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Abstract. The zeta function ζ(z) =
∑∞

n=1
1
nz is convergent only for Re(z) > 1. To test its zeros,

one needs to use the Riemann-Siegel function Z(t). If Z(t1) and Z(t2) have opposite signs, Z(t)
vanishes between t1 and t2, and ζ(z) has a zero on the critical line between 1

2+it1 and 1
2+it2. This

method is non-polynomial time, because it has to compute the sum
∑

n≤α
cos(ϑ(1/2+it)−t logn)√

n
,

where α = b
√
t/(2π)c. The eta function η(z) =

∑∞
n=1

(−1)n−1

nz is convergent for Re(z) > 0,
and η(z) =

(
1− 21−z

)
ζ(z) for the critical strip 0 < Re(z) < 1. The alternating series can be

directly used to test the zeros because η(z) and the analytic continuation of ζ(z) have the same
zeros in the critical strip. In this paper, we present a polynomial time algorithm to test the
zeros based on η(z), which is more understandable and suitable for modern computing machines
than the general method. Besides, we clarify the actual meaning of logarithm symbol in the
Riemann-Siegel formula.
Keywords: Riemann zeta function, Dirichlet eta function, partial sum, absolute convergence.

1 Introduction

The Riemann zeta function ζ(z) =
∞∑
n=1

1
nz , z ∈ C, is absolutely convergent in the region Re(z) > 1. It

is well known [1] that ζ(2) = 1 + 1
22 + 1

32 + · · · = π2

6 . By the famous functional equation [2], ζ(z) =
2zπz−1 sin zπ

2 Γ(1− z)ζ(1− z), we have

ζ(−1) = 2−1π−2 sin
−π
2

Γ(2)ζ(2) =
1

2π2
× (−1)× 1× π2

6
= − 1

12
.

But by the original series, we have ζ(−1) = 1 + 2 + 3 + · · · → ∞.
Actually, in the above functional equation, ζ(z) and ζ(1 − z) cannot be concurrently convergent,

because at least one of Re(z) and Re(1− z) is strictly smaller than 1. So, ζ(z) and ζ(1− z) must be two
different branches of the analytic continuation of the original series on the complex plane.

The famous Riemann zeros are not for the original series, instead for a branch of its analytic contin-
uation. The general method to test these zeros needs to use the Riemann-Siegel function Z(t). If Z(t1)
and Z(t2) have opposite signs, Z(t) vanishes between t1 and t2, and so ζ(z) has a zero on the critical
line between 1

2 + it1 and 1
2 + it2. Clearly, this method is too hard to practice for newcomers, and the

mysterious zeros have not been broadly exhibited to the average person.
In this paper, we present a new method to test these famous zeros. The method is based on that

η(z) =
(
1− 2

2z

)
ζ(z) in the critical strip 0 < Re(z) < 1, where the Dirichlet eta function η(z) is convergent
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for Re(z) > 0. This relationship shows that η(z) and the analytic continuation of ζ(z) have the same
zeros in the critical strip. We will make use of the alternating series to test the zeros.

2 Zeta function and Eta function

The Riemann zeta function is further represented as [3]

ζ(z) =

∞∑
n=1

1

nz
=

∞∑
n=1

e−z lnn
z=a+ib

======
a,b∈R

∞∑
n=1

e−(a+ib) lnn

=

∞∑
n=1

e−a lnne−ib lnn =

∞∑
n=1

(
1

n

)a
cos(b lnn)− i

∞∑
n=1

(
1

n

)a
sin(b lnn)

If a > 1, both
∑∞

n=1

(
1
n

)a
cos(b lnn) and

∑∞
n=1

(
1
n

)a
sin(b lnn) are absolutely convergent. Therefore, ζ(z)

has no zeros for a > 1.
The Dirichlet eta function [4] is the alternating series

η(z) =

∞∑
n=1

(−1)n−1

nz
, z ∈ C. (1)

η(0) is defined to be 1/2. η(1) = ln 2, η(2) = π2

12 . Notice that, for Re(z) > 1

2

2z
ζ(z) =

2

2z

(
1 +

1

2z
+

1

3z
+

1

4z
+ · · ·

)
=

2

2z
+

2

4z
+

2

6z
+

2

8z
+ · · · ,(

1− 2

2z

)
ζ(z) =

(
1 +

1

2z
+

1

3z
+

1

4z
+ · · ·

)
−
(

2

2z
+

2

4z
+

2

6z
+

2

8z
+ · · ·

)
rearranged

=========== 1 + (
1

2z
− 2

2z
) +

1

3z
+ (

1

4z
− 2

4z
) + · · ·

= 1− 1

2z
+

1

3z
− 1

4z
+ · · · =

∞∑
n=1

(−1)n−1

nz
= η(z).

Extending this relationship η(z) = (1− 21−z)ζ(z) to the complex plane, we can obtain the functional
equation ζ(z) = 2zπz−1 sin zπ

2 Γ(1 − z)ζ(1 − z). If z = −2,−4,−6, · · · , sin zπ
2 = 0. These values are

called simple zeros of ζ(z). Since Γ(z)Γ(1 − z) = π
sinπz , we know Γ(1 − z) has no zeros. So, ζ(z) = 0 iff

ζ(1 − z) = 0, which also implies that ζ(z̄) = ζ(1 − z̄) = 0. The famous Riemann hypothesis [5] claims
that all the complex zeros of ζ(z) lie on the critical line Re(z) = 1/2.

In history, the zeros of ζ(z) were very hard to calculate [6]. Nowadays, several million zeros have been
obtained [7]. See the table of zeros [8]. It is worth noting that the symbol ζ(z) didn’t refer to the original
series, instead its analytic continuation.

3 The general method to test zeros

The general method to test zeros is based on the famous functional equation. Define the functions

χ(z) = 2z−1πz sec
zπ

2
/Γ(z), ϑ = ϑ(t) = −

|χ( 1
2 + it)|

2
argχ(

1

2
+ it),
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where Γ(z) =
∫∞
0
xz−1e−xdx, and the Riemann-Siegel function Z(t) = eiϑ(t)ζ( 1

2 + it), which is real for
real values of t. The theta function appearing above is also defined by ϑ(t) = arg[Γ( 1

4 + 1
2 it)] −

t
2 lnπ.

If Z(t1) and Z(t2) have opposite signs, Z(t) vanishes between t1 and t2, and so ζ(z) has a zero on the
critical line between 1

2 + it1 and 1
2 + it2.

To calculate the first nontrivial zero, one needs to determine the sign of Z(0) = eiϑ(
1
2 )ζ( 1

2 ). If z = 1/2,

η(1/2) = 1− 1√
2

+ 1√
3
− 1√

4
+ · · · , which converges to a positive number. Since η(1/2) = (1− 21/2)ζ(1/2)

and 1−
√

2 < 0, it claims that ζ(1/2) < 0 (page 388, Ref.[2]). Define

ξ(z) =
1

2
z(z − 1)π−

z
2 Γ(

z

2
)ζ(z). (2)

Hence, ξ(1/2) = − 1
8π
− 1

4 Γ( 1
4 )ζ(1/2). Since ζ( 1

2 ) < 0 and Γ( 1
4 ) > 0, then ξ( 1

2 ) > 0, which implies Z(0) < 0.
By numerical analysis, it shows that Z(6π) > 0. Therefore, there is one zero at least on the critical line
between t = 0 and t = 6π. We currently know that the first zero approximates to 1/2 + 14.1347251 i.

Theorem 1 (The Riemann-Siegel formula, [9]) Let s = 1/2 + it, a ∈ [0, 1) be the fractional part of
α :=

√
t/(2π), and

ψ(u) :=
cos(π(u2/2− u− 1/8))

cos(πu)
(3)

For any N ∈ Z>0, there exist explicit functions of a alone, C0(a), C1(a), C2(a), · · · , such that

Z(t) = 2
∑
n≤α

cos(ϑ(1/2 + it)− t log n)√
n

+ (−1)bαc+1

(
2π

t

)1/4 N−1∑
m=0

Cm(a)

tm/2
+O

(
1

tN/2+1/4

)
,

where iϑ(1/2 + it) =
it

2
log
|t|
2π
− it

2
− sgn(t)

iπ

8
+O(1/|t|),

C0(a) = ψ(2a), C1(a) = −1

3
(2π)−3/2ψ(3)(2a), C2(a) =

1

18
(2π)−3ψ(6)(2a) +

1

4
(2π)−1ψ(2)(2a),

C3(a) = − 1

162
(2π)−9/2ψ(9)(2a)− 2

15
(2π)−5/2ψ(5)(2a)− 1

8
(2π)−1/2ψ(1)(2a), · · ·

Riemann and Siegel gave recursive procedures for calculating the coefficients Cm(a). Furthermore,
Siegel proved that only derivatives ψ(r)(2a) for r ≡ 3m mod 4 appear in Cm(a). We will use the sophis-
ticated software Mathematica to test the general method for N = 4 in the above Riemann-Siegel
formula.
Z[t_] := Module[{\[Alpha], a, k, s, \[CurlyTheta], \[Psi], u, QD, j,

n, c0, c1, c2, c3, A, B, w},

\[Psi][u_] := Cos[Pi (u^2/2 - u - 1/8)]/Cos[Pi*u];

QD[j_, u_] := Derivative[j][\[Psi]][u];

\[Alpha] = Sqrt[t/(2*Pi)]; a = FractionalPart[\[Alpha]];

c0 = \[Psi][2*a]; c1 = -1/3*(2*Pi)^(-3/2)*QD[3, 2*a];

c2 = 1/18*(2*Pi)^(-3)*QD[6, 2*a] + 1/4*(2*Pi)^(-1) QD[2, 2*a];

c3 = -1/162*(2*Pi)^(-9/2)*QD[9, 2*a] -

2/15*(2*Pi)^(-5/2) QD[5, 2*a] - 1/8*(2*Pi)^(-1/2) QD[1, 2*a];

k = IntegerPart[\[Alpha]];

s = Floor[\[Alpha]]; \[CurlyTheta] = t/2+Pi/8-t/2*Log[t/(2*Pi)];

A = 2*Sum[Cos[ \[CurlyTheta] - t*Log[n]]/n^(1/2), {n, 1, k}];

B = (-1)^(s + 1)*(2*Pi/t)^(1/4)*(c0+c1/t^(1/2)+c2/t+c3/t^(3/2));

w = N[A + B, 10]]
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W = Table[{i, Z[i]}, {i, 10, 20, 0.25}]; Print[W]; ListLinePlot[W, Mesh -> Full]

{{10.,-1.53122},{10.25,-1.55299},{10.5,-1.54687},{10.75,-1.53031},

{11.,-1.5024},{11.25,-1.46231},{11.5,-1.4093},{11.75,-1.34271},

{12.,-1.26203},{12.25,-1.1669},{12.5,-1.05711},{12.75,-0.932695},

{13.,-0.793889},{13.25,-0.641181},{13.5,-0.475326},{13.75,-0.297361},

{14.,-0.108615},{14.25,0.0892823},{14.5,0.294403},{14.75,0.504527},

{15.,0.717155},{15.25,0.929529},{15.5,1.13867},{15.75,1.3414},

{16.,1.53442},{16.25,1.71433},{16.5,1.87772},{16.75,2.02124},

{17.,2.14164},{17.25,2.23593},{17.5,2.30138},{17.75,2.33567},

{18.,2.33695},{18.25,2.30392},{18.5,2.2359},{18.75,2.13295},

{19.,2.00889},{19.25,4.19801*10^12},{19.5,1.64405},{19.75,1.39951},

{20.,1.14976}}

12 14 16 18 20

-2

2

4

6

Fig. 1 Z(t) sample values for (10, 20), with Log[e, n]

12 14 16 18 20

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 2 Z(t) sample values for (10, 20), with Log[10, n]

Remark 1. By Fig.1, we see there is a zero near 14. But by Fig.2, there is a zero near 11. In fact, the
target zero is 14.134725. So, we want to clarify that the logarithm symbol log n in the representation of
Z(t), actually means Log[e, n], not Log[10, n]. By the way, the logarithm symbol in the masterwork [2] (first

appeared on page 2, Chap. I) relates to the calculation log
(

1− 1
(n+1)s

)
− log

(
1− 1

ns

)
=
∫ n+1

n
s

x(xs−1)dx,

which also means Log[e, n].

22 24 26 28 30

-2

-1

1

2

3

Fig. 3 Z(t) sample values for (20, 30)

62 64 66 68 70

-5

5

10

Fig. 4 Z(t) sample values for (60, 70)

Notice that Z(t) is discontinuous in the whole interval (10, 20), because C0(a), C1(a), C2(a), · · · , have
poles. Likewise, we have the following results (see Fig.3, Fig.4). There are some poles, too. In fact, there
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are two zeros 21.0220396, 25.01085758, in the interval (20, 30), and four zeros 60.8317785, 65.112544,
67.07981, 69.546401 in the interval (60, 70). For a shorter interval, we have the following results.
j=1132489; W=Table[{i, Z[j+i]}, {i, 0, 1, 1/32}]; ListLinePlot[W,Mesh->Full]

j=1132490; W=Table[{i, Z[j+i]}, {i, 0, 1, 1/32}]; ListLinePlot[W,Mesh->Full]

0.2 0.4 0.6 0.8 1.0

-2

-1

1

2

Fig. 5 Z(t) sample values for (1132489, 1132490)

0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

Fig. 6 Z(t) sample values for (1132490, 1132491)

By Fig.5 and Fig.6, we see there should be three zeros in the interval (1132489, 1132490), and two
zeros in the interval (1132490, 1132491). Actually, there are four zeros

1132489.162779754, 1132489.585214591, 1132490.165304883, 1132490.658714411.

See [8] for details. The inconsistence is due to the roundoff errors and systematic errors, or the ListLinePlot
function fails to detect the poles in the interval (1132489, 1132490). In short, the general method becomes
inaccurate with the increasing of t.

4 A new method to test zeros

For the first three zerosr1 = 1/2 + 14.134725 i, r2 = 1/2 + 21.0220396 i, r3 = 1/2 + 25.01085758 i, we have
the following numerical calculations (see Table 1).

Table 1: Numerical calculations for the first three zeros

Partial-sum η(1/2 + 14.134725 i) = c− di |c|+ |d|
700000 0.00010144 +0.000588673 I 0.000690113
800000 0.00049395 -0.000261985 I 0.000755936
900000 -0.000289405-0.000440756 I 0.000730162
Partial-sum η(1/2 + 21.0220396 i) = c− di |c|+ |d|
700000 -0.000586334+0.000110852 I 0.000697186
800000 0.000553754 +0.0000797987 I 0.000633552
900000 -0.000362282-0.000383504 I 0.000745786
Partial-sum η(1/2 + 25.010857 i) = c− di |c|+ |d|
700000 0.000534317 -0.000268088 I 0.000802405
800000 -0.000439384+0.000345612 I 0.000784996
900000 0.000470723 -0.00023747 I 0.000708193
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With the finite precision, we have the faith in that the three values are really zeros of eta function.
Of course, they are not for the original zeta series. Practically, the three series ζ(r1), ζ(r2), ζ(r3) are
divergent, not convergent.

Theorem 2. Let z = 1
2 + bi, b > 0. Denote the partial sum

∑k
n=1

(−1)n−1

nz by c− di, for some positive
integer k. Then the modulus |c− di| is continuous with respect to b.

Proof. It is easy to see that

c− di =

k∑
n=1

(−1)n−1

nz
=

K∑
n=1

(−1)n−1e−z lnn
z= 1

2+ib=======

k∑
n=1

(−1)n−1e−(
1
2+ib) lnn

=

k∑
n=1

(−1)n−1
√

1

n
cos(b lnn)− i

k∑
n=1

(−1)n−1
√

1

n
sin(b lnn),

|c− di|2 =

(
k∑

n=1

(−1)n−1
√

1

n
cos(b lnn)

)2

+

(
k∑

n=1

(−1)n−1
√

1

n
sin(b lnn)

)2

.

Since all cos(b lnn), sin(b lnn), n = 1, · · · , k, are continuous with respect to b, the above modulus is also
continuous with respect to b.

Based on this theorem, we now present a new method (see Algorithm 1) to search for a zero in a short

interval. Let sk :=
∑k

n=1(−1)n−1e−(
1
2+ib) lnn. We compute the mean of partial sums sk1 , sk2 , · · · , sk` , so

as to partly offset the roundoff errors.

Algorithm 1: Testing zeros of Dirichlet eta series in the critical strip

Input: (b1, b2), b2 > b1 > 0, which contains at least one zero of eta series, and a set of positive
integers K = {k1, k2, · · · , k`}, k1 < k2 < · · · < k`.

Output: (c, d) ⊂ (b1, b2), which contains at least one zero of eta series.
1 steplen← 1/4 (or 1/32, 1/256, etc), stepnum← (b2 − b1)/steplen
2 l← 0, r ← 0, T ← { } // T is the empty set

3 for j = 0, j ≤ stepnum do
4 b← b1 + steplen ∗ j, S ← { } for n = 1, n ≤ k` do
5 l← l + (−1)n−1

√
1
n cos(b lnn)

6 r ← r + (−1)n−1
√

1
n sin(b lnn)

7 if n ∈ K then
8 s← l − ri // i2 = −1

9 S ← S ∪ {|s|} // |s| is the modulus of s

10 t← the mean value of S
11 T ← T ∪ {(b, t)}
12 Find (b̂, t̂) ∈ T , with a local minimum t̂

13 c← b̂− steplen, d← b̂+ steplen

Theorem 3. The computational cost for Algorithm 1 is O(50k`(3.32p + log k`)
2), where p is the

accuracy, i.e., the effective number of these digits which appear to the right of the decimal point.
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Proof. The longest binary length of operands in the procedure is log k` (for integer part) plus log 10p

(for fractional part). The total iteration number is stepnum × k`. Usually, stepnum = 50 which suffices
to determine the local minimums in a short interval. Note that log2(10) ≈ 3.32. So, the computational
cost for a multiplication is O((3.32p+ log k`)

2), and the total cost is O(50k`(3.32p+ log k`)
2).

The following Mathematica code can be directly used to test the zeros, in which we take k` = 8000.

Eta[b_,k_,mylist_]:= Module[{a,n,l,r,s,t,U,V,precision},

l = r = 0; U = V = {}; a = 1/2; precision = 10;

For[n = 1, n <=k, n++,

l = N[l + (-1)^(n - 1)/(n^a)*Cos[b*Log[n]], precision];

r = N[r + (-1)^(n - 1)/(n^a)*Sin[b*Log[n]], precision];

If[MemberQ[mylist, n], s = l - r*I; t = Abs[s];

U = AppendTo[U, {n, s, t}]]];

V = U];

Eta2[b1_, b2_, steplen_, k_, mylist_] :=

Module[{A, B, stepnum, b, j, W, v, precision},

A = B = W = {}; precision = 10; stepnum = (b2 - b1)/steplen;

For[j = 0, j <= stepnum, j++, b = b1 + steplen*j;

A = Eta[b, k, mylist]; v = N[Mean[A[[All, 3]]], precision];

B = AppendTo[B, {b, v}]];

W = B]

k = 8000; mylist = Table[j*10^3, {j, 3, 8}];

b1 = 60.0; b2 = 70.0; steplen = 1/4;

A = Eta2[b1, b2, steplen, k, mylist]; Print[A];

ListLinePlot[A, Mesh -> Full]

{{60.,1.32321},{60.25,1.26717},{60.5,0.888527},{60.75,0.249642},

{61.,0.558794},{61.25,1.43329},{61.5,2.25682},{61.75,2.91184},

{62.,3.31517},{62.25,3.43194},{62.5,3.26288},{62.75,2.85191},

{63.,2.31346},{63.25,1.83446},{63.5,1.61748},{63.75,1.68183},

{64.,1.80219},{64.25,1.77718},{64.5,1.5243},{64.75,1.03149},

{65.,0.343867},{65.25,0.43392},{65.5,1.17642},{65.75,1.77527},

{66.,2.13253},{66.25,2.16633},{66.5,1.84827},{66.75,1.21098},

{67.,0.323144},{67.25,0.714845},{67.5,1.76714},{67.75,2.69032},

{68.,3.36282},{68.25,3.69281},{68.5,3.62851},{68.75,3.1727},

{69.,2.38064},{69.25,1.34991},{69.5,0.211323},{69.75,0.893024},

{70.,1.83385}}

By Fig.7, we see there are four local minimums of modulus, corresponding to the tuples

(60.75, 0.249642), (65., 0.343867), (67., 0.323144), (69.5, 0.211323).

So, the four possible intervals are (60.5, 61), (64.75, 65.25), (66.75, 67.25), (69.25, 69.75). In fact, the
target zeros are 60.8317785, 65.112544, 67.07981, 69.546401.

For the first interval (60.5, 61), we have the following results.

b1 = 60.5; b2 = 61.0; steplen=1/32;

A = Eta2[b1, b2, steplen, k, mylist]; Print[A]; ListLinePlot[A, Mesh -> Full]

{{60.5,0.888527},{60.5313,0.821196},{60.5625,0.74993},{60.5938,0.674901},

{60.625,0.596287},{60.6563,0.514269},{60.6875,0.429029},{60.7188,0.340756},
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62 64 66 68 70

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fig. 7 The local minimums for the interval (60, 70)

{60.75,0.249642},{60.7813,0.155887},{60.8125,0.0597751},{60.8438,0.0393607},

{60.875,0.139692},{60.9063,0.242131},{60.9375,0.346274},{60.9688,0.451899},

{61.,0.558794}}

By Fig.8, it is easy to see that the local minimum of modulus is 0.0393607, corresponding to the tuple
(60.8438, 0.0393607). So, the shorter interval is (60.8125, 60.875).

b1 = 60.8125; b2 = 60.875; steplen=1/256;

A = Eta2[b1, b2, steplen, k, mylist]; Print[A]; ListLinePlot[A, Mesh -> Full]

{{60.8125,0.0597751},{60.8164,0.0476377},{60.8203,0.0355041},

{60.8242,0.0234348},{60.8281,0.0117589},{60.832,0.0071543},

{60.8359,0.0152062},{60.8398,0.0271091},{60.8438,0.0393607},

{60.8477,0.0517337},{60.8516,0.0641754},{60.8555,0.0766675},

{60.8594,0.0892015},{60.8633,0.101773},{60.8672,0.11438},

{60.8711,0.12702},{60.875,0.139692}}

60.6 60.7 60.8 60.9 61.0

0.2

0.4

0.6

0.8

Fig. 8 The local minimum for (60.5, 61)

60.82 60.83 60.84 60.85 60.86 60.87

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fig. 9 The local minimum for (60.8125, 60.875)

With the shorter step length 1/256, we find the local minimum of modulus (see Fig.9) is 0.0071543,
corresponding to the tuple (60.832, 0.0071543). So, the shorter interval is (60.8281, 60.8359), which still
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contains the target zero 60.8317785. By the similar procedure, we obtain the strictly decreasing modulus
chain corresponding to the nested intervals,

modulus : 0.249642 > 0.0393607 > 0.0071543 > · · ·
intervals : (60.5, 61) ⊃ (60.8125, 60.875) ⊃ (60.8281, 60.8359) ⊃ · · ·

Finally, we can obtain a more accurate approximation of the target zero.

5 Comparisons

The computational cost for the general method based on the Riemann-Siegel formula is dominated by
that for computing the sum ∑

n≤α

cos(ϑ(1/2 + it)− t log n)√
n

.

If t is very large, then O
(

1
tN/2+1/4

)
is negligible, and N can be taken very small, say N = 2 or 3. But

α =
√
t/(2π) becomes big enough. So, its computational cost is O(

√
t/2π(3.32p+ log t)2), where p is the

accuracy. In this case, the new method takes O(50k`(3.32p+ log τ)2) cost, where τ = max{log t, log k`}.
We refer to Table 2 for the comparisons between the general method and the new method.

Table 2 Comparisons between the general method and the new method

General method New method
Principle Riemann-Siegel formula Z(t),

discontinuous, very complicated, far
beyond the average person

partial sums of η(z), continuous,
straightforward, easily
understandable

Manual computation possible for t ≤ 40 impossible (k` ≥ 3000)

Cost O(
√
t/2π(3.32p+ log t)2),

depending on t, tremendous cost for
a big integer t, non-polynomial time

O(50k`(3.32p+ log τ)2), depending
mainly on the index k` for partial
sums, polynomial time

6 Further discussions

Let b = 1132488.8, or 1132489.8 (the four highest zeros in the table [8], are 1132489.162779754,
1132489.585214591, 1132490.165304883, 1132490.658714411). To facilitate the ListLinePlot function, we
revise the programming code as below.

Eta2[b1_, b2_, steplen_, k_, mylist_] :=

Module[{A, B, stepnum, b, j, d, W, v, precision},

A = B = W = {}; precision = 10; stepnum = (b2 - b1)/steplen;

For[j = 0, j <= stepnum, j++,

b = b1 + steplen*j; A = Eta[b, k, mylist];

v = N[Mean[A[[All, 3]]], precision];

d = N[steplen*j, precision]; B = AppendTo[B, {d, v}]]; W = B]

We now have the following results.
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k = 8000; mylist = Table[j*10^3, {j, 5, 8}]; b1 = 1132488.8; b2 = 1132490.0;

steplen = 1/32; A = Eta2[b1, b2, steplen, k, mylist];

Print[A]; ListLinePlot[A, Mesh -> Full]

k = 8000; mylist = Table[j*10^3, {j, 5, 8}]; b1 = 1132489.8; b2 = 1132491.0;

steplen = 1/64; A = Eta2[b1, b2, steplen, k, mylist];

Print[A]; ListLinePlot[A, Mesh -> Full]

0.2 0.4 0.6 0.8 1.0 1.2

1

2

3

4

Fig. 10 The local minimum for (1132488.8, 1132490.0)

0.2 0.4 0.6 0.8 1.0 1.2

0.5

1.0

1.5

2.0

Fig. 11 The local minimum for (1132489.8, 1132491.0)

We find there are only three zeros (see Fig.10, Fig.11), near 1132489.08125, 1132489.6125, 1132490.425.
The inconsistence is due to the loss of significant digits. In this case, the loss of accuracy becomes so
serious as to invalidate the results.

The general method is also facing the challenge. For example, taking the highest two zeros µ =
1/2+1132490.165304883 i, ν = 1/2+1132490.658714411 i, we find the partial sums of η(µ), η(ν) converge
very slowly (see Table 3), compared with that of η(1/2 + 14.134725142 i).

Table 3: Convergence rates for three zeros

Partial-sum η(1/2 + 14.134725142 i) = c− di |c− di|
70000 -0.0015479+0.00108417 I 0.00188982
80000 0.00141456 +0.00106019 I 0.00176776
Partial-sum η(1/2 + 1132490.165304883 i) = c− di |c− di|
70000 0.860207 -0.294609 I 0.909258
80000 0.368013 -0.683709 I 0.776461
Partial-sum η(1/2 + 1132490.658714411 i) = c− di |c− di|
70000 0.00572052 +0.0259613 I 0.0265841
80000 -0.0803842-0.595348 I 0.60075

The difference originates from that the fractional part 0.658714411 is far less than the integral part
1132490 in the direct computations of

cos(1132490.658714411× ln n), sin(1132490.658714411× ln n), · · · ,

So, its contribution to the fractional part,
{

1132490.658714411×ln n
2π

}
, becomes negligible, and the usual

calculating methods for sine and cosine functions will fall flat.
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7 Conclusion

We show that the Dirichlet eta function and the analytic continuation of Riemann zeta function have
the same zeros in the critical strip. Based on this relationship and that the partial sum of eta series is
continuous, we present a simple method to test zeros. The programming code is also presented, which is
very easy to execute. To the best of our knowledge, it is the first time to invent such a simple method for
newcomers to test the famous zeros.
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