
Privacy Comparison for Bitcoin Light Client
Implementations
Arad Kotzer #

The Department of Computer Science, Technion, Haifa, Israel

Ori Rottenstreich #

The Department of Computer Science and the Department of Electrical and Computer Engineering,
Technion, Haifa, Israel

Abstract

Light clients implement a simple solution for Bitcoin’s scalability problem, as they do not store the
entire blockchain but only the state of particular addresses of interest. To be able to keep track of
the updated state of their addresses, light clients rely on full nodes to provide them with the required
information. To do so, they must reveal information about the addresses they are interested in. This
paper studies the two most common light client implementations, SPV and Neutrino with regards to
their privacy. We define privacy metrics for comparing the privacy of the different implementations.
We evaluate and compare the privacy of the implementations over time on real Bitcoin data and
discuss the inherent privacy-communication tradeoff. In addition, we propose general techniques to
enhance light client privacy in the existing implementations. Finally, we propose a new SPV-based
light client model, the aggregation model, evaluate it, and show it can achieve enhanced privacy
than in the existing light client implementations.

2012 ACM Subject Classification Networks → Network measurement

Keywords and phrases Blockchain, Privacy, Light Clients, Bloom filter

1 Introduction

Blockchain networks like Bitcoin [41] are composed of a decentralized blockchain, structured
as an immutable chain of data blocks. Starting from the first block, each block includes the
output of a cryptographic hash function computed over the content of the previous block,
making it impossible to alter a block without changing all subsequent blocks. Blockchain
blocks are lists of transactions bundled together due to the high cost of the consensus protocol.
Blocks are composed of two main components: block header and transactions. The block
header stores only metadata, a hash of the previous block and the root of the Merkle tree
of the block transactions [36]. The increasing amount of memory required to maintain the
full Bitcoin state together with rapid growth in the volume of transactions that must be
processed imply a large overhead on full Bitcoin nodes. Hence, not all nodes participating in
a blockchain store and process the entire blockchain.

A light client is a node variant that can verify only part of a block, without locally
maintaining the complete network state. While full nodes process the entire block (both
header and transactions), light clients process only partial block information. Light clients
are connected to full nodes and receive relevant information through them. To do so, light
clients reveal in various forms information about the addresses of their interest [23]. This
paper focuses on two common light client implementations SPV [41] and Neutrino [44],
covering the different approaches used by most existing light client solutions.

mailto:aradk@campus.technion.ac.il
https://orcid.org/0009-0000-9122-4525
mailto:or@technion.ac.il
https://orcid.org/0000-0002-4064-1238

2 Privacy Comparison for Bitcoin Light Client Implementations

Our main contributions are as follows:
We overview the main existing light client implementations: SPV and Neutrino.
We define privacy metrics for measuring the privacy of the implementations.
We perform both theoretical and empirical analysis, and compare the privacy of the
different light clients over time on real data.
We discuss how light clients may improve their privacy.
We present a new model that further improves light client privacy.

We structure the paper as follows. Section 2 overviews methods for set representation, in
addition to previous work on light client privacy. Section 3 presents the paper’s threat
model and Section 4 describes metrics used to measure the privacy of light clients. Next, we
provide a theoretical analysis of the privacy of SPV and Neutrino in Section 5. In subsections
6.1-6.3 we conduct an empirical analysis of the privacy of SPV and Neutrino, based on real
data. Subsection 6.4 presents the privacy-communication tradeoff and compare the different
implementations. These results are further discussed in Subsection 6.5. Then, we propose a
new light client model that improves privacy in Section 7. Section 8 concludes the paper.

2 Background

2.1 Memory-efficient Methods for Set Representation
Bloom Filters. The Bloom filter [10, 13] is a popular data structure widely used in many
networking device algorithms [12, 34], in fields as diverse as packet classification, routing,
filtering, caching, and accounting, as well as beyond networking in areas like verification and
spell checking. The Bloom filter is used for set representation, supporting element insertion
and answering membership queries. There are two kinds of errors in membership queries: a
false positive (when an element x /∈ U is reported as a member of a represented set U) and
a false negative (when an element x ∈ U is reported as a nonmember of U). The Bloom
filter encounters false positives and has no false negatives. It is built as an array of bits,
where hash functions map elements to bits in the array. With initial values of zero bits, the
elements of U are first inserted into the filter, setting the bits pointed by the hash functions.
Upon a query, bits mapped by the queried element are examined and a positive answer is
returned only when the bits are all set.

Golomb-Coded Set (GCS). GCS is a data structure similar to Bloom filters, though it
has a more compact in-memory representation that comes at the expense of having a slower
query time (compared to Bloom filters) [24]. Given a hash function, N the number of items
to be inserted into the set and an expansion parameter M , GCS works as follows:

(i) Hash all items using hashing function H to integers in the range [0, N · M).
(ii) Sort hashed values (in ascending order).
(iii) Calculate the differences between each value and the previous one.
(iv) Write the differences sequentially, compressed with Golomb coding [24].

Similar to Bloom filters, GCS is a probabilistic data structure that may contain false
positives as a tradeoff with the memory size. Assuming the hashing function H has a uniform
distribution, elements that were not inserted into the set have a probability of N ·1

N ·M = 1
M

to have the same hash value of an element in the set (after step (i)), and thus to appear in
the set. Small M values reduce the GCS size but increase the false positive rate. Table 1
summarizes the main notations of the paper.

A. Kotzer and O. Rottenstreich 3

Table 1 Summary of main notations.

Symbol Meaning relevant to
A address space SPV, Neutrino
|c| number of addresses associated with client c SPV, Neutrino
pi probability that an address i belongs to c SPV, Neutrino
H client entropy SPV, Neutrino
R detection ratio SPV, Neutrino
X number of addresses guessed correctly among |c| guessed addresses SPV, Neutrino
Ec expected number of correctly guessed addresses SPV, Neutrino
x a target probability sum SPV, Neutrino
N number of inserted elements in a set Bloom filter, GCS
F number of false positives in a set Bloom filter (SPV)
M expansion parameter GCS (Neutrino)

pF P probability of a downloaded block being a false positive Neutrino
K number of addresses in a block Neutrino
k number of non-eliminated addresses in a block Neutrino
A′ address space excluding all eliminated addresses Neutrino
z number of blocks an address appears in Neutrino

pi
z probability that non-eliminated address i appearing in Neutrino

z blocks downloaded by client c is associated with c

G number of groups client c participates in Aggregation Model
S number of clients in each group Aggregation Model
l group leader Aggregation Model

pcolluding probability light clients might collude with a full node Aggregation Model

2.2 Light client implementations

Bitcoin Simplified Payment Verification (SPV). SPV clients were first suggested in
Bitcoin’s original white paper [41]. Since light clients do not keep track of the entire network
state but only of several addresses in their interest, to be familiar with the balance of these
addresses, SPV clients request all relevant transactions from a full node. To preserve privacy
regarding the addresses associated with each client, light clients do not send an explicit
list of relevant addresses but send a filter containing these addresses implicitly. Among all
transactions that appear in a block, a full node only forwards those transactions that match
the SPV filter, potentially with some false positives (namely transactions beyond the interest
of the SPV client). Together with the particular transactions of interest, the full node also
provides Merkle-tree-based proofs, demonstrating their inclusion in the block. Once the SPV
client receives and validates the transactions (using the Merkle proof), it updates its state
according to the transactions.

A Bitcoin Improvement Proposal (BIP) is a formal proposal to change Bitcoin suggested
by the Bitcoin community (recall Bitcoin does not have one centralized leader). In BIP-37 [37],
Bloom Filters were suggested as light client address filters. Using Bloom filters allows SPV
clients to in-explicitly express the set of addresses they are interested in. The filter length
can be selected based on a required false positive probability. Fig. 1a illustrates the process
of an SPV client requesting transactions from a full node.

Though multiple Bitcoin light client implementations exist, most implementations, such
as Electrum [51], Bither [47] and Mycelium [1], are all SPV-based. Moreover, [15] covers
the main blockchain systems supporting light clients, and though these systems differ from
each other, and accordingly the light client implementation they support, almost all of the
light client implementations, including Binance light client [5], Cosmos - InterBlockchain

4 Privacy Comparison for Bitcoin Light Client Implementations

Table 2 A high-level comparison between SPV and Neutrino.

SPV [37] Neutrino [3]

Set representation method Bloom filter Golomb-coded set
Data downloaded by light client Transactions Blocks

Who performs most computation? Full node Light client
Privacy achieved by False positives Downloading blocks

Full node
Light client

Bloom filter

matched txs

tx match?

txs

(a) SPV.

Full node
Light client

GCS filters for blocks

relevant block numbers

requested blocks

txs

(b) Neutrino.

Figure 1 (a) Bitcoin SPV Clients: The light client reports its set of relevant addresses through
a Bloom filter. (b) Neutrino Clients: A full node sends GCS (Golomb-Coded Sets) filters of the
addresses in newly generated blocks, the light client reports relevant blocks it would like to download
and the full node sends these blocks.

Communication [11] and ZCash’s Flyclient [14] light client, are all SPV-based or have a
similar implementation to SPV. Ethereum light clients such as Helios [4], Kevlar [50] and
Lodestar [6] use Bloom filters too for gathering information transactions from a full node.
Cuckoo filter [22] based light clients [48] are similar too, having a client using a filter to
request transactions when updating its state. The advantages of SPV clients are that they
store locally only a small amount of data, in addition to very little data that is sent as
part of the communication with the full node. Additionally, SPV clients perform minimal
computations as the full node is the one to process newly generated blocks for finding relevant
transactions. However, this light client implementation suffers from several drawbacks. First,
SPV clients may observe low privacy as full nodes can infer what addresses are related to the
SPV client. Additionally, since the heavy computation is performed on the full node, it is
not very rewarding for the full node. This also makes full nodes vulnerable to DOS (Denial
of service) attacks. To improve privacy, SPV clients use Bloom filters with a high rate of
false positives to make it harder to infer what addresses are associated with the client.

Neutrino. To overcome the privacy drawbacks of SPV light clients, Neutrino clients suggest
a different approach: Rather than requesting specific transactions from the full node, light
clients download specific blocks, containing the relevant transactions. BIP-157 [44] implements
this approach, using Client-Side Block Filtering. Whenever a new block is generated, full
nodes create and broadcast a filter of all addresses that appear in the block. When a light
client receives a filter, it checks if any of the addresses in the block are relevant. If so, the
light client downloads the entire block from the full node and updates its state. BIP-158 [43]
suggests using Golomb-Coded Sets (GCS) filters since a GCS filter is typically smaller than
a Bloom filter with the same amount of elements inserted and the same false positive rate.
Neutrino [3] is a light client implementation with Client-Side Block Filtering using GCS.
Fig. 1b illustrates the process of updating the state of Neutrino clients. Since Neutrino light
clients download the entire block and not specific transactions, full nodes have much less
information regarding the light client’s addresses. Additionally, as full nodes with Neutrino
implementations perform fewer computations than full nodes with SPV implementations,
Neutrino full nodes are less vulnerable to DOS attacks. On the other hand, Neutrino requires

A. Kotzer and O. Rottenstreich 5

more computations on the light client’s side when a client checks the relevancy of a received
filter. Additionally, the network communication of Neutrino clients is higher than the SPV
clients as Neutrino clients download the entire block and not only specific transactions.
Moreover, as full nodes know what blocks were downloaded by clients, as we show in this
paper Neutrino clients also have privacy concerns. Table 2 summarizes high-level differences
between SPV and Neutrino clients.

2.3 Related Work

Security and privacy in Bitcoin have been widely discussed in the literature. Conti et
al.[18] perform a comprehensive study on the security and privacy of Bitcoin, reviewing
de-anonymization methods by analyzing blockchain data. [39] use a forensics perspective,
analyzing Bitcoin wallets for iOS and Android, recovering information such as metadata,
installation data, timestamps, and usage traces. Multiple papers [21, 9, 58, 40] try to cluster
Bitcoin addresses. [32] link between fungibility and anonymity of cryptocurrencies and put
forward a framework to measure the fungibility and anonymity of cryptocurrencies, using
Shanon entropy. Additionally, [53] uses a Transaction Directed Acyclic Graph (TDAG) to
capture blockchain privacy notions (PDAG) and compare Monero and Zcash, the two most
prominent privacy-preserving blockchains. All of these papers though, do not focus on light
clients. [31] provides a taxonomy of cryptocurrency wallets, including light clients such as
SPV and Neutrino, evaluating their performance and security. The privacy evaluation is
given at a high level without formalized privacy or empirical evaluation.

The privacy and anonymity of Bitcoin light clients have been discussed widely [23, 29, 57, 8].
The first to analyze and formalize the privacy issues of light clients using Bloom filters was a
study by Geravis [23]. Later, in [26], the BIP-37 proposers who implemented Bloom filters in
SPV clients expanded on these privacy issues and discussed the difficulties of solving them.
[29] further continue the analysis of [23]. Let N be the total number of addresses inserted in
a Bloom filter and F the number of false positives. [23] show the probability of an address
with a Bloom filter positive indication actually belonging to c is pi = N

N+F . Accordingly, the
probability of guessing j addresses with a positive Bloom filter indication and having them
all associated with c is

∏j−1
i=0

N−i
N+F −i . We note that in our paper, we base our initial analysis

on these probabilities. Similarly, [29] presents a metric called γ-deniability. They refer to a
Bloom filter member x ∈ S as deniable if for i ∈ {1, . . . , n} there is a nonmember yi such
that Hash(x) = Hash(yi). Then, a Bloom filter is γ-deniable if an address is deniable with
probability γ. That work indicates that privacy is affected not only by the false positive
rate of the Bloom filter but also by the number of real addresses. They describe a method
for estimating the number of active addresses through a linear regression model. A similar
observation about the efficiency of Bloom filters was described in a more general context [46].
Later, [27] provides an evaluation of the privacy of SPV clients using multiple bloom filters
with the γ-deniability metric, in addition to an entropy measurement of the Bloom filters.
Unlike SPV, the privacy of Neutrino clients is not discussed much as it is generally considered
much higher than SPV [45].

To provide better privacy than SPV, several approaches were suggested, such as Neut-
rino light clients [3], PIR-based light clients and [16, 45, 56] and using trusted execution
environment-based light clients [35, 42, 49, 54], and In this paper, we do not focus on the
latter approach since it requires suitable special hardware which makes it unusable for most
current Bitcoin users, hence it is rarely implemented in practice.

6 Privacy Comparison for Bitcoin Light Client Implementations

3 Threat Model

In blockchain systems, user privacy is a major concern. However, the relation between
Bitcoin transactions and addresses can be used to analyze Bitcoin’s privacy information,
seriously jeopardizing Bitcoin anonymity [59]. An adversary may find an association between
Bitcoin transactions and addresses using address clustering, further associating groups of
addresses with the same entity [25, 28, 59, 52, 33]. Moreover, although the recommendation
in Bitcoin is to generate a new address for each transaction, as this results in a large overhead
of generating and managing addresses, most Bitcoin users do not generate a new address
each time. Similarly to previous work [8, 23, 29, 57], in this paper, the goal of an attacker
is to reveal what addresses typically belong to the wallet of light client c. This allows the
attacker to track every transaction performed by c, and keep track of c’s financial status.
Likewise, we assume the light clients are connected to the Bitcoin P2P network, and receive
information regarding the network transaction through full Bitcoin nodes. That attacker
gains information from the filters used by c (the Bloom filters for SPV clients and the blocks
downloaded for Neutrino clients). Moreover, we assume all relevant filters can be tracked to
the same IP address (thus the adversary knows what filters are related).

We argue this model currently represents a real-life scenario. First, for an SPV client
c all the attacker needs is a filter of the addresses of c, which is sent to any full node c

communicates with. As for Neutrino clients, often a Neutrino client continues to communicate
with the same full nodes over and over, allowing them to gain information regarding all of
the blocks c is interested in. c communicates with the same nodes for several reasons: First,
as the process of full node seeking is DNS-similar and might be time-costly, light clients keep
a cache of full nodes they discovered, and communicate with cached full nodes rather than
search for new full nodes every time. Additionally, as this threat model is passive, c is not
aware of the attacker’s gain of information. An attacker might act as a fast and reliable
node, encouraging c to continue using it rather than search for other full nodes. Moreover, if
c disconnects from the network and later rejoins, to reconstruct the previous state c might
request all relevant blocks at once from the same full node. In addition, Neutrino clients are
encouraged to communicate with multiple full nodes and validate the consistency of the data
received to lower the risk of data leakage attacks [35]. On top of that, c might communicate
with colluding full nodes, sharing information. Hence, Neutrino clients are at risk of having
a full node with information regarding all of the blocks c was interested in.

4 Privacy Metrics

In this section, we present light client privacy evaluation metrics. Previous papers [23, 29]
have already analyzed the privacy of SPV clients, though they did not use privacy evaluation
methods that can be compared to other light client implementations but SPV. We expand
the privacy analysis of SPV clients and present different privacy metrics that can be used to
analyze the privacy of Neutrino clients as well. These metrics also allow us to compare the
privacy of SPV and Neutrino clients. Although Neutrino clients are thought to have much
higher privacy since they download full blocks rather than specific transactions [3, 57, 31], as
we show in this paper over time Neutrino clients may suffer from severe privacy issues too.
To the best of our knowledge, we are the first to measure the privacy of Neutrino clients.
Throughout the paper, the privacy of light client c refers to the situation where the specific
details of the account addresses of c should be hidden from external parties. pi denotes the
probability that an address i is among the addresses of interest of client c. Denote by A the
blockchain address space such that c ⊆ A. In Section 5 we show how to evaluate pi for each
address in both SPV and Neutrino clients. We present the two following privacy metrics:

A. Kotzer and O. Rottenstreich 7

(i) Light Client Entropy. Entropy is a metric used to measure the uncertainty or disorder
of a dataset or a random variable. The higher the uncertainty regarding each element in the
dataset, the higher the entropy gets. When all addresses have the same probability, pi = |c|

A ,
it is the most difficult to distinguish between addresses associated with c and other addresses.
Additionally, when some addresses have a higher probability compared to others, there is
less uncertainty regarding which addresses belong to c. Assuming the sum of probabilities
pi of all addresses in A is |c| (as c has |c| addresses), the number of addresses needed to
cover some probability sum of x < |c| can indicate the uncertainty of the network. Hence,
we define T (x) as the minimal number of addresses needed to cover some probability sum
x. This minimal number of addresses can derived based on the addresses with the highest
probabilities. On the one hand, a wide range of x values gives a better indication. On the
other hand, lower x values distinguish addresses better (for instance x = |c| will always
return the number of addresses with pi ̸= 0, which is less informative). Hence Definition 1,
presenting the light client entropy of some light client c, sums T (x · |c|) for x values in the
range [0, 1], and gives higher weights for lower x values. Finally, a ln operation is applied for
convenience to scale the entropy (and is not mandatory). We note that addresses that are
necessarily not associated with c (satisfying pi = 0) decrease the value of entropy H as they
often lead to higher probabilities of other addresses being associated with c, thus decreasing
T (x · |c|). Moreover, it is easy to see that the minimal entropy value is achieved when there
are |c| addresses with probability pi = 1 (namely, when all addresses associated with c are
known), as T (x · |c|) returns the minimal value possible for all x values.

Our definition of entropy differs from the classic Shanon entropy equation, Entropy =
−

∑
j p(j) · log p(j). The entropy values are maximized when the pi values get closer to 0.5.

As pi describes the probability of an address being associated with c, and since there are
many more addresses that are not associated with c (namely, |c| << |A| − |c|), lower pi

values, rather values closer to 0.5, are values indicating higher uncertainty. Hence, the classic
Shanon entropy equation (while considering the probabilities for addresses in the address
space) is less suitable for measuring uncertainty regarding c’s addresses.

▶ Definition 1. The light client entropy of light client c is defined as

H(c) = ln
∫ 1

0
(1 − x) · T (x · |c|)dx

where T (x · |c|) is the minimal number of addresses needed to cover a probability sum of x · |c|.

(ii) Detection Ratio. As the number of addresses of c an adversary can guess correctly
is a privacy concern, the detection ratio metric measures the ratio between the number of
correctly guessed addresses and the total number of guesses. Assuming an adversary guesses
|c| addresses, Ec denotes the expected number of correctly guessed addresses.

▶ Definition 2. The detection ratio R(c) of client c is defined as R(c) = 1
|c| · Ec, assuming

out of |c| addresses guessed, the expected number of correctly guessed addresses is Ec.

Intuitively, for lower values of the detection ratio R(c) there is less certainty about which
addresses are associated with c, and the privacy of c is higher. We present a simple lemma
related to the detection ratio.

▶ Lemma 3. The expected number of correctly guessed addresses Ec equals the sum of
probabilities of guessed addresses: Ec =

∑
i∈Ω pi, where Ω is the set of guessed addresses.

8 Privacy Comparison for Bitcoin Light Client Implementations

Proof. Assume an adversary guesses a set Ω of |Ω| = |c| addresses. Now, let X be the number
of addresses in Ω that were guessed correctly. Let Xi be an indicator for a guessed address
i ∈ Ω to be indeed in c. In that case, Ec = E[X] = E[

∑n
i=1 Xi] =

∑n
i=1 E[Xi]. Since the

expectation on an indicator i is equal to the probability that Xi = 1, i.e. E[Xi] = P (Xi = 1),
then Ec =

∑
i∈Ω pi equals the sum of the probabilities of the guessed addresses. ◀

By Lemma 3, the value Ec equals the sum of the probabilities of the guessed addresses.
We note the minimal detection ratio is achieved when each address i ∈ A has the probability
pi = |c|

|A| of being associated with c. In such a case, the detection ratio is R(c) = |c|
|A| .

We note that while entropy measures the uncertainty on the entire network and is affected
by all addresses, the detection ratio measures the more prominent addresses and is affected
mainly by the high-probability addresses in the network.

5 Privacy Theoretical Analysis

5.1 SPV privacy
When evaluating the privacy of SPV clients, the information regarding the addresses of client
c is inferred from the Bloom filter c creates. As most SPV-based implementations use a
constant filter for a long time, the privacy of SPV clients does not change over time since
the information regarding the addresses in c is inferred from the filter alone. We start with a
simple property regarding addresses that do not appear in the filter:

▶ Property 4. Addresses with a negative indication in a filter are not associated with c.

Property 4 states that the probability of every address with a negative indication being
related to c is pi = 0 since c inserts all of its addresses to the filter that has no false negatives.
The probability of address i with a positive indication belonging to c was analyzed in [23], and
depends on the number of addresses of c and the number of false positives F : pi = |c|

|c|+F . We
take the analysis of SPV privacy a step forward, trying to numerically evaluate its privacy in
a way that could be compared to other light client implementations. Lemma 5 evaluates the
entropy of light client c, showing H(c) = ln |c|+F

6 . Lemma 6 shows the number of addresses
guessed correctly out of guessing |c| addresses of an SPV client is hypergeometric distributed
with parameters (N, |c|, |c|), allowing Lemma 7 to evaluate the detection ratio of light client
c as R(c) = |c|

|c|+F .

▶ Lemma 5. For an SPV client with |c| addresses and a Bloom filter containing F false
positives, the light client entropy value is H(c) = ln |c|+F

6 .

Proof. We first note that there are |c| + F addresses with a positive filter indication, all with
probability pi = |c|

|c|+F of being associated with c. By property 4, all other addresses in address
space A have a probability of pi = 0. Next, we note that there are x · (|c| + F) addresses
needed to achieve a probability sum of x · |c|, hence for 0 ≤ x ≤ 1, T (x · |c|) = x · (|c| + F).
Thus, H(c) = ln

∫ 1
0 (1 − x) · T (x · |c|)dx = ln

∫ 1
0 (1 − x) · x · (|c| + F)dx = ln |c|+F

6 . ◀

▶ Lemma 6. Let X be the number of addresses guessed correctly out of guessing |c| addresses
of an SPV client (all guesses are of addresses with a positive Bloom filter indication). X has
a hypergeometric distribution with parameters (N, |c|, |c|).

Proof. Recall SPV clients create a Bloom filter with a positive indication for N = |c| + F

addresses, out of them |c| indeed belong to c. X is the number of addresses that belong to
client c that are guessed correctly. The guessing order does not matter, and each guess reduces
the address space to guess from (since |c| different addresses are guessed). We note this case

A. Kotzer and O. Rottenstreich 9

is identical to the classic hypergeometric distribution problem: Given a bin with N balls,
out of them n = |c| are black and the rest are white. Let X count the number of black balls
drawn (with no returning the balls and with no meaning to the drawing order). Since there
are |c| black balls, the maximal number of black balls drawn is D = |c|. Therefore, X has a
hypergeometric distribution with parameters (N, D, n), that is X ∼ HG(|c| + F, |c|, |c|). ◀

▶ Lemma 7. For an SPV client with |c| addresses and a Bloom filter containing F false
positives, the light client detection ratio is R(c) = |c|

|c|+F .

Proof. By Lemma 6 X ∼ HG(N, |c|, |c|). Hence, the expected number of correctly guessed
addresses is Ec = |c|2

|c|+F . Therefore, by the definition of the light client detection ratio
R(c) = Ec · 1

|c| = |c|2

|c|+F · 1
|c| = |c|

|c|+F . ◀

5.2 Neutrino privacy
As Neutrino clients receive the GCS (Golomb-coded set) filter from a full node and do not
download specific transactions but full blocks, it seems like there is much less information
that can be inferred by a full node hence Neutrino clients’ privacy is generally considered
much higher than of SPV [45]. Matetic et al. [35] show that a Neutrino client c might be at
risk of an attack revealing information on its addresses if it receives GCS block filters from a
single entity, though privacy is considered high when c communicates with multiple servers
(full nodes) and validates the data is consistent between the servers. This motivates Neutrino
clients to request the same information from multiple servers. We show there yet exists a
major privacy issue if some server knows the exact blocks c downloaded. Additionally, in
contrast to SPV light clients, we show the privacy of Neutrino clients decreases over time.
To the best of our knowledge, we are the first to address and formalize this problem. We
assume there exists a server with information about what exact blocks c downloaded and
can thus infer what blocks were not downloaded too.

Recall GCS filters have false positives, possibly making clients download blocks without
addresses associated with them. Given the probability for the block containing at least
one address the client is L, |c| is the number of addresses associated with client c and an
expansion parameter M for the GCS filter, Lemma 9 presents the probability of this block
being false positive for c. Upon assuming that in address space A all addresses have the
same probability to appear in a block, L can be evaluated as shown in Lemma 8.

▶ Lemma 8. Assume each block contains K > |c| addresses, selected uniformly at random
from the address space A. The probability L for the block to contain at least one address of
client c is L = 1 −

(|A|−|c|
K

)
/
(|A|

K

)
.

Proof. Given a block, let Y be the number of addresses associated with client c that appear in
the block. As all addresses have the same probability to appear in the block, when choosing K

addresses (out of them |c| addresses are associated with c) for the block the maximal number of
addresses associated with c that may appear in a block in min{|c|, K} = |c|. Hence, similarly
to X in Lemma 6, Y has a hypergeometric distribution, i.e. Y ∼ HG(|A|, |c|, K). Thus
P (Y = 0) =

(
D
0
)
·
(

N−D
n−0

)
/
(

N
n

)
=

(|A|−|c|
K

)
/
(|A|

K

)
and L = 1−P (Y = 0) = 1−

(|A|−|c|
K

)
/
(|A|

K

)
. ◀

▶ Lemma 9. Consider a Neutrino client c with |c| addresses and let M be the expansion
parameter of the GCS filter representation of a block. Let L be the probability of a block
containing at least one address of c. The probability of a block being a false positive block
(i.e. being downloaded by c without actually containing any address of c) is

pF P = (1 − L) ·
(

1 − (1 − 1
M

)|c|
)

=
(

|A| − |c|
K

)
/

(
|A|
K

)
·
(

1 − (1 − 1
M

)|c|
)

.

10 Privacy Comparison for Bitcoin Light Client Implementations

Proof. For a block to be a false positive for client c, two conditions must be met:
(i) The block does not contain any address of c (event B).
(ii) Client c has at least one address with a positive filter indication (event D).

As L is the probability that at least one address associated with c will appear in the block,
the probability for the first condition to be met is P (B) = 1 −L. We compute the probability
for event D given that event B holds. Recall the probability of a non-associated address
to have a positive filter indication is 1

M , implying that the probability of a non-associated
address having a false filter indication is the 1 − 1

M . Since client c has |c| addresses, the
probability that all of addresses in c have a false filter indication is (1 − 1

M)|c| and at least
one address has a positive filter indication with probability P (D|B) =

(
1 − (1 − 1

M)|c|
)

.

Thus, pF P = P (B) · P (D|B) = (1 − L) ·
(

1 − (1 − 1
M)|c|

)
. ◀

Given that a block was downloaded by a client and is not a false positive, the probability
of guessing a single address is pi = 1

K where K is the number of addresses in a block. Since
an address appearing on a block may belong to c only if the block is not a false positive,
Property 10 is intuitive:

▶ Property 10. Given a block with K addresses that was downloaded by c, with one address
that belongs to c and with no other knowledge, the probability of each address being associated
with c is p = (1 − pF P) · 1

K .

Similarly to Property 4, a full node can infer that addresses in blocks not downloaded by
c are not associated with it, as stated in Property 11. For every such address, the probability
of being associated with c is p = 0. An address in a block downloaded by c that also appears
in an earlier block not downloaded by c has a probability of p = 0.

▶ Property 11. Addresses appearing in blocks the light client did not download are not
associated with the client.

▶ Definition 12. For some light client c and a block B downloaded by c, non-eliminated
addresses are addresses that appear in B and do not appear in any earlier block that was
not downloaded by c.

Therefore, Property 13 states that only the amount of non-eliminated addresses k should
be considered when evaluating pi.

▶ Property 13. Given a block downloaded by c, with one address that belongs to c, knowing
the block contains k non-eliminated addresses, the probability of each address being associated
with c is p = (1 − pF P) · 1

k .

6 Light Client Privacy Measurement

After presenting the privacy analysis of each implementation, we now evaluate and compare
the analysis of the different implementations. We examine the main parameters affecting
the privacy of each implementation and later empirically evaluate the privacy based on real
Bitcoin data. As Bitcoin uses the RIPEMD-160 [20] hash function, the number of possible
addresses is 2160. However, in practice, the Bitcoin blockchain consists of about a billion
addresses as of April 2023. Hence, the address space is of size |A| = 109. If only the number
of addresses |c| is known, pi = |c|

|A| . As all addresses have the same pi, this case is equivalent
to having a filter using F = |A| − |c| addresses, and by Lemmas 5 and 7 the entropy is

A. Kotzer and O. Rottenstreich 11

100 101 102 103 104 105 106 107 108

100

101

false positives F

en
tr

op
y

va
lu

e
H

(c
)

Bloom filter known, |c| = 10
Bloom filter known, |c| = 50
Bloom filter known, |c| = 100
Upper bound

(a) Client Entropy.

100 101 102 103 1040

0.2

0.4

0.6

0.8

1

false positives F

de
te

ct
io

n
ra

tio
R

(c
) Bloom filter known, |c| = 10

Bloom filter known, |c| = 50
Bloom filter known, |c| = 100
Lower bound

(b) Detection Ratio.

Figure 2 (a) The entropy of an SPV client c compared to the number of positives. The graph also
contains the entropy values of C when the Bloom filter is unknown. (b) The number of addresses
and the detection ratio compared to the number of positives. For convenience, the detection ratio is
presented as a percentage (scaled by 100). Both graphs are calculated for light clients with having
|c| = 10, 50 and 100 addresses.

H(c) = ln |A|−|c|+|c|
6 = ln 109

6 = 18.93, and the detection ratio is R(c) = 1
|109| . We now show

that by receiving additional information from the client, like a Bloom filter (SPV) client and
what blocks c downloaded (Neutrino) the privacy decreases.

6.1 Data
To evaluate the privacy of the different implementations on real-life data, we downloaded
all mined Bitcoin blocks during April 2023. A total of 4161 blocks were mined, averaging
137 mined blocks per day. Though the maximal size of a Bitcoin block is 4 MB, the average
block size was around 3.2 MB. Since achieving information regarding real-life wallets and
the addresses associated with them is not an easy task (as Bitcoin wallets are private), to
simulate a Neutrino client wallet, we sampled random addresses appearing in the blocks
mined on April 1st for wallets of size 10, 50 and 100. In each analysis, the address sampling
and privacy measuring were performed 100 times to neutralize noises. As there is no simple
formula for calculating the entropy of a Neutrino client, to evaluate the entropy of Neutrino
clients in Section 6.3, we sorted all of the probabilities in the network, implemented T (x) and
approximated the entropy value using calculating H(c) ≈ ln 1

1000 ·
∑

x∈[0.001,0.002,...,1](1 − x) ·
T (x·|c|). To assure uniformity between all entropy measurements, SPV entropy was calculated
using both the formula presented in Lemma 5 (derived from Definition 1) and by implementing
T (x) and calculating the value of ln 1

1000 ·
∑

x∈[0.001,0.002,...,1](1 − x) · T (x · |c|). For all SPV
entropy experiments, the entropy values of both calculations were at least 99.999% similar,
showing the sampling of the entropy evaluation of ln 1

1000 ·
∑

x∈[0.001,0.002,...,1](1 −x) ·T (x · |c|)
provides a close enough approximation.

6.2 SPV Measurement
For SPV light clients the main parameter affecting privacy is the number of positives F in the
Bloom filter. Fig. 2a presents the entropy of client c compared to the number of positives, for
different values of |c|. The figure additionally contains an upper bound of the privacy metrics
which is achieved when the adversary does not have the client Bloom filter. The larger F is,
the higher the entropy is. For instance, for a client with |c| = 50 addresses, F = 104 false
positives imply an entropy of H(c) = 3.25. The entropy increases to H(c) = 7.51 for a larger
amount of false positives, F = 105. Up to some point (in our case around F = 40 · 103),
an entropy increase can be achieved not only by increasing F , but also by increasing the

12 Privacy Comparison for Bitcoin Light Client Implementations

number of addresses used by c. For instance, for |c| = 10 addresses and F = 500 the entropy
is equal to H(c) = 4.52, while for the same amount of false positives, the entropy increases
to H(c) = 4.69 if c uses |c| = 100 addresses instead. This is because as entropy measures
the uncertainty in the network, it is affected by all addresses, and the more addresses with
pi ̸= 0 there are, the higher entropy gets. More specifically, for SPV clients it is very easy to
see from Lemma 5 how the number of addresses in the filter affects entropy H(c), hence for
larger |c| values the filter contains more addresses and H(c) increases accordingly. However,
from around F = 40 · 103 all three sizes of |c| achieve similar entropy, as the size of c becomes
quite negligible compared to F .

Fig. 2b presents the address detection ratio of client c compared to the number of positives.
As expected, the detection ratio decreases as F increases. Though, unlike the entropy, more
addresses associated with c result in a higher detection ratio: Having F = 10 false positives,
the detection ratio is R(c) = 0.5 if c uses |c| = 10 addresses, namely 50% of the guessed
addresses are associated with c. For |c| = 100 the detection ratio is R(c) = 0.91. To achieve
a detection ratio of R(c) = 0.5 an amount of F = 100 false positives is needed. This is
because the detection ratio is affected mainly by the probability pi of each address, and for
the same amount of false positives used in a filter, higher c values have a higher percentage
of addresses that belong to c in the filter, hence probability pi for address increases and as
a result R(c) increases too. Similar to the entropy, when using around F = 40 · 103 false
positives, |c| becomes relatively negligible compared to F , in addition to a very low detection
ratio, hence the differences between the different |c| values become very small.

6.3 Neutrino Measurement
For Neutrino light clients, privacy is affected mainly by the block size, the amount of non-
eliminated addresses k in each block, the number of blocks downloaded by c and the number
of blocks each address appears in. Since the privacy of Neutrino clients depends on various
parameters and the probability of an address being associated with c varies between the
different addresses, Neutrino privacy evaluation is more difficult than SPV clients. We now
show that although Neutrino clients are considered to have high privacy, they may suffer
privacy issues over time.

Following the analysis in Section 5.2, we analyze the probability of an address appearing
in z blocks being associated with c. Intuitively, when the false-positive ratio is low, the more
blocks an address appears in the higher the chances it is associated with c. Assuming (for
simplicity) c is interested in (at most) one address from each downloaded block, since in a
non false-positive block the probability of a non-eliminated address not being associated with
client c is pi = k−1

k (for a false positive block pi = 0). This is assuming independence between
blocks, meaning the probability that an address that appears in z blocks is not associated
with c is P =

∏z
i=1

ki−1
ki

, where ki is the number of non-eliminated addresses and 1 is the
number of addresses associated with c in a non false-positive block. Hence, if all blocks are
non false-positive the probability that the address is associated with c is p = 1 −

∏z
i=1

ki−1
ki

.
Since the probability for z blocks not to be false positive is P = (1 − pF P)z, the probability
of a non-eliminated address appearing in z blocks downloaded by c being associated with c

is pi
z(c) = (1 − pF P)z ·

(
1 −

∏z
i=1

ki−1
ki

)
.

Fig. 3 presents the average entropy and detection ratio over time. We consider probability
p = 0 for eliminated addresses, and for each non-eliminated address i ∈ A′ that did not
appear yet in a block, we consider probability p = |c|

|A′| , where A′ is the address space
excluding all eliminated addresses. When evaluating the entropy, all address probabilities
were normalized to ensure the sum of probabilities equals c.

A. Kotzer and O. Rottenstreich 13

0 5 10 15 20 25 30
100.8

101

101.2

day

en
tr

op
y

va
lu

e
H

(c
)

client size |c| = 10
client size |c| = 50
client size |c| = 100

(a) Client Entropy.

0 5 10 15 20 25 300

0.1

0.2

0.3

day

de
te

ct
io

n
ra

tio
R

(c
)

(b) Address Detection Ratio.

Figure 3 (a) Entropy of a Neutrino client c over a month. (b) Detection ratio of a Neutrino
client c over a month. Both graphs were calculated for client size of |c| = 10, 50 and 100 addresses.

Fig. 3a shows the more blocks are mined the more information there is regarding the
addresses of c and the entropy decreases. For instance, while for |c| = 50 the entropy was
H(c) = 9.75 at the end of the first day (after 139 mined blocks), by the 30th day the entropy
decreased to H(c) = 7.46. This indicates that the more blocks are mined the more certainty
there is regarding what addresses belong to c. We additionally notice there is a large drop
in entropy on the first day. This is because before a full node has any information on c, all
addresses are candidates of being associated with c. After a day, many addresses become
eliminated addresses hence |A′| decreases by much, and as the entropy is affected by all
addresses, eliminating that many addresses decreases the entropy by much. Moreover, we
see the slopes of the graphs become milder over time. This is because over time there are
fewer and fewer addresses that are eliminated, hence the entropy decreases slower over time.

The detection ratio evaluation shows how the detection ratio increases over time too,
indicating a privacy decrease. As shown in Fig. 3b, after one day the detection ratio for
|c| = 10 was R(c) = 0.11, meaning an adversary could identify correctly an average of 11%
of the addresses of c. By the 30th day, the detection ratio increased to R(c) = 0.26. Unlike
the entropy, there is a difference in the detection ratio for different |c| values, as the more
addresses c uses the lower the chances of guessing correctly the addresses that belong to
c. For instance, on the 30th day with |c| = 100 the detection ratio is only R(c) = 0.08,
more than three times lower than |c| = 10. Moreover, the graphs show that for each day,
for larger c values the entropy and detection ratio have lower values, whereas for smaller c

values they increase. This is because larger c values result in downloading more blocks. The
main addresses that contribute to the entropy values are the non-eliminated addresses that
did not appear in any block. Hence, as for larger c values more blocks are downloaded, fewer
addresses have not appeared yet in a block and thus the entropy is relatively larger. As the
detection ratio is mostly affected by unique addresses that appear in blocks c downloaded
more than others, when more blocks are downloaded the higher the chances of addresses
appearing, thus reducing the chances of unique addresses that significantly appear more
than other addresses. To conclude, for all c values the entropy decreases over time while the
detection ratio increases, both indicating a privacy decrease over time in Neutrino.

6.4 Privacy and Communication Overhead
We now analyze the privacy and network communication of SPV and Neutrino. Additionally,
we compare this analysis to a PIR light client, which provides maximal privacy. Private
Information Retrieval (PIR) protocols, introduced by [17], allow clients to query a server and
retrieve data from the server’s database without revealing information regarding the data the
client was interested in. There have been several suggestions for light client implementations
using PIR [55, 56, 45]. We note that PIR implementations require a change in the current

14 Privacy Comparison for Bitcoin Light Client Implementations

10−3 10−2 10−1 100 101 102 103 104

100.8

101

101.2

Total Network Communication (MB)

En
tr

op
y

Va
lu

e
H

(c
)

(a) Entropy vs. Communication overhead.

10−3 10−2 10−1 100 101 102 103 104

10−7

10−5

10−3

10−1

Total Network Communication (MB)

D
et

ec
tio

n
R

at
io

R
(c

)

Neutrino
SPV-850
SPV-40K
PIR
Ideal
Trivial

(b) Detection ratio vs. Communication overhead.

Figure 4 Privacy compared to communication overhead comparison between different light client
implementations, for a client with |c| = 50 addresses. (a) Entropy vs. communication overhead. (b)
Detection ratio vs. communication overhead.

Bitcoin full node protocol, in addition to much higher increased computational requirements
on both the server and clients. As light clients should stay light (usually running on devices
with small computation power), they are not yet popular as a light client solution. Hence,
we do not focus on PIR client implementations and use them as a solution providing ideal
privacy while improving the trivial solution of downloading the entire blockchain. We analyze
the PIR-based light client protocol presented in [45], provided in Percy++ [2], an open-source
library. Since we assume the privacy of PIR-based clients is ideal, the probability pi of each
address for PIR implementations is pi = |c|

|A| with |A| addresses that appear in the blockchain.
In our analysis, we generate clients with |c| = 50 random addresses similarly to Section 6.3.

We note the communication overhead of the filters used by SPV and Neutrino clients is
negligible compared to the downloaded transactions’ data. Fig. 4 presents the privacy of the
different implementations, in addition to the Trivial (downloading the entire blockchain)
and the Ideal implementations (achieving maximal privacy with downloading minimal data),
compared to the communication overhead after 30 days. For the SPV implementation, we
used two filter sizes with F = 850 and F = 40 · 103 false positives, denoted as SPV-850 and
SPV-40K, respectively. We observe in Fig. 4a that the Ideal, Trivial and PIR solutions
reach an entropy of H(c) = 18.91. While Trivial requires downloading the entire blockchain
of size 12.3 GB, PIR reduces this overhead to 204 MB. An ideal solution, though, would
require only 0.004 MB. SPV-40K achieves an entropy of H(c) = 8.81 for only 2.36 MB, and
Neutrino achieves an entropy of H(c) = 7.46, higher only than SPV-850, having an overhead
of 2.4 MB. The lowest entropy implementation was SPV-850 with an entropy of H(c) = 5.02,
though having a small overhead of 0.06 MB. Fig. 4b presents the detection ratio of each
solution. As we have already seen in Fig. 3, the detection ratio of Neutrino increases over
time, making it the highest detection ratio implementation, with R(c) = 0.18 after 30 days.
SPV-850 and SPV-40K achieve a detection ratio of R(c) = 0.055 and 0.012, respectively, while
PIR has a detection ratio of approximately zero.

6.5 Discussion: Additional Insights from the Measurement and Analysis
We now compare the privacy of the light client implementations, suggesting insights to
improve privacy in the existing light client implementations.

6.5.1 Privacy Comparison
Subsection 6.4 shows that in general, there is a privacy and communication overhead tradeoff
for light clients. For example, PIR provides better privacy than SPV and Neutrino, though
with a much higher communication overhead. That said, several implementations are

A. Kotzer and O. Rottenstreich 15

comparable to others and some light clients perform better than others. Our analysis shows
that, unlike the common conception that Neutrino clients preserve more privacy compared
to SPV, under our threat model, SPV clients provide better privacy than Neutrino: While
SPV-40K has the same communication overhead as Neutrino, it provides a higher entropy
value and a detection ratio almost 15 times lower than Neutrino clients. SPV clients have
an additional advantage over other implementations, as there is only one main parameter
that determines privacy and communication overhead- the number of false positives F . This
allows SPV clients the opportunity to easily tune F based on what is more important for
their use- privacy or low network communication. Similarly, PIR light clients achieve similar
privacy as Trivial, having a much lower communication overhead, and can thus perform
better than SPV in the extreme case c wants maximal privacy.

6.5.2 Improving Light Client Privacy
Both SPV and Neutrino clients can improve their privacy by increasing the false-positive rate
of their filters. This results in additional transactions downloaded in SPV, and additional
blocks downloaded for Neutrino clients. We now suggest other efficient techniques to improve
light client privacy.

Neutrino. Recall by Section 6.3 that the probability pi of address i being associated with
c mainly depends on two parameters: z, the number of blocks an address appears in, and
k, the number of non-eliminated addresses. Increasing the number of addresses used by c

and thus decreasing z for many addresses will result in higher entropy and lower detection
ratio, indicating privacy improvement without any communication increase. Additionally, we
suggest methods for decreasing the chances of our threat model occurring. Recall Neutrino
clients are motivated to request information from multiple servers to reduce changes of some
privacy attacks [35]. We suggest Neutrino light clients should both limit themselves to a
non-large amount of full nodes and additionally divide the blocks download between multiple
servers rather than querying the same full nodes every time, especially when rejoining the
network. Moreover, we suggest Neutrino clients should keep track of the full nodes they
approached for information, and try being as diverse as possible when choosing a full node
to communicate with. In addition, occasionally clearing the full node cache will help avoid
reaching the same full nodes every time.

SPV. The main parameter determining the privacy of SPV clients is the number of false
positives, F . Hence, besides increasing F , section 7 suggests an SPV-based light client model,
that improves privacy for a similar communication overhead.

7 Proposal: The Aggregation Model (AM)

7.1 Overview
As existing light client implementations suffer from privacy issues, we suggest a new SPV-
based light client model, the aggregation model (AM), to potentially improve the privacy of
light clients, for a similar communication overhead. In short, we suggest light clients should
group up with other light clients, create an aggregated filter for all the clients and have one
client representative that communicates with the full node. We suggest light client c should
join G groups (each of size s light clients), equally split its addresses between these groups
and additionally add some false positives to each group filter.

16 Privacy Comparison for Bitcoin Light Client Implementations

We assume each light client c uses F false positives. Additionally, c joins G groups, each
group of size S, meaning there are S light clients in each group. The following steps are
performed when a light client wants to download transactions from a full node:
1. c creates G non-intersecting filters, composed of |c|

G addresses of c and F
G false positives.

2. c joins G groups, each of size S.
3. For each group, the following is performed:

a. A leader l is randomly chosen (this can be done using several distributed algorithms
such as [7, 30, 38]).

b. All clients send l their (bloom) filters.
c. l creates an aggregated Bloom filter and sends it to a full node.
d. l receives transactions from the full node and sends each client it’s transactions (with

their Merkle-proofs), as received from the full node.

The implementation is illustrated in Fig. 5.

Groups of light clients, each of size S

Light client (with |c| addresses)

selected G groups

|c|+F
G

|c|+F
G

|c|+F
G

(a) Light client is associated with G groups.

Full node Aggregated filter

matched txs

tx match?

txs

Group of S light clients

leader

(b) An aggregated filter, sent by the group leader, summarizes the
addresses of all S light clients in the group.

Figure 5 Illustration of the aggregation model (a) Light client is associated with G groups and
sends |c|+F

G
addresses to each group. (b) An aggregated filter, sent by the group leader, summarizes

the addresses of all S light clients in the group.

When a new Bitcoin node connects to the network, it queries several DNS servers (which
are operated by volunteer nodes and provide a random selection of bootstrap nodes that are
active in the Bitcoin network). Once connected, the joining node learns about other nodes
by asking their neighbors for known addresses and listening for spontaneous advertisements
of new addresses [19]. Hence, we suggest light clients advantage of this mechanism to form G

groups of S clients each. We note the main advantage of the aggregation model is that only
the leader exposes itself to a full node, providing anonymity for other clients. This way light
clients receive transactions without any full node gathering information about non-leader
clients. Additionally, even at the worst scenario, where all nodes in the groups c participates
in collude with full nodes, using the aggregation model the privacy of light client c is at least
as high as the original SPV model.

7.2 Privacy analysis
In the aggregated model, both the full nodes and the leader gain information regarding the
light client addresses. As long as there are no colluding light clients, full nodes cannot infer
anything about the group light clients besides information concerning the leader. Hence,
assuming there are no colluding clients in the network, when evaluating the privacy of light
client c, the addresses in address space A can be separated into two groups: addresses in
filters of groups where c is the leader and all other addresses. We assume there are G groups
that c participates in, each of size S, and all clients have the same amount of addresses |c|
and use the same amount of false positives F , equally split between G groups. Property 14
calculates the expected number of leader groups. For each such group, Property 15 evaluates

A. Kotzer and O. Rottenstreich 17

the number of addresses in the aggregated filter c creates and the probability pi of each
address in the filter being associated with c. As address space A is much larger than |c|,
Property 16 evaluated the total number of addresses associated with c in groups where c is
the leader, and Property 17 evaluates the probability pi of each address that does not appear
in a group c is the leader of being associated with c.

▶ Property 14. Given there are G groups c participates in, each of size S. The expected
number of groups c will be the leader of is G

S .

▶ Property 15. Given there are G groups c participates in, each of size S, assuming all
clients have the same amount of addresses |c| and use the same amount of false positives
F , equally split between G groups. In this case, the group leader creates an aggregated filter
containing |c|·S

G + F ·S
G = (|c|+F)·S

G addresses. As the group leader l has |c|
G addresses on the

aggregated filter associated with him, the probability pi of any address in the aggregated filter
being associated with l is |c|

G / (|c|+F)·S
G = |c|

(|c|+F)·S .

▶ Property 16. Assume the addresses in c are equally split between G groups, each of size
S. As c is the leader of G

S groups (Property 14) and there are |c|
G addresses associated with c

in each group, the total number of addresses associated with c in groups c is the leader of is
G
S · |c|

G = |c|
S .

▶ Property 17. Assuming there are |c′| ≤ |c| addresses that appear in groups c is the leader
of (c′ is evaluated in Property 16), and assuming |A| >> |c|, when there are no colluding
light clients the probability pi of an address that did not appear in a group c is the leader of
is |c′|

|A| .

We note that the previous analysis relies on the light client being honest. However, some
light clients might be adversaries too, and collude with each other or with a full node. We
denote by pcolluding the percentage of colluding light clients in the network (or similarly the
probability of a light client colluding). In such a case, the addresses in address space A can be
separated into three groups: addresses in filters of groups where c is the leader, addresses in
groups where c is not the leader and leader l is colluding, and all other addresses. Property 18
calculates the expected number of groups with a colluding leader, and Property 19 evaluates
the probability pi of all addresses used by c in this group. Similar to Property 17, assuming
there are |c′| < |c| addresses of c that appear in groups c is the leader of (evaluated in
Property 16), and |c′′| < |c| addresses of c that appear in a group with a colluding leader
(evaluated in Property 20), the probability pi of any other address is |c|−|c′|−|c′′|

A . We note
we assume here the strictest colluding assumption, where some full node has the entire
information gained by all colluding nodes.

▶ Property 18. Given there are G groups c participates in, each of size S, and a colluding
probability of pcolluding for each node that is not c. The number of groups c participates in
with a colluding leader is pcolluding · G·(S−1)

S .

▶ Property 19. Assume client c has |c| addresses and uses a total of F false positives,
equally split between G groups. For each group that c is not the leader of, c sends a filter
to the leader. The probability pi of each address in the filter being associated with |c| is
pi = |c|

G / |c|+F
G = |c|

|c|+F .

▶ Property 20. Assume the addresses in c are equally split between G groups, each of size
S. As by Property 18 the number of groups c is not the leader of is G · S−1

S , each having
|c|
G addresses associated with c. With a probability of pcolluding of the leader colluding, the

number of addresses associated with c in groups where c is not the leader and there is a
colluding leader is pcolluding · G · |c|

G · S−1
S = pcolluding · |c| · S−1

S .

18 Privacy Comparison for Bitcoin Light Client Implementations

▶ Property 21. When all nodes communicating with c are colluding, by Property 19 the
probability pi of each address used in a group c is not the leader of is pi = |c|

|c|+F . Additionally,
for groups c is the leader of, as all addresses that do not belong to c are known to the leader,
the probability of each address being associated with c is pi = |c|

G / |c|+F
G = |c|

|c|+F . Thus, as c

uses |c| + F addresses in total each with probability |c|
|c|+F being associated with c, the privacy

when all nodes collude equals the privacy of the original SPV model using F false positives.

Using these properties, we evaluated the entropy and detection ratio of the aggregated
transaction proposed model, similar to the previous privacy evaluation of the other light client
implementations. In the entropy calculation evaluation, we evaluated the probability of each
address in the network, implemented T (x) and calculated H(c) ≈ ln 1

1000 ·
∑

x∈[0.001,...,1](1 −
x) · T (x · |c|). Fig. 6 evaluates the privacy of the aggregation model using several S and G

parameters, compared to the communication overhead (normalized by the communication
overhead of SPV-850) assuming there are no colluding nodes. Additionally, the entropy and
detection ratio of SPV-850 and SPV-40K are added to show the privacy improvement. Fig. 6a
presents the entropy compared to the communication overhead. As we see, the aggregation
model using all S and G parameters has a similar entropy of around H(c) = 17.5, while
having a communication overhead 1.8 − 1.96 times higher than SPV-850, and 25 times
lower than SPV-40K. Recall, SPV-850 and SPV-40K have an entropy of H(c) = 8.81 and
H(c) = 5.02, respectively. The communication network overhead is derived directly from the
ratio G

S , as the communication overhead increases when the number of groups c is the leader
of increases. The entropy of the aggregation model is very similar for all S, G parameters
since the entropy evaluates the knowledge regarding all addresses, and when assuming there
are no colluding nodes a full node does not have information about all of the filters used by
c, hence all addresses are eligible to be associated with c. The increase in the probabilities
of the addresses that appear in groups c is the leader of (and a full node has information
about) are relatively negligible to all other addresses. Hence, the entropy values are high
and similar for all S, G values.

In the detection ratio, shown in Fig. 6b, there are some differences between parameters.
While for using S, G = (5, 5) the detection ratio is R(c) = 0.0022, having a communication
overhead 1.8 times higher than SPV-850, for S, G = (25, 5) the detection ratio decreases to
R(c) = 0.0001, though with a communication overhead 1.96 times higher than SPV-850. As
the detection ratio is mainly affected by the high-probability addresses a full node knows
about (rather than of all addresses), the differences in the detection ratio values are derived
from the relation between S and G, which affects the probability of c being the leader of the
group. The lower the ratio G

S is, the lower the expected number of times c is a leader of the
group, and the detection ratio decreases accordingly.

Fig. 7 presents the entropy and detection ratio of the aggregation model, using S, G =
(5, 25), (10, 10), (15, 5), compared to pcolluding, the probability the leader colluding with full
nodes. While all three parameter sets have a similar entropy, using S, G = (5, 15) achieves
higher entropy for lower pcolluding values: As for pcolluding = 0.05 S, G = (5, 15) has an
entropy of H(c) = 17.79, the entropy of S, G = (10, 10) and S, G = (5, 25) is H(c) = 17.71
and H(c) = 17.49, respectively. This is because for smaller G

S values the expected number of
groups c is the leader of is lower, hence c is exposed to the full node less times. Yet, recall by
Properties 15 and 19, when c is the leader a full node receives a filter with more addresses
than when c is not the leader and the leader colludes. Hence, when pcolluding is high, full
nodes get more information from groups c is not the leader of, thus the entropy is higher
when c is the leader of more groups, i.e. when G

S is larger. For instance, when pcolluding = 1,
H(c) = 9.65 for S, G = (5, 25), compared to H(c) = 9.63 and H(c) = 9.62 for S, G = (10, 10)

A. Kotzer and O. Rottenstreich 19

1 10 50

100.8

101

101.2

Network Communication
(normalized by SPV-850 communication)

E
nt

ro
py

H
(c

)

SPV-850
SPV-40K
AM (S = 5, G = 5)
AM (S = 5, G = 25)
AM (S = 10, G = 10)
AM (S = 15, G = 5)
AM (S = 25, G = 5)

(a) Entropy vs. Communication overhead.

1 10 50

10−4

10−3

10−2

10−1

Network Communication
(normalized by SPV-850 communication)

D
et

ec
tio

n
R

at
io

R
(c

)

(b) Detection Ratio vs. Communication overhead.

Figure 6 The entropy and detection ratio of SPV-850, SPV-40K and the aggregation model (AM)
using S, G = (5, 5), (10, 10), (15, 5), (25, 5), (5, 25), compared to the network communication overhead
normalized by the communication of SPV-850, assuming there are no colluding nodes.

0 0.2 0.4 0.6 0.8 1
100.5

101

Light Client Colluding Probability pcolluding

E
nt

ro
py

H
(c

)

AM (S = 5, G = 25)
AM (S = 10, G = 10)
AM (S = 15, G = 5)
SPV-850
SPV-40K

(a) Entropy.

2 · 10−2 0.1 1

10−2

10−1

Light Client Colluding Probability pcolluding

D
et

ec
tio

n
R

at
io

R
(c

)

(b) Detection Ratio.

Figure 7 The entropy and detection ratio of the aggregation model (AM) using S, G =
(10, 10), (15, 5), (5, 25), compared to the light client colluding probability pcolluding.

and (15, 5), respectively. We note there is an entropy dropdown when pcolluding = 1 to
H(c) = 5.02, as when pcolluding = 1 all addresses used in filters c sent are known, hence the
address space A is decreased to only 900 addresses (the number of addresses used in filters
of c).

The detection ratio increases too as pcolluding increases. As for S, G = (10, 10) the
detection ratio is R(c) = 0.0006 when there are no colluding nodes, when 50% of the nodes
collude the detection ratio increases to R(c) = 0.026, and when all nodes collude the detection
ratio increases to R(c) = 0.05, similar to the detection ratio of SPV using 950 false positives
(as derived by Lemma 7). For the same reasons as the entropy, for small pcolluding values,
the detection ratio is lower (implying better privacy) when G

S is smaller, and for a high
pcolluding, the detection ratio is lower when G

S is larger. Finally, following Property 21, the
figure shows the privacy of the aggregation model is always at least as good as the privacy of
SPV-850, as the entropy is higher and the detection ratio is lower. We additionally note that
compared to SPV-40K, the entropy of AM was higher except for the case where pcolluding = 1.
Additionally, when pcolluding ≤ 0.23, the detection ratio of SPV-40K is higher than the AM .

7.3 Aggregation Model Discussion and Limitations
Section 7.2 shows the great potential of the aggregation model, as a privacy increase is achieved
with very low communication overhead. Fig. 8 summarizes the entropy and detection ratio of
the different implementations compared to the communication overhead. The figure includes

20 Privacy Comparison for Bitcoin Light Client Implementations

10−1 100 101 102 103 104

100.8

101

101.2

Total Network Communication (MB)

En
tr

op
y

Va
lu

e
H

(c
)

(a) Entropy.

10−1 100 101 102

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Total Network Communication (MB)

D
et

ec
tio

n
R

at
io

R
(c

)

AM, pcolluding = 0
AM, pcolluding = 0.1
AM, pcolluding = 0.3
Neutrino
SPV-850
SPV-40K
PIR

(b) Detection ratio.

Figure 8 Privacy compared to communication overhead comparison between the different light
client implementations and the AM model using (S = 15, G = 5) and F = 850 false positives.

AM using parameters (S = 15, G = 5) and F = 850 false positives, for pcolluding = 0, 0.1, 0.3.
Though the AM communication overhead is 20 times lower than SPV-40K, for all three
pcolluding values, the entropy is higher. Moreover, for pcolluding = 0, 0.1, the detection ratio
was lower too. Assuming the percentage of colluding nodes is lower than 23%, the AM model
is only second to the PIR model in its privacy (having a communication overhead 1700 times
smaller), with a communication overhead of approximately only twice the communication
overhead of SPV-850.

We acknowledge the drawbacks of this model, as it might suffer from a time delay when
creating the client groups, and when waiting for an answer from the leader. Moreover, in the
scenario where all clients participating in groups with c are colluding, there is no privacy
improvement. That said, the aggregation model, the best advantage of the aggregation model
is it does not require any changes in the Bitcoin network protocols, and can work side-by-side
with the original SPV protocol and full nodes. Clients preferring time over privacy can
always use the original SPV protocol, as at any point light client c can send a filter to the
full node. Property 21 states the AM model guarantees privacy at least as good as the
original SPV model even when all other clients collude with full nodes. We additionally note
that the AM protocol is designed to be very simple and light to run, as light clients are not
meant to run heavy computations. As this paper mainly focuses on the privacy issue of light
clients, the aggregation model presented here is not complete, and future work will expand
this model. However, it contains the main building blocks of a new model that has great
potential in increasing light client privacy.

8 Conclusion

In this work, we analyzed and compared the privacy of the SPV and Neutrino light client
implementations. We defined two metrics to evaluate the privacy of light clients: light client
entropy and detection ratio. Based on these metrics we analyzed and evaluated the privacy of
the different implementations on real data and evaluated the privacy-communication tradeoff,
comparing the different implementations and discussing these results and ways to improve
privacy. Finally, we suggested a new SPV-based light client model that improves privacy. In
future work, we intend to deepen the privacy analysis, including cases when an adversary
with a full node has only partial information. We aim to further enhance the technical details
and the analysis of the aggregation model, dealing with issues such as disconnecting nodes

A. Kotzer and O. Rottenstreich 21

and other malicious behaviors.

References
1 Mycelium - Bitcoin wallet. https://mycelium.com/index.html.
2 Percy++ / PIR in C++. https://percy.sourceforge.net/readme.php.
3 Neutrino: Privacy-preserving Bitcoin light client. https://github.com/lightninglabs/neutrino,

2017.
4 Helios. https://github.com/a16z/helios, 2023.
5 Run a light client to join binance chain. https://docs.binance.org/light-client.html, 2023.
6 Lodestar ethereum consensus implementation. https://github.com/ChainSafe/lodestar, 2024.
7 Ittai Abraham, Danny Dolev, and Joseph Y Halpern. Distributed protocols for leader election:

A game-theoretic perspective. In International Symposium on Distributed Computing (DISC),
2013.

8 André Augusto, Rafael Belchior, Miguel Correia, André Vasconcelos, Luyao Zhang, and Thomas
Hardjono. Sok: Security and privacy of blockchain interoperability. Authorea Preprints, 2023.

9 Alex Biryukov and Sergei Tikhomirov. Transaction clustering using network traffic analysis
for Bitcoin and derived blockchains. In IEEE INFOCOM Workshops, 2019.

10 Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM,
13(7):422–426, 1970.

11 Sean Braithwaite, Ethan Buchman, Ismail Khoffi, Igor Konnov, Zarko Milosevic, Romain
Ruetschi, and Josef Widder. A tendermint light client. arXiv preprint arXiv:2010.07031, 2020.

12 Andrei Z. Broder and Michael Mitzenmacher. Network applications of Bloom filters: A survey.
Internet Mathematics, 1(4):485–509, 2003.

13 Jehoshua Bruck, Jie Gao, and Anxiao Jiang. Weighted Bloom filter. In IEEE International
Symposium on Information Theory (ISIT), 2006.

14 Benedikt Bünz, Lucianna Kiffer, Loi Luu, and Mahdi Zamani. Flyclient: Super-light clients
for cryptocurrencies. In IEEE Symposium on Security and Privacy (SP), 2020.

15 Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias. SoK: Blockchain light
clients. In International Conference on Financial Cryptography and Data Security (FC), 2022.

16 Archana Chhabra, Rahul Saha, Gulshan Kumar, and Tai-Hoon Kim. Navigating the maze:
Exploring blockchain privacy and its information retrieval. IEEE Access, 2024.

17 Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information
retrieval. Journal of the ACM (JACM), 45(6):965–981, 1998.

18 Mauro Conti, E Sandeep Kumar, Chhagan Lal, and Sushmita Ruj. A survey on security and
privacy issues of Bitcoin. IEEE Communications Surveys & Tutorials, 20(4):3416–3452, 2018.

19 Christian Decker and Roger Wattenhofer. Information propagation in the Bitcoin network. In
IEEE International Conference on Peer-to-Peer Computing (P2P), 2013.

20 Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160: A strengthened version
of RIPEMD. In International Workshop on Fast Software Encryption, 1996.

21 Dmitry Ermilov, Maxim Panov, and Yury Yanovich. Automatic Bitcoin address clustering. In
IEEE International Conference on Machine Learning and Applications (ICMLA), 2017.

22 Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher. Cuckoo filter:
Practically better than Bloom. In ACM International on Conference on emerging Networking
Experiments and Technologies (CoNext), 2014.

23 Arthur Gervais, Srdjan Capkun, Ghassan O. Karame, and Damian Gruber. On the privacy
provisions of Bloom filters in lightweight Bitcoin clients. In ACM Annual Computer Security
Applications Conference (ACSAC), 2014.

24 Solomon Golomb. Run-length encodings (corresp.). IEEE transactions on information theory,
12(3):399–401, 1966.

25 Xi He, Ketai He, Shenwen Lin, Jinglin Yang, and Hongliang Mao. Bitcoin address clustering
method based on multiple heuristic conditions. IET Blockchain, 2(2):44–56, 2022.

https://percy.sourceforge.net/readme.php

22 Privacy Comparison for Bitcoin Light Client Implementations

26 Mike Hearn. Bloom filter privacy and thoughts on a newer protocol. ht-
tps://groups.google.com/forum/#!msg/bitcoinj/Ys13qkTwcNg/9qxnhwnkeoIJ, 2015.

27 Kilan M Hussein and MF Al-Gailani. Evaluation performance of bloom filter in blockchain
network. Iraqi Journal of Information and Communication Technology, 6(2):17–30, 2023.

28 MJ Jeyasheela Rakkini and K Geetha. Detection of Bitcoin miners by clustering crypto address
with google bigquery open dataset. In Soft Computing: Theories and Applications (SoCTA).
2022.

29 Kota Kanemura, Kentaroh Toyoda, and Tomoaki Ohtsuki. Design of privacy-preserving mobile
Bitcoin client based on γ-deniability enabled Bloom filter. In Int. Symposium on Personal,
Indoor, and Mobile Radio Communications (PIMRC), 2017.

30 Bruce M Kapron, David Kempe, Valerie King, Jared Saia, and Vishal Sanwalani. Fast
asynchronous byzantine agreement and leader election with full information. ACM Transactions
on Algorithms (TALG), 6(4):1–28, 2010.

31 Kostis Karantias. SoK: A taxonomy of cryptocurrency wallets. Cryptology ePrint Archive,
2020.

32 Domokos Miklós Kelen and István András Seres. Towards measuring the fungibility and
anonymity of cryptocurrencies. arXiv preprint arXiv:2211.04259, 2022.

33 Feng Liu, Zhihan Li, Kun Jia, Panwei Xiang, Aimin Zhou, Jiayin Qi, and Zhibin Li. Bitcoin
address clustering based on change address improvement. IEEE Transactions on Computational
Social Systems, 10:1–13, 2023.

34 Lailong Luo, Deke Guo, Richard T. B. Ma, Ori Rottenstreich, and Xueshan Luo. Optimizing
Bloom filter: Challenges, solutions, and comparisons. IEEE Communications Surveys and
Tutorials, 21(2):1912–1949, 2019.

35 Sinisa Matetic, Karl Wüst, Moritz Schneider, Kari Kostiainen, Ghassan Karame, and Srdjan
Capkun. Bite: Bitcoin lightweight client privacy using trusted execution. In USENIX Security
Symposium, 2019.

36 R. C. Merkle. Secrecy, authentication, and public key systems. PhD thesis, Stanford, 1979.
37 Matt Corallo Mike Hearn. Connection Bloom filtering. https://github.com/bitcoin/bips/

blob/master/bip-0037.mediawiki, 2012.
38 Deepanjan Mitra, Agostino Cortesi, and Nabendu Chaki. ALEA: An anonymous leader

election algorithm for synchronous distributed systems. In Progress in Image Processing,
Pattern Recognition and Communication Systems (CORES, IP&C, ACS Conference), 2021.

39 Angelica Montanez. Investigation of cryptocurrency wallets on iOS and Android mobile devices
for potential forensic artifacts. Forensic Science Center, Marshall University, 2014.

40 Malte Möser and Arvind Narayanan. Resurrecting address clustering in Bitcoin. In Interna-
tional Conference on Financial Cryptography and Data Security (FC), 2022.

41 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business
Review, 2008.

42 Yukun Niu, Chi Zhang, Lingbo Wei, Yankai Xie, Xia Zhang, and Yuguang Fang. An efficient
query scheme for privacy-preserving lightweight Bitcoin client with Intel SGX. In IEEE
GLOBECOM, 2019.

43 Alex Akselrod Olaoluwa Osuntokun. Compact block filters for light clients.
https://github.com/bitcoin/bips/blob/master/bip-0158.mediawiki, 2017.

44 Jim Posen Olaoluwa Osuntokun, Alex Akselrod. Client side block filtering. https://github.
com/bitcoin/bips/blob/master/bip-0157.mediawiki, 2017.

45 Kaihua Qin, Henryk Hadass, Arthur Gervais, and Joel Reardon. Applying private information
retrieval to lightweight Bitcoin clients. In Crypto Valley Conference on Blockchain Technology
(CVCBT), 2019.

46 Ori Rottenstreich and Isaac Keslassy. The Bloom paradox: When not to use a Bloom filter.
IEEE/ACM Trans. Netw., 23(3):703–716, 2015.

47 Maroufi Saeid and Nemati Moein. Go bither. https://github.com/bitherhq/go-bither, 2017.

https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0157.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0157.mediawiki

A. Kotzer and O. Rottenstreich 23

48 Sehrish Shafeeq, Sherali Zeadally, Masoom Alam, and Abid Khan. Curbing address reuse in
the iota distributed ledger: A cuckoo-filter-based approach. IEEE Transactions on Engineering
Management, 67(4):1244–1255, 2019.

49 Ke Shao, Wei Lv, and Yu Li. Addressing blockchain privacy and efficiency challenges in mobile
environments: an optimization strategy for lightweight clients and full nodes. Advances in
Engineering Technology Research, 7(1):1–1, 2023.

50 Apostolos Tzinas Angel Leon Dimitris Lamprinos Ardis Lu shrestha agrawal, Justin Martin.
Kevlar. https://github.com/lightclients/kevlar, 2022.

51 Thomas Voegtlin. Electrum - lightweight Bitcoin client. https://github.com/spesmilo/electrum,
2018.

52 Kai Wang, Maike Tong, Changhao Wu, Jun Pang, Chen Chen, Xiapu Luo, and Weili Han.
Exploring unconfirmed transactions for effective Bitcoin address clustering. arXiv preprint
arXiv:2303.01012, 2023.

53 François-Xavier Wicht. Blockchain privacy notions using the transaction graph model. Master
Thesis, University of Fribourg, 2023.

54 Karl Wüst, Sinisa Matetic, Moritz Schneider, Ian Miers, Kari Kostiainen, and Srdjan Čap-
kun. ZLite: Lightweight clients for shielded Zcash transactions using trusted execution. In
International Conference on Financial Cryptography and Data Security (FC), 2019.

55 Yankai Xie, Chi Zhang, Lingbo Wei, Yukun Niu, and Faxing Wang. Private transaction
retrieval for lightweight Bitcoin client. In IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), 2019.

56 Yankai Xie, Chi Zhang, Lingbo Wei, Yukun Niu, Faxing Wang, and Jianqing Liu. A privacy-
preserving Ethereum lightweight client using PIR. In IEEE/CIC International Conference on
Communications in China (ICCC), 2019.

57 Yiyin Zhang. SoK: Anonymity of lightweight clients in cryptocurrency systems. In IEEE
International Conference on Blockchain and Cryptocurrency (ICBC), 2023.

58 Yuhang Zhang, Jun Wang, and Jie Luo. Heuristic-based address clustering in Bitcoin. IEEE
Access, 8:210582–210591, 2020.

59 Baokun Zheng, Liehuang Zhu, Meng Shen, Xiaojiang Du, and Mohsen Guizani. Identifying
the vulnerabilities of Bitcoin anonymous mechanism based on address clustering. Science
China Information Sciences, 63:1–15, 2020.

	1 Introduction
	2 Background
	2.1 Memory-efficient Methods for Set Representation
	2.2 Light client implementations
	2.3 Related Work

	3 Threat Model
	4 Privacy Metrics
	5 Privacy Theoretical Analysis
	5.1 SPV privacy
	5.2 Neutrino privacy

	6 Light Client Privacy Measurement
	6.1 Data
	6.2 SPV Measurement
	6.3 Neutrino Measurement
	6.4 Privacy and Communication Overhead
	6.5 Discussion: Additional Insights from the Measurement and Analysis
	6.5.1 Privacy Comparison
	6.5.2 Improving Light Client Privacy

	7 Proposal: The Aggregation Model (AM)
	7.1 Overview
	7.2 Privacy analysis
	7.3 Aggregation Model Discussion and Limitations

	8 Conclusion

