied graph
theoretic problem, and many different approaches to solve it have
been developed. One branch of research focussed on iteratively
increasing intermediary flows using various techniques such as
augmenting paths [21, 23], blocking flows [20], and scaling [24].
These algorithms inspire the protocols in this paper.

A different branch of combinatorial maximal flow algorithms
are push-relabel algorithms such as [1]. Such algorithms require
dynamic data structures to guarantee good runtimes, making SMPC
adaptions challenging.

A breakthrough paper by Christiano et al. [16] lead to signifi-
cant developments in the past decade. The paper applies Interior
Point Methods (IPMs) and efficient solvers for Laplacian equation
systems to achieve an approximation algorithm with complexity
O

(
<=1/3n−11/3

)
, where n is an approximation factor. Kathuria [27]

presented the first exact algorithm based on this approach, which
has complexity O

(
<4/3+> (1)* 1/3

)
, where* is the biggest capacity.

Further development culminated in an algorithm with complexity
O

(
<1+> (1)

)
, which was introduced by Chen et al. [15]. This is the

current (asymptotically) fastest maximal flow algorithm.
Algorithms based on IPMs heavily rely on non-linearities like

inverses and logarithms, while simultaneously requiring high nu-
merical precision and stability. SMPC implementations of such

non-linearities are expensive compared to the non-privacy preserv-
ing implementations. Further, algorithms like [15] require dynamic
data-structures. As SMPC protocol must hide memory access pat-
terns to avoid leakages, such dynamic data-structures are hard to
realize efficiently in SMPC protocols. For these reasons, we focus
on more SMPC-friendly algorithms in this paper, and leave privacy-
preserving implementations of IPM-based graph algorithms open
for future work.

3.2 Protocols on private graphs
Privacy-preserving protocols either focussed on dense graphs, where
the number of edges< is close to =2, or on sparse graphs with fewer
edges. We discuss these separately, starting with the former:

Dense graphs: To the best of our knowledge, the only data-
oblivious BFS protocol on dense graphs was introduced by Blanton
et al. [11]. However, BFS can be interpreted as a special case of the
Dijkstra algorithm on graphs with uniform edge lengths. There-
fore, the Dijkstra-based protocols such as [2–4] can also be used to
perform Breadth-First-Searches. Most of these protocols [2, 4, 11]
first permute the nodes and then iteratively visit each node. The
permutation allows these protocols to securely reveal the node
that is being visited, yielding protocols requiring O

(
=2

)
rounds

in the case of [2, 11], and O (= log=) in [4]. One protocol [3] uses
a construction similar to bubble-sort instead of secret permuta-
tions, which requires O

(
=3

)
rounds. Compared to those protocols,

the BFS protocol presented in this paper requires only O (log=)
communication rounds. Finally, Anagreh et al. [5] also presented a
BFS protocol that is not data-oblivious, as it leaks the number of
iterations. Thus, a fair comparisons between [5] and data-oblivious
protocols is impossible.

To the best of our knowledge, Blanton et al. [11] also introduced
the only SMPC protocol to find a maximal flow on dense graphs. It
is based on the Edmonds-Karp algorithm [21] and requires O

(
=5

)
communication rounds. We modify their protocol to be compati-
ble with our BFS, thus achieving a protocol with round complex-
ity O

(
=3 log=

)
. Further, we present two completely new proto-

cols with round complexities O
(
=3

)
respectively O

(
=2 log= log*

)
,

where* is an upper bound on the capacities.
Sparse graphs: Privacy-preserving protocols that operate on

sparse graphs are either based on message-push-algorithms or
on Oblivious Random Access Memories (ORAMs). Message-push-
algorithms are a special class of algorithms, where each node re-
peatedly sends a message to its neighbors and updates its own state
based on received messages. Such algorithms can be adapted to
SMPC protocols, which introduces an overhead of O (log(= +<))
rounds for each step, where< is the number of edges [7, 34]. Araki
et al. [7] use this approach for contract tracing, which includes a
limited-depth BFS with O (3 log(= +<)) rounds for depth 3 . We
are not aware of any maximal flow protocol using this approach.

Another approach to privacy-preserving computations on sparse
graphs is based on ORAMs, which allow arbitrary read and write
accesses while hiding access patterns. This has been used to find
shortest paths [4, 29, 35]. Hence, these protocols can be used to
emulate BFS. The round complexity of these protocols mainly de-
pends on the ORAM construction, the lowest round complexity is
O (= log= log log log=) [35].This approach was also used in trusted
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1

2 3

4

a) Input graph

{1} ↔ (1, 0, 0, 0) 0 steps
{2, 3} ↔ (0, 1, 1, 0) 1 step
{3, 4} ↔ (0, 0, 1, 1) 2 steps
{4} ↔ (0, 0, 0, 1) 3 steps

b) Nodes reached after steps

{1} ↔ (1, 0, 0, 0) 1st layer
{2, 3} ↔ (0, 1, 1, 0) 2nd layer
{4} ↔ (0, 0, 0, 1) 3rd layer
{} ↔ (0, 0, 0, 0) 4th layer

c) The layers of the graph

1

2

4

3

0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0

©­­­­­«
ª®®®®®¬

d) Layered subgraph with adjacency matrix

1

2

4

3

0 1 1 0
0 0 0 1
0 0 0 0
0 0 0 0

©­­­­­«
ª®®®®®¬

e) BFS tree with adjacency matrix

Figure 1: The main steps of the logarithmic BFS protocol presented on an example graph, starting on node 1.

execution environments [14], but with higher reported runtimes
than our BFS protocol4.

The ORAM approach was used by a SMPC protocol based on the
Edmonds-Karp algorithm [40], which only works on planar graphs.

All protocols on sparse graphs have in common that they not
only require the number of nodes to be public, but also the number
of edges. However, in use cases where the graph is built from
private data, leaking the number of edges might not be acceptable.
In contrast, protocols on dense graphs, like the protocols presented
in this paper, do not have this issue since the number of edges
remains private.

Appendix B provides an overview of all complexity measures of
the mentioned, and our new, protocols.

4 Breadth-First-Search with logarithmic round
complexity

In this section, we present our novel protocol ΠBFS-log that com-
putes the BFS tree with a logarithmic round complexity.

4.1 Breadth-First-Search Trees
BFS is an algorithm to determine all nodes that are reachable from
a starting node. It iteratively picks a (previously unvisited) node
with the least distance to the starting node, which is often realized
using a queue, and marks all neighboring nodes as seen. BFS can
also be used to find the shortest paths from the starting node to
the other nodes by keeping track of the first node that “sees” a
previously unseen node. This results in tree, which only contains
shortest paths from the starting node to all other (reachable) nodes.
Such trees are called BFS trees [8]. An example of a BFS tree can
be found in Figure 1e.

4[14] also evaluated on dense graphs. The largest evaluated dense graph has roughly
500 nodes (in [14] graph size is |+ | + |� |). On this graph size, our logarithmic BFS
protocol is 142 times faster in the slowest evaluated network setting.

4.2 The protocol
The logarithmic BFS protocol follows a fundamentally different
approach compared to the classical BFS algorithm. It does not visit
each node individually, which would result in a protocol with O (=)
rounds like the one described in Appendix E.1.

Instead, the protocol operates as demonstrated in Figure 1: First,
the nodes that are reachable in 0 to = − 1 steps from the start node
are determined. By using the square-and-multiply algorithm, this
is done in O (log=) rounds. Next, the nodes are filtered such that
only the layers of the BFS tree remain, which is done in O (1)
communication rounds. This then allows the protocol to determine
the layered subgraph in O (1) communication rounds. The layered
subgraph is already very similar to the BFS tree, with the exception
that a node might have multiple incoming edges. In the final step of
the protocol, the edges in the layered subgraph are filtered such that
only the BFS tree remains, again in O (1) communication rounds.

In greater detail, the first step, i.e., determining the nodes that
are reached in 0 to = − 1 steps, is done by calculating exponents of
the adjacency matrix. This is based on the intuitive understanding
that
−−→
�E,= · G yields a vector indicating all nodes that are reachable

from E in one step5. It follows that (
−−→
�E,= ·G) ·G =

−−→
�E,= ·G2 yields a

vector indicating the nodes that are reachable from E in exactly two
steps. In general, the nodes reached from E in exactly 8 steps are
indicated by

−−→
�E,= · G8 , which is proven formally in Appendix C.1.

Protocol 1 assumes that the starting node of the search is encoded
as vector

−−−−→
(C0AC . In Lines 1 to 8, it uses the square-and-multiply

method [17] to calculate
−−−−→
(C0AC · G0, . . . ,

−−−−→
(C0AC · G=−1 in parallel,

which requires O (log=) communication rounds. An implementa-
tion detail is that the intermediary values of the computation are no
longer restricted to {0, 1} but might be larger natural numbers. For
this reason, Lines 9 to 10 of Protocol 1 “reset” all non-zero values to
1, which simplifies further computations. Another consequence is
that integer overflows might occur during the square-and-multiply

5“Indicating” means that a non-zero entry indicates that the corresponding node is
reachable, and zero indicates that the node is not reachable.
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procedure. This can cause the protocol to ignore edges and nodes,
affecting the correctness. However, overflows can be prevented by
keeping track of an upper bound on intermediary values and reset-
ting non-zero values to 1 before an overflow can occur. Appendix D
discusses the effect of overflows and their mitigation in-depth.

Protocol 1 ΠBFS-log
(
[G] ,

[−−−−→
(C0AC

] )
Find the nodes reachable in 0, . . . , = − 1 steps:

1: [H] ← [G]
2: for 1 ≤ 8 ≤ = in parallel do
3:

[
GfterYteps8,•

]
←

[−−−−→
(C0AC

]
4: for 0 ≤ 8 ≤ dlog=e do
5: for 1 ≤ 9 ≤ = in parallel do
6: if (( 9 − 1) � 8) & 1 = 1 then
7:

[
GfterYteps 9,•

]
←

[
GfterYteps 9,•

]
· [H]

8: [H] ← [H]2

9: for 1 ≤ 8, 9 ≤ = in parallel do
10:

[
GfterYteps8, 9

]
←

[
GfterYteps8, 9

]
> 0

Filter to layers:
11: for 1 ≤ 8, 9 ≤ = do
12:

[
Vref ixYum8, 9

]
← ∑8

:=1

[
GfterYteps:,9

]
13: for 1 ≤ 8, 9 ≤ = in parallel do
14:

[
Imp8, 9

]
←

[
Vref ixYum8, 9

]
> 0

15:
[
Ra~ers1,•

]
←

[
Imp1,•

]
16: for 2 ≤ 8 ≤ =, 1 ≤ 9 ≤ = do
17:

[
Ra~ers8, 9

]
←

[
Imp8, 9

]
−
[
Imp8−1, 9

]
Build the layered subgraph:

18: for 1 ≤ 8, 9 ≤ = in parallel do
19: for 1 ≤ : ≤ = − 1 in parallel do
20:

[−−−→
)<?:

]
←

[
Ra~ers:,8

]
·
[
Ra~ers:+1, 9

]
21:

[
Ra~eredG8, 9

]
←

[
G8, 9

]
·∑8−1

:=1

[−−−→
)<?:

]
Filter to BFS tree:

22: for 1 ≤ 8, 9 ≤ = do
23:

[
Vref ixYum8, 9

]
← ∑8

:=1

[
Ra~eredG:,9

]
24: for 1 ≤ 8, 9 ≤ = in parallel do
25:

[
Imp8, 9

]
←

[
Vref ixYum8, 9

]
> 0

26:
[
Zree1,•

]
←

[
Imp1,•

]
27: for 2 ≤ 8 ≤ =, 1 ≤ 9 ≤ = do
28:

[
Zree8, 9

]
←

[
Imp8, 9

]
−
[
Imp8−1, 9

]
29: return [Zree]

Once the nodes that can be reached from the starting node are
calculated, the layers of the BFS tree can be determined.This is done
by filtering the GfterYteps-matrix, such that a node only remains
on the step where it was seen first. For example, in Figure 1 node 3
can be reached by one and two steps. After the filtering, node 3 is
kept only on the second layer, which corresponds to the nodes that
were reached after one step. When looking at the corresponding
encoded sets in Figure 1b and c, it can be seen that this filtering
step is equivalent to finding the first 1 in each column.

Lines 11 to 17 of Protocol 1 perform this filter step by first calcu-
lating the prefix sum for each entry, i.e., each element is the sum
of the preceding elements in the column. This prefix sum is zero
for positions prior to the first 1 of each column, and larger than
zero for all following elements. Therefore, the first 1 can be found
by identifying the element that is larger than zero, but where the
previous prefix-sum is zero. After comparing all prefix-sums with
zero in parallel, this can be done by taking the difference between
each comparison result and the prior comparison result. Since cal-
culating the prefix sums and the differences do not require any
communication, and the comparisons are performed in parallel, the
filter step is performed in O (1) communication rounds.

After the nodes have been partitioned into layers, the layered
subgraph is determined. This is done by checking whether an edge
is part of the layered subgraph for each edge in parallel. For that to
be the case, an edge (8, 9) has to fulfill two conditions: It has to be
part of the input graph, i.e., G8, 9 = 1. And it has to transition from
one layer to the next, i.e., there has to be a : such that 8 is in layer
: and 9 is in layer : + 1. The latter check is performed in parallel
for each possible : , and the result of the checks is multiplied with
G8, 9 in Line 21 of Protocol 1. It follows that building the subgraph
is done in O (1) communication rounds.

As shown in Figure 1d, the layered subgraph is similar to the BFS
tree, but nodes might still have multiple incoming edges. For such
nodes, the corresponding column in the adjacency matrix contains
multiple ones. To reduce the layered subgraph to a BFS tree, the
columns of the adjacency matrix must be filtered such that only one
1 remains, which can be done with same column-wise filtering used
to determine the layers of the graph. Thus, the final step needed to
produce the BFS tree also is performed in O (1) rounds.

Wewant to note that filtering the layered subgraph indeed results
in a correct BFS tree. Recall that the BFS tree only contains shortest
paths from the start node to all other (reachable) nodes. Since the
protocol builds the BFS tree by removing edges from the layered
subgraph, which contains all shortest paths starting at the start
node, this property is given. Furthermore, the final filtering step
ensures that the result of the protocol is indeed a tree while ensuring
that all reachable nodes remain reachable. Hence, the result of the
protocol is a valid secret-shared BFS tree.

Finally, since the protocol only calls secure gates, never reveals
the values of secret-shares, and follows a publicly known control
flow that only depends on the number of nodes, it can be simulated
by applying the composition theorem [13].

5 Maximal flows
Recall from Section 2.3 that a flow sends “flow units” from a source
node B to a sink node C in a graph with capacity constraints. A
well-studied problem in graph-theory is finding a flow that sends
the maximal number of units from the source to the sink, which is
also called the maximal flow problem [1, 15, 16, 20, 21, 23, 24, 27].
We first non-trivially adapt a previous maximal flow protocol to
our logarithmic BFS protocol in Section 5.1, yielding a maximal
flow protocol with round complexity O

(
=3 log=

)
. We further iden-

tify capacity scaling techniques as a gap in prior works, which
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allows reducing the round complexity to O
(
=2 log= log*

)
, assum-

ing an upper bound * on the capacities. Finally, we present a com-
pletely novel protocol inspired by the algorithms of Dinic [20] and
Tarjan [38]. This protocol employs novel tricks to achieve O

(
=3

)
rounds. Section 6 shows that it is faster than the Edmonds-Karp
and capacity scaling protocols on evaluated graph sizes.

5.1 Edmonds-Karp
The Edmonds-Karp algorithm iteratively increases the flow sent
from the source to the sink by finding a path from the source to
sink that still has some capacity left, and sending as much flow
as possible along that path [21]. In greater detail, a residual graph
is built that only contains edges that have capacity left, i.e., all
edges (8, 9) with 5 (8, 9) < 2 (8, 9). BFS is then used to find a shortest
path from the source to sink in the residual graph. This path is
also called an augmenting path. Once a path has been found, the
flow is augmented by sending as much flow as possible along the
path. If no path can be found, the flow is maximal [23]. It has been
shown that by using BFS to select augmenting paths, the algorithm
requires at most =3 iterations [21].

Blanton et al. [11] already implemented the Edmonds-Karp as a
SMPC protocol. However, their implementation uses a BFS protocol
with a round complexity of O

(
=2

)
. We will use the protocol pre-

sented in Section 4 instead. However, just using our BFS protocol
is not sufficient to optimize prior protocols. In order to adequatly
profic from our BFS protocol, the extraction of the path from the
source to the sink and finding the capacity of the augmenting path
must be done in O (log=) rounds as well. Prior protocols require
O (=) rounds for both steps [11].

We improve the extraction of the augmenting path from the BFS
tree by introducing two phases in Protocol 2. First, the protocol
determines the nodes on the path by iteratively stepping from the
sink node to its parent in the BFS tree, then to its parent, and so on.
By using the square-and-multiply algorithm in Lines 8 to 15, this is
done in O (log=) communication rounds. Next, the corresponding
edges of the path are determined, which is done in O (1) communi-
cation rounds by checking whether an edge transitions from one
visited node to its parent for each edge in parallel (Lines 16 to 19).

The implementation of the path extraction in Lines 8 to 19 of
Protocol 2 is very similar to the first two steps of the logarithmic
BFS protocol. However, the extraction is slightly optimized due to a
special property of the transposed BFS tree matrix, which contains
only one 1 in each row. This is also true for the GfterYteps matrix.
As shown in Appendix C.2, this property will propagate to new
intermediary values. It follows that all intermediary states remain
in {0, 1}. Therefore, no overflow mitigations and no comparisons
are required during the square-and-multiply procedure.

Once a shortest augmenting path has been found, the flow needs
to be augmented accordingly, which is done in Lines 20 to 23. First,
the minimal residual capacity along the path is found. To do so, a
vector is built that for each edge either contains the residual capacity
of the edge if it is part of the path, or contains the residual capacity
of the edge plus a large constant∞ if the edge is not part of the path.
This does not require any communication. The residual capacity of
the augmenting path is then determined by calling the GMin gate on
the vector, which requires O (log=) communication rounds. Finally,

Protocol 2 ΠMax-Flow-Edmonds-Karp
(
[I] ,

[−−−−−→
(>DA24

]
,

[−−−→
(8=:

] )
1: for 1 ≤ 8, 9 ≤ = do
2:

[
L low8, 9

]
← [0]

3: for 1 ≤ 8C4A ≤ =3 do
Run BFS on residual graph:

4: [Xes idualIap] ← [I] − [L low]
5: for 1 ≤ 8, 9 ≤ = in parallel do
6:

[
Xes idualG8, 9

]
←

[
Xed idualIap8, 9

]
> 0

7: [Zree] ← BFS
(
[Xes idualG] ,

[−−−−−→
(>DA24

] )
Build path from the source to the sink:

8: [H] ←
[
ZreeT]

9: for 1 ≤ 8 ≤ = do
10:

[
GfterYteps8,•

]
←

[−−−→
(8=:

]
11: for 1 ≤ 8 ≤ dlog=e do
12: for 1 ≤ 9 ≤ = in parallel do
13: if (( 9 − 1) � 8) & 1 = 1 then
14:

[
GfterYteps 9,•

]
←

[
GfterYteps 9,•

]
· [H]

15: [H] ← [H]2

16: for 1 ≤ 8, 9 ≤ = in parallel do
17: for 1 ≤ : ≤ = − 1 in parallel do
18:

[−−−→
)<?:

]
←

[
GfterYteps:+1,8

]
·
[
GfterYteps:,9

]
19:

[
Vath8, 9

]
← ∑=−1

:=1

[−−−→
)<?:

]
Augment the flow:

20: for 1 ≤ 8, 9 ≤ = do
21:

[−−−−−→
(40A2ℎ8 ·=+9

]
←

[
Xes idualIap8, 9

]
+∞(1−

[
Vath8, 9

]
)

22: [%0Cℎ�0?] ←Min
( [−−−−−→
(40A2ℎ

] )
23: [L low] ← [L low] + [%0Cℎ�0?] ·

(
[Vath] −

[
VathT] )

24: return [L low]

the flow is updated in Line 23. Note that the transpose of the path
is subtracted to satisfy the skew symmetry constraints.

Hence, each iteration requires only O (log=) communication
rounds. To achieve data-obliviousness, Protocol 2 always performs
=3 iterations, resulting in O

(
=3 log=

)
overall rounds.

It should be noted that always executing =3 iterations, instead of
terminating as soon as no augmenting path exists, does not affect
the correctness of the protocol. If the protocol finds a maximal
flow early, it will not perform any further changes to the flow,
because Zree(8=:,• will only contain zeroes when no augmenting
path exists. Therefore, GfterYteps8,• will also only contain zeroes
after the square-and-multiply procedure for all 2 ≤ 8 ≤ =. It follows
that the Vath matrix will only contain zeroes, and no changes are
made to the flow. Thus, the correctness of the protocol follows from
the correctness of the Edmonds-Karp algorithm.

Finally, since the protocol does not reveal the value of any secret-
shares, and only calls secure gates, and the control flow of the
protocol only depends on the number of nodes, Protocol 2 can be
simulated by applying the composition theorem [13].
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5.2 Capacity scaling
Other than reducing the round complexity of each Edmonds-Karp
iteration, we also reduce the number of iterations by identifying
a gap in prior works, namely capacity scaling: Capacity scaling
algorithms solve the maximal flow problem by reducing it to a
series of “smaller” maximal flow problems [24, 36]. For example,
a small problem for the (non-privacy-preserving) Edmonds-Karp
algorithm is a graph where the maximal flow value � is small (< =3).
In that case, the algorithm terminates after at most � iterations,
since each iteration adds at least one flow unit.

In particular, imagine a graph whose capacities are constrained
in {0, 1}, i.e., all capacities are just one bit long. Then � ≤ =2 and
the Edmonds-Karp algorithm terminates after at most =2 iterations.

This is exploited by Protocol 3, which iteratively “adds” one bit
to the intermediary capacity matrix I′, starting from the most sig-
nificant bit. In each iteration, the flow created in the previous itera-
tion is “updated” using =2 iterations of the ΠMax-Flow-Edmonds-Karp
protocol. It follows that Protocol 3 requires O

(
=2 log= log*

)
com-

munication rounds, where* is a publicly known upper bound on
the edge capacities.

Protocol 3ΠMax-Flow-Capacity-Scaling
(
[I] ,

[−−−−−→
(>DA24

]
,

[−−−→
(8=:

]
,*

)
1: 1 ← dlog* e
2: for 1 ≤ 8, 9 ≤ = do
3:

[
L low8, 9

]
← [0]

4:
[
I′
8, 9

]
← [0]

5: for 1 ≤ 8, 9 ≤ = in parallel do
6:

[
Hits8, 9,1

]
, . . . ,

[
Hits8, 9,1

]
← BitDecompose

( [
I8, 9

] )
7: for 1 ≤ =D<�8CB ≤ 1 do
8: [L low] ← 2 · [L low]
9: for 1 ≤ 8, 9 ≤ = do
10:

[
I′
8, 9

]
← 2 ·

[
I′
8, 9

]
+
[
Hits8, 9,=D<�8CB

]
11: Run =2 iterations of ΠMax-Flow-Edmonds-Karp using [I′],

i.e., run Lines 4 to 23 of Protocol 2 =2 times
12: return [L low]

The protocol is inspired by an early work of Garbow [24], who
used Dinic’s algorithm [20] to solve each sub-problem, as it is faster
than Edmonds-Karp algorithm in the non-privacy-preserving set-
ting. In the privacy-preserving setting, Dinic’s algorithm would re-
quire O

(
=3

)
communication rounds for each subproblem, as shown

in Section 5.3.Therefore, we use our Edmonds-Karp protocol, which
requires only O

(
=2 log=

)
communication rounds per subproblem.

Note that this does not affect the correctness of the protocol, as Gar-
bow showed that updating the flow requires at most =2 augmenting
paths [24], i.e., at most =2 Edmonds-Karp iterations.

Protocol 3 only uses secure gates and its control flow is publicly
known. Hence, it can be simulated by applying the composition
theorem [13]. A slight caveat of this protocol is that an upper
bound on capacities must be publicly known. However, this does
not really constitute a leakage, as 2_ (the field size) can be used as
upper bound.

5.3 Dinic’s maximal flow algorithm
Finally, we present a protocol based on Dinic’s algorithm [20] which
solves the maximal flow problem with round complexity O

(
=3

)
.

This protocol has a worse round complexity than the capacity scal-
ing protocol. However, in Section 6 we show experimentally that it
is faster than the capacity scaling protocol on small graphs.

Similarly to Edmonds-Karp algorithm, Dinic’s algorithm iter-
atively increases the flow sent from the source to the sink. But
instead of augmenting the flow along a singular augmenting path
at a time, Dinic’s algorithm augments the flow along all shortest
augmenting paths simultaneously. This ensures that the shortest
augmenting paths in the next iteration (also called phase) will be
longer. Therefore, this algorithm terminates after at most = phases,
where each phase augments the flow along all shortest paths.

Dinic presented an efficient algorithm for finding all shortest
augmenting paths. However, implementing this algorithm as SMPC
protocol would introduce a significant overhead due to the dynamic
manner in which nodes are visited. Therefore, we use a different
algorithm introduced by Tarjan [38] to augment the flow along all
shortest paths.

This algorithm resembles a wave that bounces between the
source and the sink of the graph. First, all outgoing edges of the
source are saturated, i.e., the source sends as much flow as possible
to its neighboring nodes. These neighbors then have excess flow,
which they try to send to their neighbors in the next layer of the
layered subgraph of the residual graph. This propagation of flow
is repeated until the sink node is reached. All nodes that were not
able to propagate all incoming flow, i.e., all nodes that have some re-
maining excess flow, are then marked as blocked. Starting from the
bottommost layer, those blocked nodes then send the excess flow
backwards towards the direction of the source, which increases the
excess flow at previous nodes. In the next iteration of the algorithm,
the nodes with new excess capacity again attempt to propagate it
towards the sink and become blocked if they fail to do so. Blocked
nodes then again return their excess flow towards the direction of
the source.

This “bouncing” of the wave from source to sink and back is
repeated = times. Then, no node will have an excess capacity and
the resulting flow is blocking in the layered subgraph of the residual
graph [38]. In other words, all shortest paths from the source to
sink have at least one edge without any remaining capacity, which
is equivalent to finding all shortest augmenting paths.

Adapting this algorithm to a SMPC protocol poses some chal-
lenges: Propagating flows would require O (=) rounds per visited
node, resulting in O

(
=4

)
rounds overall. This is because Tarjan’s

algorithm iteratively looks at the edges of the visited node. It first
sends as much excess as possible along the first edge, then as much
remaining excess along the second edge, and so on. As a conse-
quence, the flow sent along an edge non-linearly depends on the
flows sent along the previous edges. However, we notice that in
each iteration, the algorithmwants to send at most the initial excess
minus the capacities of the previous edges. This wanted outflow
may exceed the capacity of the current edge if the excess is too
large, and may be negative if the excess has already been distributed
along the previous edges. By clamping the wanted outflow to the
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range between 0 and the edge’s capacity, the wanted outflow is
converted into the actual outflow along the edge.

Gate 1 GIncrease-Blocking-Flow
( [−−−−→
!0~4A

] )
1: for 1 ≤ 8 ≤ = in parallel do

Determine outgoing capacities of node 8:
2: for 1 ≤ 9 ≤ = in parallel do
3:

[−−−−−−→
$DC�0? 9

]
←

[−−−−→
!0~4A 8

]
·
[
Ra~eredG8, 9

]
·
(
1 −

[−−−−−−→
�;>2:438

] )
·
(
1 −

[−−−−−−→
�;>2:43 9

] )
·
( [
Xes idualIap8, 9

]
−
[
Hlock ingL low8, 9

] )
Sum-and-clamp:

4: for 1 ≤ 9 ≤ = do
5:

[−−→
$DC 9

]
←

[−−−−−→
�G24BB8

]
−∑9−1

:=1

[−−−−−−→
$DC�0?:

]
6: for 1 ≤ 9 ≤ = in parallel do
7: [;>F4A ] ←

( [−−→
$DC 9

]
< 0

)
·
[−−→
$DC 9

]
8: [20?] ←

[−−−−−−→
$DC�0? 9

]
9: [D??4A ] ←

( [−−→
$DC 9

]
> [20?]

)
·
( [−−→
$DC 9

]
− [20?]

)
10:

[−−−→
$DC ′ 9

]
←

[−−→
$DC 9

]
− [;>F4A ] − [D??4A ]

Send outflows:
11: for 1 ≤ 9 ≤ = do
12:

[
Hlock ingL low8, 9

]
←

[
Hlock ingL low8, 9

]
+
[−−−→
$DC ′ 9

]
13:

[−−−−−→
�G24BB 9

]
←

[−−−−−→
�G24BB 9

]
+
[−−−→
$DC ′ 9

]
14:

[−−−−−→
�G24BB8

]
←

[−−−−−→
�G24BB8

]
−∑=

9=1

[−−−→
$DC ′ 9

]
15:

[−−−−−−→
�;>2:438

]
←

[−−−−−−→
�;>2:438

]
+
(
1 −

[−−−−−−→
�;>2:438

] )
·
[−−−−→
!0~4A 8

]
·
(
1 −

[−−−→
(8=:8

] )
·
( [−−−−−→
�G24BB8

]
> 0

)
This new perspective on Tarjan’s algorithm allows a significant

optimization of our SMPC protocol: After determining the capaci-
ties of the edges (Lines 2 and 3 of Gate 1 and 2), the wanted outflows
can be computed using local computation only, i.e., without any
communication (Lines 4 and 5). The wanted outflows can then be
clamped in parallel (Lines 6–10). Hence, our new sum-and-clamp
trick allows Gate 1 and 2 to propagate the excess of a node towards
the sink, respectively towards the source, in O (1) rounds.

Another challenge of adapting Tarjan’s algorithm to a SMPC
protocol is that the algorithm either requires stacks or a topological
order of the nodes to be efficient. Both, simulating the stack, and
determining the topological order would introduce a significant
overhead, even with our BFS protocol. Instead, we notice that all
nodes of a layer can be visited in parallel. Since each node only
propagates flows to the next / previous layer, and not to nodes
in the same layer, this does not affect the correctness. As Gate 1
and 2 need to hide the visited node anyways, they can visit a whole
layer of nodes in parallel without any further overhead. Further,
the layers of the graph can be determined efficiently by partially
executing our BFS protocol, which also yields the layered subgraph
of the residual graph. This results in Protocol 4, which calls Gate 1
and 2 O

(
=3

)
times in total and hence requires O

(
=3

)
rounds.

Protocol 4 ΠMax-Flow-Dinic
(
[I] ,

[−−−−−→
(>DA24

]
,

[−−−→
(8=:

] )
1: for 1 ≤ 8, 9 ≤ = do
2:

[
L low8, 9

]
← [0]

3: for 1 ≤ ?ℎ0B4 ≤ = do
Build layered subgraph:

4: [Xes idualIap] ← [I] − [L low]
5: for 1 ≤ 8, 9 ≤ = in parallel do
6:

[
XesG8, 9

]
←

[
Xed idualIap8, 9

]
> 0

7: [Ra~ers] , [Ra~eredG] ← PartBFS
(
[XesG] ,

[−−−−−→
(>DA24

] )
Ensure sink is the only node in its layer:

8: for 1 ≤ 8, 9 ≤ = do
9:

[
QeptKdges8, 9

]
← [1]

10: for 1 ≤ 8 ≤ = in parallel do
11: [ℎ0B(8=:] ← ∑=

9=1

[
Ra~ers8, 9

]
·
[−−−→
(8=: 9

]
12:

[−−−−→
$Cℎ4A

]
← [ℎ0B(8=:] ·

( [
Ra~ers8,•

]
−
[−−−→
(8=:

] )
13: for 1 ≤ : ≤ = do
14:

[
QeptKdges:,•

]
←

[
QeptKdges:,•

]
−
[−−−−→
$Cℎ4A

]
15:

[
Ra~ers8,•

]
← (1 − [ℎ0B(8=:]) ·

[
Ra~ers8,•

]
16: for 1 ≤ 8, 9 ≤ = in parallel do
17:

[
Ra~eredG8, 9

]
←

[
Ra~eredG8, 9

]
·
[
QeptKdges8, 9

]
Find a blocking flow:

18:
[−−−−−−→
�;>2:43

]
←

[−−−−−→
(>DA24

]
19: for 1 ≤ 8 ≤ = do
20:

[−−−−−→
�G24BB8

]
← [0]

21: for 1 ≤ 8, 9 ≤ = in parallel do
22:

[
Hlock ingL low8, 9

]
←

[
Xes idualIap8, 9

]
·
[−−−−−→
(>DA248

]
23:

[−−−−−→
�G24BB8

]
← I8, 9 ·

[−−−−−→
(>DA248

]
24: for 1 ≤ 1;>2:8=6�;>F�C4A0C8>= ≤ = do
25: for 2 ≤ 8 ≤ = − 1 do
26: IncreaseBlockingFlow

( [
Ra~ers8,•

] )
27: for 2 ≤ 8 ≤ = − 1 do
28: DecreaseBlockingFlow

( [
Ra~ers=−8,•

] )
29: [L low] ← [L low]+ [Hlock ingL low]−

[
Hlock ingL lowT]

The correctness of our protocol mainly follows from the correctness
of [20] and [38]. However, Protocol 4 might performmore iterations
than these algorithms. This does not affect the correctness as the
surplus iterations of the blocking flow algorithm have no effect
since all excesses are zero. The correctness of Dinic’s algorithm is
also not affected by surplus iterations as in those iterations there
is no augmenting path from the source to the sink, and hence the
blocking flow is zero.

The security of Gate 1 and 2 as well as Protocol 4 follows from
the composition theorem [13] as they all only use secure gates and
a publicly known control flow that only depends on the number of
nodes.



Privacy-Preserving Breadth-First-Search and Maximal Flow WPES ’24, October 14–18, 2024, Salt Lake City, UT, USA

Gate 2 GDecrease-Blocking-Flow
( [−−−−→
!0~4A

] )
1: for 1 ≤ 8 ≤ = in parallel do

Determine outgoing capacities of node 8:
2: for 1 ≤ 9 ≤ = in parallel do
3:

[−−−−−−→
$DC�0? 9

]
←

[
Hlock ingL low 9,8

]
·
[−−−−→
!0~4A 8

]
·
[−−−−−−→
�;>2:438

]
Sum-and-clamp:

4: for 1 ≤ 9 ≤ = do
5:

[−−→
$DC 9

]
←

[−−−−−→
�G24BB8

]
−∑9−1

:=1

[−−−−−−→
$DC�0?:

]
6: for 1 ≤ 9 ≤ = in parallel do
7: [;>F4A ] ←

( [−−→
$DC 9

]
< 0

)
·
[−−→
$DC 9

]
8: [20?] ←

[−−−−−−→
$DC�0? 9

]
9: [D??4A ] ←

( [−−→
$DC 9

]
> [20?]

)
·
( [−−→
$DC 9

]
− [20?]

)
10:

[−−−→
$DC ′ 9

]
←

[−−→
$DC 9

]
− [;>F4A ] − [D??4A ]

Send outflows:
11: for 1 ≤ 9 ≤ = do
12:

[
Hlock ingL low 9,8

]
←

[
Hlock ingL low 9,8

]
−
[−−−→
$DC ′ 9

]
13:

[−−−−−→
�G24BB 9

]
←

[−−−−−→
�G24BB 9

]
+
[−−−→
$DC ′ 9

]
14:

[−−−−−→
�G24BB8

]
←

[−−−−−→
�G24BB8

]
−∑=

9=1

[−−−→
$DC ′ 9

]
6 Evaluation
In this section, we present and discuss the runtimes of the protocols
presented in this paper.

6.1 Setup
We evaluate the protocols presented in this paper using semi-honest
and malicious-security SMPC primitives. Concretely, the primitives
replicated-ring [6] and ps-rep-ring [22] as implemented by
the MP-SPDZ [28] framework version 0.3.8 are used. As these prim-
itives only support three parties, we evaluate with three parties.

An important detail of these primitives is that they require pre-
processed data, like random bits or Beaver triplets. The primitive
specifications assume that all required pre-processed data is gen-
erated at once in a so-called offline phase, and then later used in
a so-called online phase. MP-SPDZ, however, departs from that
approach and generates batches of pre-processed data on-the-fly
when they are needed. By default, the batch size is 10 000, e.g., when
a random bit is needed, ten thousand random bits are generated6.
However, our protocols might require more than ten thousand bits
at once due to their high parallelism. Therefore, we increase the
batch size to one million in our evaluation.

We use NEON [31] to simulate three different network settings:
A LAN setting with one millisecond delay and one gigabit per
second bandwidth, a WAN setting with ten milliseconds delay and
100 megabits per second bandwidth, and an unrestricted setting
without artificial delay or bandwidth restrictions.
6Excess bits are stored in a cache, and the next batch is only generated once the cache
is empty.

Figure 2: Runtimes of the semi-honest BFS protocols on small
graphs by number of nodes in the WAN setting.

This setup runs on different LXC containers for the BFS protocols
and for the maximal flow protocols, with the BFS container having
access to 128GB RAM7 and the maximal flow container having
access to 16GB RAM. All containers had access to four cores of an
AMD 7702P CPU clocked at 2GHz. We execute each protocol five
times in each setting in a random order.

Protocol implementations and runtimes of all individual compu-
tations are available at https://doi.org/10.5281/zenodo.13619649 .

6.2 Breadth-First-Search
We not only evaluate the logarithmic BFS protocol presented in Sec-
tion 4, but also two protocols presented in Appendix E. One of these
protocols, called the linear BFS protocol, has a round complexity
of O (=), but does not require any overflow mitigation. The other
protocol, called the comparison-free protocol, does not require any
comparisons, which can be expensive in the malicious-security case,
but requires O (= log=) rounds. We also include the BFS protocol
introduced by Blanton et al. [11] in our evaluation as baseline. As
this protocol was not optimized for secret-sharing based SMPC
primitives, we slightly optimize the protocol by using the gate pre-
sented in [4] to find the minimum of a secret-shared array. This
reduces the round complexity of [11] to O (= log=)8. All complexity
measures of the evaluated protocols are presented in Appendix B.

The protocols were evaluated on graphs of up to 2600 nodes, with
200 node increments, in the semi-honest setting9. In the malicious
security setting, the protocols were evaluated only up to 400 nodes,
with 100 node increments, since the total RAM required for all
parties exceeded 128GB RAM on larger graphs. For protocols whose
runtime exceeds one hour, the evaluation was aborted such that the
first graph size whose runtime is above one hour is still included.

7High amounts of RAM were only used during malicious-security computations. Note
that the RAM is shared between parties, i.e., each party had access to 42 GB RAM.
8The resulting protocol is very similar to the Dijkstra protocol by Anagreh et al. [4]
when executed on a graph with uniform edge lengths.
9Only the number of nodes is of importance as the protocols are data-oblivious.

https://doi.org/10.5281/zenodo.13619649
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Figure 3: Runtimes of the malicious-security BFS protocols
on small graphs by number of nodes in the WAN setting.

Further, we evaluated the protocols on graphs of up to 100 nodes
with 10 node increments. As shown in Figures 2 and 3, the loga-
rithmic protocol generally is the fastest protocol on these small
graphs. The exceptions are in the malicious security setting, where
the linear BFS protocol (Protocol 7) is faster on graphs with less
than 30 nodes. In this case, the simpler structure appears to out-
weigh the higher round complexity. Another exception occurs in
the malicious security setting with an unrestricted network, where
the comparison-free protocol (Protocol 8) is the fastest on graph
with less than 80 nodes. In all other settings, the protocol is one
of the slowest protocols. This suggests that avoiding comparisons
by having more communication rounds is only beneficial in the
malicious security setting with very small network delays.

Finally, the overflow mitigation has only a small impact on the
runtime of the logarithmic BFS protocol. On graphs with 100 nodes,
it increases the runtime by 3.1% in the malicious security WAN
setting.

This is similar on large graphs, where the biggest increase of run-
time caused by the overflow mitigation is 5.4% in the semi-honest
setting with 2600 nodes. The (previously slow) optimized verison
of [11] is also still slower than the logarithmic BFS protocol in the
semi-honest WAN setting (Figure 5) for graphs with up to 2400
nodes, and is faster on graphs with 2600 nodes. In the other pre-
sented settings, i.e., the semi-honest setting with an unrestricted
network (Figure 4) and the malicious security WAN setting (Fig-
ure 6), the optimized version of [11] is faster on graphs larger than
400, respectively 200, nodes. Further, the linear and comparison-free
protocols are evaluated only up to 1600, respectively 600, nodes
due to the runtime exceeding one hour.

The steep increase of the logarithmic BFS protocol’s runtime
cannot be attributed to the number of communication rounds, as
Figure 7 shows that it performs significantly fewer rounds than the
other protocols. Instead, it can be attributed to the computation
time of the protocol. This is shown by the runtime in the unre-
stricted network setting, where the protocol runs for roughly 3350
seconds on graphs with 2600 nodes. In the WAN setting, it runs for

Figure 4: Runtimes of semi-honest BFS protocols by number
of nodes in the unrestricted network setting.

3740 seconds, which in an increase of only 11%. For comparison,
it increases by 1800% (from 0.1 seconds to 1.8 seconds) on graphs
with 100 nodes. Our investigation into this phenomenon revealed
that the majority of the computation time is spent on matrix mul-
tiplications, whose total computation time over the execution of
the protocol is in O

(
=3 log=

)
. In contrast, the protocol by Blanton

et al. [11] requires only O
(
=2

)
computation, allowing it to scale

better to large graphs. This protocol in turn is bottlenecked by its
high number of communication rounds, as its runtimes are roughly
equal to the number of communication rounds (as presented in
Figure 7) times the delays of the evaluated network settings.

The difference in runtime is further increased in the malicious
security setting by the amounts of data sent by the protocols. The
logarithmic BFS protocol sends 100 GB in total on a graph of 400
nodes, whereas our optimized version of [11] sends only 3,5 GB. In
comparison, the logarithmic protocol sends only 190MB in the semi-
honest setting. Therefore, the semi-honest setting is not affected to
a noticeable extent by the amounts of communication.

6.3 Maximal flow
In general, the maximal flow protocols are significantly slower than
the BFS protocols. Therefore, we evaluate the protocols with up to
30 nodes in the semi-honest unrestricted and LAN settings and up
to 25 nodes in the malicious security unrestricted and LAN settings.
In the WAN settings, we evaluated the protocols with up to 15
nodes for the semi-honest and the malicious security setting.

Further, we evaluate the capacity scaling protocol (Protocol 3)
with capacity bit-lengths 63, 10 32 and 16, as it is the only protocol in
this paper whose round-complexity scales with the bit-length of the
capacities. Finally, we want to note that we use our Edmonds-Karp
protocol as baseline instead of [11] since Section 6.2 has showed
that our logarithmic BFS protocol generally is faster than the BFS

10Note that SMPC primitives used in this evaluation use signed 64-bit words internally.
Therefore, 63 bits is the maximal input capacity bit-length.
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Figure 5: Runtimes of semi-honest BFS protocols by number
of nodes in the WAN network setting.

Figure 6: Runtimes of malicious security BFS protocols by
the number of nodes in the WAN network setting.

from [11] on the evaluated graph sizes. Appendix B presents an
overview of all complexity measures of the evaluated protocols.

The resulting runtimes are very consistent in the sense that
trends are very consistent across network and security settings.
In other words, the runtimes mostly differ by a constant factor
depending on the evaluated setting, as shown by Figures 8 to 10.
To avoid redundancy, we only present a representative selection of
figures in this section. The full data can be found in Appendix F.

This also allows us to describe the observed trends indepen-
dently of the setting: In our evaluation, the Dinic-Tarjan protocol
(Protocol 4) generally is the fastest protocol. On the other hand,
63-bit capacity scaling protocol was the slowest protocol. Further,
the 16-bit capacity scaling protocol consistently is twice as fast as
the 32-bit capacity scaling protocol, which in turn consistently is
roughly twice as fast as the 63-bit version. Finally, the Edmonds-
Karp protocol is faster than the 16-bit capacity scaling protocol on

Figure 7: Communication rounds of the semi-honest BFS
protocols by the number of nodes.

Figure 8: Runtime of semi-honest maximal flow protocols
by number of nodes in the LAN network setting.

graphs with up to 15 nodes. It is slower than the 16-bit capacity
scaling protocol on larger graphs, but still faster than the 32-bit
capacity protocol. However, Figures 8 and 9 show that Edmonds-
Karp scales worse than the 32-bit protocol. In the semi-honest LAN
setting, its runtime is only slightly less than the runtime of the
32-bit capacity scaling protocol.

This is expected behaviour. The capacity scaling protocol per-
forms G=2 Edmonds-Karp iterations on G-bit capacities, whereas
the Edmonds-Karp protocol performs =3 iterations. Therefore, we
expect the Edmonds-Karp protocol to be faster on graphs where
the number of nodes is less than the capacity bit length. This can be
observed in for the 16-bit capacity scaling protocol and can almost
be observed for the 32-bit capacity scaling protocol in Figure 8.
Therefore, we expect the Edmonds-Karp protocol to be slower than
the 63-bit capacity scaling protocol on graphs larger than 63 nodes.
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Figure 9: Runtime of semi-honest maximal flow protocols
by number of nodes in the WAN network setting.

Figure 10: Runtime of malicious security maximal flow pro-
tocols by number of nodes in the LAN network setting.

Finally, we also evaluated the capacity scaling protocol on three-
bit capacities and compare it with the Dinic-Tarjan protocol, which
results in Figure 11. The figure shows that in the semi-honest LAN
setting, the Dinic-Tarjan protocol is faster for five and ten nodes. On
graphs of 15 nodes, the runtime is roughly equivalent, and the Dinic-
Tarjan protocol is slower afterward. This is explained by the higher
O

(
=3

)
round complexity of the Dinic-Tarjan protocol, compared to

O
(
=2 log=

)
of the three-bit capacity scaling protocol11. Therefore,

we expect the capacity scaling protocols to eventually outperform
the Dinic-Tarjan protocol, even with larger capacity bit lengths, as
the runtime of the capacity scaling protocols increases only linearly
with regard to the capacity bit length.

11The general round complexity of capacity scaling protocols is O
(
=2 log= log*

)
,

but in the case of the 3-bit protocol “log* ” is fixed to 3.

Figure 11: Runtime of Protocol 3 with 3 bit capacities and
Protocol 4 with semi-honest security in the LAN setting.

7 Conclusion and future work
We presented novel protocols to perform BFS searches and deter-
mine maximal flows on dense graphs. On the BFS front, we pre-
sented a protocol with logarithmic round complexity, which is a big
theoretical advancement from the O (= log=) round complexity of
prior work. This protocol was shown to be efficient on small graphs,
only being outperformed on large graphs by protocols with lower
computational complexity.

By using the logarithmic BFS protocol, we were able to construct
a maximal flow protocol based on the Edmonds-Karp algorithm
where each iteration requires only O (log=) rounds. In total, this
protocol requires O

(
=3 log=

)
rounds.

We further reduced the number of iterations by introducing a
capacity scaling protocol, which requires O

(
=2 log= log*

)
rounds,

where* is an upper bound on the capacities. The evaluation unsur-
prisingly showed that the capacity scaling protocol is faster than
the Edmonds-Karp protocol when log* < =.

Finally, we presented a novel maximal flow protocol based on
algorithms by Dinic [20] and Tarjan [38]. This protocol has a worse
asymptotic round complexity of O

(
=3

)
, but our evaluation showed

that the protocol is up to seven times faster than the Edmonds-Karp
protocol. It also outperformed the capacity scaling protocol, except
when the capacities’ upper bound is small.

One direction for future work on BFS protocols is to find further
trade-offs between the round complexity and the computation com-
plexity. In other words, the practical runtime of privacy-preserving
BFS may be further improved by future protocols that have lower
computational complexity, although such protocols are likely to
have a higher round complexity than our logarithmic BFS protocol.

For maximal flow protocols, one direction of future work is the
development of protocols based on recent advancements in non-
privacy-preserving graph algorithms like [15, 27]. These algorithms
have small asymptotic complexities. However, they rely on non-
linearities like logarithms while requiring high numerical precision
and stability, as well as dynamic data structures, making SMPC
implementations of such protocols challenging.
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Plant Amount [T] Price [$]

%1 -2 75 000
%2 4 70 000
%3 -3 73 000
%4 1 71 000
%5 10 75 000

(a) The plants’ inputs
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(b) The resulting graph

Figure 12: Example of the graph construction used to solve
the chemical plants’ problem. Edges with zero capacity are
not displayed.

chemical plants that produce a chemical, for example, acetylsali-
cylic acid, also known as Aspirin12. These plants produce Aspirin
of the same quality, i.e., the output from the first plant is not dis-
tinguishable from the second’s plant output. However, they suffer
from variations in the input chemicals, which leads to variations in
the yield of their production and therefore in the output quantities.
Similarly, the demand for Aspirin varies. This leads to situations
in which factories produced more Aspirin than they are able to
sell, or in which factories failed to produce enough Aspirin to meet
contractual obligations.

Therefore, the plants decide to cooperate and trade Aspirin
amongst each other. This allows overproducing plants with ex-
cess capacities to sell their remaining stock, and under-producing
plants to meet contractual obligations. To maximize the total wel-
fare, they agree that they want to maximize the amount of Aspirin
traded amongst the plants. Note that the maximizing trades need
not to fully meet the demands and excesses.

Such maximizing trades can be found using maximal flows:
Plants that overproduce Aspirin are connected to the source, with
the corresponding edge’s capacities being the excesses of the plants.
Similarly, plants that need Aspirin are connected to the sink. The
capacities of these edges correspond to the plants’ demands. Fi-
nally, overproducing plants are connected to underproducing plants.
These edges have capacity∞, which is an upper bound on the plants’
excesses. Further, these edges may be added only conditionally, e.g.,
only when the asking price of the overproducing plant is lower
than the bidding price of the underproducing plant.

Figure 12 displays an example graph construction. The overpro-
ducing plants %2, %4, %5, identified by having a positive amount on
the left side of Figure 12, are connected to the source node B on the
right side of Figure 12. The underproducing plants %1, %3, identified
by having a negative amount, are connected to the sink node C .
Further, each plant has a minimal price at which it is willing to sell
Aspirin, or a maximal price at which it is willing to buy Aspirin.
An overproducing plant is only connected to an underproducing
plant when its selling price is lower than the buying price of the
underproducing plant. For example, %5 is not connected to %3 be-
cause %3 is willing to pay at most 73 000$ per tonne, whereas %5
asks for at least 75 000$ per tonne.

Trades that maximize the total Aspirin sold can be found by
finding a maximal flow from B to C : The flow from an overproducing
12Note that we know next to nothing about chemical production and even less about the
production of Aspirin. The scenario presented in this section is purely hypothethical.

plant to an underproducing plant indiciates the amount of Aspirin
the overproducing plant sells to the underproducing plant. We
assume that two plants are able to negotiate a price once they were
assigned a trade by this system.

Traditionally, using such a system would require a trusted (third)
party. All plants must be willing to share their over-/underproduc-
tions and prices with the third party. However, as the chemical
plants consider their production quantities and the prices at which
they are able to produce and sell Aspirin important trade secrets, it
is unlikely that all plants agree on a trusted third party. Therefore,
Protocol 5 is used to find the trades.

Protocol 5 A protocol to find the Aspirin trades.

1: for 1 ≤ 8 ≤ # in parallel do
2:

[−−−−−−−→
�<>D=CB8

]
← InputFrom (8)

3:
[−−−−→
%A8248

]
← InputFrom (8)

4:
[−−−−−−−−−→
�B%A>3D24A 8

]
←

[−−−−−−−→
�<>D=CB8

]
> 0

5:
[
I1,8+1

]
←

[−−−−−−−−−→
�B%A>3D24A 8

]
·
[−−−−−−−→
�<>D=CB8

]
6:

[
I8+1,#+2

]
←

(
1 −

[−−−−−−−−−→
�B%A>3D24A 8

] )
· −1 ·

[−−−−−−−→
�<>D=CB8

]
7: for 1 ≤ 8, 9 ≤ # in parallel do
8:

[
I8+1, 9+1

]
←∞ ·

[−−−−−−−−−→
�B%A>3D24A 8

]
·
(
1 −

[−−−−−−−−−→
�B%A>3D24A 9

] )
·
( [−−−−→
%A8248

]
≤

[−−−−→
%A824 9

] )
9: for 1 ≤ 8 ≤ # + 2 in parallel do

10:
[−−−−−→
(>DA248

]
←

{
[1] if 8 = 1

[0] otherwise

11:
[−−−→
(8=:8

]
←

{
[1] if 8 = # + 2
[0] otherwise

12: [L low] ← MaxFlow
(
[I] ,

[−−−−−→
(>DA24

]
,

[−−−→
(8=:

]
,* = ∞

)
13: for 1 ≤ 8, 9 ≤ # in parallel do
14: Reveal

[
L low8+1, 9+1

]
to chemical plant 8 and 9 .

The protocol first receives the secret-shared inputs from the
plants and builds the corresponding graph in Lines 1 to 8. Lines 9
to 11 then build the unit-vector representations of the source and
sink nodes. After, any of the maximal flow protocols presented in
this paper can be used to find the maximal flow in the graph, and
the resulting trades are revealed to the plants.

Note that the chemical plants only must be able to secret-share
their amounts and prices, and be able to receive the shares of the
computed flow. This decouples the plants from the computation,
as they do not have to actively take part in the computation of
the maximal flow. For example, the actual computations could be
carried out by only three of the plants, or two plants and a regulatory
body. Using the same primitives as the evaluation in Section 6, this
would be considered secure as long the plants trust that no two
computing parties collude. This has the advantage that only the
computing parties are burdened with performing the computation
and the associated IT overheads.

Other SMPC primitives and computing party setups lead to dif-
ferent security guarantees. For example, when each party actively
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takes part in the computation, and [19] is used as SMPC primitive,
then each plant only has to trust itself. In other words, a plant
can assume that all other plants have colluded against it, and even
actively deviate from the protocol, and still be confident that the
protocol does not leak its inputs.

Finally, it should be stressed that SMPC in general aims to re-
place a trusted third party. Hence, if a functionality can be used
to infer private inputs when a trusted third party is used, then
this is also possible when using SMPC protocols. For example, if
all but one chemical plant collude against one plant, they may be
able to craft malicious amounts and prices such that they learn the
target plant’s inputs from the resulting maximal flow. This attack
could be performed independently of the SMPC protocol used to
compute the maximal flow, it can even be used in a trusted third
party setting. The leakage is not caused by the protocol but by the
computed functionality. The curious reader is referred to [9] for an
in-depth discussion on the leakages caused by functionalities.

B Protocol complexities
Tables 1 and 2 present the asymptotic complexities of the protocols
evaluated in this paper. The communication and computation com-
plexities ignore polynomial dependencies on the number of parties,
since different SMPC primitives induce different overheads. The
communication complexity also ignores polynomial dependencies
on _. We also separate the shuffling of the adjacency matrix, as
the primitives that can be used for shuffling are dependent on the
security setting and the number of parties.

C Additional proofs
This section contains a proof that the reachable nodes in a graph
can be calculated by exponentiating the adjacency matrix (Appen-
dix C.1), as well as a proof that intermediary values remain in {0, 1}
in the Edmonds-Karp protocol (Appendix C.2).

C.1 Powers of the adjacency matrix yield
reachable nodes

The logarithmic BFS protocol is based on the observation that when
� = (+ = {1, . . . , =}, �) is a graph and G the corresponding adja-
cency matrix, then

−−→
�E,= · G8 indicates the nodes that are reachable

in exactly 8 steps from E . This observation is formally proven in this
section.

We start by formally defining what “indicates” means in this
context by defining an encoding from sets of nodes to vectors.

Definition C.1. Let + = {1, . . . , =} be the set of nodes of a graph,
and ( ⊆ + . We say that

−→
� ∈ N= is a relaxed node set encoding of (

if and only if
−→
� 8 ≠ 0 for all 8 ∈ ( and

−→
� 8 = 0 for all 8 ∈ + \ ( .

For the sake of completeness, we also formally define the set of
nodes reachable from E in exactly ; steps in Definition C.2.

Definition C.2. Let� = (+ , �) be a graph and ; ∈ N. Then '(E, ;)
is the set of the nodes that can be reached from E in exactly ; steps,
defined as

'(�, E, 0) = {E}
'(�, E, ;) = {F ∈ + | ∃D ∈ '(E, ; − 1) : (D,F) ∈ �}

Using these definitions, we can properly formalize the observa-
tion in Lemma C.3, which is proven by induction.

Lemma C.3. Let � = (+ = {1, . . . , =}, �) be a graph and

G ∈ {0, 1}=×= the corresponding adjacency matrix. Then
−−→
�E,= · G8 is

a relaxed node set encoding of '(�, E, 8) for all E ∈ + , 8 ∈ N.

Proof. First, we note that for 8 = 0,
−−→
�E,= · G8 =

−−→
�E,= · G0 =

−−→
�E,= ,

which is a relaxed node set encoding of {E} = '(�, E, 0) = '(�, E, 8).
Next, we assume that Lemma C.3 holds for 8 ∈ N and show that

it also holds for 8 + 1. To this end, let −→- =
−−→
�E,= ·G8 be (by induction

assumption) a relaxed node set encoding of the '(�, E, 8). Then by
associativity

−→
. =
−−→
�E,= · G8+1 = (

−−→
�E,= · G8 ) · G =

−→
- · G. Hence, we

only need to show that
−→
- · G is a relaxed node set encoding of

'(�, E, 8 + 1).
We first show that F ∈ '(�, E, 8 + 1) for all F ∈ + such that

−→
. F ≠ 0.

−→
. F =

∑=
D=1
−→
- DGD,F ≠ 0

⇒∃D ∈ + :
−→
- DGD,F ≠ 0

⇒∃D ∈ + :
−→
- D ≠ 0 ∧GD,F ≠ 0

⇒∃D ∈ + : D ∈ '(�, E, 8) ∧ (D,F) ∈ �
⇒F ∈ '(�, E, 8 + 1)

Therefore
−→
. F = 0 for allF ∉ '(�, E, 8 + 1).

Next, we show that
−→
. F ≠ 0 for allF ∈ '(�, E, 8 + 1).

−→
. F =

∑=
D=1
−→
- DGD,F

=
∑
D∈' (�,E,8 )

−→
- DGD,F

=
∑
D∈' (�,E,8 ) :GD,F=1

−→
- D

Since
−→
- ∈ N= and

−→
- D ≠ 0 for all D ∈ '(�, E, 8) by definition,

−→
- D > 0 for all D ∈ '(�, E, 8). It follows that −→. F > 0 and therefore
−→
. F ≠ 0 for allF ∈ '(�, E, 8 + 1).

Therefore,
−→
. F ≠ 0 if and only ifF ∈ '(�, E, 8 +1), which implies

that
−→
. F = 0 for all F ∉ '(�, E, 8 + 1). Hence, −→. =

−−→
�E,= · G8+1 is

a relaxed node set encoding of '(�, E, 8 + 1), which concludes the
induction. �

C.2 Edmonds-Karp does not need overflow
mitigation

Themaximal flow protocol presented in Section 5.1 uses the square-
and-multiply algorithm to extract an augmenting path from a BFS
treematrix. In contrast to the logarithmic BFS protocol, this protocol
does not need to worry about integer overflows, as the (transposed)
BFS tree matrix contains at most one 1 in each row. Lemma C.4
shows that this property propagates through matrix multiplications.
As argued in Section 5.1, this means that all intermediary values in
the protocol execution will remain in {0, 1}, and hence no overflows
occur.

Lemma C.4. Let G ∈ {0, 1}G×~,H ∈ {0, 1}~×I such that each row
contains at most one 1. Then I = GH is in {0, 1}G×I and each row of
I contains at most one 1.
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Table 1: The complexities of prior and evaluated BFS protocols.

Protocol Rounds Communication Computation

Aly and Cleemput [2] • O
(
=2 + (

)★ O
(
=2 log= + (

)★ O
(
=2 log= + (

)★
Aly and Van Vyve [3] • O

(
=3

)
O

(
=5

)
O

(
=5

)
Anagreh et al. [4] O (= log= + ( )★ O

(
=2 + (

)★ O
(
=2 + (

)★
Araki et al. [7] † O (= log(= +<) ) O (= (= +<) log(= +<) ) O (= (= +<) log(= +<) )
Blanton et al. [11] O

(
=2 + (

)★ O
(
=2 + (

)★ O
(
=2 + (

)★
Keller and Scholl [29] • † O

(
= log3 = +< log4 =

)
O

(
= log3 = +< log4 =

)
O

(
= log3 = +< log4 =

)
Ostrovsky [35] • † O (= log= log log log=) O ( (= +<) log=) O ( (= +<) log=)

Optimized Blanton et al. [11] O (= log= + ( )★ O
(
=2 + (

)★ O
(
=2 + (

)★
ΠBFS-log [Section 4] O (log=) O

(
=2 log=

)
/ O

(
=3 log=

)� O
(
=3 log=

)
ΠBFS-linear [Appendix E.1] O (=) O

(
=3

)
O

(
=3

)
ΠBFS-comparison-free [Appendix E.2] O (= log=) O

(
=2

)
/ O

(
=3

)� O
(
=3

)
• Protocol implements the Dijkstra algorithm, BFS is simulated by uniform edge weights.
† Protocol designed for spare graphs.< denotes the number of edges.
★ ( denotes the effort required to permute the adjacency matrix.
�When using replicated or Shamir’s secret sharing, less communication is required in the semi-honest setting.

Table 2: The complexities of prior and evaluated maximal flow protocols.

Protocol Rounds Communication Computation

Blanton et al. [11] O
(
=5 + =3(

)★ O
(
=5 + =3(

)★ O
(
=5 + =3(

)★
Wang et al. [40] † O

(
12dim<2 log* log2−

1
dim =

)
O

(
12dim<2 log* log2−

1
dim =

)
O

(
12dim<2 log* log2−

1
dim =

)
ΠMax-Flow-Edmonds-Karp [Section 5.1] O

(
=3 log=

)
O

(
=5 log=

)
/ O

(
=6 log=

)� O
(
=6 log=

)
ΠMax-Flow-Dinic [Section 5.2] O

(
=2 log= log*

)
O

(
=4 log= log*

)
/ O

(
=5 log= log*

)� O
(
=5 log= log*

)
ΠMax-Flow-Dinic [Section 5.3] O

(
=3

)
O

(
=5

)
O

(
=5

)
★ ( denotes the effort required to permute the adjacency matrix.
† Protocol only works on planar graphs.< denotes the number of edges and dim the doubling dimension.
�When using replicated or Shamir’s secret sharing, less communication is required in the semi-honest setting.

Proof. First, we show that I8, 9 ∈ {0, 1} for all 1 ≤ 8 ≤ G, 1 ≤
9 ≤ I. To do so, let 1 ≤ 8 ≤ G, 1 ≤ 9 ≤ I be arbitrary, but fixed. We
now differentiate between two cases:

(1) The row G8,• does not contain any ones. Then I8, 9 is zero.
(2) The row G8,• does contain a 1. Let D be the corresponding

index such that G8,D = 1. Then:

I8, 9 =

~∑
:=1

G8,:H:,9 =

~∑
:=1,:≠D

G8,:H:,9 +G8,DHD,9

=

~∑
:=1,:≠D

0 · H:,9 + 1 · HD,9 = HD,9 ∈ {0, 1}

Next, we prove by contradiction that each row of I contains at
most one 1. Assume that there is a row in I that contains multiple
ones, i.e., there are 8, 91, 92 such that I8, 91 = I8, 92 = 1. We know
that G8,• contains only one 1. Let D be the corresponding index

(G8,D = 1). Then:

I8, 91 =

~∑
:=1

G8,:H:,91 = G8,DHD,91 = HD,91 = 1

I8, 92 =

~∑
:=1

G8,:H:,92 = G8,DHD,92 = HD,92 = 1

Hence, the rowHD,• containsmultiple ones, which is a contradiction.
It follows that each row of I can contain at most one 1. �

D Overflows in the logarithmic BFS protocol
Recall that during the logarithmic BFS protocol from Section 4,
the adjacency matrix is exponentiated. As a consequence, the in-
termediary values are not limited to {0, 1}, but might be arbitrary
natural numbers, which leads to the potential danger of overflows
in practice. These protocols can be handled in two ways: They can
either be ignored, which leads to a risk of incorrect results, or they
can be prevented. Appendix D.1 discusses the consequences of ig-
noring overflows in detail, whereas Appendix D.2 presents a way
to prevent overflows.
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D.1 Impact of overflows
The overflows that occur during the protcol execution can be clas-
sified into two categories, “bad” overflows which convert non-zero
values to zero, and “good” overflows, where non-zero values remain
non-zero. Good overflows do not affect the semantic interpretation
of the value and hence to not affect the correctness of the protocol.
However, bad overflows cause the protocol to ignore nodes and
edges, which can affect the correctness of the protocol.

The probability that a bad overflow occurs depends on the input
graph. For example, Figure 13 displays a graph structure that pro-
duces powers of two when the adjacency matrix is exponentiated
during the protocol. When the underlying SMPC primitives operate
modulo a power of two, like the primitives used in Section 6, bad
overflows are very likely to occur.

1

2 3

4

5 6

7
.
.
.

Figure 13: A graph structure that produces powers of two
when the adjacency matrix is exponetiated.

Furthermore, the impact of a bad overflow can vary. To demon-
strate this, we use Figure 14 as an example input graph. If the
protocol ignores node 2 because of a bad overflow, then nodes 2, 3,
and 4 would be considered to be unreachable and the resulting BFS
tree is empty. A different form of incorrectness occurs if the proto-
col ignores the edge (2, 4) because of a bad overflow. In that case,
the protocol would return an incorrect “shortest” path from node
1 to node 4. However, not all bad overflows affect the correctness
of the protocol, if the edge (3, 4) would be ignored, the protocol
would still return a correct BFS tree since the edge is not part of
the result.

Due to these reasons, it is hard to determine the impact of ig-
nored overflows. Hence, we generally suggest using the overflow
mitigation presented in the following section. Section 6 shows that
its impact on the runtime should be acceptable in most cases. Other-
wise, we recommend a thorough evaluation of the potential impact
of non-correct results on the protocol that uses the BFS protocol.

1

2

34

Figure 14: An example graph.

D.2 Preventing overflows
Overflows during the square-and-multiply procedure could be pre-
vented by “resetting” non-zero values to 1 after each multiplication.
However, since every reset step consists of O

(
=2

)
parallel compar-

isons, this would introduce an unreasonable overhead. Instead, the
overflow-mitigating comparisons are only performed as needed in
the worst-case scenario, which is a fully connected graph. On such
graphs, the powers of the adjacency matrix match the upper-bound
given by Lemma D.1.

Lemma D.1. Let the enties of G ∈ RG×~,H ∈ R~×I be upper-
bounded by 0 and 1, i.e., G8, 9 ≤ 0 for all 1 ≤ 8 ≤ G, 1 ≤ 9 ≤ ~ and
H8, 9 ≤ 1 for all 1 ≤ 8 ≤ ~, 1 ≤ 9 ≤ I. Then the entries of I = GH are
upper-bounded by 2 = ~01.

Proof. For all 1 ≤ 8 ≤ G, 1 ≤ 9 ≤ I it holds that:

I8, 9 =

~∑
:=1

G8,:H:,9 ≤
~∑

:=1

01 = ~01 = 2

�

Protocol 6 keeps track of these upper-bounds. Before each ma-
trix multiplication, it is checked whether an overflow might be
possible. If that is the case, the overflow-mitigating comparisons
are performed and non-zero values are reset to 1, thus preventing
the overflow.

An important aspect of this mitigation strategy is that the control
flow of the protocol is independent of the actual input graph and
only depends on the number of nodes. In other words, our protocol
remains data-oblivious. Further, the protocol still only uses secure
gates and does not reveal any intermediary values, and therefore
can be simulated using the composition theorem [13].

E Other BFS protocols
The evaluation in Section 6 not only presents the runtime of the
logarithmic BFS protocol described in Section 4, but also presents
the runtimes of further BFS protocol with worse round complexities.
These protocols are presented in this section.

E.1 BFS with linear round complexity
One of the additionally evaluated BFS protocols has a linear round
complexity. In this protocol, all values remain bounded to {0, 1},
so while this protocol does have a worse round complexity than
the logarthmic BFS protocol, one does not need to worry about
overflows when using this protocol.

The linear round complexity is achieved by iteratively visiting the
layers of the graph. Each iteration first marks the currently visited
layer as seen and then finds all edges to unseen nodes in Lines 7
to 9 of Protocol 7. These edges point towards the next layer to be
visited. However, there might be multiple edges pointing towards
the same node, similar to the layered graph in the logarithmic BFS
protocol. Therefore, the same filter step as in the logarithmic BFS
protocol is applied to the edges in Lines 10 to 13. Those edges are
then added to the resulting BFS tree and the next layer to be visited
is determined.

This protocol follows a control flow that only depends on the
number of nodes, never reveals the values of secret-shares, and
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Protocol 6 ΠBFS-log-no-overflows ( [G] ,
[−−−−→
(C0AC

]
,<0G+0;D4)

Find the nodes reachable in 0, . . . , = − 1 steps:
1: [H] ← [G]
2: 1�>D=3 ← 1
3: for 1 ≤ 8 ≤ = in parallel do
4:

[
GfterYteps8,•

]
←

[−−−−→
(C0AC

]
5:
−−−−−−−−−−−→
(C4?B�>D=3B8 ← 1

6: for 0 ≤ 8 ≤ dlog=e do
7: if = · 1�>D=32 > <0G+0;D4 then
8: for 1 ≤ 8, 9 ≤ = in parallel do
9:

[
H8, 9

]
←

( [
H8, 9

]
> 0

)
10: 1�>D=3 ← 1
11: for 1 ≤ 9 ≤ = in parallel do
12: if (( 9 − 1) � 8) & 1 = 1 then
13: if = · −−−−−−−−−−→(C4?�>D=3B 9 · 1�>D=3 > <0G+0;D4 then
14: for 1 ≤ : ≤ = in parallel do
15:

[
GfterYteps 9,:

]
←

( [
GfterYteps 9,:

]
> 0

)
16:

−−−−−−−−−−→
(C4?�>D=3B 9 ← 1

17: for 1 ≤ 9 ≤ = in parallel do
18: if (( 9 − 1) � 8) & 1 = 1 then
19:

[
GfterYteps 9,•

]
←

[
GfterYteps 9,•

]
· [H]

20:
−−−−−−−−−−−→
(C4?B�>D=3B 9 ← = · −−−−−−−−−−→(C4?�>D=3B 9 · 1�>D=3

21: [H] ← [H]2
22: 1�>D=3 ← = · 1�>D=32
23: for 1 ≤ 8, 9 ≤ = in parallel do
24:

[
GfterYteps8, 9

]
←

( [
GfterYteps8, 9

]
> 0

)
25: The rest is equivalent to Lines 11 to 29 of Protocol 1.

only calls secure gates. Therefore, it can be simulated using the
composition theorem [13].

E.2 BFS without comparisons
Another BFS protocol used in the evaluation does not require any
comparisons, which are expensive in malicious-security settings,
but requires O (= log=) communication rounds. It operates similar
to the classical (non-privacy-preserving) BFS in the sense that it
iteratively fetches a node to visit from a queue and adds previously
unseen neighbors to the queue.

The queue is implemented as a big vector of size =2, where
−−−−−→
&D4D48 = 1 means that the node 8 mod = is currently enqueued.
This allows efficiently adding the neighbors of the current node by
writing to the corresponding entries of the queue vector, as done
in Line 15 of Protocol 8. Extracting the next node to be visited is
then equivalent to finding the first one in the queue vector. This
could be done using the same filtering method used in ΠBFS-log
and ΠBFS-linear, which would result in another linear-round proto-
col, but that approach would require comparisons which we want
to avoid in this protocol. Therefore, the sub-protocol SelectFir-
stOne is used. This sub-protocol iteratively builds a new temporary
vector that is half as big as the input vector, recursively find the
first one in the temporary vector, and then expands the sub-result

Protocol 7 ΠBFS-linear ( [G] ,
[−−−−→
(C0AC

]
)

1:
[−−−−→
!0~4A

]
←

[−−−−→
(C0AC

]
2: for 1 ≤ 8 ≤ = do
3:

[−−−→
(44=8

]
← [0]

4: for 1 ≤ 8, 9 ≤ = do
5:

[
Zree8, 9

]
← [0]

6: for 1 ≤ : ≤ = − 1 do
7:

[−−−→
(44=

]
←

[−−−→
(44=

]
+
[−−−−→
!0~4A

]
8: for 1 ≤ 8, 9 ≤ = in parallel do
9:

[
G′
8, 9

]
←

[−−−−→
!0~4A 8

]
·
[
G8, 9

]
· (1 −

[−−−→
(44= 9

]
)

10: for 1 ≤ 8, 9 ≤ = do
11:

[
Vref ixYum8, 9

]
← ∑8−1

;=1

[
G′
;, 9

]
12: for 1 ≤ 8, 9 ≤ = in parallel do
13:

[
G′′
8, 9

]
←

[
G′
8, 9

]
· (
[
Vref ixYum8, 9

]
= 0)

14: [Zree] ← [Zree] + [G′′]
15: for 1 ≤ 9 ≤ = do
16:

[−−−−→
!0~4A 9

]
← ∑=

8=1

[
G′′
8, 9

]
17: return [Zree]

to the full size. In total, this approach requires 2 log=2 = 4 log=
communication rounds.

Once the node to be visited been fetched from the queue, all
neighbors are visited in parallel, which is done in O (1) communi-
cation rounds in Lines 13 to 18 of Protocol 8. This results in a total
of O (= log=) communication rounds.

Like the linear protocol, this protocol also follows a control flow
that only depends on the number of nodes, never reveals the values
of secret-shares, and only calls secure gates. Therefore, it can be
simulated using the composition theorem [13].

F Numerical evaluation results
This section presents the runtimes of the BFS protocol evaluation
(Tables 3 to 10) and of the maximal flow protocol evaluation (Ta-
bles 11 to 18). The tables present the runtime in seconds, the gray
cells indicate the fastest protocol for each row, and ⊥ means that a
protocol was not evaluated in that setting. The number of rounds
and the total data sent by the parties does not depend on the net-
work setting, these informations are only provided per protocol
and used SMPC primitive in Tables 6, 10, 14, and 18.
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Protocol 8 ΠBFS-comparison-free ( [G] ,
[−−−−→
(C0AC

]
)

1: for 1 ≤ 8 ≤ = do
2:

[−−−→
(44=8

]
←

[−−−−→
(C0AC8

]
3:

[−−−−−→
&D4D48

]
←

[−−−−→
(C0AC8

]
4: for = + 1 ≤ 8 ≤ =2 do
5:

[−−−−−→
&D4D48

]
← [0]

6: for 1 ≤ 8, 9 ≤ = do
7:

[
Zree8, 9

]
← [0]

8: for 0 ≤ : ≤ = − 1 do
Pop node to visit from the queue:

9:
[−−−−−−−−−−−→
!>=6(4;42C>A

]
←SelectFirstOne(

[−−−−−→
&D4D4

]
)

10:
[−−−−−→
&D4D4

]
←

[−−−−−→
&D4D4

]
−
[−−−−−−−−−−−→
!>=6(4;42C>A

]
11: for 1 ≤ 9 ≤ = do
12:

[−−−−−−→
�DAA4=C 9

]
← ∑=−1

8=0

[−−−−−−−−−−−→
!>=6(4;42C>A 8 ·=+9

]
Visit neighbors of

−−−−−−→
�DAA4=C :

13: for 1 ≤ 9 ≤ = in parallel do
14: [E8B8C] ←

(∑=
8=1

[−−−−−−→
�DAA4=C8

]
·
[
G8, 9

] )
· (1 −

[−−−→
(44= 9

]
)

15:
[−−−−−→
&D4D4: ·=+9

]
← [E8B8C]

16:
[−−−→
(44= 9

]
←

[−−−→
(44= 9

]
+ [E8B8C]

17: for 1 ≤ 8 ≤ = in parallel do
18:

[
Zree8, 9

]
←

[
Zree8, 9

]
+
[−−−−−−→
�DAA4=C8

]
· [E8B8C]

19: return [Zree]

20: function SelectFirstOne(
[−−−−→
�=?DC

]
)

21: < ←
���−−−−→�=?DC

���
22: if< = 1 then
23: return

[−−−−→
�=?DC1

]
24: for 1 ≤ 8 ≤ </2 in parallel do
25:

[−−−→
)<?8

]
←

[−−−−→
�=?DC28

]
?
[−−−−→
�=?DC28

]
:
[−−−−→
�=?DC28+1

]
26: if< mod 2 = 1 then
27:

[−−−→
)<? d</2e

]
←

[−−−−→
�=?DC<

]
28:

[−−−−−−−−−−→
(D1(4;42C>A

]
←SelectFirstOne(

[−−−→
)<?

]
)

29: for 1 ≤ 8 ≤ </2 in parallel do
30:

[−−−−−→
'4BD;C28

]
←

[−−−−−−−−−−→
(D1(4;42C>A 8

]
·
[−−−−→
�=?DC28

]
31:

[−−−−−→
'4BD;C28+1

]
←

[−−−−−−−−−−→
(D1(4;42C>A 8

]
· (1 −

[−−−−→
�=?DC28

]
)

32: if< mod 2 = 1 then
33:

[−−−−−→
'4BD;C<

]
←

[−−−−−−−−−−→
(D1(4;42C>A d</2e

]
34: return

[−−−−−→
'4BD;C

]
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Table 3: Runtimes (in seconds) of the BFS protocols in the semi-honest unrestricted network setting.

Nodes Logarithmic Logarithmic w/o overflow mitigation Optimized [11] Linear Comparison-free

10 0.01 0.01 0.04 0.02 0.02
20 0.01 0.01 0.09 0.04 0.07
30 0.02 0.01 0.17 0.08 0.13
40 0.02 0.02 0.24 0.14 0.27
50 0.03 0.03 0.31 0.20 0.48
60 0.04 0.04 0.40 0.29 0.76
70 0.06 0.05 0.47 0.42 1.22
80 0.07 0.06 0.56 0.57 1.86
90 0.09 0.08 0.61 0.80 2.72
100 0.11 0.10 0.67 1.05 3.75
200 0.58 0.55 1.52 7.41 45.66
400 3.82 3.64 3.51 56.00 706.71
600 14.35 13.75 5.87 189.65 3 826.38
800 40.75 38.89 8.47 432.70 ⊥
1000 69.45 69.36 11.11 773.58 ⊥
1200 150.83 145.96 14.59 1 438.97 ⊥
1400 244.31 241.59 17.48 2 062.51 ⊥
1600 446.23 430.48 20.32 3 301.12 ⊥
1800 970.91 957.00 23.24 ⊥ ⊥
2000 1 267.27 1 259.51 25.60 ⊥ ⊥
2200 1 963.17 1 946.01 31.72 ⊥ ⊥
2400 2 283.37 2 273.05 36.03 ⊥ ⊥
2600 3 309.36 3 292.33 39.89 ⊥ ⊥

Table 4: Runtimes (in seconds) of the BFS protocols in the semi-honest LAN setting.

Nodes Logarithmic Logarithmic w/o overflow mitigation Optimized [11] Linear Comparison-free

10 0.07 0.07 0.53 0.20 0.28
20 0.08 0.07 1.27 0.43 0.86
30 0.09 0.08 1.92 0.69 1.69
40 0.11 0.09 2.95 0.99 2.81
50 0.12 0.11 3.71 1.33 4.26
60 0.14 0.12 4.47 1.71 5.93
70 0.18 0.15 5.86 2.20 8.07
80 0.21 0.17 6.75 2.72 10.50
90 0.24 0.20 7.64 3.30 13.32
100 0.27 0.23 8.47 3.93 16.88
200 0.90 0.78 18.89 16.24 95.77
400 4.61 4.27 42.12 99.18 908.04
600 16.06 15.00 69.49 324.83 4 205.87
800 43.18 40.41 93.42 741.36 ⊥
1000 71.74 71.41 117.37 1 394.57 ⊥
1200 158.57 149.92 153.24 2 479.91 ⊥
1400 251.82 243.82 179.99 3 700.48 ⊥
1600 454.48 434.40 207.19 5 708.77 ⊥
1800 967.92 959.33 234.79 ⊥ ⊥
2000 1 285.91 1 268.25 262.31 ⊥ ⊥
2200 1 979.29 1 993.97 311.90 ⊥ ⊥
2400 2 307.24 2 286.88 341.73 ⊥ ⊥
2600 3 361.94 3 300.99 372.20 ⊥ ⊥
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Table 5: Runtimes (in seconds) of the BFS protocols in the semi-honest WAN setting.

Nodes Logarithmic Logarithmic w/o overflow mitigation Optimized [11] Linear Comparison-free

10 0.65 0.66 5.10 1.88 2.65
20 0.78 0.68 12.15 4.07 8.19
30 0.83 0.74 18.39 6.37 16.09
40 0.93 0.80 28.20 8.87 26.52
50 1.01 0.87 35.41 11.64 39.69
60 1.06 0.95 42.59 14.67 54.36
70 1.31 1.06 56.11 18.03 72.77
80 1.38 1.14 64.22 21.72 92.41
90 1.48 1.22 72.36 25.84 114.48
100 1.56 1.27 80.56 30.33 141.25
200 3.15 2.59 180.20 110.23 546.49
400 11.02 9.27 399.58 638.57 2 700.68
600 33.07 25.76 657.35 2 006.15 8 268.54
800 73.51 59.28 880.06 4 686.42 ⊥
1000 121.10 97.93 1 104.93 9 165.68 ⊥
1200 229.10 190.61 1 441.05 ⊥ ⊥
1400 349.96 301.19 1 687.98 ⊥ ⊥
1600 574.24 508.15 1 940.02 ⊥ ⊥
1800 1 126.37 1 050.20 2 191.96 ⊥ ⊥
2000 1 471.28 1 382.14 2 441.58 ⊥ ⊥
2200 2 215.77 2 095.09 2 904.16 ⊥ ⊥
2400 2 583.31 2 448.98 3 179.02 ⊥ ⊥
2600 3 662.68 3 508.02 3 452.78 ⊥ ⊥

Table 6: Rounds and total data sent (C., in megabyte) of the BFS protocols in the semi-honest setting.

Nodes Logarithmic Logarithmic with overflows Optimized [11] Linear Comparison-free

Rounds C. [MB] Rounds C. [MB] Rounds C. [MB] Rounds C. [MB] Rounds C. [MB]

10 65 0 65 0 588 0 184 0 260 0
20 75 0 67 0 1 359 0 384 1 800 1
30 75 0 67 0 2 049 0 584 5 1 560 3
40 77 1 69 1 3 090 0 784 13 2 560 7
50 77 2 69 1 3 870 1 984 27 3 800 15
60 77 3 69 2 4 650 1 1 184 47 5 160 26
70 87 4 71 3 6 051 2 1 384 75 6 860 41
80 87 6 71 4 6 921 2 1 584 113 8 640 62
90 87 7 71 6 7 791 3 1 784 162 10 620 88
100 87 9 71 7 8 661 4 1 984 223 13 000 121
200 89 40 73 31 19 152 17 4 012 1 801 46 800 965
400 91 169 75 132 41 943 67 8 236 14 486 175 200 7 703
600 117 475 81 309 68 334 151 12 844 48 957 384 000 25 971
800 125 848 81 553 91 134 268 18 024 116 098 ⊥ ⊥
1000 133 1 332 85 872 113 934 417 23 976 226 867 ⊥ ⊥
1200 163 2 130 95 1 290 147 529 601 30 884 392 124 ⊥ ⊥
1400 179 2 896 99 1 761 172 129 817 38 944 622 800 ⊥ ⊥
1600 199 3 794 107 2 308 196 733 1 068 48 344 929 778 ⊥ ⊥
1800 219 4 797 115 2 930 221 337 1 351 ⊥ ⊥ ⊥ ⊥
2000 243 5 934 123 3 632 245 937 1 665 ⊥ ⊥ ⊥ ⊥
2200 273 7 303 137 4 522 290 332 2 020 ⊥ ⊥ ⊥ ⊥
2400 305 8 706 149 5 386 316 736 2 399 ⊥ ⊥ ⊥ ⊥
2600 337 10 222 161 6 326 343 140 2 819 ⊥ ⊥ ⊥ ⊥
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Table 7: Runtimes (in seconds) of the BFS protocols in the malicious security unrestricted network setting.

Nodes Logarithmic Logarithmic w/o overflow mitigation Optimized [11] Linear Comparison-free

10 1.50 1.53 0.11 1.52 0.02
20 1.57 1.53 0.30 1.64 0.10
30 1.68 1.56 1.83 1.82 0.28
40 1.82 1.79 2.17 2.25 0.57
50 2.86 2.75 2.35 2.94 1.06
60 3.82 3.84 2.57 5.42 1.69
70 4.99 4.92 3.32 7.45 2.66
80 7.07 6.81 3.50 10.60 3.95
90 9.65 9.50 3.91 15.37 5.92
100 12.00 11.86 4.16 20.86 8.41
150 43.45 42.72 8.42 69.36 34.29
200 101.66 100.54 10.65 164.03 88.33
250 200.60 198.89 12.92 319.91 201.58
300 372.57 373.03 27.11 554.61 368.53
350 592.53 591.65 30.88 863.90 667.89
400 899.89 881.67 36.26 1 292.18 1 051.21

Table 8: Runtimes (in seconds) of the BFS protocols in the malicious security LAN setting.

Nodes Logarithmic Logarithmic w/o overflow mitigation Optimized [11] Linear Comparison-free

10 2.38 2.35 1.31 2.50 0.28
20 2.50 2.54 3.15 2.84 0.95
30 2.53 2.41 6.75 3.27 2.05
40 2.70 2.66 9.52 3.94 3.53
50 3.98 3.87 11.27 4.96 5.49
60 5.34 5.10 13.11 8.40 7.95
70 6.75 6.71 17.30 10.96 11.18
80 9.42 9.21 19.44 15.06 15.07
90 12.68 12.54 21.60 21.12 19.66
100 15.71 15.60 23.73 28.25 25.58
150 56.55 55.87 42.96 89.14 67.80
200 130.71 129.76 56.12 208.50 151.09
250 259.07 257.43 69.93 400.26 298.76
300 477.92 474.13 107.62 694.33 521.53
350 762.55 762.10 124.79 1 079.18 870.05
400 1 144.99 1 138.13 143.72 1 619.51 1 344.37
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Table 9: Runtimes (in seconds) of the BFS protocols in the malicious security WAN setting.

Nodes Logarithmic Logarithmic w/o overflow mitigation Optimized [11] Linear Comparison-free

10 9.37 9.47 12.07 10.98 2.66
20 10.57 9.60 29.00 13.11 8.82
30 10.29 10.19 51.11 16.22 18.41
40 10.68 10.85 76.32 19.27 31.62
50 15.51 15.32 93.18 23.13 48.15
60 19.61 19.26 109.93 36.56 68.18
70 25.41 24.66 147.21 45.99 92.98
80 34.23 33.92 166.86 60.90 119.86
90 46.63 46.06 186.67 80.41 152.87
100 57.22 56.68 206.84 106.28 192.81
150 200.46 198.14 361.31 313.93 386.58
200 462.82 461.53 477.22 710.42 735.45
250 912.45 910.49 595.87 1 344.47 1 259.58
300 1 689.25 1 671.80 854.34 2 314.81 1 976.25
350 2 679.25 2 670.15 995.64 3 623.52 2 972.42
400 4 002.70 3 993.95 1 140.88 5 381.91 4 209.24

Table 10: Rounds and total data sent (C., in megabyte) of the BFS protocols in the malicious security setting.

Nodes Logarithmic Logarithmic with overflows Optimized [11] Linear Comparison-free

Rounds C. [MB] Rounds C. [MB] Rounds C. [MB] Rounds C. [MB] Rounds C. [MB]

10 86 240 86 240 1 168 3 211 240 260 0
20 97 243 88 243 2 814 8 421 243 820 5
30 97 250 88 249 4 154 247 631 253 1 640 19
40 99 266 90 265 6 560 260 841 272 2 750 45
50 104 375 95 374 8 180 265 1 051 304 4 170 88
60 109 494 100 493 9 800 271 1 269 592 5 755 153
70 125 634 107 631 13 246 318 1 484 736 7 790 243
80 130 871 112 866 15 126 329 1 702 1 064 9 835 362
90 145 1 197 127 1 192 17 006 341 1 925 1 497 12 415 516
100 145 1 486 127 1 480 18 886 353 2 151 2 119 15 495 708
150 192 5 190 174 5 175 32 212 769 3 364 7 044 27 400 2 363
200 197 12 163 179 12 136 42 912 899 4 711 16 559 47 035 5 594
250 205 24 236 187 24 194 53 622 1 111 6 258 32 289 71 465 10 953
300 225 44 900 199 44 600 72 188 2 600 8 047 55 815 101 545 18 932
350 225 71 331 207 71 250 84 208 3 043 10 123 88 639 136 265 30 155
400 233 107 283 207 106 936 96 228 3 495 12 531 132 308 177 055 45 002

Table 11: Runtimes (in seconds) of the max flow protocols in the semi-honest unrestricted network setting.

Nodes Edmonds-Karp Capacity-Scaling (63 bits) Capacity-Scaling (32 bits) Capacity-Scaling (16 bits) Dinic-Tarjan

5 1.21 11.74 5.87 3.18 0.23
10 11.35 71.84 32.26 15.82 2.32
15 42.52 166.34 84.51 42.12 9.05
20 134.00 384.65 198.36 100.98 26.89
25 330.90 769.62 387.35 185.90 57.03
30 653.90 1 222.14 667.77 333.29 119.92
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Table 12: Runtimes (in seconds) of the max flow protocols in the semi-honest LAN setting.

Nodes Edmonds-Karp Capacity-Scaling (63 bits) Capacity-Scaling (32 bits) Capacity-Scaling (16 bits) Dinic-Tarjan

5 16.26 165.31 83.60 41.90 2.95
10 154.31 877.23 441.95 221.90 29.28
15 559.63 2 189.35 1 110.64 555.11 107.40
20 1 610.59 4 840.45 2 433.86 1 217.27 269.90
25 3 433.78 8 263.09 4 150.53 2 118.12 562.91
30 5 899.58 12 126.52 6 077.41 3 039.80 1 026.38

Table 13: Runtimes (in seconds) of the max flow protocols in the semi-honest WAN setting.

Nodes Edmonds-Karp Capacity-Scaling (63 bits) Capacity-Scaling (32 bits) Capacity-Scaling (16 bits) Dinic-Tarjan

5 157.57 1 573.81 799.42 400.75 28.26
10 1 477.63 8 367.28 4 251.20 2 136.98 278.29
15 5 317.61 20 855.06 10 591.23 5 300.05 1 016.41

Table 14: Rounds and total data sent (C., in megabyte) of the max flow protocols in the semi-honest setting.

Nodes Edmonds-Karp Capacity-Scaling (63 bits) Capacity-Scaling (32 bits) Capacity-Scaling (16 bits) Dinic-Tarjan

Rounds C. [MB] Rounds C. [MB] Rounds C. [MB] Rounds C. [MB] Rounds C. [MB]

5 15 254 11 153 732 56 78 091 40 39 050 32 2 759 1
10 144 004 118 816 500 655 414 735 344 207 370 172 26 984 56
15 516 391 875 2 024 258 3 414 1 028 199 1 743 514 102 871 97 407 458
20 1 464 076 4 316 4 381 256 12 919 2 225 403 6 563 1 112 706 3 293 238 848 1 988
25 3 000 232 13 251 7 258 168 32 051 3 686 695 16 301 1 843 350 8 150 476 023 6 189
30 5 184 580 33 219 10 524 700 67 402 5 345 883 34 240 2 672 946 17 132 833 768 15 504

Table 15: Runtimes (in seconds) of the max flow protocols in the malicious security unrestricted network setting.

Nodes Edmonds-Karp Capacity-Scaling (63 bits) Capacity-Scaling (32 bits) Capacity-Scaling (16 bits) Dinic-Tarjan

5 3.17 24.34 17.30 13.85 1.79
10 35.47 194.32 102.53 52.24 8.99
15 263.26 1 017.43 512.49 259.43 55.49
20 1 440.87 4 320.72 2 191.79 1 107.81 223.04
25 5 204.57 12 509.94 6 339.88 3 121.70 660.27

Table 16: Runtimes (in seconds) of the max flow protocols in the malicious security LAN setting.

Nodes Edmonds-Karp Capacity-Scaling (63 bits) Capacity-Scaling (32 bits) Capacity-Scaling (16 bits) Dinic-Tarjan

5 20.26 190.74 102.13 56.78 5.60
10 196.17 1 102.25 564.74 283.44 39.94
15 880.08 3 435.81 1 743.41 873.32 172.81
20 3 462.10 10 271.86 5 258.72 2 647.44 531.59
25 10 100.95 23 623.36 12 752.44 6 473.53 1 346.54
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Table 17: Runtimes (in seconds) of the max flow protocols in the malicious security WAN setting.

Nodes Edmonds-Karp Capacity-Scaling (63 bits) Capacity-Scaling (32 bits) Capacity-Scaling (16 bits) Dinic-Tarjan

5 26.31 50.54 36.11 29.25 40.27
10 120.13 608.05 317.34 165.96 327.61
15 6 717.47 26 461.33 13 413.86 6 695.54 1 271.63

Table 18: Rounds and total data sent (C., in megabyte) of the max flow protocols in the malicious security setting.

Nodes Edmonds-Karp Capacity-Scaling (63 bits) Capacity-Scaling (32 bits) Capacity-Scaling (16 bits) Dinic-Tarjan

Rounds C. [MB] Rounds C. [MB] Rounds C. [MB] Rounds C. [MB] Rounds C. [MB]

5 16 397 314 165 096 689 83 870 503 41 949 448 3 017 244
10 155 103 2 559 879 368 13 544 446 676 7 040 223 348 3 640 29 440 647
15 557 847 24 651 2 186 742 96 283 1 110 741 49 159 555 374 24 540 106 363 4 351
20 1 582 062 151 474 4 734 304 452 814 2 404 739 230 201 1 202 381 115 258 261 057 18 090
25 3 257 054 561 714 7 879 462 1 358 763 4 002 284 690 432 2 001 148 345 216 520 901 55 529
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