
Hard-Label Cryptanalytic Extraction of Neural
Network Models

Yi Chen1 ID , Xiaoyang Dong2,5 ID , Jian Guo3 ID , Yantian Shen4 ID ,

Anyu Wang1,5 ID , and Xiaoyun Wang1,5,6(B) ID

1 Institute for Advanced Study, Tsinghua University, Beijing, China,
chenyi2023@mail.tsinghua.edu.cn, {anyuwang, xiaoyunwang}@tsinghua.edu.cn

2 Institute for Network Sciences and Cyberspace, BNRist, Tsinghua University,
Beijing, China, xiaoyangdong@tsinghua.edu.cn

3 School of Physical and Mathematical Sciences, Nanyang Technological University,
Singapore, guojian@ntu.edu.sg

4 Department of Computer Science and Technology, Tsinghua University, Beijing,
China, shenyt22@mails.tsinghua.edu.cn

5 Zhongguancun Laboratory, Beijing, China
6 Shandong Key Laboratory of Artificial Intelligence Security, Shandong, China

Abstract. The machine learning problem of extracting neural network
parameters has been proposed for nearly three decades. Functionally
equivalent extraction is a crucial goal for research on this problem. When
the adversary has access to the raw output of neural networks, vari-
ous attacks, including those presented at CRYPTO 2020 and EURO-
CRYPT 2024, have successfully achieved this goal. However, this goal is
not achieved when neural networks operate under a hard-label setting
where the raw output is inaccessible.
In this paper, we propose the first attack that theoretically achieves
functionally equivalent extraction under the hard-label setting, which
applies to ReLU neural networks. The effectiveness of our attack is val-
idated through practical experiments on a wide range of ReLU neural
networks, including neural networks trained on two real benchmarking
datasets (MNIST, CIFAR10) widely used in computer vision. For a neu-
ral network consisting of 105 parameters, our attack only requires several
hours on a single core.

Keywords: Cryptanalysis · ReLu Neural Networks · Functionally Equiv-
alent Extraction · Hard-Label.

1 Introduction

Extracting all the parameters (including weights and biases) of a neural network
(called victim model) is a long-standing open problem which is first proposed by
cryptographers and mathematicians in the early nineties of the last century [2,
7], and has been widely studied by research groups from both industry and
academia [1, 3, 4, 11,14,16,18,20].

https://orcid.org/0000-0002-4727-4530
https://orcid.org/0000-0002-3444-6030
https://orcid.org/0000-0001-8847-6748
https://orcid.org/0000-0001-6714-3557
https://orcid.org/0000-0002-1086-0288
https://orcid.org/0000-0002-7846-269X

In previous research [3, 4, 11, 14, 16, 18, 20], one of the most common attack
scenarios is as follows. The victim model (denoted by fθ where θ denotes the
parameters) is made available as an Oracle O, then the adversary generates
inputs x to query O and collects the feedback ζ to extract the parameters.
This is similar to a cryptanalysis problem: θ is considered the secret key, and
the adversary tries to recover the secret key θ, given the pairs (x, ζ) [4]. If fθ
contains m parameters (64-bit floating-point numbers), then the secret key θ
contains 64 ×m bits, and the computation complexity of brute force searching
is 264×m.

Consider that there may be isomorphisms for neural networks, e.g., permu-
tation and scaling for ReLU neural networks [18]. An important concept named
functionally equivalent extraction is summarized and proposed in [11].

Functionally Equivalent Extraction. Denote by X the input space of the
victim model fθ. Functionally equivalent extraction aims at generating a model
fθ̂ (i.e., the extracted model), such that fθ(x) = fθ̂(x) holds for all x ∈ X ,
where fθ(x) and fθ̂(x) are, respectively, the raw output of the victim model
and the extracted model [11]. Such extracted model fθ̂ is called the functionally
equivalent model of fθ (also say that fθ and fθ̂ are isomorphic [18]). Since fθ̂
behaves the same as fθ, the adversary can explore the properties of fθ by taking
fθ̂ as a perfect substitute 1.

Functionally equivalent extraction is hard [11]. Consider the isomorphisms
(permutation and scaling) introduced in [18]. Scaling can change parameters and
permutation does not. For a ReLU neural network fθ that containsm parameters
(64-bit floating-point numbers) and n neurons, from the perspective of the above
cryptanalysis problem, even though scaling can be applied to each neuron once,
the adversary still needs to recover 64 × (m − n) secret key bits. Note that the
case of m ≫ n is common for neural networks. For example, for the ReLU neural
networks extracted by Carlini et al. at CRYPTO 2020 [4], the pairs (m,n) are
(25120, 32), (100480, 128), (210, 20), (420, 40), and (4020, 60). Besides, even if
we only recover a few bits (instead of 64 bits) of each parameter, the number of
secret key bits to be recovered is still large, particularly in the case of large m.

When a functionally equivalent model fθ̂ is obtained, the adversary can do
more damage (e.g., adversarial attack [5]) or steal user privacy (e.g., property
inference attack [9]). Thus, even though the cost is expensive, the adversary has
the motivation to achieve functionally equivalent extraction.

Hard-label Setting. According to the taxonomy in [11], when the Oracle is
queried, there are 5 types of feedback given by the Oracle: (1) label (the most
likely class label, also called hard-label), (2) label and score (the most-likely class
label and its probability score), (3) top-k scores, (4) all the label scores, (5) the
raw output (i.e., fθ(x)). When the Oracle only returns the hard-label, we say

1 Due to the isomorphisms introduced in [18], the parameters θ̂ of the extracted model
may be different from that θ of the victim model, but it does not matter as long as
fθ̂ is the functionally equivalent model of fθ.

2

that the victim model fθ (i.e., neural networks in this paper) works under the
hard-label setting [8].

To the best of our knowledge, there are no functionally equivalent extrac-
tion attacks that are based on the first four types of feedback so far. From the
perspective of cryptanalysis, the raw output fθ(x) is equivalent to the complete
ciphertext corresponding to the plaintext (i.e., the query x). The other four types
of feedback only reveal some properties of the ciphertext (raw output fθ(x)). For
example, when fθ(x) ∈ R, the hard-label only tells whether fθ(x) > 0 holds or
not [8]. Among the five types of feedback, the raw output leaks the most infor-
mation, while the hard-label (i.e., the first type of feedback) leaks the least [11].

Assuming that the feedback of the Oracle is the raw output, Jagielski et al.
propose the first functionally equivalent extraction attack against ReLU neu-
ral networks with one hidden layer [11], which is extended to deeper neural
networks in [18]. At CRYPTO 2020, Carlini et al. propose a differential extrac-
tion attack [4] that requires fewer queries than the attack in [18]. However, the
differential extraction attack requires an exponential amount of time, which is
addressed by Canales-Mart́ınez et al. at EUROCRYPT 2024 [3]. Note that the
extraction attacks in [3,4,18] are also based on the assumption that the feedback
is the raw output. Due to the dependence on the raw output, all the authors
in [3, 4, 11, 18], state that the hard-label setting (i.e., the feedback is the first
type) is a defense against functionally equivalent extraction.

The above backgrounds lead to the question not studied before

Is it possible to achieve functionally equivalent extraction against
neural network models under the hard-label setting?

1.1 Our Results and Techniques

Results. We have addressed this question head-on in this paper. In total, the
answer is yes, and we propose the first functionally equivalent extraction attack
against ReLU neural networks under the hard-label setting. Here, the definition
of functionally equivalent extraction proposed in [4] is extended reasonably.

Definition 1 (Extended Functionally Equivalent Extraction) The goal of
the extended functionally equivalent extraction is to generate a model fθ̂ (i.e.,
the extracted model), such that fθ̂(x) = c × fθ(x) holds for all x ∈ X , where
c > 0 is a fixed constant, fθ(x) and fθ̂(x) are, respectively, the raw output of the
victim model and the extracted model. The extracted model fθ̂ is the functionally
equivalent model of the victim model fθ.

Since fθ̂(x) = c× fθ(x) holds for all x ∈ X , i.e., fθ̂ is a simple scalar product
of fθ, the adversary still can explore the properties of the victim model fθ by
taking fθ̂ as a perfect substitute. This is why we propose this extended definition.
From the perspective of cryptanalysis, this extended definition allows the adver-
sary not to guess the 64 bits of the constant c. To evaluate the efficacy of our
model extraction attacks, and quantify the degree to which a model extraction

3

attack has succeeded in practice, we generalize the metric named (ε, δ)-functional
equivalence proposed in [4].

Definition 2 (Extended (ε, δ)-Functional Equivalence) Two models fθ̂ and
fθ are (ε, δ)-functional equivalent on S if there exists a fixed constant c > 0 such
that

Prx∈S
[∣∣fθ̂(x)− c× fθ(x)

∣∣ ⩽ ε
]
⩾ 1− δ

In this paper, we propose two model extraction attacks, one of which applies
to 0-deep neural networks, and the other one applies to k-deep neural networks.
The former attack is the basis of the latter attack. Our model extraction attacks
theoretically achieve functionally equivalent extraction described in Definition 1,
where the constant c > 0 is determined by the model parameter θ.

We have also performed numerous experiments on both untrained and trained
neural networks, for verifying the effectiveness of our model extraction attacks
in practice. The untrained neural networks are obtained by randomly gener-
ating model parameters. To fully verify our attacks, we also adopt two real
benchmarking image datasets (i.e., MNIST and CIFAR10) widely used in com-
puter vision, and train many classifiers (i.e., trained neural networks) as the
victim model. Our model extraction attacks show good performances in ex-
periments. The complete experiment results refer to Tables 1 and 2 in Sec-
tion 7. The number of parameters of neural networks in our experiments is
up to 105, but the runtime of the proposed extraction attack on a single core
is within several hours. Our experiment code is uploaded to GitHub (https:
//github.com/AI-Lab-Y/NN_cryptanalytic_extraction).

The analysis of the attack complexity is presented in Appendix B. For the
extraction attack on k-deep neural networks, its query complexity is about

O
(
d0 × 2n × log

1
ϵ
2

)
, where d0 and n are, respectively, the input dimension (i.e.,

the size of x) and the number of neurons, ϵ is a precision chosen by the adversary.

The computation complexity is about O
(
n× 2n

2+n+k
)
, where n is the number

of neurons and k is the number of hidden layers. The computation complexity
of our attack is much lower than that of brute-force searching.

Techniques. By introducing two new concepts, namely model activation pat-
tern and model signature, we obtained some findings as follows. A ReLU neural
network is composed of a certain number of affine transformations corresponding
to model activation patterns. Each affine transformation leaks partial informa-
tion about neural network parameters, which is determined by the corresponding
model activation pattern. Most importantly, for a neural network that contains
n neurons, n+ 1 special model activation patterns will leak all the information
about the neural network parameters.

Inspired by the above findings, we design a series of methods to find decision
boundary points, recover the corresponding affine transformations, and further
extract the neural network parameters. These methods compose the complete
model extraction attacks.

4

 https://github.com/AI-Lab-Y/NN_cryptanalytic_extraction
 https://github.com/AI-Lab-Y/NN_cryptanalytic_extraction

Organization. The basic notations, threat model, attack goal and assumptions
are introduced in Section 2. Section 3 introduces some auxiliary concepts. Then
we introduce the overview of our model extraction attacks, the idealized model
extraction attacks, and some refinements in practice in the following three sec-
tions respectively. Experiments are introduced in Section 7. At last, we present
more discussions about our work and conclude this paper.

2 Preliminaries

2.1 Basic Definitions and Notations

This section presents some necessary definitions and notations.

Definition 3 (k-Deep Neural Network [4]) A k-deep neural network fθ(x)
is a function parameterized by θ that takes inputs from an input space X and
returns values in an output space Y. The function f : X → Y is composed of
alternating linear layers fi and a non-linear activation function σ:

f = fk+1 ◦ σ ◦ · · · ◦ σ ◦ f2 ◦ σ ◦ f1. (1)

In this paper, we exclusively study neural networks over X = Rd0 and
Y = Rdk+1 , where d0 and dk+1 are positive integers. As in [3, 4], we only
consider neural networks using the ReLU [15] activation function, given by
σ : x 7→ max(x, 0).

Definition 4 (Fully Connected Layer [4]) The i-th fully connected layer of
a neural network is a function fi : Rdi−1 → Rdi given by the affine transformation

fi(x) = A(i)x+ b(i). (2)

where A(i) ∈ Rdi×di−1 is a di×di−1 weight matrix, b(i) ∈ Rdi is a di-dimensional
bias vector.

Definition 5 (Neuron [4]) A neuron is a function determined by the corre-
sponding weight matrix, bias vector, and activation function. Formally, the j-th
neuron of layer i is the function η given by

η(x) = σ
(
A

(i)
j x+ b

(i)
j

)
, (3)

where A
(i)
j and b

(i)
j denote, respectively, the j-th row of A(i) and j-th coordinate

of b(i). In a k-deep neural network, there are a total of
∑k

i=1 di neurons.

Definition 6 (Neuron State [3]) Let V(η;x) denote the value that neuron η
takes with x ∈ X before applying σ. If V(η;x) > 0, then η is active, i.e., the
neuron state is active. Otherwise, the neuron state is inactive 2. The state of

the j-th neuron in layer i on input x is denoted by P(i)
j (x) ∈ F2. If P(i)

j (x) = 1,

the neuron is active. If P(i)
j (x) = 0, the neuron is inactive.

2 In [3,4], the authors defined one more neuron state, namely critical, i.e., V(η;x) = 0,
which is a special inactive state since the output of neuron η is 0.

5

Definition 7 (Neural Network Architecture [4]) The architecture of a fully
connected neural network captures the structure of fθ: (a) the number of layers,
(b) the dimension di of each layer i = 0, · · · , k+1. We say that d0 is the dimen-
sion of the input to the neural network, and dk+1 denotes the number of outputs
of the neural network.

Definition 8 (Neural Network Parameters [4]) The parameters θ of a k-
deep neural network fθ are the concrete assignments to the weights A(i) and
biases b(i) for i ∈ {1, 2, · · · , k + 1}.

When neural networks work under the hard-label setting, the raw output
fθ(x) is processed before being returned [8]. This paper considers the most com-
mon processing. The raw output fθ(x) ∈ Rdk+1 is first transformed into a cat-
egory probability vector P ∈ Rdk+1 by applying the Sigmoid (when dk+1 = 1)
or Softmax (when dk+1 > 1) function to fθ(x) [6]. Then, the category with
the largest probability is returned as a hard-label. Definition 9 summarizes the
hard-label and corresponding decision conditions on the raw output fθ(x).

Definition 9 (Hard-Label) Consider a k-deep neural network f : X → Y
where Y ∈ Rdk+1 . The hard-label (denoted by z) is related to the outputs fθ(x).
When dk+1 = 1, the hard-label z (fθ(x)) is computed as

z (fθ(x)) =

{
1, if fθ(x) > 0,
0, if fθ(x) ⩽ 0.

(4)

When dk+1 > 1, the output fθ(x) is a dk+1-dimensional vector. The hard-label
z (fθ(x)) is the coordinate of the maximum of fθ(x).

3

2.2 Adversarial Goals and Assumptions

There are two parties in a model extraction attack: the oracle O who possesses
the neural network fθ(x), and the adversary who generates queries x to the Or-
acle. Under the hard-label setting, the Oracle O returns the hard-label z (fθ(x))
in Definition 9.

Definition 10 (Model Parameter Extraction Attack) A model parameter
extraction attack receives Oracle access to a parameterized function fθ (i.e., a
k-deep neural network in our paper) and the architecture of fθ, and returns a

set of parameters θ̂ with the goal that fθ̂(x) is as similar as possible to c× fθ(x)
where c > 0 is a fixed constant.

In this paper, we use the ̂ symbol to indicate an extracted parameter. For
example, θ is the parameters of the victim model fθ, and θ̂ stands for the pa-
rameters of the extracted model fθ̂.

3 If there are ties, i.e., multiple items of fθ(x) share the same maximum, the hard-label
is the smallest one of the coordinates of these items.

6

Assumptions. We make the following assumptions of the Oracle O and the
capabilities of the attacker:

– Architecture knowledge. We require knowledge of the neural network
architecture.

– Full-domain inputs. We can feed arbitrary inputs from X = Rd0 .
– Precise computations. fθ is specified and evaluated using 64-bit floating-

point arithmetic.
– Scalar outputs. The output dimensionality is 1, i.e., Y = R. 4

– ReLU Activations. All activation functions (σ’s) are the ReLU function.

Compared with the work in [4], we remove the assumption of requiring the
raw output fθ(x) of the neural network. Now, after querying the Oracle O, the
attacker obtains the hard-label z (fθ(x)). In other words, the attacker only knows
whether fθ(x) > 0 holds or not.

3 Auxiliary Concepts

To help understand our attacks, this paper proposes some auxiliary concepts.

3.1 Model Activation Pattern

To describe all the neuron states, we introduce a new concept named Model
Activation Pattern.

Definition 11 (Model Activation Pattern) Consider a k-deep neural net-

work fθ with n =
∑k

i=1 di neurons. The model activation pattern of fθ over an
input x ∈ X is a global description of the n neuron states, and is denoted by
P(x) = (P(1)(x), · · · ,P(k)(x)) where P(i)(x) ∈ Fdi

2 is the concatenation of di

neuron states (i.e., P(i)
j (x), i ∈ {1, · · · , di}) in layer i.

In the rest of this paper, the notations P(i)
j (x), P(i)(x), and P(x) are sim-

plified as P(i)
j , P(i), and P respectively, when the meaning is clear in context.

Besides, P(i) ∈ Fdi
2 is represented by a di-bit integer. For example, P(i) = 2j−1

means that only the j-th neuron in layer i is active, and P(i) = 2di − 1 means
that all the di neurons are active.

When the model activation pattern is known, one can precisely determine
which neural network parameters influence the output fθ(x). Consider the j-th
neuron η in layer i. Due to the ReLU activation function, if the neuron state
is inactive, neuron η does not influence the output fθ(x). As a result, all the

weights A
(i+1)
?,j and A

(i)
j,? (i.e., the elements of the j-th column of A(i+1), and the

j-th row of A(i) respectively) and the bias b
(i)
j do not affect the output fθ(x).

4 This assumption is fundamental to our work. Our attack only applies to the case of
scalar outputs.

7

Special ‘neuron’. For the convenience of introducing model extraction attacks
later, we regard the input x ∈ Rd0 and the output fθ(x) ∈ R as, respectively, d0
and 1 special ‘neurons’ that are always active. So we adopt two extra notations
P(0) = 2d0 − 1 and P(k+1) = 21 − 1 = 1, for describing the states of the special
d0 + 1 ‘neurons’. But if not necessary, we will omit the two notations.

3.2 Model Signature

Consider a k-deep neural network fθ. For an input x ∈ X , fθ can be described
as an affine transformation

fθ(x) = A(k+1) · · ·
(
I
(2)
P

(
A(2)

(
I
(1)
P

(
A(1)x+ b(1)

))
+ b(2)

))
· · ·+ b(k+1)

= A(k+1)I
(k)
P A(k) · · · I(2)P A(2)I

(1)
P A(1)x+BP = ΓPx+BP ,

(5)

where P is the model activation pattern over x, ΓP ∈ Rd0 , and BP ∈ R. Here,

I
(i)
P ∈ Rdi×di are 0-1 diagonal matrices with a 0 on the diagonal’s j-th entry

when the neuron state P(i)
j is 0, and 1 when P(i)

j = 1.
The affine transformation is denoted by a tuple (ΓP , BP). Except for P, the

value of the tuple (ΓP , BP) is only determined by the neural network parameters,
i.e., A(i) and b(i), i ∈ {1, · · · , k + 1}. Once the value of any neural network
parameters is changed, the value of the tuple (ΓP , BP) corresponding to some
P’s will change too 5. Therefore, we regard the set of all the possible tuples
(ΓP , BP) as a unique model signature of the neural network.

Definition 12 (Model Signature) For a k-deep neural network fθ(x), the
model signature denoted by Sθ is the set of affine transformations

Sθ = {(ΓP , BP) for all the P’s}.

In [3], Canales-Mart́ınez et al. use the term ‘signature’ to describe the weights
related to a neuron, which is different from the model signature. Except for
the model signature, we propose another important concept, namely normalized
model signature.

Definition 13 (Normalized Model Signature) Consider a victim model fθ
and its model signature Sθ = {(ΓP , BP) for all the P’s} . Denote by ΓP,j the
j-th element of ΓP for j ∈ {1, · · · , d0}. Divide the set of P’s into two subsets
Q1 and Q2. For each P ∈ Q1, ΓP,j = 0 for j ∈ {1, · · · , d0}. For each P ∈ Q2,
there is at least one non-zero element in ΓP , without loss of generality, assume
that ΓP,1 ̸= 0. Let SN

θ be the following set

SN
θ =

{
(ΓP , BP) for P ∈ Q1,

(
ΓP

|ΓP,1|
,

BP

|ΓP,1|

)
for P ∈ Q2

}
.

The set SN
θ is the normalized model signature of fθ.

5 We do not consider the case of some neurons being always inactive, since such neurons
are redundant and usually deleted by various network pruning methods (e.g., [10])
before the neural network is deployed as a prediction service.

8

Shortly, the difference between the normalized model signature SN
θ and the

initial model signature Sθ is as follows. For each P ∈ Q2, i.e., there is at least one
non-zero element in ΓP (without loss of generality, assume that the first element

is non-zero, i.e.,ΓP,1 ̸= 0), we transform the parameter tuple into
(

ΓP
|ΓP,1| ,

BP
|ΓP,1|

)
.

In our attacks, the normalized model signature plays two important roles.
First, the recovery of all the weights A(i) relies on the subset Q2. Second, our
attacks will produce many extracted models during the attack process while at
most only one is the functionally equivalent model of fθ, and the normalized
model signature is used to filter functionally inequivalent models.

3.3 Decision Boundary Point

Our attacks exploit a special class of inputs named Decision Boundary Points.

Definition 14 (Decision Boundary Point) Consider a neural network fθ. If
an input x makes fθ(x) = 0 hold, x is a decision boundary point.

The extraction attacks presented at CRYPTO 2020 [4] and EUROCRYPT
2024 [3] exploit a class of inputs, namely critical points. Fig. 1 shows the differ-
ence between critical points and decision boundary points.

Fig. 1. Left: the critical point x = [x1, x2, x3]
⊤ makes the output of one neuron (e.g.,

the solid black circle) 0. Right: the decision boundary point x′ = [x′
1, x

′
2, x

′
3]

⊤ makes
the output of the neural network 0.

Critical points leak information on the neuron states, i.e., whether the output
of a neuron is 0, which is the core reason why the differential extraction attack
can efficiently extract model parameters [4]. As a comparison, decision boundary
points do not leak information on the neuron states.

Finding critical points relies on computing partial derivatives based on the
raw output fθ(x), refer to the work in [3,4]. Thus, under the hard-label setting,
we can not exploit critical points.

4 Overview of Our Cryptanalytic Extraction Attacks

Under the hard-label setting, i.e., the Oracle returns the most likely class z (fθ(x))
instead of the raw output fθ(x), only decision boundary points x will leak the
value of fθ(x), since fθ(x) = 0. Motivated by this truth, our cryptanalytic ex-
traction attacks focus on decision boundary points.

9

Attack Process. At a high level, the complete attack contains five steps.

· Step 1: collect decision boundary points. The algorithm for finding
decision boundary points will be introduced in Section 6.1. Suppose that M
decision boundary points are collected.

· Step 2: recover the normalized model signature. Recover the tuples
(ΓP , BP) corresponding to the M decision boundary points. After filtering
duplicate tuples, regard the set of the remaining tuples as the (partial) nor-
malized model signature SN

θ . Suppose that the size of Q2 is N , refer to
Definition 13. It means that there are N decision boundary points that can
be used to recover weights A(i).

· Step 3: recover weights layer by layer. Suppose that there are n =∑k
i=1 di neurons in the neural network. Randomly choose n + 1 out of N

decision boundary points each time, assign a specific model activation pat-
tern P to each selected decision boundary point, and recover the weights
A(1), · · · , A(k+1).

· Step 4: recover all the biases. Based on recovered weights, recover all
the biases b(i), i ∈ {1, · · · , k + 1} simultaneously.

· Step 5: filter functionally inequivalent models. As long as N ⩾ n+1
holds, we will obtain many extracted models, but it is expected that at most
only one is the functionally equivalent model. Thus, we filter functionally
inequivalent models in this step.

Some functionally inequivalent models may not be filtered. For each surviving
extracted model, we test the Prediction Matching Ratio (PMR, introduced in
Section 6.3) over randomly generated inputs, and take the one with the highest
PMR as the final candidate.

In Step 2, we recover the tuple (ΓP , BP) by the extraction attack on 0-deep

neural networks. In Step 3, for layer i > 1, the weight vector A
(i)
j of the j-th

neuron (j ∈ {1, · · · , di}) is recovered by solving a system of linear equations.
For layer 1, except for selecting d1 decision boundary points, the recovery of
the weights A(1) does not use any extra techniques. In Step 4, all the biases are
recovered by solving a system of linear equations.

5 Idealized Hard-Label Model Extraction Attack

This section introduces (0, 0)-functionally equivalent model extraction attacks
under the hard-label setting, which assumes infinite precision arithmetic and
recovers the functionally equivalent model. We first introduce the 0-deep neural
network extraction attack, which is used in the k-deep neural network extraction
attack to recover the normalized model signature.

Note that this section only (partially) involves Steps 2, 3, and 4 introduced
in Section 4. In the next section, we introduce the remaining steps and refine
the idealized attacks to work with finite precision.

10

5.1 Zero-Deep Neural Network Extraction

According to Definition 3, zero-deep neural networks are affine functions fθ(x) ≡
A(1) · x + b(1) where A(1) ∈ Rd0 , and b(1) ∈ R. Let A(1) = [w

(1)
1 , · · · , w(1)

d0
], and

x = [x1, x2, · · · , xd0]
⊤. The model signature is Sθ =

(
A(1), b(1)

)
.

Our extraction attack is based on a decision boundary point x (i.e., fθ(x) =

0), and composed of 3 steps: (1) recover weight signs, i.e., the sign of w
(1)
i ; (2)

recover weights w
(1)
i ; (3) recover bias b(1).

Recover Weight Signs. Denote by ei ∈ Rd0 the basis vector where only the
i-th element is 1 and other elements are 0.

Let the decision boundary point xmove along the direction ei, i ∈ {1, · · · , d0},
and the moving stride is s ∈ R where |s| > 0. Query the Oracle and obtain the

hard-label z (f(x+ sei)), then the sign of w
(1)
i is

sign(w
(1)
i) =

{
1, if s > 0 and z (fθ(x+ sei)) = 1,

−1, if s < 0 and z (fθ(x+ sei)) = 1.
(6)

When z (f(x+ sei)) = 1, we have f(x + sei) > 0, i.e., w
(1)
i × s > 0. Thus, the

sign of w1
i is the same as that of s. If z (f(x+ sei)) = 0 always holds, no matter

if s is positive or negative, then we have w
(1)
i = 0.

Recover Weights. Without loss of generality, assume that w
(1)
1 ̸= 0.

At first, let the decision boundary point x move along e1 with a moving stride
s1, such that the hard-label of the new point x+s1e1 is 1, i.e., z (f(x+ s1e1)) = 1.
Then, let the new point x + s1e1 move along ei with a moving stride si where

i ̸= 1 and w
(1)
i ̸= 0 , such that x+ s1e1 + siei is a decision boundary point too.

As a result, we have

s1w
(1)
1 + siw

(1)
i = 0, (7)

and obtain the weight ratio
w

(1)
i

w
(1)
1

. Since the signs of w
(1)
i are known, the final

extracted weights are

Â(1) =

 w
(1)
1∣∣∣w(1)
1

∣∣∣ , w
(1)
2∣∣∣w(1)
1

∣∣∣ , · · · ,
w

(1)
d0∣∣∣w(1)
1

∣∣∣
 . (8)

Recover Bias. The extracted bias is b̂(1) = −Â(1) · x = b(1)∣∣∣w(1)
1

∣∣∣ .

Thus, the model signature of fθ̂ is Sθ̂ =

(
A(1)∣∣∣w(1)

1

∣∣∣ , b(1)∣∣∣w(1)
1

∣∣∣
)
, and fθ̂(x) =

f(x)∣∣∣w(1)
1

∣∣∣ .
Remark 1. In [14], the authors propose different methods to extract the param-
eters of linear functions fθ(x) = A(1) · x. Since this paper mainly focuses on
the extraction attack on k-deep neural networks, we do not deeply compare our
attack with the methods in [14].

11

5.2 k-Deep Neural Network Extraction

Basing the 0-deep neural network extraction attack, we develop an extraction
attack on k-deep neural networks. Recall that, the expression of k-deep neural
networks is

fθ(x) = A(k+1) · · ·
(
I
(2)
P

(
A(2)

(
I
(1)
P

(
A(1)x+ b(1)

))
+ b(2)

))
· · ·+ b(k+1)

= ΓPx+BP

(9)

where the model activation pattern is P =
(
P(0),P(1), · · · ,P(k),P(k+1)

)
and

ΓP = A(k+1)I
(k)
P A(k) · · · I(2)P A(2)I

(1)
P A(1). (10)

Notations. Our attack recovers weights layer by layer. Assuming that the
weights of the first i − 1 layers have been recovered and we are trying to re-
cover A(i) where i ∈ {1, · · · , k + 1}, we describe k-deep neural networks as:

fθ(x) = ΓPx+BP = G(i)A(i)C(i−1)x+BP , (11)

where G(i) ∈ Rdi and C(i−1) ∈ Rdi−1×d0 are, respectively, related to the unre-
covered part (excluding A(i)) and recovered part of the neural network fθ.

The values of G(i) and C(i−1) are

G(i) =

{
A(k+1)I

(k)
P A(k) · · · I(i+1)

P A(i+1)I
(i)
P , if i ∈ {1, · · · , k}

1, if i = k + 1

C(i−1) =

{
I, if i = 1

I
(i−1)
P A(i−1) · · · I(1)P A(1), if i ∈ {2, · · · , k + 1}

(12)

where C(0) = I ∈ Rd0×d0 is a diagonal matrix with a 1 on each diagonal entry.

Core Idea of Recovering Weights Layer by Layer. To better grasp the at-
tack details presented later, we first introduce the core idea of recovering weights
layer by layer. Assuming that the extracted weights of the first i − 1 layers are
known, i.e., Â(1), · · · , Â(i−1) are known, we try to recover the weights in layer i.

To obtain the weight vector Â
(i)
j of the j-th neuron (denoted by η

(i)
j) in

layer i ∈ {1, · · · , k + 1} 6, we exploit a decision boundary point with the model
activation pattern P =

(
P(0),P(1), · · · ,P(k),P(k+1)

)
where

P(i−1) = 2di−1 − 1, P(i) = 2j−1. (13)

It means that, in layer i, only the j-th neuron is active, and all the di−1 neurons
in layer i− 1 are active. Fig 2 shows a schematic diagram under this scenario.

Since P(i) = 2j−1, all the k − i layers starting from layer i+ 1 collapse into

a direct connection from η
(i)
j to the output fθ(x). The weight of this connection

6 when i = k + 1, it means that we are trying to recover the weights A(k+1).

12

Fig. 2. The core idea of recovering the weight vector of the j-th neuron in layer i. Let
x = [x1, · · · , xd0]

⊤ be a decision boundary point with P(i−1) = 2di−1 − 1, P(i) = 2j−1,
i.e., in layer i, only the j-th neuron (the red hollow circle) is active, and in layer i−1, all
the neurons are active. The first i−1 layers have been extracted, and collapse into one
layer. All the layers starting from layer i+ 1 collapse into a direct connection between
the j-th neuron in layer i and the final output.

is G(i)
j , i.e., the j-th element of G(i) (see Eq. (12)). The expression (see Eq. (11))

of the k-deep neural network further becomes

fθ(x) = ΓP · x+BP = G(i)
j A

(i)
j · C(i−1) · x+BP ,

where G(i)
j ∈ R and A

(i)
j · C(i−1) ∈ Rd0 .

In Step 2 (see Section 4), applying the extraction attack on zero-deep neural

networks, we can obtain the tuple
(

ΓP
|ΓP,1| ,

BP
|ΓP,1|

)
where

ΓP = G(i)
j A

(i)
j · C(i−1), ΓP,v = G(i)

j A
(i)
j · C(i−1)

?,v . (14)

Here the symbol C
(i−1)
?,v stands for the v-th column vector of C(i−1).

According to Eq. (14), the value of each element of ΓP
|ΓP,1| is not related

to the absolute value of G(i)
j , i.e., the unrecovered part does not affect the

affine transformation. Then, basing the vector ΓP
|ΓP,1| and the extracted weights

Â(1), · · · , Â(i−1), we build a system of linear equations and solve it to obtain

Â
(i)
j . Next, we introduce more attack details.

Recover Weights in Layer 1. To recover the weight vector of the j-th neuron
in layer 1, we exploit the model activation pattern P where

P(1) = 2j−1; P(i) = 2di − 1, for i ∈ {0, 2, 3, · · · , k + 1}. (15)

It means that, in layer 1, only the j-th neuron is active, and all the neurons in
other layers are active.

Under this model activation pattern, according to Eq. (12), we have

G(1) = A(k+1)A(k) · · ·A(2)I
(1)
P . (16)

13

Now, the expression of the k-deep neural network is

fθ(x) = G(1)
j

(
A

(1)
j x+ b

(1)
j

)
+B(P(2),··· ,P(k)) = G(1)

j A
(1)
j x+BP (17)

where A
(1)
j =

[
w

(1)
j,1 , · · · , w

(1)
j,d0

]
, G(1)

j ∈ R is the j-th element of G(1). As for

B(P(2),··· ,P(k)) ∈ R, it is a constant determined by
(
P(2), · · · ,P(k)

)
. In other

words, when P(1) changes, the value of B(P(2),··· ,P(k)) does not change.

Recall that, in Step 2, we have recovered the following weight vector

ΓP

|ΓP,1|
=

 G(1)
j w

(1)
j,1∣∣∣G(1)

j w
(1)
j,1

∣∣∣ , · · · ,
G(1)
j w

(1)
j,d0∣∣∣G(1)

j w
(1)
j,1

∣∣∣
 , j ∈ {1, · · · , d1}. (18)

In this step, our target is to obtain Â
(1)
j where

Â
(1)
j =

[
ŵ1

j,1, · · · , ŵ1
j,d0

]
=

[
w1

j,1∣∣w1
j,1

∣∣ , · · · , w1
j,d0∣∣w1
j,1

∣∣
]
, j ∈ {1, · · · , d1}. (19)

Therefore, we need to determine d1 signs, i.e., the signs of G(1)
j for P(1) = 2j−1

where j ∈ {1, · · · , d1}.
Since A

(1)
j x + b

(1)
j > 0, we know that G(1)

j × B(P(2),··· ,P(k)) < 0 holds for

j ∈ {1, · · · , d1}, which tells us that the above d1 signs are the same. Thus, by

guessing 1 sign, i.e., the sign of G(1)
j for P(1) ∈ {21−1, · · · , 2d1−1}, we obtain d1

weight vectors presented in Eq. (19).

Recover Weights in Layer i (i > 1). To recover the weight vector of the
j-th neuron in layer i, we exploit the model activation pattern P where

P(i) = 2j−1; P(q) = 2dq − 1, for q ∈ {0, · · · , i− 1, i+ 1, · · · , k + 1}. (20)

It means that, in layer i, only the j-th neuron is active, and all the neurons in
other layers are active.

Under this model activation pattern, according to Eq. (12), we have

G(i) =

{
A(k+1)A(k) · · ·A(i+2)A(i+1)I

(i)
P , if i ∈ {2, · · · , k},

1, if i = k + 1,

C(i−1) = A(i−1)A(i−2) · · ·A(1), if i ∈ {2, · · · , k + 1}.
(21)

Now, the expression of k-deep neural networks becomes

fθ(x) = G(i)
j

(
A

(i)
j C(i−1)x+B(P(1),··· ,P(i))

)
+B(P(i+1),··· ,P(k))

= G(i)
j A

(i)
j C(i−1)x+BP ,

(22)

14

where A
(i)
j =

[
w

(i)
j,1, · · · , w

(i)
j,di−1

]
, G(i)

j ∈ R and C(i−1) ∈ Rdi−1×d0 . Besides,

B(P(i+1),··· ,P(k)) ∈ R is not related to
(
P(1), · · · ,P(i)

)
, and only determined by(

P(i+1), · · · ,P(k)
)
, i.e., B(P(i+1),··· ,P(k)) is the same constant for j ∈ {1, · · · , di}.

Let us further rewrite fθ(x) in Eq. (22) as

fθ(x) = G(i)
j

di−1∑
v=1

w
(i)
j,vC

(i−1)
v,1

x1 + · · ·+

di−1∑
v=1

w
(i)
j,vC

(i−1)
v,d0

xd0

+BP (23)

where C
(i−1)
v,u ∈ R is the u-th element of the v-th row vector of C(i−1).

In Step 2, using the zero-deep neural network extraction attack, we have
recovered the following di weight vectors (j ∈ {1, · · · , di})

ΓP

|ΓP,1|
=

 G(i)
j

(∑di−1

v=1 w
(i)
j,vC

(i−1)
v,1

)
∣∣∣G(i)

j

(∑di−1

v=1 w
(i)
j,vC

(i−1)
v,1

)∣∣∣ , · · · ,
G(i)
j

(∑di−1

v=1 w
(i)
j,vC

(i−1)
v,d0

)
∣∣∣G(i)

j

(∑di−1

v=1 w
(i)
j,vC

(i−1)
v,1

)∣∣∣
 . (24)

In this step, our target is to obtain the weight vector Â
(i)
j =

[
ŵ

(i)
j,1, · · · , ŵ

(i)
j,di−1

]
.

It is clear that we need to guess the sign of G(i)
j for j ∈ {1, · · · , di}. Again,

all the di signs are the same. Consider the expression in Eq. (22). Since the j-th
neuron is active, its output exceeds 0, i.e.,

A
(i)
j C(i−1)x+B(P(1),··· ,P(i)) > 0, j ∈ {1, · · · , di}.

Then G(i)
j × B(P(i+1),··· ,P(k)) < 0 holds for j ∈ {1, · · · , di}. At the same time,

since B(P(i+1),··· ,P(k)) is a constant, all the di signs are the same. Therefore, by

guessing one sign, i.e., the sign of G(i)
j , based on Eq. (24), we obtain ∑di−1

v=1 w
(i)
j,vC

(i−1)
v,1∣∣∣∑di−1

v=1 w
(i)
j,vC

(i−1)
v,1

∣∣∣ , · · · ,
∑di−1

v=1 w
(i)
j,vC

(i−1)
v,d0∣∣∣∑di−1

v=1 w
(i)
j,vC

(i−1)
v,1

∣∣∣
 , j ∈ {1, · · · , di}. (25)

Note that Ĉ
(i−1)
v,u can be obtained using Eq. (21), since Â(1), · · · , Â(i−1) are

known. Then, basing the vector in Eq. (25), we build a system of linear equations

∑di−1

v=1 ŵ
(i)
j,vĈ

(i−1)
v,1 =

∑di−1
v=1 w

(i)
j,vC

(i−1)
v,1∣∣∣∑di−1

v=1 w
(i)
j,vC

(i−1)
v,1

∣∣∣ ,
...∑di−1

v=1 ŵ
(i)
j,vĈ

(i−1)
v,d0

=
∑di−1

v=1 w
(i)
j,vC

(i−1)
v,d0∣∣∣∑di−1

v=1 w
(i)
j,vC

(i−1)
v,1

∣∣∣ ,
(26)

15

When d0 ⩾ di−1
7, we obtain Â

(i)
j =

[
ŵ

(i)
j,1, · · · , ŵ

(i)
j,di−1

]
by solving the above

system of linear equations. Lemma 1 summarizes the expression of extracted

weight vectors Â
(i)
j , j ∈ {1, · · · , di}, i ∈ {2, · · · , k + 1}.

Lemma 1. Based on the system of linear equations presented in Eq. (26), for

i ∈ {2, · · · , k + 1} and j ∈ {1, · · · , di}, the extracted weight vector Â
(i)
j =[

ŵ
(i)
j,1, · · · , ŵ

(i)
j,di−1

]
is

Â
(i)
j =

w(i)
j,1 ×

∣∣∣∑di−2

v=1 w
(i−1)
1,v C

(i−2)
v,1

∣∣∣∣∣∣∑di−1

v=1 w
(i)
j,vC

(i−1)
v,1

∣∣∣ , · · · ,
w

(i)
j,di−1

×
∣∣∣∑di−2

v=1 w
(i−1)
di−1,v

C
(i−2)
v,1

∣∣∣∣∣∣∑di−1

v=1 w
(i)
j,vC

(i−1)
v,1

∣∣∣
 ,

(27)

where C
(q)
v,1 = A

(q)
v A(q−1) · · ·A(2)

[
A

(1)
1,1, · · · , A

(1)
d1,1

]⊤
.

Proof. The proof refers to Appendix A.

In Lemma 1, for the consistency of the mathematical symbols, the weights

A(k+1) are denoted by [w
(k+1)
1,1 , · · · , w(k+1)

1,dk
] instead of [w

(k+1)
1 , · · · , w(k+1)

dk
].

Recover All the Biases. Since Â(i) for i ∈ {1, · · · , k+1} have been obtained,
we can extract all the biases by solving a system of linear equations.

Concretely, for the
∑k

i=1 di + 1 decision boundary points, fθ̂(x) = 0 should
hold. Thus, we build a system of linear equations: fθ̂(x) = 0 where the expression
of fθ̂(x) refers to Eq. (9). Combining with Lemma 1, by solving the above system,
we will obtain

b̂(i) =

[
b
(i)
1∣∣∣∑di−1

v=1 w
(i)
1,vC

(i−1)
v,1

∣∣∣ , · · · ,
b
(i)
di∣∣∣∑di−1

v=1 w
(i)
di,v

C
(i−1)
v,1

∣∣∣
]
, i ∈ {1, · · · , k}

b̂(k+1) = b(k+1)∣∣∣∑dk
v=1 w

(k+1)
v C

(k)
v,1

∣∣∣ .
(28)

Based on the extracted neural network parameters (see Eq. (19), Eq. (27),
and Eq. (28)), the model signature of the extracted model fθ̂ is

Sθ̂ =

(Γ̂P , B̂P) =

 ΓP∣∣∣∑dk

v=1 w
(k+1)
v C

(k)
v,1

∣∣∣ , BP∣∣∣∑dk

v=1 w
(k+1)
v C

(k)
v,1

∣∣∣
 for all the P ′s

 .

Consider the j-th neuron η in layer i. For an input x ∈ X , denote by h(η;x)
the output of the neuron of the victim model. Based on the extracted neural
network parameters (see Eq. (19), Eq. (27), and Eq. (28)), the output of the

neuron of the extracted model is h(η;x)∣∣∣∑di−1
v=1 w

(i)
j,vC

(i−1)
v,1

∣∣∣ . At the same time, all the

7 The case of d0 ⩾ di−1 is common in various applications, particularly in computer
vision [9, 13,17], since the dimensions of images or videos are often large.

16

weights w
(i+1)
?,j in layer i + 1 are increased by a factor of

∣∣∣∑di−1

v=1 w
(i)
j,vC

(i−1)
v,1

∣∣∣.
Thus, for the victim model and extracted model, the j-th neuron in layer i has
the same influence on all the neurons in layer i+ 1. As a result, for any x ∈ X ,
the model activation pattern of the victim model is the same as that of the
extracted model. Combining with Sθ̂, for all x ∈ X , we have

fθ̂(x) =
1∣∣∣∑dk

v=1 w
(k+1)
v C

(k)
v,1

∣∣∣ × fθ(x). (29)

In Appendix C, we apply the extraction attack on 1-deep neural networks
and directly present the extracted model, which helps further understand our
attack.

Remark 2. Except for the n+ 1 model activation patterns as shown in Eq. (15)
and Eq. (20), the adversary could choose a new set of n + 1 model activation
patterns. The reason is as follows. Consider the recovery of the weight vector of
the j-th neuron in layer i, and look at Fig. 2 again. Our attack only requires
that: (1) in layer i, only the j-th neuron is active; (2) in layer i− 1, all the di−1

neurons are active. The neuron states in other layers do not affect the attack.
Thus, there are more options for the n + 1 model activation patterns, and the
rationale does not change.

Discussion on The Computation Complexity. Once n + 1 decision boundary
points and k sign guesses are selected, to obtain an extracted model, we just
need to solve n + 2 − d1 systems of linear equations. However, since the model
activation pattern of a decision boundary point is unknown, we have to traverse
all the possible combinations of n + 1 decision boundary points (see Step 3 in
Section 4), which is the bottleneck of the total computation complexity. The
complete analysis of the attack complexity is presented in Appendix B.

6 Instantiating the Extraction Attack in Practice

Recall that, the complete extraction attack contains 5 steps introduced in Sec-
tion 4. To obtain a functionally equivalent model, the adversary also needs three
auxiliary techniques: finding decision boundary points (related to Steps 1 and
2), filtering duplicate affine transformations (related to Step 2), and filtering
functionally inequivalent models (related to Step 5).

The idealized extraction attack introduced in Section 5 relies on decision
boundary points x that make fθ(x) = 0 strictly hold. This section will propose a
binary searching method to find decision boundary points under the hard-label
setting. Under finite precision, it is hard to find decision boundary points x that
make fθ(x) = 0 strictly hold. Therefore, the proposed method returns input
points x close to the decision hyperplane as decision boundary points. As a result,
the remaining two techniques need to consider the influence of finite precision.
This ensures our model extraction attacks work in practice, for producing a
(ε, 0)-functionally equivalent model.

17

6.1 Finding Decision Boundary Points

Let us see how to find decision boundary points under the hard-label setting.
Fig. 3 shows a schematic diagram in a 2-dimensional input space.

Fig. 3. A schematic diagram of finding decision boundary points. The blue solid line
stands for the decision hyperplane composed of decision boundary points. The red
dashed line stands for a direction vector ∆ ∈ Rd0 . The starting point x ∈ Rd0 (i.e.,
the solid black circle) moves along the direction ∆, and arrives at x+ s×∆ (i.e., the
hollow black circle) where s ∈ R is the moving stride.

We first randomly pick a starting point x ∈ Rd0 and non-zero direction vector
∆ ∈ Rd0 . Then let the starting point move along the direction ∆ or the opposite
direction −∆. It is expected that the starting point will eventually cross the
decision hyperplane in one direction, as long as ∆ and −∆ are not parallel to
the decision hyperplane.

Denote by s ∈ R the moving stride of the starting point, which means that the
starting point arrives at x+s×∆. After querying the Oracle with x and x+s×∆,
if z (fθ(x)) ̸= z (fθ(x+ s×∆)) (i.e., the two labels are different), we know that
the starting point has crossed the decision hyperplane when the moving stride is
s. Now, the core of finding decision boundary points is to determine a suitable
moving stride s, such that the starting point reaches the decision hyperplane,
i.e., fθ(x+ s×∆) = 0 holds.

This task is done by binary search. Concretely, randomly choose two different
moving strides sslow and sfast at first, such that

z (fθ(x+ sslow ×∆)) = z (fθ(x)) ,

z (fθ(x+ sslow ×∆)) ̸= z (fθ(x+ sfast ×∆)) .
(30)

Then, without changing the conditions presented in Eq. (30), we dynamically ad-
just sslow and sfast until their absolute difference is close to 0, i.e., |sslow − sfast| <
ϵ where ϵ is a precision defined by the adversary. Finally, return x + sslow ×∆
as a decision boundary point.

Since the precision ϵ is finite, x + sslow × ∆ is not strictly at the decision
boundary, which will inevitably introduce minor errors (equivalent to noises)
into the extracted model. If ϵ decreases, then x+ sslow ×∆ will be closer to the
decision boundary, which is helpful to the model extraction attack, refers to the
experiment results in Section 7.

18

6.2 Filtering Duplicate Affine Transformations

For a k-deep neural network fθ consisting of n =
∑k

i=1 di neurons, the idealized
extraction attack exploits special n+ 1 model activation patterns.

To ensure that the required n + 1 model activation patterns occur with a
probability as high as possible, in Step 1 introduced in Section 4, we collect
M decision boundary points where M ≫ n + 1, e.g., M = cn2

n and cn is a
small factor. As a result, there are many collected decision boundary points with
duplicate model activation patterns. Therefore, in Step 2, after recovering the
parameter tuple (ΓP , BP) (i.e., the affine transformation) corresponding to each
decision boundary point, we need to filter the decision boundary points with
duplicate affine transformations, since their model activation patterns should
be the same. When filtering duplicate affine transformations, we consider two
possible cases.

Filtering Correctly Recovered Affine Transformations. In the first case,
assume that two affine transformations are both correctly recovered.

However, recovering affine transformations (i.e., 0-deep neural network ex-
traction attack) relies on finding decision boundary points, which introduces
minor errors. This is equivalent to adding noises to the recovered affine trans-
formations, i.e., the tuples (ΓP , BP). To check whether two noisy affine trans-
formations are the same, we adopt the checking rule below.

Comparing two vectors. Consider two vectors with the same dimension, e.g.,
V 1 ∈ Rd, V 2 ∈ Rd. Set a small threshold φ. If the following d inequations hold
simultaneously ∣∣V 1

j − V 2
j

∣∣ < φ, j ∈ {1, · · · d} (31)

where V 1
j and V 2

j are, respectively, the j-th element of V 1 and V 2, the two
vectors are considered to be the same.

Filtering Wrongly Recovered Affine Transformations. In the second
case, assume that one affine transformation is correctly recovered and another
one is partially recovered.

For the extraction attack on k-deep neural networks, when recovering the
affine transformation corresponding to an input by the 0-deep neural network
extraction attack (see Section 5.1), the process of binary search should not
change the model activation pattern. Otherwise, the affine transformation may
be wrongly recovered. Recall that, in the 0-deep neural network extraction at-
tack, the d0 elements of ΓP are recovered one by one independently. Thus, the
wrong recovery of one element of ΓP does not influence the recovery of other
elements.

As a result, we have to consider the case that one transformation is partially
recovered. In this case, the filtering method is as follows. Consider two vectors
V 1 ∈ Rd and V 2 ∈ Rd. If

∣∣V 1
j − V 2

j

∣∣ < φ holds for at least (d − dφ) j’s where
j ∈ {1, · · · , d} and dφ ∈ N is a threshold, the two vectors are considered to
be the same. Suppose that the occurrence frequencies of V 1 and V 2 are o1 and

19

o2 respectively, we regard V 1 as the correctly recovered affine transformation if
o1 ≫ o2, and vice versa.

6.3 Filtering Functionally Inequivalent Extracted Models

Consider k-deep neural networks consisting of n =
∑k

i=1 di neurons. As intro-
duced in Section 4, each time we randomly choose n + 1 out of N collected
decision boundary points to generate an extracted model. Moreover, according
to Section 5.2, in the extraction attack, we need to guess k signs, i.e., the sign

of G(i)
j , i ∈ {1, · · · , k}.
When the model activation patterns of the selected n+ 1 decision boundary

points are not those required in the extraction attack, or at least one of the
k sign guesses is wrong, the resulting extracted model fθ̂ is not a functionally
equivalent model of the victim model fθ. Thus, we will get many functionally
inequivalent extracted models.

Besides, due to the minor errors introduced by the finite precision used in
finding decision boundary points, the parameters of the extracted model may be
slightly different from the theoretical values (see Eq. (19), Eq. (27), and Eq. (28)).
This subsection introduces three methods to filter functionally inequivalent ex-
tracted models, one of which considers the negative influence of finite precision
together.

Filtering by the Normalized Model Signature. Before introducing the
filtering method, we discuss how many possible model activation patterns there
are at most for a k-deep neural network. Lemma 2 answers this question.

Lemma 2. For a k-deep neural network consisting of n =
∑k

i=1 di neurons, the
upper bound of the number of possible model activation patterns is

H =

(
k∏

i=1

(2di − 1)

)
+

k∑
i=2

i−1∏
j=1

(2dj − 1)

, (32)

where di is the number of neurons in layer i.

Proof. If all the di neurons in layer i are inactive, i.e., the outputs of these neu-
rons are 0, then the neuron states of all the

∑k
j=i+1 dj neurons in the last k − i

layers are deterministic. In this case, the number of possible model activation
patterns is decided by the first i− 1 layers, i.e., the maximum is

∏i−1
j=1 (2

dj − 1).
If there is at least one active neuron in each layer, then there are at most∏k

i=1 (2
di − 1) possible model activation patterns.

After all the weights Â(i) and biases b̂(i), i ∈ {1, · · · , k + 1} are obtained, we
assume that all the H model activation patterns are possible, and compute the
resulting normalized model signature SN

θ̂
. Denote by SN

θ the normalized model

signature recovered in Step 2 (see Section 4). If SN
θ is not a subset of SN

θ̂
, we

regard fθ̂ as a functionally inequivalent model.

20

Due to the minor errors caused by finite precision, i.e., the slight difference
between the extracted parameters θ̂ and the theoretical values (see Eq. (19),
Eq. (27), and Eq. (28)), when checking whether a tuple (ΓP , BP) ∈ SN

θ is equal

to a tuple
(
Γ̂P , B̂P

)
∈ SN

θ̂
or not, we adopt the checking rule presented in

Section 6.2, refers to Eq. (31).

Besides, the filtering method in Section 6.2 does not ensure that all the
wrongly recovered affine transformations are filtered. To avoid the functionally
equivalent model being filtered, we adopt a flexible method.

Recall that, in Step 1, we collect a sufficient number of decision boundary
points. For each tuple (ΓP , BP) ∈ SN

θ , denote bymP the frequency that the tuple
occurs in the collected decision boundary points. Suppose that the number ofmP
where mP > 1 is Nvalid. Then when at least 0.95×Nvalid tuples (ΓP , BP) ∈ SN

θ

are in the set SN
θ̂
, the extracted model fθ̂ is regarded as a candidate of the

functionally equivalent model. Here, We call the ratio 0.95× Nvalid

|SN
θ | the adaptive

threshold.

Filtering by Weight Signs. After Â(i), b̂(i) for i ∈ {1, · · · , k+1} are obtained,
we compute the matrices Ĝ(i) and check whether the k signs, i.e., the sign of

Ĝ(i)
j , i ∈ {1, · · · , k} are consistent with the k guesses. If at least one sign is not

consistent with the guess, the extracted model is not the functionally equivalent
model.

Interestingly, except for handling wrong sign guesses, this method also shows
high filtering effectiveness when the model activation patterns of the selected
n+1 decision boundary points are not those required by our extraction attacks.
This is not strange, since our extraction attack is designed for a specific set of
model activation patterns. For wrong model activation patterns, whether the

sign of Ĝ(i)
j , i ∈ {1, · · · , k} is 1 or −1 is a random event.

Filtering by Prediction Matching Ratio. The above two filtering methods
are effective, but we find that some functionally inequivalent models still escape
from the filtering. Therefore, the third method is designed to perform the last
filtering on extracted models surviving from the above two filtering methods.
This method is based on the prediction matching ratio.

Prediction Matching Ratio. Randomly generate N1 inputs, query the extracted
model fθ̂ and the victim model fθ. Suppose that the two models return the

same hard-label for N2 out of N1 inputs. The ratio N2

N1
is called the prediction

matching ratio.

According to Definition 1 and Definition 2, for a functionally equivalent
model, the prediction matching ratio should be high, or even close to 100%.
Note that many random inputs x and corresponding hard-label z (fθ(x)) are
collected during the attack process (see Steps 1 and 2 in Section 4). Thus, we
can exploit these inputs.

21

7 Experiments

Our model extraction attacks are evaluated on both untrained and trained neural
networks. Concretely, we first perform experiments on untrained neural networks
with diverse architectures and randomly generated parameters. Then, based on
two typical benchmarking image datasets (i.e., MNIST, CIFAR10) in visual deep
learning, we train a series of neural networks as classifiers and evaluate the model
extraction attacks on these trained neural networks.

For convenience, denote by ‘d0-d1-· · · -dk+1’ the victim model, where di is
the dimension of each layer. For example, the symbol 1000-1 stands for a 0-deep
neural network with an input dimension of 1000 and an output dimension of 1.

Partial Universal Experiment Settings. Some settings are used in all the fol-
lowing experiments. For k-deep neural network extraction attacks, in Step 1, we
randomly generate 8 × 2n pairs of starting point and moving direction, where
n =

∑k
i=1 di is the number of neurons. The prediction matching ratio is esti-

mated over 106 random inputs.

7.1 Computing (ε, 0)-Functional Equivalence

To quantify the degree to which a model extraction attack has succeeded, the
method (i.e., error bounds propagation [4]) proposed by Carlini et al. is adopted
to compute (ε, 0)-functional equivalence.

Error bounds propagation. To compute (ε, 0)-functional equivalence of the
extracted neural network fθ̂, one just needs to compare the extracted parame-

ters (weights Â(i) and biases b̂(i)) to the real parameters (weights A(i) and biases
b(i)) and analytically derive an upper bound on the error when performing in-
ference [4].

Before comparing the neural network parameters, one must ‘align’ them [4].
This involves two operations: (1) adjusting the order of the neurons in the net-
work, i.e., the order of the rows or columns of A(i) and b(i), (2) adjusting the
values of A(i) and b(i) to the theoretical one (see Eq. (19), Eq. (27), and Eq. (28))

obtained by the idealized model extraction attacks. This gives an aligned Ã(i)

and b̃(i) from which one can analytically derive upper bounds on the error. Other
details (e.g., propagating error bounds layer-by-layer) are the same as that in-
troduced in [4], and not introduced again in this paper.

7.2 Experiments on Untrained Neural Networks

Table 1 summarizes the experimental results on different untrained neural net-
works which demonstrates the effectiveness of our model extraction attacks.

According to Appendix B, the computation complexity of our model extrac-

tion attack is about O
(
n× 2n

2+n+k
)
, where n is the number of neurons. Thus,

we limit the number of neurons, which does not influence the verification of our

22

Table 1. Experiment results on untrained k-deep neural networks.

Architecture Parameters ϵ PMR Queries (ε, 0) max|θ − θ̂|
512-2-1 1029 10−12 100% 219.35 2−12.21 2−16.88

10−14 100% 219.59 2−19.84 2−24.62

2048-4-1 8201 10−12 99.98% 223.32 2−3.77 2−10.44

10−14 100% 223.51 2−13.70 2−17.75

25120-4-1 100489 10−14 99.98% 226.42 2−2.99 2−14.67

10−16 100% 226.67 2−13.01 2−23.19

50240-2-1 100485 10−14 99.99% 225.85 2−7.20 2−15.58

10−16 100% 226.31 2−14.44 2−22.67

32-2-2-1 75 10−12 100% 217.32 2−10.99 2−14.78

10−14 100% 217.56 2−18.21 2−20.61

512-2-2-1 1035 10−12 99.99% 221.39 2−10.34 2−14.01

10−14 100% 221.59 2−14.17 2−17.29

1024-2-2-1 2059 10−12 99.99% 222.38 2−6.10 2−13.77

10−14 100% 222.49 2−14.16 2−20.38

ϵ: the precision used to find decision boundary points.

max|θ − θ̂|: the maximum extraction error of model parameters.
PMR: prediction matching ratio.

model extraction attack. Note that the number of parameters is not limited. All
the attacks can be finished within several hours on a single core.

The results in Table 1 also support our argument in Remark 2. For the 2-
deep neural networks (e.g., 32-2-2-1), when recovering the weights in layer 1, we
require that only one neuron in layer 2 is active, instead of all the 2 neurons
being active. Our extraction attacks also achieve good performance.

The influence of the precision ϵ. A smaller ϵ will make the returned point
x + sslow × ∆ (see Section 6.1) closer to the decision boundary, which helps
reduce the extraction error of affine transformations. As a result, the model
extraction attack is expected to perform better. For example, for the 1-deep
neural network 2048-4-1, when ϵ decreases from 10−12 to 10−14, the value ε
(respectively, max|θ − θ̂|) decreases from 2−3.77 to 2−13.70 (respectively, from
2−10.44 to 2−17.75), which is a significant improvement.

At the same time, using a smaller precision ϵ does not increase the attack com-
plexity significantly. According to Appendix B, the query complexity is about

O
(
d0 × 2n × log

1
ϵ
2

)
. Thus, decreasing ϵ has little influence on the query complex-

ity. Look at the neural network 2048-4-1 again. When ϵ decreases from 10−12

to 10−14, the number of queries only increases from 223.32 to 223.51. Besides,
when n (i.e., the number of neurons) is large, ϵ almost does not influence the
computation complexity, since ϵ only influences Steps 1 and 2 (see Section 4),
while the computation complexity is mainly determined by other steps (refer to
Appendix B). When n is small, the practical runtime is determined by the query
complexity, then decreasing ϵ also has little influence on the runtime.

23

Choosing an appropriate ϵ is simple. In our experiments, we find that a
smaller ϵ should be used, when the prediction matching ratio estimated over 106

random inputs is not 100%, and the gap (e.g., 0.02%, see the third or fifth row)
is not negligible.

7.3 Experiments on Trained Neural Networks

The MNIST and CIFAR10 Dataset. MNIST (respectively, CIFAR10) is
one typical benchmarking dataset used in visual deep learning. It contains ten-
class handwriting number gray images [12] (resp., real object images in a realistic
environment [19]). Each of the ten classes, i.e., ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’,
‘8’, and ‘9’ (resp., airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck), contains 28 × 28 pixel gray images (resp., 32 × 32 pixel RGB images),
totaling 60000 (resp., 50000) training and 10000 (resp. 10000) testing images.

Neural Network Training Pipelines. When classifying different classes of
objects, the decision boundary of trained neural networks will be different. To
fully verify our model extraction attack, for MNIST (respectively, CIFAR10),
we divide the ten classes into five groups and build a binary classification neural
network for each group. All the neural networks share the same architecture
d0-2-1, where d0 = 28× 28 for MNIST (respectively, 32× 32× 3 for CIFAR10).
On the MNIST and CIFAR10 datasets, we perform a standard rescaling of the
pixel values from 0 · · · 255 to 0 · · · 1. For the model training, we choose typical
settings (the loss is the cross-entropy loss; the optimizer is standard stochastic
gradient descent; batch size 128). The first four columns of Table 2 summarize
a detailed description of the neural networks to be attacked in this section.

Experiment Results. The last four columns of Table 2 summarize the ex-
periment results. Our extraction attack still achieves good performance when an
appropriate precision ϵ is used, which further verifies its effectiveness.

The experimental results presented in Table 1 and Table 2 show that the
attack performance (i.e., the value of ε and max|θ− θ̂|) is related to the precision
ϵ and the properties of the decision boundary. However, we do not find a clear
quantitative relationship between the attack performance and the precision ϵ
(or some unknown properties of the decision boundary). Considering that the
unknown quantitative relationships do not influence the verification of the model
extraction attack, we leave the problem of exploring the unknown relationships
as a future work.

8 Conclusion

In this paper, we have studied the model extraction attack against neural net-
work models under the hard-label setting, i.e., the adversary only has access to
the most likely class label corresponding to the raw output of neural network
models. We propose new model extraction attacks that theoretically achieve

24

Table 2. Experiment results on neural networks trained on MNIST or CIFAR10.

task architecture accuracy parameters ϵ Queries (ε, 0) max|θ − θ̂|
‘0’ vs ‘1’ 784-2-1 0.9035 1573 10−12 220.11 2−16.39 2−17.85

10−14 220.32 2−20.56 2−22.81

‘2’ vs ‘3’ 784-2-1 0.8497 1573 10−12 220.11 2−7.00 2−7.80

10−14 220.32 2−14.32 2−15.06

‘4’ vs ‘5’ 784-2-1 0.8570 1573 10−12 220.02 2−8.47 2−8.82

10−14 220.32 2−15.62 2−15.81

‘6’ vs ‘7’ 784-2-1 0.9290 1573 10−12 220.11 2−7.02 2−7.93

10−14 220.32 2−12.00 2−12.91

‘8’ vs ‘9’ 784-2-1 0.9501 1573 10−12 220.11 2−10.58 2−11.62

10−14 220.32 2−19.63 2−21.72

airplane vs 3072-2-1 0.8120 6149 10−12 222.08 2−4.84 2−7.48

automobile 10−14 222.29 2−12.41 2−15.20

bird vs cat 3072-2-1 0.6890 6149 10−12 222.07 2−8.37 2−9.80

10−14 222.29 2−12.27 2−14.73

deer vs dog 3072-2-1 0.6870 6149 10−12 222.01 2−9.55 2−13.25

10−14 222.22 2−13.19 2−15.82

frog vs horse 3072-2-1 0.8405 6149 10−12 222.08 2−9.56 2−10.71

10−14 222.29 2−13.58 2−15.58

ship vs truck 3072-2-1 0.7995 6149 10−12 222.08 2−8.63 2−8.90

10−14 222.29 2−12.95 2−13.02

max|θ − θ̂|: the maximum extraction error of model parameters.
accuracy: classification accuracy of the victim model fθ.
for saving space, prediction matching ratios are not listed.

functionally equivalent extraction. Practical experiments on numerous neural
network models have verified the effectiveness of the proposed model extraction
attacks. To the best of our knowledge, this is the first time to prove with practi-
cal experiments that it is possible to achieve functionally equivalent extraction
against neural network models under the hard-label setting.

The future work will mainly focus on the following aspects:

– The (computation and query) complexity of our model extraction attack
remains high, which limits the application to neural networks with a large
number of neurons. Reducing the complexity is an important problem.

– In this paper, to recover the weight vector of the j-th neuron in layer i, we
require that in layer i, only the j-th neuron is active. However, such a model
activation pattern may not occur in some cases. Then how to recover the
weight vector of this neuron based on other model activation patterns would
be a vital step towards better generality.

– Explore possible quantitative relationships between the precision ϵ (or some

unknown properties of the decision boundary) and ε (or max|θ − θ̂|).
– Extend the extraction attack to the case of vector outputs, i.e., the output

dimensionality exceeds 1.
– Develop extraction attacks against other kinds of neural network models.

25

Acknowledgments. We would like to thank Adi Shamir for his guidance.
We would like to thank the anonymous reviewers for their detailed and help-
ful comments. This work was supported by the National Key R&D Program
of China (2018YFA0704701, 2020YFA0309705), Shandong Key Research and
Development Program (2020ZLYS09), the Major Scientific and Technological
Innovation Project of Shandong, China (2019JZZY010133), the Major Program
of Guangdong Basic and Applied Research (2019B030302008), the Tsinghua
University Dushi Program, and the Ministry of Education in Singapore under
Grant RG93/23. Y. Chen was also supported by the Shuimu Tsinghua Scholar
Program.

A Proof of Lemma 1

We prove Lemma 1 by Mathematical Induction.

Proof. When i = 2, according to Lemma 1, the extracted weight vector Â
(2)
j , j ∈

{1, · · · , d2} should be

Â
(2)
j =

w(2)
j,1 ×

∣∣∣∑d0

v=1 w
(1)
1,vC

(0)
v,1

∣∣∣∣∣∣∑d1

v=1 w
(2)
j,vC

(1)
v,1

∣∣∣ , · · · ,
w

(2)
j,d1

×
∣∣∣∑d0

v=1 w
(1)
d1,v

C
(0)
v,1

∣∣∣∣∣∣∑d1

v=1 w
(2)
j,vC

(1)
v,1

∣∣∣


=

 w
(2)
j,1 ×

∣∣∣w(1)
1,1

∣∣∣∣∣∣∑d1

v=1 w
(2)
j,vC

(1)
v,1

∣∣∣ , · · · ,
w

(2)
j,d1

×
∣∣∣w(1)

d1,1

∣∣∣∣∣∣∑d1

v=1 w
(2)
j,vC

(1)
v,1

∣∣∣
 .

(33)

Note that C
(0)
1,1 = 1 and C

(0)
v,1 = 0 for v ∈ {2, · · · , d0} .

Besides, we have

C(1) = I
(1)
P A(1) = A(1) =

[
A

(1)
1 , · · · , A(1)

d0

]
,

Ĉ(1) = I
(1)
P Â(1) = Â(1) =

 A
(1)
1∣∣∣w(1)
1,1

∣∣∣ , · · · ,
A

(1)
d0∣∣∣w(1)
d0,1

∣∣∣
 .

(34)

where A
(1)
v =

[
w

(1)
v,1, · · · , w

(1)
v,d0

]
, C

(1)
v,u = w

(1)
v,u and Ĉ

(1)
v,u =

w(1)
v,u∣∣∣w(1)
v,1

∣∣∣ .
Look at the system of linear equations presented in Eq. (26). Now, the system

of linear equations is transformed into

∑d1

v=1 ŵ
(2)
j,v Ĉ

(1)
v,1 =

∑d1
v=1 w

(2)
j,vC

(1)
v,1∣∣∣∑d1

v=1 w
(2)
j,vC

(1)
v,1

∣∣∣
...∑d1

v=1 ŵ
(2)
j,v Ĉ

(1)
v,d0

=
∑d1

v=1 w
(2)
j,vC

(1)
v,d0∣∣∣∑d1

v=1 w
(2)
j,vC

(1)
v,1

∣∣∣
(35)

26

when d0 ⩾ d1, by solving the system, it is expected to obtain

Â
(2)
j =

 w
(2)
j,1

∣∣∣w(1)
1,1

∣∣∣∣∣∣∑d1

v=1 w
(2)
j,vC

(1)
v,1

∣∣∣ , · · · ,
w

(2)
j,d1

∣∣∣w(1)
d1,1

∣∣∣∣∣∣∑d1

v=1 w
(2)
j,vC

(1)
v,1

∣∣∣ ,
 , (36)

which is consistent with the expected value in Eq. (33).
Next, consider the recovery of the weight vector of the j-th neuron in layer

i, and assume that the weights Â(1), · · · , Â(i−1) as shown in Lemma 1 have been
obtained. As a result, we have

C
(i−2)
j = A

(i−2)
j A(i−3) · · ·A(1), C

(i−1)
j = A

(i−1)
j A(i−2) · · ·A(1),

Ĉ
(i−2)
j = Â

(i−2)
j Â(i−3) · · · Â(1) =

C
(i−2)
v∣∣∣∑di−3

v=1 w
(i−2)
j,v C

(i−3)
v,1

∣∣∣ ,
Ĉ

(i−1)
j = Â

(i−1)
j Â(i−2) · · · Â(1) =

C
(i−1)
v∣∣∣∑di−2

v=1 w
(i−1)
j,v C

(i−2)
v,1

∣∣∣ .
(37)

Now, the system of linear equations in Eq. (26) is transformed into

∑di−1

u=1 ŵ
(i)
j,u

C
(i−1)
u,1∣∣∣∑di−2

v=1 w
(i−1)
u,v C

(i−2)
v,1

∣∣∣ =
∑di−1

u=1 w
(i)
j,uC

(i−1)
u,1∣∣∣∑di−1

u=1 w
(i)
j,uC

(i−1)
u,1

∣∣∣
...∑di−1

u=1 ŵ
(i)
j,u

C
(i−1)
u,d0∣∣∣∑di−2

v=1 w
(i−1)
u,v C

(i−2)
v,1

∣∣∣ =
∑di−1

u=1 w
(i)
j,uC

(i−1)
u,d0∣∣∣∑di−1

u=1 w
(i)
j,uC

(i−1)
u,1

∣∣∣
(38)

When d0 ⩾ di−1, by solving this system, it is expected to obtain

Â
(i)
j =

[
ŵ

(i)
j,1, · · · , ŵ

(i)
j,di−1

]
=

w(i)
j,1 ×

∣∣∣∑di−2

v=1 w
(i−1)
1,v C

(i−2)
v,1

∣∣∣∣∣∣∑di−1

v=1 w
(i)
j,vC

(i−1)
v,1

∣∣∣ , · · · ,
w

(i)
j,di−1

×
∣∣∣∑di−2

v=1 w
(i−1)
di−1,v

C
(i−2)
v,1

∣∣∣∣∣∣∑di−1

v=1 w
(i)
j,vC

(i−1)
v,1

∣∣∣
 ,

which is consistent with the expected value in Eq. (27).

B Complexity of Hard-Label Model Extraction Attacks

For the k-deep neural network extraction attack, its complexity is composed of
two parts: Oracle query complexity and computation complexity. Suppose that
the number of neurons is n =

∑k
i=1 di. Its input size, i.e., the size of x is d0.

And k is the number of hidden layers. The precision adopted by binary search
is ϵ (refer to Section 6.1).

27

Oracle Query Complexity. For the k-deep neural network extraction attack,
we only query the Oracle in Steps 1 and 2 (see Section 4).

In Step 1, if cn×2n decision boundary points are collected, then the number
of queries to the Oracle is cϵ × cn × 2n, where cϵ is a factor determined by the
precision ϵ, and cn is a small factor defined by the attacker. In Step 2, for each
decision boundary point x collected in Step 1, to recover the corresponding affine
transformation (i.e., ΓP and BP), we need to collect another d0 − 1 decision
boundary points. Therefore, the times of querying the Oracle in this step is
cϵ×cn×2n× (d0−1). Based on the above analysis, the Oracle query complexity
of our k-deep neural network extraction attack is cϵ×cn×2n×d0. Note that cϵ is

proportional to log
1
ϵ
2 . Thus, the query complexity is about O

(
d0 × 2n × log

1
ϵ
2

)
.

Computation Complexity. For the k-deep neural network extraction attack,
when n is large, most computations are occupied by recovering neural network
parameters, i.e., Steps 3 and 4 (see Section 4). Suppose that there are N ⩽
cn × 2n decision boundary points used to recover neural network parameters
after filtering duplicate affine transformations in Step 2.

In Step 3, to recover the weight vector of the j-th neuron in layer i where
i ∈ {2, · · · , k+1}, we need to solve a system of linear equations. For convenience,
let us ignore the difference in the sizes of the different systems of linear equations.
Then, to recover all the weights A(i), a total of n + 1 − d1 =

∑k+1
i=2 di systems

of linear equations need to be solved. In Step 4, to recover all the biases b(1),
only one system of linear equations needs to be solved. Therefore, to obtain an
extracted model, we need to solve n+ 2− d1 systems of linear equations.

There are two loops in the extraction attack. First, we need to select n + 1
out of N decision boundary points each time. More concretely, to recover the
weights A(i) in layer i, we choose di decision boundary points. Then the number
(denoted by l1) of possible cases is

l1 =
(
N
d1

)
×
(
N−d1

d2

)
× · · · ×

(N−
∑k−1

i=1 di

dk

)
×
(
N−n

1

)
≈ Nn+1, for N ≫ n.

Second, we need to guess k signs when recovering all the weights, i.e., there are
2k cases.

Thus, the computation complexity is aboutO
(
l1 × 2k × (n+ 2− d1)

)
. When

an appropriate precision ϵ (i.e., ϵ is small) is adopted, we have N ≈ H < 2n,
where H is the number of possible model activation patterns (refer to Lemma 2).
Then, we further have

l1 × 2k × (n+ 2− d1) ≈ Nn+1 × 2k × n ≈ n× 2n(n+1)+k. (39)

Thus, the computation complexity is about O
(
n× 2n

2+n+k
)
.

C Extraction on 1-Deep Neural Networks

The parameters of the extracted 1-deep neural network are as follows.

28

Â
(1)
i =

[
ŵ

(1)
i,1 , · · · , ŵ

(1)
i,d0

]
=

 w
(1)
i,1∣∣∣w(1)
i,1

∣∣∣ , · · · ,
w

(1)
i,d0∣∣∣w(1)
i,1

∣∣∣
 , i ∈ {1, · · · , d1},

b̂(1) = [̂b
(1)
1 , · · · , b̂(1)d1

] =

 b
(1)
1∣∣∣w(1)
1,1

∣∣∣ , · · · ,
b
(1)
d1∣∣∣w(1)
d1,1

∣∣∣
 ,

Â(2) =
[
ŵ

(2)
1 , · · · , ŵ(2)

d1

]
=

 w
(2)
1

∣∣∣w(1)
1,1

∣∣∣∣∣∣∑d1

i=1 w
(2)
i w

(1)
i,1

∣∣∣ , · · · ,
w

(2)
d1

∣∣∣w(1)
d1,1

∣∣∣∣∣∣∑d1

i=1 w
(2)
i w

(1)
i,1

∣∣∣
 ,

b̂(2) =
b(2)∣∣∣∑d1

i=1 w
(2)
i w

(1)
i,1

∣∣∣ .

(40)

Fig. 4 shows a diagram of a victim model (2-2-1) and the extracted model.

Fig. 4. Left: the victim model fθ. Right: the extracted model fθ̂.

References

1. Batina, L., Bhasin, S., Jap, D., Picek, S.: CSI NN: reverse engineering of neu-
ral network architectures through electromagnetic side channel. In: Heninger, N.,
Traynor, P. (eds.) USENIX Security 2019. pp. 515–532. USENIX Association

2. Blum, A., Rivest, R.L.: Training a 3-node neural network is np-complete. In: Han-
son, S.J., Remmele, W., Rivest, R.L. (eds.) Machine Learning: From Theory to
Applications - Cooperative Research at Siemens and MIT. LNCS, vol. 661, pp.
9–28. Springer (1993)

3. Canales-Mart́ınez, I., Chávez-Saab, J., Hambitzer, A., Rodŕıguez-Henŕıquez, F.,
Satpute, N., Shamir, A.: Polynomial time cryptanalytic extraction of neural net-
work models. IACR Cryptol. ePrint Arch. p. 1526 (2023)

4. Carlini, N., Jagielski, M., Mironov, I.: Cryptanalytic extraction of neural network
models. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172,
pp. 189–218. Springer

29

5. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks.
In: SP 2017. pp. 39–57. IEEE Computer Society

6. Dubey, S.R., Singh, S.K., Chaudhuri, B.B.: Activation functions in deep learning:
A comprehensive survey and benchmark. Neurocomputing 503, 92–108 (2022)

7. Fefferman, C.: Reconstructing a neural net from its output. Revista Matematica
Iberoamericana 10, 507–555 (1994)

8. Galstyan, A., Cohen, P.R.: Empirical comparison of ”hard” and ”soft” label prop-
agation for relational classification. In: Blockeel, H., Ramon, J., Shavlik, J.W.,
Tadepalli, P. (eds.) ILP 2007. LNCS, vol. 4894, pp. 98–111. Springer

9. Ganju, K., Wang, Q., Yang, W., Gunter, C.A., Borisov, N.: Property inference
attacks on fully connected neural networks using permutation invariant represen-
tations. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) CCS 2018. pp.
619–633. ACM

10. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for
efficient neural network. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M.,
Garnett, R. (eds.) NeurIPS 2015. pp. 1135–1143

11. Jagielski, M., Carlini, N., Berthelot, D., Kurakin, A., Papernot, N.: High accuracy
and high fidelity extraction of neural networks. In: Capkun, S., Roesner, F. (eds.)
USENIX Security 2020. pp. 1345–1362. USENIX Association

12. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

13. Long, C., Collins, R., Swears, E., Hoogs, A.: Deep neural networks in fully con-
nected CRF for image labeling with social network metadata. In: WACV 2019. pp.
1607–1615. IEEE

14. Lowd, D., Meek, C.: Adversarial learning. In: Grossman, R., Bayardo, R.J., Ben-
nett, K.P. (eds.) SIGKDD 2005. pp. 641–647. ACM

15. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann ma-
chines. In: Fürnkranz, J., Joachims, T. (eds.) ICML, 2010. pp. 807–814. Omnipress

16. Oliynyk, D., Mayer, R., Rauber, A.: I know what you trained last summer: A
survey on stealing machine learning models and defences. ACM Comput. Surv.
55(14s), 324:1–324:41 (2023)

17. Perazzi, F., Wang, O., Gross, M.H., Sorkine-Hornung, A.: Fully connected object
proposals for video segmentation. In: ICCV 2015. pp. 3227–3234. IEEE Computer
Society

18. Rolnick, D., Kording, K.P.: Reverse-engineering deep relu networks. In: ICML 2020.
Proceedings of Machine Learning Research, vol. 119, pp. 8178–8187. PMLR

19. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: A large data set
for nonparametric object and scene recognition. IEEE Trans. Pattern Anal. Mach.
Intell. 30(11), 1958–1970 (2008)

20. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine
learning models via prediction apis. In: Holz, T., Savage, S. (eds.) USENIX Security
2016. pp. 601–618. USENIX Association

30

	Hard-Label Cryptanalytic Extraction of Neural Network Models

