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Abstract
We propose the first constructions of anonymous tokens with de-

centralized issuance. Namely, we consider a dynamic set of sign-

ers/issuers; a user can obtain a token from any subset of the signers,

which is publicly verifiable and unlinkable to the issuance pro-

cess. To realize this new primitive we formalize the notion of blind

multi-signatures (BMS), which allow a user to interact with multi-

ple signers to obtain a (compact) signature; even if all the signers

collude they are unable to link a signature to an interaction with

any of them. We then present two BMS constructions, one based

on BLS signatures and a second based on discrete logarithms with-

out pairings. We prove security of both our constructions in the

Algebraic Group Model. We also provide a proof-of-concept imple-

mentation and show that it has low-cost verification, which is the

most critical operation in blockchain applications.
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1 Introduction
In the digital world, authorization plays a foundational role. From

regulating access to online services to ensuring the integrity of

voting systems, effective access-control mechanisms are crucial for

maintaining security and trust. User authorization can be imple-

mented via various methods depending on the application scenario.

Common approaches include using credentials such as usernames

and passwords or relying on third-party services, such as Auth0

or OpenID, to access user accounts. However, these authentication

methods raise concerns regarding user privacy. Each time a user

logs in, the service learns everything about the user’s activities,

enabling the creation of a full profile of their habits. While this level

of information leakage may be necessary for certain applications,

in many other cases it is desirable to avoid it. Consider, for instance,

a subscription-based news portal. In a privacy-friendly world, the

only thing that the service should learn is whether the user has a
valid subscription to the service or whether the user has an account

and nothing else.
One prominent solution to the problem of anonymous user autho-

rization is anonymous tokens. In a nutshell, an anonymous token

system includes three types of parties: issuers, users, and verifiers.
An issuer provides an anonymous token to a user whose identity

is typically known by the issuer at the time of issuance. The user

can subsequently present the token to a verifier who can authenti-

cate its validity. Anonymous tokens must be both unforgeable and

anonymous, where unforgeability means that a user cannot forge a

token and anonymity guarantees unlinkability between token is-

suance and presentation/verification. Blind signatures are a related

notion; one can view anonymous tokens as blind signatures with no

message. There are a number of blind signatures and anonymous

token schemes with different properties [1, 13, 14, 19, 35, 56], and
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growing interest in their adoption by companies including Cloud-

fare,
1
Apple,

2
, Google,

3
and Facebook.

4
A recent IETF draft

5
aims

to standardize anonymous tokens.

Anonymous tokens can support public or private verifiability.

Privately verifiable tokens assume the issuer and the verifier are

the same entity, whereas publicly verifable tokens do not. Public

verifiability is essential for large heterogeneous systemswith a large

number of verifiers who do not wish to also serve as token issuers.

For blockchain applications, public verifiability is also necessary so

tokens can be verified on-chain, possibly via a smart contract.

In all existing anonymous token systems, tokens are issued by

a single issuer. This, however, introduces a single point of failure:

if the token issuer is compromised it can issue an arbitrary num-

ber of tokens to unauthorized users. Furthermore, it is important

for certain applications that tokens be issued by multiple issuers

who jointly endorse a credential. Consider for example a tokenized

anonymous-voting application where the governors of a Decentral-

ized Autonomous Organization (DAO) wish to issue anonymous

tokens to external members so they can vote on various issues. The

voting policy may demand that a member is only eligible to vote if

they receive endorsement from a miminum number of governors.

To our knowledge, all prior work that would enable this use-case

relies on heavy machinery such as zero-knowledge proofs, timelock

encryption, or homomorphic encryption [3].

Publicly verifiable tokens with decentralized issuance. Motivated

by this discussion, we propose the concept of publicly verifiable
anonymous tokens with decentralized issuance. That is, we consider
a dynamic set of signers/issuers; a user can obtain a token signed by

any subset of the signers, which is publicly verifiable and unlinkable

to the issuance process. As a building block toward this primitive,

we propose blind multi-signatures (BMS). Multisignatures have the

benefit of allowing for a flexible set of issuers that may change

frequently, and require no-coordination amongst the issuers for

token generation. This can be preferable to primitives like threshold

signatures which require a coordinated Distributed Key Generation

(DKG) protocol to be executed amongst the set of signers/issuers,

and typically assume a static set of signers.

A BMS scheme can directly serve as a publicly verifiable anony-

mous token with decentralized issuance. Users can interact with

each signer separately, collect individual signatures, and then ag-

gregate them to obtain a final signature. As with multisignatures, a

BMS reveals the set of signers who issued the token. For certain ap-

plications, we consider this to be a feature, as different signers may

be responsible for certifying different attributes of a user. Know-

ing the identities of the signers can also enhance credibility of the

tokens. Additionally, it offers some type of “signer accountability.”

For instance, if a signer is frequently associated with the issuance

of tokens that are later misused, that signer may be penalized. At

the same time, this raises the valid concern that disclosing the set

of signers results in a reduced anonymity set, as a token is only

unlinkable within the set of tokens that are signed by the same

1
https://blog.cloudflare.com/privacy-pass-standard

2
https://developer.apple.com/news/?id=huqjyh7k

3
https://github.com/google/anonymous-tokens,

https://developers.google.com/privacy-sandbox/protections/private-state-tokens

4
https://research.fb.com/privatestats

5
https://datatracker.ietf.org/wg/privacypass/about/

group of signers. We note, however, that for many applications this

is not necessarily a problem. For starters, when the total number

of signers is small and the number of users is large, the anonymity

set for each user is likely to remain large. In other cases, the set

of signers required for a valid token may be fixed (even as that set

may change in different epochs); this would be the case in the DAO

voting scenario discussed earlier, where a token is valid only when

signed by the set of all current governors.

1.1 Our Contributions
We now briefly summarize our technical contributions.

Blind multisignatures (BMS). The foundational building block

at the core of our constructions is blind multisignatures (BMS).

Multisignatures enable the computation of a joint signature on a

message𝑚, by a set of𝑛 signers, without requiring any coordination

amongst the signers. As already explained, a BMS scheme can

directly serve as a anonymous token scheme with decentralized

issuance. In Section 3 we provide rigorous definitions for blind

multisignatures (BMS) and their corresponding security properties:

blindness and one-more unforgeability (OMUF). We then present

two BMS constructions with different tradeoffs, described next.

BMS based on BLS. In Section 4 we construct BM_BLS, a blind
multisignature based on the Boneh–Lynn–Shacham (BLS) signature

scheme [9]. We prove concurrent security of our construction in the

Algebraic Group and Random Oracle Models (AGM + ROM) based

on the 𝑞-dlog assumption. BLS is an efficient signature scheme that

uses pairings and has recently seen adoption in the blockchain

space (i.e., the Chia Network [16], Celo [12], Filecoin, and PoS

Ethereum) due to its efficient support for signature aggregation.

An IETF standardization effort for BLS has been ongoing since

2019 [30]. Blind BLS [7] and BLS multisignatures [8] already ex-

ist in the literature. However, combining them to obtain a blind

multisignature is not trivial. In particular, a significant challenge

is to avoid so-called rogue-key attacks where an adversary breaks

security by choosing a (malformed) public key based on the public

keys of honest parties. Our construction is secure against rogue-

key attacks in the plain public-key model, i.e., there is no need for

signers to prove knowledge of their signing keys. It also supports

public-key aggregation.

A pairing-free BMS. In Section 5 we present BM_SB, a pairing-
free BMS scheme based on the recent threshold blind-signature

scheme Snowblind [18]. We prove concurrent security based on the

discrete-logarithm (dlog) assumption in the AGM. Towards taming

the complexity of this proof, we follow a similar technique as in

recent work [28, 32]. In particular, we first propose a new crypto-

graphic primitive called a multi-identification (mID) scheme and

adapt the security notion to fit our new primitive. Then, we con-

struct a multi-identification scheme and prove its security. Finally,

we show how this implies security of our BMS scheme.

Compared to our BLS-based construction, our second scheme

enjoys more efficient verification (since it avoids pairings) and

has very short signatures regardless of the number of signers. As

opposed to our BLS construction, however, this scheme requires

each (corrupted) signer to submit a proof of possession of its public

key, which in turn prevents public key aggregation.

https://blog.cloudflare.com/privacy-pass-standard
https://developer.apple.com/news/?id=huqjyh7k
https://github.com/google/anonymous-tokens
https://developers.google.com/privacy-sandbox/protections/private-state-tokens
https://research.fb.com/privatestats
https://datatracker.ietf.org/wg/privacypass/about/
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Implementation and evaluation. In Section 6, we present a proof-

of-concept Python implementation of our two constructions, and a

generic smart-contract library for verifying our anonymous tokens

on the Ethereum blockchain. We evaluate the efficiency and cost of

our implementations, demonstrating their practicality. Verifying a

token on Ethereum costs about 232K gas for BM_BLS, irrespective
of the number of signers, and about 280K gas for a BM_SB token

issued by 11 signers. As of April 28th, 2024, when the median gas

price was approximately 7.4 gwei [36] and the Ethereum closing

price
6
was 3, 262.77 USD, this translates to a monetary cost of

∼$5.60 and ∼$6.76, respectively. Moreover, BM_BLS tokens can be

aggregated, meaning that the verification cost can be amortized

across multiple users. The amortized cost for verifying a batch of

32 or more tokens is around 110K gas, or ∼$2.66.

1.2 Related Work
As already noted, although there exist a variety of anonymous

token constructions, none of them supports decentralized issuance.

We discuss two types of related work: (1) blind signatures with

multiple issuers and (2) decentralized anonymous credentials (a

primitve more general than anonymous tokens).

Blind multisignatures and threshold signatures. Blind signatures

with multiple signers can be found in the form of multisignatures

or threshold signatures, with the primary distinction between them

being whether the signers generate their keys independently (mul-

tisignatures) or whether they need to jointly run a protocol to

generate a single public key and individual key shares (threshold

signatures). Some blind multisignature schemes have been sug-

gested in the literature [7, 15, 42, 49, 59], but they all lack rigorous

security analysis. Several constructions of blind threshold signa-

tures exist [2, 18, 34, 37, 39, 57], but as we have noted these all

require coordination between the issuers during key generation

and do not immediately support dynamic signing sets.

Decentralized anonymous credentials. Anonymous credential sys-

tems are typically multi-use, i.e., credentials that encode a set of
attributes are issued once and presented multiple times. Compared

to anonymous tokens, which can be viewed as a single-use creden-
tial without attributes, those schemes are therefore much more

complex and expensive. The problem of decentralized issuance

for anonymous credentials has been addressed using different ap-

proaches which we briefly discuss below. We note, however, that

converting any of these anonymous credential schemes to an effi-

cient anonymous token scheme is non trivial.

A number of decentralized anonymous-credential schemes use

threshold techniques [20, 51, 57, 58]; these all have the drawback

of requiring the issuers to coordinate at the time of key generation

as discussed above. Another recent line of work [29, 46] constructs

decentralised multi-use anonymous credentials from aggregate

signatures with randomizable tags. Finally, some work [26] has

considered decentralized anonymous credentials based on peer-to-

peer anonymous attestation on a bulletin board/blockchain rather

than issuing authorities, a setting quite different from the one we

consider here.

6
See https://coinmarketcap.com/currencies/ethereum/historical-data.

2 Preliminaries
We let 𝜆 denote the security parameter. PPT means probabilistic

polynomial time. We let poly(𝜆) be an unspecified polynomial func-

tion of 𝜆 and negl(𝜆) a negligible function. We let [𝑡] = {1, . . . , 𝑡}.
We use 𝑥

$←− D to refer to sampling a uniform element 𝑥 from D.

We write 𝑦 ← AO (𝑥) to denote the randomized output of an al-

gorithm A that takes 𝑥 as input and has access to an oracle O.
Given a game Game parameterized by an adversary 𝐴, the success

probability of 𝐴 in Game is AdvGame
𝐴

(𝜆) := Pr[Game𝐴 = true].

2.1 Cryptographic Assumptions
Assumption 1 ([24]). Let G be a cyclic group of order 𝑝 . The

𝑞-discrete-logarithm assumption holds if for every PPT algorithm 𝐴:

Pr

[
𝑥 ← Z∗𝑝

𝑥∗ ← 𝐴(𝑔,𝑌1 = 𝑔𝑥 , . . . , 𝑌𝑞 = 𝑔𝑥
𝑞 ) : 𝑥∗ = 𝑥

]
≤ 𝑛𝑒𝑔𝑙 (𝜆).

Note that the standard discrete-logarithm assumption is just the

1-dlog assumption.

Definition 1 (Bilinear Pairings). Let G1,G2,G𝑇 be groups of or-

der 𝑝 . A pairing is an efficiently computable map 𝑒 : G1×G2 → G𝑇
such that for all 𝑃 ∈ G1, 𝑄 ∈ G2, and 𝑎, 𝑏 ∈ Z𝑝 it holds that

𝑒 (𝑃𝑎, 𝑄𝑏 ) = 𝑒 (𝑃𝑎, 𝑄)𝑏 = 𝑒 (𝑃,𝑄𝑏 )𝑎 = 𝑒 (𝑃,𝑄)𝑎𝑏 . If G1 = G2 then

we say the pairing is symmetric.

2.2 The Algebraic Group Model (AGM)
The AGM [24] is a formal model for analyzing group-based cryp-

tosystems. In the AGM, the adversary A is assumed to be algebraic.
Roughly, this means that if ®𝑔 = (𝑔1, . . . , 𝑔𝑡 ) are the group elements

A has been given at any point in its execution, then if it outputs

a group element 𝑦 it also outputs a representation ®𝑧 such that

𝑦 =
∏
𝑖∈[𝑡 ] 𝑔

𝑧𝑖
𝑖
. We stress that group elements A receives from

any oracles it has access to are included in ®𝑔, and any time A sub-

mits a group element 𝑦 to one of its oracles it must also output a

representation of 𝑦.

2.3 Blind Signatures
A blind signature scheme [14] is an interactive protocol between

a signer and a user that allows the user to obtain a signature that

cannot later be linked to the user by the signer. A blind signature

scheme BS consists of the following algorithms:

• BS.KGen(1𝜆) → (𝑠𝑘, 𝑝𝑘). Run by a signer to generate keys.

• BS.Sign⟨U(𝑚, 𝑝𝑘),S(𝑠𝑘)⟩ → 𝜎 . This is an interactive pro-

tocol between a (stateful) signer S with input the secret key

𝑠𝑘 and a (stateful) userU with input a message𝑚 and the

signer’s public key.U outputs a signature 𝜎 .

• BS.Ver (𝑝𝑘,𝑚, 𝜎) → 0/1. Run by a verifier; outputs 1 iff 𝜎 is

a valid signature for𝑚 under key 𝑝𝑘 .

Correctness can be formalized in the obvious way. A secure blind

signature scheme should satisfy blindness (i.e., a signature cannot
be linked back to its corresponding signing session, even by the

signer itself) and one-more unforgeability (i.e., an adversarial userU
making ℓ blind signing queries cannot output ℓ +1 valid signatures).

We recall the formal definitions in Appendix A.1.
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2.4 Multi-Signatures
A multi-signature scheme allows a set of signers to each generate a

signature on a message𝑚; those signatures can then be aggregated

to form a compact signature of all the signers on𝑚. Some multi-

signatures also support public-key aggregation which allows for a

compact representation of all the signers’ public keys. Our definition

roughly follows that of Drijvers et al. [21]. For public parameters pp,
a multi-signature scheme MS consists of the following algorithms:

• MS.KGen(pp) → (𝑠𝑘, 𝑝𝑘). Run by a signer to obtain a key

pair.

• MS.KAgg( ®𝐾) → apk. Given a set of public keys ®𝐾 = {𝑝𝑘
1
,

. . ., 𝑝𝑘𝑛}, outputs an aggregate public key apk.
• MS.Sign (𝑠𝑘𝑖 ,𝑚) → 𝜎𝑖 . A signer with input

7
a secret key

𝑠𝑘𝑖 and a message𝑚 outputs a signature 𝜎𝑖 .

• MS.Comb(𝑚, {𝜎𝑖 }) → 𝜎 . Individual signatures 𝜎𝑖 can be

combined into a signature 𝜎 .

• MS.Ver (apk,𝑚, 𝜎) → 0/1. Outputs 1 if 𝜎 is a valid signature

for message𝑚 under aggregate key apk.

We recall security definitions for multi-signatures in Appendix A.2.

We remark that one challenge in multi-signature schemes is avoid-

ing rogue-key attacks [27, 38, 40, 43, 45, 48], which can occur when

an attacker uses a public key that is not generated honestly, but

instead depends in some way on an honest signer’s public key. One

way to avoid such attacks is to rely on the so-called knowledge-of-
secret-key (KOSK) model which can be implemented by having each

signer include a zero-knowledge proof of knowledge (aka a proof of

possession) of their secret key along with their public key [7, 43, 53].

Schemes that do not require this extra assumption are said to be in

the plain public-key model [6, 8, 47].

3 Blind Multi-signatures
A blind multi-signature combines the features of both blind and

multi-signature schemes. It resembles a multi-signature in that it is

a signature on a message𝑚 signed by multiple signers that verifies

under the set of public keys of the signers ®𝐾 or under an aggregate

key apk if scheme supports key aggregation. It also resembles a

blind signature, as the signing happens in an interactive fashion

between a userU who knows𝑚 and a set of signers who should

be unable to link the final signature to the issuance process. Below

we provide a rigorous definition.

For public parameters pp, a blind multi-signature scheme BMS
consists of the following algorithms:

• BMS.KGen(pp) → (𝑠𝑘, 𝑝𝑘). Run by a signer to obtain a key

pair.

• BMS.KAgg( ®𝐾) → apk. Outputs an aggregate public key apk
for a set of public keys ®𝐾 = {𝑝𝑘

1
, . . . , 𝑝𝑘𝑛}.

• BMS.Sign⟨U(𝑚, ®𝐾), {S𝑖 (𝑠𝑘𝑖 )}𝑖∈[𝑛]⟩ → 𝜎 . This is an inter-

active protocol run between a userU and signersS1, . . . ,S𝑛 ,
where the signers do not directly communicate with each

other. Each signer has only its own secret key as input;U
has a message𝑚 and the signers’ public keys ®𝐾 as input, and

outputs a signature 𝜎 . We assume all keys in ®𝐾 are distinct.

7
In some schemes, the signer additionally needs to know ®𝐾 .

• BMS.Ver (apk,𝑚, 𝜎) → 0/1. Outputs 1 if 𝜎 is a valid signa-

ture on𝑚 under aggregate key apk.

Correctness requires that if signers honestly generate keys (𝑠𝑘𝑖 , 𝑝𝑘𝑖 )
and then run𝜎 ← BMS.Sign ⟨U(𝑚, ®𝐾),S𝑖 (𝑠𝑘𝑖 )⟩, where ®𝐾 = {𝑝𝑘𝑖 },
then BMS.Ver(apk,𝑚, 𝜎) = 1, where apk = BMS.KAgg( ®𝐾).

Security. A blind multi-signature should satisfy one-more un-
forgeability and blindness.

Let apk be the aggregated public key for a set of signers, one of

whom is honest. One-more unforgeability requires that an adver-

sarial userU (possibly colluding with all corrupted signers) should

be unable to forge a signature that verifies under apk, unless this
signature came from its interaction with the honest signer. Below

we give the formal definition in the plain public-key model. (In the

KOSK model, the adversary must also output the secret key corre-

sponding to any adversarial public key.) The signing oracle Sign𝑠𝑘∗
simulates the honest signer’s execution of the signing protocol.

Definition 2 (One-more unforgeability (OMUF)). Given a blind

multi-signature scheme BMS = (KGen,KAgg, Sign,Ver), we define
the game OMUFBMS

𝐴
as follows:

• Setup: The challenger generates a key pair (𝑠𝑘∗, 𝑝𝑘∗) using
BMS.KGen, and gives 𝑝𝑘∗ to 𝐴.
• Queries: 𝐴 may repeatedly query a signing oracle Sign𝑠𝑘∗ .
• Output: 𝐴 outputs a list of tuples (𝜎∗

1
,𝑚∗

1
, ®𝐾1), . . . , (𝜎∗ℓ+1,

𝑚∗
ℓ+1,
®𝐾ℓ+1); let apk𝑖 = BMS.KAgg( ®𝐾𝑖 ) for all 𝑖 . 𝐴 wins if:

(1) 𝑝𝑘∗ is in each set ®𝐾𝑖 , (2)BMS.Ver (apk𝑖 ,𝑚𝑖 ,𝜎𝑖 ) = 1 for all 𝑖 ,

and (3) the number of completed interactions with Sign𝑠𝑘∗
is at most ℓ . If 𝐴 wins, the game outputs true.

BMS is one-more unforgeable (OMUF) if for any PPT 𝐴,

Adv𝑂𝑀𝑈𝐹
𝐴,BMS (𝜆) := Pr[OMUFBMS

𝐴 = true] = negl(𝜆).

Sequential vs. concurrent security. The above models concurrent se-

curity, i.e., the adversary may concurrently run multiple executions

with Sign𝑠𝑘∗ . To model sequential security, Sign𝑠𝑘∗ should not open
a new signing session before the previous one is closed.

The next security property of blind multi-signatures is blindness,

i.e., even the signers themselves should be unable to link a signature

to its corresponding signing session. In the definition we assume

that all signers are colluding and we allow for maliciously generated

keys. In the blindness game the adversary 𝐴 starts by choosing all

the signers’ public keys as well as two messages to be signed. The

honest user runs two executions of the signing protocol with𝐴 and

the given keys, one for each message, in a random order. 𝐴 is then

given the two resulting signatures and asked to guess the order in

which the two messages were signed. Formally, given blind multi-

signature scheme BMS= (KGen, KAgg, Sign, Ver) let mBlindBMS
𝐴

be the following game:

Definition 3 (Blindness). The adversary 𝐴 outputs public keys

®𝐾 = {𝑝𝑘
1
, . . . , 𝑝𝑘𝑛} and messages 𝑚0,𝑚1. The challenger picks

𝑏 ← {0, 1}, and runs two signing sessions as the user U(𝑚𝑏 , ®𝐾),
U(𝑚

1−𝑏 , ®𝐾), while 𝐴 participates in the signing sessions as the 𝑛

signers. If one or both sessions fail to output a (valid) signature, the

game outputs (⊥,⊥). Otherwise, if 𝐴 closes both sessions success-

fully, the game outputs the resulting signatures (𝜎0, 𝜎1). Eventually,
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𝐴 outputs a bit 𝑏′ and wins the game if 𝑏′ = 𝑏, and in this case, the

game outputs true.

BMS is blind if for any PPT adversary 𝐴,

Adv𝑚𝐵𝑙𝑖𝑛𝑑
𝐴,BMS (𝜆) := Pr[mBlindBMS

𝐴 = true] = 1

2

+ negl(𝜆).

4 BLS Blind Multisignatures
In this section we construct a blind multisignature scheme based on

blind BLS signatures. As such, we begin by reviewing the latter. We

also provide a proof of security for the blind BLS signature scheme

in the AGM+ROM, since this will serve as a useful warmup for our

eventual proof of security for the blind multisignature scheme.

4.1 Blind BLS Signatures
We start by describing the blind BLS signature scheme [7]. For

simplicity, in these sections we present constructions and proofs

using symmetric pairings. Let par = (G,G𝑇 , 𝑝, 𝑔, 𝑒) denote the

system parameters and let H : {0, 1}∗ → G be a hash function. The

blind BLS scheme consists of the following algorithms:

• KGen(1𝜆) outputs (𝑠𝑘, 𝑝𝑘) = (𝑥,𝑋 ), where 𝑥 $←−Z𝑝 and 𝑋 =

𝑔𝑥 ∈ G.
• Sign⟨U(𝑚,𝑋 ),S(𝑠𝑘)⟩ outputs a signature 𝜎 as per Fig. 1.

• Ver (𝑝𝑘 = 𝑋,𝑚, 𝜎): Checks whether 𝑒 (𝜎,𝑔) = 𝑒 (H(𝑚), 𝑋 ).
Correctness is immediate and blindness holds unconditionally [7].

S(𝑠𝑘 = 𝑥) U(𝑚,𝑋 )
𝑚̄=H(𝑚) ·𝑔𝑟

←−−−−−−−−−−−−−−− 𝑟
$←− Z𝑝

𝑠 = 𝑚̄𝑥
𝑠−−−−−−−−−−−−−−−→ 𝜎 = 𝑠𝑋 −𝑟

Figure 1: Signing for Blind BLS

Boldyreva [7] showed that blind BLS is one-more unforgeable

under the “chosen-target" CDH assumption (or the one-more static

CDH assumption) in the ROM. In Appendix B, we prove one-more

unforgeability under the 𝑞-dlog assumption in the AGM+ROM.

While the two sets of assumptions/models are incomparable, we

note that our proof gives a tighter reduction. As noted earlier, our

main motivation for giving this proof is that it serves as a warmup

for the proof of unforgeability for our blind multisignature scheme

based on blind BLS.

4.2 BLS-Based Blind Multisignatures
We now present our blind multisignature scheme based on blind

BLS, which we denote by BM_BLS. Our main observation is that

we can construct a blind multisignature scheme directly from blind

BLS; that is, the user can interact with each signer exactly as in the

blind BLS scheme, and then combine the signatures it obtains into

a single multisignature using an additional hash function.

Let (G,G𝑇 , 𝑝, 𝑔, 𝑒) and H : {0, 1}∗ → G be as in the previous

section, and let Hagg : {0, 1}∗ → Z∗𝑝 be another hash function.

• BM_BLS.KGen(1𝜆): As in the blind BLS scheme.

• BM_BLS.KAgg( ®𝐾): Given keys ®𝐾 = {𝑋1, . . . , 𝑋𝑛}, set 𝑎𝑖 =
Hagg( ®𝐾 , 𝑋𝑖 ) and output apk =

∏𝑛
𝑖=1

𝑋
𝑎𝑖
𝑖
.

• BM_BLS.Sign⟨U(𝑚, ®𝐾), {S𝑖 (𝑠𝑘𝑖 )}𝑖∈[𝑛]⟩: U runs the inter-

active signing protocol with each signer as in Fig. 1, us-

ing independent randomness each time, to obtain partial

signatures {𝜎𝑖 }. The final signature is computed as 𝜎 =∏
𝑖∈[𝑛] 𝜎

𝑎𝑖
𝑖
, where 𝑎𝑖 = Hagg({𝑋1, . . . , 𝑋𝑛 }, 𝑋𝑖 ).

• BM_BLS.Ver (apk,𝑚, 𝜎): Checks if 𝑒 (𝜎,𝑔) = 𝑒 (H(𝑚), apk).
To see that correctness holds, note first that

𝜎𝑖𝑋
−𝑟𝑖
𝑖

= (H(𝑚)𝑔𝑟𝑖 )𝑥𝑖𝑋𝑖−𝑟𝑖

= H(𝑚)𝑥𝑖𝑔𝑟𝑖𝑥𝑖𝑔−𝑟𝑖𝑥𝑖 = H(𝑚)𝑥𝑖

for all 𝑖 . Thus,

𝑒 (𝜎,𝑔) = 𝑒 (
∏
𝑖∈[𝑛]

𝜎
𝑎𝑖
𝑖
, 𝑔)

= 𝑒 (H(𝑚)
∑

𝑖∈ [𝑛] 𝑥𝑖𝑎𝑖 , 𝑔)

= 𝑒 (H(𝑚), 𝑔
∑

𝑖∈ [𝑛] 𝑥𝑖𝑎𝑖 )

= 𝑒 (H(𝑚),
∏
𝑖∈[𝑛]

𝑔𝑥𝑖𝑎𝑖 )

= 𝑒 (H(𝑚),
∏
𝑖∈[𝑛]

(𝑔𝑥𝑖 )𝑎𝑖 )

= 𝑒 (H(𝑚),
∏
𝑖∈[𝑛]

𝑋
𝑎𝑖
𝑖
) = 𝑒 (H(𝑚), apk),

and BM_BLS.Ver outputs 1.

Discussion. Due of the simple nature of the protocol,U can con-

tact each signer in parallel to obtain the necessary partial signatures.

Moreover, even if some signers are unreachable,U can compute a

multisignature based on the set of signers who respond.

Multisignature aggregation. Multisignatures on multiple, distinct

messages with respect to the same aggregate public key can be

aggregated. For example, given signatures 𝜎1 on message𝑚1 and

𝜎2 on message 𝑚2, signed by the same set of signers, the aggre-

gate signature 𝜎 = 𝜎1𝜎2 can verified by checking if 𝑒 (𝜎,𝑔) =
𝑒 (H(𝑚1)H(𝑚2), apk). This also enables more-efficient verification.

Security. Blindness follows by a natural extension of the proof

for blind BLS (cf. Appendix C.1). It is more challenging to prove

one-more unforgeability. We prove the following in Appendix C.2.

Theorem 4. Assume the discrete logarithm problem is hard, and
model H,Hagg as random oracles. Then BM_BLS is one-more un-
forgeable for all PPT algebraic adversaries.

5 A Pairing-Free Construction
In this section we show an alternate construction of blind multisig-

natures that has the advantage of avoiding pairings. Motivated by

prior work [28], we introduce the concept of multi-identification

schemes with security against a certain form of man-in-the-middle

(MiTM) attacks, and then design such a scheme. Finally, we show

how to use such schemes to construct blind multisignatures.

5.1 Multi-Identification Schemes
Hauck et al. [28] prove OMUF security of blind signature schemes

built from identification schemes by proving one-more man-in-the-

middle (OMMIM) security of the underlying identification scheme.
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S𝑖 (𝑝𝑘𝑖 = 𝑔𝑠𝑘𝑖 , 𝑠𝑘𝑖 ) U( ®𝐾 = {𝑝𝑘
1
, . . . , 𝑝𝑘𝑛},𝑚)

𝑎𝑖 , 𝑏𝑖 , 𝑦𝑖 ← Z𝑞
𝐴𝑖 ≔ 𝑔𝑎𝑖 , 𝐵𝑖 ≔ 𝑔𝑏𝑖 · ℎ𝑦𝑖
𝑐𝑜𝑚𝑖 ≔ Hcom (𝑝𝑘𝑖 , 𝑏𝑖 , 𝑦𝑖 )

𝐴𝑖 ,𝐵𝑖 ,𝑐𝑜𝑚𝑖−−−−−−−−−−−−−−→ For 𝑖 ∈ [𝑛] : 𝛽𝑖 ← Z𝑞
𝛼, 𝑟 ← Z𝑞
𝐴 ≔

∏
𝑗 𝐴 𝑗 , 𝐵 ≔

∏
𝑗 𝐵 𝑗

𝑅 ≔ 𝑔𝑟 ·∏𝑗 𝑝𝑘
𝛼3 ·𝛽 𝑗
𝑗

· 𝐴𝛼3 · 𝐵𝛼

For 𝑖 ∈ [𝑛] : 𝑐𝑖 ≔ Hsig ( ®𝐾, 𝑝𝑘𝑖 , 𝑅,𝑚)
For 𝑖 ∈ [𝑛] : 𝑐𝑖 ≔ 𝑐𝑖 · 𝛼−3 + 𝛽𝑖

𝑐𝑖 ,{𝐵 𝑗 ,𝑐𝑜𝑚 𝑗 } 𝑗 ∈ [𝑛]←−−−−−−−−−−−−−−−−−−−−
𝑏𝑖 ,𝑦𝑖−−−−−−−−−→

{𝑏𝑖 ,𝑦𝑖 }𝑖∈ [𝑛]←−−−−−−−−−−−−−−−
If ∃𝑖 ∈ [𝑛] 𝑐𝑜𝑚𝑖 ≠ Hcom (𝑖, 𝑦𝑖 , 𝑏𝑖 ):
Abort

If ∃𝑖 ∈ [𝑛] 𝐵𝑖 ≠ 𝑔𝑏𝑖 · ℎ𝑦𝑖 :
Abort

𝑦 ≔
∑
𝑗∈[𝑛] 𝑦 𝑗

𝑧𝑖 ≔ 𝑎𝑖 + (𝑐𝑖 + 𝑦3) · 𝑠𝑘𝑖
𝑧𝑖−−−−−−→ 𝑏 ≔

∑
𝑗 𝑏 𝑗 , 𝑦 ≔

∑
𝑗 𝑦 𝑗 , 𝑧 ≔

∑
𝑗 𝑧 𝑗

If 𝑔𝑧 ≠ 𝐴 ·∏𝑗∈[𝑛] 𝑝𝑘
𝑐 𝑗+𝑦3

𝑗
∨ 𝐵 ≠ 𝑔𝑏 · ℎ𝑦 :

Abort

𝑧 ≔ 𝑟 + 𝛼3 · 𝑧 + 𝛼 · 𝑏
𝑦 ≔ 𝛼 · 𝑦
Output 𝜎 := (𝑅,𝑦, 𝑧)

Figure 2: Blind multisignature scheme BM_SB.

We cannot immediately follow their methodology because it is not

clear how to build blind multisignatures from standard identifica-

tion schemes. To address this, we put forth the notion of a multi-

identification scheme (mID). In an mID scheme, a set of provers,

each of which has its own keys (𝑝𝑘 ,𝑠𝑘), interact with a verifier to

prove knowledge of their secret keys. Intuitively, mID schemes

allow provers to prove themselves to a verifier as a group. Although
not very useful on their own, mID schemes can be used as a tech-

nical tool to build blind multi-signature schemes.

Definition 5 (Multi-identification schemes). For public parameters

pp, anmID scheme is a tuplemID ≔ (mID.KGen,mID.Idfy) where
• mID.KGen(pp): Outputs a pair of keys (𝑠𝑘, 𝑝𝑘).
• mID.Idfy⟨P𝑖 ,V⟩: This is an interactive protocol between the
verifierV and multiple provers {P𝑖 }, in which the provers

do not directly communicate with each other. Each prover

has its own secret key as input, while the verifier has the

public keys of all the provers. The protocol terminates when

Voutputs 1 (accept) or 0 (reject).

Definition 6 (Correctness). Let mID ≔ (mID.KGen,mID.Idfy) be
an mID scheme with 𝑛 provers P𝑖 and a verifier V . We say that

mID is correct iff for all pp it holds that

Pr

[
∀𝑖 ∈ [𝑛] : (𝑠𝑘𝑖 ) ← mID.KGen(pp)

𝑏 ← mID.Idfy⟨P𝑖 (𝑠𝑘𝑖 , 𝑝𝑘𝑖 ),V({𝑝𝑘1
, . . . , 𝑝𝑘𝑛})⟩

: 𝑏 = 1

]
= 1.

We generalize the security notion introduced by Hauck et al. [28]

for mID schemes. Analogous to the standard OMMIM definition,

we assume there is an active man-in-the-middle adversary A be-

tween the provers and the verifier. We also allow A to control all

but one of the provers.

Definition 7 (One-more MiTM (OMMIM) security). Let A be an

adversary and letmID ≔ (mID.KGen,mID.Idfy) be anmID scheme.

Define the game ℓ-OMMIM as follows:

• Setup. Generate pp and run (𝑠𝑘∗, 𝑝𝑘∗) ← mID.KGen(pp).
Give 𝑝𝑘∗ to 𝐴.
• Online phase. 𝐴 interacts (concurrently) with an honest

prover using 𝑠𝑘∗, and an honest verifier. For the latter, it

must use a set of public keys containing 𝑝𝑘∗.
• Output. A succeeds if it successfully completes at least ℓ + 1

verifier sessions (i.e., by making the verifier output 1) but

closes at most ℓ sessions with the honest prover.

We say that mID is ℓ-OMMIM-secure if any PPT 𝐴 succeeds with

negligible probability in the above game.

5.2 Constructing a Multi-Identification Scheme
We provide a construction of a multi-ID scheme, inspired by prior

work [18]. The protocol is depicted in Figure 5. Let pp ≔ (G, 𝑔, 𝑞, ℎ),
where G is a group of prime order 𝑞 = 2 mod 3 with generator 𝑔,
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and ℎ ∈ G is a uniform group element. Define the scheme mID =

(mID.KGen,mID.Idfy) as follows:
• mID.KGen(pp): sample 𝑠𝑘 ← Z𝑞 , set 𝑝𝑘 ≔ 𝑔𝑠𝑘𝑖 , and output

(𝑠𝑘, 𝑝𝑘).
• mID.Idfy works as follows (see Fig. 5):

– mID.Prove1: Sample 𝑎𝑖 , 𝑏𝑖 , 𝑦𝑖 ← Z𝑞 and set 𝐴𝑖 ≔ 𝑔𝑎𝑖 and

𝐵𝑖 ≔ 𝑔𝑏𝑖 · ℎ𝑦𝑖 . Then send (𝐴𝑖 , 𝐵𝑖 ).
– mID.Ver1: After receiving all {(𝐴𝑖 , 𝐵𝑖 )}, choose 𝑐𝑖 ← Z𝑞
for all 𝑖 and send 𝑐𝑖 and {𝐵 𝑗 } to the 𝑖th prover.

– mID.Prove2: Send (𝑏𝑖 , 𝑦𝑖 ).
– mID.Ver2: After receiving {(𝑏𝑖 , 𝑦𝑖 )} from all provers, abort

if 𝐵𝑖 ≠ 𝑔
𝑏𝑖 · ℎ𝑦𝑖 for some 𝑖 . Otherwise, send {𝑏𝑖 , 𝑦𝑖 } to all

provers.

– mID.Prove3: Abort if 𝐵 𝑗 ≠ 𝑔
𝑏 𝑗 ·ℎ𝑦 𝑗 for some 𝑗 . Otherwise,

compute 𝑦 ≔
∑
𝑗 𝑦 𝑗 and send 𝑧𝑖 ≔ 𝑎𝑖 + 𝑏𝑖 + (𝑐𝑖 +𝑦3) · 𝑠𝑘𝑖 .

– mID.Ver3: After receiving {𝑧𝑖 } from all provers, compute

𝐴 ≔
∏
𝑖 𝐴𝑖 , 𝐵 ≔

∏
𝑖 𝐵𝑖 , 𝑅 ≔ 𝐴 · 𝐵, 𝑦 ≔

∑
𝑖 𝑦𝑖 , and

𝑧 ≔
∑
𝑖 𝑧𝑖 . Return 1 iff 𝑔𝑧 · ℎ𝑦 = 𝑅 ·∏𝑖 𝑝𝑘

𝑐𝑖+𝑦3

𝑖
.

To see that correctness holds, note that

𝑅 ·
∏
𝑗∈[𝑛]

𝑝𝑘
𝑐 𝑗+𝑦3

𝑗
= ℎ

∑
𝑗 ∈ [𝑛] 𝑦 𝑗 ·

∏
𝑗∈[𝑛]

𝐴 𝑗 · 𝑝𝑘
𝑐 𝑗+𝑦3

𝑗

= 𝑔
∑

𝑗 ∈ [𝑛] 𝑎 𝑗 · ℎ
∑

𝑗 ∈ [𝑛] 𝑦 𝑗 · 𝑔
∑

𝑗 ∈ [𝑛] 𝑠𝑘 𝑗 · (𝑐 𝑗+𝑦3 )

= 𝑔
∑

𝑗 ∈ [𝑛] 𝑎 𝑗+𝑠𝑘 𝑗 · (𝑐 𝑗+𝑦3 ) · ℎ
∑

𝑗 ∈ [𝑛] 𝑦 𝑗

= 𝑔
∑

𝑗 ∈ [𝑛] 𝑧 𝑗 · ℎ𝑦 = 𝑔𝑧 · ℎ𝑦 .

We prove the following in Appendix D:

Theorem 8. Assume the discrete-logarithm problem is hard. Then
mID is ℓ-OMMIM-secure for all PPT algebraic adversaries.

5.3 A Pairing-Free BMS
In this section, we introduce a pairing-free blind multi-signature

scheme BM_SB. Our scheme is inspired by the blind threshold-

signature scheme Snowblind [18]. For the reader’s convenience,

we illustrate the scheme as an interactive protocol in Figure 2. For

pp = (G, 𝑞, 𝑔, ℎ) as in the previous section, and for hash functions

Hcom : {0, 1}∗ → Z𝑝 and Hsig : {0, 1}∗ → Z𝑝 treated as random

oracles, we define BM_SB as follows:

• BM_SB.KGen(1𝜆): As before.
• BM_SB.Sign is an interactive protocol run by a user Usr and
multiple signers. It works as follows (see Figure 2):

– Sign1 (𝑠𝑘𝑖 ): Sample 𝑎𝑖 , 𝑏𝑖 , 𝑦𝑖 ← Z𝑞 , and compute𝐴𝑖 ≔ 𝑔𝑎𝑖 ,

𝐵 ≔ 𝑔𝑏𝑖 · ℎ𝑦𝑖 , and 𝑐𝑜𝑚𝑖 ≔ Hcom (𝑝𝑘𝑖 , 𝑏𝑖 , 𝑦𝑖 ). Then send

(𝐴𝑖 , 𝐵𝑖 , 𝑐𝑜𝑚𝑖 ).
– Usr1 ( ®𝐾 = {𝑝𝑘𝑖 },𝑚): Upon receiving (𝐴𝑖 , 𝐵𝑖 , 𝑐𝑜𝑚𝑖 ) from
all signers, sample 𝛼, 𝑟 ← Z𝑞 and 𝛽𝑖 ← Z𝑞 for all 𝑖 , and

compute 𝐴 ≔
∏
𝑗 𝐴 𝑗 , 𝐵 ≔

∏
𝑗 𝐵 𝑗 , and 𝑅 ≔ 𝑔𝑟 ·𝐴𝛼3 · 𝐵𝛼 ·∏

𝑗 𝑝𝑘
𝛼3 ·𝛽 𝑗
𝑗

. Then for all 𝑖 compute 𝑐𝑖 ≔ Hsig ( ®𝐾, 𝑝𝑘𝑖 , 𝑅,𝑚)
and 𝑐𝑖 ≔ 𝑐𝑖 ·𝛼−3+𝛽𝑖 . Send 𝑐𝑖 , {𝐵 𝑗 , 𝑐𝑜𝑚 𝑗 } 𝑗 to the 𝑖th signer.

– Sign2: Send 𝑏𝑖 , 𝑦𝑖 .

– Usr2: Upon receiving 𝑏 𝑗 , 𝑦 𝑗 from all signers, abort if 𝐵 𝑗 ≠

𝑔𝑏 𝑗 · ℎ𝑦 𝑗 or 𝑐𝑜𝑚 𝑗 ≠ Hcom (𝑝𝑘 𝑗 , 𝑏 𝑗 , 𝑦 𝑗 ) for some 𝑗 . Other-

wise, send {𝑏 𝑗 , 𝑦 𝑗 } 𝑗 to all signers.

– Sign3: Compute 𝑦 ≔
∑
𝑗 𝑦 𝑗 and 𝑧𝑖 ≔ 𝑎𝑖 + (𝑐𝑖 + 𝑦3) · 𝑠𝑘𝑖 ,

and send 𝑧𝑖 .

– Usr3: Upon receiving 𝑧 𝑗 from all signers, compute 𝑏 ≔∑
𝑗 𝑏 𝑗 , 𝑦 ≔

∑
𝑗 𝑦 𝑗 , and 𝑧 ≔

∑
𝑗 𝑧 𝑗 . Abort if 𝑔

𝑧 ≠ 𝐴 ·∏
𝑗 𝑝𝑘

𝑐 𝑗+𝑦3

𝑗
or 𝐵 ≠ 𝑔𝑏 · ℎ𝑦 . Compute 𝑧 ≔ 𝑟 + 𝛼3 · 𝑧 + 𝛼𝑏

and 𝑦 ≔ 𝛼𝑦, and output the signature 𝜎 = (𝑅,𝑦, 𝑧).
• Vrfy( ®𝐾,𝑚, 𝜎): Parse 𝑅,𝑦, 𝑧 ← 𝜎 , compute 𝑐𝑖 ≔ Hsig ( ®𝐾, 𝑝𝑘𝑖 ,
𝑅,𝑚) for all 𝑖 , and output 1 if𝑦 ≠ 0 and𝑅·∏𝑖 𝑝𝑘

𝑐𝑖+𝑦3

𝑖
= 𝑔𝑧 ·ℎ𝑦 ,

and 0 otherwise.

(BM_SB.KAgg is not defined because the scheme does not support

key aggregation, and Vrfy takes the set of keys ®𝐾 = {𝑝𝑘
1
, . . . , 𝑝𝑘𝑛}

as input instead of an aggregate key apk.)
To see that correctness holds, note that

𝑔𝑧 · ℎ𝑦 = 𝑔𝑟 · 𝑔𝛼 ·𝑏 · ℎ𝑦 · 𝑔𝛼
3𝑧

= 𝑔𝑟 · (𝑔𝑏 · ℎ𝑦)𝛼 · (𝑔
∑

𝑗 𝑧𝑖 )𝛼
3

= 𝑔𝑟 · 𝐵𝛼 · (𝑔
∑

𝑖 𝑎𝑖+(𝑐𝑖+𝑦3 ) ·𝑠𝑘𝑖 )𝛼
3

= 𝑔𝑟 · 𝐵𝛼 · 𝑔𝛼
3 ·∑𝑖 𝑎𝑖 · (𝑔

∑
𝑖 (𝑐𝑖+𝑦3 ) ·𝑠𝑘𝑖 )𝛼

3

= 𝑔𝑟 · 𝐵𝛼 · 𝐴𝛼
3

·
(∏
𝑖

𝑝𝑘
(𝑐𝑖+𝑦3 )
𝑖

)𝛼3

= 𝑔𝑟 · 𝐵𝛼 · 𝐴𝛼
3

·
∏
𝑖

𝑝𝑘
(𝑐𝑖 ·𝛼−3+𝛽𝑖+(𝑦 ·𝛼−1 )3 ) ·𝛼3

𝑖

= 𝑔𝑟 · 𝐵𝛼 · 𝐴𝛼
3

·
∏
𝑖

𝑝𝑘
𝛼3 ·𝛽𝑖
𝑖

·
∏
𝑖

𝑝𝑘
(𝑐𝑖+𝑦3 )
𝑖

= 𝑅 ·
∏
𝑖

𝑝𝑘
(𝑐𝑖+𝑦3 )
𝑖

.

We prove the following in Appendix E.

Theorem 9. For all PPT A, AdvmBlind
A,BM_SB (𝜆) ≤

1

2
+ negl(𝜆).

Theorem 10. Assume the discrete logarithm problem is hard, and
model Hcom and Hsig as random oracles. Then BM_SB is one-more
unforgeable for all PPT algebraic adversaries in the KOSK model.

6 Evaluation
We present proof-of-concept implementations of BM_BLS and

BM_SB, written in Python. (Code available at https://github.com/

k4m4/bm-poc.) We also implemented a signature-verification smart

contract (in Solidity) for each scheme. For our evaluation, we used

the BN254 elliptic curve (using an EIP-1964 implementation,
8
with

Rust bindings), which is estimated to provide around 100 bits of

security [54]. We used BN254 for both schemes since, at the time of

writing, it is the only pairing-friendly elliptic curve supported by

Ethereum, but also the only curve over which EC addition and EC

multiplication can be practically performed on an Ethereum smart

contract.

6.1 Implementation Benchmarks
Table 1 shows the sizes of the token (i.e., signature) and the public

keys in the signing set for each scheme. A BM_BLS token 𝜎 ∈ G1

8
https://github.com/matter-labs/eip1962

https://github.com/k4m4/bm-poc
https://github.com/k4m4/bm-poc
https://github.com/matter-labs/eip1962
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is 64 bytes long, while a BM_SB token 𝜎 = (𝑅,𝑦, 𝑧) ∈ G1 ×Z𝑝 ×Z𝑝
is 128 bytes long. BM_BLS public keys can be aggregated into a

single G1-element that is 64 bytes long, regardless of the number

of signers/issuers. Conversely, BM_SB does not support public-

key aggregation, meaning that all public keys in the signing set

need to be transmitted. Moreover, BM_SB public keys need to be

accompanied by corresponding proofs of possession (not reflected

in the numbers in Table 1).

Construction Token size Public key size
G1 Z𝑝 Bytes G1 Bytes

BM_BLS 1 0 64 1 64

BM_SB 1 2 128 𝑛 64𝑛

Table 1: Token and public key sizes, assuming 𝑛 signers.

Table 2 gives the communication costs for issuance. We record

the number of bytes exchanged between the user and a single signer,
expressed as a function of the total number of signers 𝑛. The data

transferred from the user to a signer is denoted by 𝑈 → 𝑆 , and

𝑆 → 𝑈 represents the data transferred from a signer to the user.

Figure 3 shows the execution times for issuance and verifica-

tion of a single token, averaged over 10 trials. (Measurements were

performed on a 2021 MacBook Pro laptop with a 10-core Apple

M1 Pro processor and 16 GB of RAM.) We use Python co-routines

to simulate communication between the user and signers, hence

latency costs are excluded. Issuance costs account for the user’s cost

plus the cost of all signers. Key aggregation costs are not accounted

for. BM_BLS verification involves just a single pairing check, irre-

spective of number of issuers, while BM_SB verification requires

multiple EC additions and EC multiplications, the amount of which

grows proportionally to the number of issuers. The main bottleneck

for BM_BLS verification is the EC multiplications performed by

the hash-to-curve operations (more details in the next section).

6.2 Smart-Contract Implementation
We envision that blockchain applications can leverage blind mul-

tisignatures to enable a set of signers to issue tokens off-chain that

can then be verified by smart contracts on-chain. An example of

such an application is a DAO with tokenized anonymous voting,

as discussed in the introduction. As such, we also implemented an

Ethereum Solidity smart contract performing token verification for

BM_BLS and BM_SB.
For Ethereum compatibility and efficiency, we use the minSig

approach [4] (reducing signature size at the expense of an increase

in the public-key size). In addition, in our BM_BLS implementation

we switch to asymmetric, Type-3 pairings. This means public keys

are now of the form (𝑋1, 𝑋2) = (𝑔𝑥
1
, 𝑔𝑥

2
) ∈ G1×G2, as the user needs

𝑋1 to unblind, while verification and key aggregation rely on 𝑋2. A

key’s validity needs to be verified by checking 𝑒 (𝑋1, 𝑔2)
?

= 𝑒 (𝑔1, 𝑋2).
When moving to the asymmetric setting, we have to use a version

of the AGM for asymmetric pairings [5, 17], and unforgeability will

require the co-qdlog assumption [5].

Constr. 𝑟
𝑈 → 𝑆 𝑆 → 𝑈 Bytes exchanged
G Z𝑝 G Z𝑝 Per round Total

BM_BLS 1 1 0 1 0 128 128

BM_SB
1 0 𝑛 2 1 32𝑛 + 160

64𝑛 + 2242 0 𝑛 − 1 0 2 32𝑛 + 32

3 0 0 0 1 32

Table 2: Communication overhead for token issuance, mea-
sured between the user and a single signer, as a function of
the total number of signers 𝑛.

For practical on-chain token verification, we use Ethereum’s

BN254 pre-compiled contracts to perform group operations and

asymmetric pairing checks at reduced gas costs [10, 11, 52]. We

adopt the hash-to-curve implementation of Fouque and Tibouchi [23,

31, 50], since the constant-time “hash and pray” alternative is vul-

nerable to a gas griefing attack [41]. Our smart contract maintains

a nullifier 𝐷 that keeps track of which tokens have been verified;

upon successful verification of a token 𝜎 , it adds H(𝜎) to 𝐷 .
In Figure 4, we show the gas costs for verifying a single token

via our smart contract. We exclude the one-time cost of public key

aggregation, but we include the cost of checking whether the token

has already been presented (i.e., checking whether H(𝜎) ∈ 𝐷) and
storing the hash of the token in the nullifier. BM_BLS verification

requires 2 pairings and a single hash-to-curve operation; it costs ≈
232𝐾 gas, irrespective of the number of signers. On the other hand,

the BM_SB verification cost grows with the number of signers 𝑛.

Verifying a BM_SB token requires computing 𝑛 hashes (SHA-256,

in our implementation), 𝑛 + 2 elliptic-curve additions, and 3𝑛 + 2

elliptic-curve multiplications. The cost of verifying a BM_SB token

exceeds that of a BM_BLS token for ≥ 11 signers.
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Figure 3: Execution times for issuance and verification of a
single token.
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Figure 4: Ethereum gas cost for token verification, as a func-
tion of the number of signers.

An important benefit of BM_BLS is that it supports aggregation

of tokens that share the same issuer set (as described in Section 4).

This can be used to improve verification costs. Table 3 shows the gas

costs for verifying aggregate tokens issued by the same set of 11 is-

suers. (We use a set of size 11 since that is the threshold at which the

cost of verifying a BM_SB token exceeds that of a BM_BLS token.)

Costs include the fixed transaction base fee (21K gas), hashing to

curve, performing curve additions, multiplications, and pairings,

and checking/maintaining the nullifier; since key aggregation only

needs to be done once, we do not include it in the costs. Note that

verifying more than ≈ 260 BM_BLS or ≈ 100 BM_SB tokens will

exceed Ethereum’s ≈ 30𝑀 block gas limit.

BM_BLS.Ver (𝑚) BM_SB.Ver (𝑚)
Num. of
tokens Total Amortized Total

1 232,083 232,083 279,746

2 370,692 185,346 559,492

4 576,120 144,030 1,118,984

8 1,011,144 126,393 2,237,968

16 1,814,572 113,411 4,475,936

32 3,615,310 112,978 8,951,872

64 6,966,217 108,847 17,903,744

128 13,846,324 108,174 35,807,488

256 27,277,340 106,552 71,614,976

512 54,596,438 106,634 143,229,952

1024 110,386,321 107,799 286,459,904

Table 3: Total and amortized gas costs for verifying multiple
tokens issued by the same set of 11 issuers.

Excluding public-key aggregation, verifying an aggregate of ℓ

BM_BLS tokens requires 2ℓ curve additions, ℓ hash-to-point in-

vocations, and 2 pairings. On the other hand, BM_SB tokens are

not aggregatable, so their verification cost grows linearly with the

number of tokens being verified. The BM_SB token verification

cost also grows with the number of signers, as described earlier.
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For one-more unforgeability, the adversary is the userU that

has to forge a signature on 𝑝𝑘∗ that did not come out of its inter-

actions with signer that holds the secret to 𝑝𝑘∗. The the one-more

unforgeability game goes as follows: The challenger is going to fix

the honest signer key pair (𝑠𝑘∗, 𝑝𝑘∗) and respond to the adversary’s
(𝐴) signing queries with signatures on messages of the 𝐴’s choice.

After 𝑞 complete signing sessions during query phase, 𝐴 has to

submit 𝑞 + 1 signatures on distinct messages during the forgery

phase. If all signatures verify correctly, it means that a forgery has

happened and 𝐴 wins the game. Since the challenger cannot test

whether a message was signed during the query phase (because of

blindness), when the number of submitted signatures during the

forgery exceeds the number of signatures seen during the query

phase, a forgery took place.

Below we give the formal one-more unforgeability definition.

We first define the signing oracle Sign𝑠𝑘∗ .
Sign𝑠𝑘∗ : Its functionality is similar to the oracle defined for multi-

signatures in Section A.2. It simulates the honest signer’s execution

of BS.Sign ⟨ S(𝑠𝑘∗)⟩ and it outputs some intermediate value that

can be used to compute the final signature.

Definition 12 (One-More Unforgeability). For a blind signature

scheme BS, let game OMUFBS
𝐴

be the following game:

• Setup: The challenger generates the parameters and a key

pair (𝑠𝑘∗, 𝑝𝑘∗). It runs the adversary 𝐴(par, 𝑝𝑘∗).
• Queries: 𝐴 interacts with the signing oracle Sign𝑠𝑘∗

(𝑠𝑘∗ )
.

• Output: 𝐴 submits a tuple of forgeries (𝜎∗
1
,𝑚∗

1
), . . . , (𝜎∗

ℓ+1,
𝑚∗
ℓ+1) and wins if BS.Ver( 𝑝𝑘∗,𝑚𝑖 , 𝜎𝑖 ) = 1 ∀𝑖 ∈ [ℓ + 1] and

the number of valid signatures received from its interaction

with the challenger during the Query phase is not more than

ℓ . If 𝐴 wins, the game outputs true.

ThenBS is one-more unforgeable (OMUF) if for any probabilistic
polynomial time adversary 𝐴,

AdvOMUF
𝐴,BS (𝜆) := Pr[OMUFBS𝐴 = true] = negl(𝜆)

The second security property of blind signatures is that of blind-

ness, i.e. the signer or a third party looking at a signing transcript

cannot link a signature to its corresponding signing session.

The idea of the blindness game is the following: The adversarial

entity 𝐴 is the signer. In the malicious signer model [22], a key

pair (𝑠𝑘 , 𝑝𝑘) and two messages are picked by the signer 𝐴. The

challenger of the blindness game can interact with 𝐴 and outputs

two signatures. The signatures correspond to the messages picked

by 𝐴 and 𝐴 is allowed to keep the transcripts of the signing ses-

sions. In order to win the game, 𝐴 has to link each transcript to its

corresponding message/signature.

Below we give the formal blindness definition.

Definition 13 (Blindness). Given a blind signature scheme BS =

(KGen, Sign,Ver) let game BlindBS
𝐴

be the following game:

The adversary 𝐴 picks a pair of keys (𝑠𝑘, 𝑝𝑘) and messages𝑚0,

𝑚1. The challenger picks 𝑏 ∈ {0, 1} and runs two signing sessions

as the user. 𝐴 participates in the signing sessions as the signer 𝑆

and is given back 𝜎0, 𝜎1 by the challenger. 𝐴 has to output a bit 𝑏′,
and wins if 𝑏′ = 𝑏. If 𝐴 wins, the game outputs true.

BS is blind if for any probabilistic polynomial time adversary 𝐴,

Adv𝐵𝑙𝑖𝑛𝑑𝐴,BS (𝜆) := Pr[BlindBS𝐴 = true] ≤ 1

2

+ 𝑛𝑒𝑔𝑙 (𝜆).

A.2 Multi-Signatures
We define the security model for multi-signatures that support key

aggregation.

Security Model. A multi-signature should satisfy the properties

of correctness and unforgeability (i.e. an adversarial user should

not be able to forge a signature that verifies under apk for a set of

signers where at least one signer is honest).

We start with correctness for multi-signatures, which guarantees

that if all signers participate honestly, then the final signature will

verify under the aggregate key computed on their public keys.

Definition 14 (Correctness). A multi-signature scheme is correct

if for every 𝑛, 𝑖 ∈ [𝑛], (𝑠𝑘𝑖 , 𝑝𝑘𝑖 ) ← MS.KGen(1𝜆) and for every

𝑚, if all signers with public keys in ®𝐾 participate in the interactive

MS.Sign then the output is a signature 𝜎 such thatMS.Ver (apk,𝑚,

𝜎) = 1 with overwhelming probability for apk = MS.KAgg ( ®𝐾 ).

For unforgeability, even if an adversary has corrupted all but one

signer with public key 𝑝𝑘∗, the adversary should still not be able to

forge a signature that verifies under an apk that includes 𝑝𝑘∗. The
honest keys (𝑠𝑘∗, 𝑝𝑘∗) are generated and stored by the challenger.

The unforgeability adversary can query on messages of its choice

and see signatures under {𝑝𝑘∗} or its supersets. In order for the

adversary to win, it has to submit a forgery on a new message𝑚∗

signed by a set of public keys that includes 𝑝𝑘∗.
Below we give the formal unforgeability definition. The signing

oracle Sign𝑠𝑘∗ simulates one signer running algorithm Sign. It takes
as input the parameters par, the signer’s secret key 𝑠𝑘∗ and the

message 𝑚. For concurrent security, the oracle runs many open

sessions, each one identified by its session number, whereas in the

sequential setting, the oracle returns only messages for the current

open session and will not initiate a new one before this is complete.

Definition 15 (Unforgeability). For multisignature scheme MS,
let EUF-CMAMS

𝐴
be the following game:

• Setup: The challenger generates a key pair (𝑠𝑘∗, 𝑝𝑘∗) for
the honest signer. It runs the adversary 𝐴(par, 𝑝𝑘∗).
• Queries: 𝐴 picks a message𝑚 and queries the signing oracle

Sign𝑠𝑘∗
(𝑠𝑘∗,· )

. This step can be repeated multiple times for

different inputs𝑚.

• Output: 𝐴 outputs 𝜎∗,𝑚∗, ®𝐾 = {𝑝𝑘
1
, . . . , 𝑝𝑘𝑛} and succeeds

if 𝑝𝑘∗ ∈ ®𝐾 , no signing queries were made on𝑚∗, and

MS.Ver (KAgg( ®𝐾),𝑚∗, 𝜎∗) = 1.

MS is EUF-CMA-secure (existentially unforgeable under chosen-

message attacks) if for any PPT adversary 𝐴,

AdvEUF-CMA
𝐴,MS (𝜆) := Pr[EUF-CMAMS

𝐴 = true] = 𝑛𝑒𝑔𝑙 (𝜆)

A stronger adversary. A stronger definition for unforgeability

requires the keys set ®𝐾 to be known to the signers and the adversary

𝐴 has never queried Sign𝑠𝑘∗
(𝑠𝑘∗,𝑚∗, ®𝐾∗ )

, where ®𝐾∗ was used in the

adversary’s forgery. It is satisfied by Schnorr-based multi-signature
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schemes [44, 47]. In these schemes, the set of signers is embedded

in the signature share and cannot be easily changed.

A.3 The ROS Problem
Definition 16 (Random Inhomogeneities in an Overdetermined Sys-

tem of Linear Equations (ROS) [25, 55]). Let G be a group of prime

order 𝑞 with generator 𝑔. For a positive integer ℓ ∈ Z+, an adversary
A, a hash function Hros : Zℓ𝑞 x Ω → Z𝑞 modeled as a random oracle

for an arbitrary set Ω, define the game ℓ-ROS as follows.

• Setup. Ais executed with 𝑞 and ℓ as input, and it gets oracle

access to Hros.

• Online phase. The game simulates the oracle Hros for Aand
responds to its queries.

• Output. The game outputs 1 iff Aterminates and outputs (i)

pair-wise distinct tuples ( ®𝜌1, 𝑎𝑢𝑥1), . . . , ( ®𝜌ℓ+1, 𝑎𝑢𝑥ℓ+1), and
(ii) (𝑐1, . . . , 𝑐ℓ ) ∈ Zℓ𝑞 , such that for all 𝑖 ∈ [ℓ + 1] the equality∑︁

𝑗∈[ℓ ]
𝜌𝑖, 𝑗 · 𝑐 𝑗 = Hros ( ®𝜌𝑖 , 𝑎𝑢𝑥𝑖 ) .

B Unforgeability of Blind BLS
Theorem 17. Given an algebraic adversary𝐴making𝑞−1 parallel

signing queries and 𝑄 random oracle queries against the blind BLS
scheme, there is a PPT algorithm that breaks 𝑞-dlog in the ROM with
probability at least ( 1

2
− 1

𝑝 ) Adv
OMUF
𝐴,BLS (𝜆).

Proof overview. Our proof involves two possible strategies on the

challenger side, one of them is picked at random in the beginning:

the secret 𝑥 is either embedded in the random oracle’s responses

or in the honest signer’s public key, the adversary 𝐴 is unaware

of the strategy used and unable to plan their attack accordingly.

A successful forgery results in solving for 𝑥 and in the first case

reduces to the discrete logarithm problem and in the second case

to the 𝑞-dlog problem with overwhelming probability. To picture

why, in the second case, 𝑞−1 queries to the signing oracle are using

𝑞 powers of the unknown 𝑥 in the exponent. We use the AGM to

exctract 𝑞 equations from the forgery and we show that not all

equations are trivial. Our reduction uses the 𝑞-dlog instance to

simulate 𝑞 − 1 signing queries. The scheme’s unforgeability overall

relies on 𝑞-dlog assumption as the problem’s hardness also implies

the discrete logarithm assumption and covers both strategies.

Proof. For simplicity we focus first on the case where 𝑞 = 2.

So we have an adversary 𝐴 who makes a single signing query and

then outputs two forgeries. Let 𝑋 = 𝑔𝑥 be the signing public key.

Let ℎ1, . . . , ℎ𝑄 be the responses 𝐴 receives to its random-oracle

queries. Let 𝑚1 denote the query 𝐴 makes to the signing oracle.

Note that 𝐴 must also provide a representation of𝑚1 with respect

to 𝑔,𝑋,ℎ1, . . . , ℎ𝑄 , so𝑚1 = 𝑔𝛼𝑋 𝛽
∏
𝑖∈[𝑄 ] ℎ

𝛾𝑖
𝑖
.

In response to the signing query, 𝐴 receives 𝑠1 = 𝑚𝑥
1
. When

𝐴 outputs its forgeries (𝑚1, 𝜎1) and (𝑚2, 𝜎2), we assume w.l.o.g.

that 𝑚1,𝑚2 were queried to the random oracle, and arrange the

indices so that H(𝑚1) = ℎ1 and H(𝑚2) = ℎ2. If these are valid

forgeries then 𝜎 𝑗 = ℎ
𝑥
𝑗
for 𝑗 = 1, 2. Note further that𝐴must provide

representations of 𝜎1, 𝜎2, say 𝜎 𝑗 = 𝑔
𝛼 𝑗𝑋 𝛽 𝑗

(∏
𝑖∈[𝑄 ] ℎ

𝛾𝑖,𝑗
𝑖

)
· 𝑠 𝛿 𝑗

1
, for

𝑗 = 1, 2. Thus,

ℎ𝑥𝑗 = 𝜎 𝑗 = 𝑔𝛼 𝑗𝑋 𝛽 𝑗

(∏
𝑖

ℎ
𝛾𝑖,𝑗
𝑖

)
· 𝑠 𝛿 𝑗

1

= 𝑔𝛼 𝑗𝑔𝛽 𝑗𝑥

(∏
𝑖

ℎ
𝛾𝑖,𝑗
𝑖

)
·𝑚 𝛿 𝑗 ·𝑥

1

= 𝑔𝛼 𝑗𝑔𝛽 𝑗𝑥

(∏
𝑖

ℎ
𝛾𝑖,𝑗
𝑖

) (
𝑔𝛼𝑔𝛽𝑥

∏
𝑖

ℎ
𝛾𝑖
𝑖

)𝛿 𝑗 ·𝑥
(1)

or, by some algebra:

𝑔
𝛼 𝑗+𝛽 ′𝑗𝑥+𝛽 ′′𝑗 𝑥2

∏
𝑖

ℎ
𝛾𝑖,𝑗+𝛾 ′𝑖,𝑗𝑥
𝑖

= 1 (2)

for 𝑗 = 1, 2, where 𝛽′
𝑗
, 𝛽′′
𝑗
, 𝛾 ′
𝑖, 𝑗

are efficiently computable.

There are now two cases: either for some 𝑗, 𝑖 the exponent of

ℎ𝑖 in the 𝑗th equation (i.e., 𝛾𝑖, 𝑗 + 𝛾 ′𝑖, 𝑗𝑥) is non-zero, or for all 𝑗, 𝑖
the exponent of ℎ𝑖 in the 𝑗th equation is zero. If 𝐴 succeeds with

probability 𝜖 , then either the first or second case must happen with

probability at least 𝜖/2.
Assume the first case happens with probability at least 𝜖/2. We

can use this to solve the discrete-logarithm problemwith probability

at least 𝜖/2 − 1/𝑝 as follows. Given 𝑌 , set the public key to 𝑋 = 𝑔𝑥

for known, uniform 𝑥 ∈ Z𝑝 . For the 𝑖th hash query, program the

response to be ℎ𝑖 = 𝑔𝑠𝑖𝑌 𝑟𝑖 for uniform 𝑠𝑖 , 𝑟𝑖 ∈ Z∗𝑝 . (If ℎ𝑖 = 1 for

some 𝑖 then we can solve for log𝑔 𝑌 directly, so we assume this

does not happen in what follows.) Since 𝑥 is known, queries to

the signing oracle can be answered easily. If 𝐴 forges and the first

case happens then, except with probability 1/𝑝 , we get an equation

of the form 𝑔𝐴𝑌𝐵 = 1 with 𝐴, 𝐵 known and 𝐵 ≠ 0, which allows

us to solve for log𝑔 𝑌 . To see this is the case, note that all the

exponents in (2) are known, and so we have an equation of the

form 𝑔𝑎 ·∏𝑖 (𝑔𝑠𝑖𝑌 𝑟𝑖 )𝑏𝑖 = 𝑔𝑎+
∑

𝑖 𝑏𝑖𝑠𝑖 · 𝑌
∑

𝑖 𝑏𝑖𝑟𝑖 = 1, with 𝑎 and the

{𝑏𝑖 } known, and at least one of the {𝑏𝑖 } non-zero. Letting 𝑖 be the
largest index for which 𝑏𝑖 is non-zero and viewing {𝑏 𝑗 } 𝑗<𝑖 as fixed,
note that 𝑟𝑖 is uniform from 𝐴’s point of view and there is at most

one non-zero value of 𝑏𝑖 for which
∑
𝑖 𝑏𝑖𝑟𝑖 = 0. This concludes the

analysis of the first case.

Before continuing, we analyze (2) in more detail. Assume we are

in the second case, so for all 𝑗, 𝑖 we have 𝛾𝑖, 𝑗 + 𝛾 ′𝑖, 𝑗𝑥 = 0. Call an

equation of this form trivial if 𝛾 ′
𝑖, 𝑗

= 0 (which implies 𝛾𝑖, 𝑗 = 0). We

claim that it is not possible for all equations to be trivial. To see

this, note that (using equation (1))

𝛾 ′𝑖, 𝑗 =
{

𝛿 𝑗 · 𝛾𝑖 𝑖 ≠ 𝑗

𝛿 𝑗 · 𝛾𝑖 − 1 𝑖 = 𝑗 .

Thus, all equations are trivial only if 𝛿1, 𝛿2, 𝛾1, 𝛾2 are such that

𝛿1 · (𝛾1, 𝛾2) = (1, 0)
𝛿2 · (𝛾1, 𝛾2) = (0, 1).

But since the vector (𝛾1, 𝛾2) ∈ Z2

𝑝 spans a vector space of dimension

at most 1, this is impossible.

Returning to the main proof, assume the second case happens

with probability at least 𝜖/2; we use this to solve the 2-dlog as-

sumption with probability at least 𝜖/2. Given 𝑌1 = 𝑔𝑥 , 𝑌2 = 𝑔𝑥
2

,

we set the public key equal to 𝑋 = 𝑌1 and program ℎ𝑖 = 𝑔𝑟𝑖

(for uniform 𝑟𝑖 ∈ Z∗𝑝 ) for all 𝑖 . When 𝐴 makes signing query
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𝑚1 = 𝑔𝛼𝑋 𝛽
∏
𝑖 ℎ
𝛾𝑖
𝑖
, we answer it with 𝑠1 = 𝑌𝛼

1
𝑌
𝛽

2

∏
𝑖 𝑌

𝑟𝑖𝛾𝑖
1

. When

𝐴 outputs its forgeries, we derive equations as in (2), e.g.,

𝑔𝛼 𝑗𝑌
𝛽 ′𝑗
1
𝑌
𝛽 ′′𝑗
2

∏
𝑖

𝑔𝑟𝑖𝛾𝑖,𝑗𝑌
𝑟𝑖𝛾
′
𝑖,𝑗

1
= 1

for 𝑗 = 1, 2, where 𝛾𝑖, 𝑗 , 𝛾
′
𝑖, 𝑗

are efficiently computable. Since we are

in the second case, we know that 𝑔𝑟𝑖𝛾𝑖,𝑗𝑌
𝑟𝑖𝛾
′
𝑖,𝑗

1
= 1 for all 𝑖, 𝑗 . As we

have shown above, it is not possible for all equations to be trivial;

thus, for some 𝑖, 𝑗 it must hold that 𝛾 ′
𝑖, 𝑗

≠ 0. We can use any such

non-trivial equation to solve for 𝑥 = log𝑔 𝑌1. This completes the

proof when 𝑞 = 2.

We sketch how to extend the above argument for arbitrary 𝑞 > 2.

The key thing that changes is that now 𝐴’s queries to the signing

oracle can also depend on answers to previous signing queries.

Thus, in general, when 𝐴 makes its 𝑗th query 𝑚 𝑗 to the signing

oracle it now provides a representation in terms of 𝑔,𝑋, {ℎ𝑖 }𝑖∈[𝑄 ] ,
and {𝑠𝑖 }𝑖< 𝑗 . However, it is easy to show by induction that this

allows derivation of a representation of the form

𝑚 𝑗 = 𝑔
∑𝑗

𝑘=0
𝛽 𝑗,𝑘 𝑥

𝑘

·
∏
𝑖∈[𝑄 ]

ℎ

∑𝑗−1

𝑘=0
𝛾𝑖,𝑗,𝑘 𝑥

𝑘

𝑖
(3)

where the {𝛽 𝑗,𝑘 } and {𝛾𝑖, 𝑗,𝑘 } are efficiently computable. Thus, the

analogue of (2) for the 𝑞 forgeries output by 𝐴 becomes

𝑔

∑𝑞

𝑘=0
𝛽 ′
𝑗,𝑘
𝑥𝑘

∏
𝑖∈[𝑄 ]

ℎ

∑𝑞−1

𝑘=0
𝛾 ′
𝑖,𝑗,𝑘

𝑥𝑘

𝑖
= 1 (4)

for 𝑗 = 1, . . . , 𝑞, where the {𝛽′
𝑗,𝑘
} and {𝛾 ′

𝑖, 𝑗,𝑘
} are efficiently com-

putable. As before, we have two cases: either for some 𝑗, 𝑖 the expo-

nent of ℎ𝑖 in the 𝑗th equation is non-zero, or for all 𝑗, 𝑖 the expo-

nent of ℎ𝑖 in the 𝑗th equation is zero. A reduction to the discrete-

logarithm problem in the first case is the same as before, so we

focus on the second case.

As before, in the second case we have

∑𝑞−1

𝑘=0
𝛾 ′
𝑖, 𝑗,𝑘

𝑥𝑘 = 0 for

all 𝑗, 𝑖 , and we call an equation of this form trivial if 𝛾 ′
𝑖, 𝑗,1

= 0.

We again claim that it is impossible for all equations to be trivial.

Indeed, define the vectors ®𝛾 𝑗 = (𝛾1, 𝑗,1, . . . , 𝛾𝑞,𝑗,1) ∈ Z𝑞𝑝 for 𝑗 =

1, . . . , 𝑞 − 1, where ®𝛾 𝑗 corresponds to the vector of exponents of

ℎ1, . . . , ℎ𝑞 for the 𝑗 th signing query of 𝐴. Then all equations can be

trivial only if there exist 𝛿1,1, . . . , 𝛿𝑞,𝑞−1 such that

∑𝑞−1

𝑗=1
𝛿𝑖, 𝑗 · ®𝛾 𝑗 =

𝑒𝑖 ∈ Z𝑞𝑝 , for 𝑖 = 1, . . . , 𝑞, where 𝑒𝑖 is the vector that is 1 at position 𝑖

and 0 everywhere else. But since the {®𝛾 𝑗 } span a vector space of

dimension at most 𝑞 − 1, and the {𝑒𝑖 } are 𝑞 linearly independent

vectors, this is clearly impossible.

With this in place, we now show how to solve the 𝑞-dlog assump-

tion when the second case happens with probability at least 𝜖/2.
Given 𝑌1 = 𝑔𝑥 , . . . , 𝑌𝑞 = 𝑔𝑥

𝑞
, we set the public key equal to 𝑋 = 𝑌1

and program ℎ𝑖 = 𝑔
𝑟𝑖
, where 𝑟𝑖 ∈ Z∗𝑝 is uniform. When 𝐴 makes its

𝑗th signing query as in (3), we answer it with

We have

∏𝑗

𝑘=0
𝑌
𝛽 𝑗,𝑘

𝑘+1 ·
∏
𝑖∈[𝑄 ]

∏𝑗−1

𝑘=0
𝑌
𝑟𝑖 ·𝛾𝑖,𝑗,𝑘
𝑘+1 for 𝑗 = 1, . . . , 𝑞 − 1.

When𝐴 outputs its forgeries, we derive equations as in (4) and find

𝑖, 𝑗 for which
∑𝑞−1

𝑘=0
𝛾 ′
𝑖, 𝑗,𝑘

𝑥𝑘 = 0 and 𝛾 ′
𝑖, 𝑗,1

≠ 0. We then use that

equation to solve for 𝑥 . □

C Proofs for BM_BLS
C.1 Blindness
We show:

Theorem 18. BM_BLS is unconditionally blind.

Proof. Let 𝐴 be an adversary controlling 𝑛 signers, picking two

messages𝑚0,𝑚1, and playing the game of Definition 3. At the end

of the game, 𝐴 holds two transcripts 𝑡𝑏= {𝑚𝑏
1
, . . . , 𝑚𝑏𝑛 , 𝑠

𝑏
1
, . . . , 𝑠𝑏𝑛}

and 𝑡
1−𝑏= {𝑚1−𝑏

1
, . . . ,𝑚1−𝑏

𝑛 , 𝑠1−𝑏
1

, . . . , 𝑠1−𝑏
𝑛 } and signatures 𝜎0, 𝜎1.

All elements in 𝑡𝑏 , 𝑡1−𝑏 are independent from𝑚0,𝑚1, 𝜎0, 𝜎1. □

C.2 One-More Unforgeability of BM_BLS
We sketch a proof of Theorem 4 based on the proof of Theorem 17.

Proof. 𝐴’s output forgery consists of (𝑚1, 𝜎1,
®𝐾1), . . . , (𝑚𝑞 , 𝜎𝑞 ,

®𝐾𝑞). Let 𝑋 = 𝑔𝑥 be the public key of the honest signer, given to 𝐴.

For the forgery to be valid, 𝑋 will be included in all key sets ®𝐾1,

. . . , ®𝐾𝑞 . Let ℎ1, . . . , ℎ𝑄 be the responses 𝐴 receives to its random-

oracle queries. Let𝑚 𝑗 be the 𝑗th query to the signing oracle and

𝑠 𝑗 the output. Together with 𝑚 𝑗 , 𝐴 provides a representation in

terms of 𝑔,𝑋, {ℎ𝑖 }𝑖∈[𝑄 ] , and {𝑠𝑖 }𝑖< 𝑗 , i.e. all the group elements

given so far, including previous signing queries. For every element

𝑍 submitted in the forgery (𝑍 ∈{𝜎 𝑗 } for 𝑗 ∈ [𝑞], or 𝑍 ∈{𝑋 𝑗,𝑡 },
𝑋 𝑗,𝑡 ∈ ®𝐾𝑗 and for 𝑡 ∈ [| ®𝐾𝑗 |]), it also provides a representation in

terms of 𝑔,𝑋, {ℎ𝑖 }𝑖∈[𝑄 ] , and {𝑠𝑖 }𝑖∈[𝑞−1] . 𝑍 can also be written in

the following form 𝑍 = 𝑔
∑𝑞

𝑘=0
𝛽 𝑗,𝑘 𝑥

𝑘

·∏𝑖∈[𝑄 ] ℎ
∑𝑞

𝑘=0
𝛾𝑖,𝑗,𝑘 𝑥

𝑘

𝑖
where

the {𝛽 𝑗,𝑘 } and {𝛾𝑖, 𝑗,𝑘 } are efficiently computable.

When𝐴 outputs its forgery, we assume it has queried the random

oracle Hagg for every element in ®𝐾𝑗 that outputs an element 𝑎 𝑗,𝑡 in

Z∗𝑝 . Without loss of generality, we assume that the honest signer’s

key appears first in every set ®𝐾𝑗 , 𝑋 𝑗,1 = 𝑋 . We also assume w.l.o.g.

that𝑚1, . . . ,𝑚𝑞 were queried to the random-oracle H, and arrange

the indices so that H(𝑚1) = ℎ1, . . . , H(𝑚𝑞) = ℎ𝑞 .
From the validity of the signatures it holds that

𝜎 𝑗 = ℎ
𝑎 𝑗,1𝑥+

∑
𝑡 𝑎 𝑗,𝑡 (log𝑔 𝑋 𝑗,𝑡+

∑
𝑖∈ [𝑄 ] logℎ𝑖

𝑋 𝑗,𝑡 )
𝑗

(5)

for 𝑗 ∈ [𝑞], 𝑖 ∈ [𝑄] and 𝑡 ∈ [| ®𝐾𝑗 |]. Since all 𝜎 𝑗 , 𝑋 𝑗,𝑡 have the

form of 𝑍 , we can efficiently move all terms in one side, group the

exponents and derive an equation of the form

𝑔

∑𝑞

𝑘=0
𝛽 ′
𝑗,𝑘
𝑥𝑘

∏
𝑖∈[𝑄 ]

ℎ

∑𝑞

𝑘=0
𝛾 ′
𝑖,𝑗,𝑘

𝑥𝑘

𝑖
= 1 (6)

for 𝑗 = 1, . . . , 𝑞, where {𝛽′
𝑗,𝑘
, 𝛾 ′
𝑖, 𝑗,𝑘
} are efficiently computable.

As before, we have two cases: either for some 𝑗, 𝑖 the exponent of

ℎ𝑖 in the 𝑗 th equation is non-zero, or for all 𝑗, 𝑖 the exponent of ℎ𝑖 in

the 𝑗 th equation is zero. If𝐴 succeeds with probability 𝜖 , then either

the first or second case must happen with probability at least 𝜖/2.
When the second case happens, we derive 𝛿1,1, . . . , 𝛿𝑞,𝑞−1 such that∑𝑞−1

𝑗=1
𝛿𝑖, 𝑗 · ®𝛾 𝑗 = 𝑒𝑖 ∈ Z𝑞𝑝 for 𝑖 = 1, . . . , 𝑞, where ®𝛾 𝑗 corresponds

to the vector of exponents of ℎ1, . . . , ℎ𝑞 for the 𝑗th signing query

of 𝐴. 𝑒𝑖 = ®0 happens when the adversary outputs a signature 𝜎𝑖
such that the exponent of ℎ𝑖 in (5) has the linear term in 𝑥 equal

to zero. Since 𝐴 does not control the outputs ®𝑎𝑖 = (𝑎𝑖,1, . . . , 𝑎𝑖, | ®𝐾𝑖 | )
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of Hagg, this happens with probability 𝑄/𝑝 . From the union bound,

the probability that one 𝑒𝑖 is the zero vector is less than𝑞 ·𝑄/𝑝 . With

probability at least 𝜖/2−𝑞 ·𝑄/𝑝 , the 2nd case happens and 𝑒1, . . . , 𝑒𝑞
are non-zero vectors. Then, a reduction to the 𝑞-dlog problem is

the same as before.

We now focus on the first case. When we handle case one the

secret key 𝑥 is picked and known and it holds that the exponent of

at least one hash query in Equation 6 is non-zero. We again program

the response for the 𝑖th hash query to be ℎ𝑖 = 𝑔
𝑠𝑖𝑌 𝑟𝑖 for uniform

𝑠𝑖 , 𝑟𝑖 ∈ Z∗𝑝 and from (6), get an equation of the form 𝑔𝐴𝑌𝐵 = 1 with

𝐴, 𝐵 known and 𝐵 ≠ 0, except with probability 1/𝑝 .
We can derive an equation 𝑔𝐴𝑌𝐵1 (𝑌 2)𝐵2 = 1 and solve a qua-

dratic equation for log𝑔 𝑌 . □

D One-More MitM Security of mID
In this section, we prove Theorem 8.

Proof overview. We follow the framework used to prove the

OMUF security of BS[ 𝑓1 ] [18]. In particular, we show that in or-

der for an adversary to win Game ℓ-OMMIM against mID, it must

either win Game ℓ-ROS for ℓ = 1 (see Def. 16), which is shown

to be information-theoretically hard in [25], or it must solve the

dlog problem. To this end, we proceed via a series of games to rule

out bad events regarding the algebraic representation of the group

elements submitted by the algebraic adversary A upon Ver1 queries.
In Game1 , we show that A cannot use 𝑝𝑘

1
in the representation

of the group element 𝐵, because otherwise, this is equivalent to

solving dlog𝑔𝑝𝑘1
. Then, in Game2 , we show that A cannot use the

group elements ℎ and 𝑝𝑘
1
in the representations of the public keys

of the corrupted provers 𝑝𝑘𝑘 for 2 ≤ 𝑘 ≤ 𝑛. If ℎ or 𝑝𝑘
1
occur in the

representation of any 𝑝𝑘𝑘 , a reduction wins the dlog game. Next,

we show in Game3 that using the group element A𝑝𝑖𝑑 of a prover

session 𝑝𝑖𝑑 in the representation of 𝑅𝑣𝑖𝑑 of a successful verifier

session 𝑣𝑖𝑑 forces A to make a Prove3 query for the session 𝑝𝑖𝑑 ,

otherwise a reduction can win the dlog game. Then, we show in

Game4 that the value 𝑦𝑣𝑖𝑑 at the verifier side of successful verifier

sessions must satisfy a certain equation; otherwise, a reduction

can win the dlog game. Finally, in Games Game5-Game8 , we show

that a reduction wins the dlog game unless A can solve the 1-ROS
problem.

Proof. Let A be an adversary running the ℓ-OMMIM game

againstmID. A behaves as a man-in-the-middle between the prover

and the verifier. Assume A wins ℓ-OMMIMmID. It follows that

it closes ℓ + 1 verifier sessions successfully. It follows that each

successful verifier session vid∗ satisfies the equation

𝑅vid∗ ·
∏
𝑗∈[𝑛]

𝑝𝑘
𝑐vid∗, 𝑗+𝑦3

vid∗
𝑗

= 𝑔𝑧vid∗ · ℎ𝑦vid∗ . (7)

As A is algebraic, it submits a representation for each group

element it outputs using the group elements of its input. Specifically,

if there are𝑄Prove open honest prover sessions, the group elements

in A’s input are 𝑔, 𝑝𝑘
1
, ℎ,A𝑝𝑖𝑑 ,B𝑝𝑖𝑑 for 𝑝𝑖𝑑 ∈ [𝑄Prove ], and the

group elements in its output are 𝐴vid∗,𝑘 , 𝐵vid∗,𝑘 on the verifier side

and {𝐵 𝑗 } 𝑗∈[𝑛] on the prover side, for vid∗ ∈ 𝑄Ver and 𝑘 ∈ [𝑛].
Let (𝑔[𝑅vid∗ ] , ℎ [𝑅vid∗ ] , 𝑝𝑘1 [𝑅vid∗ ] ,A𝑝𝑖𝑑 [𝑅vid∗ ]

,B𝑝𝑖𝑑 [𝑅vid∗ ]
) be the re

presentations A submits of the group element 𝑅vid∗ of the verifier

session vid∗ ∈ [𝑄Ver ] when it makes the Ver1 query for this ses-

sion
9
. It follows that

𝑅vid∗ = 𝑔
𝑔 [𝑅vid∗ ] · ℎℎ [𝑅vid∗ ] · 𝑝𝑘

𝑝𝑘
1 [𝑅vid∗ ]

1

·
∏

𝑝𝑖𝑑∈[𝑄Prove ]
A
A𝑝𝑖𝑑 [𝑅vid∗ ]
𝑝𝑖𝑑

· ℎy𝑝𝑖𝑑 ·B𝑝𝑖𝑑 [𝑅vid∗ ] . (8)

We substitute Equation (8) in Equation (7)

𝑔
𝑔 [𝑅vid∗ ] · ℎℎ [𝑅vid∗ ] · 𝑝𝑘

𝑝𝑘
1 [𝑅vid∗ ]

1
·

∏
𝑝𝑖𝑑∈[𝑄Prove ]

A
A𝑝𝑖𝑑 [𝑅vid∗ ]
𝑝𝑖𝑑

·ℎy𝑝𝑖𝑑 ·B𝑝𝑖𝑑 [𝑅vid∗ ] ·
∏
𝑗∈[𝑛]

𝑝𝑘
𝑐vid∗, 𝑗+𝑦3

vid∗
𝑗

= 𝑔𝑧vid∗ · ℎ𝑦vid∗ . (9)

We proceed to rule out bad cases regarding Equation (9) that

prevent our reduction R0 from solving the dlog problem. We define

the following series of games:

Game0. This game is identical to Game ℓ-OMMIM. Let BAD1
denote the event in which A makes a Prove2 query of the form (𝑐,
{𝐵 𝑗 } 𝑗∈[𝑛] ), and there exists 𝑗 ′ ∈ [𝑛] such that 𝑝𝑘

1 [𝐵 𝑗 ′ ] ≠ 0, and A
closes this session later successfully via a Prove3 query.

Game1. This game is identical to the previous game, except that

it aborts and outputs 0 if the event BAD1 occurs.

Claim 1. Pr[BAD1] ≤ AdvdlogR1

.

Proof. We construct a reduction R1 that takes a dlog challenge

𝑈 as input, sets 𝑝𝑘
1
≔ 𝑈 , runs A with input 𝑝𝑘

1
, and simulates

the honest prover’s and verifier’s oracles for the adversary. While

the simulation of the verifier’s oracles is done as described by the

protocol, the prover’s oracles are simulated as follows:

• Prove1 (): increment 𝑝𝑖𝑑 , sample z𝑝𝑖𝑑 , 𝑢𝑝𝑖𝑑,1, 𝑢𝑝𝑖𝑑,2 ← Z𝑞 ,

compute and return A𝑝𝑖𝑑 ≔ 𝑔z𝑝𝑖𝑑 · 𝑝𝑘−𝑢𝑝𝑖𝑑,1
1

,B𝑝𝑖𝑑 ≔ 𝑔𝑢𝑝𝑖𝑑,2 .

• Prove2 (𝑝𝑖𝑑, c𝑝𝑖𝑑 , {𝐵𝑘 }𝑘∈[𝑛] ): convert the representations of
𝐵𝑘 for all 𝑘 ∈ [𝑛] to the basis (𝑔, ℎ) if the representation does
not contain 𝑝𝑘

1
component, and let 𝑦𝑘 be the respective ℎ

component. Define ỹ𝑝𝑖𝑑 ≔
∑𝑛
𝑘=2

𝑦𝑘 , compute and return

y𝑝𝑖𝑑 ≔ (𝑢𝑝𝑖𝑑,1 − c𝑝𝑖𝑑 )
1

3 − ỹ𝑝𝑖𝑑 , and b𝑝𝑖𝑑 ≔ 𝑢𝑝𝑖𝑑,2 − y𝑝𝑖𝑑 ·𝑤 .

If there exists a 𝐵𝑘 containing a 𝑝𝑘
1
component in its repre-

sentation, mark it as𝐵∗
𝑘
for later processing, and compute and

return y𝑝𝑖𝑑 ≔ (𝑢𝑝𝑖𝑑,1 − c𝑝𝑖𝑑 )
1

3 , and b𝑝𝑖𝑑 ≔ 𝑢𝑝𝑖𝑑,2 − y𝑝𝑖𝑑 ·𝑤 .

• Prove3(pid, {𝑏𝑘 , 𝑦𝑘 }𝑘∈[𝑛] ): if any 𝐵𝑘 was marked as 𝐵∗
𝑘
in

the Prove2 query, return ⊥. Abort and return 0 if there is

𝑘 ∈ [𝑛] with 𝑔𝑏𝑘 · ℎ𝑦𝑘 ≠ 𝐵𝑘 . Return z𝑝𝑖𝑑 .

The initial value of pid is 0.

We note the following regarding this simulation:

9
The representation of 𝑅vid∗ consists of the representation of both 𝐴vid∗ and 𝐵vid∗
since 𝑅vid∗ = 𝐴vid∗ · 𝐵vid∗
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P𝑖 (𝑝𝑘𝑖 = 𝑔𝑠𝑘𝑖 , 𝑠𝑘𝑖 ) V( ®𝐾 = {𝑝𝑘
1
, . . . , 𝑝𝑘𝑛})

𝑎𝑖 , 𝑏𝑖 ← Z𝑞, 𝑦𝑖 ← Z∗𝑞
𝐴𝑖 ≔ 𝑔𝑎𝑖

𝐴𝑖 ,𝐵𝑖−−−−−−−−−→
Wait for all provers to commit

𝐴 ≔
∏
𝑗∈[𝑛] 𝐴 𝑗 , 𝐵 ≔

∏
𝑗∈[𝑛] 𝐵 𝑗

For all 𝑗 ∈ [𝑛] : 𝑐 𝑗 ← Z𝑞
𝑐𝑖 ,{𝐵 𝑗 } 𝑗 ∈ [𝑛]←−−−−−−−−−−−−−−−

𝑏𝑖 ,𝑦𝑖−−−−−−−−−→
Wait for all provers to send openings for 𝐵𝑖

If ∃𝑖 ∈ [𝑛] : 𝐵𝑖 ≠ 𝑔
𝑏𝑖 · ℎ𝑦𝑖 ∨ 𝑦𝑖 = 0:

Abort

𝑦 ≔
∑
𝑗∈[𝑛] 𝑦 𝑗 , 𝑅 ≔ 𝐴 · ℎ𝑦

{ (𝑏 𝑗 ,𝑦 𝑗 ) } 𝑗 ∈ [𝑛]←−−−−−−−−−−−−−−−−−
If ∃ 𝑗 ∈ [𝑛] : 𝐵 𝑗 ≠ 𝑔

𝑏 𝑗 · ℎ𝑦 𝑗 :
Abort

𝑦 ≔
∑
𝑗∈[𝑛] 𝑦 𝑗

𝑧𝑖 ≔ 𝑎𝑖 + (𝑐𝑖 + 𝑦3) · 𝑠𝑘𝑖
𝑧𝑖−−−−−−→

Wait for all provers to respond

𝑧 ≔
∑
𝑗∈[𝑛] 𝑧 𝑗

If 𝑅 ·∏𝑗∈[𝑛] 𝑝𝑘
𝑐 𝑗+𝑦3

𝑗
≠ 𝑔𝑧 · ℎ𝑦 :

Abort

Figure 5: Multi-identification scheme mID executed by 𝑛 provers and a verifier.

(1) The response (y𝑝𝑖𝑑 , b𝑝𝑖𝑑 ) to Prove2 queries is a valid opening

to B𝑝𝑖𝑑 of the Prove1 response. In particular, we have

𝑔b𝑝𝑖𝑑 · ℎy𝑝𝑖𝑑 =𝑔𝑢𝑝𝑖𝑑,2−y𝑝𝑖𝑑 ·𝑤 · ℎy𝑝𝑖𝑑

=𝑔𝑢𝑝𝑖𝑑,2 · ℎ−y𝑝𝑖𝑑 · ℎy𝑝𝑖𝑑

=𝑔𝑢𝑝𝑖𝑑,2

=B𝑝𝑖𝑑 .

(2) The simulation satisfies perfect correctness if A computes

𝐵 𝑗 for all 𝑗 ∈ [𝑛] honestly. Let 𝑦∗ ≔ y𝑝𝑖𝑑 + ỹ𝑝𝑖𝑑 = (𝑢𝑝𝑖𝑑,1 −
c𝑝𝑖𝑑 )

1

3 . Then, it must hold that

𝑅 · 𝑝𝑘c𝑝𝑖𝑑+𝑦
∗3

1
= A𝑝𝑖𝑑 · ℎy𝑝𝑖𝑑 · 𝑝𝑘

c𝑝𝑖𝑑+𝑦∗3
1

= 𝑔z𝑝𝑖𝑑 · ℎy𝑝𝑖𝑑 .
It holds that

A𝑝𝑖𝑑 · ℎy𝑝𝑖𝑑 · 𝑝𝑘
c𝑝𝑖𝑑+𝑦∗3
1

= 𝑔z𝑝𝑖𝑑 · 𝑝𝑘−𝑢𝑝𝑖𝑑,1
1

· ℎy𝑝𝑖𝑑 · 𝑝𝑘c𝑝𝑖𝑑+( (𝑢𝑝𝑖𝑑,1−c𝑝𝑖𝑑 )
1

3 )3
1

= 𝑔z𝑝𝑖𝑑 · 𝑝𝑘−𝑢𝑝𝑖𝑑,1
1

· ℎy𝑝𝑖𝑑 · 𝑝𝑘𝑢𝑝𝑖𝑑,1
1

= 𝑔z𝑝𝑖𝑑 · ℎy𝑝𝑖𝑑 .
If there is a marked 𝐵∗

𝑘
, R1 transforms its representation to the

basis (𝑔, ℎ, 𝑝𝑘
1
) by computing 𝑔[𝐵∗

𝑘
] , ℎ [𝐵∗

𝑘
] , 𝑝𝑘1 [𝐵∗

𝑘
] such that the

equality 𝑔
𝑔 [𝐵∗

𝑘
] · ℎℎ [𝐵∗𝑘 ] · 𝑝𝑘

𝑝𝑘
1 [𝐵∗

𝑘
]

1
= 𝐵∗

𝑘
holds. Then, it takes the

opening of 𝐵∗
𝑘
sent in the Prove3 query, i.e. 𝑏∗

𝑘
, 𝑦∗
𝑘
such that 𝑔𝑏

∗
𝑘 ·

ℎ𝑦
∗
𝑘 = 𝐵∗

𝑘
. These two representation of 𝐵∗

𝑘
allow R1 to compute

dlog𝑔𝑝𝑘1
as follows: We know that

𝑔
𝑔 [𝐵∗

𝑘
] · ℎℎ [𝐵∗𝑘 ] · 𝑝𝑘

𝑝𝑘
1 [𝐵∗

𝑘
]

1
= 𝑔𝑏

∗
𝑘 · ℎ𝑦

∗
𝑘 .

By taking the discrete logarithm of both sides we get

𝑔[𝐵∗
𝑘
] +𝑤 · ℎ [𝐵∗

𝑘
] + 𝑠𝑘1 · 𝑝𝑘1 [𝐵∗

𝑘
] = 𝑏

∗
𝑘
+𝑤 · 𝑦∗

𝑘
.

R1 computes 𝑠𝑘1 = dlog𝑔𝑝𝑘1
= dlog𝑔𝑈 as

𝑠𝑘1 =
𝑏∗
𝑘
+𝑤 · 𝑦∗

𝑘
− 𝑔[𝐵∗

𝑘
] +𝑤 · ℎ [𝐵∗

𝑘
]

𝑝𝑘
1 [𝐵∗

𝑘
]

.

This equation is solvable because 𝑝𝑘
1 [𝐵∗

𝑘
] ≠ 0, hence the claim. □

It follows from this claim thatAdvGame1

A ≥ AdvGame0

A −AdvdlogR1

;

therefore, we assume that A wins Game1.

Define BAD2 as the event that there is 2 ≤ 𝑖 ≤ 𝑛 with ℎ [𝑝𝑘𝑖 ] ≠
0 ∨ 𝑝𝑘

1 [𝑝𝑘𝑖 ] ≠ 0.

Game2. This game is identical to Game1, except that it aborts

and outputs 0 if BAD2 occurs.

Claim 2. Pr[BAD2] ≤ 1

2
· AdvdlogR2

.

Proof. Assuming A submits a proof of possession for each cor-

rupted public key 𝑝𝑘𝑘 for 2 ≤ 𝑘 ≤ 𝑛 (we assume it submits all

the secret keys 𝑠𝑘𝑘 ), we show that if there is a winning verifier

session under a set of public keys ®𝐾 = {𝑝𝑘
1
, . . . , 𝑝𝑘𝑛} and there

exists 2 ≤ 𝑖 ≤ 𝑛 with ℎ [𝑝𝑘𝑖 ] ≠ 0 or 𝑝𝑘
1 [𝑝𝑘𝑖 ] ≠ 0, then the reduction

R2 wins the dlog game.

Given a dlog challenge 𝑈 and an adversary A running Game2,

R2 flips a coin and behaves as follows:

• On Heads. R2 embeds 𝑈 in ℎ and simulates the honest pro

ver’s oracles exactly as described by the protocol. It com-

putes dlog𝑔𝑈 if A submits a set of keys ®𝐾 = {𝑝𝑘
1
, . . . , 𝑝𝑘𝑛},

and there exists 2 ≤ 𝑖 ≤ 𝑛, such that the representation of

𝑝𝑘𝑖 contains an ℎ component or B𝑝𝑖𝑑 component for some

prover session 𝑝𝑖𝑑 (recall that B𝑝𝑖𝑑 = 𝑔b𝑝𝑖𝑑 · ℎy𝑝𝑖𝑑 ). If ℎ [𝑝𝑘𝑖 ]
= B𝑝𝑖𝑑 [𝑝𝑘𝑖 ]

= 0 for all 𝑝𝑖𝑑 ∈ 𝑄Prove and all 𝑖 ∈ [𝑛], R2

aborts and outputs ⊥. Knowing that 𝑝𝑘𝑖 = 𝑔
𝑔 [𝑝𝑘𝑖 ] · ℎℎ [𝑝𝑘𝑖 ]
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(note that R2 knows the discrete logarithms of all group ele-

ments that A may use in the representation of 𝑝𝑘𝑖 except ℎ,

therefore, it can aggregate all non-ℎ components as a single

𝑔 component), and hence 𝑠𝑘𝑖 = 𝑔[𝑝𝑘𝑖 ] + dlog𝑔ℎ · ℎ [𝑝𝑘𝑖 ] , R2

computes and outputs

dlog𝑔𝑈 = dlog𝑔ℎ =
𝑠𝑘𝑖 − 𝑔[𝑝𝑘𝑖 ]
ℎ [𝑝𝑘𝑖 ]

.

• On Tails. Given a discrete logarithm challenge 𝑈 , R2 be-

haves as follows. First, it chooses a public parameter pp =

(G, 𝑞, 𝑔, ℎ) with known𝑤 = dlog𝑔ℎ, sets 𝑝𝑘1
= 𝑈 , and runs

A with input 𝑝𝑘
1
(and access to pp). During the execution of

A, R2 simulates the verifier’s and the honest prover’s oracles.

It simulates the verifier’s oracles Ver1,Ver2, and Ver3 exactly

as described by the protocol mID. For the simulation of the

prover’s oracles, it defines 𝑝𝑖𝑑 ≔ 0 and simulates the oracles

as follows:

– Prove1 (): Sample z𝑝𝑖𝑑 , 𝑢𝑝𝑖𝑑,1, 𝑢𝑝𝑖𝑑,2 ← Z𝑞 and return

A𝑝𝑖𝑑 ≔ 𝑔z𝑝𝑖𝑑 · 𝑝𝑘−𝑢𝑝𝑖𝑑,1
1

,B𝑝𝑖𝑑 ≔ 𝑔𝑢𝑝𝑖𝑑,2 . Increment 𝑝𝑖𝑑 .

– Prove2 (𝑝𝑖𝑑, c𝑝𝑖𝑑 , {𝐵𝑘 }𝑘∈[𝑛] ): convert the representations
of 𝐵𝑘 for all 𝑘 ∈ [𝑛] to the basis (𝑔, ℎ) (this is possible
because 𝑝𝑘

1
is the only group element with unknown

discrete logarithm and due to Game1 that 𝑝𝑘
1 [𝐵𝑘 ] = 0 for

all 𝐵𝑘 ), and let 𝑦𝑘 be the respective ℎ component. Define

ỹ𝑝𝑖𝑑 ≔
∑𝑛
𝑘=2

𝑦𝑘 , compute and return y𝑝𝑖𝑑 ≔ (𝑢𝑝𝑖𝑑,1 −
c𝑝𝑖𝑑 )

1

3 − ỹ𝑝𝑖𝑑 , and b𝑝𝑖𝑑 ≔ 𝑢𝑝𝑖𝑑,2 − y𝑝𝑖𝑑 ·𝑤 .

– Prove3(pid, {𝑏𝑘 , 𝑦𝑘 }𝑘∈[𝑛] ): abort and return 0 if there is

𝑘 ∈ [𝑛] with 𝑔𝑏𝑘 · ℎ𝑦𝑘 ≠ 𝐵𝑘 . Return z𝑝𝑖𝑑 .

R2 computes dlog𝑔𝑈 if A outputs ®𝐾 = {𝑝𝑘
1
, . . . , 𝑝𝑘𝑛}, and there

exists 2 ≤ 𝑖 ≤ 𝑛, such that the representation of 𝑝𝑘𝑖 contains a

𝑝𝑘
1
component or A𝑝𝑖𝑑 component for some prover session pid

(recall that A𝑝𝑖𝑑 = 𝑔z𝑝𝑖𝑑 · 𝑝𝑘𝑦
∗

1
for (𝑦∗ = y3

𝑝𝑖𝑑
+ 𝑐𝑝𝑖𝑑,1 + ỹ𝑝𝑖𝑑 )) . If

𝑝𝑘
1 [𝑝𝑘𝑖 ] = A𝑝𝑖𝑑 [𝑝𝑘𝑖 ]

= 0 for all 𝑝𝑖𝑑 ∈ 𝑄Prove and all 𝑖 ∈ [𝑛], R2

aborts and outputs ⊥. Knowing that 𝑝𝑘𝑖 = 𝑔
𝑔 [𝑝𝑘𝑖 ] · 𝑝𝑘

𝑝𝑘
1 [𝑝𝑘𝑖 ]

1
(note

that R2 knows the discrete logarithms of all group elements that

A may use in the representation of 𝑝𝑘𝑖 except 𝑝𝑘1
, therefore, it

can aggregate all non-𝑝𝑘
1
components as a single 𝑔 component),

and hence 𝑠𝑘𝑖 = 𝑔[𝑝𝑘𝑖 ] + dlog𝑔ℎ · ℎ [𝑝𝑘𝑖 ] , R2 computes and outputs

dlog𝑔𝑈 = dlog𝑔𝑝𝑘1
=
𝑠𝑘𝑖−𝑔 [𝑝𝑘𝑖 ]
𝑝𝑘

1 [𝑝𝑘𝑖 ]
. □

Per this claim, AdvGame2

A ≥ AdvGame1

A − 1

2
· AdvdlogR2

; therefore,

we assume that A must ensure that ℎ [𝑝𝑘𝑖 ] = 𝑝𝑘
1 [𝑝𝑘𝑖 ] = 0 and

win Game2.

Next, we define BAD3 as the event that there is a successful veri-

fier session vid∗ and a prover session𝑝𝑖𝑑 ∈ 𝑄Prove withA𝑝𝑖𝑑 [𝑅vid∗ ]
≠

0 and A did not close 𝑝𝑖𝑑 via a Prove3 query successfully.

Game3. This game is identical to Game2, except that it aborts

and outputs 0 if BAD3 occurs.

Claim 3. Let 𝑄Prove1
be the number of Prove1 queries made by A.

Then Pr[BAD3] ≤ 1

𝑄Prove
1

· AdvdlogR3

.

Proof. We show that if there is an accepting verifier session

vid∗ and a prover session pid with A𝑝𝑖𝑑 [𝑅vid∗ ]
≠ 0 and pid was not

closed via a Prove3 query, then there is a reduction R3 that wins

the dlog game.

Given a dlog challenge𝑈 and an adversaryA runningGame0 and

triggering the said event, we construct R3 as follows: R3 samples

𝑤 ← Z𝑞 , and chooses public parameter pp = (G, 𝑞, 𝑔, ℎ = 𝑔𝑤).
Then, it samples 𝑠𝑘1 ← Z𝑞 , computes 𝑝𝑘

1
≔ 𝑔𝑠𝑘1

, and runs A with

input 𝑝𝑘
1
and access to pp. It simulates the verifier’s oracles for

A as described by the protocol mID, initializes 𝑝𝑖𝑑 ≔ 0, samples

𝑝𝑖𝑑∗ ← [𝑄Prove1
], and simulates the prover’s oracles as follows:

• Prove1 (): increment 𝑝𝑖𝑑 , sample 𝑎𝑝𝑖𝑑 , b𝑝𝑖𝑑 ← Z𝑞, y𝑝𝑖𝑑 ←
Z∗𝑞 . If 𝑝𝑖𝑑 ≠ 𝑝𝑖𝑑∗, compute A𝑝𝑖𝑑 ≔ 𝑔𝑎𝑝𝑖𝑑 , otherwise set

A𝑝𝑖𝑑 ≔ 𝑈 . Finally, compute B𝑝𝑖𝑑 ≔ 𝑔b𝑝𝑖𝑑 · ℎy𝑝𝑖𝑑 and return

(𝑝𝑖𝑑,A𝑝𝑖𝑑 ,B𝑝𝑖𝑑 ).
• Prove2 (𝑝𝑖𝑑, 𝑐𝑝𝑖𝑑 , {𝐵𝑘,𝑝𝑖𝑑 }𝑘∈[𝑛] ): return (b𝑝𝑖𝑑 , y𝑝𝑖𝑑 ).
• Prove3 (𝑝𝑖𝑑,⊥): abort if there is 𝑘 ∈ [𝑛] with 𝐵𝑘 ≠ 𝑔𝑏𝑘 · ℎ𝑦𝑘
or 𝑝𝑖𝑑 = 𝑝𝑖𝑑∗. Otherwise, compute 𝑦 ≔

∑
𝑘∈[𝑛] 𝑦𝑘 , z𝑝𝑖𝑑

≔ 𝑎𝑝𝑖𝑑 + (𝑐𝑝𝑖𝑑 + 𝑦3) · 𝑠𝑘 , and return z𝑝𝑖𝑑 .

If A terminates and closes ℓ + 1 verifier sessions successfully, R3

finds a successful verifier session vid∗ satisfying A𝑝𝑖𝑑∗ [𝑅vid∗ ]
≠ 0.

Per correctness, this state satisfies Equation (9). Using the internal

view of the reduction, we substitute A𝑝𝑖𝑑 ≔ 𝑔𝑎𝑝𝑖𝑑 ,A𝑝𝑖𝑑∗ = 𝑈 =

𝑔
dlog𝑔𝑈

for 𝑝𝑖𝑑 ∈ [𝑄Prove1
]\{𝑝𝑖𝑑∗} in Equation (9), which gives the

equation

𝑔
𝑔 [𝑅vid∗ ] · ℎℎ [𝑅vid∗ ] · 𝑝𝑘

𝑝𝑘
1 [𝑅vid∗ ]

1
· 𝑔dlog𝑔𝑈 ·A𝑝𝑖𝑑∗ [𝑅vid∗ ]

·ℎy𝑝𝑖𝑑
∗ ·B𝑝𝑖𝑑∗ [𝑅vid∗ ] ·

∏
𝑝𝑖𝑑∈ [𝑄Prove ]
𝑝𝑖𝑑≠𝑝𝑖𝑑∗

𝑔
𝑎𝑝𝑖𝑑 ·A𝑝𝑖𝑑 [𝑅vid∗ ] ·

ℎ
y𝑝𝑖𝑑 ·B𝑝𝑖𝑑 [𝑅vid∗ ] ·

∏
𝑗∈[𝑛]

𝑝𝑘
𝑐vid∗, 𝑗+𝑦3

vid∗
𝑗

= 𝑔𝑧vid∗ · ℎ𝑦vid∗ . (10)

By taking the discrete logarithm of both sides, we get

𝑔[𝑅vid∗ ] +𝑤 · ℎ [𝑅vid∗ ] + 𝑠𝑘1 · 𝑝𝑘1 [𝑅vid∗ ] + dlog𝑔𝑈 · A𝑝𝑖𝑑∗ [𝑅vid∗ ]+

𝑤 · y𝑝𝑖𝑑∗ · B𝑝𝑖𝑑∗ [𝑅vid∗ ] +
∑︁

𝑝𝑖𝑑∈ [𝑄Prove ]
𝑝𝑖𝑑≠𝑝𝑖𝑑∗

𝑎𝑝𝑖𝑑 · A𝑝𝑖𝑑 [𝑅vid∗ ] +𝑤 · y𝑝𝑖𝑑

·B𝑝𝑖𝑑 [𝑅vid∗ ] ·
∑︁
𝑗∈[𝑛]

𝑠𝑘 𝑗 · (𝑐vid∗, 𝑗 + 𝑦3

vid∗ ) = 𝑧vid∗ +𝑤 · 𝑦vid∗ . (11)

Note that the discrete logarithms of all group elements that may

occur in the representation of 𝑝𝑘 𝑗 for all 𝑗 ∈ [𝑛] are known to the

reduction R3; therefore, any representation of 𝑝𝑘 𝑗 submitted by A
can be transformed to the basis 𝑔, which allows R3 to efficiently

compute 𝑠𝑘 𝑗 = dlog𝑔𝑝𝑘 𝑗 .
Then R3 computes

dlog𝑔𝑈 =
𝐶

−A𝑝𝑖𝑑∗ [𝑅vid∗ ]
, (12)

where 𝐶 = 𝑔[𝑅vid∗ ] + 𝑤 · ℎ [𝑅vid∗ ] + 𝑠𝑘1 · 𝑝𝑘1 [𝑅vid∗ ] + 𝑤 · y𝑝𝑖𝑑∗ ·
B𝑝𝑖𝑑∗ [𝑅vid∗ ]

+∑𝑝𝑖𝑑∈ [𝑄Prove ]
𝑝𝑖𝑑≠𝑝𝑖𝑑∗

𝑎𝑝𝑖𝑑 · A𝑝𝑖𝑑 [𝑅vid∗ ] +𝑤 · y𝑝𝑖𝑑 ·B𝑝𝑖𝑑 [𝑅vid∗ ] ·∑
𝑗∈[𝑛] 𝑠𝑘 𝑗 · (𝑐vid∗, 𝑗 + 𝑦3

vid∗ ) − 𝑧vid∗ −𝑤 · 𝑦vid∗ .
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If the event BAD3 occurs, A𝑝𝑖𝑑∗ [𝑅vid∗ ]
≠ 0; therefore, this equa-

tion is defined, which allows R3 to compute the dlog𝑔𝑈 successfully

if it guesses 𝑝𝑖𝑑∗ correctly and embeds 𝑈 in 𝐴𝑝𝑖𝑑∗ (otherwise R3

aborts), which occurs with probability
1

𝑄Prove
1

, hence the claim. □

Per this claim, we haveAdvGame3

A ≥ AdvGame2

A − 1

𝑄Prove
1

·AdvdlogR3

.

SinceAwinsGame2 we assume in the following thatAwinsGame3.

Let BAD4 be an event that occurs if there is a successful verifier

session vid∗ with

𝑦vid∗ ≠ ℎ [𝑅vid∗ ] +
∑︁

𝑝𝑖𝑑∈[𝑄Prove ]
y𝑝𝑖𝑑 · B𝑝𝑖𝑑 [𝑅vid∗ ] . (13)

Game4. This game is identical to Game3, except that it aborts

and outputs 0 if event BAD4 occurs.

Claim 4. Pr[BAD4] ≤ AdvdlogR4

.

Proof. Assume A closes ℓ + 1 verifier sessions successfully, and

there exists a successful verifier session vid∗ satisfying 𝑦vid∗ ≠

ℎ [𝑅vid∗ ] +
∑
𝑝𝑖𝑑∈[𝑄Prove ] y𝑝𝑖𝑑 · B𝑝𝑖𝑑 [𝑅vid∗ ] . We construct a reduction

R4 that exploits A to win the dlog game. Given a discrete logarithm

challenge𝑈 , R4 chooses a public parameter pp ≔ (G, 𝑞, 𝑔, ℎ) with
ℎ = 𝑈 , samples 𝑠𝑘1 ← Z𝑞 , sets 𝑝𝑘1

≔ 𝑔𝑠𝑘1
, and runs A with input

𝑝𝑘
1
and access to pp on Game4. It simulates the honest prover’s

oracles and the verifier’s oracles exactly as described by the protocol

mID.
Finally, when A terminates and closes ℓ + 1 verifier session suc-

cessfully, each successful session vid∗ satisfies Equation (9). From

the internal state of the prover, we know that A𝑝𝑖𝑑 = 𝑔𝑎𝑝𝑖𝑑 . We

substitute this value in Equation (9) and get the equation

𝑔
𝑔 [𝑅vid∗ ] · ℎℎ [𝑅vid∗ ] · 𝑝𝑘

𝑝𝑘
1 [𝑅vid∗ ]

1
·

∏
𝑝𝑖𝑑∈[𝑄Prove ]

𝑔
𝑎𝑝𝑖𝑑 ·A𝑝𝑖𝑑 [𝑅vid∗ ]

·ℎy𝑝𝑖𝑑 ·B𝑝𝑖𝑑 [𝑅vid∗ ] ·
∏
𝑗∈[𝑛]

𝑝𝑘
𝑐vid∗, 𝑗+𝑦3

vid∗
𝑗

= 𝑔𝑧vid∗ · ℎ𝑦vid∗ . (14)

Taking the discrete logarithm of both sides, we get

𝑔[𝑅vid∗ ] +𝑤 · ℎ [𝑅vid∗ ] + 𝑠𝑘1 · 𝑝𝑘1 [𝑅vid∗ ] +
∑︁

𝑝𝑖𝑑∈[𝑄Prove ]
𝑎𝑝𝑖𝑑

·A𝑝𝑖𝑑 [𝑅vid∗ ] +𝑤 · y𝑝𝑖𝑑 · B𝑝𝑖𝑑 [𝑅vid∗ ] +
∑︁
𝑗∈[𝑛]

𝑠𝑘 𝑗 · (𝑐vid∗, 𝑗 + 𝑦3

vid∗ )

= 𝑧vid∗ +𝑤 · 𝑦vid∗ . (15)

Note that R4 can compute 𝑠𝑘 𝑗 for 𝑗 ∈ [𝑛] such that 𝑝𝑘 𝑗 = 𝑔
𝑠𝑘
𝑗
,

because the representation of 𝑝𝑘 𝑗 only contains group elements

with known discrete logarithm to the base 𝑔. Particularly, the only

group element with unknown discrete logarithm is ℎ, and due to

the changes made inGame2, we know that there is no ℎ component

in the representation of any 𝑝𝑘 𝑗 .

It follows that 𝑤 = 𝑁
𝐷
, where 𝑁 ≔ 𝑔[𝑅vid∗ ] + 𝑠𝑘1 · 𝑝𝑘1 [𝑅vid∗ ] +∑

𝑝𝑖𝑑∈[𝑄Prove ] 𝑎𝑝𝑖𝑑 · A𝑝𝑖𝑑 [𝑅vid∗ ] +
∑
𝑗∈[𝑛] 𝑠𝑘 𝑗 · (𝑐vid∗, 𝑗 + 𝑦3

vid∗ )−𝑧vid∗ ,
and 𝐷 ≔ 𝑦vid∗ − ℎ [𝑅vid∗ ] −

∑
𝑝𝑖𝑑∈[𝑄Prove ] y𝑝𝑖𝑑 · B𝑝𝑖𝑑 [𝑅vid∗ ] . R4 can

compute𝑤 andwin the dlog game if𝑦vid∗−ℎ [𝑅vid∗ ]−
∑
𝑝𝑖𝑑∈[𝑄Prove ] y𝑝𝑖𝑑 ·

B𝑝𝑖𝑑 [𝑅vid∗ ]
≠ 0⇒ 𝑦vid∗ ≠ ℎ [𝑅vid∗ ] +

∑
𝑝𝑖𝑑∈[𝑄Prove ] y𝑝𝑖𝑑 ·B𝑝𝑖𝑑 [𝑅vid∗ ] .

□

Thus AdvGame4

A ≥ AdvGame3

A − AdvdlogR4

, and thus we assume

that A wins Game4 and that Event BAD4 does not occur.

Next, we define the event BAD5 as the event that occurs iff for

all successful verifier sessions vid∗, the equation

−𝑝𝑘
1 [𝑅vid∗ ] −

∑︁
𝑝𝑖𝑑∈[𝑄Prove ]

((y𝑝𝑖𝑑 + ỹ𝑝𝑖𝑑 )3 + c𝑝𝑖𝑑 ) · A𝑝𝑖𝑑 [𝑅vid∗ ]−

©­«
∑︁

𝑝𝑖𝑑∈[𝑄Prove ]
B𝑝𝑖𝑑 [𝑅vid∗ ]

· y𝑝𝑖𝑑 + ℎ [𝑅vid∗ ]
ª®¬

3

− 𝑐vid∗,1 = 0 (16)

holds. We further define the sub-events BAD5,1, BAD5,2, BAD5,3,

and BAD5,4 such that

BAD5 = BAD5,1 ∨ BAD5,2 ∨ BAD5,3 ∨ BAD5,4,

where

• BAD5,1 is the event that occurs if the event BAD5 occurs,

and there exists a verifier session vid∗ such that for all prover
sessions 𝑝𝑖𝑑 ∈ [𝑄Prove ], either B𝑝𝑖𝑑 [𝑅vid∗ ] = 0, or B𝑝𝑖𝑑 [𝑅vid∗ ]
≠ 0 and A makes a Prove2 query for the session 𝑝𝑖𝑑 before

making a Ver1 query for the session vid∗.

• BAD5,2 is the event that occurs if the event BAD5∧¬BAD5,1
occurs, and there exists prover sessions 𝑝𝑖𝑑

1
, . . . , 𝑝𝑖𝑑𝑘 for

2 ≤ 𝑘 ≤ 𝑄Prove and a successful verifier session vid∗ such
that B𝑝𝑖𝑑 𝑗 [𝑅vid∗ ]

≠ 0 for all 𝑗 .

• BAD5,3 is the event that occurs if the eventBAD5∧¬(BAD5,1
∨BAD5,2) occurs, and there exists verifier sessions vid∗1, . . . ,
vid∗𝑘 for 2 ≤ 𝑘 ≤ 𝑄Prove , and a prover session 𝑝𝑖𝑑 ∈
[𝑄Prove ] with B𝑝𝑖𝑑 [𝑅vid∗ 𝑗 ]

≠ 0 for all 𝑗 ∈ [𝑘].

• BAD5,4 is the event that occurs if the eventBAD5∧¬(BAD5,1
∨BAD5,2∨BAD5,3) occurs. That is, for all successful verifier
sessions vid∗, there exists exactly one prover session 𝑝𝑖𝑑 with
B𝑝𝑖𝑑 [𝑅vid∗ ]

≠ 0, and for all prover sessions 𝑝𝑖𝑑 , there exists

exactly one successful verifier session vid∗ withB𝑝𝑖𝑑 [𝑅vid∗ ]
≠

0. Additionally, if B𝑝𝑖𝑑 [𝑅vid∗ ]
≠ 0 holds, A makes a Prove2

query for 𝑝𝑖𝑑 before it makes a Ver1 query for vid∗.

Game5. This game is identical to Game4, except that it aborts

and outputs 0 if the event BAD5,1 occurs.

Claim 5. Pr[BAD5,1] ≤ negl(𝜆).

Proof. As BAD5,1 occurs, all the variables, except 𝑐vid∗,1, in Eq-

uation (16) of the session vid∗ get fixed by A and the prover before

the value 𝑐vid∗,1 is sampled uniformly at random by the verifier

when A makes a Ver1 query. Consequently, satisfying Equation

(16) is equivalent to guessing the value 𝑐vid∗,1, which occurs with

probability at most
1

𝑞 . □

This claim implies that 𝐴𝑑𝑣
Game5

A ≥ AdvGame4

A − negl(𝜆), and
therefore, we assume that A wins Game5, and that BADBAD5,1 does

not occur. Consequently, every verifier session vid∗ must be linked
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to at least a prover session 𝑝𝑖𝑑 , i.e., B𝑝𝑖𝑑 [𝑅vid∗ ]
≠ 0 and A does not

make a Prove2 query for 𝑝𝑖𝑑 before it makes a Ver1 query for vid∗.

Game6. This game is identical to Game5, except that it aborts

and outputs 0 if the event BAD5,2 occurs.

Claim 6. Pr[BAD5,2] ≤ negl(𝜆).

Proof. Assume there are 2 ≤ 𝑘 prover sessions {𝑝𝑖𝑑
1
, . . . , 𝑝𝑖𝑑𝑘 }

such that B𝑝𝑖𝑑 𝑗 [𝑅vid∗ ]
≠ 0 for all 𝑗 ∈ [𝑘], and assume that the

session 𝑝𝑖𝑑𝑘 is the session for which A makes a Prove2 query last

among the sessions 𝑝𝑖𝑑 𝑗 for 𝑗 ∈ [𝑘]. Per the case assumption,

BAD5,1 does not occur; therefore, A makes a Prove2 query for 𝑝𝑖𝑑𝑘
after it has made Ver1 query for the session vid∗.

Equation (16) can be expressed as a polynomial

𝑃 (X) ≔ −𝑝𝑘
1 [𝑅vid∗ ] −

∑︁
𝑗∈[𝑘−1]

((y𝑝𝑖𝑑 𝑗
+ ỹ𝑝𝑖𝑑 𝑗

)3 + c𝑝𝑖𝑑 𝑗
)·

A𝑝𝑖𝑑 𝑗 [𝑅vid∗ ]
− ((X + ỹ𝑝𝑖𝑑𝑘 )

3 + c𝑝𝑖𝑑𝑘 ) · A𝑝𝑖𝑑𝑘 [𝑅vid∗ ] − (
∑︁

𝑗∈[𝑘−1]

B𝑝𝑖𝑑 𝑗 [𝑅vid∗ ]
· y𝑝𝑖𝑑 𝑗

+ B𝑝𝑖𝑑𝑘 [𝑅vid∗ ] · X + ℎ [𝑅vid∗ ] )
3 − 𝑐vid∗,1 . (17)

We distinguish two cases: The first case is that the polynomial

𝑃 is non-zero. Since y𝑝𝑖𝑑𝑘 is generated by the prover uniformly at

random, then per the Schwartz-Zippel lemma, 𝑃 (y𝑝𝑖𝑑𝑘 ) = 0 holds

with probability at most
3

𝑞 .

The other case is that 𝑃 is a zero-polynomial. It follows that all

the coefficients in 𝑃 are equal to 0 including the coefficients of X2

and X3
. Thus, we have

3 · ỹ𝑝𝑖𝑑𝑘 · A𝑝𝑖𝑑𝑘 [𝑅vid∗ ]
= 3 · B𝑝𝑖𝑑𝑘 [𝑅vid∗ ]

2 · (
∑︁

𝑗∈[𝑘−1]
B𝑝𝑖𝑑 𝑗 [𝑅vid∗ ]

· y𝑝𝑖𝑑 𝑗
+ ℎ [𝑅vid∗ ] ), (18)

and

−A𝑝𝑖𝑑𝑘 [𝑅vid∗ ] = B𝑝𝑖𝑑𝑘 [𝑅vid∗ ]
3 . (19)

We substitute Equation (19) in Equation (18) (Note that B𝑝𝑖𝑑𝑘 [𝑅vid∗ ]
≠ 0) and get

−ỹ𝑝𝑖𝑑𝑘 · B𝑝𝑖𝑑𝑘 [𝑅vid∗ ] =
∑︁

𝑗∈[𝑘−1]
B𝑝𝑖𝑑 𝑗 [𝑅vid∗ ]

· y𝑝𝑖𝑑 𝑗
+ ℎ [𝑅vid∗ ] . (20)

This equation implies that the value ỹ𝑝𝑖𝑑 gets fixed by the time A
makes a Ver1 query for the session vid∗ and cannot be influenced

afterward. To see this, rearrange the equation as

ỹ𝑝𝑖𝑑𝑘 = −

∑
𝑗∈[𝑘−1] B𝑝𝑖𝑑 𝑗 [𝑅vid∗ ]

· y𝑝𝑖𝑑 𝑗
+ ℎ [𝑅vid∗ ]

B𝑝𝑖𝑑𝑘 [𝑅vid∗ ]
. (21)

We see that

∑
𝑗∈[𝑘−1] B𝑝𝑖𝑑 𝑗 [𝑅vid∗ ]

, ℎ [𝑅vid∗ ] , and B𝑝𝑖𝑑𝑘 [𝑅vid∗ ]
are

fixed by A when it makes the Ver1 query for session vid∗, and y𝑝𝑖𝑑 𝑗

gets fixed by the prover as a response to the Prove2 queries of the

other prover sessions (recall that 𝑘 is the sessions with the last

Prove2 query). Define the polynomial

𝑃 ′ (X) ≔ ỹ𝑝𝑖𝑑𝑘 · B𝑝𝑖𝑑𝑘 [𝑅vid∗ ] − ℎ [𝑅vid∗ ] −
∑︁

𝑗∈[𝑘−2]
B𝑝𝑖𝑑 𝑗 [𝑅vid∗ ]

·y𝑝𝑖𝑑 𝑗
− B𝑝𝑖𝑑𝑘−1 [𝑅vid∗ ]

· X.

Again, we distinguish two cases: If the polynomial 𝑃 ′ is non-zero,
then 𝑃 ′ (y𝑝𝑖𝑑𝑘−1

) evaluates to 0 with probability at most
1

𝑞 , because

y𝑝𝑖𝑑𝑘−1

gets sampled uniformly after the Prove2 query of the session

𝑝𝑖𝑑𝑘−1
, and at this time all the values in 𝑃 ′ are fixed except X. The

other case is that 𝑃 ′ is the zero polynomial. It follows that the

coefficient of X is zero, i.e., B𝑝𝑖𝑑𝑘−1 [𝑅vid∗ ]
= 0, a contradiction.

Therefore, we assume that this case does not occur, and assume

in the following that each verifier session vid∗ is linked to exactly

one prover session 𝑝𝑖𝑑 . □

We assume in the following that A wins Game6, because this

claim implies that AdvGame6

A ≥ AdvGame5

A − negl(𝜆).

Game7. This game is identical to Game6, except that it aborts

and outputs 0 if the event BAD5,3 occurs.

Claim 7. Pr[BAD5,3] ≤ negl(𝜆).

Proof. Assume there are successful verifier sessions vid∗1, . . . ,
vid∗𝑘 for 2 ≤ 𝑘 ≤ ℓ + 1 and a prover session 𝑝𝑖𝑑 such that

B𝑝𝑖𝑑 [𝑅vid∗ 𝑗 ]
≠ 0 for all 𝑗 ∈ [𝑘]. As BAD5,2 does not occur, it holds

that B𝑝𝑖𝑑 ′ [𝑅vid∗ 𝑗 ]
= 0 for all 𝑗 ∈ [𝑘] and all 𝑝𝑖𝑑′ ≠ 𝑝𝑖𝑑 , and since

BAD5,1 does not occur, it follows that A makes Ver1 queries for all

vid∗ 𝑗 before making a Prove2 query for the session 𝑝𝑖𝑑 .

Assume for the sake of contradiction that the equation

−𝑝𝑘
1 [𝑅vid∗ ] −

∑︁
𝑝𝑖𝑑∈[𝑄Prove ]

((y𝑝𝑖𝑑 + ỹ𝑝𝑖𝑑 )3 + c𝑝𝑖𝑑 ) · A𝑝𝑖𝑑 [𝑅vid∗ ]−

©­«
∑︁

𝑝𝑖𝑑∈[𝑄Prove ]
B𝑝𝑖𝑑 [𝑅vid∗ ]

· y𝑝𝑖𝑑 + ℎ [𝑅vid∗ ]
ª®¬

3

− 𝑐vid∗,1 = 0.

holds for all vid∗ ∈ {vid∗1, . . . , vid∗𝑘 }. We construct the polynomial

𝑃 (X) ≔ −𝑝𝑘
1 [𝑅vid∗ ] −

∑︁
𝑝𝑖𝑑 ′≠𝑝𝑖𝑑

((y𝑝𝑖𝑑 ′ + ỹ𝑝𝑖𝑑 ′ )3 + c𝑝𝑖𝑑 ′ )·

A𝑝𝑖𝑑 ′ [𝑅vid∗ ]
− ((X + ỹ𝑝𝑖𝑑 )3 + c𝑝𝑖𝑑 ) · A𝑝𝑖𝑑 [𝑅vid∗ ]

−
(
B𝑝𝑖𝑑 [𝑅vid∗ ]

· X + ℎ [𝑅vid∗ ]
)

3

− 𝑐vid∗,1 . (22)

We distinguish two cases: if 𝑃 is a non-zero polynomial,𝑃 (y𝑝𝑖𝑑 ) =
0 occurs with probability at most

3

𝑞 for a single verifier session

vid∗ by the Schwartz-Zippel lemma, because y𝑝𝑖𝑑 gets sampled

uniformly after all the coefficients in 𝑃 get fixed. Since vid∗ ∈
{vid∗1, . . . , vid∗𝑘 }, the probability that this event holds for at least

one of the verifier sessions is
3·𝑘
𝑞 . The other case is that 𝑃 is the

zero polynomial. This implies that the equations

−A𝑝𝑖𝑑 [𝑅vid∗ ] = B𝑝𝑖𝑑 [𝑅vid∗ ]
3, (23)

and

−𝑝𝑘
1 [𝑅vid∗ ] − (

∑︁
𝑝𝑖𝑑 ′≠𝑝𝑖𝑑

((y𝑝𝑖𝑑 ′ + ỹ𝑝𝑖𝑑 ′ )3 + c𝑝𝑖𝑑 ′ ) · A𝑝𝑖𝑑 ′ [𝑅vid∗ ]

= (y3

𝑝𝑖𝑑
+ c𝑝𝑖𝑑 ) · A𝑝𝑖𝑑 [𝑅vid∗ ] − ℎ [𝑅vid∗ ]

3 + 𝑐vid∗,1 (24)

hold for all vid∗ ∈ {vid∗1, . . . , vid∗𝑘 }. Equation (23) implies that

A𝑝𝑖𝑑 [𝑅vid∗ ]
≠ 0 because per the case assumption B𝑝𝑖𝑑 [𝑅vid∗ ]

≠ 0.
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Additionally, it follows from Equation (24) that

c𝑝𝑖𝑑 =
1

A𝑝𝑖𝑑 [𝑅vid∗ ]
· (−𝑝𝑘

1 [𝑅vid∗ ] − (
∑︁

𝑝𝑖𝑑 ′≠𝑝𝑖𝑑

((y𝑝𝑖𝑑 ′ + ỹ𝑝𝑖𝑑 ′ )3+

c𝑝𝑖𝑑 ′ ) · A𝑝𝑖𝑑 ′ [𝑅vid∗ ] ) − y
3

𝑝𝑖𝑑
· A𝑝𝑖𝑑 [𝑅vid∗ ] + ℎ [𝑅vid∗ ]

3 − 𝑐vid∗,1).
(25)

Recall that the verifier samples 𝑐vid∗,1 uniformly at random. We

construct a hash function (treated as a random oracle) HVer as

follows: Given input 𝜉 = (𝐴, 𝐵) for 𝐴, 𝐵 ∈ G, it returns TVer [𝜉] if
TVer [𝜉] ≠ ⊥. Otherwise, it makes a Ver1 query with input 𝐴, 𝐵 and

receives 𝑐vid∗ . It stores TVer [𝜉] = 𝑐vid∗ , and returns 𝑐vid∗ .

It follows from Equation (25) that

𝑐vid∗,1 = HVer (𝐴vid∗ , 𝐵vid∗ ) = c𝑝𝑖𝑑 · A𝑝𝑖𝑑 [𝑅vid∗ ] − (−𝑝𝑘1 [𝑅vid∗ ]

−(
∑︁

𝑝𝑖𝑑 ′≠𝑝𝑖𝑑

((y𝑝𝑖𝑑 ′ + ỹ𝑝𝑖𝑑 ′ )3 + c𝑝𝑖𝑑 ′ ) · A𝑝𝑖𝑑 ′ [𝑅vid∗ ] )

−y3

𝑝𝑖𝑑
· A𝑝𝑖𝑑 [𝑅vid∗ ] + ℎ [𝑅vid∗ ]

3) . (26)

LetHROS be another hash function (modeled as a random oracle),

such that

HROS (A𝑝𝑖𝑑 [𝑅vid∗ ] , 𝑎𝑢𝑥vid∗ ) = HVer (𝐴vid∗ , 𝐵vid∗ ) + (𝑝𝑘1 [𝑅vid∗ ]

−(
∑︁

𝑝𝑖𝑑 ′≠𝑝𝑖𝑑

((y𝑝𝑖𝑑 ′ + ỹ𝑝𝑖𝑑 ′ )3 + c𝑝𝑖𝑑 ′ ) · A𝑝𝑖𝑑 ′ [𝑅vid∗ ] )

−y3

𝑝𝑖𝑑
· A𝑝𝑖𝑑 [𝑅vid∗ ] + ℎ [𝑅vid∗1 ]

3), (27)

where 𝑎𝑢𝑥vid∗ = (𝑔[𝑅vid∗ ] , ℎ [𝑅vid∗ ] , 𝑝𝑘1 [𝑅vid∗ ] , (A𝑝𝑖𝑑 [𝑅vid∗ ] ,
B𝑝𝑖𝑑 [𝑅vid∗ ]

)𝑝𝑖𝑑∈[𝑄Prove ] ).
Thus, for arbitrary vid∗𝑖 , vid∗ 𝑗 for 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 ,

HROS (A𝑝𝑖𝑑 [𝑅vid∗𝑖 ]
, 𝑎𝑢𝑥vid∗𝑖 ) = A𝑝𝑖𝑑 [𝑅vid∗𝑖 ]

· c𝑝𝑖𝑑 , (28)

HROS (A𝑝𝑖𝑑 [𝑅vid∗ 𝑗 ]
, 𝑎𝑢𝑥vid∗ 𝑗 ) = A𝑝𝑖𝑑 [𝑅vid∗ 𝑗 ]

· c𝑝𝑖𝑑 . (29)

This is the 𝑅𝑂𝑆 problem with ℓ = 1; therefore, the probability

that the event (29) occurs is at most

(𝐻𝑞
ℓ+1)+1
𝑞 =

(𝐻𝑞
2
)+1
𝑞 , where 𝐻𝑞 is

the number of HROS queries A makes. □

Per this claim, we have AdvGame7

A ≥ AdvGame6

A − negl(𝜆); there-
fore, we assume A wins Game7.

Game8. This game is identical to Game7, except that it aborts

and outputs 0 if the event BAD5,4 occurs.

Claim 8. Pr[BAD5,4] ≤ negl(𝜆).

Proof. As BAD5,4 occurs, there exists a single prover session

𝑝𝑖𝑑𝑖 per verifier session vid∗𝑖 , such that B𝑝𝑖𝑑𝑖 [𝑅vid∗𝑖 ]
≠ 0 and the

Prove2 query for 𝑝𝑖𝑑𝑖 was made after the Ver1 query for vid∗𝑖 . In
the following, we say that the sessions 𝑝𝑖𝑑𝑖 and vid∗𝑖 are linked.
This implicitly assigns the verifier sessions the same order as the

chronological order among the prover sessions they are linked to.

That is, without loss of generality we assign successful verifier

session index 𝑖 iff it is linked to the prover session for which the

𝑖th query to Prove2 query was made.

We show in the following that this case cannot occur if the

adversary makes at most ℓ Prove3 queries. Let vid∗𝑖 ∈ success be

the 𝑖-𝑡ℎ successful verifier session. Assume Equation (16) holds for

all successful verifier sessions vid∗. It follows that

−𝑝𝑘
1 [𝑅vid∗𝑖 ]

−
∑︁

𝑘∈[𝑄Prove ]
((y𝑝𝑖𝑑𝑘 + ỹ𝑝𝑖𝑑𝑘 )

3 + c𝑝𝑖𝑑𝑘 ) · A𝑝𝑖𝑑𝑘 [𝑅vid∗𝑖 ]

−
(
B𝑝𝑖𝑑𝑖 [𝑅vid∗𝑖 ]

· y𝑝𝑖𝑑𝑖 + ℎ [𝑅vid∗𝑖 ]
)

3

− 𝑐vid∗𝑖 ,1 = 0. (30)

Let 𝜅 ≤ 𝑄Prove be the last index satisfying A𝑝𝑖𝑑𝜅 [𝑅vid∗𝑖 ]
≠ 0. It

follows that

−𝑝𝑘
1 [𝑅vid∗𝑖 ]

−
∑︁

𝑘∈[𝜅−1]
((y𝑝𝑖𝑑𝑘 + ỹ𝑝𝑖𝑑𝑘 )

3 + c𝑝𝑖𝑑𝑘 )·

A𝑝𝑖𝑑𝑘 [𝑅vid∗𝑖 ]
− ((y𝑝𝑖𝑑𝜅 + ỹ𝑝𝑖𝑑𝜅 )

3 + c𝑝𝑖𝑑𝜅 ) · A𝑝𝑖𝑑𝜅 [𝑅vid∗𝑖 ]

−
(
B𝑝𝑖𝑑𝑖 [𝑅vid∗𝑖 ]

· y𝑝𝑖𝑑𝑖 + ℎ [𝑅vid∗𝑖 ]
)

3

− 𝑐vid∗𝑖 ,1 = 0. (31)

We show that 𝜅 ≤ 𝑖 holds, i.e., for any successful verifier session

vid∗𝑖 , it holds that A𝑝𝑖𝑑 𝑗 [𝑅vid∗𝑖 ]
= 0 for all 𝑗 > 𝑖 . Assume for the

sake of contradiction that 𝜅 > 𝑖 , and define the polynomial

𝑃 (X) = −𝑝𝑘
1 [𝑅vid∗𝑖 ]

−
∑︁

𝑘∈[𝜅−1]
((y𝑝𝑖𝑑𝑘 + ỹ𝑝𝑖𝑑𝑘 )

3 + c𝑝𝑖𝑑𝑘 )·

A𝑝𝑖𝑑𝑘 [𝑅vid∗𝑖 ]
− ((X + ỹ𝑝𝑖𝑑𝜅 )

3 + c𝑝𝑖𝑑𝜅 ) · A𝑝𝑖𝑑𝜅 [𝑅vid∗𝑖 ]

−
(
B𝑝𝑖𝑑𝑖 [𝑅vid∗𝑖 ]

· y𝑝𝑖𝑑𝑖 + ℎ [𝑅vid∗𝑖 ]
)

3

− 𝑐vid∗𝑖 ,1 . (32)

If Equation (31) holds, then 𝑃 (y𝑝𝑖𝑑𝜅 ) = 0. We distinguish two

cases: The first case is that 𝑃 is non-zero. This case occurs with

probability at most
3

𝑞 per the Schwartz-Zippel lemma, because

y𝑝𝑖𝑑𝜅 is uniformly random, and it is sampled after all the values in

𝑃 are fixed. The other case is that 𝑃 is the zero-polynomial. This

case cannot occur, because it implies that A𝑝𝑖𝑑𝜅 [𝑅vid∗𝑖 ]
= 0 since

A𝑝𝑖𝑑𝜅 [𝑅vid∗𝑖 ]
is the coefficient of X3

, a contradiction.

Thus, we have that 𝜅 ≤ 𝑖 , i.e., A𝑝𝑖𝑑 𝑗 [𝑅vid∗𝑖 ]
= 0 for all 𝑗 > 𝑖 .

Consequently, Equation (31) is equivalent to

−𝑝𝑘
1 [𝑅vid∗𝑖 ]

−
∑︁

𝑘∈[𝑖−1]
((y𝑝𝑖𝑑𝑘 + ỹ𝑝𝑖𝑑𝑘 )

3 + c𝑝𝑖𝑑𝑘 ) · A𝑝𝑖𝑑𝑘 [𝑅vid∗𝑖 ]

−((y𝑝𝑖𝑑𝑖 + ỹ𝑝𝑖𝑑𝑖 )
3 + c𝑝𝑖𝑑𝑖 ) · A𝑝𝑖𝑑𝑖 [𝑅vid∗𝑖 ]

−
(
B𝑝𝑖𝑑𝑖 [𝑅vid∗𝑖 ]

· y𝑝𝑖𝑑𝑖 + ℎ [𝑅vid∗𝑖 ]
)

3

− 𝑐vid∗𝑖 ,1 = 0. (33)

Define the polynomial

𝑃 ′ (X) = −𝑝𝑘
1 [𝑅vid∗𝑖 ]

−
∑︁

𝑘∈[𝑖−1]
((y𝑝𝑖𝑑𝑘 + ỹ𝑝𝑖𝑑𝑘 )

3 + c𝑝𝑖𝑑𝑘 )·

A𝑝𝑖𝑑𝑘 [𝑅vid∗𝑖 ]
− ((X + ỹ𝑝𝑖𝑑𝑖 )

3 + c𝑝𝑖𝑑𝑖 ) · A𝑝𝑖𝑑𝑖 [𝑅vid∗𝑖 ]

−
(
B𝑝𝑖𝑑𝑖 [𝑅vid∗𝑖 ]

· X + ℎ [𝑅vid∗𝑖 ]
)

3

− 𝑐vid∗𝑖 ,1 . (34)

Again, we distinguish two cases: If 𝑃 ′ is a non-zero polynomial,

𝑃 ′ (y𝑝𝑖𝑑𝑖 ) occurs with probability at most
3

𝑞 per the Schwartz-Zippel
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lemma since y𝑝𝑖𝑑𝑖 is sampled uniformly at random after all values

in 𝑃 ′ get fixed. If 𝑃 ′ is the zero-polynomial, it holds that

A𝑝𝑖𝑑𝑖 [𝑅vid∗𝑖 ]
= B𝑝𝑖𝑑𝑖 [𝑅vid∗𝑖 ]

3, (35)

which implies that, if B𝑝𝑖𝑑𝑖 [𝑅vid∗𝑖 ]
≠ 0, then A𝑝𝑖𝑑𝑖 [𝑅vid∗𝑖 ]

≠ 0. How-

ever, there are ℓ+1 unique successful verifier sessions vid∗𝑖 and ℓ+1

unique prover sessions 𝑝𝑖𝑑𝑖 for 𝑖 ∈ [ℓ + 1] with B𝑝𝑖𝑑𝑖 [𝑅vid∗𝑖 ]
≠ 0 (as

Event BAD5,4 occurs). Thus, it must hold that A𝑝𝑖𝑑𝑖 [𝑅vid∗𝑖 ]
≠ 0 for

all 𝑖 ∈ [ℓ + 1]. Per Game3, A must make a Prove3 query for all 𝑝𝑖𝑑𝑖 .

However, this is a contradiction, because A must make ℓ + 1 Prove3

queries, a query for each 𝑝𝑖𝑑𝑖 for 𝑖 ∈ [ℓ + 1], while it is allowed to

make at most ℓ Prove3 queries. □

Per this claim, we have AdvGame8

A ≥ AdvGame7

A − negl(𝜆), and
since A wins Game7, it must win Game8, as well. Consequently, it

holds that Advℓ-OMMIM
A,mID ≤ AdvGame8

A + negl(𝜆). However, winning
Game8 implies that BAD5,1, BAD5,2, BAD5,3, BAD5,4 do not occur,

and since BAD5,1 ∧BAD5,2 ∧BAD5,3 ∧BAD5,4 = BAD5, this means

BAD5 does not occur; therefore, we assume in the following that

there exists a successful verifier session vid∗, for which

−𝑝𝑘
1 [𝑅vid∗ ] −

∑︁
𝑝𝑖𝑑∈[𝑄Prove ]

((y𝑝𝑖𝑑 + ỹ𝑝𝑖𝑑 )3 + c𝑝𝑖𝑑 ) · A𝑝𝑖𝑑 [𝑅vid∗ ]−

©­«
∑︁

𝑝𝑖𝑑∈[𝑄Prove ]
B𝑝𝑖𝑑 [𝑅vid∗ ]

· y𝑝𝑖𝑑 + ℎ [𝑅vid∗ ]
ª®¬

3

− 𝑐vid∗,1 ≠ 0. (36)

ReducingGame8 to dlog. We construct a reduction R4 that, given

an adversary A that wins Game8, wins the dlog game. Given a dis-

crete logarithm challenge𝑈 , R4 behaves as follows. First, it chooses

a public parameter pp = (G, 𝑞, 𝑔, ℎ) with known 𝑤 = dlog𝑔ℎ, sets
𝑝𝑘

1
= 𝑈 , and runs A with input 𝑝𝑘

1
(and access to pp). During the

execution of A, R4 simulates the verifier’s and the honest prover’s

oracles. It simulates the verifier’s oracles Ver1,Ver2, and Ver3 exactly
as described by the protocolmID. For the simulation of the prover’s

oracles, it defines 𝑝𝑖𝑑 ≔ 0 and simulates the oracles as follows:

• Prove1 (): increment 𝑝𝑖𝑑 , sample z𝑝𝑖𝑑 , 𝑢𝑝𝑖𝑑,1, 𝑢𝑝𝑖𝑑,2 ← Z𝑞 ,

compute and return A𝑝𝑖𝑑 ≔ 𝑔z𝑝𝑖𝑑 · 𝑝𝑘−𝑢𝑝𝑖𝑑,1
1

,B𝑝𝑖𝑑 ≔ 𝑔𝑢𝑝𝑖𝑑,2 .

• Prove2 (𝑝𝑖𝑑, c𝑝𝑖𝑑 , {𝐵𝑘 }𝑘∈[𝑛] ): First, convert the algebraic re
presentations of 𝐵𝑘 for all 𝑘 ∈ [𝑛] to the basis (𝑔, ℎ). This
is possible because 𝑝𝑘

1
is the only group element with an

unknown discrete logarithm and due to the changes from

Game1 we know that 𝑝𝑘
1 [𝐵𝑘 ] = 0 for all 𝐵𝑘 . Let 𝑦𝑘 be the

respective ℎ component. Define ỹ𝑝𝑖𝑑 ≔
∑𝑛
𝑘=2

𝑦𝑘 , compute

and return y𝑝𝑖𝑑 ≔ (𝑢𝑝𝑖𝑑,1 − c𝑝𝑖𝑑 )
1

3 − ỹ𝑝𝑖𝑑 , and b𝑝𝑖𝑑 ≔

𝑢𝑝𝑖𝑑,2 − y𝑝𝑖𝑑 ·𝑤 .

• Prove3(pid, {𝑏𝑘 , 𝑦𝑘 }𝑘∈[𝑛] ): abort and return 0 if there is 𝑘 ∈
[𝑛] with 𝑔𝑏𝑘 · ℎ𝑦𝑘 ≠ 𝐵𝑘 . Return z𝑝𝑖𝑑 .

When A closes ℓ + 1 verifier sessions successfully, there are

ℓ + 1 successful verifier sessions 𝑣𝑖𝑑 satisfying Equation (7). The

algebraic coefficients of each 𝑅𝑣𝑖𝑑 submitted by A alongside Ver1
queries of session 𝑣𝑖𝑑 satisfy Equation (9). Using the internal state

of the honest prover (here we rely on the fact that A makes a

Prove3 query due to the changes in Game3), we substitute A𝑝𝑖𝑑 =

𝑔z𝑝𝑖𝑑 · 𝑝𝑘 (y𝑝𝑖𝑑+ỹ𝑝𝑖𝑑 )
3+c𝑝𝑖𝑑

1
in Equation (9), which yields

𝑔
𝑔 [𝑅𝑣𝑖𝑑 ] · ℎℎ [𝑅𝑣𝑖𝑑 ] · 𝑝𝑘

𝑝𝑘
1 [𝑅𝑣𝑖𝑑 ]

1
·

∏
𝑝𝑖𝑑∈[𝑄Prove ](

𝑔z𝑝𝑖𝑑 · 𝑝𝑘 (y𝑝𝑖𝑑+ỹ𝑝𝑖𝑑 )
3+c𝑝𝑖𝑑

1

)A𝑝𝑖𝑑 [𝑅𝑣𝑖𝑑 ] · ℎy𝑝𝑖𝑑 ·B𝑝𝑖𝑑 [𝑅𝑣𝑖𝑑 ]

·
∏
𝑗∈[𝑛]

𝑝𝑘
𝑐𝑣𝑖𝑑,𝑗+𝑦3

𝑣𝑖𝑑

𝑗
= 𝑔𝑧𝑣𝑖𝑑 · ℎ𝑦𝑣𝑖𝑑 . (37)

Taking the discrete logarithm of both sides of this equation gives

𝑔[𝑅𝑣𝑖𝑑 ] +𝑤 · ℎ [𝑅𝑣𝑖𝑑 ] + 𝑠𝑘1 · 𝑝𝑘1 [𝑅𝑣𝑖𝑑 ] +
∑︁

𝑝𝑖𝑑∈[𝑄Prove ]
(z𝑝𝑖𝑑 + 𝑠𝑘1·

((y𝑝𝑖𝑑 + ỹ𝑝𝑖𝑑 )3 + c𝑝𝑖𝑑 )) · A𝑝𝑖𝑑 [𝑅𝑣𝑖𝑑 ] +𝑤 · y𝑝𝑖𝑑 · B𝑝𝑖𝑑 [𝑅𝑣𝑖𝑑 ]
+

∑︁
𝑗∈[𝑛]

𝑠𝑘 𝑗 · (𝑐𝑣𝑖𝑑,𝑗 + 𝑦3

𝑣𝑖𝑑
) = 𝑧𝑣𝑖𝑑 +𝑤 · 𝑦𝑣𝑖𝑑 . (38)

Note that R4 can compute 𝑠𝑘 𝑗 for all 1 < 𝑗 ≤ 𝑛 such that

𝑝𝑘 𝑗 = 𝑔
𝑠𝑘 𝑗

, because the representation of 𝑝𝑘 𝑗 only contains group

elements with known discrete logarithm to the base 𝑔. More specif-

ically, the only group element with unknown discrete logarithm

is 𝑝𝑘
1
, and due to the changes made in Game2, we know that

there is no 𝑝𝑘
1
component in the representation of any 𝑝𝑘 𝑗 . Addi-

tionally, from Game8, we know that there exists a successful veri-

fier session vid∗ satisfying Equation (36). It follows that 𝑠𝑘1 = 𝑁
𝐷
,

where 𝑁 ≔ 𝑔[𝑅vid∗ ] + 𝑤 · (ℎ [𝑅vid∗ ] − 𝑦vid∗ ) +
∑
𝑝𝑖𝑑∈[𝑄Prove ] z𝑝𝑖𝑑 ·

A𝑝𝑖𝑑 [𝑅vid∗ ]
+ 𝑤 · y𝑝𝑖𝑑 · B𝑝𝑖𝑑 [𝑅vid∗ ] +

∑𝑛
𝑗=2

𝑠𝑘 𝑗 · (𝑐vid∗, 𝑗 + 𝑦3

vid∗ ) −
𝑧vid∗ , 𝐷 ≔ −𝑝𝑘

1 [𝑅vid∗ ] −
∑
𝑝𝑖𝑑∈[𝑄Prove ] ((y𝑝𝑖𝑑 + ỹ𝑝𝑖𝑑 )3 + c𝑝𝑖𝑑 ) ·

A𝑝𝑖𝑑 [𝑅vid∗ ]
−𝑐vid∗,1−𝑦3

vid∗ . PerGame4, we have𝑦vid∗ =
∑
𝑝𝑖𝑑∈[𝑄Prove ]

B𝑝𝑖𝑑 [𝑅vid∗ ]
· y𝑝𝑖𝑑 + ℎ [𝑅vid∗ ] . By substituting 𝑦vid∗ for

∑
𝑝𝑖𝑑∈[𝑄Prove ]

B𝑝𝑖𝑑 [𝑅vid∗ ]
· y𝑝𝑖𝑑 + ℎ [𝑅vid∗ ] in Equation 36, we obtain the equation

𝐷 ≠ 0, and thus, R4 can compute 𝑠𝑘1 and win Game dlog from

session vid∗. □

E Proofs for BM_SB
E.1 Blindness

Proof. Let A be an adversary playing Game mBlind against

BM_SB. Let the transcripts of the two executions be𝑇0 ≔ {𝑇0,1, . . . ,

𝑇0,𝑛} and 𝑇1 ≔ {𝑇1,1, . . . ,𝑇1,𝑛}, where 𝑇𝑖, 𝑗 = (𝐴𝑖, 𝑗 , 𝐵𝑖, 𝑗 , 𝑐𝑖, 𝑗 , {𝑐𝑜𝑚𝑖,𝑘
}𝑘∈[𝑛] , 𝑦𝑖, 𝑗 , 𝑏𝑖, 𝑗 , {𝑏𝑖,𝑘 , 𝑦𝑖,𝑘 }𝑘∈[𝑛] , 𝑧𝑖, 𝑗 ) for 𝑖 ∈ {0, 1} and 𝑗 ∈ [𝑛],
and let (𝑚0, 𝜎0 = (𝑅0, 𝑦0

, 𝑧0)) and (𝑚1, 𝜎1 = (𝑅1, 𝑦1
, 𝑧1)) be the

message-signature pairs. Define 𝑉𝑖,𝑘 (A) ≔ (𝑇𝑖 ,𝑚𝑘 , 𝜎𝑘 ) for 𝑖, 𝑘 ∈
{0, 1}.

First, we show that, for all 𝑖, 𝑘 ∈ {0, 1}, 𝑉𝑖,𝑘 (A) determines a

valid user state ust ≔ (𝑟𝑖,𝑘 , 𝛼𝑖,𝑘 , 𝛽𝑖,𝑘,1, . . . , 𝛽𝑖,𝑘,𝑛). 10 We construct

10
Note that the user state is determined via the tuple ust because all other values on

the user side are fixed (given the transcripts and the message-signature pair).
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a user state ust𝑖,𝑘 by defining the blinding factors

𝛼𝑖,𝑘 =
𝑦𝑘∑

𝑗∈[𝑛] 𝑦𝑖, 𝑗
, (39)

𝑟𝑖,𝑘 = 𝑧𝑘 − 𝛼3

𝑖,𝑘
·

∑︁
𝑗∈[𝑛]

𝑧𝑖, 𝑗 − 𝛼𝑖,𝑘 ·
∑︁
𝑗∈[𝑛]

𝑏𝑖, 𝑗 , (40)

𝛽𝑖,𝑘,𝑗 = 𝑐𝑖, 𝑗 − Hsig ( ®𝐾𝑘 , 𝑝𝑘𝑘,𝑗 ,𝑚𝑘 , 𝑅𝑘 ) · 𝛼−3

𝑖,𝑘
. (41)

Next, we show that these values are uniformly distributed in

Z𝑞 (before A gets access to𝑚𝑘 , 𝜎𝑘 ). The uniformity of 𝛼𝑖,𝑘 follows

from the uniformity of 𝑦𝑘 , which is computed by the experiment as

𝑦𝑘 = 𝛼𝑘 ·
∑
𝑗∈[𝑛] 𝑦𝑘,𝑗 , where 𝛼𝑘 is the real blinding factor used by

the experiment in the 𝑘-𝑡ℎ user session. Similarly, the uniformity

of 𝑟𝑖,𝑘 follows from the uniformity of 𝑧𝑘 , which is computed by

the experiment as 𝑧𝑘 = 𝑟𝑘 + 𝛼3

𝑘
· 𝑧𝑘 + 𝛼𝑘 · 𝑏𝑘 , and 𝑟𝑘 is chosen

uniformly at random. Finally, 𝛽𝑖,𝑘,𝑗 is uniformly distributed as long

as A does not query Hsig on ( ®𝐾𝑘 , 𝑝𝑘𝑘,𝑗 ,𝑚𝑘 , 𝑅𝑘 ). Since 𝑅𝑘 = 𝑔𝑟𝑘 ·∑
𝑗 𝑝𝑘

𝛼3

𝑘
·𝛽𝑘,𝑗

𝑗
· 𝐴𝛼

3

𝑖,𝑘 · 𝐵𝛼𝑘 is computed by the experiment, and thus,

it is uniformly random due to the uniformity of the real blinding

factor 𝑟𝑘 , the probability that A queries Hsig on 𝑅𝑘 is at most
𝑄𝐻

𝑞 ,

where 𝑄𝐻 is the number of hash queries A makes to Hsig.

Finally, we show that such a user state ust defines a valid signa-

ture (𝑅𝑘 , 𝑦𝑘 , 𝑧𝑘 ) and hashes 𝑐𝑘,1, . . . , 𝑐𝑘,𝑛 such that

𝑅𝑘 ·
∏
𝑗∈[𝑛]

𝑝𝑘
𝑐𝑘,𝑗+𝑦3

𝑘

𝑗
= 𝑔𝑧𝑘 · ℎ𝑦𝑘 ,

for all 𝑖, 𝑘 ∈ {0, 1}. We assume A closes both signing sessions

successfully, otherwise, the game outputs (⊥,⊥), and in this case,

A’s advantage is in winning the game is 0. This implies that both

transcripts 𝑇1, and 𝑇2 are valid.

Since the 𝑘-𝑡ℎ user session outputs a valid signature (𝑅𝑘 , 𝑦𝑘 , 𝑧𝑘 )
and hashes 𝑐𝑘,𝑗 for all 𝑗 ∈ [𝑛], it holds that

𝑅𝑘 ·
∏
𝑗∈[𝑛]

𝑝𝑘
𝑐𝑘,𝑗+𝑦3

𝑘

𝑗
= 𝑔𝑧𝑘 · ℎ𝑦𝑘 ,

hence

𝑅𝑘 = 𝑔𝑧𝑘 · ℎ𝑦𝑘 ·
∏
𝑗∈[𝑛]

𝑝𝑘
−𝑐𝑘,𝑗−𝑦3

𝑘

𝑗
.

Substituting Equations (39)–(41) into this equation yields

𝑅𝑘 = 𝑔
𝑟𝑖,𝑘+𝛼3

𝑖,𝑘
·∑𝑗 ∈ [𝑛] 𝑧𝑖,𝑗+𝛼𝑖,𝑘 ·

∑
𝑗 ∈ [𝑛] 𝑏𝑖,𝑗 · ℎ𝛼𝑖,𝑘 ·

∑
𝑗 ∈ [𝑛] 𝑦𝑖,𝑗

·
∏
𝑗∈[𝑛]

𝑝𝑘
−(𝑐𝑖,𝑗−𝛽𝑖,𝑘,𝑗 ) ·𝛼3

𝑖,𝑘
−𝛼3

𝑖,𝑘
· (∑𝑗 ∈ [𝑛] 𝑦𝑖,𝑗 )3

𝑗
.

We rearrange the equation as

𝑅𝑘 = 𝑔𝑟𝑖,𝑘 · 𝑔𝛼
3

𝑖,𝑘
·∑𝑗 ∈ [𝑛] 𝑧𝑖,𝑗 ·

∏
𝑗∈[𝑛]

𝑝𝑘
𝛼3

𝑖,𝑘
· (−𝑐𝑖,𝑗−(

∑
𝑗 ∈ [𝑛] 𝑦𝑖,𝑗 )3 )

𝑗
·

𝑔𝛼𝑖,𝑘 ·
∑

𝑗 ∈ [𝑛] 𝑏𝑖,𝑗 · ℎ𝛼𝑖,𝑘 ·
∑

𝑗 ∈ [𝑛] 𝑦𝑖,𝑗 ·
∏
𝑗∈[𝑛]

𝑝𝑘
𝛼𝑖,𝑘 ·𝛽𝑖,𝑗,𝑘
𝑗

.

Since 𝑇𝑖 is a valid transcript for all 𝑖 ∈ {0, 1}, it follows that 𝐴𝑖 ·∏
𝑗∈[𝑛] 𝑝𝑘

𝑐 𝑗+(
∑

𝑗 ∈ [𝑛] 𝑦𝑖,𝑗 )3
𝑗

=
∏
𝑗∈[𝑛] 𝐴𝑖, 𝑗 · 𝑝𝑘

𝑐 𝑗+(
∑

𝑗 ∈ [𝑛] 𝑦𝑖,𝑗 )3
𝑗

= 𝑔𝑧𝑖 ,

and 𝐵𝑖 = 𝑔𝑏𝑖 · ℎ𝑦𝑖 , where 𝑏𝑖 =
∑
𝑗∈[𝑛] 𝑏𝑖, 𝑗 , 𝑦𝑖 =

∑
𝑗∈[𝑛] 𝑦𝑖, 𝑗 , 𝑧𝑖 =∑

𝑗∈[𝑛] 𝑧𝑖, 𝑗 . Consequently, we have

𝑅𝑘 = 𝑔𝑟𝑖,𝑘 · 𝐴
𝛼3

𝑖,𝑘

𝑖
· 𝐵𝛼𝑖,𝑘
𝑖
·

∏
𝑗∈[𝑛]

𝑝𝑘
𝛽𝑖,𝑗,𝑘 ·𝛼3

𝑖,𝑘

𝑗
.

It holds that (𝑅𝑘 , 𝑦𝑘 , 𝑧𝑘 ) = (𝑔𝑟𝑖,𝑘 ·𝐴
𝛼3

𝑖,𝑘

𝑖
·𝐵𝛼𝑖,𝑘
𝑖
·∏𝑗∈[𝑛] 𝑝𝑘

𝛽𝑖,𝑗,𝑘 ·𝛼3

𝑖,𝑘

𝑗
,

𝛼𝑖,𝑘 ·
∑
𝑗∈[𝑛] 𝑦𝑖, 𝑗 , 𝑟𝑖,𝑘 + 𝛼3

𝑖,𝑘
· ∑𝑗∈[𝑛] 𝑧𝑖, 𝑗 + 𝛼𝑖,𝑘 ·

∑
𝑗∈[𝑛] 𝑏𝑖, 𝑗 ), and

𝑐𝑘,𝑗 = Hsig ( ®𝐾𝑘 , 𝑝𝑘𝑘,𝑗 , 𝑔𝑟𝑖,𝑘 · 𝐴
𝛼3

𝑖,𝑘

𝑖
· 𝐵𝛼𝑖,𝑘
𝑖
·∏𝑗∈[𝑛] 𝑝𝑘

𝛽𝑖,𝑗,𝑘 ·𝛼3

𝑖,𝑘

𝑗
,𝑚𝑘 ),

which concludes the claim. □

E.2 One-More Unforgeability
We now give the proof of Theorem 10.

Proof outline. We prove one-more unforgeability following prior

work [28, 32]. BM_SB is built from a secure multi-ID scheme mID.
It remains to show that the OMMIM security of mID implies the

OMUF security of BM_SB. To this end, we provide a reduction R5

that exploits any algebraic forger A winning Game OMUF against

our BM_SB scheme to win Game OMMIM against mID. However,
for R5 to function properly, it requires a few conditions to hold;

therefore, we first prove that these restrictions indeed hold. In

particular, we start by showing that A must make (at least) an Hsig-

query for each valid signature it outputs. As A is algebraic, it must

submit a representation for each group element in its queries toHsig.

This allows R5 to learn the representation for each group element

𝑅 that occurs in the forgeries output by A. We then show that a

specific relation must hold between the forgeries A outputs and the

representation of 𝑅 that A submits in the corresponding query to

Hsig. Finally, we provide the reduction R5 that runs GameOMMIM
against mID and uses its challenger’s prover and verifier oracles

to simulate the signers and the random oracle Hsig, respectively,

for A. When A terminates and outputs ℓ + 1 valid signatures, R5

crafts responses to close the verifier sessions using those signatures,

which allows it to win the game OMMIM.

Proof. Since we provide proofs in the AGM, we assume that

all adversaries A are algebraic, i.e., A outputs a representation for

each group element it outputs. We use the notation 𝑜1 [𝑜2 ] to denote
the exponent of 𝑜1 in the representation of 𝑜2. For simplicity and

compactness, we often transform the representations submitted

by A to a reduced form [32, 33]. Given a basis ®𝐼 = (𝑜1, . . . , 𝑜𝑡 ),
a group element 𝑜′ ∈ ®𝐼 and an arbitrary group element 𝑜′′, we
denote 𝑜′ [𝑜 ′′ ] ®𝐼 as the exponent of 𝑜

′
in the representation of 𝑜′′

after reducing the representation of 𝑜′′ to the basis ®𝐼 .
We start by defining a series of games:

Game0. This game is the OMUF game against BM_SB.
Let BAD6 be the event that occurs if A outputs a valid signature

(𝑅,𝑦, 𝑧) under a set of public keys ®𝐾 = {𝑝𝑘
1
, . . . , 𝑝𝑘𝑛} such that no

entry ( ®𝐾, 𝑝𝑘𝑘 , 𝑅,𝑚) in the hash table Tsig of Hsig for any 𝑘 ∈ [𝑛]
and any message𝑚

Game1. This game is identical to Game0, except that it aborts

and outputs 0 if BAD6 occurs.

Claim 9. Pr[BAD6] ≤ negl(𝜆).
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Proof. We assume w.l.o.g. that A only outputs ℓ + 1 signatures.

From the verification equation, we know that a signature (𝑅,𝑦, 𝑧)
for a message𝑚 under a vector of public keys ®𝐾 = (𝑝𝑘

1
, . . . , 𝑝𝑘𝑛) is

valid iff 𝑔𝑧 · ℎ𝑦 = 𝑅 ·∏𝑖∈[𝑛] 𝑝𝑘
𝑐𝑖+𝑦3

𝑖
, where 𝑐𝑖 = Hsig ( ®𝐾, 𝑝𝑘𝑖 , 𝑅,𝑚).

Thus, outputting a valid signature without queryingHsig previously

on the input ( ®𝐾, 𝑝𝑘𝑖 , 𝑅,𝑚) is equivalent to guessing the output of

Hsig on this input. As Hsig’s output is uniformly random on new

inputs, the probability that A outputs a valid signature without

querying Hsig beforehand on ( ®𝐾, 𝑝𝑘𝑖 , 𝑅,𝑚) for all 𝑖 ∈ [𝑛] is at most

1

𝑞𝑛 because it must guess 𝑛 independent random values 𝑐𝑖 . Since A
outputs ℓ + 1 signatures, the probability that it did not make a hash

query for at least a valid signature is
ℓ+1
𝑞𝑛 . □

Per this claim, we have that AdvGame1

A ≥ AdvGame0

A − negl(𝜆);
therefore, we assume that A wins Game1 and BAD6 does not occur.

Define the event BAD7 that occurs if A outputs a valid signature

(𝑅,𝑦, 𝑧) under a set of public keys ®𝐾 = {𝑝𝑘
1
, . . . , 𝑝𝑘𝑛}, and there is

𝑖 ∈ [𝑛] such that the representation of 𝑝𝑘𝑖 contains anℎ component.

Game2. This game is identical to Game1, except that it aborts

and outputs 0 if BAD7 occurs.

Claim 10. Pr[BAD7] ≤ AdvdlogR6

.

Proof. We construct a reduction R6 that takes a dlog challenge

𝑈 as input, embeds𝑈 inℎ, and simulates the signer’s oracles exactly

as described by the protocol. When A outputs ®𝐾 = {𝑝𝑘
1
, . . . , 𝑝𝑘𝑛},

and there exists 𝑖 ∈ [𝑛], such that the representation of 𝑝𝑘𝑖 contains
an ℎ component or 𝐵

1,sid component for some signing session sid

(recall that𝐵
1,sid = 𝑔𝑏1,sid ·ℎ𝑦1,sid ). Knowing that 𝑝𝑘𝑖 = 𝑔

𝑔 [𝑝𝑘𝑖 ]
®𝐼

·ℎℎ [𝑝𝑘𝑖 ]®𝐼
(note that R6 knows the discrete logarithms of all group elements

that A may use in the representation of 𝑝𝑘𝑖 except ℎ, therefore,

it can aggregate all non-ℎ components as a single 𝑔 component

and reduce the representation to the basis 𝐼 = (𝑔, ℎ)), and hence

𝑠𝑘𝑖 = 𝑔[𝑝𝑘𝑖 ] ®𝐼 + dlog𝑔ℎ · ℎ [𝑝𝑘𝑖 ] ®𝐼 , R6 computes and outputs

dlog𝑔𝑈 = dlog𝑔ℎ =
𝑠𝑘𝑖 − 𝑔[𝑝𝑘𝑖 ] ®𝐼
ℎ [𝑝𝑘𝑖 ] ®𝐼

.

This completes the proof. □

It follows that AdvGame2

A ≥ AdvGame1

A − AdvdlogR6

. Thus, we as-

sume that A wins this game and that BAD7 does not occur.

Next, we define the event BAD8 that occurs if A outputs a valid

signature (𝑅,𝑦, 𝑧) under a set of public keys ®𝐾 = {𝑝𝑘
1
, . . . , 𝑝𝑘𝑛}

with a corresponding Hsig query ( ®𝐾, 𝑝𝑘𝑘 , 𝑅,𝑚) for some 𝑘 ∈ [𝑛]
and some message 𝑚, and the equation ℎ [𝑅 ] ®𝐼

+ ∑𝑛
𝑘=1
(𝑐𝑘 + 𝑦3 +

𝑝𝑘𝑘 [𝑅 ] ) · ℎ [𝑝𝑘𝑘 ] ®𝐼 − 𝑦 ≠ 0 holds, where 𝐼 = (𝑔, ℎ).

Game3. This game is identical to Game2, but it aborts and out-

puts 0 if BAD8 occurs.

Claim 11. Pr[BAD8] ≤ AdvdlogR7

.

Proof. We show that winningGame2 while the equationℎ [𝑅 ] ®𝐼
+∑𝑛

𝑘=1
(𝑐𝑘 +𝑦3+𝑝𝑘𝑘 [𝑅 ] ) ·ℎ [𝑝𝑘𝑘 ] ®𝐼 −𝑦 ≠ 0 holds is hard under the dlog

problem. We provide a reduction R7 that given a discrete logarithm

challenge 𝑈 , sets ℎ = 𝑈 and samples the other variables in pp and

simulates the (honest) signers oracles exactly as described by the

signing protocol:

• Sign1: increment the session identifier sid (initially, sid = 0),

sample randomly 𝑐𝑜𝑚
1,sid, 𝑧1,sid, 𝑢1,sid, 𝑢2,sid ← Z𝑞 , com-

pute 𝐴
1,sid ≔ 𝑔𝑧1,sid · 𝑝𝑘−𝑢1,sid

1
, 𝐵

1,sid ≔ 𝑔𝑢2,sid , and return

𝐴
1,sid, 𝐵1,sid, 𝑐𝑜𝑚1,𝑖 .

• Sign2(sid, 𝑐1,sid, {𝑐𝑜𝑚𝑖 }𝑖∈[𝑛] ): If there is 𝑐𝑜𝑚𝑖 for 𝑖 ∈ [𝑛]
with Tcom [𝑐𝑜𝑚𝑖 ] = ⊥, sample a random 𝑦𝑖 ← Z𝑞 and set

Tcom [𝑐𝑜𝑚𝑖 ] = 𝑦𝑖 . Extract 𝑦𝑖 ≔ Tcom [𝑐𝑜𝑚𝑖 ] for all 𝑖 ∈ [𝑛],
compute ỹ ≔

∑𝑛
𝑖=2

𝑦𝑖 , compute 𝑦
1,sid ≔ (𝑢

1,sid − 𝑐1,sid −
ỹ)1/3, 𝑏

1,sid ≔ 𝑢
2,sid − 𝑦1,sid · dlog𝑔ℎ, set Tcom [𝑦1,sid] =

𝑐𝑜𝑚
1,sid, and return 𝑦

1,sid, 𝑏1,sid.

• Sign3(sid): return 𝑧1sid.

• Hsig(Q): via lazy sampling. Return Tsig [𝑄] if Tsig [𝑄] ≠ ⊥;
otherwise, sample 𝜉 uniformly at random, set Tsig [𝑄] = 𝜉 ,
and return 𝜉 .

• Hcom(Q): via lazy sampling. Return Tcom [𝑄] if Tcom [𝑄] ≠ ⊥;
otherwise, sample 𝜉 uniformly at random, set Tcom [𝑄] = 𝜉 ,
and return 𝜉 .

Assume A outputs a valid signature (𝑅,𝑦, 𝑧) for a message𝑚 with

a corresponding hash query ( ®𝐾, 𝑝𝑘𝑘 , 𝑅,𝑚) for some 𝑘 ∈ [𝑛] (due
to Game1 there is at least one such a query) under a set of public

keys ®𝐾 = {𝑝𝑘
1
, . . . , 𝑝𝑘𝑛}. It follows that

𝑔𝑧 · ℎ𝑦 = 𝑅 ·
𝑛∏
𝑘=1

𝑝𝑘
𝑐𝑘+𝑦3

𝑘
. (42)

Using the representation of 𝑅 that A submits to Hsig, we write

𝑅 = 𝑔
𝑔 [𝑅 ] ·ℎℎ [𝑅 ] ·

𝑛∏
𝑖=1

𝑝𝑘
𝑝𝑘𝑖 [𝑅 ]
𝑖

·
∏

sid∈[𝑄𝑆 ]
𝐴
𝐴sid [𝑅 ]
sid ·𝐵

𝐵sid [𝑅 ]
sid ·

𝜈∏
𝑗=1

ℎ
ℎ 𝑗 [𝑅 ]
𝑗

.

(43)

Combining both equations yields

𝑔𝑧 · ℎ𝑦 = 𝑔
𝑔 [𝑅 ] · ℎℎ [𝑅 ] ·

∏
sid∈[𝑄𝑆 ]

𝐴
𝐴sid [𝑅 ]
sid

·𝐵
𝐵sid [𝑅 ]
sid ·

𝜈∏
𝑗=1

ℎ
ℎ 𝑗 [𝑅 ]
𝑗

·
𝑛∏
𝑖=1

𝑝𝑘
𝑐𝑖+𝑦3+𝑝𝑘𝑖 [𝑅 ]
𝑖

. (44)

Given the Signer’s internal view of 𝐴sid and 𝐵sid, we have

𝑔𝑧 · ℎ𝑦 = 𝑔
𝑔 [𝑅 ] · ℎℎ [𝑅 ] ·

∏
sid∈[𝑄𝑆 ]

𝑔
𝑎sid ·𝐴sid [𝑅 ] · (𝑔𝑏sid · ℎ𝑦sid )𝐵sid [𝑅 ]

·
𝑛∏
𝑖=1

𝑝𝑘
𝑐𝑖+𝑦3+𝑝𝑘𝑖 [𝑅 ]
𝑖

. (45)

By taking the discrete logarithm of both sides we get

𝑧 +𝑤 · 𝑦 = 𝑔[𝑅 ] +𝑤 · ℎ [𝑅 ] +
∑︁

sid∈[𝑄Sign ]
𝑎sid · 𝐴sid [𝑅 ] + 𝐵sid [𝑅 ] ·

(𝑏sid

+𝑤 · 𝑦sid) +
𝑛∑︁
𝑘=1

(𝑐𝑘 + 𝑦3 + 𝑝𝑘𝑘 [𝑅 ] ) · (𝑔[𝑝𝑘𝑘 ] ®𝐼 +𝑤 · ℎ [𝑝𝑘𝑘 ] ®𝐼 ),
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where 𝐼 = (𝑔, ℎ). We aggregate the exponents in 𝑅’s representa-

tion of the basis of known discrete logarithms as 𝑔[𝑅 ] ®𝐼
, and all ℎ

components of 𝑅 as ℎ [𝑅 ] ®𝐼

𝑧 +𝑤 · 𝑦 = 𝑔[𝑅 ] ®𝐼
+𝑤 · ℎ [𝑅 ] ®𝐼

+
𝑛∑︁
𝑘=1

(𝑐𝑘 + 𝑦3 + 𝑝𝑘𝑘 [𝑅 ] ) · (𝑔[𝑝𝑘𝑘 ] ®𝐼 +𝑤 · ℎ [𝑝𝑘𝑘 ] ®𝐼 ) .

Then, R7 can compute 𝑤 = dlog𝑔ℎ = dlog𝑔𝑈 by rearranging the

equation as

𝑤 =
𝑧 − 𝑔[𝑅 ] ®𝐼 −

∑𝑛
𝑘=1
(𝑐𝑘 + 𝑦3 + 𝑝𝑘𝑘 [𝑅 ] ) · 𝑔[𝑝𝑘𝑘 ] ®𝐼

ℎ [𝑅 ] ®𝐼
+∑𝑛

𝑘=1
(𝑐𝑘 + 𝑦3 + 𝑝𝑘𝑘 [𝑅 ] ) · ℎ [𝑝𝑘𝑘 ] ®𝐼 − 𝑦

, (46)

if the denominator is non-zero, hence the claim. □

Per this claim, it holds that AdvGame3

A ≥ AdvGame2

A − AdvdlogR7

,

and thus, we assume in the following that A wins Game3 and that

BAD8 does not occur.

Next, we define the eventBAD9, which occurs ifA outputs a valid

signature (𝑅,𝑦, 𝑧) under a set of public keys ®𝐾 = {𝑝𝑘
1
, . . . , 𝑝𝑘𝑛}

with a corresponding Hsig query ( ®𝐾, 𝑝𝑘𝑘 , 𝑅,𝑚) for some 𝑘 ∈ [𝑛]
and some message𝑚, and ℎ [𝑅 ] ®𝐼

≠ 𝑦, where ®𝐼 = (𝑔, ℎ).

Game4. This game is identical to Game3, except that it aborts

and outputs 0 if BAD9 occurs.

Claim 12. Pr[BAD9] = 0.

Proof. Due to Game2, we have that for all public keys of the

corrupted signers 𝑝𝑘𝑘 for 2 ≤ 𝑘 ≤ 𝑛, it must hold that ℎ [𝑝𝑘𝑘 ] ®𝐼 = 0.

Furthermore, we know that the honestly-computed public key 𝑝𝑘
1

has no ℎ component, i.e., ℎ [𝑝𝑘
1
] ®𝐼 = 0. It follows that

∑𝑛
𝑘=1
(𝑐𝑘 +𝑦3 +

𝑝𝑘𝑘 [𝑅 ] ) · ℎ [𝑝𝑘𝑘 ] ®𝐼 = 0. Since per Game3, ℎ [𝑅 ] ®𝐼
+ ∑𝑛

𝑘=1
(𝑐𝑘 + 𝑦3 +

𝑝𝑘𝑘 [𝑅 ] ) · ℎ [𝑝𝑘𝑘 ] ®𝐼 − 𝑦 = 0 holds, it follows that ℎ [𝑅 ] ®𝐼
= 𝑦. □

It follows that AdvGame4

A = AdvGame3

A and A must win this

Game4, which rules out Event BAD9.

Reducing ℓ-OMMIM to Game4. We describe now our reduction

R1 that runs Game ℓ-OMMIM against mID with access to the ora-

cles Prove = (Prove1, Prove2, Prove3) and Ver = (Ver1,Ver2,Ver3),
and aims to close ℓ + 1 verifier sessions successfully.

Initially, R1 receives public parameter pp = (G, 𝑞, 𝑔, ℎ) from the

challenger and initializes an instance of Game4 over pp.
Next, R1 runs A on Game4 and ensures that (i) it simulates the

game for A perfectly, and (ii) it wins Game ℓ-OMMIM by simulat-

ing 𝑛 provers; the honest prover of the public key 𝑝𝑘
1
and 𝑛 − 1

corrupted provers (it uses the same public keys A uses to simulates

the corrupted signers).

When A queries the honest signer oracles, or the random oracles

Hcom and Hsig, R1 perfectly simulates these oracles as follows:

• Sign1 (): generate sid, 𝐴1,sid, 𝐵1,sid ← Prove1 (), sample 𝑐𝑜𝑚
1,sid ←

Z𝑞 , and return sid, 𝐴
1,sid, 𝐵1,sid, 𝑐𝑜𝑚1,sid.

• Sign2 (sid, 𝑐1,sid, {𝑐𝑜𝑚𝑖,sid}𝑖∈[𝑛] ): extract ˜bi,sid and ˜yi,sid from

Tcom using 𝑐𝑜𝑚𝑖,sid, compute ˜Bi,sid = 𝑔
˜bi,sid · ℎ ˜yi,sid , make

Prove2 (sid, 𝑐1,sid, { ˜Bi,sid}𝑖∈[𝑛] ) query to obtain 𝑏
1,sid, 𝑦1,sid,

set Tcom [1, 𝑏1,sid, 𝑦1,sid] = 𝑐𝑜𝑚1,sid, and return 𝑦
1,sid, 𝑏1,sid.

• Sign3 (sid, {𝑏𝑖,sid, 𝑦𝑖,sid}𝑖∈[𝑛] ): check and abort if there is a

pair (𝑏𝑖,sid, 𝑦𝑖,sid) such that 𝑐𝑜𝑚𝑖,sid ≠ Hcom (𝑖, 𝑏𝑖,sid, 𝑦𝑖,sid)
or 𝐵𝑖,sid ≠ 𝑔𝑏𝑖,sid · ℎ𝑦𝑖,sid . Generate and return 𝑧

1,sid = Prove3

(sid, {𝑏𝑖 , 𝑦𝑖 }𝑖∈[𝑛] ).
• Hsig(Q): via lazy sampling. Return Tsig [𝑄] if Tsig [𝑄] ≠ ⊥;
otherwise, parse 𝑄 as ( ®𝐾, 𝑝𝑘𝜅 , 𝑅,𝑚). If 𝑝𝑘𝜅 ∉ ®𝐾 (this im-

plicitly asserts 𝜅 ∈ [𝑛]), sample 𝑐 ← Z𝑞 , store Tsig [𝑄] = 𝑐 ,
and return 𝑐 . Otherwise, using the representation of 𝑅 A
submits, R1 splits 𝑅 into two group elements 𝐴∗

1
and 𝐵∗

1
,

where 𝐵∗
1
≔

∏
sid 𝐵

𝐵
1,sid [𝑅 ]

1,sid · ℎ ˆℎ, ˆℎ ≔ ℎ [𝑅 ] ®𝐼
− ∑

sid 𝐵sid [𝑅 ] ·
ℎ [𝐵sid ] , 𝐴

∗
1

≔ 𝑅/𝐵∗
1
, and sid is an index over all already

opened signing sessions.
11

Note that splitting 𝑅 this way

ensures that all ℎ components in 𝑅, i.e. ℎ [𝑅 ] ®𝐼
, are gathered

in 𝐵∗
1
, because the only group elements containing ℎ compo-

nents are 𝐵
1,sid for all sid, and ℎ itself. To see this, we note

that the group elements A has seen are 𝑔, ℎ, 𝑝𝑘𝑖 , 𝐴sid, 𝐵sid
for 𝑖 ∈ [𝑛] and opened signing sessions sid. Per Game2, 𝑝𝑘𝑖
does not contain ℎ components, and the other group ele-

ments are generated honestly by the experiment OMMIM.

It follows that ℎ [𝑅 ] ®𝐼
=

∑
sid ℎ [𝐵1,sid ] · 𝐵1,sid [𝑅 ] + ℎ [𝑅 ] . More-

over, per Game4, this ensures that 𝑦
∗
1
= ℎ [𝑅 ] ®𝐼

= 𝑦, where 𝑦

is the field element in the forgery A eventually outputs if it

decides to use 𝑅 in its forgeries. Next, sample uniformly at

random 𝑎∗
𝑘
, 𝑏∗
𝑘
← Z𝑞 and 𝑦∗

𝑘
← Z∗𝑞 for all 2 ≤ 𝑘 ≤ 𝑛, such

that,

∑𝑛
𝑘=2

𝑎∗
𝑘
= 0,

∑𝑛
𝑘=2

𝑏∗
𝑘
= 0, and

∑𝑛
𝑘=2

𝑦∗
𝑘
= 0. Generate

𝐴∗
𝑘
≔ 𝑔𝑎

∗
𝑘 , 𝐵∗

𝑘
≔ 𝑔𝑏

∗
𝑘 · ℎ𝑦

∗
𝑘 for all 2 ≤ 𝑘 ≤ 𝑛, and open 𝑛 Ver-

ifier sessions by calling Ver1 (𝐴∗𝑘 , 𝐵
∗
𝑘
) and obtain challenges

(𝑐𝑘 , {𝐵∗𝑗 } 𝑗∈[𝑛] ) for 𝑘 ∈ [𝑛].
Choosing the exponents with a zero-sum nullifies the effect

of 𝐴∗
𝑘
and 𝐵∗

𝑘
for all 2 ≤ 𝑘 < 𝑛 at the verifier side because

the multiplication of these group elements is the identity 1,

and this way, we can make Ver3 queries for those provers by

simply sending 𝑧𝑘 = 0. Finally, store these values for later

processing, set Tsig [( ®𝐾, 𝑝𝑘𝑖 , 𝑅,𝑚)] = 𝑐𝑖 , and return 𝑐𝜅 .

• Hcom(Q): via lazy sampling. Return Tcom [𝑄] if Tcom [𝑄] ≠ ⊥;
otherwise, sample uniform 𝜉 , set Tcom [𝑄] = 𝜉 , and return 𝜉 .

Closing the verifier sessions. When A terminates and outputs ℓ +1

valid signatures ®𝐹 = {(𝑅𝑖 , 𝑦𝑖 , 𝑧𝑖 )}𝑖∈[ℓ+1] , R1 does the following.

First, it makes a Prove2 query (using arbitrary syntactically correct

input) for all prover sessions sid that (i) were opened via Prove1

queries and no Prove2 queries were made for them, and (ii) there

exists a signature (𝑅,𝑦, 𝑧) ∈ ®𝐹 , such that, 𝑅 occurs in a hash query

𝑄 ∈ Tsig, and 𝐵sid [𝑅 ] ≠ 0. Making Prove2 queries for those sessions

grants A the openings for 𝐵
1,sid. For all 𝑗 ∈ [ℓ + 1], assume the

pair ((𝑅 𝑗 , 𝑦 𝑗 , 𝑧 𝑗 ),𝑚 𝑗 ) is a valid signature under the keys set ®𝐾𝑗 . It
follows perGame1 that there exists a hash query toHsig of the form

( ®𝐾𝑗 , 𝑝𝑘𝑘 , 𝑅 𝑗 ,𝑚 𝑗 ) with 𝑝𝑘𝑘 ∈ ®𝐾 , and thus, there is a verifier session

𝑣𝑖𝑑 𝑗 that was opened using (𝐴∗
1, 𝑗
, 𝐵∗

1, 𝑗
), . . . , (𝐴∗

𝑛,𝑗
, 𝐵∗
𝑛,𝑗
) with 𝑅 𝑗 =

11
Recall that Bsid denotes the group element 𝐵 generated by the OMMIM experiment

and was forwarded to A upon a Sign1 query to the honest signer’s oracle.
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𝐴∗
1, 𝑗
· 𝐵∗

1, 𝑗
. R1 needs to send the openings for 𝐵∗

𝑘
for all 𝑘 ∈ [𝑛]. R1

already knows the openings for 𝐵∗
2
, . . . , 𝐵∗𝑛 ; therefore, it can simply

make Ver2 queries with input (𝑏∗
2
, 𝑦∗

2
), . . . , (𝑏∗𝑛, 𝑦∗𝑛). It remains for

R1 to compute the opening for 𝐵∗
1
. It computes 𝑏∗

1
=

∑
sid 𝑏1,sid ·

𝐵
1,sid [𝑅 ] , and 𝑦

∗
1

=
∑
sid 𝑦1,sid · 𝐵1,sid [𝑅 ] + ˆℎ for all sid. Indeed,

𝐵∗
1
= 𝑔𝑏

∗
1 · ℎ𝑦∗1 because 𝐵∗

1
=

∏
sid 𝐵

𝐵
1,sid [𝑅 ]

1,sid · ℎ ˆℎ = 𝑔
∑

sid 𝑏sid ·𝐵1,sid [𝑅 ] ·

ℎ
∑

sid 𝑦sid ·𝐵1,sid [𝑅 ] ·ℎ ˆℎ = 𝑔
∑

sid 𝑏sid ·𝐵1,sid [𝑅 ] ·ℎ
∑

sid 𝑦sid ·𝐵1,sid [𝑅 ]+ ˆℎ
. Next, R1

makes a Ver2 query with input (𝑏∗
1
, 𝑦∗

1
), and receives 𝑛 responses of

the form {(𝑏∗
𝑘
, 𝑦∗
𝑘
)}𝑘∈[𝑛] (one response for every simulated prover),

which it can ignore.

Then, R1 generates 𝑧∗
𝑖, 𝑗

= 0 for all 2 ≤ 𝑖 ≤ 𝑛 and uses 𝑧∗
𝑖, 𝑗

to

make a Ver3 query for the corrupted provers. Finally, R1 closes

the verifier session 𝑣𝑖𝑑 𝑗 by making a Ver3 query impersonating

the honest prover by sending 𝑧∗
1, 𝑗

≔ 𝑧 𝑗 − 𝑏∗
1, 𝑗
. By repeating this

procedure for all 𝑗 ∈ [𝑛], A closes ℓ + 1 verifier sessions.

Winning Game ℓ-OMMIMmID. For each closed verifier session

𝑣𝑖𝑑 𝑗 , let 𝑅 𝑗 , 𝑦 𝑗 , 𝑧 𝑗 be the values 𝑅,𝑦, 𝑧 at the verifier side and ®𝐾 =

{𝑝𝑘
1, 𝑗 , . . . , 𝑝𝑘𝑛,𝑗 } the public keys for which the session verifies. We

show that the verification equation of 𝑣𝑖𝑑 𝑗 necessarily holds if the

forgery wins the game OMUF. In particular, the mID verification

equation implies 𝑔𝑧 𝑗 · ℎ𝑦 𝑗 = 𝑅 𝑗 ·
∏
𝑖∈[𝑛] 𝑝𝑘

𝑐𝑖,𝑗+𝑦 𝑗 3

𝑖, 𝑗
. This means

𝑔
∑𝑛

𝑖=1
𝑧∗𝑖,𝑗 · ℎ

∑𝑛
𝑖=1

𝑦∗𝑖,𝑗 =

𝑛∏
𝑖=1

𝐴∗𝑖, 𝑗 · ℎ
𝑦∗𝑖,𝑗 ·

𝑛∏
𝑖=1

𝑝𝑘
𝑐𝑖,𝑗+(

∑𝑛
𝑘=1

𝑦∗
𝑘,𝑗
)3

𝑖, 𝑗

⇔ 𝑔
𝑧∗

1, 𝑗 · 𝑔
∑𝑛

𝑖=2
𝑧∗𝑖,𝑗 · ℎ𝑦

∗
1, 𝑗 · ℎ

∑𝑛
𝑖=2

𝑦∗𝑖,𝑗 = 𝐴∗
1, 𝑗 · ℎ

𝑦∗
1, 𝑗

·
𝑛∏
𝑖=2

𝐴∗𝑖, 𝑗 · ℎ
𝑦∗𝑖,𝑗 ·

𝑛∏
𝑖=1

𝑝𝑘
𝑐𝑖,𝑗+(𝑦∗

1, 𝑗+
∑𝑛

𝑘=2
𝑦∗
𝑘,𝑗
)3

𝑖, 𝑗

⇔ 𝑔
𝑧∗

1, 𝑗 · ℎ𝑦
∗
1, 𝑗 = 𝐴∗

1, 𝑗 · ℎ
𝑦∗

1, 𝑗 ·
𝑛∏
𝑖=1

𝑝𝑘
𝑐𝑖,𝑗+𝑦∗3

1, 𝑗

𝑖, 𝑗

⇔ 𝑔𝑧 𝑗 · ℎ𝑦
∗
1, 𝑗 · 𝑔−𝑏

∗
1, 𝑗 = 𝐴∗

1, 𝑗 · ℎ
𝑦∗

1, 𝑗 ·
𝑛∏
𝑖=1

𝑝𝑘
𝑐𝑖,𝑗+𝑦∗3

1, 𝑗

𝑖, 𝑗

⇔ 𝑔𝑧 𝑗 · ℎ𝑦
∗
1, 𝑗 = 𝐴∗

1, 𝑗 · ℎ
𝑦∗

1, 𝑗 · 𝑔𝑏
∗
1, 𝑗 ·

𝑛∏
𝑖=1

𝑝𝑘
𝑐𝑖,𝑗+𝑦∗3

1, 𝑗

𝑖, 𝑗

Game4⇐⇒ 𝑔𝑧 𝑗 · ℎ𝑦 𝑗 = 𝑅 𝑗 ·
𝑛∏
𝑖=1

𝑝𝑘
𝑐𝑖,𝑗+𝑦3

𝑗

𝑖, 𝑗
| BM_SB Ver. Eq.

Since the forgeries are valid, it follows that the verification equation

of BM_SB holds. □
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R1

Prove1,Prove2,Prove3

ℓ-OMMIM,mID (pp):

((𝑚1, 𝜎1), . . . , (𝑚ℓ+1, 𝜎ℓ+1)) ← ASign1,Sign2,Sign3,Hcom,Hsig (pp)
For all 𝑣𝑖𝑑 :

𝑦∗
𝑣𝑖𝑑,1

≔
∑
𝑗∈[𝑛] 𝑦𝑝𝑖𝑑,𝑗 · 𝐵𝑝𝑖𝑑,1 [𝑅 ] · ℎ [𝑅 ]

𝑏∗
𝑣𝑖𝑑,1

≔
∑
𝑗∈[𝑛] 𝑏𝑝𝑖𝑑,1 · 𝐵𝑝𝑖𝑑,1 [𝑅 ]

For all 𝑖 ∈ [𝑛]:
{(𝑏𝑣𝑖𝑑,𝑘 , 𝑦𝑣𝑖𝑑,𝑘 )}𝑘∈[𝑛] ← Ver2 (𝑣𝑖𝑑, 𝑏∗𝑣𝑖𝑑,𝑖 , 𝑦

∗
𝑣𝑖𝑑,𝑖
)

For 𝑖 = 1, . . . , ℓ + 1 :

Parse 𝜎𝑖 as 𝑅𝑖 , 𝑦𝑖 , 𝑧𝑖

Determine 𝑣𝑖𝑑 by finding 𝑅𝑣𝑖𝑑 = 𝑅𝑖 in Tsig
𝑧∗
𝑣𝑖𝑑,1

≔ 𝑧𝑖 − 𝑏∗𝑣𝑖𝑑,1
𝑏 ← Ver3 (𝑣𝑖𝑑, 𝑧𝑣𝑖𝑑,1)
For 𝑗 = 2, . . . , 𝑛:

𝑧𝑣𝑖𝑑,𝑗 ≔ 0

𝑏 ← Ver3 (𝑣𝑖𝑑, 𝑧𝑣𝑖𝑑,𝑗 )

Oracle Sign1 (⊥):
(sid, 𝐴sid,1, 𝐵sid,1) ← Prove1 (⊥)
𝑐𝑜𝑚sid,1 ← Z𝑞
Return (sid, 𝐴sid,1, 𝐵sid,1, 𝑐𝑜𝑚sid,1)

Oracle Sign2 (sid, 𝑐sid,1, {𝑐𝑜𝑚sid,𝑘 , 𝐵sid,𝑘 }𝑘∈[𝑛] ):
For all 𝑘 ∈ [𝑛] :

Extract 𝑘sid, 𝑏sid,𝑘 , 𝑦sid,𝑘 from Tcom
𝐵sid,𝑘 ≔ 𝑔𝑏sid,𝑘 · ℎ𝑦sid,𝑘
(𝑏sid,1, 𝑦sid,1) ← Prove2 (sid, 𝑐sid,1, {𝐵sid,𝑘 }𝑘∈[𝑛] )
Tcom [(1sid, 𝑏sid,1, 𝑦sid,1)] ≔ 𝑐𝑜𝑚sid,1
Return (𝑏sid,1, 𝑦sid,1)

Oracle Sign3 (sid, {𝑏sid,𝑘 , 𝑦sid,𝑘 }𝑘∈[𝑛] ):
If ∃𝑘 ∈ [𝑛] : 𝑐𝑜𝑚sid,𝑘 ≠ Hcom (𝑘sid, 𝑏sid,𝑘 , 𝑦sid,𝑘 )
∨ 𝐵sid,𝑘 ≠ 𝑔𝑏sid,𝑘 · ℎ𝑦sid,𝑘 :
Abort

𝑧sid,1 ← Prove3 (𝑝𝑖𝑑, {𝑏sid,𝑘 , 𝑦sid,𝑘 })𝑘∈[𝑛]
Return 𝑧sid,1

Oracle Hcom (𝑄):
If Tcom [𝑄] ≠ ⊥ :

Return Tcom [𝑄]
𝜉 ← Z𝑞
Tcom [𝑄] ≔ 𝜉

Return 𝜉

Oracle Hsig (𝑄):
If Tsig [𝑄] ≠ ⊥ : Return Tsig [𝑄]
Parse 𝑄 as ®𝐾𝑣𝑖𝑑 , 𝑝𝑘𝑣𝑖𝑑,𝜅 , 𝑅𝑣𝑖𝑑 ,𝑚𝑣𝑖𝑑
If 𝑝𝑘𝑣𝑖𝑑,𝜅 ∉ ®𝐾𝑣𝑖𝑑 :

𝑐 ← Z𝑞
Tsig [𝑄] ≔ 𝑐

Return c

𝐵∗
𝑣𝑖𝑑,1

≔
∏
𝑝𝑖𝑑∈𝑄Sign 𝐵

𝐵𝑝𝑖𝑑,1 [𝑅𝑣𝑖𝑑 ]
𝑝𝑖𝑑,1

· ℎ [𝑅𝑣𝑖𝑑 ]

𝐴∗
𝑣𝑖𝑑,1

≔
𝑅𝑣𝑖𝑑

𝐵∗
𝑣𝑖𝑑,1

For 𝑖 = 2, . . . , 𝑛 − 1 :

𝑦𝑣𝑖𝑑,𝑖 , 𝑎𝑣𝑖𝑑,𝑖 , 𝑏𝑣𝑖𝑑,𝑖 ← Z𝑞
𝑦∗
𝑣𝑖𝑑,𝑛

≔ −∑
2≤𝑖≤𝑛−1

𝑦𝑣𝑖𝑑,𝑖

𝑎∗
𝑣𝑖𝑑,𝑛

≔ −∑
2≤𝑖≤𝑛−1

𝑎𝑣𝑖𝑑,𝑖

𝑏∗
𝑣𝑖𝑑,𝑛

≔ −∑
2≤𝑖≤𝑛−1

𝑏𝑣𝑖𝑑,𝑖
For 𝑖 = 2, . . . , 𝑛 :

𝐴∗
𝑣𝑖𝑑,𝑖

≔ 𝑔
𝑎∗
𝑣𝑖𝑑,𝑖 , 𝐵∗

𝑣𝑖𝑑,𝑖
≔ 𝑔

𝑏∗
𝑣𝑖𝑑,𝑖 · ℎ𝑦

∗
𝑣𝑖𝑑,𝑖

(𝑐𝑣𝑖𝑑,𝑖 , {𝐵𝑣𝑖𝑑,𝑘 }𝑘∈[𝑛] ) ← Ver1 (𝑖, 𝐴∗𝑣𝑖𝑑,𝑖 , 𝐵
∗
𝑣𝑖𝑑,𝑖
)

For all 𝑖 ∈ [𝑛]: Tsig [( ®𝐾𝑣𝑖𝑑 , 𝑝𝑘𝑣𝑖𝑑,𝑖 , 𝑅𝑣𝑖𝑑 ,𝑚𝑣𝑖𝑑 )] ≔ 𝑐𝑣𝑖𝑑,𝑖
Return 𝑐𝑣𝑖𝑑,𝜅

Figure 6: Reduction R1, which reduces Game4 to Game ℓ-OMMIM against mID.
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