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Abstract. The area of modern zero-knowledge proof systems has seen a significant
rise in popularity over the last couple of years, with new techniques and optimized
constructions emerging on a regular basis.

As the field matures, the aspect of implementation attacks becomes more relevant,
however side-channel attacks on zero-knowledge proof systems have seen surprisingly
little treatment so far. In this paper we give an overview of potential attack vectors
and show that some of the underlying finite field libraries, and implementations of
heavily used components like hash functions, are vulnerable w.r.t. cache attacks on
CPUs.

On the positive side, we demonstrate that the computational overhead to protect
against these attacks is relatively small.

Keywords: No keywords given.

1 Introduction

Recent years have witnessed a significant development in the area of zero-knowledge
proofs (ZKPs) [GMRS&5] and its applications in blockchains [Polb, Labe, Eth, Fou, Stal,
decentralized apps [Min, Dus, Sem], anonymous credentials [Sui], crypto-assets [Zca, Mon,
Pan], verifiable computation [Lur, ZKs|, and decentralized storage [Sto, Swa, Sia, Labi],
among others. A ZKP protocol allows a prover P to convince a verifier V of the validity of
some statement without revealing any additional information about the statement to V.
More specifically, most ZKP applications rely on the technique of zero-knowledge succinct
non-interactive argument of knowledge (zkSNARK) [BCCT12, AHIV17, GLS™23, XZS22]
for sub-linear proof size and verification time. Since these properties are crucial for
practicality, many recent developments focus on making these proofs even more efficient.
This has also led to groups like Fabric [Fab], Ingonyama [Inga], and Supranational [Sup]
working on dedicated hardware accelerators for ZK proof generation and verification.

At USENIX’20, Tramer, Boneh and Paterson [TBP20] demonstrated attacks on two
privacy-focused cryptocurrencies, namely, Zcash [Zca] and Monero [Mon]. They exploited
the timing-based side-channel leakages occurring when executing the protocol, allowing
an attacker A to de-anonymize the secret payee (prover P), violating the fundamental
purpose of using private transactions. In their attack, the timing leakages stemmed from
the high-level protocol properties such as changed communication patterns, or additional
operations like commitments being computed only in certain cases. More recently at
USENIX'24, [CET"24] took a broader look into the potential security vulnerabilities in
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2 Cache Timing Leakages in Zero-Knowledge Protocols

SNARKSs protocols, in particular, they discuss various threat models and system-level
vulnerabilities.

In this work, we discovered a zoo of ZK applications, potentially vulnerable to timing at-
tacks [Koc96, BB03], in particular cache-based timing side-channel attacks [Ber05, TOS10].
We looked into leakages occurring in the fundamental components of ZK protocols like
the underlying field arithmetic libraries used in the various constructions like Merkle
trees or operations like in NTTs, polynomial evaluation, among others. More specifically,
we looked into the Merkle tree construction using hash functions with potential leaky
implementations.

Being the first work in the literature to explore such timing leakages, we only rely on
the well-known Flush+Reload (F+R) [YF14] and Prime+Probe (P+P) [AES15, LYG™15,
IGI*16] attacks and conjecture that other advanced timing attacks such as the ones
with pre-fetching [CWS*24] or attaining sub-cache level resolution [SZB*24, YGH16]
will also work, potentially with even fewer assumptions and higher precision. We show
that when constructing Merkle Trees for ZK membership proofs [BdM93] with pairing-
based [KZG10, CHM 20, Grol6] or FRI-based [BBHR18b] approaches, a non-constant
time hash implementation! may leak the preimage containing sensitive information about
‘P’s private witness or potentially forfeiting the zero-knowledge property of the ZK protocols.

On scrutinizing the standard field arithmetic libraries like Rust £f, ff-ce, ark-ff crates,
Python galois library, Typescript circomlibjs, we found several potential timing leakages
in various field arithmetic operations like modulo addition, multiplication, reduction,
exponentiation, among others. The same leaky field arithmetic libraries were used in
several public implementation of ZK-friendly hash functions like Rescue [BBHR18b],
MonoLiTH [GKL123], and even the de-facto industry-standard PoseiDoN [GKR™'21],
carrying forward the same timing vulnerabilities in the hash functions. It should be
emphasised that the above hash functions themselves exhibit a constant-time algorithm,
and the leakages occur only due to the use of underlying leaky field arithmetic libraries
for the implementation. Additionally, we also looked into the family of lookup-based
ZK-friendly hash functions, like REINFORCED CONCRETE (RC) [GKL"22] and to some
extent Tip5 [SLST23], which are inherently leaky due to the use of lookup-tables (LUTS) for
efficient ZK proofs and verification. In such hash functions the timing leakage may originate
both from the hashing algorithm itself (due to timing differences of memory-access) and
also the underlying field arithmetic library.

Main Contributions. We summarize our main contributions in the following.

e For the first time in the literature, we discuss the potential implications of side-channel
attacks on ZK applications, in particular, cache timing attacks on pairing-based
and FRI-based ZK membership proofs.2 In Section 3, we mount a black-box timing
attack on the ZK protocols and show how A can forfeit the zero-knowledge property
by leaking P’s secret witness.

e In Section 4, we open the black box and show the existence of actual timing attacks
in the fundamental components of the ZKP systems, like in the underlying field
arithmetic libraries. We analyse the impact of cache based timing attacks, in
particular F+R and P+4P attacks on the public ZK protocols using leaky construction
of POSEIDON, and state the preimage recovery complexity of the same. We also
show an attack on implementations of ZK-friendly hash functions that have faster
plain performance due to use of lookup tables (REINFORCED CONCRETE is the first

1Generally branched implementations are often faster than their constant time counterparts. This may
serve as a motivation in the industry to use it for performance benefits.

2We also found some public discussions, like https://github.com/facebook/winterfell/issues/9,
taking up the same concerns.
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such proposal) and discuss the security implications. As part of our larger survey, a
non-exhaustive list of such potentially vulnerable ZK applications found in the wild
is also provided.

o Section 5 recommends the potential fixes for these vulnerabilities® and motivate
the need for expedited research in the direction of micro-architecture based at-
tacks [LSGT18, CWS*24, MWES19, SZB™24] or power side channel attacks [KJJ99,
MOPO07, RD20, LKO™21, AARR02, MDS99, CRR02] on ZK applications. Protect-
ing against the above cache-based timing attacks, we also provide a constant-time
implementation effort of some of the standard field arithmetic libraries (forked)
used in the ZK protocols discussed in this work. On the bright side, in many cases
we found that the constant-time implementations do not necessarily comes with
significant performance penalty.

2 Preliminaries

We discuss the fundamentals of cache timing attacks like CPU caches, the concept of
shared memory, and the two well-known cache timing attacks, F4+R and P+P. Then
we go through the fundamentals of zero-knowledge proofs and give a brief introduction
on ZK-friendly hash functions and the role they play in pairing-based and FRI-based
membership approaches.

2.1 Caches and Shared Memory

A standard CPU has a limited number of data registers, and thus cannot fit all the data it
needs during a process execution. Any data that is required in the future is fetched from a
low-latency memory into the CPU register before processing it. In most modern CPUs,
caches provide this low-latency memory, however, they have a limited storage capacity and
thus any large data must be fetched from the main memory using temporal and spatial
data pre-fetching prediction algorithms. When executing a process, if the CPU finds the
required data in the cache, we call it a cache hit. Otherwise, if the data needs to be fetched
from the main memory, we call it a cache miss. The latter comes with a larger latency as
the data needs to be fetched from the significantly slower main memory into the cache
before the CPU can process it. For example, in a standard Intel CPU, the L1 cache has a
latency of one to two clock cycles, whereas the L3 cache has a latency of around 30 to
40 clock cycles. In comparison, data fetching from the main memory may take up to 300
clock cycles.

Caches are usually partitioned into m smaller cache sets, which are further divided into
n cache lines of b bytes each. We commonly refer to such caches as n-way set-associative
caches, where the total cache size is m - n - b bytes.* The L1 caches are shared between the
sibling cores contained in a physical core, whereas the L3 cache is shared among all the
physical cores and their respective sibling cores. Depending on the type of the cache-based
timing attack, A and P may or may not have to share the same physical core in the threat
model.

The concept of shared memory is heavily used by the operating system due to its
performance benefits. For instance, several processes relying on the same library can access
the shared physical memory where the library is mapped, averting the need for having
several copies of the same library in the main memory for each process. Standardized

3Several micro-architectural mitigations have been proposed in the past, however, they come with their
own trade-offs. In this work, we do not focus on these mitigations as it is a topic on its own interest, but
only discuss the best constant-time implementation practices.

4For example, our test machine runs on an Intel i7-7600U CPU which has a 4 MB L3 cache with
m = 4096, n = 16 and b = 64 bytes.
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cryptographic implementations like OpenSSL [opeb], NSS [NSS], Libgerypt [Lib], or even
ZKP libraries can be examples of such shared libraries.

2.2 Cache Timing Attacks

Flush+Reload Attack. In 2016, Yarom and Falkner [YF14] presented the first Flush+Reload
(F+R) attack to recover the RSA key. A F+R attack targets the shared instance, like
a cryptographic library, mapped on the common cache accessible to both A and P. A
calls the c1flush instruction to flush (remove) the cache lines containing the library data,
for instance, the S-box lookup table (LUT) of AES or REINFORCED CONCRETE. A later
reloads the flushed data with maccess and measures the reload latency. If the data is not
present in the cache, reload requires more time as the data needs to be fetched from the
main memory. If a particular section of the flushed data has a smaller reload latency, A
learns that P accessed that section, as the data was already loaded, potentially leaking the
secret input to the cryptographic function, for example, the input to the S-box. Similar
to the F+R attack, Gruss, Maurice, Wagner, and Mangard [GMWM16] proposed the
Flush+Flush (F+F) attack, a window-less attack where reloading the data is not required,
but instead A always flushes the memory, which has a lower latency than reloading the
memory. This is particularly useful for achieving higher time resolution, especially when
it is likely that P will access the data more than once between the flush and reload calls
made by A.

Prime+Probe Attack. In 2006, Osvik et al. [OSTO06] introduced the Prime+Probe (P+P)
attack, followed by later improvements [AES15, LYG™15]. Compared to F+R, this attack
does not require access to shared cryptographic library between A and P, which naturally
reduces the security assumptions one needs to make. In this attack, A primes (loads) all
the cache sets with their eviction set (data) and then waits for P to load their data on the
cache, replacing A’s eviction set. A then sequentially probes the cache sets and looks for
addresses where the eviction set was replaced. If the set was replaced by P, A’s access
time to the set will be longer as the data needs to be fetched from the main memory into
the cache. P+P attacks are generally more noisy and are limited only to the cache set
resolution, giving low information leakage compared to F+R attacks which have a cache
line resolution.

2.3 Zero-Knowledge Proof System

A zero-knowledge proof [GMRS85] system allows a prover P to convince a verifier V the
validity of a statement, using a public input (public data and the circuit) and potentially
private witness data such that the public input reveals no information about the statement.
For instance, P may want to convince V that they know a preimage x such that y = H(z)
for a publicly known value y and a cryptographic hash function H. A similar approach is
also used for modern post-quantum signature schemes [CDGT17, BASGK*21, DKR™22,
BBM™24], especially the ones based on MPCitH and VOLEitH ZKP paradigms. Here
P proves the knowledge of their secret key sk for a particular public key pk (plaintext-
ciphertext pair), and the randomness is generated with a seed and the message to be signed.
Two crucial properties of any ZKP protocol are completeness and soundness. Informally,
the former ensures that an honest V will be convinced by an honest P and the latter ensures
that a dishonest P cannot convince an honest ) except with some small probability (usually
designed to be negligible in the security parameter). Additionally, any ZKP protocol must
also provide the zero-knowledge property.> Modern general-purpose ZKP systems can be

5We note that in some practical settings the ZK property may not be needed, but instead only the
computational integrity property of modern general-purpose proof systems is used.
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essentially split into two categories, namely pairing-based [Gro16, Coi, MBKM19, CHM ™20,
ABST23, Lee21, Set20] and FRI-based [BBHR18b, BCR™19, BFH20] approaches. With
the former, hash functions are often used to prove membership in zero knowledge, e.g. to
prove on-chain coin ownership [Zca, Mon] or show group membership [Sem, Sui]. In contrast,
FRI-based approaches often use these primitives internally in recursive proving approaches,
which is a crucial building block of various ZK-rollup applications [Her, ZKs, Tus, Azt].

2.4 ZK-Friendly Hash Functions

Modern ZK protocols often rely on hash functions which exhibit a property referred to as
circuit friendliness, ZK friendliness, or arithmetization friendliness, important for strong
performance when proving particular statements in ZK. This essentially means that the
algorithmic description of the hash function can be translated to a relatively small system
of low-degree constraints, which makes these constructions efficient in proof systems for
computational integrity. In the following, we give a brief overview of two such constructions,
one of them being among the most popular choices and the other being a more modern
approach using lookup arguments in the proof.

Poseidon. POSEIDON [GKR™21] is a cryptographic hash function designed for efficient
implementation as an arithmetic circuit, making it particularly suitable for zero-knowledge
proof systems. It operates over a prime field p, where p ~ 2™ and n > 31, mapping the input
messages of arbitrary length to fixed-size digests. The underlying sponge permutation,
PoseoN™: Fy — Fp, where o is the fixed output length measured in p elements, is based
on a substitution-permutation network (SPN) first used for HADESMiMC [GLR*20]. It
consists of several rounds with two different types of layers, namely full (or external) and
partial (or internal) rounds. The former includes full nonlinear layers where S-boxes are
applied to every word in the state. The latter consists of a partial nonlinear layer where
the S-box is only applied to the first word of the state. The idea behind this approach
is to provide simple arguments against statistical attacks using consecutive full rounds,
while achieving the same degree growth using the more efficient partial rounds. The affine
layer M(-) consists of a ¢ x ¢ MDS matrix multiplication and a round constant addition
ARC(-). The nonlinear S-box function is defined as S(x) = x®, where o > 3 is a small
positive integer for which ged(p — 1,«) = 1. An overview of the POSEIDON” permutation
is shown in Fig. 1.
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Figure 1: The POSEIDON™ permutation.
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In computational integrity proof systems, the advantages of POSEIDON stem from its
low number of nonlinear operations, primarily due to the minimal use of S-boxes. This
property makes it easier to express the hash function as a circuit and prove knowledge of its
preimages within the proving framework. Indeed, nowadays POSEIDON is used in various
ZK-related applications, including RISC Zero [RIS], Plonky2 [Polb], Plonky3 [Polb], and
for many on-chain use cases such as Filecoin [Labi], Dusk Network [Dus], Sovrin [Sov],
Loopring [Loo].5 We refer the reader to POSEIDON [GKR*21] for more details.

Reinforced Concrete (RC). REINFORCED CONCRETE [GKL™22] is another ZK-friendly
sponge-based hash function which maps F — F3 for some prime p, operating over two
elliptic curves, namely BN254 and BLS12-381 and one special prime field (-ST) crafted for
performance. REINFORCED CONCRETE uses lookup-based S-boxes to take advantage of
proof systems which use the lookup argument for efficient set membership proofs. The
underlying permutation consists of a modified 7-round SPN with CONCRETE, BRICKS and
BARS layers, where CONCRETE o BRICKS is one round, and a single BARS layer is applied
in the middle of the permutation. The BRICKS function is a nonlinear permutation. The
CONCRETE function is an MDS matrix multiplication with the state in F,. The BAr
layer consists of composition/decomposition and S-box functions, where the BAR layer
is implemented as a lookup table of the functions it contains. RC can be considered
as an attractive drop-in replacement for POSEIDON due to its increased efficiency for
lookup-based protocols like Arya [BCGT 18], Plookup [GW20, PFM*22], Halo2 [Zca], and
logUp [Hab22]. A graphical representation of the RC function is provided in Fig. 2. We
refer the reader to RC [GKL™'22] for more details.
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Figure 2: The REINFORCED CONCRETE permutation.

3 Hash Functions in Zero-Knowledge Proofs

We distinguish between two types of general-purpose ZK proof constructions, namely
pairing-based and FRI-based ones. Circuit-friendly hash functions are regularly used in
both of them, and we give a summary of two main settings below.

6By “on-chain use cases” we refer to operations and data executed and stored on the main blockchain
directly.
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For the purpose of this section, we utilize the side-channel technique as a blackbox
component in order to describe the setting and the general approach of the attack. In the
next section, we go into the details of the side-channel part of the attack specifically.

3.1 Hash Functions in Pairing-Based Proofs

ZK-friendly hash functions defined over pairing-friendly elliptic curves are a powerful tool in
many real-world scenarios. In particular, many proof systems [CHM ™20, ABST23, Grol6]
(especially those directly employed on chains like Ethereum) are based on this type of elliptic
curves in order to support efficient verification of proofs. In this context, a ZK-friendly
hash function can be translated to a circuit with minimal overhead.

To give an example, let us consider a simple membership proof where P wants to
convince V that they hold some secret input (say, a coin). The input is part of a publicly
verifiable set fixed by a Merkle root (say, a block on the blockchain containing information
about the ownership of the coin). In this case, a hash function can be used to prove
knowledge of the secret input without trivially revealing it to V. In order to prove the
opening path in the tree efficiently, a ZK-friendly hash function is used to construct the
Merkle tree, resulting in easily verifiable constraints when used together with a pairing-
based proof. Here, V verifies if the path from the leaf to the root of the Merkle tree was
computed correctly by checking the correct execution of all the d hash function calls on the
path in ZK, where d is the depth of the Merkle tree. In the context of cache timing attacks,
any information leakage from the hash function also directly leaks P’s secret witness (leaf)
values. Using classical hash functions like SHA-3 makes this approach significantly more
expensive in general, as these often result in a more complex and less efficient constraint
system when computing the membership proof (i.e., the path from a leaf to the public
root).

3.2 Hash Functions in FRI

Similar to pairing-based approaches, ZK-friendly hash functions are also used in FRI-
based approaches [BBHR18a] for constructing Merkle trees during the commitment phase.
However, unlike the pairing-based approach, FRI protocols do not directly take the secret
witness as the input to the hash function, but instead, at a very high level, a polynomial
f is constructed by interpolating the private witnesses, which is then evaluated at some
special points (discussed later), and the outputs become the leaves of the Merkle tree fed
to the hash functions for computing the Merkle root. Here P proves to V that they know a
set of points (witnesses) which pass through f of a particular degree d (among other parts
in the entire proof). In most applications, these witness points are execution traces of a
program running on P’s machine, where P proves the correct execution of the program to
V. The circuit friendliness of a given hash function is particularly important for efficient
recursive proofs, which essentially include proving verifications of many other proofs.

Currently, FRI-based approaches are used in many popular projects widely adopted
in the industry [Scr, RIS, Sta, Wit, Pola], mainly due to their advantages like simple
setups and high prover performance. Indeed, many recent developments in the area
of zero-knowledge protocols have focused on making FRI-based proving more efficient
[HLP24, ACFY24].

Adding Zero Knowledge to FRI. While FRI is often used without the zero knowledge
property (e.g., exploiting the succinctness property for arguments of computational in-
tegrity), in many cases ZK is needed and activated. For that, various other strategies have
to be applied. When focusing on the trace in particular, one part consists of adding random
values to an existing witness column in the trace, in order to change the length of the trace
to a more suitable number (for example, a power of 2) and to mask the potentially private
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witness values. We refer to [HK24] for more details on this approach and a summary of
different techniques.

Another step consists of masking the Merkle tree leaves with random paddings, in
order to prevent leaking information in the opening part of the proving protocol. A more
detailed description of this approach is given in [BCS16].

Since our goal is to find private witnesses, we consider a scenario where zero knowledge
is enabled.

Side-Channel Attack on FRI. Let us consider a trace domain D, which we assume to be
a multiplicative subgroup of order N generated by w. The first step of P is to take the
witnesses {w;} ' in a trace column and to find a polynomial f such that f(w') = w;.
This can be done by an inverse number-theoretic transform (NTT). Note that for simplicity,
in this description we omit the random non-witness values added for zero knowledge. We
will show that later this makes no difference in the context of our side-channel attack.
After this step, we define the evaluation domain to be a slightly larger domain D’ of
BN elements, where f3 is called the blowup factor, generated by w'/? and shifted by s, i.e.,
D = {s-w/BY N1 and |D'| = - |D|. P then commits to the evaluations of f over D’
(along with random padding, again added for zero knowledge) using a Merkle tree, where
the Merkle root is the commitment. We refer to [BBHR18a, BBHR18¢| for more details.
In this scenario, the task of A is to find the potentially private witness values. This can
be done if the evaluations {f(s - w?® ﬂ)}f:']g_l are leaked. Indeed, note that the polynomial
f originates from the witnesses and, with overwhelming probability, is of degree N — 1.
Hence, it suffices to choose any N — 1 points from {(s - w®/?, f(s-wi/?))}? N =" and to find
a polynomial f* which goes through these points. With high probability, f = f*, and thus
evaluating f* on D = {w'} ;" is sufficient to find the witness values {w;}Y !,

Summarizing, the attack consists of the following steps.

1. Use side-channel leakage to find the evaluations of the trace polynomial f over
= {s-w" 5}5 V-1

2. Use |D| = N of these evaluations to find a highly likely candidate f* for f (this can
be done by interpolation).

3. Evaluate f* on D to find {f*(w') = w fvol. Again, with high probability,
{wr Nt = {wi}N,!, which corresponds to the original witness values.

The last two steps can be handled relatively easily from A’s point of view. However,
the first step requires more assumptions, in particular, using high-resolution cache timing
attacks, like sub cache line attacks [SZB'24, YGH16], mounted on hash implementations
with byte-level leakages, like when using LUTs for the S-boxes in RC hash function. This
allows A to directly learn {f(s - w'/? )}ﬁ N=1 and reconstruct f with trivial complexity as
discussed above.

When using low-resolution attacks like F+R and P+P, or if the hash implementation
leaks only a few bits of information, A obtains several candidates for every { f(s-w"/? )}ﬂ Nt
preimage. A can then iterate through all these candidates in order to reconstruct f. In
particular, this is possible if the evaluations of f over D’ exhibit a strong structure, which
however is mainly mitigated due to the diffusion properties of the NTT application. Indeed,
the evaluation of f over D’ results in a highly unstructured table even for small variations
in {w;}X,'. An obvious exception occurs if all values in {w;}\ ;" are the same (i.e.,
f(x) = wp), which however is an unrealistic scenario both due to the practical use cases
for proof systems and due to additional steps, such as padding applied to trace columns.

Zero Knowledge and Side-Channel Resistance. In the context of our cache timing attack,
some of the additional techniques to achieve zero knowledge are no obstacle, as recovering
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the preimage includes both the evaluation points (evaluations of f at publicly known
inputs) and the random paddings, which allows A to fully reconstruct f via interpolation.
Once f is reconstructed, A can trivially retrieve the secret witness by evaluating f at
the publicly known input points. The added random values to mask the interpolating
polynomial are no obstacle here.

We also emphasize that the initial step of the interpolation is applied to potentially
private witness data. It remains a future direction to investigate how this can be exploited
in cache attacks with the high-resolution leakages and other side-channel approaches.

4 Cache Timing Attacks

We define the threat model under which the F+R and P+P attacks are mounted and
discuss the complexity of recovering the preimage of the POSEIDON and RC public
implementations [Gra]. Finally, we provide a non-exhaustive list of all the open source ZK
libraries that we found were using pairing-based and FRI-based ZK approaches with non-
constant time POSEIDON hash implementation. We should emphasise, we only point out
the potential timing leakages in the implementation, especially critical for secure pairing-
based approaches. For the FRI-based approaches, we took more interest in breaking the
zero-knowledge property by recovering some bits of the preimage in the Merkle leaves.

Threat Model. We assume that P is generating the proof for their witness on a shared
machine M (like a cloud), allowing P to access powerful hardware for generating faster
proofs while minimizing the cost by sharing resources. An attacker A (e.g., pretending to
be another legit prover), using M runs their malicious side-channel programs and learns
some (if not all) bits about P’s secret witness through cache-based timing attacks when P
generates the ZK proof for V. If M is not a cloud, but rather P’s private machine, we
assume that A4 is running on M through more sophisticated attacks like browser-based
side-channel exploits [GCGT24, SAOT21]. Due to the zero-knowledge property, we know
that V cannot extract any new information about the secret witness by reading the proof
sent by P. Likewise, if A gets access to the same proof sent to V, A cannot learn anything
new about the witness either, and thus any side-channel attack performed on V’s end is
meaningless.

Both A and P are required to run on the same CPU, however, they may run on
different physical cores as F+R and P+P attacks target the LLC shared by all cores.
For the F+R attack we assume that A and P share the cryptographic library containing
the ZK functionalities like hash functions and arithmetic field operations as a shared
object. Also, the clflush instruction must be available to A, essential for F+R at-
tacks, otherwise A may have to perform other similar attacks like Evict+Time [OSTO06]
or Evict+Reload [GMM16]. For some implementations, as a common practice in the
community, when demonstrating proof-of-concept cache-based timing attacks, we use
additional nop instructions to align the branches on different cache lines. Naturally, such
an instruction is equivalent to calling functions from different branches which may get
aligned to a new cache line. Another example is compiler optimization which may put
the secret-dependent branched code unfavourably on distinct cache lines, or even cache
sets, leading to practical timing attack like in the case of the Kyber constant-time ref-
erence implementation.” When employing more modern side-channel attacks, like the
ones with speculative execution [KHF'20, LSGT18], pre-fetching [CWS*24], sub-cache
line attacks [YGH16, SZB*24], among others [GRBG18, vSGBR18], one may not require
including such nop instructions. Before independently verifying the leakages in the hash

7https ://pgshield.com/pgshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-imple
mentation-maturity/
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Table 1: A summary of the threat model involving all the 3 parties, A, P and V in a ZKP
protocol.

Parties  Machine Cache SCA Assumptions
F+R P+P

Yes No Shared ZKP library
Prover Cloud N/A N/A Additional instructions

N/A N/A Attack resolution

Yes No Shared ZKP library
Attacker Cloud clflush,nop nop Additional instructions

Cache line level (64 bytes) Cache set level (1024 bytes) Attack resolution
Verifier ~ N/A N/A N/A N/A

functions with F+R and P+P attacks, we used the DATA framework [WZS* 18]® to search
for any secret-dependent timing leakages in the hash implementations. A summary of the
threat model can be found in Table 1.

Reinforced Concrete Cache Timing Attack. The RC hash function uses lookup tables
(LUTS) in the BARS function. Any LUT implementation is vulnerable to cache timing
attacks, especially when the LUT lies on multiple cache lines/sets. For the F+R attack, we
assume that A and P (victim) share the RC hash function as a shared library including
the BARS layer LUT. In RC-BLS12-381, the F,, elements in the BARS layer are decomposed
into 27 elements in Fg59 and then the S-box lookup is applied. Even though Fgsg9 can
be represented with 10 bits, for efficiency purposes, the elements are mapped as 2-byte
elements in the memory. This means the entire LUT is 1318 bytes in size, requiring 21
cache lines or 2 cache sets on the LLC of our test machine.

In the F+R attack, with every cache hit A learns ~ 5 bits of equivalent (total input in bits—
possible candidates in bits) S-box input information. In other words, out of 659 elements
(= 29-32) A learns the possible 32 = 2° or 19 &~ 242 (the last cache line) input candidates
for the S-box. In P+P attack, however, the recovery resolution is worse than F+R as
the resolution is constrained to the cache set level only. In particular, A learns = 2 bits
of equivalent S-box input information, comparable to learning the possible 512 = 29 or
147 ~ 27 (last cache set) input candidates for the S-box. We observe somewhat similar
results for RC-BN-254 and RC-ST. However, in the BN-254 implementation there exists
a cache line with a single field element, allowing A to learn all 9.32 bits of equivalent
input information in the best case F+R attack scenario occurring with a non-negligible
probability of (642)~1. We refer to Table 2 for an overview of the preimage recovery
complexity. Refer to Fig. 3 for illustration of the F+F? and P+P attack on the RC hash
function.

When considering stronger attacks, like the new sub-cache line resolution timing
attack [SZB124], here A may learn all the S-box input bits, fully recovering the preimage
without additional search operations. Moreover, for the F+R and P+P attacks, the
preimage recovery complexity also decreases when the preimage has some structure to it.
This is particularly the case in many ZK applications where the Merkle leaves contain, for
example, personally identifiable information like name or dates of birth. Padding some
randomness (salt) to the leaves may help against side-channel attacks where A merely
observes the hashes of the tree. However, because the padding is only applied to specific
positions of the leaves, this mitigation does not protect against cache timing attacks.

In the following subsections, we discuss some potentially vulnerable Merkle tree con-
structions used in real-world ZK applications.

8https://github.com/Fraunhofer-AISEC/DATA/tree/master
9We use F+F instead of F4+R for attacking RC as the former gives less noisy measurements. The
recovery complexity remains the same in both the cases.
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(a) F+F cache-hit and cache-miss ratio for REINFORCED CONCRETE BLS-12-381 hash function.
Darker blocks represent higher cache-hits in party containing S-box LUT. The input of each
S-box starts from 0x0000 and sequentially increases by a multiple of 0x0020 probing the first 4
cache lines, containing 32 inputs each, accessed by P when generating the Merkle tree. We repeat
the attack (cl..c3) demonstrating consistency in the timing leakage when calling S-box inputs
contained in the same cache line.

920 —— Eviction set access time
= = = Hit threshold
RC LUT execution phase
900
» 880 4
£
=
wl
w
v
I+
< 860
840 4
820 4

Measruement Probes

(b) Probe measurements of REINFORCED CONCRETE BLS-12-381 hash function with P+P attack.
In the orange phases, the LUT S-box inputs 0-511 are called. We probe the eviction set contained
in the cache-set where the 0-511 S-box inputs lie, giving slower probe time compared to not calling
the 0-511 S-box inputs.

Figure 3: Access time for F+F and P+P attacks on the REINFORCED CONCRETE hash
function. Here A probes the S-box LUT memory addresses and measures the time to
distinguish if the same address was accessed by P or not.
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Poseidon Cache Timing Attack. As a demonstration, we only attack the POSEIDON
Goldilocks and Mersenne non-constant time implementations [Gra] and summarize their
leakages.'® In particular, we attack the ARC(-) function performing modulo reduction
after the field addition between the state and the round constants rc. Depending on the
branch, A can determine if the sum between a state and a round constant is larger than
the modulo prime p, where extreme values of round constants (very small or large values
in the field) give the most information about the secret state. Additionally, we can also
attack functions like M (-) and S(-) containing non-constant time modulo reductions after
multiplication operations. However, here we focus on the ARC(-) function, as this is the
first layer that directly operates on the preimage. We assume that the if-else branches
lie on two different cache lines or cache sets for the F+R or P+P attacks respectively.

In the F4+R attack, similar to RC, we assume that A and P (victim) are sharing the
POSEIDON library as a shared object, however, A instead of flushing the LUT addresses,
they flush the addresses of the if-else branches to detect which branch is accessed by P.

As an input to the POSEIDON™ permutation, POSEIDON-(M, ¢ = 16) takes an element in
F!, where p = 23! —1 and ¢ = 16, where the first layer of POSEIDON™ is the round constant
addition. With the smallest round constant (0x002£87c1) in POSEIDON-(M, t = 16),
during a cache hit on the reduction branch, A learns the most significant ~ 9 bits (all ones)
of F, input, where p is 0x7FFFFFFF.'! With the largest round constant (0x7fc1a254), A
also learns the most significant ~ 9 bits (all zeros) of the F,, input. If the round constant r¢
is centered in F,, (i.e., rc ~ 23Y), it leaks only one bit equivalent information. We observed
similar leakages when inspecting POSEIDON-(M, ¢ = 24) and refer to Table 2 for more
details and an overview of timing leakages using different versions of the POSEIDON hash
function.

The generated round constants will be large with an overwhelming probability. However,
for large fields like in BLS-12-381 or BN254, usually custom small round constants are
preferred as they provide better plain performance (fewer instructions are necessary for
the round constant additions). Refer to Fig. 4 for the F+R and P+P attack on the
PoOsEIDON-GL hash function.

Merkle Tree Leaf Distinguisher. Here we discuss the potential attacks that can be
mounted on real-world applications, in particular, targeting the Merkle tree construction
using non-constant time hash implementations like for POSEIDON. One specific aspect
we particularly focus on is the entropy of the private values in the Merkle leaves. Low-
entropy values, even when padded with randomness at certain points (a common security
practice [BCGT14, Sia]) leak (partial) information about the preimage and hence the
secret witness. For example, the Zerocash protocol [BCGT14], a foundational work of the
Zcash cryptocurrency [Zca], hashes (#(-)) the coin values v € [0,254 — 1] with randomness
k €[0,22°6 — 1] as cm := H(k || 0'°? || v), where cm is the commitment value of the coin
in the Merkle tree. The authors discuss using SHA-256 as the hash function, however in
practice (Zcash), when proving Merkle tree commitments in ZK, POSEIDON is the more
efficient choice and any non-constant time implementation when constructing the Merkle
tree, in this example, will leak the coin value v in accordance with Table 2. Similarly,
Sia [Sia], a decentralized storage protocol, also pads its low-entropy preimage data used in
the Merkle tree, such as a time lock, the number of public keys, and signatures required, by
adding a random nonce to the leaves along with the secret input data. Another example is
Semaphore [Sem], a ZK signaling framework, where the public id id,yy is padded with a
random sequence of bytes idyuifer Wwhen committing to the user identity for generating
the Merkle tree membership proofs. These random paddings were adopted to prevent

10The 64-bit Goldilocks prime 264 — 232 1 1 and the 31-bit Mersenne prime 23! — 1 define two popular
prime fields which are often used for efficient zero-knowledge protocol implementations based on FRI.
1 Here A has the same leakage resolution for both F+R and P+P attacks.
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(a) Cache-hit and cache-miss ratio for POSEIDON-GL hash function with F+R attack. We set the
input to the hash function such that modulo reduction (cache hit) is called after every 100 hash
calls. We probe the cache address containing the modulo reduction operation branched from the

if-else check.
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(b) Probe measurements of POSEIDON-GL hash function with P+P attack. In the orange phase,
the round constant addition is followed by the modulo reduction operation. In the pink phase
no such reduction is performed. We probe the eviction set contained in the cache-set where the
reduction operation instruction also lies, giving slower probe time compared to the phase not

executing the modulo reduction.

Figure 4: Access time graph for F+R and P+P attacks on POSEIDON-GL hash function.
Here A probes the if-else branch memory addresses and measures the time to distinguish

if the same addresses were accessed by P.
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Table 2: Preimage recovery complexity after F+R and P+P attacks on the REINFORCED
CONCRETE and POSEIDON hash functions. Here we provide both the average and best
case input recovery complexity, where the best case occurs with a fairly large probability.
The preimage leakage is given in terms equivalents bits of information learnt from the full
state of the hash function.

Preimage leaked (in bits)

Hash function Timing vulnerability FiR % leaked P+P % leaked
POSEIDON-(M, ¢t = 16) Reduction in ARC(-) 91:112 23(2)§ ~ 91:112 23(2)3
POSEIDON-(M, ¢ = 24) Reduction in ARC(+) ~ 91;;;;1 235; ~ 91:2221 23(2)3
POSEIDON-(GL, t =8)  Reduction in ARC(-) 91;2 1}132 ~ 91:(? 1111(5)2
POSEIDON-(GL, t = 12)  Reduction in ARC(-)  _ 91:112 141132 ~ 91;112 111“5)2
RC-(BLS12-381, n = 27)  BARs S-box LUT 54_'13; - ;; 45'22 29'1376 = 22; 22:;2
ROBT =25 BamsSheclUT R0 5o s 102

multiple signal broadcasts using the same public id idpyp.

In certain conditions, it is even sufficient if A is able to roughly distinguish the leaves
instead of fully recovering the input. For example, let us assume the above POSEIDON-
(M, t € {16,24}) case where a Merkle tree contains four leaves, the first two leaves contain
short phone numbers from Falkland Islands (5 digits, at most 17 bits) and the next two
leaves contain phone numbers from Norway (8 digits, at most 27 bits).!? Then with
the smallest and largest POSEIDON-(M, ¢ € {16, 24}) round constants, A can distinguish
between the two groups of the leaves when P generates the Merkle tree.

Leakages in Zero-Knowledge Protocols. Table 3 shows a non-exhaustive list of ZK
frameworks, spread across various ZK applications using various non-constant time POSEI-
DON implementations. Most of the vulnerabilities root from the underlying field arithmetic
library, except for ZK-kit, where they implement their own field library. In case of Panther
and Sui, the underlying jdk native BigInt implementation is the source of leakage, known
since 2020 [BRB20]. The poseidon-lite library acknowledges the timing leakage in its
disclaimer, however, in both the Sui and the Panther ZK framework such declarations
were found missing. Currently, we looked into only a handful of the ZK frameworks which
use such leaky field libraries, however, we suspect that there are several other frameworks
using them as well.

Even though most of the underlying field libraries state that they are actually vulnerable
to timing attacks and thus should not be used for production, however, at the time of
writing this paper, they were being used in many ZK libraries. Moreover, to the best of our
knowledge, none of the ZK library security audits consider timing attacks in their threat
models, which we believe in the future should be taken into consideration as a standard
practice as is done in other areas of cryptographic implementations.

We also looked into other ZK protocols for potential timing leakages, in particular
Plonky2, Plonky3 and Halo2. We found branching in the addition and the subtraction
operations in both Plonky2 and Plonky3 using POSEIDON-GL. However, the authors
claimed, and we also independently verified from their public implementation, that this

2https://worldpopulationreview.com/country-rankings/phone-number-1length-by-country
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branching happens with a very low probability. In particular, for this to occur, there must
exist a pair of a round constant and an input both > (264 — 1) — (230 — 1), and hence it is
more efficient to branch. In Halo2, we found the POSEIDON S-box layer implementation to
contain a non-constant time exponentiation pow_vartime(), but the exponent is already
public and thus does not affect the security. However, special care must be taken in the
future to not use this function for any secret dependent operation and thus we advice
switching to constant time implementation as standard. We also looked into Aztec [Azt],
and to the best of our knowledge, at the time of writing this paper, we did not find any
non-constant time POSEIDON implementation.

Currently, these particular findings do not result in a practical attack against the ZK
proof systems. However, we still recommend having constant time implementations of
the individual components to mitigate any risk associated with the leakages, especially
given the fact that the performance differences is in many cases not significant [GKL 23]
(Table 4). With this work, we are providing forked versions'? of the £f, ff-ce and ark-ff
crates which will include constant-time implementations of the functions discuss in Table 3.
As a future collaboration with (but not limited to) the maintainers of the above libraries,
we are currently looking into the possibility of integrating our constant-time proposal into
the standard ZK libraries.

5 Further Discussion

Other Hash Functions. As the timing leakages mostly stem from the underlying arith-
metic library, we also looked into other ZK-fiendly hash function candidates like Tip5,
Rescue, and MONOLITH. Due to use of lookups operating over Fas; in one of its type
of S-boxes, Tip5 may also suffer from the same problems as RC. When performing the
F+R attack, A learns 3 bits of equivalent information in the average case, and all 8
bits in the best case, occurring with a probability of (28 + 1)~!. We also found some
timing leakages in the public implementations of MONOLITH and Rescue. Depending
on the Rescue implementation, for example, leakage in [Labd] may occur due to the use
of crates like ff-ce, similar to POSEIDON, or the leakage is only limited to the testing
section of the framework [Wit] (inv() and normalize()). The non-constant time version
of the MONOLITH implementation [Gra] relies on the same Goldilocks/Mersenne field
implementations as POSEIDON, thus it might be affected as well. However, MONOLITH
also has a constant time version which is not affected.

Other Timing Attacks. This work focused on the well-known F+R and P+P timing
attacks on ZKP protocols and their applications. We conjecture that more sophisticated
attacks like [MWES19] with attacks on constant-time implementations, and cache timing
attacks with sub-cache line resolution [YGH16, SZB*24] will reduce the preimage recovery
complexity significantly, especially for lookup-based hash functions like REINFORCED
CONCRETE and potentially for Tip5. In the future, it might be interesting to further
investigate the possibility of improving the preimage recovery complexity for the ZK-
friendly implementations and their use cases in the wild. Power side-channel attacks might
be another interesting direction.

Constant-Time Implementation: Best Practices. We observe that non-constant time
implementations may leak sensitive input data in a ZKP protocol. Even though attacks
like P+P and F+R were discussed several years ago, we still find exploits using these
attack vectors on fairly recent protocols like in ZK and their applications. We believe
that strengthening these protocols against side-channel attacks is paramount, especially

L3https://extgit.iaik.tugraz.at/krypto/ffconstzksca
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Table 3: We summarize the ZK frameworks (a non-exhaustive list) that may contain
potential witness leakages due to F+R and P+P timing attacks on the various non-constant
time POSEIDON hash function implementations. We also state the source of the potential
leakage affecting both the ARC/(-) and M (-) layers.

ZK library
(Application)
- Source of leakage

Non-constant time implementation

Comments

Matter Labs[Labc]
(Blockchain ZK)

- rescue-poseidon [Labd]
— ff-ce crate

Uses ff-ce crate with
branched reduce in add_assign

Readme.md (ff-ce) - Does not
provide constant-time guarantees

Lurk Labs [Lur]

(Turing-complete ZK programming language)

- neptune-poseidon [Laba]
— ff crate [ff]

Uses f£f crate with
branched reduce in add_assign

Readme.md (neptune-poseidon)
- Has been audited

Readme.md (£f) - Does not
provide constant time guarantees

Ingonyama poseidon-hash [Inga]
(Hardware acceleration for ZKP)
- poseidon-hash [Ingb]

— galois [mho]

Uses Galois library with
branched add_modular

Readme.md (galois) - The
library could be vulnerable to
timing attacks. Not intended
for production.

Sui [Sui]

(ZK login and authentication)
- Sui [Labe]

— poseidon-lite [Vim]

— jdk (Biglnt) [Opea]

Uses poseidon-lite library
with branched addition using
jdk/../Biglnteger. java

Readme.md (poseidon-lite) -
The code has not been audited
and the native js BigInt is
vulnerable to timing attacks.

ZK-kit [Zka]

(General ZK library for developing various

applications)
- ZK-kit [zkb]

Field arithmetic f1-field.ts
contains branched addition.

Panther [Pan]

(Virtual asset private trading)
- Panther [Proc]

— circomlibjs [Idea]

— fljavascript [Ideb]

— jdk (BigInt) [Opea]

Uses circomlibjs POSEIDON
implementation using
ffjavascript for BN-128
and BLS12-381 with branched
addition performed with
jdk/../BigInteger. java.

Light Protocol [Labb]
(ZK layer on Solana [Sol])
- Light Protocol [Prob]

— light-poseidon [Proa]
— ark-ff crate [af]

Uses light-poseidon using
ark-ff crate for arithmetic
operations. add_assign in
montgomery_backend.rs
has branching

Readme.md (light-poseidon)
- Has been audited
Readme.md (ark-ff)

- Academic proof of concept,
not ready for production use

Mina Protocol [Min]
(Decentralized Apps)

- Ol-labs/proof-systems [Labf]
— ark-ff crate [af]

Uses ark-ff crate, add_assign
in montgomery_backend.rs
has branching

Readme.md (proof-systems)

- Security audit missing.
Readme.md (ark-ff) -
Academic proof of concept, not
ready for production use.

Plonky2/3 [Labg, Labh]
(Blockchain ZK)
- Plonky2/3

add contains branching occurring
with a small probability (similar to
reduce128). In theory leaks the
input to the hash function, and

we believe SHOULD NOT lead
to a practical attack.

During the time of writing this
work Plonky3 finished its security
audit and became production
ready. We did not find constant
time implementation as a part

of the threat model.




Shibam Mukherjee, Christian Rechberger and Markus Schofnegger 17

when considering the rising popularity of applications in the Web3 domain and the
potential financial impact of any vulnerabilities. The first step in this direction would be to
follow the Intel guidelines on mitigation against timing attacks [Inta, Intb]. This includes
implementing any secret-dependent code in constant time. In the context to this work, we
recommend switching to a constant-time POSEIDON implementation as an alternative to
REINFORCED CONCRETE. While this can be challenging and may not result in the most
performant implementation, it is important from a security perspective and should be
treated as a minimum requirement for any protocol handling sensitive data. Furthermore,
one may also adopt free and easy-to-use tools like the DATA framework [WZST18] for
conducting initial checks for any secret-dependent cache-based timing leakages.

Table 4: Runtime comparison between the constant time and non-constant time implemen-
tation of POSEIDON-M and POSEIDON-GL [Gra]. Benchmarked on Intel Core i5-12450H
running WSL2.0 with Ubuntu 22.04.3 LTS.

Hash function Non-constant time Constant time % Slower
POSEIDON-(M, ¢t = 16)  4.577 ps 4.996 ps 9%
POSEIDON-(M, ¢t =24)  10.183 s 10.929 ps %
POSEIDON-(GL, t =8)  1.997 ps 2.318 ps 16%
POSEIDON-(GL, t = 12) 3.708 ps 4.057 ps 9%

It is well-known that constant-time implementations often do not translate into constant-
time assembly code due to compiler optimizations which are often unpredictable. The
leakages may also originate from other sources like described in [CWST24] and often for
better constant time guarantees, protocols, or at least the secret dependent components,
can be directly written in asm. Moreover, we also believe that the security audits of
the ZK libraries should also take into consideration the basic cache timing attacks in
their security model. Perhaps the best practice might be to include the ZK library
along with its underlying arithmetic libraries when auditing for security vulnerabilities.
Additionally, it might also be helpful to state the supported compiler options and the
CPU architectures. As a last resort, one can also switch to dedicated side-channel secure
hardware for generating zero-knowledge proofs.

Disclosures. This work looks into the potential cache timing side-channel vulnerabilities
in the current ZKP systems. Even though we do not show any real-world attack on the
existing ZK applications, however, following our footsteps, in the future one may find
real-world exploits, potentially causing financial loss and privacy violation, among other
damages. We have already informed some of the industry groups about our findings,
however, it is infeasible for us to inform every potentially affected group as the scope of
our attack spreads across a wide range of ZK applications. The informed industry groups
have already acknowledged our findings, and we hope mitigations are out soon.
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