
A Note on Ligero and Logarithmic Randomness

Guillermo Angeris∗

gangeris@baincapital.com

Alex Evans
aevans@baincapital.com

Gyumin Roh
min@succinct.xyz

September 2024

Abstract

We revisit the Ligero proximity test and its logarithmic randomness variant in the
framework of [EA23]. We also show a simple proof that improves the soundness error
of the original logarithmic randomness construction of [DP23] by a factor of two. This
note was originally given as a presentation in ZK Summit 11.

Introduction

In this short note, we will make use of the framework of [EA23] to explain the Ligero [AHIV17]
protocol and its variants, such as the ones presented in [DP23]. In particular, we will show,
using this framework, that Ligero can be viewed as a simple protocol that proves that a
matrix-vector product was correctly performed for an ahead-of-time fixed, but otherwise
unknown, matrix. (We note this is already shown in [AHIV17], but we focus on this as its
main use case.) We then give a self-contained and short proof of the logarithmic randomness
extension constructed first by [DP23], which allows for slightly more structured randomness.
Our proof in this note slightly improves the error probability and uses the tools of [EA23].

1 Notation and conventions

We use the same notation and conventions as [EA23], which we quickly review here. For
(much) more, including proofs of these statements, see [EA23, §1].

Probabilistic implications. Given some statements Pr and Qr′ each depending on some
random variables r and r′, we say that

Pr =⇒
p

Qr′ ,

∗Authors are listed in alphabetical order.

1

if Pr(Pr∧¬Qr′) ≤ p, where we call p the error probability (sometimes known as the soundness
error). This is a relaxation of traditional logic, which is the case where the error probability
p = 0. Note that the distribution from which r and r′ are drawn is otherwise arbitrary
and is specified in the text. (In almost all cases, we will either have r′ = r, or r and r′

independently drawn.) A simple exercise shows that

Pr =⇒
p

Qr′ and Qr′ =⇒
p′

Tr′′ ,

then
Pr =⇒

p+p′
Tr′′ ,

where we make no assumptions about the distribution from which r, r′, and r′′ are drawn.
In general, we sometimes call probabilistic implications tests since they greatly strengthen
our belief about the conclusion, but do not guarantee it; i.e., they are a type of statistical
test about an object which we might not have direct access to.

1.1 Linear algebra

All linear algebra in this note will be over some finite field F.

Basic results. We will only rely on two important results from linear algebra over finite
fields. The first is that any vector (sub)space V ⊆ Fm has a basis which forms the columns
of a matrix T ∈ Fm×n such that, for every vector y ∈ V , there is a unique x ∈ Fn such that

y = Tx.

(In this case n is often called the dimension of the subspace V .) We write the range of T as
R(T) which is the set of all linear combination of the columns of T . The fact above can then
be restated as: for any subspace V ⊆ Fm, there exists a matrix T ∈ Fm×n with linearly-
independent columns such that R(T) = V . The second fact is that, if some matrix T has
linearly-independent columns then it is injective. As a reminder, T has linearly independent
columns if

Tx = 0 implies x = 0.

Such a matrix T must be injective since, if Tx = Ty, then

T (x− y) = 0 implies x = y.

Weight. We will also define the (Hamming) weight of a vector x ∈ Fn as

∥x∥ = |{i = 1, . . . , n | xi ̸= 0}|.

In English: the weight of a vector x, written ∥x∥, is the number of nonzero entries of x. Note
that the weight ∥ · ∥ is almost, but not quite, a norm as it satisfies the triangle inequality:
for x, y ∈ Fm we have

∥x+ y∥ ≤ ∥x∥+ ∥y∥,

2

definiteness,
∥x∥ = 0 if, and only if, x = 0,

and 0-homogeneity,
∥αx∥ = ∥x∥,

for any nonzero α ∈ F. (The weight is not quite a norm since norms must satisfy 1-
homogeneity.)

Weight of a matrix. It will be very useful in what follows to overload notation slightly
and define the weight for a matrix X ∈ Fm×n, which we write

∥X∥ = number of nonzero rows of X.

This definition also satisfies the triangle inequality since, for X, Y ∈ Fm×n,

∥X + Y ∥ ≤ ∥X∥+ ∥Y ∥,

along with definiteness and 0-homogeneity. It also satisfies the following two useful facts.
First, for any vector z ∈ Fn, we have that

∥Xz∥ ≤ ∥X∥. (1)

(The symbols here must be parsed very carefully: on the left hand side we are taking the
weight of a vector Xz, resulting from a matrix-vector product, while on the right hand side
we are taking the weight of a matrix X as defined above.) Second, if we interpret some n
vector x ∈ Fn as an n-by-1 matrix, then the definition of weight for the vector x and its
corresponding n-by-1 matrix coincide exactly. This justifies overloading the notation ∥ · ∥ to
stand for both the matrix and the vector cases.

Weight of a set. For convenience, we define the weight of a set S (composed of either
vectors or matrices) to be

∥S∥ = min
x∈S

∥x∥.

In other words, the weight of a set S is the weight of its ‘smallest’ element. If we write
z − S = {z − x | x ∈ S} for the (Minkowski) difference of z and S, then we can interpret

∥z − S∥,

as the distance between the vector z and its ‘nearest’ vector in the subset S.

Subspace matrices. Finally, given a vector subspace V ⊆ Fm, we write V n for the set
of m × n matrices whose columns lie in V . Since this is a subspace, note that any linear
combination of matrices in V n is also a matrix with columns in V .

3

1.2 Error correcting codes

We will not use any deep results from error correcting codes in this note except for two basic
definitions.

Distance. We define the distance d ≥ 0 of a code (which we write as a matrix G ∈ Fm×n)
to be

d = min
x ̸=0

∥Gx∥.

(Note that the matrix G is injective if, and only if, its distance d > 0.) We similarly define
the distance d of a vector subspace V ⊆ Fm as the smallest nonzero element in the subspace

d = min
v∈V \{0}

∥v∥.

Note that when G has linearly independent columns, the distance of G (as a matrix/code)
and the distance of its range R(G) (as a subspace) are the same. One useful consequence of
this definition is the fact that, given two vectors x, y ∈ Fn if we can show, for some matrix
G with distance d > 0 that

∥G(x− y)∥ < d, (2)

then, necessarily, we know that x− y = 0, or that x = y, since G(x− y) = 0 and G must be
injective since its distance d is strictly positive.

Distance to a subspace. We will constantly make use of the following (nearly-obvious)
fact in the proof of this paper. Let V be a subspace with distance at least d, then, any
matrix X ∈ V n with columns in V , which has weight smaller than d,

∥X∥ < d,

must be the zero matrix, X = 0. The proof follows from applying the fact that, if some
vector x ∈ V has weight smaller than d then x = 0, to each column of X. One consequence
of this fact is that, if any matrix Y ∈ Fm×n satisfies

∥Y − V n∥ < d/2,

then there exists a unique matrix X ∈ V n with

∥Y −X∥ < d/2. (3)

This is an easy consequence since, letting X ′ ∈ V n satisfy ∥Y −X ′∥ < d/2 implies that

∥X −X ′∥ ≤ ∥Y −X∥+ ∥Y −X ′∥ < d

so, since X − X ′ ∈ V n, we know that X − X ′ = 0, or that X = X ′. This fact is often
called ‘unique decoding’ since there exists a unique matrix in V n closest to Y if the distance
between Y and V n is less than d/2.

4

1.3 Sparsity checks

An important ‘primitive’ we will use repeatedly in what follows is the ability to probabilis-
tically check that two vectors are ‘close’ under the norm ∥ · ∥. In particular, to check that
two vectors x, y ∈ Fm are no further apart than, say, some distance q, it suffices to randomly
sample a few entries of x and y, and verify that these entries are equal. We can write this
in the language of probabilistic implications as

(x− y)S = 0 =⇒
p

∥x− y∥ < q, (4)

where

p ≤
(
1− q

m

)|S|
, (5)

and S ⊆ {1, . . . ,m} is a set of uniformly randomly sampled indices of x and y. Here, |S|
denotes the cardinality of S; i.e., the number of entries that were randomly sampled and
checked. In particular, for any given probability p, this implies that the number of checks
|S| required to achieve this error probability p is no more than

|S| ≤
⌈
m

q
log

(
1

p

)⌉
. (6)

Here, we have used the bound that log(1− t) ≤ −t for t < 1.

Discussion. Note that the above implication is only in one direction: in particular, this
implication does not say that, if ∥x−y∥ < q, then (x−y)S = 0 with high probability. (Indeed,
if ∥x− y∥ = q− 1, then the probability of failure is roughly the same as if ∥x− y∥ = q, even
though the conclusion is satisfied in the former.) This plays particularly nicely in the case
that x and y are known to belong to a subspace V with some distance d. In this case, x and y
are equal only when they differ in less than d entries. If so, then it suffices only to randomly
sample entries of x and y and check equality of these randomly sampled entries. If these
checks all pass, then we know that, with high probability, not only are these vectors close,
but, in fact, they must be equal everywhere. This ‘amplification of differences’ is the reason
why error correcting codes are extremely natural in the construction of succinct proofs.

1.4 Interaction model

Throughout this note we will use one simple interaction model. In this model, we send and
receive vectors, and we are allowed to access only a small number of rows of some fixed, but
otherwise opaque, matrix X ∈ Fm×n. These models can be practically realized in a number
of ways: for example, one could use a Merkle commitment to commit to the rows of X,
publish this commitment, and only ‘open’ up a small number of rows, or one could provide
X to a trusted third party who only allows a bounded number of queries.

5

Matrix-vector products. An important consequence of this interaction model is that we
can efficiently query a small number of indices of the matrix-vector product Xv: if we wish
to query, say entry i of Xv, it suffices to query the ith row of X, which we will write as x̃T

i

and take the inner product with v since

(Xv)i = x̃T
i v. (7)

By assumption on the interaction model, it is easy to query a specific row of the matrix X,
so this computation is easy to perform. At a high level, one of our goals will be to make sure
that the number of rows we query of the matrix X is small—much smaller than the total
number of rows m of X.

Distance of a matrix-vector product. Using the above observation, it is not hard to
see that, in this interaction model, we can easily certify that the matrix-vector product Xv
is not ‘too far’ from a given vector, say y, using the sparsity check presented in (4). To do
this, pick a random subset S ⊆ {1, . . . ,m} and then simply verify that

(Xv)S = yS,

which will imply that ∥Xv − y∥ ≤ q with error probability no more than that given in (5).
From the observation provided in (7), we know that to compute (Xv)S, it suffices only to
request rows S of X, meaning that we only need |S| queries to verify this statement. As an
illustrative example, in what follows, q will be roughly m/3 and m will be reasonably large,
roughly m ∼ 210. Making the probability of failure very small, say p ∼ 2−80, means that the
number of rows we need to query is no more than around

⌈3 log(280)⌉ ≈ 167,

queries, which is much smaller than the näıve deterministic test requiring 2m/3 queries,
which would be on the order of ∼ 210!

2 Proximity testing

The second tool we will use in this note is that of a proximity test. In a proximity test, we
are provided with some vector space V ⊆ Fm with distance d > 0, and we would like to
make sure that the columns of some matrix X ∈ Fm×n are ‘close’ to the vector space; i.e.,
we would like to verify that

∥X − V n∥ ≤ q, (8)

for some proximity parameter q > 0. Note that, if q < d/2 and G is injective and generates
the subspace V (i.e., thatR(G) = V) then we immediately know that there exists a unique(!)
matrix X̃ such that

∥X −GX̃∥ ≤ q.

We will show that there is a very simple probabilistic implication that ensures (8) holds with
high probability.

6

Succinct proximity test. The succinct test is as follows. Let G′ ∈ Fm′×n be a code with
distance d′ > 0, and let g′r

T be its rth row. Then, the following probabilistic implication is
true:

∥Xg′r − V ∥ ≤ q =⇒
p

∥X − V n∥ ≤ q, (9)

where the row index r is uniformly randomly chosen from 1, . . . ,m′, while the error proba-
bility p depends on the distance of G′ and the proximity parameter q. We give a concrete
bound on p in what follows. Note that, at no point, does the whole matrix G′ (which may
be extremely large) ever have to be formed: it suffices only to be able to form a specific
(randomly sampled) row of G′.

Discussion. We can write the test of (9) in English: to verify that all of the columns of
some matrix X are q-close to a vector space V , it suffices to verify that a structured random
linear combination of the columns of X (with the randomly chosen coefficients given by g′r)
is q-close to the vector space V , so long as we are willing to accept a probability of error no
larger than p. We may view this as a succinct proximity test as we have reduced checking
that all of the columns of some matrix X are q-close to a vector subspace to checking that
a single vector is q-close to a vector subspace, while potentially taking on some (small)
probability of error, p, which we bound next.

This note. In this note, we will show that when the code matrix G′ can be written as

G′ = G̃⊗ G̃⊗ · · · ⊗ G̃︸ ︷︷ ︸
k times

, (10)

where G̃ ∈ F|F|×2 is the matrix whose rows are of the form (1 − t, t) for each t ∈ F, the
proximity test (9) satisfies

p ≤ k(q + 1)

|F|
,

for any q < d/3. This fact was first discovered by [DP23] and used to construct a protocol
to succinctly evaluate a multilinear polynomial at a given point. The bound found in that
work, p ≤ 2kq/|F|, is slightly weaker, by a factor of around 2, from the bound above. (While
writing this note, the bound was improved to the case of q < d/2 when the vector space V
has certain properties, with slightly worse probability bound, p ≤ kn/|F|, by [DG24,DP24]
using techniques from the proof presented below, originally from our presentation [EA24] and
private communication.) Our proof of the tighter bound is short, fitting in about a page,
and relatively straightforward. For now, we will take the above test (9) as given, describe the
protocol, and prove this bound for p later in §4. We will use generic parameters to describe
the protocol in what follows.

Extension. We note that the proof provided also has an immediate extension to the
slightly more general case where the matrices G̃ are not all the same and are otherwise

7

arbitrary codes. In this case, if we have matrices G̃i ∈ Fmi×2 for i = 1, . . . , k, each with
distance di > 0, and G′ = G̃1 ⊗ · · · ⊗ G̃k, then

p ≤ (q + 1)
k∑

i=1

(
1− di

mi

)
.

3 The protocol

In this section we give a simple explanation of Ligero [AHIV17], using the framework
of [EA23], as a protocol that can be used to prove that the matrix-vector product for a
given matrix X and vector v was correctly computed, up to some (very small) error prob-
ability. For the remainder of this section, we will set V ⊆ Fm to be some vector subspace
with generator matrix G ∈ Fm×k with distance d > 0; i.e., the vector space is the range of
the matrix, V = R(G).

3.1 High level description

We will give a short description of two conditions, which, once verified, show that a certain
matrix-vector product has been correctly performed. We will then use these conditions to
construct a protocol which allows a player, who we call the prover, to convince another, who
we call the verifier, that any desired matrix-vector product has been correctly computed.
More interestingly, it will allow the verifier to be certain of this with very high probability
while requiring only a very small amount of communication and a relatively small amount
of computation. (Indeed, the amount of communication and computation will be far smaller
than having the prover send the complete matrix so the verifier can compute and then check
the resulting matrix-vector product.)

Conditions. Given a matrix X ∈ Fm×n, if we know its columns are no further than
q < d/2 to the vector space V , i.e.,

∥X − V n∥ ≤ q, (11)

then we know that there exists a unique matrix X̃ ∈ Fk×n such that

∥X −GX̃∥ ≤ q.

(This follows from the discussion in §2.) Intuitively, this condition guarantees that there is
some unique matrix X̃ from which X must have been derived by encoding the columns of
X̃ using G. From (1) we also know that, for any v ∈ Fn,

∥(X −GX̃)v∥ ≤ q, (12)

8

by the definition of the weight of a matrix. Keep this fact in mind as we will use it soon.
Now, if we verify that Xv is closer than (d− q) to some vector y ∈ V , or, equivalently, there
is some vector ỹ ∈ Fk such that Gỹ is close to Xv, we can write

∥Xv −Gỹ∥ < d− q. (13)

Finally, putting it all together, we get

∥GX̃v −Gỹ∥ ≤ ∥(X −GX̃)v∥+ ∥Xv −Gỹ∥ < q + (d− q) = d,

where there first inequality follows from the triangle inequality and we have used observa-
tion (12) and inequality (13) in the strict inequality. Now, since G has distance at least d,
we know that the left hand side, which satisfies

∥G(X̃v − ỹ)∥ < d,

will immediately imply that
X̃v = ỹ. (14)

(This is simply an application of (2) and the surrounding discussion.)

Discussion of conditions. One way of looking at this set of claims is that if we can verify
condition (11) and condition (13), then we immediately know that X̃v = ỹ, where X̃ is the
unique matrix whose encoding is closest to X. Of course, we know that condition (11) can
be succinctly tested using the proximity test of §2, while condition (13), given ỹ and the
ability to query rows of X, is also easily verified using the sparsity check of §1.3. We will use
these two checks to verify both conditions succinctly and give bounds on the probability of
error, leading to a succinct proof of the matrix-vector product (14). We will then show how
to use this to construct a succinct protocol which convinces a verifier that a matrix-vector
product was correctly performed for any given X̃.

3.2 Checks and the final protocol

In this subsection, we outline a simple probability bound on the checks and show how this
results in a protocol, played by two parties, which allows one to show the other that a certain
matrix-vector product was correctly computed, using only a very small number of queries
and a very small amount of computation.

Protocol. The protocol involves two parties: a prover who wishes to show that the matrix-
vector product of some matrix X̃ (known only to the prover) and vector v has been correctly
computed, and a verifier who wishes to check this claim. The steps are as follows:

1. The prover constructs a matrix X = GX̃, which simply encodes the columns of X̃ by
G and commits to the rows of the matrix. (The rows of X are fixed and accessible to
the verifier, who will only query a small number of these rows. This can be practically
achieved via a Merkle commitment to the rows of X.)

9

2. The verifier selects a random row r of G′, denoted g′r, and sends it to the prover. (As
a reminder, the matrix G′ is defined in the proximity test §2.)

3. The prover computes and returns z̃r = X̃g′r.

4. The verifier checks, using the sparsity check in §1.3, whether ∥Xg′r −Gz̃r∥ ≤ q. If this
condition holds, the verifier can conclude that ∥X −GX̃∥ ≤ q, or that X is close to a
correctly encoded matrix, failing with probability no more than p, based on the result
in (9).

5. The verifier sends the desired vector v to the prover to compute the matrix-vector
product.

6. The prover computes and sends back the ‘correct’ matrix vector product ỹ = X̃v.

7. The verifier checks whether ∥Xv − Gỹ∥ < d − q. If this inequality holds, the verifier
concludes that the matrix-vector product X̃v = ỹ has been correctly computed by the
reasoning in §3.1.

In fact, in some practical cases, steps 5-7 are not required, such as when Ligero is used
as a multilinear polynomial commitment scheme, since then we have v = g′r and the result is
given by z̃r, as was originally proposed in [DP23,DP24]. From this description and the proofs
below, it is not hard to see that the same proofs apply and result in less communication and
total work.

Correctness. The fact that the verifier always accepts if the prover is honest is immediate
from the protocol description. If the prover correctly encodes X = GX̃ and commits to this
matrix, then every check passes by definition: the first because Xg′r = Gzr = GX̃g′r so the
sparsity check does not fail, while the second is true for a similar reason.

Soundness. The soundness of this protocol—i.e., the verifier falsely concludes the product
was computed correctly with low probability—follows directly from combining probabilistic
implications and the discussions of §1.3 and §2.

To see this, note the verifier samples r uniformly from 1, . . . ,m′ and a subset S ⊆
{1, . . . ,m} of fixed size |S|, to get

(Xg′r −Gz̃r)S = 0 =⇒
p′

∥Xg′r −Gz̃r∥ ≤ q, (15)

where p′ ≤ (1− (q+1)/m)|S| and the randomness here is over S, with r independent. Since,
by definition of G and V at the beginning of this section, we have Gz̃r ∈ V , then this is the
same as saying

∥Xg′r − V ∥ ≤ ∥Xg′r −Gz̃r∥ ≤ q,

for uniformly randomly sampled r. From §2 we know that

∥Xg′r − V ∥ ≤ q =⇒
p

∥X −GX̃∥ ≤ q, (16)

10

with the randomness again over r uniform from 1, . . . ,m and where X̃ ∈ Fk×n is some
(unique) matrix. From before, p ≤ kq/|F|. Finally, the verifier checks that

(Xv −Gỹ)S′ = 0 =⇒
p′′

∥Xv −Gỹ∥ < d− q, (17)

with p′′ ≤ (1 − (d − q)/m)|S
′|, where S ′ ⊆ {1, . . . ,m} uniformly randomly chosen of fixed

size |S ′|.
From the high level description in §3.1, the conclusions of (15), (16), and (17), and the

basic probabilistic implications, we must have

X̃v = y,

except with probability no more than

p+ p′ + p′′ ≤
(
1− q + 1

m

)|S|

+
k(q + 1)

|F|
+

(
1− d− q

m

)|S′|

. (18)

3.3 Proof size and total work

In this subsection, we compare the total proof size and computational work necessary for both
the prover and the verifier in the ‘näıve’ case where the prover simply sends the complete
matrix X̃ and the verifier computes the matrix-vector product, compared to the succinct
case, where the prover and verifier perform the protocol presented in §3.2.

Näıve proof. A ‘näıve’ proof of this statement would involve sending the complete matrix
X̃ ∈ Fk×n which has a total of kn elements, each of size log(|F|). The verifier simply
computes the complete matrix-vector product X̃v, which takes ∼ kn operations.

Succinct proof. In comparison, set a threshold probability 0 < ε < 1 of failure and set
q = d/3− 1. Using (6) gives

|S| ≥ 3m

d
log

(
1

ε

)
, |S ′| ≥ 3m

2d
log

(
1

ε

)
(19)

samples are sufficient. For now, we assume that the field size |F| is large enough such that
k(q + 1)/|F| ≤ ε. In this case, the total error probability (18) is no more than 3ε, by
construction.

Communication for succinct proof. Following the protocol above, the verifier sends
randomness r of size log2(m

′) (as a reminder, G′ has dimensions m′ × n) and v which is n
field elements. The verifier sends the indices corresponding to the chosen rows S and S ′,
which totals (|S|+ |S ′|) log2(m) bits. (We do not include this in the total as |S| log2(m) ≪ n
for reasonable parameters.) The prover sends back |S| rows of X, each of size m field
elements, committed to by some commitment opening of size, say, C for each row (a similar
thing is true for S ′) along with z̃r and ỹ, which are of size k field elements, each. The total
number of field elements is, from the prover, 2k + Cm(|S|+ |S ′|), while the verifier sends n
field elements (for v) and log2(m

′) bits for the random row of G′.

11

Communication Work

Prover Verifier Prover Verifier

Naı̈ve knF 0 0 kn

Succinct (2k + Cm(|S|+ |S ′|))F nF + log2(m
′) nkm (|S|+ |S ′|)(k + n)

Table 1: Comparison of näıve and succinct protocols in the general setting, where F = log2(|F|).

Communication Work

Prover Verifier Prover Verifier

Naı̈ve n2F 0 0 n2

Succinct 180n log2(n)F nF + log2(m
′) 2n3 360n

Table 2: Comparison of näıve and succinct protocols in the concrete setting.

Computational work for succinct proof. Finally, the total computational work for the
prover comes from computing GX̃ which is around nkm operations for general G (but can
be much lower for more structured matrices G), committing to the result’s rows, which we
assume is much smaller than the nkm operations, and computing the matrix-vector products
of X̃ with g′r and v, which are km ≪ nkm operations each, which means that the total prover
work is around ∼ nkm. The verifier’s work comes from computing |S|+ |S ′| inner products
of rows of X with g′r and v, each of which are a total of k operations, along with computing
|S| + |S ′| inner products of rows of G with z̃r and ỹ, respectively, each of which are a total
of n operations, totaling up to around ∼ (|S| + |S ′|)(k + n) operations. (We assume that
checking the commitment is negligible relative to this number.)

Putting it all together. We can see the results in table 1 for ‘essentially’ general param-
eters m, k, n, and fields F so long as the field size is large enough. For slightly more concrete
parameters, set the matrix dimensions of X̃ to be square, i.e., k = n, and the block size
as m = 2n, such that G ∈ F2n×n. If we use a maximum-distance-separable code, such as a
Reed–Solomon code, we have that d = m − n = n. Setting the parameter ε = e−20 ≈ 2−29

such that the probability of failure is no more than 3ε, we then have that |S| = 120 and
|S ′| = 60. (Here, we have used (19).) Finally, let the commitment be a Merkle commitment
such that C ∼ log2(n). We place these ‘more concrete’ results in table 2. Note that, in this
setting, the succinct protocol has both lower communication and total work for the verifier,
whenever n ≫ 360; indeed, the verifier work only grows linearly(!) in n, the side length of
the square matrix X̃ ∈ Fn×n. In many practical applications, we have n ∼ 210 making the
total communication and verification time considerably smaller than those of the näıve pro-
tocol. In the particular case of a Reed–Solomon code, we also have that the work necessary
for the prover is also much smaller: the matrix G is structured so GX̃ can be computed in

12

∼ n2 log2(n) operations, versus 2n
3, as is the case here.

Discussion. In general, both tables and the corresponding results show a particularly
interesting pattern in succinct proofs: often, the prover has to do some additional work over
the näıve protocol, yet the result is that the succinct proof is considerably smaller than the
näıve proof in both computation for the verifier and total communication. We note that
it is also possible to squeeze out slightly more performance in a number of places, but we
have not done so here. (For example, in the protocol description, S and S ′ are sampled
independently, yet the bound applies even in the case where they are not. Choosing S ′ ⊆ S
reduces the communication overhead, so long as the order of operations ensures that the
prover does not learn S before sending the proposed result ỹ.)

4 Proof of test

In this section, we prove the proximity testing claim given at the end of §2 along with the
provided bounds. In particular, we will show that, letting G′ ∈ F|F|k×2k be the Kronecker
product code of (10), and letting g′r be its rth row, the following probabilistic implication is
true, for any matrix X ∈ Fm×2k and any vector space V ⊆ Fm with distance d > 0:

∥Xg′r − V ∥ ≤ q =⇒
p

∥X − V n∥ ≤ q,

whenever q < d/3 while p ≤ k(q + 1)/|F|. The proof provided in this section was originally
presented by the authors at [EA24], and has been subsequently used in a number of improved
results [DG24] during the preparation of this note.

Proof outline. We will prove the result in two steps. We will show that, given two matrices
X1, X2 ∈ Fm×n then the following probabilistic implication is true:

∥r′X1 + (1− r′)X2 − V n∥ ≤ q =⇒
p′

∥[X1 X2]− V 2n∥ ≤ q, (20)

where r′ ∈ F is uniformly randomly chosen, q < d/3, and p′ ≤ (q+1)/|F|. In other words, if
we take a random linear combination of X1 and X2, and this random linear combination is
q-close to a vector space V , then the matrix formed by concatenating both X1 and X2 must
also be q-close to the vector space. Then, the easy part of the proof follows essentially by
induction and the definition of the Kronecker product. We prove this ‘easy’ part, assuming
the probabilistic implication (20) is true, next.

Proof of second statement. The bound essentially directly follows from the probabilistic
implications given in the introduction and a basic application of induction. First, note that

g′r = (1− r1, r1)⊗ (1− r2, r2)⊗ · · · ⊗ (1− rk, rk), (21)

13

for r1, . . . , rk ∈ F sampled uniformly and independently. We would like to show that

∥Xg′r − V ∥ ≤ q =⇒
kp′

∥X − V 2k∥ ≤ q, (22)

for any k, where p′ ≤ (q + 1)/|F| as before. Assume the claim is true for k − 1. Note that,
if X = [X1X2] and X1, X2 ∈ Fm×2k−1

, then

Xg′r = ((1− rk)X1 + rkX2)g̃
′
r̃,

where g̃′r̃ is the tensor product (21) with the last term, (1− rk, rk), removed and r = (r̃, rk);
i.e.,

g̃′r̃ = (1− r1, r1)⊗ (1− r2, r2)⊗ · · · ⊗ (1− rk−1, rk−1).

If claim (22) is true for k − 1, then we have that, for any rk ∈ F:

∥((1− rk)X1 + rkX2)y
′
r̃ − V ∥ ≤ q =⇒

(k−1)p
∥(1− rk)X1 + rkX2 − V 2k−1∥ ≤ q,

with r̃ ∈ Fk−1 uniformly and independently sampled. But, from the original claim (20), we
know

∥(1− rk)X1 + rkX2 − V 2k−1∥ ≤ q =⇒
p

∥[X1 X2]− V 2k∥ ≤ q,

for rk ∈ F uniformly sampled, so we recover the final result that p ≤ kp′ ≤ k(q + 1)/|F|, by
chaining the probabilistic implications.

4.1 Proof of the first statement

Here, we prove the first statement given in the general proof outline (20).

Outline. The proof’s main goal will be to reduce this check to the matrix sparsity check
of [EA23, §3.2.2], and we provide a simple, self-contained proof of the special case used here
in appendix A. Now, let R be the set of r′ ∈ F such that ∥(1− r′)X1+ r′X2−V n∥ ≤ q, and,
for notational convenience, define

Zr′ = (1− r′)X1 + r′X2, (23)

for every r′ ∈ F. We can then rewrite the set R to be R = {r′ ∈ F | ∥Zr′ − V n∥ ≤ q}. The
first part of the proof will be to show that, given two elements r′, r′′ ∈ R with r′ ̸= r′′, then
we can always write the error matrix of Zr̄ for some other index r̄ ∈ R as a (fixed) linear
combination of the errors in Zr′ and Zr′′ . The second part will then show that if |R| > q+1,
then it must be the case that there are at most q errors in the combined matrix [Zr′ Zr′′].
This will mean that any linear combination of the errors of Zr′ and Zr′′ also has at most q
errors. Finally, we then note that we can write the error matrices for X1 and X2 as linear
combinations of the error matrices of Zr′ and Zr′′ , which means that the combined matrix
must also have no more than q errors when |R| > q+1, which completes the claim since this

14

is the same as saying that, if there are more than q errors, the number of entries in which this
implication fails is |R| ≤ q + 1, which leads to the error bound p′ = |R|/|F| ≤ (q + 1)/|F|.

Purely in the probabilistic implication language, we will show that

∥(1−r̄)X1+r̄X2−V n∥ ≤ q =⇒ ∥ar̄ξ+br̄ξ
′∥ ≤ q =⇒

p′
∥[ξ ξ′]∥ ≤ q =⇒ ∥[X1 X2]−V 2n∥ ≤ q,

where ξ and ξ′ are some (in fact, as we will show, the) error matrices corresponding to Zr′

and Zr′′ , respectively with r̄ uniformly drawn from F and ar̄, br̄ ∈ F some coefficients to be
determined later.

Notation. For notational convenience, for any r′ ∈ F, let Yr′ ∈ V n be a closest matrix,
with columns in V , to Zr′ . Define ξr′ = Zr − Yr to be an ‘error’ matrix for index r. There
may be many error matrices ξr′ (as there may be many ‘closest’ matrices Y) but we will only
really make use of these within the unique decoding radius such that ξr′ is unique.

Part one. In the first part of the proof, we will show that the error matrices for an index
r̄ ∈ R, written, from before,

ξr̄ = Zr̄ − Yr̄,

has at most q nonzero rows and can be written as a linear combination of the error matrices
ξ and ξ′ of any two indices r′, r′′ ∈ R with r ̸= r′. (We fix indices r′ and r′′ in what follows
and assume that |R| > 1 since, otherwise, the claim is trivial.) Because these indices will
be fixed for the remainder of the proof, and we will reference their corresponding matrices
often, write

Z = Zr′ and Z ′ = Zr′′ ,

and similarly for Y , Y ′, and ξ, ξ′, where r′ and r′′ are the (fixed) indices above.
Note that, for each r̄ ∈ F, there are coefficients ar̄, br̄ ∈ F such that

(1− r′)ar̄ + (1− r′′)br̄ = 1− r̄

r′ar̄ + r′′br̄ = r̄.

(This linear system has a solution since r′ ̸= r′′.) Because this is true for each r̄ ∈ F we
have, using the definitions of Z and Z ′ along with (23):

Zr̄ = ar̄Z + br̄Z
′.

Now, since r̄ ∈ R, then, by definition of the set R, we know ξr̄ = Zr̄ − Yr̄ has at most q
nonzero rows. Finally, note that

ξr̄ − (ar̄ξ + br̄ξ
′) = ar̄Y + br̄Y

′ − Yr̄,

from the definition of ar̄, br̄, and the ξr. Note that this matrix has no more than 3q < d
nonzero rows, as ξr̄, ξr, and ξr′ each have at most q nonzero rows, by definition of the set
R. On the other hand, the right hand side has columns lying in V—as each of Y , Y ′, and

15

Yr̄ has columns in V—and this subspace V has distance at least d, so the matrix must be
identically zero. The errors therefore satisfy

ξr̄ = ar̄ξ + br̄ξ
′,

for every r̄ ∈ R, which means that

∥ar̄ξ + br̄ξ
′∥ ≤ q

for each r̄ ∈ R.

Part two. We will now show that, if |R| > q + 1, then the matrix [ξ ξ′] has at most q
nonzero entries.

We can view the vector (ar̄, br̄) as the r̄th row of an |F| by 2 generator matrix. We will
show that the distance of this code is at least |F| − 1, which will imply that, by the matrix
sparsity check of appendix A, if |R| > q + 1 then

∥[ξ ξ′]∥ ≤ q.

To see that the generator matrix with rows (ar̄, br̄) has distance |F| − 1, we will show that,
for any r̄ ̸= r̄′, we have [

ar̄ br̄
ar̄′ br̄′

]
x = 0, (24)

then x = 0. (In other words, if any two distinct symbols of the encoding of x are zero, then x
must be zero.) This will immediately imply that either at most one entry of the codeword is
zero, or the whole codeword is equal to zero; i.e., that the code has distance at least |F| − 1.

The proof of this fact is nearly immediate: note that, using the definition of the coeffi-
cients ar̄, br̄, we can write[

ar̄ br̄
ar̄′ br̄′

] [
(1− r′) r′

(1− r′′) r′′

]
=

[
1− r̄ r̄
1− r̄′ r̄′

]
.

Since r′ ̸= r′′ (which are the fixed coefficients of part one) and r̄ ̸= r̄′, then the matrix on
the right hand side has linearly independent columns, while the second matrix on the left
hand side is invertible. This immediately implies that the columns of the first matrix are
also linearly independent, implying (24).

Part three. Finally, when we know that [ξ ξ′] has at most q nonzero rows, then certainly
any linear combination of ξ and ξ′ also has at most q nonzero rows. Since we know that

X1 = aZr + bZr′ ,

for some a, b ∈ F, then the errors of X1, which we write as ξ1, can be written as ξ1 = aξ+bξ′.
(This follows from the fact that q < d/2 so we’re in unique decoding and the nonzero entries

16

of ξ and ξ′ are aligned.) Similarly, we can write the error matrix of X2, ξ2, as a linear
combination of ξ and ξ′, which means that [ξ1 ξ2] also has at most the number of nonzero
rows as [ξ ξ′], which is at most q. This implies, finally, that

∥[X1 X2]− V 2n∥ ≤ ∥[ξ1 ξ2]∥ ≤ q,

if |R| > q+1. The claim then is immediate from the definition of probabilistic implications.

Extensions. The proof technique here was used for a code G′ whose rows are given by
Kronecker products of pairs (1 − t, t) for each t ∈ F. (Equivalently, when G′ is a matrix
which is the Kronecker product of k matrices, each with rows of the form (1− t, t) for each
t ∈ F.) On the other hand, note that the argument applies very generally to any code G of
the form

G′ = G̃1 ⊗ · · · ⊗ G̃k,

where G̃i ∈ Fmi×2 and has distance di > 0. In this case, the probabilistic implication is

∥Xg′r − V ∥ =⇒
p

∥X − V 2k∥,

with r uniformly chosen from 1, . . . ,
∏

i mi and

p ≤ (q + 1)
∑
i

(
1− di

mi

)
.

References

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubra-
maniam. Ligero: Lightweight sublinear arguments without a trusted setup. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 2087–2104, Dallas Texas USA, October 2017. ACM.

[DG24] Benjamin E. Diamond and Angus Gruen. Proximity gaps in interleaved codes.
Cryptology ePrint Archive, Paper 2024/1351, 2024.

[DP23] Benjamin E. Diamond and Jim Posen. Proximity testing with logarithmic ran-
domness. Cryptology ePrint Archive, Paper 2023/630, 2023.

[DP24] Benjamin E. Diamond and Jim Posen. Polylogarithmic proofs for multilinears
over binary towers. Cryptology ePrint Archive, Paper 2024/504, 2024.

[EA23] Alex Evans and Guillermo Angeris. Succinct proofs and linear algebra. Cryptology
ePrint Archive, Paper 2023/1478, 2023.

[EA24] Alex Evans and Guillermo Angeris. Folding, codes, and linear algebra. Talk at
ZK Summit 11, Athens, Greece, April 2024.

17

A Matrix sparsity check

We show that, given two matrices ξ1, ξ2 ∈ Fm′×n and a code G ∈ Fm×2 with distance d, that

∥Gr1ξ1 +Gr2ξ2∥ ≤ q =⇒
p

∥[ξ1 ξ2]∥ ≤ q,

with r uniformly chosen from 1, . . . ,m, and p ≤ (q+1)(1−d/m). The proof is essentially that
of [EA23, §3.2.2], but we reproduce it here for completeness. Additionally, note that this is
equivalent to saying: if there are at least (q+1)(m−d) indices r satisfying ∥Gr1ξ1+Gr2ξ2∥ ≤ q,
then it must be the case that ∥[ξ1 ξ2]∥ ≤ q. This is the form we use in the proof above.

Proof. This is easy to see. Let [ξ1 ξ2] have more than q nonzero rows and pick any q + 1
of them to form some reduced matrix [ξ̂1 ξ̂2] with q + 1 rows, all nonzero. It is clear that

∥Gr1ξ1 +Gr2ξ2∥ ≥ ∥Gr1ξ̂1 +Gr2ξ̂2∥,

so we will show that
∥Gr1ξ̂1 +Gr2ξ̂2∥ ≤ q

with probability no more than p. A simple observation is that, if xT
1 and xT

2 are two row
vectors, then

Gr1x
T
1 +Gr2x

T
2 = 0 =⇒

p′
[xT

1 xT
2] = 0,

where p′ ≤ 1− d/m, which follows from the definition of the distance of G. But it can only
be the case that ∥Gr1ξ̂1 + Gr2ξ̂2∥ ≤ q if at least one of the linear combinations of the rows
of ξ̂1 and ξ̂2 is equal to zero, so, by the union bound, p ≤ (q + 1)p′ ≤ (q + 1)(1 − d/m), as
required.

Special case. A special, but very useful, case is when the matrix G ∈ Fm×2 has rows of
the form (1− t, t) for each t ∈ F. In this case it is easy to prove that the distance is |F| − 1
and m = |F|. The linear combination

Gr1ξ1 +Gr2ξ2,

where r is uniformly randomly sampled from 1, . . . ,m is the same as the random linear
combination

(1− t)ξ1 + tξ2,

with t ∈ F uniformly drawn, and gives the direct implication

∥(1− t)ξ1 + tξ2∥ ≤ q =⇒
p

∥[ξ1 ξ2]∥ ≤ q,

with p ≤ (q + 1)(1− d/m) = (q + 1)/|F|.

18

