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Abstract—To enable parallel processing, the Directed Acyclic
Graph (DAG) structure is introduced to the design of asyn-
chronous Byzantine Fault Tolerant (BFT) consensus protocols,
known as DAG-based BFT. Existing DAG-based BFT protocols
operate in successive waves, with each wave containing three or
four Reliable Broadcast (RBC) rounds to broadcast data, resulting
in high latency due to the three communication steps required
in each RBC. For instance, Tusk, a state-of-the-art DAG-based
BFT protocol, has a good-case latency of 7 communication steps
and an expected worst latency of 21 communication steps.

To reduce latency, we propose GradedDAG, a new DAG-based
BFT consensus protocol based on our adapted RBC called Graded
RBC (GRBC) and the Consistent Broadcast (CBC), with each
wave consisting of only one GRBC round and one CBC round.
Through GRBC, a replica can deliver data with a grade of 1
or 2, and a non-faulty replica delivering the data with grade
2 can ensure that more than 2/3 of replicas have delivered the
same data. Meanwhile, through CBC, data delivered by different
non-faulty replicas must be identical. In each wave, a block in
the GRBC round will be elected as the leader. If a leader block
has been delivered with grade 2, it and all its ancestor blocks
can be committed. GradedDAG offers a good-case latency of
4 communication steps and an expected worst latency of 7.5
communication steps, significantly lower than the state-of-the-
art. Experimental results demonstrate GradedDAG’s feasibility
and efficiency.

Index Terms—Consensus, BFT, Asynchronous, DAG

I. INTRODUCTION

The popularity of blockchain technology has renewed inter-
est in Byzantine Fault Tolerant (BFT) consensus design [43],
[27]. According to the network assumption, the BFT consensus
protocols can be divided into three categories: synchronous,
partially synchronous, and asynchronous protocols. However,
the synchronous protocols rely on a correct estimation of the
network delay, whose wrong estimation can either impede
the performance or compromise the safety property [41]. Al-
though the partially-synchronous protocols, such as Practical
Byzantine Fault Tolerance (PBFT) [12], have become the
mainstream of BFT protocols for a long time, they are recently
questioned the liveness property, which can be destroyed by
the attack of network partitions [34]. Therefore, lots of recent
research focus on asynchronous protocols [34], [20], [33],
which are considered more robust and secure.

The asynchronous BFT protocols date back to Asynchronous
Binary Agreement protocols [4], [9], which reach an agreement

Fig. 1: Structure of the state-of-the-art DAG-based BFT
consensus. All the blocks encircled by the orange boxes are
committed by the leader-block (i.e., Lw+1) in wave w + 1.

between binary values of 0 or 1. To deal with multiple
values, various Multiple-value Validated Byzantine Agreement
(MVBA) protocols are proposed [8], [33]. However, these
MVBA protocols can only process data in a serial manner,
which significantly limits the system throughput. To parallelize
the data processing, the structure of Directed Acyclic Graph
(DAG) is introduced to the design of BFT protocols [28],
which are named DAG-based protocols.

Including DAGRider [28], Tusk [17], and Bullshark [39],
almost all the DAG-based protocols proceed in a wave-
by-wave manner. As shown in Fig. 1, a wave consists of
multiple rounds. In each round, every replica will broadcast
its data block through the Reliable Broadcast (RBC) protocol.
Assuming that the total number of replicas is n = 3f + 1, a
block is required to contain at least 2f+1 hashes of blocks in
the previous round. The relationship that a block Bi contains
another block Bj’s hash is named as ‘reference’. Through
the last round of a wave, a block in the first round will be
elected as the leader. If the leader block satisfies a predefined
condition, it and its ancestor blocks can be committed, where
ancestor blocks are defined based on the reference relationship.

As stated in these papers [28], [17], DAG-based BFT proto-
cols deliver high throughput and can commit blocks in only a
few rounds of RBC. For example, DAGRider (respectively,
Tusk) can commit a block after four (respectively, three)



rounds of RBC in a good-case situation and six (respectively,
seven) rounds of RBC in the worst situation. However, they
seem to overlook the communication steps done in each RBC
round. Taking inner communication steps into consideration,
DAGRider and Tusk have latencies of 12 and 9 communication
steps, respectively, even in a good-case situation.

To reduce the latency of DAG-based protocols, we propose
a new RBC protocol called Graded RBC (GRBC). With
GRBC, a replica delivers not only data but also a grade of
1 or 2. A non-faulty replica that delivers data with grade 2
can ensure that at least 2f + 1 replicas have delivered the
same data with grade 1 or 2. Additionally, we argue that the
Consistent Broadcast (CBC) protocol is sufficient to guarantee
safety, even requiring fewer communication steps than RBC.
However, the CBC protocol cannot guarantee liveness. To
address this challenge, we design a block query mechanism
that enables a replica to retrieve the missing ancestor blocks
of a block before participating in the CBC instance.

We then use GRBC and CBC to design GradedDAG, which
also proceeds in successive waves, with each wave consisting
of a GRBC round and a CBC round. A replica will create
a block in a GRBC round after it delivers 2f + 1 blocks in
the previous CBC round, which is similar to DAGRider or
Tusk. The difference lies in the block creation in the CBC
rounds. A replica can create a block in a CBC round only
if it delivers 2f + 1 blocks with grade 2 in the previous
GRBC round. Additionally, the new block in the CBC round
will reference all blocks delivered with grade 1 or 2 in the
previous GRBC round. As for the block commitment, a replica
in GradedDAG can commit a leader block immediately if the
leader block has been delivered with grade 2. In an ideal
situation, a block can be committed in a wave (a GRBC round
plus a CBC round), which offers the good-case latency of 5
communication steps1. Even in the worst situation, a block can
be committed in a wave with the probability of 2/3. Thus, the
expected worst latency is 7.5 communication steps.

We implement the prototype of GradedDAG and evaluate
its performance by comparing it with Tusk, which has lower
good-case latency and expected worst latency in the state-of-
the-art. The experimental results show that GradedDAG low-
ers the latency of Tusk by 60.0% and 40.1%, respectively
when seven and thirty-one replicas are deployed. Furthermore,
GradedDAG delivers higher peak throughput than Tusk. Given
the setting of seven replicas, GradedDAG achieves a peak
throughput of 19.9 kTPS, as opposed to 9.3 kTPS of Tusk.

In summary, our paper makes the following contributions:
• We identify the issue of high latency in current DAG-

based BFT protocols, caused by multiple RBC rounds
in each wave and multiple communication steps in each
RBC round.

• We propose an adapted RBC protocol named GRBC,
which can help one non-faulty replica to perceive other
ones’ delivery.

1Since the first communication step in CBC can reveal the leader block,
the good-case latency can be reduced to 4 communication steps.

• We devise GradedDAG, a novel DAG-based protocol
based on GRBC and CBC, which has significantly lower
latency than the state-of-the-art.

II. BACKGROUND & MOTIVATION

A. BFT consensus & timing assumptions

Following the explosive popularity of blockchain technol-
ogy, BFT consensus has received more and more attention in
the recent dozen years since replicas in the blockchain system
may behave arbitrarily [43]. A correct BFT consensus algo-
rithm has to satisfy two basic properties: safety and liveness.
At a high level, the safety property requires all the non-faulty
replicas to maintain identical data, while the liveness property
states that the algorithm will advance without stalling. Besides
safety and liveness, a large number of research works have
been conducted to improve the BFT consensus from various
aspects, such as performance [29], [24], robustness [34], [26],
and simplicity [7], [13].

It is pretty significant to characterize the network situation
in a distributed system, which affects the design of consensus
algorithms to a great extent. Generally speaking, there are
roughly three kinds of timing assumptions to characterize
the network: synchronous network, partially-synchronous net-
work, and asynchronous network [36]. Since the synchronous
assumption is hard to maintain and the partially-synchronous
works suffer from the liveness problem [34], a line of re-
cent works focus on the asynchronous assumption and seeks
to improve the practical performance of asynchronous BFT
protocols [3], [33], [25].

B. DAG-based BFT consensus

Unlike traditional BFT consensus, which processes data
in a serial manner, a range of recent works introduces the
DAG structure to achieve parallel data processing [28], [39].
As depicted in Fig. 1, these DAG-based works proceed in
successive waves, each consisting of multiple rounds. During
each round, each replica broadcasts a block through the
Reliable Broadcast (RBC) abstraction [15]. A block in round r
contains multiple hashes of blocks in round r−1, thus making
up the DAG structure. A block Bj that contains the hash of
another block Bi is said to directly reference Bi. If Bi is
referenced by Bj and Bj is referenced by Bk, Bi is considered
indirectly referenced by Bk as well. All blocks referenced
by Bi, directly or indirectly, are called Bi’s ancestor blocks.
Particularly, if Bj is referenced by Bi directly, Bj is also
named as Bi’s parent block.

In each wave, a block in the first round will be elected
as the leader block through the global perfect coin [9]. If
a commitment condition is met, the leader block and all its
ancestor blocks can be committed. At a high level, these
DAG-based consensus works in an asynchronous network,
which provides good robustness. If everything goes well,
the DAG structure helps multiple blocks to be committed
simultaneously, which offers high throughput.

On the other side, most of the existing DAG-based pro-
tocols tend to overlook the impact of the RBC abstraction



TABLE I: Comparison between different DAG-based protocols. Latency is measured by the communication steps.

Wave length Broadcast abstraction Good-case latency† Expected worst latency‡

DAGRider [28] 4 RBC 12 (10) 18

Tusk [17] 3 RBC 9 (7) 21

BullShark [39]* 4 RBC 6 30

GradedDAG (This work) 2 GRBC & CBC 5 (4) 7.5
† We only need to count the first step in RBC or CBC that reveals the leader block, if neither safety nor liveness is compromised. In

this way, the latency can be reduced, whose results are shown in the brackets.
‡ The expected worst latency refers to the expected communication steps when the adversary mounts attacks arbitrarily.
* Bullshark’s good-case latency is achieved by the complicated optimistic path, which destroys the brevity of DAG-based BFT.

on latency. Specifically, they only state that several rounds
of RBC are needed to commit a block. However, a round of
RBC requires at least three communication steps [15], which
renders the commitment latency significant. As illustrated in
Table I, DAGRider, Tusk, and Bullshark need 10, 7, and 6
communication steps, respectively, to commit a block in the
best-case scenario, and even dozens of communication steps
in the worst-case scenario.

Motivation. Therefore, a natural question arises: Could we
reduce the latency of the DAG-based BFT protocols?

III. PRELIMINARIES

We first introduce some preliminaries of consistent broad-
cast, reliable broadcast, and global perfect coin in this section.
It is worth noting that RBC and GPC are also utilized in other
DAG-based protocols.

A. Consistent broadcast

In a system where some replicas may behave as Byzantine
ones, a regular broadcast cannot ensure that all non-faulty
replicas will deliver identical data. The reason is that a
Byzantine broadcaster can equivocate to different replicas.
To overcome this challenge, the abstraction of consistent
broadcast (CBC) is proposed [40], which is characterized by
three properties as follows:

• Consistency: If two non-faulty replicas deliver two data
d and d′ respectively, then d = d′.

• Validity: If the broadcaster is non-faulty and broadcasts
data d, each non-faulty replica will eventually deliver d.

• Integrity: Each non-faulty replica will deliver at most
one data.

The CBC abstraction can be implemented through two
communication steps [37], [38]. Specifically, in the first step,
the broadcaster sends the data to each replica using a regular
broadcast. In the second step, each replica broadcasts (also
using a regular broadcast) the data it received.

B. Reliable broadcast

Although CBC can guarantee consistency among the data
delivered by replicas, there may still be situations where some
replicas deliver the data while others do not. The reliable
broadcast (RBC) abstraction is proposed to address this issue,
which further guarantees that if a replica delivers some data, all
the others will deliver the same data. Concretely speaking, the
RBC abstraction is defined based on CBC with an additional
property of totality [8]:

• Totality: If a non-faulty replica delivers the data d, all
the non-faulty replicas will eventually deliver d.

The RBC abstraction can be implemented through an extra
step of regular broadcast on top of CBC [6], which needs three
communication steps in total.

C. Global perfect coin

To circumvent the FLP impossibility theory, almost all
asynchronous works rely on components that introduce ran-
domness to the consensus design, and one representative of
those components is Global perfect coin (GPC). GPC is not
only adopted in DAG-based BFT protocols [28], [39], but also
in many traditional BFT protocols such as ABA (Asynchronous
Binary Agreement) protocols [23], [35] and MVBA (Multi-
valued Validated Byzantine Agreement) protocols [8], [25].

In general, GPC defines a function that outputs a random
value, which is revealed only if a predefined threshold t of
replicas calls it. In the context of DAG-based consensus, the
output can be mapped to a replica whose block is elected as the
leader block in a wave. Throughout the rest of the paper, we
assume that the GPC’s output is an index number of replicas. A
correct GPC algorithm has to satisfy the following properties:

• Agreement: If two non-faulty replicas receive two out-
puts o1 and o2 respectively, then o1 = o2.

• Unpredictability: If at most t replicas call the GPC
function, no replica can predict the output.

• Termination: If at least t + 1 replicas have called the
GPC function, each replica will receive the output.

• Fairness: The probability distribution of the output is
uniform.

GPC can be implemented simply by the threshold signature
scheme [5], which is detailed in [9], [32]. In terms of the DAG-
based consensus design, GPC will be called in each wave, with
the wave number as the input.

IV. GRADEDDAG DESIGN

To answer the question raised in Section II-B, we propose a
new DAG-based protocol named GradedDAG, which reduces
the consensus latency to 4 (respectively, 7.5) communication
steps in the best-case (respectively, worst-case) scenarios.

A. Model

The system consists of n = 3f+1 replicas, where at most f
replicas are Byzantine and controlled by an adaptive adversary,
and the remaining replicas are non-faulty. Each pair of replicas



Algorithm 1 GRBC protocol adapted from Bracha-RBC
protocol (for replica pi, with broadcaster pb)

1: Let d represent the data to be broadcast by pb and hash
denote the hash function

2: dat← ∅, cnte ← 0, cntr ← 0, sentr ← false

3: if pi = pb then:
4: h← hash(d); broadcast VAL(d, h);

5: upon receiving VAL(d, h) from pb
6: if h = hash(d) then:
7: dat← d; broadcast ECHO(d, h)

8: upon receiving ECHO(d, h)
9: if h = hash(d) ∧ d = dat then:

10: cnte ← cnte + 1
11: if cnte = 2f + 1 ∧ !sentr then:
12: broadcast READY(h); sentr ← true
13: deliver ⟨dat, 1⟩

14: upon receiving READY(h)
15: if h = hash(dat) then:
16: cntr ← cntr + 1
17: if cntr = f + 1 ∧ !sentr then:
18: broadcast READY(h); sentr ← true
19: deliver ⟨dat, 1⟩
20: if cntr = 2f + 1 then:
21: deliver ⟨dat, 2⟩

is connected through a reliable network link, meaning that
messages sent from one non-faulty replica will eventually
and inerrably be delivered by another non-faulty one. The
network is asynchronous, where messages may be delayed
arbitrarily by the adversary. The system includes a correct
setup of public-key infrastructure and threshold signature
infrastructure. We assume the cryptographic primitives used
in this paper are secure.

B. Building block: Graded RBC

1) Definition of Graded RBC: Graded RBC (GRBC) is an
adapted version of the RBC abstraction, which allows a replica
to deliver the data with a grade (either 1 or 2). Specifically, a
replica delivers data from GRBC in the format of ⟨d, g⟩, where
d and g denote the data and grade, respectively. Moreover,
a replica in GRBC can upgrade the grade from 1 to 2. In
other words, it can first deliver data of ⟨d, 1⟩ and later deliver
⟨d, 2⟩. Note that a replica that delivers the data with grade 2 is
considered as having delivered the data with grade 1 before.
In general, the GRBC abstraction has the following properties:

• Consistency: If two non-faulty replicas deliver ⟨d1, g1⟩
and ⟨d2, g2⟩ respectively, then d1 = d2.

• Validity: If the broadcaster is non-faulty and broadcast
d, each non-faulty replica will eventually deliver ⟨d, 2⟩.

• Integrity: Each non-faulty replica delivers data at most
twice. If there is only one delivery in the format of ⟨d, g⟩,

Fig. 2: Structure of the GradedDAG protocol

then g = 1. If there are two deliveries in the format of
⟨d1, g1⟩ and ⟨d2, g2⟩, then d1 = d2, g1 = 1, g2 = 2.

• Perceptivity: If a non-faulty replica delivers ⟨d, 2⟩, at
least 2f+1 replicas have delivered ⟨d, 1⟩ or ⟨d, 2⟩, among
which at least f + 1 are non-faulty.

2) Implementation of GRBC: GRBC can be implemented
based on existing RBC protocols. An example of implement-
ing GRBC based on Bracha-RBC protocol [6] is shown in
Algorithm 1. The main difference between GRBC and Bracha-
RBC lies in the delivery of data. As Line 13 and Line 19 in
Algorithm 1 show, GRBC delivers data with grade 1 after
receiving 2f + 1 ECHO messages or f + 1 READY messages.
On the other side, when 2f+1 READY messages are received,
a replica delivers data with grade 2 (Line 21 in Algorithm 1).
Erasure codes can also be utilized to improve the GRBC
efficiency [11], which is omitted in this section for brevity.

C. Overview of GradedDAG

Fig. 2 provides an overview of the GradedDAG protocol,
which, like other DAG-based protocols, proceeds in successive
waves numbered by w. However, each wave in Graded-
DAG consists of a GRBC round and a CBC round, contrasting
with multiple RBC rounds in other DAG-based protocols. In a
wave of number w, the GRBC and CBC rounds are numbered
as 2w and 2w + 1, respectively. In each round, a replica
includes in its block at least 2f + 1 hashes of blocks in the
previous round.

In GradedDAG, the block reference rules in the GRBC and
CBC rounds are different. In the GRBC round (2w), a block
will reference a block in round 2w − 1 (CBC round) only
if the latter has completed the CBC process, as indicated by
blue lines in Fig. 2. In contrast, a block in the CBC round
(2w+1) will reference a block in round 2w (GRBC round) if
the latter has been delivered with either grade 1 or grade 2,
marked by red lines in Fig. 2. Furthermore, the time to create
a block also differs between the GRBC and CBC rounds. A
replica can create a block in the GRBC round if it has delivered
2f+1 blocks in the previous CBC round. Conversely, a replica
can create a block in the CBC round only if it has delivered
2f + 1 blocks with grade 2 in the previous GRBC round.



Fig. 3: An example to show the time to create a CBC block

These block reference and creation rules will be explained in
detail in Section IV-D.

To guarantee safety, once a new CBC block B2w+1 is
created by a replica, it will terminate its participation in all
the GRBC instances of round 2w if their blocks are not
referenced by B2w+1. To ensure liveness, we modify the
GRBC protocol to output a certificate for the delivery with
grade 2, which we call Cert-GRBC. After a GRBC instance
is finished, each replica broadcasts its certificate. We provide
a detailed description of both the GRBC termination rule and
certificate broadcast rule in Section IV-E.

In the CBC round of each wave, the GPC component is
run to select a block in the GRBC round as the leader block,
as shown by the block encircled by a green box in Fig. 2.
Given the GPC component is implemented by the threshold
signature scheme, the partial signature created by a replica
can be broadcast along with the first communication step in
CBC. If a replica has delivered the leader block with grade
2, it will commit the leader block and all its ancestor blocks,
indicated by orange lines and boxes in Fig. 2. Details of the
block commitment rule will be presented in Section IV-F.

As noted in Section III, through CBC, one non-faulty replica
may deliver some data while another does not. This situation
also exists in GRBC with grade-1 delivery. In other words,
through GRBC, it is possible that one non-faulty replica
delivers some data with grade 1 while another delivers none.
To address this challenge, we design a block-query mechanism
to help a replica to acquire its lacking blocks, which will be
presented in Section IV-G.

Ideally, the leader block in a wave can be committed at the
end of the wave, resulting in a good-case latency of 5 commu-
nication steps, which is the sum of the communication steps in
GRBC and CBC. Furthermore, since the first communication
step in CBC can directly reveal the leader block, the good-case
latency can be further reduced to 4 communication steps. In
the worst-case situation, the probability that the leader block
has been delivered with grade 2 is 2/3. Therefore, it is expected
to take 1.5 waves to commit a leader block, and the expected
worst latency is 7.5 communication steps.

Fig. 4: Reference rules for a CBC block

Algorithm 2 Cert-GRBC protocol adapted from GRBC pro-
tocol (for replica pi, with broadcaster pb)

1: Let d represent the data to be broadcast by pb and hash
denote the hash function. Let SignShare and Combine
denote the threshold signature functions.

2: Let term represent a termination signal from outside.
3: dat← ∅, cnte ← 0, cntr ← 0, sentr ← false, Sρ ← []

4: // same as lines 3-11 in Algorithm 1
5: ρ← SignShare2f+1(h,READY)
6: broadcast READY(h, ρ); sentr ← true
7: deliver ⟨dat, 1⟩

8: upon receiving READY(h, ρ)
9: if h = hash(dat) then:

10: cntr ← cntr + 1
11: Sρ ← Sρ ∪ {ρ}
12: if cntr = f + 1 ∧ !sentr then:
13: ρ← SignShare2f+1(h,READY)
14: broadcast READY(h, ρ); sentr ← true
15: deliver ⟨dat, 1⟩
16: if cntr = 2f + 1 then:
17: σ ← Combine2f+1(Sρ, h,READY)
18: broadcast CERT(d, h, σ)
19: deliver ⟨dat, 2⟩

20: upon receiving term
21: quit from this Cert-GRBC instance

D. Block creation rule

To streamline our presentation, we refer to blocks created
in the GRBC round and CBC round as GRBC blocks and CBC
blocks, respectively. The creation of blocks involves two key
decisions: block creation time and block reference rule. The
former determines when a new block can be created, while
the latter specifies which blocks from the previous round can
be referenced by the new block. Creating GRBC blocks is
straightforward, whose creation time and block reference rule
are similar. After a replica delivers 2f +1 CBC blocks, it can
immediately create a GRBC block, which references all the



delivered CBC blocks.
However, the creation of CBC blocks is more complex,

as their block creation time and block reference rule are
inconsistent. Specifically, a replica can create a CBC block
only after delivering 2f + 1 GRBC blocks in the previous
round with grade 2. By contrast, the replica will reference all
the GRBC blocks in the previous round delivered with either
grade 1 or grade 2. It is easy to know that the number of
blocks referenced by a GRBC block will be at least 2f+1. To
illustrate these rules more clearly, we provide two examples of
creating a CBC block in Fig. 3 and Fig. 4, where the system
consists of four replicas (i.e., f = 1). We consider the CBC
block to be created by replica p1. As shown in Fig. 3, since
p1 has only delivered two GRBC blocks with grade 2, it must
wait for more grade-2 deliveries. After p1 delivers three grade-
2 GRBC blocks, it can create a CBC block, as shown in Fig. 4.
However, although p1 currently only delivers GRBC block
from p3 with grade 1, it will reference this block in its newly
created CBC block.

E. Block broadcast rule

As there are two types of blocks, the block broadcast rules
consist of two parts. The broadcast rule for the CBC block is
direct and the partial signatures used to implement GPC will
be broadcast in the first communication step of CBC. The
broadcast rule for the GRBC block is mainly defined based
on the GRBC protocol, with the addition of a termination rule
and a certificate broadcast rule. In this section, we will detail
these newly added rules.

Firstly, we need to introduce slight modifications to the ex-
isting GRBC protocol (Algorithm 1) by introducing a termina-
tion component and a certificate generation module. The new
GRBC protocol is named Cert-GRBC, whose pseudocodes are
shown in Algorithm 2. Modifications related to the termination
component are marked in red, while modifications related
to the certificate generation are marked in blue. At a high
level, a replica will terminate its participation in the Cert-
GRBC instance after receiving a termination signal. It will
broadcast a certificate to help others deliver the data with
grade 2 eventually. For brevity, in the rest of this paper, we
alternatively use the term GRBC to refer to Cert-GRBC when
there is no ambiguity.

After a replica creates a CBC block, it will terminate all
the GRBC instances whose blocks are not referenced by
the CBC block. To be more specific, let GRBCr,i denote
the GRBC instance in round r with replica pi being the
broadcaster, and let Br,i denote the block data broadcast by
GRBCr,i. Assume that a replica pi creates a CBC block in
round 2w + 1 referencing GRBC blocks ({B2w,j |j ∈ S1}),
where S1 represents the set of the index k of GRBC2w,k

that have delivered data with grade 1. It will immediately
terminate all the instances of GRBC2w,m that m /∈ S1, by
sending a termination signal to each of these GRBC instances.
An example of terminating participation in a GRBC instance
is illustrated in Fig. 5, where p1 creates its CBC block by

Fig. 5: Termination of a GRBC instance

Algorithm 3 Block commitment protocol (in wave w)

1: Let Br,i represent the block broadcast by replica pi in
round r and BL

w represent the leader block of wave w.
Let sortw denote the sorting function according to wave
numbers, and sortr,p denote the sorting function firstly
by round numbers and then by the replica indices of
broadcasters.

2: upon receiving output i from GPC(w)
3: BL

w = B2w,i; queue← ∅
4: if BL

w has been delivered with grade 2 then:
5: queue← queue ∪

{
BL

w

}
; v ← w − 1

6: while (BL
v is not committed):

7: v ← v − 1
8: u← v + 1
9: while (u < w):

10: if BL
u is delivered with grade 1 then:

11: queue← queue ∪
{
BL

u

}
12: u← u+ 1
13: sortw(queue)
14: while queue is not empty:
15: Bl ← pop front(queue)
16: SB ← all the uncommitted ancestor blocks of Bl

17: sortr,p(SB)
18: commit SB one by one; commit Bl

referencing GRBC blocks (B2w,0, B2w,1, and B2w,2), and it
immediately terminates the participation in GRBC2w,3.

Before delivering the data with grade 2 in GRBC, a replica
will broadcast a certificate of its delivery, as Line 18 in
Algorithm 2 shows. If other replicas receive this certificate,
they will deliver the corresponding data with grade 2 as well.

F. Block commitment rule

In GradedDAG, as with other DAG-based BFT protocols,
blocks are committed based on the commitment of leader
blocks. The block commitment rule in GradedDAG is de-
scribed by Algorithm 3. After the leader block is revealed
by the GPC component, each replica will check if the leader
block has been delivered with grade 2. If so, the leader block



Fig. 6: An example to show the block-lacking situation

is added to the leader-commit queue (Lines 2-5). Suppose the
leader block added to the leader-commit queue is BL

w, where
w represents the wave number. The replica will trace back
wave by wave until a previous leader block BL

v (v < w) is
committed (Lines 6-7). For each wave u (v < u < w), if the
leader block BL

u has been delivered with grade 1, BL
u will be

inserted to the leader-commit queue. All the leader blocks in
the queue are then sorted by the wave number (Lines 8-12).
Next, the replica retrieves the leader block from the queue one
by one, starting with the smallest wave number and proceeding
to the largest one. For each leader block, all its ancestor blocks
are committed first according to the round number and then
according to the replica index if these blocks have not been
committed before. After all its ancestor blocks are committed,
the leader block is then committed (Lines 13-18).

We use the term ‘critical-leader blocks’ to refer to the leader
blocks that trigger the commitment of blocks in GradedDAG.
Similarly, we use the term ‘anchor-leader blocks’ to refer
to the leader blocks that are added to the leader-commit
queue. Taking Algorithm 3 as an example, BL

w is a critical-
leader block if it passes the checks in Line 4. All leader
blocks added to queue are anchor-leader blocks. It is worth
noting that all blocks in GradedDAG are committed based on
anchor-leader blocks, and anchor-leader blocks are committed
by critical-leader blocks. A critical-leader block can be also
considered as an anchor-leader block. For brevity, we say a
block B is committed by an anchor/critical-leader block Bl if
B is committed based on Bl. Without loss of generality, we
stipulate that the genesis block serves as the first critical-leader
and anchor-leader block.

G. Block query mechanism

Since the reference relationship between blocks is estab-
lished based on CBC or GRBC with grade-1 delivery, there
may be situations where a replica pi receives a new block B
from pj , but has not delivered all of B’s ancestor blocks. This
situation is illustrated in Fig. 6, where p0 receives a new CBC
block B2w+1,1 from p1 and B2w+1,1 references all the blocks
in round 2w. However, p0 has not yet delivered B2w,3 with
either grade 1 or grade 2.

To deal with the block-lacking challenge, we design a
simple block query mechanism in GradedDAG. If pi receives
B from pj but has not delivered all of B’s ancestor blocks, pi
will send a query request to pj for the missing parent blocks. If
pj is a non-faulty replica, it will respond to pi with the correct
blocks B′ along with certificates of delivery in CBC or grade-
1 delivery in GRBC. Upon receiving the response, pi will
verify the correctness of B′ based on the certificate. If pi has
not delivered all of B′’s ancestor blocks, pi will continue to
query for the parent blocks of B′. If all of B′’s ancestor blocks
are delivered, and B′ passes the correctness verification, B′

can be delivered. This process will continuously proceed until
pi has delivered all of B’s ancestor blocks, after which pi can
participate in the CBC or GRBC instance of B.

To create the certificates for block-query responses, we
introduce slight modifications to CBC and GRBC protocols.
During the second communication step of CBC or GRBC,
each replica includes a partial threshold signature in its mes-
sage. Prior to delivering the data in CBC or GRBC with
grade 1, a replica combines 2f + 1 partial signatures to form
a complete signature, which serves as a certificate. Detailed
implementation of the modified CBC and GRBC protocols can
be found in the appendix.

V. CORRECTNESS ANALYSIS

A. Safety

From the perspective of a replica, each committed block is
assigned an index in the format of ⟨e,B⟩ where e represents
its commitment order. As for two blocks ⟨e,B⟩ and ⟨e′, B′⟩
committed in a replica, if e < e′, transactions contained in B
will be executed before transactions in B′. In addition, each
anchor-leader block (defined in Section IV-F) is assigned an
extra index (leader-index), in the format of

〈
g,Bl

〉
, where g

represents the order of anchor-leader blocks. Since a critical-
leader block is also anchor-leader, it will be assigned a leader-
index as well. Suppose a critical-leader block Bc is committed
with the leader-index g in a replica p. Let Sc(: B

c) represent
the set of all the critical-leader blocks committed in p whose
leader-indices are no larger than g. Let Sa(: B

c) represent all
the anchor-leader blocks committed by Sc(: B

c). Let S1 ≺ S2

denote S1 be a prefix subset of S2.
The safety of GradedDAG can be described by Theorem

4, whose proof is based on three lemmas: Lemma 1, Lemma
2, and Lemma 3. For lack of space, we remain the proofs of
these lemmas in the appendix.

LEMMA 1. If a non-faulty replica commits two critical-
leader blocks (Bc and Bc′) with two leader-indices (g and
g′) respectively and g <= g′, then Sc(: B

c) ≺ Sc(: B
c′) and

Sa(: B
c) ≺ Sa(: B

c′).

LEMMA 2. If two non-faulty replicas (p and p′) commit two
critical-leader blocks (Bc and Bc′) with two leader-indices (g
and g′) respectively and g <= g′, then Sa(: B

c) ≺ Sa(: B
c′).



LEMMA 3. If two anchor-leader blocks (Bl and Bl′)
are committed by two non-faulty replicas with the same
leader-index respectively, then Bl = Bl′.

THEOREM 4 (SAFETY). If two blocks (B and B′) are
committed by two non-faulty replicas with the same index
respectively, then B = B′.

Proof. As described in Section IV-F, all blocks in Graded-
DAG are committed by anchor-leader blocks. For an anchor-
leader block assigned with the leader-index g, it will commit
all its ancestor blocks that have not been committed by any
anchor-leader block with a smaller leader-index. Therefore, all
committed blocks can be divided into several sets according
to which anchor-leader block they are committed by. Let Rg

denote all the blocks committed by the anchor-leader block〈
g,Bl

〉
. Since the first anchor-leader block is the genesis block

(as mentioned in Section IV-F), S0 = ∅.
We prove by mathematics induction that if two replicas

possess two sets Rg and R′
g , then Rg = R′

g . First, when g = 0,
we have R0 = R′

0 = ∅. Second, assuming Rh = R′
h for each h

(h ≤ g) and considering whether Rg+1 = R′
g+1. According to

Lemma 3, the anchor-leader blocks in two replicas must be the
same. Let Tg represent all the ancestor blocks of the anchor-
leader block

〈
g,Bl

〉
. According to the consistency property

of CBC and GRBC, Tg+1 = Tg+1
′. On the other hand,

Rg+1 = Tg+1 − ∪gh=0Rh and Rg+1
′ = Tg+1

′ − ∪gh=0Rh
′.

Therefore, Rg+1 = Rg+1
′.

According to Lemma 2, regarding all the anchor-leader
blocks committed in two replicas (p0 and p1), denoted by Sa

and S′
a, either Sa ≺ S′

a or S′
a ≺ Sa. Therefore, the former

g anchor-leader blocks in p must be identical to the former g
anchor-leader blocks in p′, and ∪g−1

h=0Rh = ∪g−1
h=0R

′
h.

Since blocks in the set Rg and Rg
′ are sorted by the same

metrics (first by round number and then by the replica index),
the same block (B) in Rg and Rg

′ will be assigned the same
index in Rg or Rg

′, denoted by ig . The index of B in all
committed blocks in p0 will be ig +

∣∣∣∪g−1
h=0Rh

∣∣∣, which is the

same as ig+
∣∣∣∪g−1

h=0R
′
h

∣∣∣ in p1. Namely, the same blocks will be
committed with the same index in different non-faulty replicas.
In other words, if two blocks are committed with the same
index, they must be identical, which concludes the proof.

B. Liveness

The liveness of GradedDAG is defined as Theorem 7,
whose proof relies on two lemmas (Lemma 5 and Lemma 6).
We also defer the proof of lemmas to the appendix due to
space limitations.

LEMMA 5. At least 2f + 1 blocks can be successfully
delivered in each round.

LEMMA 6. Let χ(t) be the probability that there will be
at least one critical-leader block being committed during the

period t after any time point. We have limt→∞ χ(t)→ 1.

THEOREM 7 (LIVENESS). Let λ(t) be the probability that
there will be at least one block being committed during the
period t after any time point. We have limt→∞ λ(t)→ 1.

Proof. Since a critical-leader block can commit at least one
anchor-leader block, and an anchor-leader block can commit
at least 2f + 1 blocks, a critical-leader block can commit at
least 2f +1 blocks. By Lemma 6, the probability that at least
one critical-leader block will be committed is larger and larger.
Hence, the probability that at least one block is committed also
increases as time goes by, which concludes the proof.

VI. IMPLEMENTATION & EVALUATION

We implement the prototype of GradedDAG and evaluate
its performance by comparing it against the state-of-the-art.
We choose Tusk as the counterpart, since it has low latency
in both the best-case and worst-case situations.

A. Implementation & settings

GradedDAG is implemented in Golang, with a total of
1,100 lines. We make use of various open-source libraries
in our implementation, such as klauspost/reedsolomon2 to
implement erasure coding in RBC, dedis/kyber3 to implement
the threshold Boneh Lynn Shacham (BLS) signature, and
hashicorp/go-msgpack4 to implement the Remote Process Call
(RPC) functions. The GRBC protocol is implemented based
on the Cachin version of RBC [11] with erasure codes being
utilized [11], and the CBC protocol is implemented based on
the version proposed by Srikanth [40]. Although there is an
open-source implementation of Tusk 5, it is written in Rust and
contains multiple components less relevant to the consensus
protocol. Therefore, we also implement our version of Tusk in
Golang with the same framework as GradedDAG, to guarantee
the fairness of comparison.

All the experiments are conducted on the Alibaba cloud,
with each replica being deployed as an ECS.g6e.xlarge in-
stance with 4 vCPU and 16GB memory. The replicas are
distributed in a geographically distributed manner, which spans
four continents and six countries. Each pair of replicas is con-
nected through the network link of 100Mbps bandwidth. Each
group of experiments is repeated three times, and the average
is calculated to reduce the experimental errors. The transaction
size is uniformly set as 250 bytes. The throughput is computed
as the committed Transactions Per Second (TPS), while the
latency is measured as the time taken for a transaction to be
committed from when it is received by a replica.

B. Basic performance comparison

We compare the basic performance of GradedDAG and
Tusk from the aspects of throughput and latency. Experiments
are conducted in two settings, each with a different number

2https://github.com/klauspost/reedsolomon
3https://github.com/dedis/kyber
4https://github.com/hashicorp/go-msgpack
5https://github.com/facebookresearch/narwhal
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Fig. 7: Comparison by increasing the batch size

of replicas (seven and thirty-one). The batch size, measured
in the number of transactions in a block, was increased from
50 to 1,500. Experimental results are shown in Fig. 7. Data
points are absent when the number of replicas is thirty-one
and the batch size reaches 1,500, as the system cannot make
progress in this setting at all.

Generally speaking, GradedDAG outperforms Tusk in terms
of both throughput and latency in both settings. Specifically,
when seven replicas are deployed, GradedDAG achieves a
throughput of up to 20.8 kTPS, which is significantly higher
than Tusk’s 6.2 kTPS. Even with a batch size of 1,500,
GradedDAG maintains a low latency of 1.8 seconds, whereas
Tusk’s latency is 4.5 seconds. It is easy to find that the
performance difference between GradedDAG and Tusk is more
apparent when the number of replicas is smaller. As illustrated
in Fig. 7a, with a batch size of 1,200, GradedDAG delivers
1.4x the throughput of Tusk with thirty-one replicas, while
GradedDAG outperforms Tusk by 2.3x with seven replicas.
The reason for this is that with a smaller system scale, the
network experiences less congestion, enabling GradedDAG to
commit blocks more swiftly without being impacted by net-
work congestion.

C. Scalability comparison

In terms of scalability, we conduct a performance com-
parison between GradedDAG and Tusk as the number of

10 20 30 40 50 60
#Replicas

2

3

4

5

6

Th
ro
ug

hp
ut
 (T

PS
)

×103

GradedDAG
Tusk

(a) Throughput comparison

10 20 30 40 50 60
#Replicas

0

5

10

15

20

25

La
te

nc
y 

(s
)

GradedDAG
Tusk

(b) Latency comparison
Fig. 8: Comparison by increasing the number of replicas

replicas increases. Particularly, we fix the batch size as 200
and increase the number of replicas from seven to sixty-
one. Fig. 8 displays the experimental results. Although both
GradedDAG and Tusk experience a decrease in performance
as the system scales up, which results from the cubic message
complexity, GradedDAG exhibits better scalability than Tusk.
Regarding throughput, as shown in Fig. 8a, GradedDAG ini-
tially outperforms Tusk and then achieves a similar level of
performance as Tusk. In terms of latency, as shown in Fig. 8b,
GradedDAG experiences a more gradual growth than Tusk.
Furthermore, the advantages of GradedDAG over Tusk become
more evident as the system scales up.

D. Trade-off between latency and throughput

Fig. 7 demonstrates that as the batch size increases, the
throughput undergoes a growth phase followed by a stabi-
lization phase (Fig. 7a), while the latency keeps increasing
(Fig. 7b). In other words, once the system’s throughput sur-
passes its peak, increasing the batch size can only worsen the
latency, indicating a trade-off between throughput and latency.
In this group of experiments, we compare the trade-offs of
GradedDAG and Tusk under two settings, deploying different
numbers of replicas (seven and thirty-one), which is the same
as Section VI-B. The experimental results are shown in Fig. 9.
It is evident that GradedDAG delivers a higher throughput than
Tusk in either setting. To be more specific, with seven replicas
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being deployed, GradedDAG achieves a peak throughput of
19.9 kTPS, while Tusk only achieves 9.3 kTPS.

VII. RELATED WORK

Related works can be categorized into three groups based on
the timing assumptions: synchronous, partially-synchronous,
and asynchronous protocols.

A. Synchronous & partially-synchronous BFT protocols

Pioneered by Lamport et al. [30], a range of early works are
designed under the assumption of a synchronous network [36],
[19], [21], where messages are assumed to be delivered in
a predefined time. Some recent works, such as Pili [14] and
Sync HotStuff [2], also focus on this synchronous assumption.
However, despite the advantages of simplicity and understand-
ability, the synchronous BFT protocols have been criticized
for the reasonability of this assumption [10]. As highlighted
in Section II-A, a wrong estimation of the network delay can
negatively impact the performance or even compromise the
safety of the system.

To steer clear of the FLP impossibility [22], Dwork et
al. propose the network assumption of partial synchrony,
which can be considered as an intermediate product between
synchronous protocols and asynchronous assumptions. The
most representative protocol under the partially-synchronous
assumption is Practical Byzantine Fault Tolerance (PBFT),
which has become the de-facto standard of BFT protocols for a
long time [12]. Following the routine of PBFT, a large number
of protocols attempt to reduce latency by introducing a fast-
path commitment rule [16], [29], [24] or trusted hardware [31],
[18]. However, the fast-path commitment rule either assumes
non-faulty clients [29], which is proved to be unsafe [1], or
sacrifices the fault tolerance [24]. The trusted hardware brings
new security problems to BFT protocols.

With the emergence of blockchain technology, a range of
modern works introduces the structures of blocks and chains
to the design of BFT protocols, including Tendermint [7]

HotStuff [42], and Streamlet [13]. These chain-based pro-
tocols can offer higher performance, particularly in terms
of throughput, by integrating pipeline technology. However,
partially-synchronous protocols are criticized for their liveness,
as they can be vulnerable to network partitions mounted by
an adversary [34].

B. Asynchronous BFT protocols

Compared to synchronous or partially-synchronous proto-
cols, asynchronous protocols are generally considered to be
more robust. Unlike their counterparts, asynchronous pro-
tocols make no assumptions about message delays, which
enables them to resist various network attacks. Research on
asynchronous protocols can be traced back to the design of
Asynchronous Binary Agreement (ABA) [4], [9], which is
developed to handle binary values of 0 or 1. By extending the
binary values to multiple values, several Multiple-value Vali-
dated Byzantine Agreement (MVBA) protocols are proposed,
such as CKPS [8], AMS-VABA [3], and sMVBA [25].

Although the MVBA protocols successfully implement the
BFT consensus under the asynchronous network, data must be
processed in serial, which constrains the system throughput.
To parallelize the data processing, the Directed Acyclic Graph
(DAG) structure is introduced to the protocol design, with
DAGRider [28] as a pioneer. At a high level, each data
unit in DAGRider is broadcast through the RBC protocol,
which involves three communication steps. Various works have
attempted to accelerate consensus by reducing the number
of RBC rounds [17] or introducing an optimistic path [39].
Although these works can reduce the number of RBC rounds
to two or three, they tend to overlook the communication steps
in each RBC, which can result in significant latency.

VIII. CONCLUSION

Existing DAG-based BFT protocols suffer from the problem
of high latency. To deal with this problem, we propose
GradedDAG, a novel DAG-based protocol based on an adapted
version of the RBC protocol named GRBC and the CBC proto-
col. Both the theoretical analysis and experimental evaluation
demonstrate that GradedDAG is highly effective in reducing
the consensus latency when compared to existing state-of-the-
art protocols. Besides, our newly proposed GRBC protocol
can provide an additional property of perceptivity than RBC,
which might be of independent interest and use.
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Algorithm 4 Cert-CBC protocol adapted from Srikanth-CBC
protocol (for replica pi, with broadcaster pb)

1: Let d represent the data to be broadcast by pb and
hash denote the hash function; SignShare and Combine
denote the threshold signature functions.

2: dat← ∅, cnt← 0, Sρ ← []

3: if pi = pb then:
4: h← hash(d); broadcast VAL(d, h);

5: upon receiving VAL(d, h) from pb
6: if h = hash(d) then:
7: ρ← SignShare2f+1(h)
8: dat← d; broadcast ECHO(d, h, ρ)

9: upon receiving ECHO(d, h, ρ)
10: if h = hash(d) ∧ d = dat then:
11: cnt← cnt+ 1; Sρ ← Sρ ∪ {ρ}
12: if cnt = 2f + 1 then:
13: σ ← Combine2f+1(Sρ, h)
14: deliver ⟨dat, σ⟩

APPENDIX

A. Cert-CBC protocol & 2Cert-GRBC protocol

We refer to the CBC protocol with a certificate as Cert-CBC
and the Cert-GRBC protocol with an additional certificate for
the grade-1 delivery as 2Cert-GRBC. The adaption method
from an existing CBC protocol or Cert-GRBC protocol is
straightforward, which only needs to include a partial threshold
signature in the second communication step and create a
complete threshold signature for the delivery in Cert-CBC or
the grade-1 delivery in 2Cert-GRBC.

To describe the adaption more clearly, we give two exam-
ples, respectively, whose pseudocode is shown in Algorithm 4
and Algorithm 5. Particularly, the Cert-CBC protocol is imple-
mented based on the CBC version proposed by Srikanth [40],
and the 2Cert-GRBC protocol is implemented based on Algo-
rithm 1 and Algorithm 2.

B. Proof of Lemma 1

LEMMA 1. If a non-faulty replica commits two critical-
leader blocks (Bc and Bc′) with two leader-indices (g and
g′) respectively and g <= g′, then Sc(: B

c) ≺ Sc(: B
c′) and

Sa(: B
c) ≺ Sa(: B

c′).

Proof. Since the anchor-leader blocks are committed by the
critical-leader blocks, we only need to prove Sc(: B

c) ≺ Sc(:
Bc′).

If g = g′, according to the consistency property of GRBC,
Bc must be equal to Bc′. Therefore, Sc(: B

c) = Sc(: B
c′)

and Sc(: B
c) ≺ Sc(: B

c′). Next, we consider the situation
where g < g′. According to the block commitment rule, Bc

must be delivered by the replica with grade 2. According to
the perceptivity property of GRBC, at least f + 1 non-faulty

Algorithm 5 2Cert-GRBC protocol adapted from GRBC in
Algorithm 1 and Cert-GRBC in Algorithm 2 (for replica pi,
with broadcaster pb)

1: // same as lines 1-2 in Algorithm 2
2: dat← ∅, cnte ← 0, cntr ← 0, sentr ← false, Sρ ← [],

Tρ ← []

3: upon receiving VAL(d, h) from pb
4: if h = hash(d) then:
5: ρ← SignShare2f+1(h,VAL)
6: dat← d; broadcast ECHO(d, h, ρ)

7: upon receiving ECHO(d, h, ρ)
8: if h = hash(d) ∧ d = dat then:
9: cnte ← cnte + 1

10: Tρ ← Tρ ∪ {ρ}
11: if cnte = 2f + 1 ∧ !sentr then:
12: σ ← Combine2f+1(Tρ, h,VAL)
13: ρ′ ← SignShare2f+1(h,READY)
14: broadcast READY(h, ρ′); sentr ← true
15: deliver ⟨dat, 1, σ⟩

16: // same as lines 8-21 in Algorithm 2

replicas have delivered Bc with grade 1 or grade 2, each of
which will reference Bc directly in blocks of the next round.
Since each block has to reference at least 2f +1 blocks, each
block in the following rounds will indirectly reference Bc.
Therefore, Bc′ must reference Bc and Sc(: B

c) ≺ Sc(: B
c′),

which concludes the proof.

C. Proof of Lemma 2

LEMMA 2. If two non-faulty replicas (p and p′) commit two
critical-leader blocks (Bc and Bc′) with two leader-indices (g
and g′) respectively and g <= g′, then Sa(: B

c) ≺ Sa(: B
c′).

Proof. Let S = Sc(: Bc) ∪ Sc(: Bc′). Next, we prove the
lemma by mathematics induction. First, it is easy to know
that Lemma 2 is correct when |S| = 0. Next, assume that
Lemma 2 is correct when |S| = k, and let us consider the
situation where |S| = k + 1 in two cases.

Case 1 (g = g′): According to the consistency property
of GRBC, we must have Bc = Bc′. When |S| = k + 1,
it means a new critical-leader block (BN ) is committed in
either p and p′. Without loss of generality, assume the new
critical-leader block is committed in p. According to Lemma
1, Sa(: B

c) ≺ Sa(: B
N ). According to the assumption, Sa(:

Bc′) ≺ Sa(: Bc). Therefore, Sa(: Bc′) ≺ Sa(: BN ) and
Lemma 2 is proved.

Case 2 (g < g′): When |S| = k+1, it means a new critical-
leader block (BN ) is committed in either p or p′. If BN is
committed in p′, according to Lemma 1, Sa(: B

c′) ≺ Sa(:
BN ). According to the assumption, Sa(: B

c) ≺ Sa(: B
c′).

Therefore, Sa(: B
c) ≺ Sa(: B

N ) and Lemma 2 is proved.



If BN is committed in p, BN will not be the same as Bc′.
Otherwise, |S| = k, which is contradictory to the condition. If
BN is committed with a leader-index gN smaller than g′ (i.e.,
gN < g′), we must have BN referenced by Bc′. Therefore,
all the anchor-leader blocks committed by BN in p will also
be committed by Bc′ in p′. Namely, Sa(: B

N ) ≺ Sa(: B
c′)

and Lemma 2 is proved. On the contrary, if BN is committed
with a leader-index gN larger than g′ (i.e., g′ < gN ), we must
have Bc′ referenced by BN . Therefore, all the anchor-leader
blocks committed by Bc′ in p′ will also be committed by BN

in p. Namely, Sa(: B
c′) ≺ Sa(: B

N ), and Lemma 2 is also
proved.

To sum up, Lemma 2 is correct when |S| = k + 1, which
concludes the proof.

D. Proof of Lemma 3

LEMMA 3. If two anchor-leader blocks (Bl and Bl′) are
committed by two non-faulty replicas with the same leader-
index respectively, then Bl = Bl′.

Proof. Assume Bl and Bl′ are committed by two critical-
leader blocks Bc and Bc′ in two replicas (p and p′), respec-
tively. If Bc and Bc′ have the same wave numbers, we must
have Bc = Bc′. According to Algorithm 3, all the anchor-
leader blocks committed by Bc and Bc′ must be the same.
Therefore, Bl = Bl′. Next, we consider the situation where
Bc and Bc′ have different wave numbers. Without loss of
generality, we assume Bc has a smaller wave number than
Bc′. According to Lemma 2, we have Sa(: B

c) ≺ Sa(: B
c′).

Since Bl ∈ Sa(: Bc), Bl′ ∈ Sa(: Bc′), and Bl and Bl′

are committed with the same leader index, we must have
Bl = Bl′ ∈ Sa(: B

c). Therefore, Lemma 3 is proved.

E. Proof of Lemma 5

LEMMA 5. At least 2f + 1 blocks can be successfully
delivered in each round.

Proof. Since there are two kinds of rounds (CBC round and
GRBC round), we will prove the lemma in two parts. Besides,
we mainly focus on the blocks broadcast by the non-faulty
replicas, as the faulty replicas may not broadcast any blocks
at all.

First, the block query mechanism guarantees that if a block
B is broadcast by a non-faulty replica, all the non-faulty
replicas will participate in this CBC or GRBC instance.

According to the GRBC termination rule described in
Section IV-E, a replica will terminate its participation in the
GRBC instances only if it has delivered 2f + 1 data with
grade 2 in this round. When none of the non-faulty replicas
has delivered 2f + 1 data with grade 2 in a GRBC round,
all the 2f + 1 non-faulty replicas will continue participating
in all the GRBC instances. When a non-faulty replica has
delivered 2f + 1 data, according to the rule described in
Section IV-E, it has broadcast all these 2f + 1 data to other
replicas. Each non-faulty replica will eventually receive these

data with certificates and deliver the data with grade 2 as well.
Therefore, each non-faulty replica will successfully deliver
2f + 1 data with grade 2 in a GRBC round.

Regarding the CBC round, according to the validity property
of CBC, each block broadcast by a non-faulty replica in the
CBC round will eventually be delivered by each non-faulty
replica. Therefore, each non-faulty replica will deliver at least
2f + 1 blocks in each round.

To sum up, at least 2f+1 blocks will be delivered in either
the CBC or GRBC round, which concludes the proof.

F. Proof of Lemma 6

LEMMA 6. Let χ(t) be the probability that there will be
at least one critical-leader block being committed during the
period t after any time point. We have limt→∞ χ(t)→ 1.

Proof. When the leader-block is revealed in a wave, one CBC
block must have been created by a non-faulty replica, and
2f + 1 GRBC blocks in the previous round must have been
delivered with grade 2. Denote these delivered GRBC blocks
with grade 2 as Sg and the leader-block as Bl. If Bl is a
member of Sg , Bl will be taken as a critical-leader block to be
committed. The probability that Bl ∈ Sg is over 2/3. Namely,
the probability that a leader-block is taken as a critical-leader
block is over 2/3. Therefore, as time goes by, the probability
that at least one leader-block is taken as the critical-leader
block becomes larger and larger, which concludes the proof.


