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Abstract. We present the first Key Policy Attribute-Based Encryption
(KP-ABE) scheme employing isogeny-based cryptography through class
group actions, specifically utilizing the Csi-FiSh instantiation and pair-
ing groups. We introduce a new assumption, denoted Isog-DLin, which
combines the isogeny and DLin assumptions. We propose the following
constructions: a small universe KP-ABE and a large universe KP-ABE
under the Isog-DBDH assumption, and a small universe KP-ABE un-
der the Isog-DLin assumption. In these constructions, the master key
is designed to be secure against quantum computer attacks, while the
ciphertext remains secure against classical computer attacks. This dual-
layered approach ensures robust security across classical and quantum
computational paradigms, addressing current and potential future cryp-
tographic challenges.
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1 Introduction

The confidentiality of private data is receiving increasing attention, highlighting
the need to protect this information. One effective method to safeguard data is
by implementing a fine-grained access policy. A fine-grained access policy allows
access rights to users based on specific conditions, addressing several key areas:
security, compliance, operational efficiency, and flexibility.

There are several known techniques for implementing fine-grained access con-
trol. Some common techniques include those outlined in [21], [16], and [18]. In
this context, attribute-based encryption (ABE), a form of public key encryption
(PKE), controls data flows by providing fine-grained access policies. Originally,
this scheme was extended from Identity-based Encryption (IBE), first presented
by Sahai and Waters [31]. Depending on the policies, there are two types of ABE
schemes. The first is key-policy attribute-based encryption (KP-ABE), where a
subset of attributes allows the encryption of a message, and the user’s private
key is linked with an access control policy. This method limits the data owner’s
ability to determine who can decrypt the data. The second is ciphertext-policy
attribute-based encryption (CP-ABE), where the access control policy is embed-
ded into the ciphertext, and the user’s private key is associated with attributes.

Many attribute-based encryption (ABE) schemes, such as Bilinear Diffie-
Hellman (BDH), rely on pairing-based cryptography. However, with the emer-
gence of quantum computers and algorithms like Shor’s [33] and Grover’s [17], all
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cryptosystems based on hardness assumptions such as discrete logarithms and
factorization will become vulnerable to quantum attacks. There is an urgent need
to develop post-quantum ABE cryptosystems to address these vulnerabilities.
Some post-quantum solutions include lattice-based cryptography, multivariate-
based cryptography, isogeny-based cryptography using elliptic curves, hash-based
cryptography, and code-based cryptography. Currently, all known post-quantum
ABE systems are based on lattice-based cryptography. However, exploring ABE
schemes grounded in alternative mathematical foundations is important. For ex-
ample, a draft NIST report [9] emphasizes the challenge of precisely estimating
the security of lattice schemes against known cryptanalysis techniques. Isogenies
offer promising attributes, including robustness against quantum attacks, key
compactness, computational efficiency, compatibility with existing systems, and
application flexibility. These advantages position isogeny-based cryptography as
a promising technology for securing communications in the age of quantum com-
puters.

1.1 Related Work

In this subsection, we review related works based on post-quantum ABE. All
known post-quantum ABE schemes are based on lattices, with security resting
on cryptographic complexity assumptions from Learning with Errors (LWE) to
Ring Learning with Errors (RLWE). We begin with KP-ABE and conclude with
CP-ABE.

KP-ABE The initial lattice-based KP-ABE scheme was pioneered by Boyen in
2013, as introduced in [5]. This scheme was built upon the hardness of the LWE
problem and employed a selective threat model, devoid of collusion, adhering
to IND-CPA criteria. Subsequently, Boyen and Li refined the scheme to accom-
modate finite automata with constrained input sizes. Kuchta and Markowitch
[20] utilized their threshold gates to support multiple cloud servers. Zelein [27]
created a tree access structure to construct an access policy. Tan and Samsudin
extended the LWE problem to the hardness of the decisional RLWE problem.
They also developed a KP-ABE scheme with homomorphic encryption to sup-
port multi-user cloud environments. Dai et al. [12] used the PALISADE library
for a practical KP-ABE implementation. Zhao and Gao [45] improved the LSSS,
though the number of secret keys increased exponentially. Yu et al. [42] en-
hanced the tree structure to support gates like AND, OR, and threshold gates
as LSSS. Luo et al. [26] developed proxy encryption to address forward and back-
ward secrecy in this scheme. Pal and Dutta [28] extended the scheme to support
functional encryption. In 2023, Luo et al. proposed a revocable attribute-based
encryption scheme that supported depth encryption and featured a short secret
key, where the key size depended only on the depth of the supported policy
function. In 2024, Nejad et al. [22] proposed a post-quantum fuzzy IBE based
on the LWE problem, reducing key length and computational complexity during
the encryption phase.
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CP-ABE One notable aspect of CP-ABE is that it grants users control over
encrypted plaintext while also facilitating scalability. In 2012, Zhang et al. [44]
extended Sahai and Waters’ work [31] to a lattice-based CP-ABE for supporting
multi-valued attributes. Zhang and Jiang [43] extended it to q-ary lattices to
support multi-bit operations, though this approach faced quadratic overhead is-
sues. Fun and Samsudin [35] resolved the computational overhead of CP-ABE by
enhancing RLWE assumptions, though their master secret key remained vulner-
able. Zeng and Xu [13] developed the scheme for keyword-searchable functions.
To address this issue, Tan and Samsudin [36] added homomorphic encryption
with the hardness of RLWE. Fun and Samsudin [14] also studied the scheme us-
ing a small universe in the threshold CP-ABE scheme. Yang et al. [41] and Zhao
et al. [19] introduced improvements to the CP-ABE scheme by implementing a
binary tree structure and threshold gates, respectively. Tsabary [37] devised a
CP-ABE scheme based on t-CNF and the LWE problem. Liu et al. [25] addressed
user scalability concerns by extending the threshold access structure to support
multi-authority levels. Li et al. [1] tackled proxy re-encryption issues in CP-ABE
through trapdoor sampling and vector decomposition techniques. Affum et al.
[2] explored RLWE-based CP-ABE schemes for supporting 5G content-centric
networks. Qian [29] and Wu proposed a basic access tree (BAT) to enhance tree
structures, allowing the expression of any disjunctive normal form (DNF). Varri
et al. [38] extended CP-ABE to enable searchability over encrypted data.

However, current lattice-based ABE schemes face challenges related to com-
putational complexity and the length of ciphertexts and keys. Yilei Chen et
al. [10] show that "we solve the Learning with Errors (LWE) problem with
certain polynomial modulus-noise ratios in polynomial time using a quantum
algorithm." Many researchers are studying this paper. We are working on post-
quantum ABE based on isogenies between supersingular elliptic curves to address
these issues. In 2016 and 2019, Koshiba and Takashima developed new frame-
works based on isogeny pairing; however, these frameworks are based on SIDH,
and their security lies between quantum and classical security [23,24]. In 2016,
Galbraith et al. [15] proposed an active attack on the supersingular isogeny en-
cryption scheme of SIDH, showing that the security of these schemes depends
on the difficulty of computing the endomorphism ring of a supersingular elliptic
curve. They provided a reduction that uses partial knowledge of shared keys to
determine the entire shared key. On August 5, 2022, Castryck and Decru posted
a preprint [7] demonstrating the vulnerability of SIDH, rendering all its variants
insecure. Consequently, schemes proposed based on isogeny pairing groups by
Koshiba and Takashima are not secure. 1.

1.2 Contribution

This paper introduces the first Attribute-Based Encryption (ABE) scheme based
on isogeny group actions of the ideal class group, utilizing Csi-FiSh. Following
the structure of [23], we employ the isogeny pairing group framework and its

1 For more information on post-quantum ABE based on lattices: [32]
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associated intractability assumptions. We propose a Key-Policy Attribute-Based
Encryption (KP-ABE) scheme where key generation is secure against quantum
adversaries, and ciphertext is secure against classical adversaries. The security
of our scheme is achieved as follows:

– To address the limitations of the schemes in [23,24], which utilize a trap-
door homomorphism where the isogeny is based on ideal class group action
(CSIDH), we leverage Csi-FiSh. This approach enables us to efficiently eval-
uate the ideal class group and apply the discrete logarithm with the ideal
generator.

– We propose both small and large universe KP-ABE schemes. The modifi-
cation of the public and master keys involves the isogeny of supersingular
elliptic curves, based on Csi-FiSh.

– Initially, we adopt the Isog-DBDH security assumption (a combination of
isogeny and decisional bilinear Diffie-Hellman assumptions) and introduce a
new assumption, denoted Isog-DLin (a combination of isogeny and decisional
linear assumptions), under which we construct a small universe KP-ABE
scheme.

– Our schemes are secure in a selective security model. Security is demon-
strated through a game-based proof between an adversary A and their chal-
lenger B, conducted in two phases:
→ First, the adversary A analyzes the public key and attempts to extract

information from the master secret key, which is protected by the hard
assumption of isogeny of class group action.

→ Second, the adversary tries to distinguish between the two encrypted
messages provided by B.

In summary, the security game differentiates between quantum security and
classical security. In the context of classical security, the scheme is resistant
to collusion.

Remark 1. We have explored the full definition of post-quantum KP-ABE. How-
ever, we conclude that given the specific nature of attribute-based encryption,
isogenies do not currently provide the necessary components to construct a com-
plete post-quantum ABE. The building blocks required are still lacking.

1.3 Paper Organisation

This paper is organized as follows: In section 2, we provide essential pieces of in-
formation about access structures, trapdoor homomorphisms, the mathematical
background on isogenies, and security definitions of isogeny pairing groups. We
present new security definitions, denoted Isog-DLin, in section 3. In section 4,
we present our constructions of a small universe KP-ABE under the Isog-DBDH
and Isog-DLin assumptions, and in section 5, we detail a large universe KP-ABE.
section 6 provides the security analysis of the small and large universe KP-ABE
constructions. Finally, section 6 concludes the paper.
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2 Preliminaries

This section introduces some basic definitions and mathematical background
that we will use for our construction. Before that, let’s present some notations
that we use throughout this paper.

2.1 Notations

– Let E be a supersingular elliptic curve over Fp. The group of set points of E
over Fp is denoted E(Fp). A cyclic subgroup of E(Fp) is denoted G and g is
an element of G.

– When A is a random variable or a distribution, y $←− A means y is randomly
selected from A according to its distribution.

– Let [n] := {1, . . . , n} and [0, n] := {0, . . . , n} for any positive integer n.
– For two vectors #»y = (yi)i∈[r] and #»v = (vi)i∈[r], #»y . #»v denotes the inner

product
∑r

i=1 yivi.

2.2 Definitions

This subsection presents some basic definitions for access structures and secret
sharing schemes.

Definition 1 (Access structure). Let {P1, . . . , Pn} be a set of parties. A col-
lection A ⊆ 2{P1,...,Pn} is monotone if ∀B, C : B ∈ A, B ⊆ C, then C ∈ A.
An access structure (respectively, monotone access structure) is a collection (re-
spectively, monotone collection) A of non-empty subsets of {P1, . . . , Pn}, ie,
A ⊆ 2{P1,...,Pn} \ {∅}. The sets in A are called the authorized sets, and the
sets not in A are called the unauthorized sets. In this context, monotone means
that an authorized user who acquires more attributes will not lose privileges.

Definition 2 (span program [3]). A span program over Fp is a labeled matrix
S := (M,ρ) where M is a matrix of l×r over Fp and ρ is a labeling of the rows of
M by an attribute from {(t, v), (t′, v′), · · · }(every row is labeled by one attribute),
i.e., from {1, · · · , l} → {(t, v), (t′, v′), · · · }. Let Γ := {(tj , xj)}1≤j≤d′(xj ∈ Utj ).
The span program S accepts Γ if only if #»

1 ∈ span ⟨(Mi)ρ(i)∈Γ ⟩, i.e., some linear
combination of the rows (Mi)ρ(i)∈Γ gives all one vector #»

1 .

Definition 3 (Secret Sharing Scheme for Span Program S := (M,ρ)).
Let M be an l × r matrix and ρ a labeling of the rows of M . A secret sharing
scheme for the span program S := (M,ρ) consists of:

1. A random vector #»u
$←− Fr

p such that #»
1 · #»u = s, where s is the secret to be

shared, and (ui)
$←− Fr

p. Then, #»s := (s1, . . . , sl) = M · #»u⊤ represents the l
shares of the secret s, and each si belongs to ρ(i).

2. If the span program S accepts Γ (i.e., #»
1 ∈ span⟨Mi | ρ(i) ∈ Γ ⟩), there

exist constants {σi ∈ Fq | i ∈ I} such that I ⊆ {i ∈ [l] | ρ(i) ∈ Γ} and∑
i∈I σisi = s. Furthermore, these constants {σi} can be computed in time

polynomial in the size of the matrix M .
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2.3 KP-ABE

A KP-ABE consists of four algorithms (Setup, KeyGen, Encrypt, Decrypt).

– Setup is a quantum ppt algorithm. It takes an input security parameter λ
and outputs a public key pk and a master secret key msk.

– KeyGen is a ppt algorithm. It takes an input pk,msk, and access structure
S = (M,ρ) and outputs a secret key sk.

– Encrypt is ppt algorithm. It takes an input pk, a plaintext m, and a subset
of attributes Γ and outputs a ciphertext cT .

– Decrypt is a deterministic algorithm. It takes as input pk, cT , sk, where the
ciphertext cT is associated with the set of attributes Γ of the user encryptor.
If Γ is accepted by the access structure S, then the algorithm outputs the
plaintext; otherwise, it outputs an error symbol ⊥.

2.4 Mathematical background on isogenies

Elliptic curves possess mathematical properties that allow efficient computa-
tional time and small key size. Generally, for a field K with algebraic closure K̄,
an elliptic curve contains points (x, y) ∈ K̄2 that satisfy affine curve equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where (a1, · · · , a6) ∈ K̄ and O = [0, 1, 0] denoted point at infinity 2. For a large
prime p, if an elliptic curve E defined over Fp is supersingular then, the cardi-
nal #E(Fp) = p + 1. Following the properties as mentioned earlier, an isogeny
between two elliptic curves E1,E2 is a non-constant morphism ϕ : E1 −→ E2

that satisfies ϕ(∞) = ∞. The equation for E2 and the isogeny ϕ can be com-
puted using the Vélu formula [39]. ϕ̂ : E2 → E1 is the dual ϕ. In this way, there
exist two popular key exchange cryptographic based on isogeny: Supersingu-
lar Isogeny Diffie-Hellman (SIDH)[20] and Commutative Supersingular Isogeny
Diffie-Hellman (CSIDH) [8]. SIDH was broken by Castryck et al [7].

CSIDH is a key exchange protocol that Castryck et al. introduced [8] us-
ing isogenies of ideal class group actions. It builds on the work of Couveignes
[11], who introduced the notion of Hard Homogeneous Spaces (HHS), which
have properties like vectorization and parallelization that protect quantum al-
gorithms, following the ideas of Rostovtsev and Stolbunov [30]. Couveignes Ros-
tovtsev and Stolbunov (C.R.S) worked on ordinary elliptic curves. Efficient algo-
rithms are needed to construct an HHS to evaluate a class group, where isogeny
plays a crucial role.

CSIDH is based on actions of the ideal class group denoted Cl(Z[πp])(see 3) on
Z[πp] ( on Ellp(O) see 4), in which p = 4.l1 · · · ln− 1 is a large prime. l1 · · · ln are
2 For more about elliptic curves see Silverman’s book [34]
3 Cl(Z[πp]) is the ideal class group of the endomorphims ring in which it acts on Fp.
4 O is an order of quadratic field, Ellp(O) denote the set of elliptic curves E defined over
Fp with Endp(E) ∼= O such that π corresponds to the Fp-Frobenius endomorphism
of E, [l−1

i ] = [̄li]
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small odd primes. Integral ideals li(i = 1 · · ·n) ∈ Z[πp] be (li, πp−1) and Integral
ideals l̄i(i = 1 · · ·n) ∈ Z[πp] be (li, πp + 1) (parametrisation CSIDH 512 see in
[6] section 8.1). Let a a randomly sample from Cl(O) in which, a = le11 .l

e2
2 · · · lenn ,

where {e1 · · · en} are small integers from range {−m, · · · ,m} and m satisfies
2m+ 1 ≤ n

√
#Cl(O). So, we have:

Cl(Zp)× E llp(O) −→ E llp(O)
(a,E) 7−→ E/E[a] = [a]E.

Alice Bob

([a], A) ([b], B) B ∈ Fp {±2}

EA : y2 = x3 +Ax2 + x EB : y2 = x3 +Bx2 + x

{[a]E0 = EA}

{[b]E0 = EB}

EB ∈ Ellp(O)? EA ∈ Ellp(O)?

[a]EB = [a][b]E0 [b]EA = [b][a]E0

[a][b]E0 = [b][a]E0

ES : y2 = x3 + Sx2 + x

The shared secret is the Montgomery coefficient S of the common secret curve ES.

Normally, CSIDH is designed to evaluate Cl(O) as efficiently as possible.
However, even though all axioms of HHS are satisfied, it is not possible to
efficiently evaluate the action of any element of Cl(Zp), nor is it possible to
verify the equality of two elements of Cl(Zp). To overcome the previous limita-
tion, Beullens et al. [4] published a signature and identification scheme based
on class group computation called Csi-Fish using CSIDH 512[4]. In Csi-Fish
[4], all ideals are assumed to generate the class group Cl(O), and in practice,
we choose one li to generate the class group. In fact, for the CSIDH 512 class
group, we can even take l1 = ⟨3, π − 1⟩. Thus, there exists a lattice relation
L := e = (e1, · · · , en) ∈ Zn :

∏n
i=1 l

ei
i = (1), which yields a representation of a

class group as Cl(Z[π]) ≃ Zn/L. The equality of two vectors can be tested by
checking if e− f ∈ L. By solving the approximate closest vector problem (CVP)
for f ∈ L and evaluating e − f , we can obtain the ideal a =

∏n
i=1 l

ei
i . This

facilitates evaluating Cl(O) and verifying elements within Cl(O).

2.5 Trapdoor homomorphism

This section presents some definitions of trapdoor homomorphism and its prop-
erties, starting with the Group Action Inverse Problem definition.
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Definition 4 (Group Action Inverse Problem (GAIP) [4]). Given two
supersingular curves E, E′ with End(E) = End(E′) = O and g a generator of
Cl(O). The GAIP is to find a such that E′ := ga ⋆ E, ([a] = ga).

Definition 5 (Trapdoor Homomorphisms (TH) [23]). A (randomly cho-
sen) function ϕ := ϕξ : G0 → G1 with two (randomly chosen) cyclic groups
G0,G1 of a prime order p is called a trapdoor homomorphism if the following
conditions hold:

– ϕ is non-trivial (e.g., non-zero for an additive group) homomorphism.
– Intractability assumption: any probabilistic polynomial-time (ppt) machine B

computes ϕ(g) only with a negligible probability when given (g0, ϕ(g0), g) for
a randomly chosen ϕ and g0, g

$←− G0.
– Polynomial-size trapdoor: there exists a probabilistic polynomial time (ppt)

machine B which computes ϕ(g) for any g ∈ G0 given a polynomial-size
trapdoor ξ for ϕ := ϕξ.

2.6 Isogeny Pairing Group (IPG)[23]

In this paper, we utilize the Weil pairing [34], denoted as E[N ]×E[N ]→ µN , to
describe our protocol. These pairings are embedded in a degree-3 context. An
isogenous pairing group consists of a random instance as follows:

GenIPG
$−→ pkIPG :=

(
(Gt, Ĝt, gt, ĝt, et)t∈[0,d], sk

IPG := (ϕt)t∈[d]

)
,

where (Gt, Ĝt, et,GT ) is an asymmetric pairing group of prime order p, with
pairings et : Gt × Ĝt → GT , and trapdoor homomorphisms ϕt : G0 → Gt

(given by isogenies between different elliptic curves), and ϕt(g0) = gt ∈ Gt. The
isogenous pairing groups satisfy the following compatibility property:

e0(g0, ĝ0) = et(gt, ĝt) = et(ϕt(g0), ĝt), ∀t ∈ [d].

Definition 6 (d-pIsog-DBDH Assumption on IPG [23]).
Let B = (B1,B2) be the adversary and Ch be their challenger, where B1 is

modeled as a polynomial-time quantum adversary, and B2 is a classical proba-
bilistic polynomial-time algorithm. Let λ be the security parameter, and d be the
size of the small universe.

1. Ch computes pkIPG := ((Gt, Ĝt, gt, ĝt, et)t∈[0,d], hT ,GT ), sk
IPG := (ϕt)t∈d

$←−
GenIPG(λ, d)

2. Ch sends pkIPG to B1;
3. B1, with input pkIPG, outputs some state;
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4. Ch samples (α, β, δ)
$←− Fp and computes

X0 := (state, gα0 , (ĝ
β
t )t∈[d], g

αβ
T ),

and

X1 := (state, gα0 , (ĝ
β
t )t∈[d], g

γ
T ),

5. Ch sends Xb to B2, where b ∈ {0, 1};
6. B2 flips a random coin to generate a bit b′, and returns b′. If b = b′, then B

wins;

We define the advantage of B in this security definition as:

Advd-pIsog-DBDH
B (λ) := Pr[Bwins]− 1

2
.

The d-pIsog-DBDH assumption is secure against a probabilistic polynomial-time
adversary B in this experiment if the advantage of B, Advd-pIsog-DBDH

B (λ), is
negligible in λ.

Note that the description of the algorithm GenIPG is in appendix A.1.

Definition 7 (Payload Hiding Pre-Challenge Quantum (PH-PQ) for
KP-ABE [23]).
A PH-PQ consists of four algorithms (Setup,Gen,Enc,Decrypt) of a KP-ABE
scheme and an adversary A = (A1,A2), where A1 is modeled as a polynomial-
time quantum adversary with their challenger Ch . We consider the experiment
ExpKP-ABE, PH-PQ

A [λ] as follows:

1. The adversary provides Γ ∗ $←− A1(λ) to Ch ;
2. Ch computes (sk, pk)

$←− Setup(λ) and sends pk to A1;
3. A1 receives pk and outputs state

$←− ARO(·),Gen(sk,·)
1 (pk) to A2;

4. A2 chooses (m0,m1)
$←− ARO(·),Gen(sk,·)

2 (state), where m0 and m1 are of the
same size;

5. Ch chooses b $←− {0, 1}, computes ct∗ $←− Enc(pk,mb, Γ
∗), and sends ct∗ to

A2;
6. A2 flips a random coin to generate a bit b′.

RO is a random quantum oracle, and Gen is classical-accessible. If b = b′, then
A wins.
We define the advantage of A in this security definition as:

AdvKP-ABE, PH-PQ
A (λ) := Pr[Awins]− 1

2
.

A KP-ABE scheme achieves payload hiding against a pre-challenge quantum
adversary if, for all adversaries A, the advantage AdvKP-ABE, PH-PQ

A (λ) is neg-
ligible in λ.
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Definition 8 (Selective model for KP-ABE).

– Init: The adversary declares the set of attributes, Γ ∗, that they wish to be
challenged upon.

– Setup: The challenger runs the KP-ABE Setup algorithm and provides the
adversary with the public parameters.

– Phase 1: The adversary is allowed to issue queries for private keys for various
access structures Sj, ensuring Γ ∗ /∈ Sj for all j.
Challenge: The adversary submits two messages of equal length, m0 and m1.
The challenger flips a random coin b and encrypts mb with Γ ∗. The resulting
ciphertext is given to the adversary.

– Phase 2: Phase 1 is repeated.
– Guess: The adversary submits a guess b′ for b.

The advantage of an adversary A in this game is defined as Pr[b′ = b]− 1
2 .

3 Security definitions

This section introduces the definitions of security that we use to construct a
KP-ABE.

Based on the framework of Waters [40], as defined by the DLin assumption,
we propose a new hypothesis that blends isogeny and the DLin assumption called
Isog-DLin. The Isog-DLin assumption is as follows.

Definition 9 (Isog-DLin). Given a cyclic symmetric pairing group e : Gt ×
Gt → GT , a random isogeny ϕt : G0 → Gt, g0, g, h

$←− G0, and (α, β) $←− Fp, the
ppt adversary can only guess whether ht = ϕt(g)

α+β or a random element in Gt

with negligible probability, given (g0, ϕt(g0)
α, g, h, ϕt(h)

β).

Depending on the size of the small universe represented by the value d, we
provide three definitions of Isog-DLin on the isogeny pairing group (IPG) in the
following lines.

Definition 10 (Isog-DLin Assumption on IPG). For d = 1, let B be a
classical probabilistic polynomial-time (PPT) and Ch his challenger. Given the
public key pkIPG := ((Gt, Ĝt, gt, ĝt, et)t∈[0,1], hT ,GT ), the secret key skIPG :=

(ϕ1)
$←− GenIPG(λ, 1), and random elements α, β, γ, δ $←− Fq, B is given the chal-

lenge Xb for b $←− {0, 1}, defined as:

X0 := (pkIPG, gα0 , g
β
0 , ĝ

α
1 , ĝ

β
1 , ĝ

γ
1 , g

αγ+βγ
T )

and

X1 := (pkIPG, gα0 , g
β
0 , ĝ

α
1 , ĝ

β
1 , ĝ

γ
1 , g

δ
T ),

where gT := e0(g0, ĝ0). The adversary B outputs a bit b′. If b = b′, then B wins.
The advantage of any PPT adversary B against the Isog-DLin assumption is
negligible in λ.
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Noting that the challenge (Xb)b∈{0,1} contains the elements (g0, g
α
0 , g

β
0 , ĝ1, ĝ

α
1 ,

ĝβ1 , ĝ
γ
1 ), the key question is whether gα+β

0 ∈ G0 is a specific element or a random
element in G0. This question extends to whether gαγ+βγ

T ∈ GT is a specific or
random element in GT . The adversary B cannot derive the pairing value gαγ+βγ

T

from the given elements gα0 , g
β
0 , ĝ

α
1 , ĝ

β
1 , ĝ

γ
1 , and ĝγ1 = ϕ1(ĝ0)

γ .
In the following definitions, we introduce an adversary B modeled as B1, a

quantum adversary, and B2, a classical adversary. These definitions differ based
on the size of the small universe d.

Definition 11 (pIsog-DLin assumption on IPG). For d = 1, let B =
(B1,B2) be an adversary, where B1 is modeled as a polynomial-time quantum
adversary, and B2 as a classical adversary.

1. Ch computes pkIPG := ((Gt, Ĝt, gt, ĝt, et)t∈[0,1], hT ,GT ), skIPG := (ϕ1)
$←−

GenIPG(λ, 1), and sends pkIPG to B1;
2. B1 outputs state $←− B1(pkIPG);
3. Ch samples α, β, γ, δ $←− Fp and provides Xb for b $←− {0, 1};
4. B2 receives Xb for b $←− {0, 1}, as defined by definition 10. B2 outputs a bit

b′.

If b = b′, then B = (B1,B2) wins. For any adversary, B, the advantage of B
against the Isog-DLin problem is negligible in the security parameter λ.

Definition 12 (d-pIsog-DLin assumption on IPG). Let d > 1 be the size
of the universe, and let B = (B1,B2) be an adversary, where B1 is modeled as a
polynomial-time quantum adversary and B2 as a classical adversary. Ch is their
challenger.

1. Ch computes (pkIPG := ((Gt, Ĝt, gt, ĝt, et)t∈[0,d],GT ), skIPG := (ϕt)t∈d)
$←−

GenIPG(λ, d);
2. Ch sends pkIPG to B1;
3. B1 outputs state $←− B1(pkIPG);
4. Ch samples (α, β, δ)

$←− Fp;
5. Ch computes

X0 := (state, gα0 ,g
β
0 , (ĝ

α
t , ĝ

β
t , ĝ

γ
t )t∈[d], g

αγ+βγ
T ),

and

X1 := (state, gα0 ,g
β
0 , (ĝ

α
t , ĝ

β
t , ĝ

γ
t )t∈[d], g

δ
T ),

where gT := e0(g0, ĝ0). B outputs a bit b′. If b = b′, B wins.
The advantage of the adversary B in the experiment is defined as:

Advd-pIsog-DLin
B (λ) := Pr[Bwins]− 1

2
.

The d-pIsog-DLin assumption is secure against the probabilistic polynomial-time
adversary B if the advantage of B, Advd-pIsog-DLin

B (λ), is negligible in λ.
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4 Small universe KP-ABE

For a polynomial d = d(λ), a sub-universe Ut(⊂ {0, 1}∗) is assigned for t ∈ [d].
Each attribute is expressed by a pair (t, v), where t ∈ [d] and v ∈ Ut. Let
Ut := {1} for a small universe case and Ut := {0, 1}n. The IPG gives (d + 1)
pairing groups.

4.1 Construction under Isog-DBDH assumption

The public key pk is vulnerable to quantum attacks in this construction. To
protect it, we encode group elements in different groups (i.e., different elliptic
curves). For example, for (gt ∈ Gt)t∈[d], gt := ϕt(g0) ∈ Gt := ϕt(G0). Note that
we should not include two or more different elements in the same group because
if we include two or more elements in the same group, the quantum adversary
could find the exponent. In this paper, t ∈ [d] and T is different from t, and all
pairings map to GT .

Setup(λ, d):
Input: (λ, d)
Output: (pk, msk)
1: Choose E0 : y2 = x3 + x2 ▷ a

supersingular curves
2: Choose g0

$←− G0, ĝ0
$←− Ĝ0 ▷ G0

and Ĝ0 ∈ E0(Fp)

3: (Et, ζ)
$←− Isog3,k(E0).

4: hT
$←− GT such that hT :=

e0(g0, ĝ0)
5: pk := ((Gt, Ĝt, ĝt, et)t∈[d],GT , hT ;

msk := (ϕt)t∈[d])
6: return (pk,msk)

KeyGen(pk,msk,S = (M,ρ)):
Input: (pk,msk,S = (M,ρ))
Output: skS

1: Choose a random vector #»u
$←− Fr

q

such that #»
1 . #»u =

∑r
i=1 ui = s

where s is secret to be shared and
(ui)

$←− Fr
p. There exists h′0 where

e0(h
′
0, ĝ0) = hs

−1

T

2: Mi.
#»u⊤, t ∈ ρ(i)

3: ki := ϕt(h
′
0)

si

4: return skS := {ki}i∈[l]

Encrypt(pk, m, Γ ):
Input: (pk, m, Γ )
Output: cT := ({ct}t∈Γ , c, Γ )
1: ζ

$←− Fp

2: ∀t ∈ Γ , ct := ĝζt
3: z := hζT = e0(g0, ĝ0)

ζ

4: c = m.z
5: return cT := ({ct}t∈Γ , c, Γ )

Decrypt(pk, skS, cT ):
Input: ((pk, skS, cT )
Output: m′ or ⊥
1: if Γ satisfies S then
2: for ρ(i) ∈ Γ do
3: computes σi such that

#»
1 =

∑
ρ(i)∈Γ σi.Mi

4: z′ :=
∏

t:=ρ(i)∈Γ

et(ki, ct)
σi

return m′ := c.z′−1

5: else
6: return ⊥

Note that the description of the algorithm Isog3,k is in appendix A.
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4.2 Construction under Isog-DLin assumptions

As seen in the previous section, the Setup and KeyGen procedures are identical.
The construction is as follows:

Encrypt(pk, m, Γ ):
Input: (pk, m, Γ )
Output: cT := ({ct}t∈Γ , c, Γ )
1: ζ, θ

$←− Fp

2: c′ := hθT
3: ∀t ∈ Γ , ct := ĝζt
4: z := hζ+θ

T = e0(g0, ĝ0)
ζ+θ

5: c = m.z
6: return cT := ({ct}t∈Γ , c, c

′, Γ )

Decrypt(pk, skS, cT ):
Input: ((pk, skS, cT )
Output: m′ or ⊥

1: if Γ satisfies S then
2: for ρ(i) ∈ Γ do
3: computes σi such that

#»
1 =

∑
ρ(i)∈Γ σi.Mi

4:

z′ :=
∏

t:=ρ(i)∈Γ

et(ki, ct)
σi . c′

5: return m′ := c.z′−1

6: else
7: return ⊥

For the correctness of Isog-DBDH see in appendix B.1, and Isog-DLin see in
appendix B.2

5 Large universe KP-ABE

Let xt := (xt,j)j∈[n] be an attribute for any sub-universe id, where t is an element
U := {0, 1}n. This construction possesses a hierarchical structure for t ∈ [d] and
j ∈ [n], representing two instantiations of a small universe. For n-bit attributes,
we include n groups (elliptic curves) and encode the j-th group for j ∈ [n]. The
IPG generates 2dn+ 1 pairing groups.

5.1 The Construction

Constructing a system with n bits attribute involves n groups of elliptic curves
within the public parameters. Specifically, the j-th group is responsible for en-
coding the j-th bit, where j ∈ [n]. This approach is then extended to support a
large universe of attributes.
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Setup(λ, d):
Input: (λ, d)
Output: (pk, msk)
1: Choose E0 : y2 = x3 + x. ▷ a

supersingular of elliptic curve
2: g0

$←− G0, ĝ0
$←− Ĝ0.

3: for t ∈ [d] do,
4: for j ∈ [n] do
5: for ι ∈ {0, 1} do

6: (Et,j,ι, ζt,j,ι) ←
Isogdegϕ,k(E0).

7: Choose hT
$←− GT such that

hT := e0(g0, ĝ0)

8: pk :=


(G0, Ĝ0, ĝ0, e0),

(Gt,j,ι, Ĝt,j,ι, ĝt,j,ι, et,j,ι),
hT ,GT )

▷ In pk, ι ∈ [0, 1], t ∈ [d], j ∈ [n]

9: msk := (ϕt,j,ι)
t∈[d],j∈[n]
ι∈[0,1]

10: return (pk,msk).

KeyGen(pk, msk, S := (M, ρ)):

1: Choose a random vector #»u
$←− Fr

q

such that #»
1 . #»u =

∑r
i=1 ui = s

where s is secret to be shared
and (ui)

$←− Fr
p. There ∃h′0 where

e0(h
′
0, ĝ0) = hs

−1

T .
2: for i in [l] do

3: si :=Mi.u
T ▷ si are shares

4: Choose τi := τi,j such that
si =

∑n
j=1 τi,j .

5: if ρ(i) = (t, vi := vi,j) ∈
{0, 1}n then

6: ki,j := ϕt,j,vi,j
(h′0)

τi,j

7: return skS := {ki,j}i∈[l],j∈[n].

Encrypt(pk, m, Γ ):

1: ζ
$←− Fp

2: for (t, xt := (xt,j) ∈ {0, 1}n) ∈ Γ
do

3: ct,j := ĝζt,j,xt,j

4: z := hζT = e0(g0, ĝ0)
ζ ∈ GT

5: c := z.m
6:
7: return cΓ := ({ct,j}(t,.)∈Γ,j∈[n], c)

Decrypt(pk, sk, cT ):
1: if Γ satisfies S := {(t, xt)} then
2: Computes {σi}ρ(i)∈Γ s.t

#»
1 :=

∑
ρ(i)∈Γ = σi.Mi z′ :=

∏
ρ(i)=(t,vi,j)∈Γ

( n∏
j=1

et,j,vi,j
(ki,j , ct,j)

)σi

3: m′ := c/z′

4: return m′

5: else
6: return ⊥

For the correctness see in appendix B.3

6 Security Analysis

Les preuves de sécurité de ta construction. This section will present the security
game between an adversary A := (A1,A2) and his challenger B := (B1,B2).
B1 will play the challenger in the phase for quantum A1 and B2 will play the
challenger in the phase for classical adversary A2. The Phase 1 is denoted
quantum phase against A1 and the phase 2 is denoted classical phase
against A2. We note that ν1 is the number query in the quantum phase and ν2
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is the number query in the classical phase. Let’s begin with the KP-ABE of the
small universe and terminate with the large universe.

Theorem 1. The KP-ABE scheme is PH-PQ secure under the d-pIsog-DBDH
assumption in the quantum random oracle model. For any adversary A :=
(A1,A2), there exits B := (B1,B2), such that for any security parameter λ:

AdvKP−ABE,PH−PQ
A (λ) ≤ Advd−pIsogDBDH

B (λ)

Proof. Let start with :
Challenge phase for the quantum adversary A1

1. First A1 declares the challenge attributes Γ ∗ in which Γ ∗ /∈ Sj for all j and
provides Γ ∗ to B1.

2. B1 runs the Setup of KP-ABE and obtains pp := (Gt, Ĝt, ĝt, et)t∈[d], hT ).

B2 runs (G′
t, Ĝ

′
t, ĝ

′
t, e

′
t)t/∈Γ∗ and t∈[d], h

′
T )

$←− SimGen(G0, Ĝ0, ĝ0, e0).

pk := (Gt, Ĝt, ĝt, et, )t∈Γ∗ & t∈[d], hT , (G′
t, Ĝ

′
t, ĝ

′
t, e

′
t)t/∈Γ∗ , h′T ). Then B1 pro-

vides pk to A1.
3. B1 simulates as a challenger for A1 as:

– Let F (X) be a random degree ν polynomial A1, ie., F (X)←
⊕ν

i=0 FpX
i

with ν := 2ν1 + ν2.
– Let s $←− F∗

p such that ∃h′0 : e0(h
′
0, ĝ0) = h

1/s
T τ := F (s) . Hence a

quantum random oracle query RO is answered by h0 := gτ0 where g0 is
from Setup.

– A classical key generation query is answered as follows: B1 chooses a
vector #»u

$←− Fr
p such that

∑r
i=1 ui = s

For i ∈ [l] si := Mi.
#»u⊤, where M is the matrix of share of l rows and r

columns.
B1 returns (ki := gτsiρ(i)∈Γ∗)i∈[l] provides it to A1

4. A1 outputs (state)
$←− A1(pk) and sends it to A2 and B2.

Challenge phase for the classical adversary A2

5. B2 gets Xb := (state′, gα0 , (ĝ
β
0 )t∈[d], g

θ
T ) where θ = αβ if b = 0 and otherwise

θ
$←− Fp. Then B2 sends state to A2.

6. When a random oracle query is issued for access structure S := (M,ρ), B2
check:
a- If Γ ∗ is not accepted by Sj B2 re-executes the KeyGen of step 3 in the

challenge phase for the quantum adversary A1 with another Sj+1.
b- If Γ ∗ is accepted by Sj , B2 generates a vector #»v

$←− Fr
p.

Takes #»w
$←− { #»w ∈ Fr

p|Mi.
#»w⊤ = 0 ifρ(i) ∈ Γ ∗, µ := #»w.

#»
1 ̸= 0}

Defines X = α− #»v .
#»
1

µ ,
#»

u′ := #»v + X #»w, then implicitly α = τ .

Thus let
#»

u′ =
#»u
α and si := Mi. #»u and Mi.

#»

u′ = α.si. For i ∈ [l],B2
computes:

ki :=

{
g
η1,i

t ifρ(i) ∈ Γ ∗,
ϕ′t((g

α
0 )

η2,i .g
η3,i

0 ) ifρ(i) /∈ Γ ∗.
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where η1,i =Mi.
#»v , η2,i = Mi.

#»w
µ and η3,i =Mi.

#»v − Mi.
#»w. #»v .

#»
1

µ

If ρ(i) ∈ Γ ∗, then ki = g
η1,i

t = gMi

#»

u′

t = gαsit = ϕt(h0)
si .

If ρ(i) /∈ Γ ∗, then ki = ϕ′t((g
α
0 )

η2,i+η3,i = (g′t)
Mi

#»

u′
= (g′t)

αsi = ϕ′t(h
′
0)

si .
Then B2 sends the value skSj = {ki}i∈[l] to A2.

7. A2 send two plaintexts m0,m1 such that |m0| = |m1| to B2.
8. B2 encrypts plaintexts to obtain cT := {(ct)t∈Γ∗ , c} such that ct := (ĝβt )t∈Γ∗

and c := gθT .mb. B2 flips a random coin b ∈ {0, 1} and send cT to A2.
9. After A2 issues a random oracle or a key query, B2 executes step 6.

10. Finally, A2 outputs b′.

Let ϵ be the advantage of A.
Pr[b ̸= b′|b′ := 1] = 1

2
Pr[b = b′|b′ := 1] = 1

2
Pr[b = b′|b := 0] = 1

2 + ϵ
1
2 Pr[b = b′|b := 0] + 1

2 + (Pr[b = b′|b′ := 1])− 1
2

= 1
2 + ( 12ϵ) +

1
2 ×

1
2 −

1
2

= ϵ
2

Conclusion: for any adversary A := (A1,A2), there exits B := (B1,B2), such
that for any security parameter λ:

AdvKP−ABE,PH−PQ
A (λ) ≤ Advd−pIsogDBDH

B (λ)

Theorem 2. The KP-ABE scheme is PH-PQ secure under the d-pIsog-DLin
assumption in the quantum random oracle model. For any adversary A :=
(A1,A2), there exits B := (B1,B2), such that for any security parameter λ:

AdvKP−ABE,PH−PQ
A (λ) ≤ Advd−pIsog−DLIN

B (λ)

Proof. Let start with :

Challenge phase for the quantum adversary A1

1. First A1 declares the challenge attributes Γ ∗ in which Γ ∗ /∈ Sj for all j and
provides Γ ∗ to B1.

2. B1 runs the Setup of KP-ABE and obtains pp := (Gt, Ĝt, ĝt, et)t∈[d], hT ).

B2 runs (G′
t, Ĝ

′
t, ĝ

′
t, e

′
t)t/∈Γ∗ and t∈[d], h

′
T )

$←− SimGen(G0, Ĝ0, ĝ0, e0).

pk := (Gt, Ĝt, ĝt, et)t∈Γ∗ & t∈[d], hT , (G′
t, Ĝ

′
t, ĝ

′
t, e

′
t)t/∈Γ∗ , h′T ). Then B1 pro-

vides pk to A1.
3. B1 simulates as a challenger for A1 as:

– Let F (X) be a random degree ν polynomial A1, ie., F (X)←
⊕ν

i=0 FqX
i

with ν := 2ν1 + ν2.
– Let s $←− F∗

q such that ∃h′0 : e0(h
′
0, ĝ0) = h

1/s
T τ := F (s) . Hence a

quantum random oracle query RO is answered by h0 := gτ0 where g0 is
from setup.
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– A classical key generation query is answered as follows: B1 chooses a
vector #»u

$←− Fr
p such that

∑r
i=1 ui = s

For i ∈ [l] si := Mi.
#»u⊤, where M is the matrix of share of l rows and r

columns.
B1 returns (ki := gτsiρ(i)∈Γ∗)i∈[l] provides it to A1

4. A1 outputs (state)
$←− A1(pk) and sends it to A2 and B2.

Challenge phase for the classical adversary A2

5. B2 gets Xb := (state′, gα0 , g
β
0 , (ĝ

α
t , ĝ

β
t , ĝ

γ
t )t∈[d], g

δ
T ), where δ = αγ+βγ if b = 0

and otherwise δ $←− Fq, state′ = (state, F (X)).
6. When a random oracle query is issued for access structure S := (M,ρ), B2

check:
a- If Γ ∗ is not accepted by Sj , B2 re-executes the KeyGen of step 3 in the

challenge phase for the quantum adversary A1 with another Sj+1.
b- If Γ ∗ is accepted by Sj , B2 generates a vector #»v

$←− Fr
p.

Takes #»w
$←− { #»w ∈ Fr

p|Mi.
#»w⊤ = 0 ifρ(i) ∈ Γ ∗, µ := #»w.

#»
1 ̸= 0}

Defines X = α+β− #»v .
#»
1

µ ,
#»

u′ := #»v + X #»w, then implicitly α+ β = τ .

Thus let
#»

u′ =
#»u

α+β and si :=Mi.
#»u and Mi.

#»

u′ = (α+ β).si. For i ∈ [l],B2
computes:

ki :=

{
g
η1,i

t ifρ(i) ∈ Γ ∗,
ϕ′t((g

α
0 )

η2,i .g
η3,i

0 ) ifρ(i) /∈ Γ ∗.

where η1,i =Mi.
#»v , η2,i = Mi.

#»w
µ and η3,i =Mi.

#»v − Mi.
#»w. #»v .

#»
1

µ

If ρ(i) ∈ Γ ∗, then ki = g
η1,i

t = gMi

#»

u′

t = g
(α+β)si
t = ϕt(h0)

si .
If ρ(i) /∈ Γ ∗, then ki = ϕ′t(g

′
0)

(α+β)η2,i+η3,i = (g′t)
Mi

#»

u′
= (g′t)

(α+β)si =
ϕ′t(h

′
0)

si .
Then B2 sends the value skSj = {ki}i∈[l] to A2.

7. A2 send two plaintexts m0,m1 such that |m0| = |m1| to B2.
8. B2 encrypts plaintexts to obtain cT := {(ct)t∈Γ∗ , c, c′} such that ct :=

(ĝγt )t∈Γ∗ , c′ := gβT and c := gδT .mb. B2 flips a random coin b ∈ {0, 1} and
send cT to A2.

9. After A2 issues a random oracle or a key query, B2 executes step 6.
10. Finally, A2 outputs b′.

Conclusion: for any adversary A := (A1,A2), there exits B := (B1,B2), such
that for any security parameter λ:

AdvKP−ABE,PH−PQ
A (λ) ≤ Advd−pIsog−DLIN

B (λ).

Theorem 3. The KP-ABE scheme is PH-PQ under 2dn-pIsog-DBDH assump-
tion in the random oracle. For any adversary A, there an adversary B for the
2dn-pIsog-DBDH, such that for parameter security λ:

AdvKP−ABE,PH−PQ
A (λ) ≤ Adv2dn−pIsogDBDH

B (λ)
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Proof. The proof of theorem 2 is similar to the theorem 1. Then the large
universe can be demonstrated as follows:
Challenge phase for the quantum adversary A1

1. First A1 declares the challenge attributes Γ ∗ in which Γ ∗ /∈ Sj for all j and
provides Γ ∗ to B1.

2. B2 runs the Setup of KP-ABE with an input the security parameter λ and
obtains:
pk := ((G0, Ĝ0, ĝ0,GT , e0), (Gt,j,ι, Ĝt,j,ι, ĝt,j,ι, et,j,ι)

t∈[d],j∈[n]
ι∈[0,1] , hT ,GT ;

msk:= (ϕt,j,ι)
t∈[d],j∈[n]
ι∈[0,1] .

B2 runs ((Gt,j,ι, Ĝt,j,ι, ĝt,j,ι, et,j,ι)
t∈[d],j∈[n]
ι∈[0,1] , h′T )

$←− SimGen(G0, Ĝ0, ĝ0, e0).
3. B1 plays the role of challenger to A1 as :

– Let F (X) be a random degree ν polynomial A1, ie., F (X)←
⊕ν

i=0 FpX
i

with ν := 2ν1 + ν2.
– Let s $←− F∗

p such that τ := F (s) . Hence a quantum random oracle query
RO is answered by h0 := gτ0 where g0 is from Setup.

– A classical key generation query is answered as follows: B1 choose a
random vector #»u

$←− Fr
p such that

∑r
i=1 ui = s. For i ∈ [l]si := Mi.u

T

such that there exist a random vector #»τ = (τi,j) and si :=
∑n

j=1 τi,j .

If ρ(i) = (t, vi = (vi,j) ∈ {0, 1}n, (ki,j := gρ(i)∈Γ∗)
j∈[n]
i∈[l] .

4. A1 outputs (state)
$←− A1(pk) and sends it to A2 and B2.

Challenge phase for the classical adversary A2

5. B2 gets Xb := (state′, gα0 , (ĝ
β
0 )t∈[d], g

θ
T ) where θ = αβ if b = 0 and otherwise

θ
$←− Fp. Then B2 sends state to A2.

6. When a random oracle query is issued for access structure S := (M,ρ), B2
check:
a- If Γ ∗ is not accepted by Sj B2 re-executes the KeyGen of step 3 in the

challenge phase for the quantum adversary A1 with another Sj+1.
b- If Γ ∗ is accepted by Sj , B2 generates a vector #»v

$←− Fr
p.

B2 generates #»vi
$←− Fr

p Takes # »wi
$←− { # »wi ∈ Fr

p|Mi.
# »wi

⊤ = 0 ifρ(i) ∈
Γ ∗, µi :=

# »wi.
#»
1 ̸= 0}

Defines X = α− #»
vii.

#»
1

µi
,

#»

u′i :=
#»v i + X #»wi, then implicitly α = τi.

Thus let
#»

u′i =
#»u i

α and si :=Mi.
#»u i and Mi.

#»

u′i = α.si.
For i ∈ [l],
– For j ∈ [n]B2 computes:

ki,j :=

{
g
ηi,j

t ifρ(i) ∈ Γ ∗,

ϕ′t((g
α
0 )

η′
i,j .g

η”i,j
0 ) ifρ(i) /∈ Γ ∗.

where ηi,j =Mi.
#»v i, η′i,j =

Mi.
#»w ′

µi
and η”i,j =Mi.

#»v i − Mi.
#»wi.

#»v i.
#»
1

µ

If ρ(i) ∈ Γ ∗, then ki,j = g
ηi,j

t = gMi

#»

u′
i

t = gαsit = ϕt,j,vi,j
(h0)

si .
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If ρ(i) /∈ Γ ∗, then ki,j = ϕ′t((g
α
0 )

η′
i,j+η”i,j = (g′t)

Mi

#»

u′
i = (g′t)

αsi =
ϕ′t,j,vi,j

(h′0)
si .

Then B2 sends the value skSj = {ki,j}j∈[n]
i∈[l] to A2.

item A2 send two plaintexts m0,m1 such that |m0| = |m1| to B2.
7. B2 encrypts plaintexts to obtain cT := {(ct,j)(t,.)∈Γ∗,j∈[n], c} such that ct :=

(ĝβ)t,j,vi,j∈Γ∗ and c := gθT .mb. B2 flips a random coin b ∈ {0, 1} and send cT
to A2.

8. After A2 issues a random oracle or a key query, B2 executes step 6.
9. Finally, A2 outputs b′.

Therfore, for any adversary A := (A1,A2), there exits B := (B1,B2), such that
for any security parameter λ:

AdvKP−ABE,PH−PQ
A (λ) ≤ Adv2dn−IsogDBDH

B (λ)

Conclusion

We encountered several challenges while exploring attribute-based encryption
(ABE) based on isogeny. The primary difficulty is that the current isogeny struc-
ture does not support an ABE scheme with quantum-resistant ciphertext. We
have identified a security concept called payload hiding against quantum at-
tacks and constructed a key-policy attribute-based encryption (KP-ABE) scheme
using an isogeny pairing group. This involves introducing a new assumption,
Isog-DLin, within a small universe. Future research will investigate constructing
ciphertext-policy attribute-based encryption (CP-ABE) schemes using isogeny
pairing groups and group actions based on oriented supersingular curves, such
as SCALLOP or SCALLOP HD, for improved computational efficiency.
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A Isogeny Sequence

1. Initialization
– First, we refer to CSIDH 512 and Csi-Fish. Let p be a large prime where
p+ 1 = 4 · 587

∏n=73
i=1 li (all li are odd primes and

(
−p
l1

)
= −1). Choose

a generator g3 := l31 = ⟨3, π − 1⟩3.
– Let E(Fp) be the set of supersingular elliptic curves defined over Fp

(#E(Fp) = p + 1), and let eN (., .) be the Weil pairing on E[N ]. E(Fp)
contains exactly one cyclic subgroup G := E[lk] ∩ E(Fp) of order lk.

– Let u ∈ Fp2 \ Fp such that u2 ∈ Fp. We define the map

v : E→ Ê
(x, y) 7→ (u2x, u3y)

to a quadratic twist Ê of E, i.e., to a curve that is isomorphic to E over
Fp2 and #Ê(Fp) = p+ 1.

– Let E0 : y2 = x3 + x be a supersingular elliptic curve defined over Fp.
Hence, we choose l1 such that l1 = 3, and all torsion points are defined over
Fp2 .
We note that 3k | p+ 1.

2. Isogeny Sequence
– Second, we can compute an isogeny of degree 3k with Algorithm 1 [23].

Then, we have a curve E and a point generator ζ = R.
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– This allows us to compute two cyclic subgroups: Ĝ := Ê[lk] ∩ Ê(Fp) of
order 3k, and thus G := v−1(Ĝ).

We describe it in the following algorithm:

Algorihm 1:Isogl,k,

Input: A supersingular elliptic curve E0

Output: An isogenous E, a kernel ζ that is the trapdoor , and two cyclic
groups (G, Ĝ) ▷ All instantiation is based on Csi-Fish

1: generates a random point R ∈ E[3k], then R0 := R
2: for 0 ≤ i ≤ k do Ei+1 := Ei/E[3

k−i−1], ψ : Ei → Ei+1, and Ri+1 :=
ψ(Ri) by Vélu’s formula

3: Do composition ϕ := ψk−1 ◦ ψ0 : E→ Ek = E/E < R > .
4: E := Ek and ζ := R
5: Ĝ := Ê[lk] ∩ Ê(Fp)

6: G := v−1(Ĝ)
7: return (E, ζ,G, Ĝ)

Note that for curves E,E′ such that ϕ : E→ E′ and cyclic groups G, Ĝ for E
respectively G′, Ĝ′ for E′:

e(g, ĝ) = e′(g′, ĝ′) = e(ϕ(g), ĝ′)

A.1 Instantiation of Isogeny Pairing Group (IPG)

The following algorithms are an instantiation of an IPG generator.

Algorithm 2: GenIPG(λ, d) [23],

Input: (λ, d)
Output: (pkIPG, skIPG)
1: Generate a supersingular elliptic curve E0 := y2 = x3+x over Fp with

a cardinality 3k ▷ (G, Ĝ,GT , e0) is an asymmetric pairing group of
order r from E0 such that e0 is a Weil pairing, g0

$←− G0 and ĝ0
$←− Ĝ0

following section A (Initialization)
2: for t ∈ [d] do
3: (Et, ζt)

$←− Isogl,k(E0), ϕt := ϕζt , Gt := ϕt(G0), Ĝt := ϕt(Ĝ0)

4: choose a random hT such that hT := e0(h0, ĝ0) ▷ h0 ∈ G0 and
ĝ0 ∈ Ĝ0

5: return pkIPG := ((Gt, Ĝt, gt, ĝt, et)t∈[d], hT , GT ), sk
IPG := (ζt)t∈[d]

for (ϕt)t∈[d])
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Algorihm 3: SimGen [23],

Input: (G0, Ĝ0, g, ĝ0, e0) :
Output: (G, Ĝ, g, ĝ, e, ζ for ϕ)
1: (Et, ζt)

$←− Isogl,k(E0)

2: ϕ := ϕζ , , g := ϕ(g0), G := ϕ(G0), Ĝ0 := ϕ(Ĝ0) ▷

e(h, ĥ) := eWeil(h, ĥ) for any h ∈ G, ĥ ∈ Ĝ, where eWeil is the Weil
pairing on E

3: return (G, Ĝ, g, ĝ, e, ζ for ϕ)

B Correctness

The following lines show the correctness of the small and large universe of KP-
ABE.

B.1 Correctness of KP-ABE under Isog-DBDH assumption

The following lines show the correctness of the small universe construction under
Isog-DBDH assumption.

Correctness:
If S accepts Γ then
z′ :=

∏
t:=ρ(i)∈Γ

et(ki, ct)
σi

z′ :=
∏

t:=ρ(i)∈Γ

et(ϕt(h
′
0)

si , ĝζt )
σi

z′ :=
∏

t:=ρ(i)∈Γ

et(ϕt(h
′
0)

si , ϕt(ĝ0)
ζ)σi

z′ :=
∏

t:=ρ(i)∈Γ

et(ϕt(h
′
0), ϕt(ĝ0))

ζsiσi

z′ :=
∏

ρ(i)∈Γ

e0(h
′
0, ĝ0)

ζsiσi

z′ := e0(h
′
0, ĝ0)

ζ
∑

ρ(i)∈Γ siσi

z′ := e0(h
′
0, ĝ0)

ζs

z′ := hζs
−1s

T

z′ = z

B.2 Correctness of the small universe of KP-ABE under Isog-DLin
assumption

In the algorithm Encrypt, z := hζT = e0(h0, ĝ0)
ζ+θ and c = m.z.
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Correctness:
If S accepts Γ then
z′ :=

∏
t:=ρ(i)∈Γ

et(ki, ct)
σi .c′

z′ :=
∏

t:=ρ(i)∈Γ

et(ϕt(h
′
0)

si , ĝζt )
σi .c′

z′ :=
∏

t:=ρ(i)∈Γ

et(ϕt(h
′
0)

si , ϕt(ĝ0)
ζ)σi .c′

z′ :=
∏

t:=ρ(i)∈Γ

et(ϕt(h
′
0), ϕt(ĝ0))

ζsiσi .c′

z′ :=
∏

ρ(i)∈Γ

e0(h
′
0, ĝ0)

ζsiσi .c′

z′ := e0(h
′
0, ĝ0)

ζ
∑

ρ(i)∈Γ siσi .c′

z′ := e0(h
′
0, ĝ0)

ζs.c′

z′ := hζs
−1s

T .hθT
z′ := hζ+θ

T

z′ = z

B.3 Large universe of KP-ABE

We know that in the algorithm of Encrypt, z := hζT = e0(h0, ĝ0)
ζ ∈ GT and

c := z.m. The correctness is :

Correctness:
If S accepts Γ

z′ =
∏

ρ(i)=(t,vi,j)∈Γ

(
n∏

j=1

et,j,vi,j
(ki,j , ct,j)

)σi

z′ :=
∏

ρ(i)=(t,vi,j)∈Γ

(
n∏

j=1

et,j,vi,j
(ϕt,j,vi,j

(h′0)
τi,j , ĝζt,j,xt,j

)

)σi

z′ :=
∏

ρ(i)=(t,vi,j)∈Γ

(
n∏

j=1

et,j,vi,j
(ϕt,j,vi,j

(h′0)
τi,j , ϕt,j,vi,j

(ĝ0)
ζ)

)σi

z′ :=
∏

ρ(i)=(t,.)∈Γ

(
n∏

j=1

e0(h
′
0, ĝ0)

τi,jζ

)σi

z′ :=
∏

ρ(i)=(t,.)∈Γ

(
e0(h

′
0, ĝ0)

siζ

)σi

z′ := e0(h
′
0, ĝ0)

ζ.s.s−1

z′ = z
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