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Abstract. Digital signature is a fundamental cryptographic primitive
and is widely used in the real world. Unfortunately, the current digital
signature standards like EC-DSA and RSA are not quantum-resistant.
Among post-quantum cryptography (PQC), isogeny-based signatures pre-
serve some advantages of elliptic curve cryptosystems, particularly offer-
ing small signature sizes. Currently, SQIsign and its variants are the most
promising isogeny-based digital signature schemes.
In this paper, we propose a new structure for the SQIsign family: Pentagon
Isogeny-based Signature in High Dimension (referred to as Π-signHD).
The new structure separates the hash of the commitment and that of
the message by employing two cryptographic hash functions. This fea-
ture is desirable in reality, particularly for applications based on mobile
low-power devices or for those deployed interactively over the Internet
or in the cloud computing setting. This structure can be generally ap-
plicable to all the variants of SQIsign. In this work, we focus on the
instance based on SQIsignHD, proposed by Dartois, Leroux, Robert and
Wesolowski (Eurocrypt 2024). Compared with SQIsignHD, Π-signHD
has the same signature size (even smaller for some application scenar-
ios). For the NIST-I security level, the signature size of Π-signHD can
be reduced to 519 bits, while the SQIsignHD signature takes 870 bits.
Additionally, Π-signHD has an efficient online signing process, and en-
joys much desirable application flexibility. In our experiments, the online
signing process of Π-signHD runs in 4 ms.

Keywords: Digital signatures · SQIsign · SQIsignHD · Isogeny ·
Γ -protocol.

1 Introduction

Isogeny-based cryptography is attractive for its compact keys in post-quantum
cryptography, but the expensive computational cost of isogeny computations



limits the practical applications of isogeny-based cryptosystems. Various digital
signatures under isogeny assumptions have been proposed in recent years, such
as [23,13,4,19]. Nevertheless, many of these schemes suffer from relatively large
signature or public-key sizes. Conversely, SQIsign [14] and SQIsignHD [12] fully
highlight the compactness as isogeny-based signatures.

SQIsign was first introduced by De Feo, Kohel, Leroux, Petit and Wesolowski.
SQIsign has a very efficient verification, but the signing phase is expensive due
to the ideal-to-isogeny translation, i.e., converting the response ideal to a rep-
resentation of the corresponding isogeny. Although the ideal-to-isogeny trans-
lation has been improved recently [15,25,29], it remains the main efficiency
bottleneck in the signing phase. SQIsignHD was proposed by Dartois, Leroux,
Robert and Wesolowski. SQIsignHD applies the algorithms derived from SIDH
attacks [6,27,33], and offers a remarkably smaller signature size and much faster
response since the prover does not need to compute large degree isogenies. Con-
versely, the verification in SQIsignHD is inefficient as it involves isogeny compu-
tations in high dimension.
Motivation. Currently, both SQIsign and SQIsignHD are based onΣ-protocols.
Therefore, the challenge is derived from the knowledge of the commitment and
the message. However, this feature may result in inconvenient deployments or
inefficient implementations, particularly for applications based on low-power de-
vices or applications in the cloud computing setting. We present and discuss
some motivating application scenarios below.

– Application 1: Hardware wallet based on SIM card. This is a typical
application scenario based on mobile low-power devices. In this scenario, the
SIM card acts as the signer who keeps the signing secret key and performs
signing operations related to the secret key, while the message data (e.g., the
payment data) to be signed is usually generated by applications in the mobile
phone. When generating a signature based on a Σ-protocol, the SIM card
has to compute the hash value of the concatenation of the commitment and
the message data (note that when the message data is large, this would be
unfriendly as the interaction cost is expensive), or transfer the commitment
to the system on chip (SoC) to compute the hash value.

– Application 2: Document online signing by enterprise. When using
the signature scheme in practice, particularly by enterprises, the signing
server is usually deployed in the cloud or run by the enterprise. In this
scenario of online signing, Σ-based signatures require the signer to upload
the entire document to the signature server. This may consume a significant
amount of bandwidth and cause more computing burden on the signature
server, resulting in a system bottleneck.

In 1989, Even, Goldreich and Micali [20] introduced online/offline signatures,
which are desirable for low-power devices, such as smart cards, sensors, mobile
computing processors, and embedded devices. The main idea of online/offline
signatures is to divide the signature into the online phase and the offline phase.
Generally, the online phase are required to be fast as possible, while the of-
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fline phase can be connected to the power. With precomputation in the of-
fline phase, the prover responds in a limited time using a low-power device. In
2013, Yao et al. [38] proposed Γ -protocols and a novel transformation method,
known as Γ -transformation. Unlike the signatures based on Σ-protocols and
Fiat-Shamir transformation, the signatures via Γ -transformation separate the
hash of the commitment a and that of the message m, by employing two se-
cure hash functions h1 and h2 to compute the hash values h1(a) and h2(m),
respectively. From the target one-way property of h1, the value h1(a) (or a set
of values {h1(a1), h1(a2), · · · , h1(as)} with commitments a1, a2, · · · , am) can be
public or stored on the verifier’s side. Consequently, the verifier can precompute
some intermediate values that are relevant to the hash values of the commit-
ment to enhance the verification performance. Moreover, Γ -protocols allow the
verifier to compute h2(m) in advance without the knowledge of the commitment
a. When a trusted verifier would like to request the prover to sign a message m,
it can transfer the hash value h2(m) instead of the whole message to the prover,
thereby significantly reducing the communication cost and the computational
cost of hashing for the prover in the response phase. The specific construction
of Γ -protocols also benefits the online response of the prover, since all the in-
termediate values irrelevant to the message and used to generate the response
can be computed offline. As a result, Γ -based signatures offers an efficient online
structure and enjoys the advantage of application flexibility.
Contribution. In this paper, we propose a new structure for the SQIsign fam-
ily, which is illustrated in Figure 1. The new structure is constructed via Γ -
transformation. The main difference between SQIsignHD and our new structure
is that the latter one contains an additional isogeny φcom : E1 → E2, which is
derived from the knowledge of the commitment. Besides, the challenge isogeny
φchl : EA → E3 is hashed from the knowledge of the message. Correspondingly,
the response isogeny is from E2 to E3.

E0

E1 EA

E2 E3

ψ τ

σ

φchlφcom

secret isogeny
commitment isogeny
hash of the commitment
challenge isogeny
response isogeny

Fig. 1: A sketch of our new structure

Obviously, our new structure can be easily applied to the SQIsign family.
To show the advantages of the new structure compared to the traditional struc-
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ture, we take SQIsignHD as an instance and introduce Pentagon Isogeny-based
Signature in High Dimension (referred to as Π-signHD or PIsignHD).

At first glance, the efficiency of Π-signHD appears to be slightly inferior
to SQIsignHD due to the additional isogeny involved, which complicates the
signing procedure. But in normal cases, SQIsignHD andΠ-signHD have the same
signature size. Furthermore, Π-signHD has the following additional advantages,
which are attractive in applications.

– Flexible challenge generation: In SQIsignHD, the challenge isogeny is de-
rived from the knowledge of the public key, the commitment and the message.
Benefiting from Γ -transformation, the generation of the challenge isogeny in
Π-signHD only requires the public key and the message. This feature tackles
the applications as we mentioned above. In Applications 1 and 2, the sig-
nature requester can directly transmit the hash value of the message, which
reduces transmission and computational requirements for the signer.

– More compact signature in applications: The signature of SQIsignHD
involves the coefficient of a supersingular curve (or its j-invariant). If the
public storage is available, Π-signHD avoids storing it, and the signature size
can be reduced from 6.5λ bits to around 3.5λ bits, where λ is the security
parameter.

– Fast online signing computations: As previously mentioned, the verifier
can transfer the kernel of the challenge isogeny directly instead of the whole
message, saving the time for the prover to hash the message. Besides, the
prover is allowed to precompute intermediate values that are irrelevant to
the message. In our implementation, the online signature computations of
Π-signHD takes only 4 ms.

– Storage saving: To adapt the online/offline technique in SQIsignHD, the
prover has to store all the intermediate values that are used to sign the mes-
sage. Conversely, Π-signHD allows some of the values to be public, or stored
on the verifier’s size. Therefore, Π-signHD reduces the storage requirements
for the prover, which is preferred in applications. We take Online signature
based on hybrid cloud as an example. Figure 2 illustrates a conceptual scheme
for online signature based on Γ -based signatures, suitable for enterprise de-
ployment in a hybrid cloud environment.
Here are a few points worth noting. First, in Step 2 the auditor only needs

to transmit the hash value of the document, instead of the entire document.
Second, Step 3 can be done by the signature server in advance, which en-
hances the efficiency of online signing. Lastly, the verifier retrieves d = h1(a)
from the public cloud in Step 6. This reduces the interaction cost between
the auditor and the verifier.

Related Work. Recently, Renan and Kutas proposed a quantum-resistant adap-
tor signature scheme called SQIAsignHD [32]. This scheme underlies SQIsignHD
and utilizes the idea of artificial orientation on SIDH [2]. We believe that some
techniques utilized in this work could also be beneficial for SQIAsignHD with
further research.
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Step 1: The signature requester sends the document m to the auditor.
Step 2: The auditor sends the hash of the document (denoted by h(m)) to the
signature server. Note that this saves much bandwidth consumption compared to
sending m directly.
Step 3: The signature server generates a commitment a and stores the hash of the
commitment (denoted by d) in the public cloud.
Step 4: The signature server generates the signature z.
Step 5: The verifier receives the document and the signature.
Step 6: The verifier gets d from the public cloud and verifies the signature.

Fig. 2: Online signature based on Γ -based signatures

Shortly after completing this paper, a number of variants of SQIsignHD are
proposed [1,28,17]. Our structure can also be applied to these schemes. More
technical details are left as future work.
Organization. The remainder of our paper is organized as follows. Section 2
reviews the preliminaries necessary for this work. In Section 3 we propose a
high-level overview of Π-signHD and the underlying identification protocol. The
security proofs are provided in Section 4. Section 5 introduces the concrete im-
plementation of Π-signHD, and presents the experimental results. Finally we
conclude in Section 6.

2 Preliminaries

In this section we recall the necessary mathematical backgrounds, Σ-protocols,
Γ -protocols and SQIsignHD. Especially, we review the current implementation
of the signing phase in SQIsignHD in detail.
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2.1 Mathematical background

We first provide the necessary mathematical preliminaries, including elliptic
curves, isogenies, quaternion algebras, orders and ideals. We refer to [35,37] for
more details.
Elliptic Curves. Elliptic curves are nonsingular projective curves with genus
1. For applications, elliptic curves defined in this paper are over a finite field Fq,
denoted by E/Fq, where q = pn with prime p > 3 and n ∈ N∗. An isomorphism
class of elliptic curves can be entirely determined by its j-invariant. We use j(E)
to denote the j-invariant of E. All the rational points on the elliptic curve E and
the point at infinity ∞E

5 forms an abelian group E(Fq) under point addition.
Let ℓ > 0, the ℓ-torsion of E is defined as E[ℓ] = {P ∈ E(Fq)|[ℓ]P = ∞E},
where [ℓ] is a multiplication-by-ℓ map. An elliptic curve E is supersingular if
E[p] = {∞E}, otherwise E is said to be ordinary.
Isogenies. An isogeny φ : E1 → E2 is a non-constant surjective morphism
that sends ∞E1 to ∞E2 . Denote deg(φ) the degree of φ as a rational map. Two
curves E1 and E2 are said to be isogenous over Fq if there exists an isogeny
connecting them over Fq. An isogeny φ is called cyclic if its kernel can be
generated by one single point P , and separable if the cardinality of the ker-
nel ker(φ) = {P ∈ E1(Fq)|φ(P ) = ∞E2} is equal to deg(φ). If deg(φ) is co-
prime to the characteristic of the finite field, then φ must be separable. We
abbreviate a separable isogeny of degree ℓ as an ℓ-isogeny. Furthermore, for any
isogeny φ : E1 → E2, there exists a unique isogeny φ̂ : E2 → E1 such that
φ̂ ◦ φ = [deg(φ)], i.e., the composition of the two isogenies is a multiplication-
by-deg(φ) map. In this case, we call φ̂ the dual isogeny of φ.

Let φ1 : E0 → E1 and φ2 : E0 → E2 be two separable isogenies with
gcd(deg(φ1),deg(φ2)) = 1. Then there exist two isogenies ψ1 : E2 → E3 and
ψ2 : E1 → E3 such that ker(ψ1) = φ2(ker(φ1)) and ker(ψ2) = φ1(ker(φ2)),
as illustrated in Figure 3. We denote ψ1 = [φ2]∗φ1 (resp. ψ2 = [φ1]∗φ2) as
the pushforward isogeny of φ1 (resp. φ2) through φ2 (resp. φ1). Conversely, the
isogeny φ1 (resp. φ2) is called the pullback isogeny of ψ1 (resp. ψ2) through φ2
(resp. φ1), denoted by φ1 = [φ2]∗ψ1 (resp. φ2 = [φ1]∗ψ2). Note that ψ1 and ψ2
are also separable. In addition, there exists an isogeny Φ : E0 → E3 such that
Φ = ψ2 ◦ φ1 = ψ1 ◦ φ2.

The supersingular ℓ-isogeny graph is a graph whose vertices represent the
supersingular Fp classes and edges represent the equivalent classes of ℓ-isogenies
connecting them. The graph is connected, essentially undirected and Ramanu-
jan [31]. Moreover, the graph is ℓ + 1-regular, meaning that there are exactly
ℓ+ 1 equivalent classes of isogenies starting from a given supersingular Fp class.

5 The point at infinity of an elliptic curve is not necessarily to be indentity, but for
simplicity we suppose that it is the identity point.
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E1

E0 E3

E2

φ1

φ2

ψ2

ψ1

Φ

Fig. 3: A commutative isogeny diagram

Endomorphism rings. An endomorphism of E is either an isogeny from E to
itself, or the constant morphism [0]. The set of all the endomorphisms forms a
ring under addition and composition, denoted by End(E). The endomorphism
ring End(E) is isomorphic to an order in a quaternion algebra if E is supersin-
gular, or an order in a quadratic imaginary field if E is ordinary.
Quaternion algebras, orders and ideals. A quaternion algebra over Q rami-
fied at p and ∞ has the form Bp,∞ = Q+Qi+Qj+Qk, where i2 = −q, j2 = −p
and k = ij = −ji with q ∈ Z. The quaternion algebra has a canonical involution,
mapping α = α1 + α2i+ α3j + α4k to its conjugate α = α1 − α2i− α3j − α4k.
The reduced trace and the reduced norm of α are defined as Trd(α) = 2α1 and
Nrd(α) = α2

1 + α2
2 + α2

3 + α2
4, respectively.

An order in Bp,∞ is a full-rank lattice and also a subring. An order is called
maximal if it is not contained in other order. A fractional ideal is a Z-lattice of
rank 4. Given an ideal I, its left order and right order are defined as

OL(I) = {α ∈ Bp,∞|αI ⊂ I},OR(I) = {α ∈ Bp,∞|Iα ⊂ I}.

A left (resp. right) O-ideal I is a Z-lattice of rank 4 satisfying that O ⊂ OL(I)
(resp. O ⊂ ORI) and OL(I) and OR(I) are maximal. An fractional ideal I is
integral if I ⊂ OL(I), which implies that I ⊂ OR(I). Henceforth, we only focus
on integral ideals and refer to them as ideals.

An ideal I is said to be invertible, if there exists an ideal I−1 such that
II−1 = OL(I) or I−1I = OR(I). Denote Nrd(I) = gcd{Nrd(α)|α ∈ I} the
reduced norm of I, and I = {α|α ∈ I} the conjugate of I. If I is invertible, then
II = Nrd(I)OL(I) and II = Nrd(I)OR(I). An ideal I of integer reduced norm
can be represented by I = OL(I)α + OL(I)Nrd(I), where α ∈ OL(I). Two left
O-ideals I and J are equivalent if there exists β ∈ Bp,∞ such that I = Jβ ,
denoted by I ∼ J .
Deuring correspondence. The Deuring correspondence provides a link be-
tween the world of supersingular elliptic curves and the world of quaternion
algebras.

Let E be a supersingular curve, and suppose that the endomorphism ring
End(E) is isomorphic to a maximal order O of Bp,∞. Then an isogeny φI :
E → E′ corresponds to a kernel ideal I = {α ∈ O|α(P ) = ∞E for all P ∈
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ker(φI)}, and deg(φI) = Nrd(I). Besides, the left order is isomorphic to O,
while the right order is isomorphic to End(E′). In particular, an endomorphism
of E corresponds to a principal ideal. Conversely, given a left O-ideal I, the
kernel E[I] = {P ∈ E(Fp)|α(P ) = ∞E for all α ∈ I} determines an isogeny
φI with ker(φI) = E[I] and deg(φI) = Nrd(I). The conjugation I associates to
the dual isogeny φ̂I . The multiplication of ideals I · J defines the composition
φI ◦ φJ , where φI and φJ are two isogenies associated to I and J , respectively.
Note that in this case OR(I) ∼= OL(J). In addition, two left O-ideals I and J
are equivalent if and only if the isogenies φI and φJ have the same domain and
codomain up to isomorphism.

2.2 Σ-Protocol and Fiat–Shamir Paradigm

Assume that P and V are probabilistic polynomial time machines, and the ad-
vantage of P over V is that P knows w with (x,w) ∈ R, where R is an N P-
relation. Now concern the protocols that proceeds as follows:

– P sends a commitment a to V ;
– V sends a random string e to P ;
– P sends a reply z with respect to e, and V accepts or rejects based on

(x, a, e, z).

Definition 1. Σ-protocol is a three-round public-coin protocol ⟨P, V ⟩ for an
N P-relation R that proceeds as above. Besides, Σ-protocols should satisfy the
following properties:

– Completeness: V always accepts if P and V follow the protocol.
– Special soundness: Given two pairs of valid conversations (a, e, z) and

(a, e′, z′) on any input x with e ̸= e′, one can recover the witness w such that
(x,w) ∈ R in polynomial time with overwhelming possibility.

– Special honest verifier zero-knowledge (SHVZK): There exists a prob-
abilistic polynomial-time simulator S, which takes as input x, and outputs an
accepting conversation (a′, e′, z′), with the same (or computationally indis-
tinguishable) probability distribution as the conversation (a, e, z) of the real
protocol.

Given a Σ-protocol, Fiat–Shamir paradigm [21] can convert it to a signature
scheme. The main idea is to set e = h(a||m), where h is a hash function and m
is the message. The modification allows the signer to sign the message without
interacting with the verifier. The verifier accepts if (a, z) is a valid signature for
m 1.

1 In some specific signature schemes, such as SQIsign [9], the signature can be of form
(e, z) since a can be recovered from (e, z).
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2.3 Γ -Protocol and Γ -Transformation

Γ -protocol is a special kind of Σ-protocols. Unlike the traditional Σ-protocols,
Γ -protocol proceeds as follows:

– P sends a commitment a and a random string d to V ;
– V sends a random string e to P ;
– P sends a reply z with respect to e, and V accepts or rejects based on

(x, a, d, e, z).

Definition 2 ([38]). Γ -protocol is a three-round public-coin protocol ⟨P, V ⟩ for
an N P-relation R that proceeds as above. Besides, Γ -protocols should satisfy the
following properties:

– Completeness: V always accepts if P and V follow the protocol.
– Knowledge extraction: Given two pairs of valid conversations (a, d, e, z)

and (a, d′, e′, z′) on any input x with (d, e) ̸= (d′, e′), one can recover the
witness w such that (x,w) ∈ R in polynomial time with respect to an N P-
relation Re, referred to as e-condition, that Re(d, d′, e, e′, z, z′) = 1. In par-
ticular, setting d = d′ implies that the protocol has the special soundness
property. 2

– Special honest verifier zero-knowledge (SHVZK): There exists a prob-
abilistic polynomial-time simulator S, which takes as input x and outputs an
accepting conversation (a′, d′, e′, z′), with the same (or computationally in-
distinguishable) probability distribution as the conversation (a, d, e, z) of the
real protocol.

Γ -transformation can convey a Γ -protocol into a signature scheme. Different
from Fiat-Shamir transform, Γ -transformation adapts two hash functions h1, h2
to compute d = h1(a) and e = h2(m), respectively. The verifier accepts if d =
h1(a) and (a, d, z) is a valid signature for m 6. To be precise, Γ -signatures are
demonstrated as follows:

– Key Generation: The signer generates x = F (w) such that (x,w) ∈ R
where F is a one-way and polynomial-time computable function. The public
key is x and the secret key is w.

– Signature: The signer first randomly selects rP from a set RP and computes
a = fa(rP , x), where fa is a polynomial-time computable function. Then,
compute d = h1(a) where h1 is a secure hash function. Given a message m,
the signer computes e = h2(m), where h2 is a secure hash function. From the
knowledge of (w, a, d, e) the signer generates z, and finally outputs (a, d, z)
as the signature.

2 The definition here is slightly different from that of [38]. They limits that the knowl-
edge extracts when Re(d, d′, e, e′) = 1, where Re is an NP-condition. However,
Γ -protocol only requires that the e-condition holds with overwhelming possibility.

6 In some specific signature schemes, such as Γ -signatures for DLP [38], the signature
can be compressed by (d, z) since a can be computed according to (d, z).
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– Verification: Given m, the verifier computes e = h2(m). The verifier ac-
cepts if d = h1(a) and (a, d, z) is a valid signature for m, according to
the polynomial-time computable verification procedure for the underlying
Γ -protocol.

2.4 SQIsignHD

SQIsignHD is a compact and post-quantum signature scheme introduced by
Dartois, Leroux, Rebort and Wesolowski [11]. It is constructed from an identifi-
cation protocol via Fiat-Shamir Transform. Currently, there are two versions of
SQIsignHD: FastSQIsignHD and RigorousSQIsignHD. In this paper, we focus on
constructing a fast online signature scheme based on the FastSQIsignHD version
for efficiency. The identification protocols underlying FastSQIsignHD proceeds
as follows:

– Setup: Select a prime p = c · ℓf · ℓ′f ′ − 1, where ℓf ≈ ℓ′f ′ ≈ 2λ with λ the
security level. Define a supersingular elliptic curve E0 defined over Fp whose
endomorphism ring End(E0) ∼= O is known. Let g be an integer big enough
but smaller than f .

– Keygen: The prover generates a random isogeny walk τ : E0 → EA of
degree ℓ′• ≈ p and an equivalent isogeny τ ′ : E0 → EA of degree ℓ• ≈ p. The
public key is the elliptic curve EA and the secret key is (τ , τ ′).

– Commitment: The prover generates a random (secret) isogeny walk ψ :
E0 → E1 of degree ℓ′• ≈ p. Afterwards, the prover sends E1 to the verifier.

– Challenge: The verifier generates a random isogeny walk φ : EA → E2 of
degree ℓ′f ′ and sends the description of φ to the prover.

– Response: From the knowledge of the secret key, the commitment and the
challenge, the prover generates a new isogeny σ : E1 → E2 of degree q such
that q is ℓg-good, i.e., ℓg − q is a prime congruent to 1 modulo 4. Then the
prover computes σ(P1) and σ(Q1) where ⟨P1, Q1⟩ is the canonical basis of
E1[ℓf ], and sends (q, σ(P1), σ(Q1)) to the verifier.

– Verify: the verifier generates the canonical basis ⟨P1, Q1⟩ of E1[ℓf ]. Then the
verifier accepts if (E1, E2, q, (P1, Q1), (σ(P1), σ(Q1))) correctly represents a
q-isogeny σ from E1 to E2.

E0 EA

E1 E2

τ

τ ′
ψ

σ

φ

secret key isogeny
commitment isogeny
challenge isogeny
response isogeny

Fig. 4: A sketch of the SQIsignHD identification protocol
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Compared with SQIsign, SQIsignHD avoids the complex ideal-to-isogeny
translation, and achieves a fast response. The main procedures are illustrated in
Algorithm 1.

Algorithm 1 FastRespond [11, Algorithm 2]
Require: The isogenies τ, τ ′ : E0 → EA of degree ℓ′• and ℓ• respectively, the ideals

Iτ and Iτ ′ associated to τ and τ ′ respectively, the isogeny ψ : E0 → E1 of degree
ℓ′•, the ideal Iψ associated to ψ, the isogeny φ : EA → E2 of degree ℓ′f ′ .

Ensure: (σ(P1), σ(Q1), q) where (P1, Q1) is the canonically determined basis of E1[ℓf ]
and σ : E1 → E2 is an isogeny of ℓg-good degree q prime to ℓ.

1: Iφ ← IsogenyToIdeal(ker(φ), τ ′, Iτ ′ );
2: J ← Iψ · Iτ · Iφ;
3: I ← RandomEquivalentIdealℓg (J) and compute the reduced norm q of I;
4: If q is not ℓg-good or gcd(q, ℓ′) ̸= 1, go back to Line 3;
5: Compute the canonical basis of (P1, Q1) of E1[ℓf ];
6: (σ(P1), σ(Q1))← EvalTorsionℓf (I, P1, Q1, ψ, φ ◦ τ, Iψ, Iτ · Iφ);
7: return (σ(P1), σ(Q1), q).

The following are the sub-algorithms applied in Algorithm 1:

– IsogenyToIdeal(ker(φ), τ ′, Iτ ′): Given the kernel of an isogeny φ: EA →
E2, an isogeny τ ′: E0 → EA of degree coprime to deg(φ) and the corre-
sponding ideal Iτ ′ ⊂ O, outputs the ideal Iφ associated to φ;

– RandomEquivalentIdealℓg (J): Given an ideal J , ouputs an equivalent
ideal I that is uniformly random among ideals of norm ≤ ℓg;

– EvalTorsionℓf (I, P1, Q1, ρ1, ρ2, Iρ1 , Iρ2): Given an ideal I, a basis {P1, Q1}
of E1[ℓf ], and two isogenies ρ1: E0 → E1 and ρ2: E0 → E2 and the corre-
sponding ideals Iρ1 , Iρ2 , outputs σ(P1) and σ(Q1), where σ is the isogeny
associated to I.

In the response phase, the prover should evaluate the isogeny σ on the basis
{P1, Q1}. Since the degree of σ is a non-smooth integer in general, it is difficult
to evaluate the isogeny directly with Vélu’s formula [36,3]. However, note that
the prover has the knowledge of the smooth degree isogenies from E0 to E1 and
E2, respectively, i.e., ψ : E0 → E1 and φ ◦ τ : E0 → E2. Furthermore, the
endomorphism ring of E0 is known. Assuming Oγ = Iψ · Iσ · Iτ · Iφ, it is easy to
prove that

σ = φ ◦ τ ◦ γ ◦ ψ̂
[deg(φ) deg(τ) deg(ψ)] . (1)

Therefore, the prover can evaluate σ(P1) and σ(Q1) efficiently. For more details,
we refer to [11, Appendix A.5].

At first glance, the prover still has to evaluate several isogenies to generate
the response. Fortunately, the current implementation of SQIsignHD applies a
more elegant approach to eliminate almost all the isogeny computations. In the
following, we provide a detailed review of the current implementation.
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Suppose that {P0, Q0}, {P1, Q1} and {PA, QA} are the canonical bases of
E0[ℓf ], E1[ℓf ] and EA[ℓf ], respectively. Then assume(

PA
QA

)
= Mτ

(
τ(P0)
τ(Q0)

)
, γ̂

(
P0
Q0

)
= Mγ̂

(
P0
Q0

)
, ψ

(
P0
Q0

)
= Mψ

(
P1
Q1

)
, (2)

where Mτ ,Mγ̂ ,Mψ ∈ M2(Z/ℓfZ). Recall from Equation (1) that σ = φ ◦ τ ◦ γ ◦
ψ̂/[deg(φ) deg(τ) deg(ψ)]. Therefore, the prover can compute σ̂ ◦ φ ◦ τ(P0) and
σ̂ ◦ φ ◦ τ(Q0) by the following:

σ̂ ◦ φ ◦ τ
(
P0
Q0

)
= ψ ◦ γ̂ ◦ τ̂ ◦ φ̂ ◦ φ ◦ τ

[deg(φ) deg(τ) deg(ψ)]

(
P0
Q0

)
= ψ ◦ γ̂ ◦ τ̂ ◦ τ

[deg(τ) deg(ψ)]

(
P0
Q0

)
= ψ ◦ γ̂

[deg(ψ)]

(
P0
Q0

)
.

Since γ̂
(
P0
Q0

)
= Mγ̂

(
P0
Q0

)
, one can deduce

σ̂ ◦ φ ◦ τ
(
P0
Q0

)
= Mγ̂

[deg(ψ)] · ψ
(
P0
Q0

)
.

It follows from ψ

(
P0
Q0

)
= Mψ

(
P1
Q1

)
that

σ̂ ◦ φ ◦ τ
(
P0
Q0

)
= Mγ̂ ·Mψ

[deg(ψ)]

(
P1
Q1

)
.

Note that

Mτ ·
(
σ̂ ◦ φ(τ(P0))
σ̂ ◦ φ(τ(Q0))

)
= σ̂ ◦ φ

(
Mτ ·

(
τ(P0)
τ(Q0)

))
= σ̂ ◦ φ

(
PA
QA

)
. (3)

Therefore,

σ̂ ◦ φ
(
PA
QA

)
= Mτ ·Mγ̂ ·Mψ

[deg(ψ)]

(
P1
Q1

)
.

Algorithm 2 summarizes the fast response using the above techniques. The
signature is (E1, q,M), where q is the degree of τ and M = Mτ ·Mγ̂ ·Mψ

[deg(ψ)] . Since φ
can be derived from E1 and the message, the verifier has access to E2, φ(PA) and
φ(QA). The verifier accepts if (E2, E1, q, (φ(PA), φ(QA)), (PM1 , QM1 )) correctly
represents an isogeny from E2 to E1, where (PM1 , QM1 )T = M · (P1, Q1)T . This
is equivalent to prove that σ is an isogeny from E1 to E2.

As shown above, the curve coefficient of E2 is not required for the response
generation. Therefore, the prover does not need to construct or evaluate the
challenge isogeny φ. Furthermore, the information related to the secret isogeny
τ (such as the action matrix Mτ ) can be computed during the key generation.
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Algorithm 2 FasterRespond
Require: The isogeny τ ′ : E0 → EA of degree ℓ′•, the ideals Iτ and Iτ ′ associated to

τ and τ ′ respectively, the ideal Iψ associated to ψ, the isogeny φ : EA → E2 of
degree ℓf , and the action matrices Mτ and Mψ defined in Equation (2).

Ensure: The matrix M such that (σ̂ ◦ φ(PA), σ̂ ◦ φ(QA))T = M · (P1, Q1)T and the
degree q of the isogeny σ : E1 → E2.

1: Iφ ← IsogenyToIdeal(ker(φ), τ ′, Iτ ′ );
2: J ← Iψ · Iτ · Iφ;
3: I ← RandomEquivalentIdealℓg1 (J) and compute the reduced norm q of I;
4: If q is not ℓg1-good or gcd(q, ℓ2) ̸= 1, go back to Line 3;
5: Compute γ ∈ O such that Oγ = Iψ · I · Iτ · Iφ;
6: Compute the action matrix Mγ̂ as defined in Equation (2);
7: M ← Mτ ·Mγ̂ ·Mψ

[deg(ψ)] ;
8: return (M, q).

As a result, the prover only needs to compute the commitment isogeny in the
signing phase. All the other computations, such as the generation of the action
matrix Mγ̂ , are executed over quaternions and linear algebra.

Remark 1. It should be noted that the signature size can be further compressed.
For example, the verifier can recover the entire matrix M with only three entries
of the action matrix M according to the techniques in [11, Section 6.1]. Further-
more, to verify the validity of the representation the prover can only reveal the
actions of the response isogeny on a ℓ⌈g/2⌉-torsion basis. This halves the storage
cost of M . In the meantime, one can set g ≤ 2f instead of g ≤ f when utilizing
RandomEquivalentIdealℓg to generate Iσ.7

3 Π-signHD

In this section we propose the Π-signHD identification protocol, and the Π-
signHD digital signature via Γ -transformation.

3.1 Identification protocol

Let λ be a security parameter. The Π-signHD identification protocol goes as
follows:

– Setup: Select a prime p = c · ℓf · ℓ′f ′ − 1, where ℓf ≈ ℓ′f ′ ≈ 2λ with λ
the security level. Define a supersingular elliptic curve E0 over Fp whose
endomorphism ring End(E) ∼= O is known. Let g be an integer big enough
but smaller than f .

7 For efficiency, it is best to set 2f ≥ g + 4. See [11, Section 4.3, Section 4.4] for more
details.
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– Keygen: The prover generates a random isogeny walk τ : E0 → EA of
degree ℓ′• ≈ p and an equivalent isogeny τ ′ : E0 → EA of degree ℓ• ≈ p. The
public key is the elliptic curve EA and the secret key is (τ , τ ′).

– Commitment: The prover generates a random (secret) isogeny walk ψ :
E0 → E1 of degree ℓ′• ≈ p and an equivalent isogeny ψ′ : E0 → E1 of degree
ℓ• ≈ p, and then selects a random cyclic isogeny walk φcom : E1 → E2 of
degree ℓ′f ′ . Afterwards, the prover sends E1 and the description of φcom to
the verifier.

– Challenge: The verifier generates a random isogeny walk φchl : EA → E3
of degree ℓ′f ′ and sends the description of φchl to the prover.

– Response: From the knowledge of the secret key, the commitment and the
challenge, the prover generates a new isogeny σ : E2 → E3 of degree q
such that q is ℓg-good and coprime to ℓ′, and computes σ(P2) and σ(Q2)
where ⟨P2, Q2⟩ is the canonical basis of E2[ℓf ]. Then the prover sends R =
(q, σ(P2), σ(Q2)) to the verifier.

– Verify: the verifier generates the canonical basis ⟨P2, Q2⟩ of E2[ℓf ]. Then the
verifier accepts if (E2, E3, q, (P2, Q2), (σ(P2), σ(Q2))) correctly represents a
q-isogeny σ from E2 to E3.

E0

E1 EA

E2 E3

τ

τ ′ψ′

ψ

σ

φchlφcom

secret isogeny
commitment isogeny
hash of the commitment
challenge isogeny
response isogeny

Fig. 5: A sketch of Π-signHD

The completeness property of our Γ -protocol is obvious. The security proofs
of the knowledge extraction property and the zero-knowledge property are left
in Section 4.

3.2 Digital signature

Via Γ -transformation, Π-signHD is derived by the identification protocol in
Section 3.1. The setup and the key generation phases are identical to those of
the identification protocol. The signature and the verification proceed as follows:

– Sign: (sk,m) → Σ Pick a random (secret) isogeny ψ : E0 → E1 of degree
ℓ′• ≈ p and an equivalent isogeny ψ′ : E0 → E1 of degree ℓ• ≈ p. Then,
construct the cyclic isogeny φcom : E1 → E2 with respect to the hash of
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E1. From the hash of m, construct the isogeny φchl : EA → E3. Finally,
generate a new isogeny σ : E2 → E3 and compute the corresponding pairs
R = (σ(P2), σ(Q2), q) with {P2, Q2} the canonical basis of E2[ℓf ] and q
coprime to ℓ′. The signature is (E1, R).

– Verify: (pk,m,Σ) → True or False Parse Σ as (E1, R), where R =
(σ(P2), σ(Q2), q). Firstly, compute the isogeny φcom : E1 → E2 which is
hashed from the knowledge of E1. From the message m, construct the isogeny
φchl : EA → E3. Generate the determined canonical basis ⟨P2, Q2⟩ = E2[ℓf ],
and accept if (E2, E3, q, (P2, Q2), (σ(P2), σ(Q2))) correctly represents a q-
isogeny σ : E2 → E3.

In the signing and verifying procedures, the isogenies φcom and φchl are generated
by hashing. To achieve this, we first define a secure hash function H : {0, 1}∗ →
[1, µ], where µ = ℓ′f ′−1(ℓ′ + 1). Same as SQIsign and SQIsignHD, we use the
secure hash function H′ defined in [16, Section 3.1], which is derived from [8].
Taking a supersingular curve E and an integer as inputs, the hash function
H′ outputs a cyclic ℓ′f ′ -isogeny with domain E. In practice, we set φcom =
H′(E1,H(j(E1))) and φchl = H′(EA,H(m)).

4 Security Proof

In this section we present the security proofs of Π-signHD. The proof of the
completeness property is omitted as it is obvious. In the following we focus on the
proofs of the knowledge extraction property and the zero-knowledge property.
The knowledge extraction proof is similar to the special soundness proof of the
SQIsignHD identification protocol, but a question raised here is that the e-
condition must hold with overwhelming probability. We will propose several
lemmas to adequately illustrate this issue. The zero-knowledge proof of the Π-
signHD identification protocol parallels that of the SQIsignHD identification
protocol, particularly we use the same oracle (Definition 3) to construct the
simulator.

4.1 Knowledge extraction

Recall the knowledge extraction property of Γ -protocols: Given two pairs of valid
conversations (a, d, e, z) and (a, d′, e′, z′) on any input x with (d, e) ̸= (d′, e′), one
can recover the witness w such that (x,w) ∈ R in polynomial time with respect to
an N P-relation Re, referred to as the e-condition, that Re(d, d′, e, e′, z, z′) = 1.

In the Π-signHD identification protocol, the commitment is the curve E1,
while φcom is a random isogeny starting from E1. The challenge corresponds to
φchl : EA → E3, and the response is of form R = (q, σ(P2), σ(Q2)), where q
is the degree of the response isogeny σ : E2 → E3 and (σ(P2), σ(Q2)) are the
images of the torsion basis {P2, Q2} of E2[ℓf ] by σ. The hard problem underlying
the knowledge extraction property is known as Supersingular Endomorphism
Problem:
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Problem 1 (Supersingular Endomorphism Problem). Given a prime p and a su-
persingular elliptic curve E over Fp2 , find a non-trivial endomorphism of E that
can be efficiently evaluated.

When φcom1 and φcom2 in the two pairs of valid conversations (E1, φcom1 , φchl1 , R1)
and (E1, φcom2 , φchl2 , R2) are equivalent, the knowledge extraction property is
reduced to the special soundness property. In this situation, the proof is almost
consistent with the special soundness proofs of the SQIsignHD identification
protocol. Similarly, it is easy to prove the knowledge extraction property when
the challenges of the valid conversations are equal. When φcom1 ̸= φcom2 and
φchl1 ̸= φchl2 , one can also extract the knowledge under the e-condition that:
Re(φcom1 , φcom2 , φchl1 , φchl2 , σ1, σ2) = 1 if and only if there does not exist s ∈ Z
such that [s] = φ̂chl2 ◦ σ2 ◦ φcom2 ◦ φ̂com1 ◦ σ̂1 ◦ φchl1 .

E1

E2 E′
2

E0

E3 E′
3

EA

τ ′τ

ψ ψ′

σ2σ1

φchl2φchl1

φcom1 φcom2

secret isogeny
commitment isogeny
random isogeny
challenge isogeny
response isogeny

Fig. 6: Knowledge extraction

Proposition 1. Let (E1, φcom1 , φchl1 , R1) and (E1, φcom2 , φchl2 , R2) be two pairs
of accepting conversations, where R1 = (q1, σ1(P2), σ1(Q2)) and R2 = (q2, σ2(P ′

2), σ2(Q′
2))

with ⟨P2, Q2⟩ = E2[ℓf ] and ⟨P ′
2, Q

′
2⟩ = E′

2[ℓf ]. If (φcom1 , φchl1) ̸= (φcom2 , φchl2),
then one can compute a non-trivial endomorphism of EA that can be efficiently
evaluated with respect to the e-condition that: Re(φcom1 , φcom2 , φchl1 , φchl2 , σ1, σ2) =
1 if and only if there does not exist s ∈ Z such that [s] = φ̂chl2 ◦ σ2 ◦ φcom2 ◦
φ̂com1 ◦ σ̂1 ◦φchl1 . If φcom1 = φcom2 or φchl1 = φchl2 , then the e-condition always
holds. Especially, the Π-signHD identification protocol has the special soundness
property.

Proof. Since the two conversations are valid, one can obtain the knowledge the
response isogenies σ1 : E2 → E3 and σ2 : E′

2 → E′
3. Note that φcom1 : E1 → E2,

φcom2 : E1 → E′
2, φchl1 : EA → E3 and φchl2 : EA → E′

3 are known. As
illustrated in Figure 6, α = φ̂chl2 ◦σ2◦φcom2 ◦φ̂com1 ◦σ̂1◦φchl1 is an endomorphism
of EA that can be efficiently evaluated.

If the e-condition holds, then the endomorphism α = φ̂chl2 ◦ σ2 ◦ φcom2 ◦
φ̂com1 ◦ σ̂1 ◦φchl1 is non-trivial. Now we prove that the e-condition always holds
if φcom1 = φcom2 or φchl1 = φchl2 .
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We first prove that the endomorphism α is non-trivial if φcom1 = φcom2 .
In this case α = [ℓ′2f ′ ]φ̂chl2 ◦ σ2 ◦ σ̂1 ◦ φchl1 . Suppose for contradiction that
α′ = φ̂chl2 ◦ σ2 ◦ σ̂1 ◦ φchl1 = [s] with s ∈ Z. Therefore, we have q1q2ℓ

′2f ′ = s2.
Then

[ℓ′f ′
q2] ◦ σ̂1 ◦ φchl1 = σ̂2 ◦ φchl2 ◦ α = [s] ◦ σ̂2 ◦ φchl2 . (4)

Let s = ℓ′f ′ ·s′ with s′ coprime to ℓ′. Then we have [q2]◦σ̂1◦φchl1 = [s′]◦σ̂2◦φchl2 .
Since q1, q2 and s′ are coprime to ℓ′, it follows that ker(φchl1) = ker(φchl2). This
contradicts the fact that (φcom1 , φchl1) ̸= (φcom2 , φchl2) and φcom1 = φcom2 .
Therefore, the e-condition holds and the Π-signHD identification protocols has
the special soundness property.

Assume that φchl1 = φchl2 . We would like to prove that α is also non-trivial.
Clearly, the endomorphism β = φ̂com2 ◦σ̂2◦φchl2 ◦φ̂chl1 ◦σ1◦φcom1 = [ℓ′2f ′ ]φ̂com2 ◦
σ̂2 ◦σ1 ◦φcom1 of E1 is trivial if and only if α is trivial. Suppose that β is trivial.
Similar to the previous proof, one can deduce that ker(φcom1) = ker(φcom2).
This is a contradiction because (φcom1 , φchl1) ̸= (φcom2 , φchl2) and φchl1 = φchl2 .
Therefore, when φchl1 = φchl2 the endomorphism β must be non-trivial, i.e., the
endomorphism α is non-trivial, which completes the proof. ⊓⊔

It remains to prove that the e-condition holds with overwhelming possibility,
i.e.,

Pr [Re(φcom1 , φcom2 , φchl1 , φchl2 , σ1, σ2) = 0] ≤ negl(λ),

where negl(·) is a negligible function. This confirms that even if φcom1 ̸= φcom2

and φchl1 ̸= φchl2 (which is the common scenario in practice), the secret key
can be extracted with overwhelming possibility once the prover adapts the same
commitment. In the following, we present Lemmas 1, 2 and 3 to tackle this
problem.

Lemma 1. Let Φ1 = [ℓ′t1 ]Φ′
1, Φ2 = [ℓ′t2 ]Φ′

2 be two isogenies of degree (ℓ′)2f ′ ,
where Φ′

1 : E1 → E2 and Φ′
2 : E3 → E4 are cyclic. Assume that σ : E2 → E3

and σ′ : E4 → E1 are a q1-isogeny and a q2-isogeny with gcd(q1, ℓ
′) = 1 and

gcd(q2, ℓ
′) = 1, respectively. If σ′ ◦ Φ2 ◦ σ ◦ Φ1 is a trivial endomorphism of E1,

i.e., there exists s ∈ Z such that [s] = σ′ ◦ Φ2 ◦ σ ◦ Φ1, then

– t1 = t2;
– [σ]∗Φ̂′

1 = Φ′
2, [σ′]∗Φ̂′

2 = Φ′
1;

Proof. From Φ1 = [ℓ′t1 ]Φ′
1, Φ2 = [ℓ′t2 ]Φ′

2, we have

[(ℓ′)2f ′−t1−t2s′] = σ′ ◦ Φ′
2 ◦ σ ◦ Φ′

1

for some s′ = √
q1q2 ∈ Z which is coprime to ℓ′.

We first prove t1 = t2. Without loss of generality, assume by contradic-
tion that t1 < t2. Since Φ′

1 is cyclic, suppose that ker(Φ′
1) = ⟨P ⟩ where P ∈

E1[(ℓ′)2f ′−2t1 ]. Then, the endomorphism [(ℓ′)2f ′−t1−t2s′] = σ′ ◦Φ′
2 ◦σ ◦Φ′

1 sends
P to the point at infinity. It implies that 2f ′ − t1 − t2 ≥ 2f ′ − 2t1, i.e., t1 ≥ t2,
which is a contradiction.
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Fig. 7: A sketch of Lemma 1

Now we prove the second claim. Suppose that Q ∈ E1[(ℓ′)2f ′−2t1 ] such
that ⟨P,Q⟩ = E1[(ℓ′)2f ′−2t1 ]. Then ker(Φ̂′

1) = ⟨Φ′
1(Q)⟩. From t1 = t2, we

have [(ℓ′)2f ′−2t1s′] = σ′ ◦ Φ′
2 ◦ σ ◦ Φ′

1 and thus σ′ ◦ Φ′
2 ◦ σ ◦ Φ′

1(Q) = ∞E1 ,
i.e., ker(Φ̂′

1) ⊂ ker(σ′ ◦ Φ′
2 ◦ σ). Since σ and σ′ have degrees coprime to ℓ′,

σ(ker(Φ̂′
1)) ⊂ ker(Φ′

2). It follows from t1 = t2 that | ker(Φ′
2)| = |σ(ker(Φ̂′

1))|.
Therefore, ker(Φ′

2) = σ(ker(Φ̂′
1)), i.e., [σ]∗Φ̂′

1 = Φ′
2. Analogously, one can imply

the other deduction. This ends the proof. ⊓⊔

Remark 2. Lemma 1 shows that if the e-condition does not hold, then φchl2 ◦
φ̂chl1 is the pushforward isogeny of φcom2 ◦ φ̂com1 through σ1. Conversely, from
[σ1]∗(φcom2 ◦ φ̂com1) = φchl2 ◦ φ̂chl1 . we cannot deduce the endomorphism α =
φ̂chl2 ◦ σ2 ◦φcom2 ◦ φ̂com1 ◦ σ̂1 ◦φchl1 is trivial. For example, if q1 = deg(σ1) and
q2 = deg(σ2) are coprime, then in the proof of Lemma 1 the value s′ = √

q1q2 /∈
Z. In this case the e-condition always holds. Therefore, the possibility that the
e-condition does not hold is less than that of [σ1]∗(φcom2 ◦ φ̂com1) = φchl2 ◦ φ̂chl1 .

Lemma 2. Let ρ1, ρ2, ρ3, ρ4 be cyclic ℓ′f ′-isogenies chosen uniformly at ran-
dom, and Φ1 = ρ2◦ρ1 and Φ2 = ρ4◦ρ3. If σ is a q-isogeny such that gcd(q, ℓ′) = 1,
then Pr[[σ]∗Φ1 = Φ2] < (f ′ + 1)(ℓ′)−2f ′ .

Proof. Suppose that Φ1 = ρ2 ◦ ρ1 = [ℓt1 ]Φ′
1 and Φ2 = ρ4 ◦ ρ3 = [ℓt2 ]Φ′

2 with Φ′
1

and Φ′
2 cyclic. To satisfy [σ]∗Φ1 = Φ2, we have

t1 = t2, σ(ker(Φ′
1)) = ker(Φ′

2).

Since ρ1, ρ2, ρ3, ρ4 are chosen uniformly at random, the possibility that t1 = u
(t2 = u) is

Pr[t1 = u] = Pr[t2 = u] =



ℓ′

ℓ′ + 1 , if u = 0,

ℓ′ − 1
(ℓ′ + 1)(ℓ′)u , if 0 < u < f ′,

(ℓ′)1−f ′

ℓ′ + 1 , if u = f ′.
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On the other hand, we have

Pr[[σ]∗Φ′
1 = Φ′

2|t1 = t2 = u] =


(ℓ′)−2f ′+2u+1

ℓ′ + 1 , if 0 ≤ u < f ′,

1, if u = f ′.

Therefore, the possibility that [σ]∗Φ1 = Φ2 is

Pr[[σ]∗Φ1 = Φ2] = Σf ′

u=0Pr[t1 = u] · Pr[t2 = u] · Pr [[σ]∗Φ′
1 = Φ′

2| t1 = t2 = u]

=Σf ′

u=0Pr[t1 = u]2 · Pr [[σ]∗Φ′
1 = Φ′

2| t1 = t2 = u]

=(ℓ′)−2f ′+3

(ℓ′ + 1)3 +Σf ′−1
u=1

(ℓ′ − 1)2(ℓ′)−2f ′+1

(ℓ′ + 1)3 + (ℓ′)−2f ′+2

(ℓ′ + 1)2

= (ℓ′)3

(ℓ′ + 1)3 · (ℓ′)−2f ′
+Σf ′−1

u=1
(ℓ′ − 1)2ℓ′

(ℓ′ + 1)3 · (ℓ′)−2f ′
+ (ℓ′)2

(ℓ′ + 1)2 · (ℓ′)−2f ′

<(ℓ′)−2f ′
+ (f ′ − 1)(ℓ′)−2f ′

+ (ℓ′)−2f ′

=(f ′ + 1)(ℓ′)−2f ′
,

which completes the proof. ⊓⊔

Utilizing Lemmas 1 and 2, we can deduce that the e-condition holds with
overwhelming possibility in the case that the prover is honest. Since the isogenies
φcom1 and φcom2 are chosen uniformly at random, as stated in Lemma 2 we know
that the possibility Pr[[σ1]∗(φcom2 ◦ φ̂com1) = φchl2 ◦ φ̂chl1 ] < (f ′ + 1)(ℓ′−2f ) ≈
2−2λ, which is negligible. Therefore, according to Remark 2, the possibility that
the e-condition does not hold is also negligible.

Lemma 3. Let P1 and P2 be points of order ℓ′f ′ defined on E1 and E2, respec-
tively. Assume that E1, E2 are supersingular and σ′ : E1 → E2 is an isogeny
whose degree is coprime to ℓ′. If End(E2) is known, then one can generate
ω ∈ End(E2) such that ω ◦ σ′(P1) = P2 in polynomial time.

Proof. Suppose that {θ1, θ2, θ3, θ4} is a basis of End(E2) that can be evaluated
at any point of E2 in polynomial time. Since End(E2)⊗Z/ℓ′f ′Z is isomorphic to
M2(Z/ℓ′f ′Z), there exist two endomorphisms in the basis {θ1, θ2, θ3, θ4}, map-
ping σ′(P1) to points that are linearly independent. For simplicity we assume
that ⟨θ1(σ′(P1)), θ2(σ′(P1))⟩ = E2[ℓ′f ′ ]. Then

P2 = [s1]θ1(σ′(P1)) + [s2]θ2(σ′(P1))

where s1, s2 ∈ Z/ℓ′f ′Z.
Let ω = s1θ1 + s2θ2. Then ω ◦ σ′ : E1 → E2 is the desired isogeny that sends

P1 to P2. ⊓⊔

Now we argue that the e-condition still holds with overwhelming possibility
even if the prover maliciously generates the signature. Firstly, the prover selects
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a random isogeny φcom1 to the verifier and then the verifier randomly selects an
isogeny φchl1 . To break the e-condition, the best strategy for the malicious prover
is to generate σ1 such that [σ1]∗φ̂com1 = φ̂chl1 , i.e., σ1(ker(φ̂com1)) = ker(φ̂chl1).
This procedure can be executed in polynomial time as follows:

1. Generate an isogeny σ′ : E2 → E3;
2. According to Lemma 3, generate an endomorphism ω of E3 such that ω ◦
σ′(ker(φ̂com1)) = ker(φ̂chl1);

3. Set σ1 = ω ◦ σ′. If deg(σ1) is not ℓg-good with or gcd(deg(σ1), ℓ′) = 1, then
return to Step 1.

If the e-condition does not hold, then [σ1]∗(φcom2 ◦ φ̂com1) = φchl2 ◦ φ̂chl1 from
Lemma 1. However, the prover does not have the knowledge of φ2. Therefore, the
possibility that [σ1]∗(φcom2 ◦ φ̂com1) = φchl2 ◦ φ̂chl1 holds is (ℓ′ +1)−1(ℓ′)−f ′+1 ≈
2−λ. Note that if [σ1]∗(φcom2 ◦ φ̂com1) = φchl2 ◦ φ̂chl1 , the prover can maliciously
construct σ2 = [φcom2 ◦ φ̂com1 ]∗σ1 to break the e-condition. However, it is still
hard for the prover to construct an isogeny σ1 such that φchl2 ◦ φ̂chl1 is the
pushforward isogeny of φcom2 ◦ φ̂com1 through σ1, as the possibility is negligible.

In summary, we propose the following proposition:

Proposition 2. In the Π-signHD identification protocol, the e-condition holds
with overwhelming possibility. To be precise, assume that (E1, φcom1 , φchl1 , R1)
and (E1, φcom2 , φchl2 , R2) are two pairs of accepting conversations, where R1 =
(q1, σ1(P2), σ1(Q2)) and R2 = (q2, σ2(P ′

2), σ2(Q′
2)) with ⟨P2, Q2⟩ = E2[ℓf ] and

⟨P ′
2, Q

′
2⟩ = E′

2[ℓf ]. If (φcom1 , φchl1) ̸= (φcom2 , φchl2), then the endomorphism
α = φ̂chl2 ◦ σ2 ◦ φcom2 ◦ φ̂com1 ◦ σ̂1 ◦ φchl1 is non-trivial with overwhelming
possibility, no matter if the prover is malicious or not.

4.2 Zero Knowledge

Same as the security proof for the SQIsignHD identification protocol, we use the
following oracle to prove the Π-signHD identification protocol is special honest
verifier zero-knowledge.

Definition 3 ([11, Definition 20]). A random uniform good degree isogeny
oracle (RUGDIO) is an oracle taking as input a supersingular elliptic curve
E/Fp2 and returning an efficient representation (σ(P1), σ(Q1), q) of a random
isogeny σ : E → E′, where {P1, Q1} is a canonical basis of E[ℓf ] and q is the
degree of σ which is ℓg-good and coprime to ℓ′. In addition, the RUGDIO model
satisfies that

– The distribution of E′ is uniform in the supersingular isogeny graph.
– The conditional distribution of σ given E is uniform among isogenies from
E to E′ of ℓg-good degree coprime to ℓ′.

With the help of the RUGDIO model, one can generate an efficient represen-
tation of an isogeny starting from a given supersingular elliptic curve E1, whose
degree is ℓg-good degree coprime to ℓ′. It has been argued in [11, Section 5.3]
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that accessing to the oracle does not offer any advantage in reducing the hard-
ness of the Supersingular Endomorphism Ring Problem (Problem 2), which can
be reduced to Supersingular Endomorphism Problem (Problem 1) [18,30]. Same
as the SQIsignHD identification protocol, we also have a heuristic assumption
on the distribution of the commitment E1.

Problem 2 (Supersingular Endomorphism Ring Problem). Given a prime p and
a supersingular elliptic curve E defined over Fp2 , find four endomorphisms of E
which can be efficiently evaluated, to form a basis of the endomorphism ring of
E.

Proposition 3. Assume that the commitment E1 is computationally indistin-
guishable from an elliptic curve chosen uniformly at random in the supersingu-
lar isogeny graph. Then the Π-signHD identification protocol is special honest
verifier zero-knowledge in the RUGDIO model. In other words, there exists a
simulator S with access to RUGDIO, satisfying that the distribution of the ac-
cepting conversation generated by S is computationally indistinguishable from
the conversation of the Π-signHD identification protocol.

Proof. We proceed similarly as the zero-knowledge proof of SQIsignHD [11, The-
orem 21]. The simulator S is constructed as follows: Firstly, the simulator S
selects an ℓ′f ′ -isogeny φ′

chl : EA → E′
3 uniformly at random. After that, the

simulator adapts the RUGDIO model to generate an efficient representation R′

of σ̂′ from E′
3 to E′

2, which is also an efficient representation of σ from E′
2 to E′

3.
Finally, the simulator S generates an ℓ′f ′ -isogeny φ̂′

com : E′
2 → E′

1 uniformly at
random. The conversation of S is of form (E′

1, φ
′
com, R

′, φ′
chl).

Assuming that the conversation of the Π-signHD identification protocol is of
form (E1, φcom, R, φchl), we aim to prove that the distribution of (E′

1, φ
′
com, R

′, φ′
chl)

is computationally indistinguishable from that of (E1, φcom, R, φchl). Applying
the RUGDIO model, the curve E′

2 is chosen uniformly at random in the su-
persingular isogeny graph. Since the isogeny φ̂′

com : E′
2 → E′

1 is also chosen
uniformly at random, it follows that E′

1 is computationally indistinguishable
from an elliptic curve chosen uniformly at random in the supersingular isogeny
graph. Therefore, E1 and E′

1 have the same distribution. Furthermore, the isoge-
nies φcom and φ′

com starts from elliptic curves chosen uniformly at random in the
supersingular isogeny graph and they are chosen uniformly at random, thus φcom
and φ′

com have the same distribution. Since φchl : EA → E3 and φ′
chl : EA → E′

3
are chosen uniformly at random, thus they are indistinguishable.

It remains to prove the efficient representations of σ and σ′ are indistin-
guishable. From the second property of the RUGDIO model, the conditional
distribution of σ̂′ given E′

3 is uniform among isogeny from E′
3 to E′

2, i.e., the
conditional distribution of σ′ given E′

2 is uniform among isogeny from E′
2 to E′

3.
From [11, Section 4.2], σ has the same distribution conditionally to E2 and E3.
Notably, E2, E′

2, E3, E′
3 are computationally indistinguishable from an elliptic

curve chosen uniformly at random in the supersingular isogeny graph. This ends
the proof. ⊓⊔
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5 Implementation and Comparison

In this section, we show how to further reduce the signature size of Π-signHD
thanks to the public storage (or the storage of the verifier’s size). Besides, we
explore how to implement Π-signHD with fast online signing via offline compu-
tations, and report the online/offline signature performance results of Π-signHD.
Comparisons between SQIsignHD and Π-signHD are also discussed in detail.

5.1 Signature compactness

Recall that the signature of Π-signHD is of the form (E1, R) where R =
(σ(P2), σ(Q2), q): the domain E1 of the isogeny φcom, the evaluation on the
canonical basis {P2, Q2} of E2[ℓf ] through σ and the degree of σ. The size is the
same as that of SQIsignHD.

Indeed, the signer can also transmit (E2, R, ker(φ̂com)) as the signature: the
codomain E2 of the isogeny φcom, the evaluation on the canonical basis {P2, Q2}
of E2[ℓf ] through σ, the degree of σ and the kernel of φ̂com. In this scenario, the
signature of Π-signHD involves the additional information ker(φ̂com). Therefore,
the signature size is larger than that of SQIsignHD. In the following, we show how
to compress (E2, R, ker(φ̂com)), making it more compact than the SQIsignHD
signature.

Similar to SQIsignHD, one can also compress the torsion basis information
utilizing the technique in Section 2.4. Let {P0, Q0}, {P1, Q1}, {P2, Q2} and
{PA, QA} be the canonical bases of E0[ℓf ], E1[ℓf ], E2[ℓf ] and EA[ℓf ], respec-
tively. Assume that(

PA
QA

)
= Mτ

(
τ(P0)
τ(Q0)

)
, γ̂

(
P0
Q0

)
= Mγ̂

(
P0
Q0

)
,

ψ

(
P0
Q0

)
= Mψ

(
P1
Q1

)
, φcom

(
P1
Q1

)
= Mφcom

(
P2
Q2

)
.

(5)

where Mτ ,Mγ̂ ,Mψ,Mφcom ∈ M2(Z/ℓfZ). Note that

σ = φchl ◦ τ ◦ γ ◦ ψ̂ ◦ φ̂com
[deg(φchl) deg(τ) deg(ψ) deg(φcom)] .

Then

σ̂ ◦ φchl ◦ τ
(
P0
Q0

)
= φcom ◦ ψ ◦ γ̂ ◦ τ̂ ◦ φ̂chl ◦ φchl ◦ τ

[deg(φchl) deg(τ) deg(ψ) deg(φcom)]

(
P0
Q0

)
= φcom ◦ ψ ◦ γ̂ ◦ τ̂ ◦ τ

[deg(τ) deg(ψ) deg(φcom)]

(
P0
Q0

)
= φcom ◦ ψ ◦ γ̂

[deg(ψ) deg(φcom)]

(
P0
Q0

)
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From γ̂

(
P0
Q0

)
= Mγ̂

(
P0
Q0

)
, we have

σ̂ ◦ φchl ◦ τ
(
P0
Q0

)
= Mγ̂

[deg(ψ) deg(φcom)] · φcom ◦ ψ
(
P0
Q0

)
.

Further, it follows from ψ

(
P0
Q0

)
= Mψ

(
P1
Q1

)
and φcom

(
P1
Q1

)
= Mφcom

(
P2
Q2

)
that

σ̂ ◦ φchl ◦ τ
(
P0
Q0

)
= Mγ̂ ·Mψ

[deg(ψ) deg(φcom)] · φcom
(
P1
Q1

)
= Mγ̂ ·Mψ ·Mφcom

[deg(ψ) deg(φcom)]

(
P2
Q2

)
.

Same as the deduction in Equation (3):

Mτ ·
(
σ̂ ◦ φchl(τ(P0))
σ̂ ◦ φchl(τ(Q0))

)
= σ̂ ◦ φchl

(
Mτ ·

(
τ(P0)
τ(Q0)

))
= σ̂ ◦ φchl

(
PA
QA

)
.

Therefore,

σ̂ ◦ φchl
(
PA
QA

)
=Mτ ·Mγ̂ ·Mψ ·Mφcom

[deg(ψ) deg(φcom)]

(
P2
Q2

)
.

As a consequence, the signature can be compressed into (E2,M, q, ker(φ̂com)),
where

M = Mτ ·Mγ̂ ·Mψ ·Mφcom

[deg(ψ) deg(φcom)] = Mτ ·Mγ̂ ·Mψ ·Mφcom

[deg(ψ)ℓ′f ′ ] .

To store the kernel of φ̂com, we compress it by finding kφ̂com ∈ Z/ℓ′f ′Z such
that ker(φ̂com) can be represented by ⟨P ′

2 + [kφ̂com ]Q′
2⟩ or ⟨Q′

2 + [kφ̂com ]P ′
2⟩ with

{P ′
2, Q

′
2} is the canonical basis of E2[ℓ′f ′ ]. Note that {P ′

2, Q
′
2} can be recovered

by the verifier as E2 is given. Therefore, one can just transfer (kφ̂com , labelφ̂com)
instead of a generator of ker(φ̂com), where labelφ̂com is a bit used to distinguish
the two cases mentioned above. This reduces the storage cost of ker(φ̂com) to
approximately λ bits.

As a Γ -signature, Π-signHD allows the signer to precompute all the inter-
mediate values which are irrelevant to the message. In particular, the signer can
precompute plenty of commitments, and store a list of codomains of the hash
isogenies D = {E(1)

2 , E
(2)
2 , · · · , E(n)

2 } in public, or on the verifier’s side. Hence,
the signer can transfer the index indE in D instead of the codomain of the hash
isogeny. Generally, setting n = 232 is enough for practice.

With the help of the list D, the signature of Π-signHD can be compressed
into (indE ,M, q, (kφ̂com , labelφ̂com)). From Remark 1, the entire action matrix M
can be recovered once three entries of it are known, and its size can be further
halved by revealing the actions of σ on a 2⌈g/2⌉-torsion basis instead of {P2, Q2}.
Therefore, the total storage cost is approximately 32+(3·0.5λ+1)+λ+(λ+1) =
(3.5λ+ 34) bits. For comparison, the signature size of SQIsignHD is about 6.5λ
bits. For NIST-I security level, λ = 128, then the signature size of Π-signHD is
519 bits, while the storage cost of SQIsignHD is 870 bits.
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5.2 Offline/online signatures
As we mentioned in Section 2.4, the isogeny φchl can be recovered by the verifier,
and the signer can avoid the isogeny computations relevant to φchl. Besides, the
isogenies τ and τ ′ have been constructed during key generation. Therefore, the
main efficiency bottleneck of the response in SQIsignHD is the isogeny compu-
tations of the commitment.

In Π-signHD, the signer not only computes the codomain of ψ but an equiva-
lent isogeny ψ′ of coprime degree, due to the translation from the isogeny φcom to
the associated ideal Iφcom . In addition, the signer has to construct and evaluate
the isogeny φcom to obtain the codomain E2 and the action matrix Mψ associ-
ated to ψ. Fortunately, when implementing online/offline computations, all the
above parts can be computed offline and thus they do not affect the efficiency
of the online response. Detailed descriptions of the offline/online signatures are
presented in Algorithms 3 and 4.

Algorithm 3 Offlinesignature
Require: The initial curve E0 with known Endomorphism ring.
Ensure: The curve E2, the action matrix Mφcom◦ψ = Mφcom ·Mψ with Mφcom and Mψ

defined in Equation (5), the ideal I associated to the isogeny φcom ◦ ψ : E0 → E2,
the integer kφ̂com and a bit labelφ̂com used to determine ker(φ̂com).

1: Generate a random isogeny walk ψ : E0 → E1 of degree ℓ′• ≈ p and an equivalent
isogeny ψ′ : E0 → E1 of degree ℓ• ≈ p;

2: Compute the ideals Iψ and Iψ′ associated to ψ and ψ′, respectively;
3: Compute the canonical bases {P0, Q0} and {P1, Q1}of E0[ℓf ] and E1[ℓf ], respec-

tively;
4: Compute the action matrix Mψ as defined in Equation (5);
5: φcom ← H′(E1,H(j(E1))) and compute φcom(P1) and φcom(Q1);
6: Compute ker(φ̂com), the kernel of φ̂com;
7: Iφcom ← IsogenyToIdeal(φcom, ψ′, Iψ′ );
8: Compute the canonical basis {P ′

2, Q
′
2} of E2[ℓ′f ′ ];

9: Compute the action matrix Mφcom as defined in Equation (5);
10: Mφcom◦ψ ←Mφcom ·Mψ, I ← Iφcom · Iψ;
11: Find kφ̂com ∈ Z/ℓ′f ′

Z such that ker(φ̂com) = ⟨P ′
2 + [kφ̂com ]Q′

2⟩ or ker(φ̂com) =
⟨[kφ̂com ]P ′

2 +Q′
2⟩;

12: labelφ̂com ← 1 if ker(φ̂com) = ⟨P ′
2 + [kφ̂com ]Q′

2⟩, or labelφ̂com ← 0 otherwise;
13: I ← RandomEquivalentIdealℓg (I);
14: return E2 and (Mϕ◦ψ, I, kφ̂com , labelφ̂com).

Remark 3. The signer can compute Mφcom◦ψ
deg(ψ)ℓ′f′ offline and store it instead of

Mφcom◦ψ to further improve the online signing performance (Step 7 of Algo-
rithm 4).

The constructions of ψ and ψ′ are the efficiency bottlenecks of the offline
computations. There are mainly two methods to achieve this: One is to gen-
erate ψ uniformly at random, then compute the associated ideal Iψ and apply
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Algorithm 4 Onlinesignature
Require: The isogeny τ ′ : E0 → EA of degree ℓ′• ≈ p, the ideals Iτ and Iτ ′ associated

to τ and τ ′ respectively, the ideal Iφcom◦ψ equivalent to Iφcom · Iψ, the isogeny
φchl : EA → E2 of degree ℓ′f ′ , and the action matrices Mτ and Mφcom◦ψ defined
in Equation (2).

Ensure: The matrix M such that (σ̂ ◦ φchl(PA), σ̂ ◦ φchl(QA))T = M · (P1, Q1)T and
the degree q of the isogeny σ : E1 → E2.

1: Iφchl ← IsogenyToIdeal(φchl, τ ′, Iτ ′ );
2: J ← Iφcom◦ψ · Iτ · Iφchl ;
3: I ← RandomEquivalentIdealℓg1 (J) and compute the reduced norm q of I;
4: If q is not ℓg-good or gcd(q, ℓ′) ̸= 1, go back to Line 3;
5: Compute γ ∈ O such that Oγ = Iψ · I · Iτ · Iφchl ;
6: Compute the action matrix Mγ̂ as defined in Equation (2);
7: M ← Mτ ·Mγ̂ ·Mφcom◦ψ

deg(ψ)ℓ′f′ ;
8: return (M, q).

the KLPT algorithm [24] to obtain an equivalent ideal, and finally translate
it to the associated isogeny ψ′ (note that in this case the degree of ψ′ is ap-
proximately p3); the other is to generate both of them simultaneously by the
elegant techniques utilized in the key generation phase of SQIsignHD [11, Sec-
tion 3.3]. Our implementation applies the latter one for efficiency reasons. To
save the storage cost for the ideal Iφcom ◦ Iψ, the signer can execute the algo-
rithm RandomEquivalentIdealℓg to generate an ideal I ∼ Iφcom ◦ Iψ with
norm Nrd(I) ≈ √

p. Note that the codomain E2 can be public or stored on the
verifier’s size, while the tuple (Mφcom◦ψ, I, kφ̂com , labelφ̂com) should be secret.

The online signature avoids all the isogeny computations, thus all the oper-
ations are over the quaternions and linear algebra. In particular, the efficiency
bottleneck of the online signature is the generation of the ideal associated to σ
(Lines 3-4 in Algorithm 4). Currently, the approach to obtain the target ideal is
somewhat primitive. Finding a more efficient method for the ℓg-good equivalent
ideal generation is essential to improve the performance of the online signature.
We leave it as future work.

We note that the online signing phase of SQIsignHD can also be acceler-
ated via precomputation. Precisely, the signer can precompute the isogeny ψ,
the codomain E1 and the action matrices such as Mψ in Equation (2). This
also avoids the isogeny computations in the online signing phase. However,
SQIsignHD has several disadvantages in applications compared with Π-signHD
when applying the offline/online computations:

– SQIsignHD requires larger storage requirements. To generate a signature
with respect to the commitment E1, the signer has to store Iψ, Mψ and
E1. Especially, since the commitment E1 cannot be public, the signer has
to store it before signing. For comparison, Π-signHD allows the list D =
{E(1)

2 , E
(2)
2 , · · · , E(s)

2 } to be public or be stored on the verifier’s side. As a
consequence, the signer only stores the information I ∼ Iφcom · Iψ, Mφcom◦ψ,
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(kφ̂com , labelφ̂com) and a label indE instead when implementing Π-signHD,
reducing the storage cost by approximately 3λ bits for each commitment.

– SQIsignHD has larger signature size. As discussed previously, Π-signHD
allows the signer to further compress the signature thanks to the public
list D. On the other hand, in SQIsignHD the knowledge of E1 should be
entirely transferred as it is not allowed to be public in advance. Although
the signature of Π-signHD also involves the knowledge of the hash isogeny
φcom, it is still more compact than that of SQIsignHD due to the large
storage requirement of the curve coefficient.

– The challenge isogeny in SQIsignHD is generated from the knowledge of
both the commitment E1 and the message m. Therefore, the online phase in
SQIsignHD has to compute the hash of E1 and m, i.e., H(E1||m), and then
generate the challenge isogeny φ = H′(EA,H(E1||m)). Conversely, in Π-
signHD the challenge isogeny φchl = H′(EA,H(m)). This is preferred in some
specific applications. For example, the hash of the message m can be hashed
by a trusted party. In this case, the signer is able to use a low-power device
to generate the signature with respect to H(m), without handling the entire
message. When applying SQIsignHD, the signer has to compute H(E1||m)
or transmit E1 to the trusted party. The former enlarges the communication
cost and the computational cost of online signing, while the latter requires
one more round interaction.

– In Π-signHD, the verifier can precompute some intermediate values to fasten
the verification. More details are left in the next section.

5.3 Experimental Results

Based on the SQIsignHD code 1, we implement the online/offline signatures of
Π-signHD. We benchmark our code on Intel(R) Core(TM) i9-12900K 3.20 GHz
with TurboBoost and hyperthreading features disabled.

As mentioned in this last subsection, SQIsignHD also benefits from the on-
line/offline computations. In Table 1 we give an efficiency comparison between
the offline/online responses of SQIsignHD and Π-signHD.

As excepted, the online response performance of SQIsignHD and Π-signHD
is very fast and close. According to our experimental results, the online response
takes only 4 ms. For comparison, the signature of SQIsignHD takes 22.4 ms
on average. Therefore, the online response of SQIsignHD/Π-signHD is over 5
times faster than the entire signing procedure of SQIsignHD without offline
precomputations.

While the implementation efficiency of online responses of Π-signHD re-
mains unchanged regardless of whether the signature compression is employed,
the offline computation is less efficient in the case when using the compression
technique. The main reason is that the signer needs to compute the kernel of
φ̂com and compress it to (kφ̂com , labelφ̂com) by computing discrete logarithms
during the offline phase of compressed Π-signHD.
1 https://github.com/Pierrick-Dartois/SQISignHD-lib
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Table 1: Comparison of the SQIsignHD and Π-signHD signing implementations
targeting the NIST-I security level. Benchmarks for our implementation were
done on Intel(R) Core(TM) i9-12900K 3.20 GHz with TurboBoost and hyper-
threading features disabled. For the performance results (expressed in millions
of clock cycles), we execute 1000 times for a 256-bit message and record the
average time.

Implementation SQIsignHD Π-signHD

Signature size (bits) Original 870 870
Compressed - 519

Clock cycles (cc×106 )

Original 70.1 89.8
Offline (Uncompressed) 57.9 77.8
Online (Uncompressed) 12.0 11.8
Offline (Compressed) - 89.6
Online (Compressed) - 11.8

In our implementation, we improve the performance of discrete logarithms
in the signing phase by utilizing reduced Tate pairings [25]2. Indeed, there are
some other techniques in the literature which can be utilized to improve the
implementation of the offline computations. For instance, one can employ in-
terleaved modular multiplication algorithms [26] to reduce considerable memory
loads and stores for multiplications in Fp2 . Very recently, faster approaches for
pairing computations in isogeny-based protocols are explored by [34,5], which
are particularly beneficial for the acceleration of the action matrix computa-
tions. We note that in applications the offline computations is connected to the
power. Hence, it is acceptable that the offline computations of Π-signHD are
not as efficient as that of SQIsignHD.

In summary, the online response performance of both digital signatures is
very close, while SQIsignHD has a faster implementation of the offline compu-
tations compared to Π-signHD. However, regarding various other advantages as
discussed in Section 5.2, Π-signHD appears more promising in practical appli-
cations.

Now we analyze the performance of other parts in Π-signHD.
The key generation phase of Π-signHD is identical to that of SQIsignHD,

and thus the performance is the same.
When we do not apply the online/offline technique, the verification in Π-

signHD needs to construct φcom : E1 → E2, which is the hash of E1. Since φcom
is a power-smooth isogeny that can be efficiently constructed and evaluated, the
overhead is negligible as the isogeny computations in high dimension dominate
the computational cost. Therefore, the verification performance of Π-signHD is
very close to that of SQIsignHD.

When adapting the online/offline technique, Π-signHD has the potential to
achieve a better verification performance compared to SQIsignHD. In addition,

2 https://github.com/LinKaizhan/FasterSQISign
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some intermediate values can also be precomputed to fasten the verification,
such as the canonical basis, although currently it is not the main bottleneck of
the verification. To be precise, the verifier can precompute the canonical basis
of any supersingular curve in the list D. Besides, as the challenge isogeny can be
generated without any interaction with the signer, the verifier can also compute
the canonical basis of the codomain E3 in advance. We are confident that the
isogeny computation in high dimension can be accelerated via precomputation
with further research.

6 Conclusion

In this paper we proposed a new structure for the SQIsign family, and proposed
Π-signHD based on SQIsignHD. The flexible challenge generation benefits the
implementation of Π-signHD in the real-world applications. Furthermore, Π-
signHD has a shorter signature size compared with SQIsignHD. In addition,
Π-signHD achieves a fast online response via offline computations with cheaper
storage requirements.

In our future work, we aim to further enhance the performance of Π-signHD,
including reducing the offline storage complexity for the prover, improving the
efficiency of offline/online signing and verification, etc. We will also adapt the
new structure to other efficient variants of SQIsignHD [10,1,28,17] to make them
more competitive in applications. Additionally, it is interesting to develop prac-
tical Γ -signatures based on other isogeny-based protocols, such as CSIDH [7]
and SIDH-like schemes [22,2].
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