
Password-Protected Key Retrieval with(out) HSM Protection∗

Sebastian Faller

sebastian.faller@ibm.com

IBM Research Europe / ETH Zurich

Zurich, Switzerland

Tobias Handirk

tobias.handirk@uni-wuppertal.de

Bergische Universität Wuppertal

Wuppertal, Germany

Julia Hesse

juliahesse2@gmail.com

IBM Research Europe

Zurich, Switzerland

Máté Horváth

horvath@uni-wuppertal.de

Bergische Universität Wuppertal

Wuppertal, Germany

Anja Lehmann

anja.lehmann@hpi.de

Hasso Plattner Institute

Potsdam, Germany

Abstract

Password-protected key retrieval (PPKR) enables users to store and

retrieve high-entropy keys from a server securely. The process is

bootstrapped from a human-memorizable password only, address-

ing the challenge of how end-users can manage cryptographic key

material. The core security requirement is protection against a

corrupt server, which should not be able to learn the key or offline-

attack it through the password protection. PPKR is deployed at a

large scale with the WhatsApp Backup Protocol (WBP), allowing

users to access their encrypted messaging history when switching

to a new device. Davies et al. (Crypto’23) formally analyzed the

WBP, proving that it satisfies most of the desired security. TheWBP

uses the OPAQUE protocol for password-based key exchange as a

building block and relies on the server using a hardware security

module (HSM) for most of its protection. In fact, the security analy-

sis assumes that the HSM is incorruptible – rendering most of the

heavy cryptography in the WBP obsolete.

In this work, we explore how provably secure and efficient PPKR

can be built that either relies strongly on an HSM – but then takes

full advantage of that – or requires less trust assumption for the

price of more advanced cryptography. To this end, we expand the

definitional work by Davies et al. to allow the analysis of PPKR

with fine-grained HSM corruption, such as leakage of user records

or attestation keys. For each scenario, we aim to give minimal

PPKR solutions. For the strongest corruption setting, namely a fully

corrupted HSM, we propose a protocol with a simpler design and

better efficiency than the WBP. We also fix an attack related to

client authentication that was identified by Davies et al.

1 Introduction

Secure messaging apps like Signal and WhatsApp have made end-

to-end encrypted (E2EE) communication accessible to millions of

end-users. With the deployment of E2EE on user-managed devices,

new challenges arise. One is how to ensure that users maintain

access to their data when they lose their devices or switch to a

new phone. Protocols aiming at the secure backup of a user’s chat

history – or a user’s cryptographic key in general – have been

proposed by Signal [Lun19], Apple [Krs16], Google [Wal18] and

WhatApp [Wha21]. The common idea in all approaches is to back

∗
An extended abstract [FHH

+
24] of this article appears in the proceedings of the 31st

ACM Conference on Computer and Communications Security (ACM CCS 2024). This

is the full version.

up the user’s high-entropy (encryption) key on a server and en-

able retrieval when the user correctly authenticates via a human-

memorizable secret, like a password or PIN. In particular, when

the backup service is offered by the same provider that handles the

E2EE communication, extra care is necessary to not undermine the

encryption security. This is done by relying on trusted hardware

enclaves, such as hardware security modules (HSMs) that protect

the user’s key material and ensure protection even when the server

that runs the HSM gets corrupted.

From the aforementioned approaches, the WhatsApp Backup

protocol (WBP) has enjoyed the most attention due to its enhanced

protocol design and widespread usage. The WBP deploys OPAQUE

[JKX18], a strong asymmetric password-based key exchange pro-

tocol (saPAKE) [BM93, BMP00, GMR06], to ensure that no offline-

attackable information is leaked as part of the protocol and security

can be guaranteed even in the presence of a malicious server.

Password-Protected Key Retrieval. The security of WBP has been

formally analyzed by Davies et al. [DFG
+
23b]. Therein the prob-

lem is abstracted as password-protected key retrieval (PPKR) and

the desirable security guarantees are expressed through an ideal

functionality in the universal composability (UC) [Can01] model. A

secure PPKR guarantees a multitude of security properties against

malicious users and a corrupt server. For the sake of simplicity, we

focus on the properties most relevant for our work in the remainder

of our paper and refer to [DFG
+
23b] for a full exposition of PPKR.

The core properties (relevant to our work) are as follows:

Secret & Pseudorandom key: Honest users create pseudoran-

dom keys, even if the server acts maliciously. Further, the key

remains hidden from the server, as long as it does not correctly

guess the password.

Security against Offline and Online Attacks: The user’s key

is protected through a human-memorizable password, which

naturally has low entropy. Thus, it is crucial that the protocol

ensures security against offline attacks on the user’s password.

In fact, PPKR even enforces an upper bound (set to 10 in WBP

and [DFG
+
23b]) that strictly limits the number of wrong pass-

word guesses through an online attack. If the limit has been

reached through consecutive wrong retrieval attempts, the user’s

key gets securely deleted.

Authenticated Retrieval: As the user might use the key recov-

ered via PPKR for further encryption, or other cryptographic

operations, she should not be tricked into accepting a wrong key

from the retrieval.

1

https://orcid.org/0009-0005-4126-3098
https://orcid.org/0009-0002-5368-877X
https://orcid.org/0000-0002-2875-6198
https://orcid.org/0000-0001-9512-5196
https://orcid.org/0000-0002-2872-7899

Sebastian Faller, Tobias Handirk, Julia Hesse, Máté Horváth, & Anja Lehmann

Davies et al. [DFG
+
23b] have proven that the original WBP

securely instantiates (most of) such an ideal 𝑃𝑃𝐾𝑅 and provides

the desired strong security even when the server is corrupted –

assuming that the core cryptographic parts of the server are handled

by a trusted HSM.

The role of the HSM. TheWBP protocol and analysis crucially rely

on an HSM that is run within the server as an incorruptible entity.

This was manifested in the ideal functionality of PPKR [DFG
+
23b]

that maintains all its essential security guarantees even if the server

is corrupt. (We will refer to this security level as Lev-1). Conse-
quently, the WBP protocol has been proven secure under the as-

sumption that the HSM is fully trusted, i.e., all keys used for the

internally run OPAQUE protocol, as well as all user-specific files

must be protected through the HSM.

While this correctly captures the initial design choice made by

the WBP protocol, this is somewhat unsatisfactory from a security

and protocol design perspective. First, if an incorruptible HSM can

be assumed, the protocol could take more advantage of that – the

core of the WBP protocol is the OPAQUE protocol that provides

strong security guarantees even when the cryptographic state gets

compromised, which wouldn’t be needed if the assumption is that

such an event can never occur. Second, relying on a perfectly secure

sub-entity is a risky assumption. In fact, also trusted hardware

modules have a history of getting breached or having to lower

their security claims [VBMW
+
18, VBPS17, BC19, SRW22]. Thus,

it would be desirable to clearly express and analyze the impact a

partial or full corruption of the HSM has on the expected security

guarantees of PPKR.

1.1 Our Contributions

In our work we revisit the design of password-protected key re-

trieval (PPKR), focusing on the impact of HSM-assurance. We first

extend the security model of [DFG
+
23b] to include more corruption

capabilities and express their impact on the expected security guar-

antees. Second, we present three provably secure PPKR protocols,

each having a dedicated trade-off between the strength of the HSM

assumption and simplicity. In more detail, we provide the following.

Security Model with Fine-Grained (HSM) Corruption. We extend

the ideal functionality of [DFG
+
23b] to include two further cor-

ruption settings: The first is file leakage, expressing that the user-

specific files that are stored on the server’s side to provide the

password-authenticated key retrieval can be leaked (repeatedly) to

the adversary. We consider this as a partial corruption, and give the

dynamically created key files to the adversary but still assume the

HSM to be trusted in its core. In practice, an HSM’s main task is

secure attestation which we consider to be unaffected by this first

type of attack. That is, the HSM only lost its protected files but still

behaves honestly. The second setting of full corruption then models

that all security of the HSM is compromised. This translates to an

adversary getting access to all keys and files of the HSM, and from

then on can deviate arbitrarily from the honest protocol execution.

Despite these strong corruption settings, we aim at a graceful

degradation of the overall security properties. As in [DFG
+
23b], our

security definition ensures that no offline attacks on the password

and protected key are possible, even when the server, i.e., the entity

controlling the interface to the HSM, is corrupt. When a user’s

file gets leaked, this security guarantee is lost, and offline attacks

are inevitable – but are also still necessary. That is, the adversary

must offline-attack the password of every key it wants to learn,

and strong user passwords will still provide a line of defense. The

impact of file leakage must also be strictly contained to only the

users whose files got compromised . Further, even for users whose

key file got lost, the security of active recovery sessions should

remain, meaning that the authenticity of the recovered keys must

still hold. Upon full corruption of the server, i.e., a complete break

of the HSM, this property can no longer be guaranteed but is not

fully lost either: it again requires the adversary to correctly guess

the user’s (login) password to make her accept an incorrect key.

We refer to the optimal security guarantees under server corrup-

tion and file leakage as Lev-2 security, and to Lev-3 security for the

guarantees under full server corruption.

Table 1: Security achieved by our PPKR protocols and WBP. ✓=

achieves optimal protection in that corruption setting, ✗= not secure,

where Lev-1: server corrupt, Lev-2: server corrupt + HSM leaks, Lev-
3: server (and HSM) fully corrupt. Gray are conjectures. WBP was

proven secure in a model that is slightly weaker than our Lev-1
model, denoted by ✓∗, with similar relaxations likely needed for the

higher levels, too. The last column indicates if the protocol relies on

standard building blocks only.

Lev-1 Lev-2 Lev-3 Standard BB

encPw, Fig. 3 ✓ ✗ ✗ ✓
encPw+, Fig. 3 ✓ ✓ ✗ ✓
OPRF-PPKR, Fig. 4 ✓ ✓ ✓ ✗

WBP [DFG
+
23b] ✓∗ ✓∗ ✓∗ ✗

Simple Protocols for Different HSM-Levels. Having a security mo-

del that explicitly captures different levels of server corruption now

allows to integrate internal HSM-protection more thoroughly in the

protocol design. We propose three PPKR protocols, all relying on a

server-internal HSM to protect the user’s key files, but each aiming

at a different trust level. We present two protocols that provide the

same (or even stronger) formally proven security than WBP, yet are

significantly simpler. Both fall short of achieving Lev-3 security, for
which we design a protocol that uses an oblivious pseudorandom

function (OPRF) as crucial building blocks, giving up on the reliance

on basic primitives only.

Basic/enhanced encrypt-to-HSM: We start with a protocol that

fully relies on a trusted HSM for most of its operation, and lever-

age this to simplify the design as much as possible. The resulting

protocol merely uses standard symmetric and asymmetric en-

cryption. We prove our simple protocol to be secure on Lev-1,
which gives the same (or even slightly stronger, see discussion

below) security guarantees as had been formally proven forWBP

in [DFG
+
23b]. We further show how to upgrade the protocol to

Lev-2 security, by relying on fresh encryption keys and salted

hashing in the stored password files. The simplicity hinges on

the trust in the HSM though, as the protocol loses its security

if the HSM gets fully corrupted. Interestingly, the best attacks

against all long-term user files are still offline attacks, but the

2

Password-Protected Key Retrieval with(out) HSM Protection

login passwords that users send during an active retrieval ses-

sion are now revealed in plain when the HSM is fully corrupted,

which violates the Lev-3 guarantees.
OPRF-based: Our third protocol provides Lev-3 security, i.e., guar-

antees optimal protection even in the presence of full server/HSM

corruption. This protocol partly resembles WBP, as it also re-

lies on an OPRF as a core primitive. Recall that WBP relies on

OPAQUE, an asymmetric PAKE that is built from an OPRF. By

building our protocol directly from OPRFs and the clearly speci-

fied security guarantees as concrete target, our protocol enjoys

a much cleaner design. In particular, we can omit all OPAQUE

parts that are not needed for PPKR (which does not aim at fresh

session keys as aPAKE). Overall, we propose an OPRF-based

PPKR that has a simpler protocol design and better efficiency

than WBP, and that fixes several attacks related to user authen-

tication that were identified by Davies et al. [DFG
+
23b].

Strengthening Security. We also use the opportunity to remove

unwanted (in)security artifacts that were present in the WBP and

had to be included in the ideal functionality for a provable security

treatment of that real-world protocol. These artifacts comprise the

re-routing of logins to different files, whenever the server is corrupt.

All our three protocols prevent that attack. In the Lev-2/3 setting,
WBP has further undesirable – albeit not fatal – behavior, such as

potentially leaking the information whether several honest users

have the same password. Our protocols for these levels also improve

on these shortcomings.

1.2 Related Works

The closest work to ours is the work by Davies et al. [DFG
+
23b],

which we extend with a more fine-grained analysis of the HSM

corruption settings. As we now distinguish between the "front-end"

corruption of the server’s networking part and further internal

corruption (of the HSM), this might yield the question whether

this is just a special 2-party version of the more general concept

of password-protected (𝑡, 𝑛)-secret sharing (PPSS) [BJSL11, JKKX16,

CLLN14]. In PPSS, the user can store a password-protected secret

(such as the backup key) with the help of 𝑛 servers. The user can

later recover the secret if she provides the correct password to at

least 𝑡 servers. Secure PPSS solutions ensure security against offline

attacks on the user’s password as long as less than the threshold gets

corrupted. While a (2, 2) version of PPSS is similar in spirit to PPKR,

the main difference is in the overall setting: PPKR captures the

single-server environment that is currently deployed by WhatsApp,

and envisioned by other major E2EE providers too [Lun19, Krs16,

Wal18]. Therein the user communicates with a single server only,

which might run internal measures (such as an HSM) to enhance

security. In contrast, PPSS requires the user to individually talk

to all 𝑛 parties, which must also run the equivalent code. In our

HSM-supported setup, such direct communication between the

user and the HSM is not desirable, and the server’s networking

part and HSM are clearly distinct. Thus, while PPSS appears more

general, it also excludes the most common real-world deployment

setting that we are targeting directly with PPKR.

The dedicated one-server setting of PPKR also distinguishes it

from password-protected encryption protocols [AMMR18, WH20,

CGMS21, DHL22] which work in a multi-server setting with 𝑛

independent parties too. Further, these works target symmetric

encryption directly, and not key-recovery that can be used for any

key and subsequent cryptographic usage of it.

The recent works on Credential-less Secret Recovery [Sca19,

OSV23] are for a somewhat similar single-server setting, as PPKR.

Therein, a user stores a secret on some cloud storage and uses the

additional power of a trusted execution environment (TEE) for

secure recovery. In contrast to PPKR however, [OSV23] relies on a

publicly accessible blockchain instead of passwords to authenticate

users.

2 Preliminaries

In our protocols, we make use of standard cryptographic primi-

tives, namely strongly EUF-CMA secure digital signatures (Sig), and
IND-CPA and IND-CCA secure public key encryption (PKE), see
e.g., [BS23]. We will also use authenticated encryption (AE), i.e., sym-

metric encryption (SE) that is IND-CPA secure and has ciphertext

integrity in the following sense:

Definition 1 (Ciphertext integrity). The advantage of an adversary

A against the integrity of ciphertexts (INT-CTXT) of a symmetric

encryption scheme SE = (KeyGen, Enc,Dec) is defined as

AdvINT-CTXT
A,SE (𝜆) B Pr[Dec(𝑘, 𝑐∗) ≠ ⊥ : 𝑐∗ $←− AEnc(𝑘,·) (1𝜆)],

where 𝑘
$←− KeyGen(1𝜆) and 𝑐∗ is fresh in the sense that it has

never been output by the encryption oracle Enc(𝑘, ·).

For simplicity, we will assume that KeyGen samples 𝑘
$←− {0, 1}𝜆 .

We define two additional properties of an authenticated encryption

scheme that will be required in this work, namely equivocability

and random-key robustness. Equivocability means that a simulator

is able to produce ciphertexts of the scheme without committing to

the plaintext. If the ciphertext must be decrypted then the simulator

can output an appropriate key to open the ciphertext to a message

of choice. Random-key robustness means that an adversary cannot

come up with a ciphertext that simultaneously decrypts under

two keys if the keys are chosen uniformly at random. According

to [JKX18], this can be instantiated in the standard model with

encrypt-then-MAC using HMAC or in the ROM by adding 𝐻 (𝑘, 𝑐)
to an authenticated ciphertext 𝑐 .

Definition 2. A symmetric encryption scheme SE is equivocable

if for any efficient algorithm A, there exists an efficient stateful

simulator SimEQV s.t. the distinguishing advantageAdvEQV
A,SE ofA’s

view in the following two games is a negligible function in 𝜆:

• The real game:A outputs message𝑚 and computes its final

output given (𝑐, 𝑘), where 𝑘 $←− {0, 1}𝜆 and 𝑐
$←− Enc(𝑘,𝑚).

• The ideal game: A outputs message𝑚 and computes its

final output given (𝑐, 𝑘), where 𝑐 $←− SimEQV (|𝑚 |) and 𝑘 $←−
SimEQV (𝑐,𝑚).

Definition 3. A symmetric encryption scheme SE is random-key

robust if for any efficient adversary A

AdvrkrA,SE (𝜆) B Pr

𝑘,𝑘 ′ $←−{0,1}𝜆

[
Dec(𝑘, 𝑐) ≠ ⊥
∧Dec(𝑘′, 𝑐) ≠ ⊥ : 𝑐

$←− A(𝑘, 𝑘′)
]

is a negligible function of 𝜆.

3

Sebastian Faller, Tobias Handirk, Julia Hesse, Máté Horváth, & Anja Lehmann

FPPKR is parameterized with a security parameter 𝜆. FPPKR talks to a server S
where S is encoded in sid. S can have corruption state Honest, Corrupt, or

FullyCorrupt. FPPKR further allows file leakage via the LeakFile corruption

command. FPPKR also talks to the adversary A, and arbitrary clients IDC. If

the functionality tries to retrieve a record that does not exist, it ignores the

incoming message. We write tx[·] for a list of counters. For brevity, we omit

session identifier sid from all inputs, outputs, and records.FPPKR ignores repeated

inputs with the same ssid and in that case activates A.

Corruption interfaces

On corruption command (LeakFile) from A:

LS.1 Create an empty list IDC.
LS.2 For every record ⟨File, [IDC], [pw], [𝐾], [ctr], ∗⟩:

(1) Append (IDC, ctr) to IDC.
(2) If no record ⟨leaked, IDC, ∗, ∗, ∗⟩ exists, add a record

⟨leaked, IDC, pw, 𝐾, 1⟩.
(3) Otherwise, add a record ⟨leaked, IDC, pw, 𝐾, 𝑖 +1⟩, where 𝑖 ∈ N

is the largest number, such that a record ⟨leaked, IDC, ∗, ∗, 𝑖⟩ exists.
LS.3 Output IDC to A.

On corruption command (Corrupt, 𝑃) from A:

C.1 Mark 𝑃 as Corrupt.

On corruption command (FullyCorrupt, S) from A:

FC.1 Mark S as FullyCorrupt and run LS.1-LS.2

FC.2 For each (IDC, ·) ∈ IDC, set tx[IDC] ← 𝑖 , where 𝑖 is the largest 𝑖 ∈ N
such that a record ⟨leaked, IDC, pw, 𝐾, 𝑖⟩ exists.

FC.3 In every record ⟨File, ∗, ∗, ∗, [ctr], ∗⟩ overwrite ctr with∞.
FC.4 Output IDC to A

Initialization phase

On input (InitC, ssid, pw) from IDC: // Client IDC starts initialization of a password-

protected key

IC.1 Choose 𝐾
$←− {0, 1}𝜆

IC.2 If a record ⟨Init, ssid, IDC,⊥,⊥, srvOk⟩ exists, overwrite (⊥,⊥) in it

with (pw, 𝐾)
IC.3 Otherwise record ⟨Init, ssid, IDC, pw, 𝐾,⊥⟩
IC.4 Send (InitC, ssid, IDC) to A

On input (InitS, ssid, IDC) from S: // Server agrees to initialize IDC

IS.1 If a record ⟨Init, ssid, IDC, ∗, ∗,⊥⟩ exists, overwrite ⊥ with srvOk
IS.2 Otherwise record ⟨Init, ssid, IDC,⊥,⊥, srvOk⟩
IS.3 Send (InitS, ssid, IDC) to A

On input (CompleteInitC, ssid, 𝑏𝐶) from A: // Complete initialization for client

CIC.1 Retrieve ⟨Init, ssid, [IDC], ∗, [𝐾], srvOk⟩ and drop the query if𝐾 = ⊥
CIC.2 If 𝑏𝐶 = 1, output (InitRes, ssid, 𝐾) to IDC
CIC.3 If 𝑏𝐶 = 0, output (InitRes, ssid, Fail) to IDC

On input (CompleteInitS, ssid, 𝑏𝑆) from A: // Complete initialization for server

CIS.1 Retrieve ⟨Init, ssid, [IDC], [pw], [𝐾], srvOk⟩ and drop the query if

𝐾 = ⊥
CIS.2 If 𝑏𝑆 = 0, output (InitRes, ssid, IDC, Fail) to S. Else continue.
CIS.3 Store record ⟨File, IDC, pw, 𝐾, ctr, Honest ⟩ if IDC is honest and

⟨File, IDC, pw, 𝐾, ctr, Malicious ⟩ otherwise, where ctr ← ∞ if S
is FullyCorrupt, and ctr← 10 else, overwriting any existing record

⟨File, IDC, ∗, ∗, ∗, ∗⟩
CIS.4 If S is FullyCorrupt, record ⟨leaked, IDC, pw, 𝐾, 𝑖 + 1⟩, where 𝑖 ∈ N

is the largest number, such that a record ⟨leaked, IDC, ∗, ∗, 𝑖⟩ exists, or
𝑖 = 1 if no such record exists. If tx[IDC] is undefined set tx[IDC] ← 1.

CIS.5 Send (InitRes, ssid, Succ) to S

Figure 1: Ideal functionality FPPKR for password-protected

key retrieval, offline attacks, and initialization interfaces.

The boxed code can be dropped to strengthen FPPKR (see

Section 3.2).

3 Security model

Our ideal functionality is based on the definition from Davies et

al. [DFG
+
23b], and models how a user – identified through a client

identifier IDC – can store and retrieve a strong cryptographic key

Recovery Phase

On input (RecC, ssid, pw′) from IDC: // Client starts key recovery from password pw′

RC.1 If a record ⟨Rec, ssid, IDC,⊥, [pw], ∗⟩ exists, overwrite ⊥ with pw′

and set𝑚𝑎𝑡𝑐ℎ ← (pw ?

= pw′).
RC.2 Otherwise record ⟨Rec, ssid, IDC, pw′⟩ and set𝑚𝑎𝑡𝑐ℎ ← ⊥
RC.3 Send (RecC, ssid, IDC,𝑚𝑎𝑡𝑐ℎ) to A

On input (RecS, ssid, IDC, pw∗, 𝐾∗, 𝑖) from S: // Server starts recovery session for

IDC

RS.1 Retrieve ⟨Rec, ssid, IDC, [pw′]⟩, otherwise set pw′ ← ⊥ and record

⟨Rec, ssid, IDC, pw′⟩
RS.2 If S is FullyCorrupt and pw∗ ≠ ⊥: set pw← pw∗, 𝐾 ← 𝐾∗

RS.3 If S is FullyCorrupt, pw∗ = ⊥, and 𝑖 ≥ tx[IDC], retrieve the record
⟨leaked, IDC, [pw], [𝐾], 𝑖⟩ and set ctr←∞. Otherwise, retrieve the
record ⟨File, IDC, [pw], [𝐾], [ctr], ∗⟩. Set pw, 𝐾 as follows:

(1) If no such record exists, set pw← ⊥, 𝐾 ← Fail.

(2) If ctr = 0, set pw ← ⊥, 𝐾 ← DelRec and delete

⟨File, IDC, ∗, ∗, ∗, ∗⟩.
(3) Else, set pw← pw, 𝐾 ← 𝐾 and overwrite ctr with ctr− 1 in the

File record.

RS.4 Append pw and 𝐾 to record ⟨Rec, ssid, IDC, pw′⟩
RS.5 If pw′ = ⊥, set𝑚𝑎𝑡𝑐ℎ ← ⊥, else set𝑚𝑎𝑡𝑐ℎ ← (pw ?

= pw′)
RS.6 Send (RecS, ssid, IDC,𝑚𝑎𝑡𝑐ℎ) to A.

On input (CompleteRecC, ssid, 𝑏𝐶) from A: // Complete recovery for client

CRC.1 Retrieve record ⟨Rec, ssid, [IDC], [pw′], [pw], [𝐾]⟩ and drop the

query if pw′ = ⊥.
CRC.2 Determine the output 𝐾 ′ as follows:

(1) If 𝐾 ∈ {Fail,DelRec}, set 𝐾 ′ ← 𝐾

(2) If pw = pw′ and 𝑏𝐶 = 1, set 𝐾 ′ ← 𝐾

(3) In all other cases, set 𝐾 ′ ← Fail

CRC.3 Send (RecRes, ssid, 𝐾 ′) to IDC.

On input (CompleteRecS, ssid, 𝑏𝑆) from A: // Complete recovery for server

CRS.1 Retrieve record ⟨Rec, ssid, [IDC], [pw′], [pw], [𝐾]⟩ and drop the

query if pw′ = ⊥.
CRS.2 Determine the output 𝑟𝑒𝑠𝑢𝑙𝑡 as follows:

(1) If 𝐾 ∈ {Fail,DelRec}, set 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝐾 .

(2) If 𝑏𝑆 = 1 and either pw = pw′ or a record

⟨File, IDC, ∗, ∗, ∗,Malicious⟩ exists , set 𝑟𝑒𝑠𝑢𝑙𝑡 ← Succ.

(3) In all other cases, set 𝑟𝑒𝑠𝑢𝑙𝑡 ← Fail.

CRS.3 If 𝑟𝑒𝑠𝑢𝑙𝑡 = Succ and there exists a record ⟨File, IDC, pw, 𝐾, [ctr], ∗⟩,
overwrite ctr with 10 if S is not FullyCorrupt or with ∞ if S is

FullyCorrupt.

CRS.4 Send (RecRes, ssid, 𝑟𝑒𝑠𝑢𝑙𝑡) to S.

Attack interfaces

On input (MaliciousInit, IDC, pw∗, 𝐾∗) from A: // Malicious initialization with

adversarial password pw∗ and key 𝐾∗

MI.1 If S is Honest, ignore this input.

MI.2 Record ⟨File, IDC, pw∗, 𝐾∗, 10, Malicious ⟩, overwriting any existing
record ⟨File, IDC, ∗, ∗, ∗, ∗⟩

On input (MaliciousRec, IDC, pw∗) from A: // Malicious server guesses IDC’s

password, subject to non-zero file counters

MR.1 If S is Honest, ignore this input.

MR.2 If no record ⟨File, IDC, [pw], [𝐾], [ctr], ∗⟩ exists, output Fail to A.

MR.3 If ctr = 0, delete record ⟨File, IDC, pw, 𝐾, ctr, ∗⟩ and output

(DelRec, IDC) to A
MR.4 If pw∗ = pw, overwrite ctr in the record with 10 and output 𝐾 to A.

Otherwise, overwrite ctr with ctr − 1 and output Fail to A
On input (OfflineAttack, IDC, pw∗, 𝑖) fromA: // Offline attack on leaked key files

- unlimited number of guesses allowed

OA.1 If a record ⟨leaked, IDC, pw∗, [𝐾], 𝑖⟩ exists, output𝐾 toA. Otherwise,

output Fail to A.

Figure 2: Ideal functionality FPPKR, recovery interfaces. The

boxed code can be dropped to strengthen FPPKR (see Sec-

tion 3.2).

4

Password-Protected Key Retrieval with(out) HSM Protection

𝐾 with the help of an external server. The server S is encoded in

the session id 𝑠𝑖𝑑 and is the central entity that interacts with many

clients. At initialization, the client IDC creates a random key 𝐾 that

it stores with the server, protected under a password pw. Later, the
client can recover the key 𝐾 from the server, but only if it correctly

authenticates with the same password again.

The definition of Davies et al. [DFG
+
23b] provides very strong

guarantees in case of server compromise: even if the server is cor-

rupt, the client’s key and password remain secure unless the ad-

versary correctly guesses the password in a few attempts. In the

realization, this essentially requires the server to internally run an

incorruptible entity, like an HSM. The HSM is then responsible to

protect the client’s key and enforce strict access control to it.

In our work, we model stronger types of server corruption to

avoid the need to assume an incorruptible sub-part in the construc-

tions. Beyond the server compromise from [DFG
+
23b], our model

captures file leakage of the stored client files and a fully corrupt

server. The latter translates to a corruption of all parts of the server,

including an internally hosted HSM. Beyond stronger corruption

settings, we further make the definition more general to allow for

a broader set of protocol flows and also remove some artifacts that

had to be included in [DFG
+
23b] to capture the security of the

concrete WhatsApp protocol. For an overview and explanation of

these changes, we refer to Appendix A.

3.1 Ideal PPKR Functionality

We start by recalling the main functional interfaces of FPPKR (when

all parties are honest) and then explain the different corruption

settings and their impact on the guaranteed security properties.

Initialization. To use the key recovery service, the client IDC
and server S must first engage to create a password-protected ac-

count. This can be initiated by either party through the InitC and

InitS interfaces, respectively. The client’s interface takes the user’s

password pw as input and lets FPPKR create a random key 𝐾 that

gets stored along with IDC and pw. If completion towards both par-

ties is signaled by the adversary through the CompleteInitC and

CompleteInitS interfaces, a key file ⟨File, sid, IDC, pw, 𝐾, ctr⟩ is
stored in the functionality. The counter is set to ctr← 10, which de-

termines how many incorrect password recoveries will be tolerated

before the file is deleted.

The initialization can be called repeatedly by the same client

IDC, which allows the renewal of the key and possibly the replacing

of the password.

Recovery. If a client IDC wishes to recover its key, it triggers the

RecC interface for a password attempt pw′. When the server initi-

ates a recovery for IDC too, and a key file ⟨File, sid, IDC, pw, 𝐾, ctr⟩
for IDC is stored within FPPKR, the counter ctr is decremented by

1 and the adversary A learns whether pw
?

= pw′. This bit is con-
sidered unavoidable leakage in password-based protocols, as the

observable protocol behavior usually strongly differs depending

on whether the password authentication was successful or not. If

the counter reaches 0, the file File for IDC gets deleted, and the

recovery “key” is set to DelRec.

If the adversary signals the completion of the recovery attempt

towards the client via CompleteRecC and the file hasn’t been

deleted, the client will receive the correct key 𝐾 from its record

if pw = pw′ or a failure notification Fail otherwise. Likewise, if

the adversary completes the session for IDC towards the server via

the CompleteRecS interface, the server finally learns whether the

password attempt was correct (or the file was deleted). Further, the

counter ctr is reset to 10 when the password was correct and the

session got completed.

Core Security Properties. In summary, the functionality FPPKR
ensures that only the legitimate client IDC can initiate sessions to

setup or recover a key (implicit client-to-server authentication), and

all generated keys are fresh and chosen at random (pseudorandom-

ness of 𝐾). The server S neither learns the password pw nor key 𝐾

(secrecy of pw and 𝐾), only if a recovery was run on an incorrect

password attempt pw′ or not. If the password attempt was correct

and the client recovered a key 𝐾 , she can be ensured that it is the

correct key (authenticity of 𝐾). An adversary has at most 10 guess-

ing attempts against the client’s password (no offline attacks, limited

online attacks). We give an overview of the core security properties

of FPPKR – and their degradation with corruption – in Table 2.

3.2 Modelling Server (and HSM) Corruption

The central entity in our system is the server S, which provides the

password-protected key retrieval service to its clients, and which

we model to be corruptible in several ways. Note that the HSM

does not appear as an explicit entity in a PPKR functionality, but is

rather considered an artifact on how the server’s code is deployed.

The original PPKR definition [DFG
+
23b] required the server code

to be split into a corruptible networking part, and an incorruptible

cryptography part, e.g., deployed on a permanently secure HSM.

In the protocol, the HSM was then responsible for performing the

cryptographic operations and securely storing the users’ password-

protected keys. Our model additionally allows fine-grained cor-

ruption of the cryptography part and distinguishes whether the

(HSM-protected) key files are leaked, or even all of the additional

protection is lost.

We start with a brief overview of the three corruption settings,

and then explain their impact on the guaranteed security properties.

For the sake of clarity, we explain how the additional corruption

settings translate to an HSM-supported protocol setup.

Server Corrupt: This is the original corruption status of [DFG
+
23b],

which gives a corrupt server some, rather benign, attack capabil-

ities, but still maintains most of the security guarantees. In the

construction, this requires that the server is mainly a connecting

interface between the clients and a secure HSM, where the key

material and client records remain protected during this corrup-

tion thanks to being executed in an HSM, that can securely attest

all outgoing messages it sends (via the server) to the clients.

File Leakage: We additionally model that the client files, contain-

ing the information to verify the recovery password and retrieve

the client’s key, can be leaked to the adversary. In the context of

an HSM-supported setup, this means that the adaptively stored

and maintained information by the HSM can get compromised.

The file leakage can happen repeatedly, with the adversary ob-

taining snapshots of all the stored client files. This does neither

5

Sebastian Faller, Tobias Handirk, Julia Hesse, Máté Horváth, & Anja Lehmann

imply that the server nor HSM are corrupt though. In particu-

lar, the HSM still behaves honestly and its attestation remains

secure.

We believe this realistically models that the core attestation (key)

of the HSM enjoys particularly strong protection, whereas the

HSM-protected database of possibly millions of client records is

less secure and can be vulnerable to leakage attacks.

Server (and HSM) Fully Corrupt: We also want to capture the

security (loss) when the server gets fully corrupted, meaning

that all parts of the server – including the HSM – are under

the control of the adversary. This implies the previous two cor-

ruption settings, i.e., normal server corruption and continuous

compromise of all files, and also goes beyond as we now assume

that the adversary is in full control of the HSM. That is, the

attestation is no longer trusted, and the adversary can arbitrarily

deviate from the original HSM protocol.

We now explain how each corruption impacts the security guar-

antees of FPPKR. Note that the status of server corruption and file

leakage are independent of each other, i.e., they can occur sepa-

rately or jointly. In the latter case, the adversary’s capabilities are

simply the combination of both individual attacks.

Server Honest & No Leakage. If the server is honest and no files

have been leaked, the functionality guarantees full protection of

the clients’ information. In particular, only the legitimate client IDC
can initiate the recovery of a previously stored key. This ensures

that the account and key of an honest client cannot be deleted by

the adversary through repeated incorrect authentication attempts.

An initially honest client can get corrupted through the corrup-

tion command (Corrupt, IDC) though. In that case, the adversary

gets up to 10 guesses on the client’s password and learns the key 𝐾

when it provides the correct password.

An unavoidable attack even if all parties are honest, are net-

work attacks, i.e., interrupting an honestly initiated session. This

is modeled through the DoS-bit 𝑏𝐶 and 𝑏𝑆 , in the CompleteInitC

and CompleteInitS interfaces for the initialization and the

CompleteRecC, CompleteRecS interfaces for the recovery respec-

tively. By providing 𝑏𝐶 = 0 or 𝑏𝑆 = 0, the adversary can make

the session fail for either party. If it does so towards the server,

this leads to a failed initialization, i.e., no file gets recorded in the

functionality; or a failed recovery, i.e., the counter does not get

reset to 10, even if the client provided the correct password.

Server Corrupt. To corrupt the server, the adversary sends the

corruption command (Corrupt, S). From then on, the functionality

no longer enforces proper client authentication – which is the main

impact of this corruption type. As a consequence, the adversary can

now replace records of honest clients with a malicious password

and key (through the MaliciousInit interface). It still does not

learn the passwords and keys of any honestly created or existing

records but can try to recover a client’s key from a stored record

via password guessing (through the MaliciousRec interface). This

password guessing is limited by the counter ctr though (which

will be enforced through the honest HSM in the protocol), i.e., the

adversary has at most 10 guesses for each honest account. Thus,

there are still no unlimited offline attacks possible on any accounts.

Difference to [DFG
+
23b]: In the original functionality, a corrupt

server was able to re-route sessions from an honest client IDC to

a different client ID∗C. This was modeled because the WhatsApp

protocol allowed such an attack. In general, this can be prevented

easily, and we therefore remove this weakness in our definition.

File Leakage. The adversary can repeatedly compromise the ex-

isting records, by sending (LeakFile) to FPPKR. The functional-

ity then provides the adversary with a list of all clients IDC for

which files are recorded. It creates leaked copies of all records

and now permits unlimited offline attacks on these records via

the OfflineAttack interface. As the initialization interface can

be used by the client to renew its key and/or password, there can

be different files for the same client IDC at different times. We

therefore attach a counter 𝑖 to each leaked record and allow offline

attacks on each version.

Note that the adversary can start using the OfflineAttack on

records only after it compromised them. This resembles the notion

of pre-computation attack resistance which was introduced as a

strengthening of aPAKE with the OPAQUE protocol [JKX18].

Apart from allowing offline attacks on leaked key files, all other

security guarantees of FPPKR are still intact. In particular, key au-

thenticity is guaranteed and the deletion counter is still set honestly

as instructed by our functionality.

Server (and HSM) Fully Corrupt. The strongest corruption level

considers the server (and HSM) to be fully corrupted, which can be

triggered through the (FullyCorrupt, S) interface. This marks the

server as FullyCorrupt and leaks all existing and newly created

key files to the adversary. This full corruption gives A all capabili-

ties described above for the corrupt server and file leakage settings.

In addition, the functionality now gives up on key authenticity and

the strict enforcement of the deletion counter.

The latter is done in the FullyCorrupt interface, which sets all

counters of stored and newly created files to∞, such that they no

longer get deleted automatically. When a client recovers her key,

A can now freely decide if it wants to signal DelRec or not.

The full corruption also enables the adversary to online attack

recovery sessions from honest clients, in two ways. The first is an

key planting and online guessing attack, where the adversary can

provide an arbitrary key 𝐾∗ along with a password guess pw∗ as

optional inputs in the RecS interface. It then learns whether pw∗
?

=

pw′. If it guessed the password attempt correctly, 𝐾∗ is returned to

the client instead of the proper key. Note that this planting requires

the correct guess of the client’s password attempt, and also allows

only a single password guess per recovery session. However, weak

passwords might be known to the adversary through its offline

attack capability on all key files.

The second enabled online attack is to re-use any of the pre-

viously leaked key files, which might have been replaced in the

meantime. Here, A provides an additional input 𝑖 in the RecS in-

terface, that allows it to run the honest clients recovery against

the old key file of version 𝑖 . If the client’s password attempt is pw′

matches the pw contained in the old key file, the client gets tricked

into accepting its old key.

6

Password-Protected Key Retrieval with(out) HSM Protection

Summary of Security Guarantees & Security Levels. Note that

even in the full corruption setting, FPPKR still guarantees two im-

portant security properties: (1) pseudorandomness of keys – as the

keys generated by honest clients are still chosen at random by the

functionality and (2) the honest client’s passwords and keys are

never directly accessible to the adversary. For each key 𝐾 that A
wants to compromise, it has to correctly guess the user’s password

through an offline attack. Thus, users who have chosen a strong

password can still hope that their key remains safe. Even the third

core property of key authenticity is not entirely lost when S is fully
corrupt, as this still requires the adversary to correctly guess the

honest user’s password. We give a summary and comparison of

the main security properties in the different corruption settings in

Table 2 below.

For brevity, we refer to security that is maintained when the

server S is corrupt, but no files got leaked as Lev-1 security. Lev-2
security covers the optimal guarantees up to joint server corruption

and file leakage, considering both attack capabilities combined.

Finally, Lev-3 security refers to schemes that maintain the optimal

security guarantees up to full server corruption.

Flaws in FPPKR from [DFG
+
23b]. In the WBP, if a corrupt party

initializes and later runs a recovery, it can always reset the counter

to 10, even if it used different passwords in initialization and recov-

ery
1
. This weakness also exists in our protocol 𝜋OPRF-PPKR

aiming

at Lev-3 security that we present in Section 4.3. The weakness was

not captured in the original functionality in [DFG
+
23b] and we fix

this in Figures 1 to 2. We remark that weakening FPPKR in this way

gives only very limited additional capabilities as the corrupt party

can always reset its file by simply using the correct password.

Interestingly, our protocols 𝜋encPw (see Section 4.1) and 𝜋encPw+

(see Section 4.2), which only aim at Lev-1, resp. Lev-2, security, do
not have this property. For this reason, we mark the corresponding

code in Figures 1 to 2 in boxes , which allows us to strengthen

FPPKR by dropping the boxed code.

Table 2: Overview of security properties guaranteed by FPPKR
under different corruption settings.We refer to the following

level: Lev-1 = S is corrupt, Lev-2 = S is corrupt and files are

leaked (both attacks combined), Lev-3 = fully corrupt S.

Property Honest S Lev-1 Lev-2 Lev-3

Pseudorandom key 𝐾 ✓ ✓ ✓ ✓
No direct leakage of pw, 𝐾 ✓ ✓ ✓ ✓
Limit file access to IDC ✓ ✗ ✗ ✗
No offline attacks on pw, 𝐾 ✓ ✓ ✗ ✗
No precomputation for offline attacks n.a. n.a. ✓ ✓
No offline attacks on pw′ (pw-attempt) ✓ ✓ ✓ ✓
Upper limit on incorrect recoveries ✓ ✓ ✓ ✗
Key authenticity ✓ ✓ ✓ ✗

4 Constructions

In this section, we discuss three protocols for password-protected

key retrieval that securely realize the functionalityFPPKR. To ensure
security in the single-server setting, we adapt the approach from

1
The corrupt client can remember the AKE secret keys from initialization and disregard

the recovered keys, leading to a successful KE. In our protocol, this corresponds to

remembering the original signing key.

WhatApp [Wha21] and let all our protocols rely on a Hardware

Security Module (HSM). One can think of the HSM as a particularly

secure part of the server or a dedicated module that only the server

can access. We make the assumption that the code of the HSM is

executed honestly and messages from the HSM are attested, i.e.,

signed such that anyone can verify the message’s origin.

Each of the protocols in this section protects against a different

level of attacks against the HSM. The first protocol, basic encrypt-

to-HSM (Section 4.1), is based solely on public-key and symmetric

encryption and is secure if the server gets corrupted, but the HSM

is incorruptible and can be completely trusted (Lev-1). The second
protocol, enhanced encrypt-to-HSM (Section 4.2), is a minor modi-

fication of the first protocol that provides additional protection of

clear-text passwords and keys when the HSM leaks client account

data (Lev-2). The third construction, OPRF-based PPKR (Section 4.3),

is secure in the full corruption scenario (Lev-3), i.e., even when all

files and all secret keys of the HSM are given to the adversary, an

offline attack against the users’ password is still necessary.

Like in [DFG
+
23b], we also assume client-to-server authenti-

cated channels, e.g., through an SMS/email passcode authentica-

tion. This is merely to prevent an adversary from tricking an honest

server into deleting accounts of honest users through repeated in-

correct retrievals. Thus, this is used as a basic protection against

deletion only, but not for actual user authentication — this is what

the password is for. Importantly, however, the client-to-HSM chan-

nel is not authenticated, which is what enabled the attack from

[DFG
+
23b].

Further, as we work in the UC-framework, all messages contain

globally unique session- and subsession identifiers. This is a typical

UC-artefact and there are standard ways to handle these ids when

implementing the protocol in the real world, see [Can00, Sec. 3.3.2].

Modeling the HSM. All our protocols internally rely on the con-

cept of an HSM (or similar trusted execution environments). We

assume the HSM to attest every message, i.e., sign it under a public

verification key that is known to all parties. Such verification key

could be published on the HSM vendor’s website, certified by some

trusted authority.

In our model of leakage from the HSM, covered through Lev-2
security, HSM attestation is the only power kept from the adver-

sary. Only in our strongest model, Lev-3 that considers full HSM
corruption, we will provide the adversary with the attestation key.

This distinction between the permanent attestation key and client-

specific files is justified because attestation is a central capability

of HSMs. Therefore, an HSM manufacturer might turn special at-

tention to the protection of the single attestation key, such as more

expensive hardware protection mechanisms.

For simplicity, we also assume that the HSM has some per-

sistent memory where it stores file records. In practice, HSMs

might securely outsource such storage as done, e.g. in the case

of WhatsApp’s solution [DFG
+
23b], but the actual realization of

storage is irrelevant for our work. This HSM-protected storage is

still considered secret upon server corruption (Lev-1) but entirely
leaked to the adversary up from Lev-2.

When proving security in the UC-framework [Can01], we model

the HSM as a subroutine of the server, similar to [PST17], instead

of modeling it as an individual party. This captures the exclusive

7

Sebastian Faller, Tobias Handirk, Julia Hesse, Máté Horváth, & Anja Lehmann

access that the server has to the HSM. Concretely, the code of the

HSM in Figure 3 and Figure 4 is the code of an entity that cannot

be corrupted by the adversary (because it is not a protocol party)

and that does not accept input from anybody else than the server.

For the protocols that can handle certain types of HSM corruption,

we equip our HSM functionalities with the respective corruption

interfaces. Concretely, if we allow leakage of client files and all the

protocol-specific long-term state, the HSM functionality will expose

a LeakFile interface to the adversary that returns the client files.

For the OPRF PPKR protocol, we add a FullyCorrupt interface

to the HSM functionality that additionally gives the adversary the

HSM’s secret attestation key. A formal description of the respective

HSM functionalities used by our protocols can be found in Figure 9

and Figure 10.

4.1 Lev-1 Protocol: Basic Encrypt-to-HSM

The security analysis of the WBP protocol of [DFG
+
23b] assumed

that the HSM cannot be corrupted and never leaks information.

A natural question is if this strong assumption allows for a sim-

pler PPKR protocol. The basic encrypt-to-HSM protocol 𝜋encPw,

depicted in Figure 3, answers the question in the affirmative.

The central observation is that if no information is leaked by

the HSM, then one can store the client’s passwords and keys in the

clear at the HSM. For recovery, the HSM is handed the clear-text

password attempt and performs the comparison. To protect against

network attackers and the potentially corrupt server, the client

encrypts all messages to the HSM under a long-term encryption

key pkEnc. Like inWBP, all clients have access to pkEnc, e.g., because
the key is hard-coded into the client’s source code.

To prevent the replay of messages by network attackers or cor-

rupt servers, we let the client encrypt session identifier ssid and

their own identity IDC, and also include these items in the clear. By

comparing the decrypted identifiers with the clear-text ones, the

HSM will notice when a malicious server changes the identifiers

of honest client requests, and abort. Hence, with this little check,

𝜋encPw is stronger (on Lev-1) than the WBP, which admits such

replay attacks [DFG
+
23b].

We show that 𝜋encPw is a secure PPKR when only considering

server corruptions, i.e., it provides Lev-1 security.

Theorem 1. The protocol 𝜋encPw from Figure 3 UC-realizes FPPKR
in the F encPw

HSM -hybrid model (i.e., assuming no corruption or leakage

of the HSM), assuming HSM attested messages, and assuming that

PKE is IND-CCA secure and SE is IND-CPA secure.

More precisely, let Dist𝐴,𝐵Z denote the advantage of Z to distin-

guish distributions 𝐴 and 𝐵. We get that for every efficient real-world

adversaryA against 𝜋encPw, there is an efficient simulator Sim
encPw

(see Figures 11 to 12) that interacts with FPPKR such that for every ef-

ficient environmentZ there exists an efficient adversaries B1 against

the IND-CCA security of PKE and B2 against the IND-CPA security

of SE such that

Dist𝜋
encPw,{FPPKR,SimencPw }
Z (𝜆) ≤(𝑞Init + 𝑞Rec)AdvIND-CCA

PKE,B1

(𝜆)

+ 𝑞RecAdvIND-CPA
SE,B2

(𝜆)

+ AdvsEUF-CMA
Sig,B4

(𝜆),

where 𝑞Init is the number of initializations and 𝑞Rec is the number of

recoveries.

Proof Sketch. The gist of the proof is that the incorruptible HSM

holds the secret key skEnc for all encryptions. As the HSM is mod-

eled as a hybrid functionality, the simulator has access to the secret

key. This allows for the following proof strategy:

To simulate honest clients without the password, the simulator

can replace the PKE ciphertexts 𝐶 by encryptions of ⊥. The envi-
ronment cannot detect this change by the IND-CCA security of the

encryption scheme. Indeed, we require CCA security, as the HSM’s

Fail responses on mismatching IDC and ssid give the adversary a

very limited decryption oracle. The ciphertext 𝐶′ is again replaced

by an encryption of ⊥. Note that this time we only need to reduce

to IND-CPA security because the integrity of 𝐶′ is ensured by the

HSM attestation. Finally, the simulator can use FPPKR to provide

clients with their correct output.

To extract the inputs of corrupt clients the simulator can use

the secret key skEnc of the HSM. The simulator knows this key

because the HSM is modeled as a hybrid functionality. That means

concretely that in the ideal-world execution, the simulator plays

the role of the HSM (and thus, chooses skEnc by itself). Using skEnc,
the simulator can decrypt the PKE ciphertext 𝐶 provided by the

corrupt client and provide the used password pw∗ to FPPKR. If the
password guess was correct the functionality will give the simulator

the recovered backup key 𝐾 . The simulator can also extract the

corrupt client’s symmetric key 𝑘𝑠𝑦𝑚 by using the secret key skEnc
of the HSM and respond to the client with an encrypted version of

its backup key 𝐶′.
Simulating the server amounts to executing the rest of the pro-

tocol as usual because the server holds no private information. □

The full proof can be found in Appendix D.1.

4.2 Lev-2 Protocol: Enhanced Encrypt-to-HSM

When the HSM leaks permanently stored protocol data such as

account information of clients, also called “password files”, one

cannot hope to prevent an adversary from, e.g., offline-attacking

a PPKR protocol. That is because the file must contain enough

information for the HSM to decide whether a recovery attempt is

successful or not. Nonetheless, one can demand that an adversary

still needs to guess a user’s password and cannot read the password

and/or the backup key immediately from the file. In other words,

clients that choose very strong passwords should still have a certain

level of security even if the HSM’s files get leaked.

Clearly, the basic encrypt-to-HSM protocol from Section 4.1 falls

short of this goal, and hence cannot reach Lev-2 security: The pass-
words and backup keys are stored in the clear and a compromise

of the HSM’s long-term state immediately gives them away. Fur-

ther, the leakage includes all protocol-specific long-term state, i.e.,

the adversary also gets the HSM’s decryption key skEnc, which
leaks all the password (attempts) from sessions happening after the

compromise to the attacker.

To reach Lev-2 security, we strengthen 𝜋encPw in two ways: First,

we store the password only in hashed form at the HSM, with a user-

specific salt to prevent pre-computation attacks; and encrypt the

backup key with another salted password hash. The salts are stored

8

Password-Protected Key Retrieval with(out) HSM Protection

in the password file. Second, we let the HSM use ephemeral encryp-

tion keys for each session. Figure 3 including grayboxes and skip-

ping dashed boxes shows our enhanced encrypt-to-HSM protocol

𝜋encPw+. We can formally prove in Theorem 2 that these relatively

simple (although in the case of the encryption keys significantly

more expensive) measures are enough to restrict an adversary in

Lev-2 back to offline guessing, after getting access to the long-term

storage of the HSM.

We stress that our HSM leakage model at Lev-2 returns all per-
manently stored user files and protocol-specific long-term state

to the adversary, but not the temporary values that occur during

execution of the protocol.

Theorem 2. The protocol 𝜋encPw+ from Figure 3 UC-realizes FPPKR
in the F encPw+

HSM -hybrid model (i.e., assuming no corruption but state

leakage of the HSM) and assuming that 𝐻 is modeled as random

oracle, messages are HSM-attested, PKE is IND-CCA secure, and SE
is IND-CPA secure.

More precisely, letDist𝐴,𝐵Z denote the advantage ofZ to distinguish

distributions𝐴 and 𝐵. We get that for every efficient real-world adver-

saryA against 𝜋encPw+, there is an efficient simulator Sim
encPw+

(see

Figure 13) that interacts with FPPKR such that for every efficient envi-

ronmentZ there exist efficient adversaries B1 against the IND-CCA
security of PKE and B2 against the IND-CPA security of SE such that

Dist𝜋
encPw+,{FPPKR,SimencPw+ }
Z (𝜆) ≤ (𝑞Init + 𝑞Rec)AdvIND-CCA

PKE,B1

(𝜆)

+ 𝑞RecAdvIND-CPA
SE,B2

(𝜆) + AdvsEUF-CMA
Sig,B4

+ 𝑞Init (2𝑞Init − 1)
2
𝜆

+ 2𝑞Init𝑞𝐻

2
𝜆

,

where 𝑞Init is the number of initializations, 𝑞Rec is the number of

recoveries, and 𝑞𝐻 is the number of 𝐻 queries.

Proof Sketch. Because the formal proof of Theorem 2 shares

most of its steps with the proof of Theorem 1, we focus on the

changes to the proof that are required to also achieve security under

leaked HSM files. We show the modified and additional interfaces

that the simulator provides in Figure 13. Now we have to simulate

leakage of HSM files, because F encPw+
HSM allows the adversary to call

its LeakFile interface. To that end, the simulator must observe and

program the random oracle𝐻 and use theOfflineAttack interface

of FPPKR. The simulator now also has to generate fresh encryption

keys (pkEnc, skEnc) for every initialization and recovery and store

them until they are used. Note that we can keep the rest of the

simulation as in the proof of Theorem 1. That is because the leaked

client file does not contain values that would allow impersonation

of the HSM (as will be the case when we consider full corruption

in Section 4.3).

Before the state of the HSM is leaked, an adversary has only a

negligible chance to query 𝐻 (𝑠2, pw) to the random oracle. That is

because 𝑠2 has high entropy. Therefore, the simulator can store a

uniformly random value 𝑐 as the encoding of the backup key. But

once the HSM state is leaked, the adversary knows 𝑠1, 𝑠2 and ℎ and

thus, can guess passwords and verify its guess using ℎ and 𝑠1. If

one of the guesses is correct, the adversary will be able to check if

𝑐 is indeed an encoding of 𝐾 by using 𝑠2. The simulator can use the

OfflineAttack interface of FPPKR to see if the adversary’s guess

was correct. In case of a successful guess, the simulator learns 𝐾 .

Then, it can program 𝐻 (𝑠2, pw) ← 𝑐 ⊕ 𝐾 to equivocate 𝑐 after the

fact, and similarly Sim can program 𝐻 (𝑠1, pw) ← ℎ. □

The full proof can be found in Appendix D.2.

Missing Lev-3 Security of 𝜋encPw+. Cleary, our enhanced encrypt-
to-HSM protocol cannot satisfy Lev-3 security: if the adversary gets
the HSM’s attestation key, it has full control over the public keys for

the encryption scheme under which the client encrypts the user’s

password. Thus, for all users that still use the PPKR service after

the full compromise happened, the adversary immediately learns

their plaintext passwords from the request – and consequently can

recover their keys too.

To achieve Lev-3 security, we need to securely communicate

some password-dependent data to a possibly entirely malicious

party for authentication, and cannot rely on any server-held se-

cret for the password’s protection. This requires more advanced

cryptographic techniques, for which we revert to an oblivious pseu-

dorandom function in our third construction.

4.3 Lev-3 Protocol: OPRF-Based PPKR

In this section, we build PPKR that provides protection against full

server and HSM corruption. That is, even when all keys and files

are leaked, the best an adversary can do is an offline attack against

each user’s password. Our goal is to propose a simpler protocol

than WBP that reaches such Lev-3 security.

Oblivious Pseudorandom Function. At the core of our construc-

tion is an oblivious pseudorandom function (OPRF). Such a function

allows to deterministically compute𝑦 = PRF(𝑘, 𝑥) through an inter-
active protocol between an evaluator and requester. The evaluator

knows the PRF key 𝑘 , but learns nothing about the input 𝑥 or out-

put 𝑦 it computes. We will use such an OPRF to deterministically

compute password-dependent key material, which allows the client

to authenticate towards the HSM, and also derive the encryption

key under which 𝐾 gets wrapped.

High-Level Idea of 𝜋OPRF-PPKR
. For initialization, the client ex-

ecutes the OPRF with the HSM (through the server) to obtain a

value 𝜌 = PRF(𝑘OPRF, (pw, IDC)), depending on the user’s pass-

word and IDC. The HSM chooses a client-specific key 𝑘OPRF. The

derived 𝜌 then serves as the key for an authenticated encryption

(AE) scheme, under which the client’s randomly chosen key 𝐾 gets

encrypted. The client also generates a signature key pair (sk𝐶 , pk𝐶)
for future re-authentication. It encrypts both sk𝐶 and 𝐾 under 𝜌 ,

obtaining a ciphertext 𝑐 . The HSM gets 𝑐 and pk𝐶 and stores them

with IDC, 𝑘OPRF, and a counter value ctr, initially set to 10, forming

the password file for IDC.

For recovery, the client receives 𝑐 from the HSM and runs the

OPRF again. If the client uses the same password as in initialization,

it obtains the same 𝜌 as earlier. The client then uses 𝜌 to decrypt 𝑐 ,

obtaining (𝐾, sk𝐶). Now the client can prove knowledge of the right

password towards the HSM, by using the sk𝐶 to sign the transcript

of previous messages exchanged with the HSM. The HSM decreases

the counter ctr at the beginning of every recovery, and if it receives
such a signature that verifies under the pk𝐶 in the stored user file,

it considers the client as correctly authenticated and resets the ctr
value to 10 again.

9

Sebastian Faller, Tobias Handirk, Julia Hesse, Máté Horváth, & Anja Lehmann

Client IDC Server S HSM

Setup Phase � rpkEnc � rpkEnc (skEnc, pkEnc)
$←− PKE.Gen(𝜆)

Initialization Phase
On (InitS, ssid, IDC): -Init, ssid,GetPK

On (InitC, ssid, pw): � rInit, ssid, pkEnc � rInit, ssid, pkEnc (skEnc, pkEnc)
$←− PKE.Gen(𝜆)

𝐾
$←− {0, 1}𝜆

𝐶
$←− PKE.Enc(pkEnc, (pw, 𝐾, IDC, ssid)) -rInit, ssid,𝐶, IDC -Init, ssid,𝐶, IDC (pw, 𝐾, ID′C, ssid

′) ← PKE.Dec(skEnc,𝐶)
if IDC ≠ ID′C or ssid ≠ ssid′: set 𝑜𝑢𝑡 ← Fail

else:

𝑠1, 𝑠2
$←− {0, 1}𝜆 , ℎ ← 𝐻 (𝑠1,pw) , 𝑐 ← 𝐾 ⊕𝐻 (𝑠2, pw)

delete ⟨File, IDC, ∗, ∗, ∗, ∗, ∗⟩
store ⟨File, IDC, 𝑐, ℎ, 𝑠1, 𝑠2,ctr← 10⟩

If 𝑜𝑢𝑡 = Fail set 𝐾 ← Fail � rInitRes, ssid, 𝑜𝑢𝑡
return (InitRes, ssid, 𝑜𝑢𝑡) � rInitRes, ssid, 𝑜𝑢𝑡

set 𝑜𝑢𝑡 ← Succ

return (InitRes, ssid, 𝐾)
Recovery Phase

On (RecS, ssid, IDC,⊥,⊥,⊥): -Rec, ssid,GetPK

On (RecC, ssid, pw′): � rRec, ssid, pkEnc � rRec, ssid, pkEnc (skEnc, pkEnc)
$←− PKE.Gen(𝜆)

𝑘𝑠𝑦𝑚
$←− {0, 1}𝜆

𝐶
$←−

PKE.Enc(pkEnc, (𝑘𝑠𝑦𝑚, pw′, IDC, ssid))
-rRec, ssid,𝐶, IDC -Rec, ssid,𝐶, IDC (𝑘𝑠𝑦𝑚, pw′, ID′C, ssid

′) ← PKE.Dec(skEnc,𝐶)

retrieve ⟨File, IDC, [𝑐], [ℎ], [𝑠1], [𝑠2] , [ctr]⟩
if ctr = 0: delete ⟨File, IDC, ∗, ∗, ∗, ∗, ∗⟩, 𝑜𝑢𝑡 ← DelRec

else:

set ctr in the record to ctr − 1

if IDC ≠ ID′C or ssid ≠ ssid′: set 𝑜𝑢𝑡 ← Fail

else:

if 𝐻 (𝑠1,pw′) ≠ ℎ: set 𝑜𝑢𝑡 ← Fail

else:

set ctr in the record to 10

If 𝑜𝑢𝑡 ∈ {Fail,DelRec}: return
(RecRes, ssid, 𝑜𝑢𝑡)

� rRecRes, ssid, 𝑜𝑢𝑡
If 𝑜𝑢𝑡 ∈ {Fail,DelRec} return

(RecRes, ssid, 𝑜𝑢𝑡)
� rRecRes, ssid, 𝑜𝑢𝑡

𝐶′ $←− SE.Enc(𝑘𝑠𝑦𝑚, 𝑐 ⊕𝐻 (𝑠2, pw′)), 𝑜𝑢𝑡 ← 𝐶′

Else return (RecRes, ssid, SE.Dec(𝑘𝑠𝑦𝑚, 𝑜𝑢𝑡)) Else return (RecRes, ssid, Succ)

Figure 3: Protocols 𝜋encPw and 𝜋encPw+. The code in dashbox is only executed in 𝜋encPw, the code in gray boxes is only executed in

𝜋encPw+. � r𝑥
is the HSM-attested transmission of 𝑥 . -r 𝑦 is the client-to-server authenticated transmission of 𝑦. We implicitly

assume that each message contains sid and the random oracle 𝐻 takes sid as first input. IDC and S output (InitRes, ssid, Fail)
or (RecRes, ssid, Fail), whenever they receive an unexpected message (i.e. with mismatching ssid or IDC) or when attestation

verification fails. If any party receives the same type of message twice with the same ssid, it ignores the second one. Init and
Rec are strings indicating which phase the client wishes to initiate. The server receives the input (RecS, ssid, IDC,⊥,⊥,⊥) instead
of just (RecS, ssid, IDC) only for technical reasons as the syntax needs to match FPPKR.

Interestingly, we still need a fresh encryption key pair for commu-

nication towards the HSM – but only for the initialization. Therein,

the client’s values (pk𝐶 , 𝑐) and the ssid get encrypted under the

freshly chosen key. The purpose of this encryption is to prevent

a malicious server from combining the ciphertext 𝑐 of an honest

user with a different public key pk𝐶 . Such a mixing attack would

allow the server to plant the honest 𝑐 with some authentication in-

formation where it could easily circumvent the strict limit of failed

retrievals imposed by the HSM. Thus, the purpose of the public-key

encryption here is to bind the honest user’s information together.

Comparison toWBP. Our protocol shares a lot of similarities with

the WBP as stated by Davies et al. [DFG
+
23b], but simplifies the

design enabling both a more efficient and more secure variant. We

start by sketching the WBP core ideas and then explain the main

differences to our protocol.

The overall idea of the WBP is to let the client and the HSM

execute an asymmetric PAKE (aPAKE) protocol to exchange a fresh

symmetric key𝐾session
from a clear-text password of the client, and

a password file stored by the HSM. 𝐾session
is subsequently used

to prove the correctness of the client’s password to the HSM using

standard key confirmation techniques, to reset the file counter. The

client’s key 𝐾 is encrypted under a static (i.e., depending only on

the password) key 𝐾export
and stored by the HSM. The protocol is

instantiated with OPAQUE [JKX18], which in turn crucially relies

on an OPRF to produce the static export key.

In our protocol, we start from an OPRF instead of aPAKE, and

implement the proof of password knowledge separately through

digital signatures. This yields a simpler protocol layout and cleaner

security proof. In terms of similarity, the AE ciphertext stored in the

client’s password files corresponds to the OPAQUE password files,

and the OPRF is used to deterministically derive a key to decrypt

this file and perform the re-authentication. How this authentication

is done differs though: we save one message by using signatures

instead of authenticated key exchange. Note that this exploits that

we are not aiming at the key exchange, which was the goal of

OPAQUE – and thus is more than what is needed for PPKR.

Apart from improving efficiency, our protocol provides better se-

curity then WBP. While the following attacks can all be considered

minor, they are still in conflict with the desired security properties

– and easily preventable as shown by our protocol. The security

improvements are as follows:

10

Password-Protected Key Retrieval with(out) HSM Protection

(1) In the WBP, a corrupt server can prevent old password files of

honest clients from being overwritten upon a client re-initializing

with a new password. The corrupt server could then still use up

all remaining password guesses against old password files, to

recover previous keys of the client. We prevent this by having

the HSM attest the client identity IDC for each session ssid, and
letting the client abort when it receives a mismatching IDC. This

enforces an agreement between an honest client and honest HSM

when the server is corrupt (needed for Lev-1 security).
(2) We fix a “rerouting” attack on the WBP that was discovered by

[DFG
+
23b], and which allows a corrupt server to reroute honest

recovery attempts to wrong password files. This results in honest

Alice recovering Bob’s key if both use the same password. We

therefore invoke the OPRF not only on the user’s password but

also append the unique client identity IDC to the input. This

simple measure ensures that users derive unique wrapping keys

𝜌 , which protects against this attack (again needed for Lev-1
security).

(3) The above two measures additionally prevent two attacks on the

WBP that a fully corrupt server in the Lev-3 setting 2
can mount:

(I) checking whether two honest clients use the same password,

(II) resetting the counter in an honest client’s password file if

another client having the same password runs a recovery. Both

attacks work by routing a recovery attempt of Alice to Bob’s

password file, which in the WBP goes unnoticed by Alice, and

can succeed because the passwords of honest clients are not

enforced to be unique. Both is prevented through measures (1)

and (2).

(4) Considering the same HSM leakage model that we use (every-

thing except the HSM’s attestation key gets leaked on Lev-2), in
the WBP, a malicious server can run offline password guessing

attack not only against all leaked files but also against files that

are created after the compromise. This is because the WBP re-

lies on a long-term encryption key at the HSM for initialization.

After a Lev-2 compromise, the malicious server can decrypt an

honest user’s initialization request, and re-encrypt the user’s

wrapped key 𝐾 together with a maliciously chosen (AKE) public

key. This allows the malicious server to get unlimited password

guesses against the user’s real password-wrapped key, as it can

correctly complete key confirmation towards the HSM, even

when performing the retrieval with the wrong passwords. Our

protocol prevents that attack by using fresh encryption keys in

initialization, achieving the necessary security for Lev-2.

Concrete OPRF for Efficiency. While our protocol can be securely

realized with any 2-round OPRF, we build 𝜋OPRF-PPKR
from the

2HashDHOPRF [JKKX16] in a non-black-box way. This was mainly

done for efficiency reasons. A generic approach relying on an ideal

OPRF functionality would not allow binding the OPRF in- and

outputs directly to other protocol values, nor do this efficiently

in an HSM-attested way. However, even though our protocol is

non-generic, our proof actually provides some modularity: we use

the 2HashDH simulator as a step in our proof, and from then on

2
We note that the fully corrupt server case was not analyzed in [DFG

+
23b], and hence

they did not claim the protocol to prevent these attacks. It is nonetheless easy to verify

that a fully corrupt server in the WBP can use the same OPRF key for Alice and Bob

and perform these attacks.

rely on the abstracted security properties of a UC-secure OPRF.

Nevertheless, our proof additionally relies on the internals of the

2HashDH simulator at several points, making the switch to another

OPRF non-trivial.

Theorem 3. The protocol 𝜋OPRF-PPKR
from Figure 4 UC-realizes

FPPKR in the FOPRF-PPKR
HSM -hybrid model (i.e., allowing file leakage

and full corruption of the server), assuming adaptive corruptions

outside of ongoing initialization and recovery phases, HSM-attested

messages, client-to-server authenticated channels, that AE is equiv-

ocable and random-key robust and has INT-CTXT-security, Sig is
sEUF-CMA-secure, PKE is CCA-secure, 𝐻1 and 𝐻2 are modeled as

random oracles, and that the (𝑁,𝑄)-OMDH assumption holds in G.

More precisely, letDist𝐴,𝐵Z denote the advantage ofZ to distinguish

distributions 𝐴 and 𝐵. Then, for every efficient real-world adversary

A against 𝜋OPRF-PPKR
, there is an efficient simulator Sim

OPRF-PPKR

(see Figures 14 to 17) that interacts with FPPKR such that for every

efficient environmentZ there exists efficient adversaries B1, . . . ,B7

such that

Dist𝜋
OPRF-PPKR,{FPPKR,SimOPRF-PPKR }
Z (𝜆) ≤AdvsEUF-CMA

B1,Sig
(𝜆)

𝑞InitAdv
(𝑞𝐸+𝑞𝐻 ,𝑞𝐸)−OMDH
B2,G

(𝜆) + 𝑞2

𝐸Adv
rkr
B3,AE

(𝜆)

+ 𝑞InitAdvINT-CTXT
B4,AE

(𝜆) + AdvEQV
B5,AE

(𝜆) + 𝑞InitAdvsEUF-CMA
B6,Sig

(𝜆)

+ 𝑞InitAdvIND-CCA
B7,PKE

(𝜆) + (𝑞𝐸 + 𝑞𝐻)2/𝑞
where 𝑞Init is the number of initializations, 𝑞Rec is the number of

recoveries, 𝑞𝐸 = 𝑞Init + 𝑞Rec, 𝑞𝐻 is the number of queries to 𝐻1 and

𝑞 is the order of G.

Proof Sketch. The proof heavily relies on the security of the

2HashDH OPRF. We use the simulator SimOPRF from Davies et

al. [DFG
+
23b] (restated in Appendix B), which demonstrates that

2HashDH UC-realizes FOPRF, in a non-black-box way throughout

the proof. Whenever we have to simulate a message 𝑎, 𝑏, 𝑎′, or 𝑏′

for some honest party, we “outsource” the simulation to SimOPRF.

This also means that we let SimOPRF choose the key 𝑘OPRF, which

we then need to obtain from SimOPRF whenever there is a LeakFile

query from A. Furthermore, from the random oracle queries to 𝐻2

by A, SimOPRF is able to extract the password chosen by a corrupt

party in an initialization, which allows us to install a corresponding

file in FPPKR.
A challenge that arises from allowing the LeakFile query is that

A can do offline password guessing using 𝑘OPRF obtained from

leaked files. If A guesses the correct password pw of some IDC, it

can decrypt the ciphertext 𝑐 that was encrypted under the output 𝜌

of the OPRF. Hence, 𝑐 has to be simulated such that it decrypts to

the key𝐾 chosen randomly by FPPKR for IDC, as otherwise, the sim-

ulation would be distinguishable from the real protocol. However,

when we simulate 𝑐 in the initialization phase, 𝐾 is unknown, as

FPPKR has not even given it to IDC, yet. To solve this, we require AE
to be equivocable, which allows us to produce a simulated 𝑐 and only

later decide to which values 𝑐 decrypts. More precisely, wheneverA
queries𝐻2 on an input of the form (pw′ ∥ IDC, 𝐻1 (pw′ ∥ IDC)𝑘OPRF),
where 𝑘OPRF is some OPRF key chosen by SimOPRF, we submit pw′

to the OfflineAttack interface of FPPKR. If pw = pw′, then we

obtains the key 𝐾 and can equivocate 𝑐 to obtain a 𝜌 such that 𝑐

decrypts to 𝐾 under 𝜌 and program the output of 𝐻2 to 𝜌 .

11

Sebastian Faller, Tobias Handirk, Julia Hesse, Máté Horváth, & Anja Lehmann

Client IDC Server S HSM

Initialization Phase

On (InitC, ssid, pw): 𝐾 $←− {0, 1}𝜆
𝑟

$←− Z𝑞, 𝑎 ← 𝐻1 (pw ∥ IDC)𝑟 -rInit, ssid, 𝑎, IDC
on (InitS, ssid, IDC): -Init, ssid, 𝑎, IDC (skEnc, pkEnc)

$←− PKE.Gen(1𝜆)
𝜌 ← 𝐻2 (pw ∥ IDC, 𝑏

1/𝑟) � rssid, 𝑏, IDC, pkEnc � rssid, 𝑏, IDC, pkEnc 𝑘OPRF
$←− Z𝑞, 𝑏 ← 𝑎𝑘OPRF

(sk𝐶 , pk𝐶)
$←− Sig.Gen(1𝜆)

𝑐
$←− AE.Enc(𝜌, (𝐾, sk𝐶))

𝐶
$←− PKE.Enc(pkEnc, (ssid, pk𝐶 , 𝑐)) -r ssid,𝐶 -ssid,𝐶 (ssid′, pk𝐶 , 𝑐) ← PKE.Dec(skEnc,𝐶)

return (InitRes, ssid, 𝐾) if ssid′ ≠ ssid : 𝑜𝑢𝑡 ← Fail

else:

𝑜𝑢𝑡 ← Succ, delete ⟨File, IDC, ∗, ∗, ∗, ∗⟩
return (InitRes, ssid, 𝑜𝑢𝑡) � rInitRes, ssid, 𝑜𝑢𝑡

store ⟨File, IDC, pk𝐶 , 𝑐, 𝑘OPRF, ctr← 10⟩
Recovery Phase

On (RecC, ssid, pw′): 𝑟 ′ $←− Z𝑞
𝑎′ ← 𝐻1 (pw′ ∥ IDC)𝑟

′ -rRec, ssid, 𝑎′, IDC
on (RecS, ssid, IDC,⊥,⊥,⊥): -Rec, ssid, 𝑎′, IDC

Retrieve

⟨File, IDC, [pkC], [𝑐], [𝑘OPRF], [ctr]⟩
return �RecRes, ssid, Fail if no record can be found:

(RecRes, ssid, Fail) else:

return (RecRes, ssid,DelRec) � rssid, DelRec � rssid, DelRec
if ctr = 0: delete ⟨File, IDC, ∗, ∗, ∗, ∗⟩
else:

set ctr in the record to ctr − 1

𝜌′ ← 𝐻2 (pw′ ∥ IDC, 𝑏
′1/𝑟 ′) � rssid, 𝑏′, 𝑐, IDC � rssid, 𝑏′, 𝑐, IDC 𝑏′ ← 𝑎′𝑘OPRF

if ⊥ ≠ (𝐾, sk′
𝐶
) ← AE.Dec(𝜌′, 𝑐):

𝜎
$←− Sig.Sign(sk′

𝐶
, (𝑎′, IDC, ssid, 𝑏′, 𝑐)) -r ssid, 𝜎 -ssid, 𝜎

if Sig.Vfy(pkC, (𝑎′, IDC, ssid, 𝑏′, 𝑐), 𝜎):
return (RecRes, ssid, 𝐾) set ctr in the record to 10, 𝑜𝑢𝑡 ← Succ

else return (RecRes, ssid, Fail) return (RecRes, ssid, 𝑜𝑢𝑡) � rRecRes, ssid, 𝑜𝑢𝑡
else: 𝑜𝑢𝑡 ← Fail

Figure 4: Protocol 𝜋OPRF-PPKR
. � r𝑥

indicates that the message 𝑥 is signed by the HSM; and -r 𝑦 denotes the client-to-server

authenticated transmission of 𝑦. IDC outputs (InitRes, ssid, Fail) or (RecRes, ssid, Fail), whenever it receives an unexpected

message (i.e. with mismatching ssid or IDC) or when signature verification fails for the received signed message. If any party

receives the same type of message twice with the same ssid it ignores the second one. Init and Rec are strings indicating which

phase the client wishes to initiate. The server receives the input (RecS, ssid, IDC,⊥,⊥,⊥) instead of just (RecS, ssid, IDC) only
for technical reasons as the syntax needs to match FPPKR.

A similar challenge arises when S is fully corrupt. Then, S can

make the critical query to𝐻2 even before we simulate 𝑐 as it chooses

the OPRF key 𝑘OPRF used in the initialization. Thus, we have to

check for all previous 𝐻2 queries whether it was this critical query

via the OfflineAttack interface and if so, encrypt 𝐾 under the

corresponding output of 𝐻2 instead of outputting an equivocable 𝑐 .

The last major challenge is that a fully corrupt S can do key-

planting attacks and can mix-and-match different files during a

recovery, e.g., when IDC recovers, S could use 𝑘OPRF of some ID′C ≠

IDC and an adversarial 𝑐 . To deal with this, we check whether the

password pw′′ ∥ ID′′C and key 𝑘′
𝑜𝑝𝑟 𝑓

used to derive the 𝜌 , under

which the adversarial 𝑐 was encrypted, are the same as the password

pw ∥ IDC and key 𝑘OPRF used in the recovery by IDC. In the real

world, IDC would then output the key 𝐾 decrypted from 𝑐 . To

simulate this, we use the key-planting capabilities in the RecS

interface.We can again find the password pw′′∥ID′′C used to derive 𝜌

via the𝐻2 queries byA and check whether the same OPRF key was

used with the help of SimOPRF. We can then decrypt 𝑐 to get𝐾 ′′ and
submit pw′′ and 𝐾 ′′ to the RecS interface. If pw = pw′′, IDC then

outputs 𝐾 ′′. We can proceed similarly if 𝑐 instead is equivocable.

□

The full proof can be found in Appendix D.3.

5 Evaluation & Discussion

In this section, we give an overview of the concrete efficiency of our

protocols, compare them to WBP, and also discuss the respective

advantages of our protocols.

Instantiations of Building Blocks. For the efficiency overview,

we choose concrete instantiations of the required primitives, such

that we can count the number of operations performed in each

protocol. We only chose group-based public key primitives to keep

the numbers comparable. But of course, one could use any other

secure instantiation of the primitives, e.g., based on RSA or lattices.

Concretely, we chose Schnorr-Signatures, HMAC, HKDF, ElGa-

mal encryption as a CPA secure encryption and DHIES as CCA

secure encryption. For simplicity, we assumed that all hash eval-

uations cost a uniform unit “1 Hash”
3
and similarly that one AE

encryption or decryption costs “1 AES”. A detailed overview of the

computation costs of each primitive can be found in Table 4. We did

not list the HSM’s attestation signatures as they are automatically

produced by the HSM anyway.

Efficiency Comparison. As Table 3 shows, OPRF-PPKR is more ef-

ficient than theWBP in both, initialization and recovery. This comes

mostly fromWBP performing an authenticated key exchangewhere

OPRF-PPKR uses a digital signature. In particular, in the recovery

phase, which will be the more time-critical phase in deployment,

3
Ignoring e.g., exponentiations that might be needed to hash into a group.

12

Password-Protected Key Retrieval with(out) HSM Protection

Table 3: Efficiency of PPKR realizations expressed in terms of the number of exponentiations (Exp), multiplications (Mult),

hash evaluations (Hash) and AES encryptions/decryptions (AES). Since the server mostly just relays messages, we ignore its

costs in the comparison. In case of encPw and WBP, we assume that the static encryption key of the HSM is hardcoded into

the client, therefore no communication is needed for key sharing in Init and Rec and we neglect the costs of the one-time

generation. For more details on the instantiations of the primitives used for the comparison, see Table 4.

encPw (Sec. 4.1) encPw+ (Sec. 4.2) OPRF-PPKR (Sec. 4.3) WBP [DFG
+
23b]

Init

Client 2 Exp, 3Hash, 1 AES 2 Exp, 3Hash, 1 AES 5 Exp, 5Hash, 2 AES 7 Exp, 12Hash, 1 AES, 1Mult

HSM 3Hash, 1AES 2 Exp, 5Hash, 1 AES 2 Exp, 3Hash, 1 AES 3 Exp, 3Hash

no. rounds 2 3 3 3

Rec

Client 2 Exp, 3Hash, 2 AES 2 Exp, 3Hash, 2 AES 3 Exp, 3Hash, 1 AES 8 Exp, 27Hash, 2 AES, 1Mult

HSM 3Hash, 2AES 2 Exp, 5Hash, 2 AES 2 Exp, 1Hash, 1Mult 6 Exp, 15Hash, 1 AES

no. rounds 2 3 3 4

Table 4: Costs of concrete building blocks for the efficiency

evaluation in Section 5.

KeyGen Enc Dec
CPA Enc (ElGamal) 1 Exp 2 Exp, 1Hash 1 Exp, 1Hash

CCA Enc (DHIES) 1 Exp 2 Exp, 3Hash, 1 AES 1 Exp, 3Hash, 1 AES

AE (AES-GCM) - 1AES 1AES

KeyGen Sign Vfy
Signature (Schnorr) 1 Exp 1 Exp,1Hash 2 Exp, 1Mult, 1 Hash

MAC (HMAC) - 2Hash 2Hash

KDF (𝑛 keys, HKDF) (2𝑛 + 2)Hash

as it will be run more often than initialization, our protocol outper-

forms WBP: OPRF-PPKR reduces the round
4
complexity from 4 to

3, and uses roughly one-third of the operations required by WBP,

for both the client and HSM.

If we compare the two enhanced encrypt-to-HSM protocols to

OPRF-PPKR, they are more efficient and they save one round of

communication, as they strongly rely on the HSM security, with the

weakest protocol having the lowest computational requirements.

Interestingly, in bare numbers, they are not significantly more

efficient though.

Thus, considering that OPRF-PPKR provides much better se-

curity for almost the same costs, this might raise the question of

whether there are any advantages in using our simpler protocols –

which is what we answer next.

Advantages of Standard Primitives. The core benefit of our two

basic/enhanced encrypt-to-HSM protocols is that they explore how

the extended trust in the HSM can be traded for simplicity in the pro-

tocol design. Both protocols rely on standard and well-understood

primitives only, which are public-key and symmetric encryption,

and hash functions. In contrast, WBP and our OPRF-PPKR require

(dedicated discrete-log-based) OPRFs.

In particular, when internally using an HSM, reliance on simple

and standard building blocks is an advantage – established primi-

tives are implemented in many well-tested frameworks and have

been studied for resistance against side-channel attacks. OPRFs are

4
We count one round as a message from party A to party B (and not as a full round-trip

A to B to A).

still a somewhat more modern primitive that just recently came

into focus of practitioners, i.e., it might require developers to im-

plement low-level cryptographic procedures instead of merely in-

voking APIs of trusted libraries. Thus, the operations needed for

OPRF-PPKR and WBP might be more prone to implementation

errors or be simply not available or accessible through the shielded

HSM APIs when using “off-the-shelf” HSMs. The clear downside

of both simple protocols is that they lose security when the HSM is

(fully) compromised. However, given that they require only well-

understood operations by the HSM, such a simpler HSM might be

easier to protect, making a security breach less likely.

Further, realizing an efficient quantum-safe OPRF is still an open

problem. This is in contrast to the other standard building blocks

for which quantum-safe options exist. Here the basic/enhanced

encrypt-to-HSM protocols again have the advantage over OPRF-

PPKR and WBP, as they rely on standard primitives only, and can

easily benefit from a post-quantum “upgrade”.

Lev-3 Security for Offline Users in enhanced encrypt-to-HSM. While

we prove the enhanced encrypt-to-HSM protocol to satisfy at most

Lev-2 security, it actually does preserve strong guarantees if the

HSM is fully corrupted, but only for “offline” clients. Recall that we

assumed the HSM’s attestation key to be the single value that en-

joys particularly strong protection – and thus is the only additional

information the adversary gets upon full server corruption. Conse-

quently, the impact of such a compromise on the protocol’s security

is then rather limited. In fact, for users who never use the PPKR

after the full corruption happened, our enhanced encrypt-to-HSM

protocol provides the same protection as OPRF-PPKR: their leaked

files must still be cracked through individual offline attacks against

each password. This might be a sufficient guarantee in reality. Es-

pecially in settings where it will be known which HSM is used by

the server, and assuming that a breach of the HSM most critical

operation would become public. Then either the service is stopped,

and the server updates to a secure HSM; or the particularly cau-

tious users would no longer log into the PPKR service – and their

password and key would be just as secure as with the OPRF-PPKR

protocol. Only the users who still engage in active sessions would

lose their security. However, their security is fully compromised

in enhanced encrypt-to-HSM, as the malicious server will learn

their password and key in plain as soon as they start a new init or

13

Sebastian Faller, Tobias Handirk, Julia Hesse, Máté Horváth, & Anja Lehmann

recovery session. Here, OPRF-PPKR still ensures the secrecy of the

user’s data.

What is the best protocol? Overall, there is no clear answer to

what can be considered the "best" protocol. We believe that both

our enhanced encrypt-to-HSM and OPRF-PPKR protocols have

their individual strengths that can make each the right choice for

a dedicated deployment setting. The enhanced encrypt-to-HSM is

clearly superior to its unsalted variant, yet preserves all simplicity

advantages. Thus, here we do not see a strong reason to favor the

𝜋encPw protocol (Lev-1 security) and would recommend opting for

the 𝜋encPw+ version (Lev-2 security) whenever the advantages of
the simple and standard construction outweigh the concerns of a

full HSM corruption. As just discussed, the guarantees of 𝜋encPw+ in

case of full corruption are actually not lost entirely. For those users

who never use the retrieval again after the full HSM corruption

occurred, it provides the same security as 𝜋OPRF-PPKR
. Neverthe-

less, for applications with very high-security requirements, the

𝜋OPRF-PPKR
construction provides the strongest (Lev-3) guarantees,

but requires more care in the implementation.

Acknowledgments

The authors would like to thank the anonymous referees for their

valuable comments and helpful suggestions.

Tobias Handirk has been supported by the European Research

Council (ERC) under the European Union’s Horizon 2020 research

and innovation programme, grant agreement 802823. Julia Hesse

was supported by the Swiss National Science Foundation (SNSF)

under the AMBIZIONE grant “Cryptographic Protocols for Human

Authentication and the IoT”. Máté Horváth has been supported by

the German Research Foundation (DFG), project JA2445/6-1.

References

[AMMR18] Shashank Agrawal, Payman Mohassel, Pratyay Mukherjee, and Peter

Rindal. DiSE: Distributed symmetric-key encryption. In David Lie, Mo-

hammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM

CCS 2018: 25th Conference on Computer and Communications Security,

pages 1993–2010, Toronto, ON, Canada, October 15–19, 2018. ACM

Press.

[BC19] Jean-Baptiste Bedrune and Gabriel Campana. Everybody

be cool, this is a robbery! BlackHat USA 2019, 2019.

http://i.blackhat.com/USA-19/Thursday/us-19-Campana-Everybody-

Be-Cool-This-Is-A-Robbery.pdf, Accessed: 24.04.2024.

[BJSL11] Ali Bagherzandi, Stanislaw Jarecki, Nitesh Saxena, and Yanbin Lu.

Password-protected secret sharing. In Yan Chen, George Danezis, and

Vitaly Shmatikov, editors, ACM CCS 2011: 18th Conference on Computer

and Communications Security, pages 433–444, Chicago, Illinois, USA,

October 17–21, 2011. ACM Press.

[BM93] Steven M. Bellovin and Michael Merritt. Augmented encrypted key

exchange: A password-based protocol secure against dictionary attacks

and password file compromise. In Dorothy E. Denning, Raymond Pyle,

Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, ACM CCS

93: 1st Conference on Computer and Communications Security, pages

244–250, Fairfax, Virginia, USA, November 3–5, 1993. ACM Press.

[BMP00] Victor Boyko, Philip D. MacKenzie, and Sarvar Patel. Provably secure

password-authenticated key exchange using Diffie-Hellman. In Bart

Preneel, editor,Advances in Cryptology – EUROCRYPT 2000, volume 1807

of Lecture Notes in Computer Science, pages 156–171, Bruges, Belgium,

May 14–18, 2000. Springer, Heidelberg, Germany.

[BS23] Dan Boneh and Victor Shoup. A graduate course in applied cryptogra-

phy. http://toc.cryptobook.us/, 2023.

[Can00] Ran Canetti. Universally composable security: A new paradigm for

cryptographic protocols. Cryptology ePrint Archive, Report 2000/067,

2000. https://eprint.iacr.org/2000/067.

[Can01] Ran Canetti. Universally composable security: A new paradigm for

cryptographic protocols. In 42nd Annual Symposium on Foundations of

Computer Science, pages 136–145, Las Vegas, NV, USA, October 14–17,

2001. IEEE Computer Society Press.

[CGMS21] Mihai Christodorescu, Sivanarayana Gaddam, Pratyay Mukherjee, and

Rohit Sinha. Amortized threshold symmetric-key encryption. In Gio-

vanni Vigna and Elaine Shi, editors, ACM CCS 2021: 28th Conference

on Computer and Communications Security, pages 2758–2779, Virtual

Event, Republic of Korea, November 15–19, 2021. ACM Press.

[CLLN14] Jan Camenisch, Anja Lehmann, Anna Lysyanskaya, and Gregory Neven.

Memento: How to reconstruct your secrets from a single password in a

hostile environment. In Juan A. Garay and Rosario Gennaro, editors,

Advances in Cryptology – CRYPTO 2014, Part II, volume 8617 of Lecture

Notes in Computer Science, pages 256–275, Santa Barbara, CA, USA,

August 17–21, 2014. Springer, Heidelberg, Germany.

[DFG
+
23a] Gareth T. Davies, Sebastian Faller, Kai Gellert, Tobias Handirk, Julia

Hesse, Máté Horváth, and Tibor Jager. Security analysis of the whatsapp

end-to-end encrypted backup protocol. Cryptology ePrint Archive,

Paper 2023/843, 2023. https://eprint.iacr.org/2023/843.

[DFG
+
23b] Gareth T. Davies, Sebastian H. Faller, Kai Gellert, Tobias Handirk, Ju-

lia Hesse, Máté Horváth, and Tibor Jager. Security analysis of the

WhatsApp end-to-end encrypted backup protocol. InHelenaHandschuh

and Anna Lysyanskaya, editors, Advances in Cryptology – CRYPTO 2023,

Part IV, volume 14084 of Lecture Notes in Computer Science, pages 330–

361, Santa Barbara, CA, USA, August 20–24, 2023. Springer, Heidelberg,

Germany.

[DHL22] Poulami Das, Julia Hesse, and Anja Lehmann. DPaSE: Distributed

password-authenticated symmetric-key encryption, or how to get many

keys from one password. In Yuji Suga, Kouichi Sakurai, Xuhua Ding, and

Kazue Sako, editors, ASIACCS 22: 17th ACM Symposium on Information,

Computer and Communications Security, pages 682–696, Nagasaki, Japan,

May 30 – June 3, 2022. ACM Press.

[FHH
+
24] Sebastian Faller, Tobias Handirk, Julia Hesse, Máté Horváth, and Anja

Lehmann. Password-protected key retrieval with(out) HSM protection.

In Proceedings of the 2024 ACM SIGSAC Conference on Computer and

Communications Security (CCS ’24), October 14–18, 2024, Salt Lake City,

UT, USA. ACM, 2024.

[GMR06] Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan. A method for

making password-based key exchange resilient to server compromise. In

Cynthia Dwork, editor, Advances in Cryptology – CRYPTO 2006, volume

4117 of Lecture Notes in Computer Science, pages 142–159, Santa Barbara,

CA, USA, August 20–24, 2006. Springer, Heidelberg, Germany.

[JKKX16] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu.

Highly-efficient and composable password-protected secret sharing

(or: How to protect your bitcoin wallet online). In IEEE European Sym-

posium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany,

March 21-24, 2016, pages 276–291. IEEE, 2016.

[JKX18] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: An asym-

metric PAKE protocol secure against pre-computation attacks. In Jes-

per Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology –

EUROCRYPT 2018, Part III, volume 10822 of Lecture Notes in Computer

Science, pages 456–486, Tel Aviv, Israel, April 29 – May 3, 2018. Springer,

Heidelberg, Germany.

[Krs16] Ivan Krstic. Behind the scenes with ios security, 2016. https://

www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf, Accessed:

18.04.2024.

[Lun19] Joshua Lund. Technology preview for secure value recovery, 2019.

https://signal.org/blog/secure-value-recovery/, Accessed: 18.04.2024.

[OSV23] Chris Orsini, Alessandra Scafuro, and Tanner Verber. How to recover a

cryptographic secret from the cloud. Cryptology ePrint Archive, Paper

2023/1308, 2023. https://eprint.iacr.org/2023/1308.

[PST17] Rafael Pass, Elaine Shi, and Florian Tramèr. Formal abstractions for

attested execution secure processors. In Jean-Sébastien Coron and

Jesper Buus Nielsen, editors,Advances in Cryptology – EUROCRYPT 2017,

Part I, volume 10210 of Lecture Notes in Computer Science, pages 260–289,

Paris, France, April 30 – May 4, 2017. Springer, Heidelberg, Germany.

[Sca19] Alessandra Scafuro. Break-glass encryption. In Dongdai Lin and Kazue

Sako, editors, PKC 2019: 22nd International Conference on Theory and

Practice of Public Key Cryptography, Part II, volume 11443 of Lecture

Notes in Computer Science, pages 34–62, Beijing, China, April 14–17,

2019. Springer, Heidelberg, Germany.

[SRW22] Alon Shakevsky, Eyal Ronen, and Avishai Wool. Trust dies in dark-

ness: Shedding light on samsung’s TrustZone keymaster design. In

31st USENIX Security Symposium (USENIX Security 22), pages 251–268,

Boston, MA, August 2022. USENIX Association.

[VBMW
+
18] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,

Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and

Raoul Strackx. Foreshadow: Extracting the keys to the intel {SGX}
kingdom with transient {Out-of-Order} execution. In 27th USENIX

Security Symposium (USENIX Security 18), pages 991–1008, 2018.

14

http://i.blackhat.com/USA-19/Thursday/us-19-Campana-Everybody-Be-Cool-This-Is-A-Robbery.pdf
http://i.blackhat.com/USA-19/Thursday/us-19-Campana-Everybody-Be-Cool-This-Is-A-Robbery.pdf
http://toc.cryptobook.us/
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2023/843
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://signal.org/blog/secure-value-recovery/
https://eprint.iacr.org/2023/1308

Password-Protected Key Retrieval with(out) HSM Protection

[VBPS17] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Sgx-step: A practical

attack framework for precise enclave execution control. In Proceedings

of the 2nd Workshop on System Software for Trusted Execution, pages 1–6,

2017.

[Wal18] Shabsi Walfish. Google cloud key vault service, 2018. https://developer.

android.com/about/versions/pie/security/ckv-whitepaper, Accessed:

18.04.2024.

[WH20] Xunhua Wang and Ben Huson. Robust distributed symmetric-key

encryption. Cryptology ePrint Archive, Report 2020/1001, 2020. https:

//eprint.iacr.org/2020/1001.

[Wha21] WhatsApp. Security of End-to-End Encrypted Backups, Septem-

ber 2021. https://www.whatsapp.com/security/WhatsApp_Security_

Encrypted_Backups_Whitepaper.pdf, Accessed: 18.04.2024.

Appendix

A Comparison with FPPKR of [DFG
+
23b]

In this part, we summarize the changes that we introduced com-

pared to the ideal functionality FPPKR in Figures 5 and 6, defined

by [DFG
+
23b]. We can group the differences into the following

categories.

Extension with HSM corruption.

• Added LeakFile interface to capture leakage of password

files. The functionality keeps records ⟨leaked, IDC, pw, 𝐾, 𝑖⟩
of leaked files (see LS.2), where the counter value 𝑖 distin-

guishes between different leakages that affected the data of

IDC. We note that running Init with a fully corrupt S also

has the effect of leaking the password file (see CIS.4).

• Added OfflineAttack interface to model both offline pass-

word guessing against leaked records, and offline password

guessing against currently and previously stored records

by a fully corrupt HSM.

• Earlier the server had two corruption states, Honest, and

Corrupt, that we extendedwith a third state called FullyCorrupt

to model the case when the server has full control over

the HSM (see the (FullyCorrupt, S) interface). This new
corruption state also requires changes of the Init and Rec

interfaces (see CIS.3 , CIS.4 , and RS.2 , RS.3 respectively).

For ease of expression, we set all ctr values to∞ when the

server gets FullyCorrupt.

• Added key planting in recovery in RS.2 . A FullyCorrupt

server may submit a password guess and key to be planted.

If it submits a correct password guess, the client recovers

the planted key. If it submits a wrong password guess, the

client fails. If S is not FullyCorrupt or it doesn’t submit a

password guess, recovery works as before.

Changes affecting the security of PPKR.

• [DFG
+
23b] artificially weakened the PPKR functionality to

be able to analyze WBP that allows a malicious server to

prevent the erasure of password files when a client re-runs

Init (see boxed code on figs. 5 to 6). We strengthened our

functionality by disabling this attack.

• We identified and fixed a bug in functionality from Davies

et al. [DFG
+
23b]. In particular, WBP and our OPRF-PPKR

always enable resetting the counter in recoveries for files,

stored in initialization by corrupt client or corrupt server.

However, this was not captured in the ideal functionality

of [DFG
+
23b] (see CRC.2 and CRS.3). We fix this problem

by marking the file records either Honest or Malicious

(see CIS.3) and allow for resetting the counter in case of a

file record marked Malicious (see CRS.2).

• In the original PPKR functionality, S receives an output after
invoking the InitC and RecC interfaces (see IC.3 and RC.2

respectively). When dealing with a corrupt client, the sim-

ulator needs early-extract the password to be able to send

the proper input to the functionality. However, early extrac-

tion is impossible in any OPRF-based PPKR protocol that is

instantiated with an OPRF that information-theoretically

hides the PRF input (i.e. the password), such as 2HashDH,

that is used by both WBP and our OPRF-PPKR. The prob-
lem is that we cannot extract the password from the client’s

first OPRFmessage (the security proof in [DFG
+
23b]missed

this problem) so the simulation runs into a problem. We

fix this issue by modifying the functionality so that S does

not get output anymore (see IC.4 and RC.3 respectively),

which is in line with our other modification that sessions

can be initiated by both parties.

Broadening the applicability.

• Allowed arbitrary order of inputs in Init (see IC.2 , IS.2)

and Recovery (see RC.1 , RS.1), instead of sessions always

being initiated by the client (see IS.1 and IR.2 respectively).

Syntactical changes.

• Integrated former DoS interfaces called

CompleteInitC-DoS, CompleteInitS-DoS,

CompleteRecC-DoS and CompleteRecS-DoS into

adversarial complete interfaces (see CIC.3 , CIS.2 , CRC.2

and CRS.2 respectively) via 𝑏𝐶 , 𝑏𝑆 bits indicating whether

a DoS attack is successful (1) or not (0).

15

https://developer.android.com/about/versions/pie/security/ckv-whitepaper
https://developer.android.com/about/versions/pie/security/ckv-whitepaper
https://eprint.iacr.org/2020/1001
https://eprint.iacr.org/2020/1001
https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf

Sebastian Faller, Tobias Handirk, Julia Hesse, Máté Horváth, & Anja Lehmann

Recovery Phase

On input (RecC, sid, IDC, pw′) from IDC (or A if IDC is corrupt):

RC.1 Record ⟨RecC, sid, IDC, pw′⟩, overwriting any existing record

⟨RecC, sid, IDC, ∗⟩ // Storing IDC’s current init state; a client can only

be in one recovery session.

RC.2 Send (RecC, sid, IDC) to A and S. // S learns which clients started

recovery, with the guarantee that attempts by honest clients cannot

be faked.

On input (RecS, sid, IDC, IDC
∗) from S (or A if S is corrupt): // Server agrees to

assist IDC in recovery. If S is corrupt, A can reroute the recovery to a different

IDC
∗
. Note that IDC

∗
does not have to be the identity of an existing client and

can be an arbitrary identity

RS.1 If S is honest, set IDC
′ ← IDC, otherwise set IDC

′ ← IDC
∗

RS.2 Retrieve record ⟨RecC, sid, IDC, [pw′]⟩ // Continue only if IDC started

recovery already

RS.3 If there exists no record ⟨File, IDC
′, sid, [pw], [𝐾]⟩ marked Stored,

send (RecRes, aid, Fail) to S (or A if S is corrupt). Else retrieve the

record. // The currently stored 𝐾 and pw (for IDC
′
) are used. If IDC

′

re-inits afterwards, it has no effect on this recovery session.

RS.4 If txsid [IDC
′] = 0, delete record ⟨File, sid, IDC

′, pw, 𝐾⟩ marked

Stored and send (DelRec, sid, IDC
′) to S and A Else continue.

RS.5 Set txsid [IDC
′] ← txsid [IDC

′] − 1

RS.6 Append pw and 𝐾 to record ⟨RecC, sid, IDC, pw′⟩, overwriting any

existing record ⟨RecC, sid, IDC, ∗, ∗, ∗⟩ // The recovery session of IDC
is used

RS.7 Send (RecS, sid, IDC
′, pw

?

= pw′) to A // A ppKR protocol may not

hide whether recovery was successful or not

On input (CompleteRecC, sid, IDC) from A:

CRC.1 Retrieve record ⟨RecC, sid, IDC, [pw′], [pw], [𝐾]⟩. If record is marked

recovered, delete it. Otherwise, mark it recovered. // Ensures that

record can be retrieved twice before deletion.

CRC.2 Determine the output as follows:

(1) If pw = pw′ then set 𝐾 ′ ← 𝐾 // Recovering the key!

(2) In all other cases, set 𝐾 ′ ← Fail

CRC.3 Send (RecRes, sid, 𝐾 ′) to IDC (or A if IDC is corrupt).

On input (CompleteRecS, sid, IDC) from A// Server finishes recovery session

by learning whether the password was correct or not:

CRS.1 Retrieve record ⟨RecC, sid, IDC, [pw], [pw′], [𝐾]⟩. If record is marked

recovered, delete it. Otherwise, mark it recovered. // Ensures that

record can be retrieved twice before deletion.

CRS.2 If pw = pw′, set txsid [IDC] ← 10 and send (RecRes, sid, IDC, Succ)
to S.

CRS.3 If pw ≠ pw′, then send (RecRes, sid, IDC, Fail) to S (or A if S is

corrupt).

Attacks on Recovery Phase

On input (CompleteRecC-DoS, sid, IDC) from A // Network attacker or mali-

cious server can always make the client fail:

CRCD.1 Retrieve record ⟨RecC, sid, IDC, ∗, ∗, ∗⟩ and delete it.

CRCD.2 Send (RecRes, sid, Fail) to IDC (or A if IDC is corrupt).

On input (CompleteRecS-DoS, sid, IDC) from A: // Server finishes with failure.

In particular, it never learns if the password was correct

CRSC.1 Retrieve record ⟨RecC, sid, IDC, ∗, ∗, ∗⟩ and delete it.

CRSD.2 Output (RecRes, sid, IDC, Fail) to S (or A if S is corrupt).

Figure 6: Ideal functionality FPPKR, original version from

[DFG
+
23b], cont’d (recovery interfaces). Boxed code reflects

an attack on WBP.

FPPKR is parameterized with a security parameter 𝜆. FPPKR talks to a server S
where S is encoded in sid. FPPKR also talks to the adversary A, and arbitrary

clients IDC. If the functionality tries to retrieve a record that does not exist, it

ignores the incoming message. We write txsid [·] for a list of counters.

Offline attacks

On input (MaliciousInit, sid, IDC, pw∗, 𝐾∗) from A: // A corrupt server can

impersonate an either honest or corrupt IDC and initialize on his behalf.

MI.1 If S is honest ignore this input.

MI.2 Record ⟨File, sid, IDC, pw∗, 𝐾∗⟩, overwriting any existing record

⟨File, sid, IDC, ∗, ∗⟩. Set txsid [IDC] ← 10

On input (MaliciousRec, sid, IDC, pw∗) fromA: // Attacking an honest client’s

stored key: bury the key after 10 subsequent wrong password guesses.

MR.1 If S is honest ignore this input. // Server needs to be corrupt to mount

an offline attack.

MR.2 Retrieve record ⟨File, sid, IDC, [pw], [𝐾]⟩ marked Stored.

MR.3 If txsid [IDC] = 0, delete record ⟨File, sid, IDC, pw, 𝐾⟩ and output

(DelRec, sid, IDC) to A // The key is buried if zero guesses remain.

MR.4 If pw∗ = pw, set txsid [IDC] ← 10 and output (sid, 𝐾) toA. Otherwise,

set txsid [IDC] ← txsid [IDC] − 1 an output (sid, Fail) to A
Initialization phase

On input (InitC, sid, IDC, pw) from IDC (orA if IDC is corrupt): // Client always

starts initialization

IC.1 Choose 𝐾
$←− {0, 1}𝜆

IC.2 Record ⟨InitC, sid, IDC, pw, 𝐾⟩, overwriting any existing record

⟨InitC, sid, IDC, ∗, ∗⟩ // Storing IDC’s current init state; a client can

only be in one initialization session

IC.3 Send (InitC, sid, IDC) to A and to S

On input (InitS, sid, IDC, IDC
∗) from S (or A if S is corrupt): // Server agrees

to assist IDC in initialization. If S is corrupt, A can reroute the initialization to

a different IDC
∗
. Note that IDC

∗
does not have to be the identity of an existing

client and can be an arbitrary identity

IS.1 Retrieve ⟨InitC, sid, IDC, [pw], [𝐾]⟩ // Continue only if IDC started

initialization already

IS.2 If S is honest, record ⟨File, sid, IDC, pw, 𝐾⟩, overwriting any existing
record ⟨File, sid, IDC, ∗, ∗⟩, and send (InitS, sid, IDC) to A // Storing

S’s current init state; the server can only be in one initialization

session. Invariant: There is only one key stored

IS.3 Otherwise, record ⟨File, sid, IDC
∗, pw, 𝐾⟩, overwriting any existing

record ⟨File, sid, IDC
∗, ∗, ∗⟩.

On input (CompleteInitC, sid, IDC) from A: // Client completes the protocol

and outputs a key

CIC.1 Retrieve record ⟨InitC, sid, IDC, ∗, [𝐾]⟩ and delete it

CIC.2 Output (InitRes, sid, 𝐾) to IDC (or A if IDC is corrupt)

On input (CompleteInitS, sid, IDC) from A: // Server concludes initialization

with file storage

CIS.1 Retrieve record ⟨File, sid, IDC, ∗, ∗⟩ not marked Stored and mark it

Stored // Note: there is only one such record thanks to overwriting

in InitS interface. This becomes the stored key now!

CIS.2 Set txsid [IDC] ← 10

CIS.3 Send (InitRes, sid, IDC, Succ) to S (or A if S is corrupt)

Attacks on Initialization Phase

On input (CompleteInitC-DoS, sid, IDC) from A: // DoS attack against IDC,

who concludes the initialization session with failure.

CICD.1 Retrieve record ⟨InitC, sid, IDC, ∗, ∗⟩ and delete it

CICD.2 Output (InitRes, sid, Fail) to IDC (or A if IDC is corrupt)

On input (CompleteInitS-DoS, sid, IDC) from A: // DoS attack against the

server, such that it cannot store a file

CISD.1 Delete any record ⟨File, sid, IDC, ∗, ∗⟩ // Server’s state in current ini-

tialization session no longer needed

CISD.2 Send (InitRes, sid, IDC, Fail) to S (or A if S is corrupt)

Figure 5: Ideal functionality FPPKR for password-protected

key retrieval, offline attacks and initialization interfaces,

original version from [DFG
+
23b]. Boxed code reflects an at-

tack on WBP.

16

Password-Protected Key Retrieval with(out) HSM Protection

Simulator SimOPRF (sid, 𝐻1, 𝐻2, 𝑁)
The simulator obtains as input a session identifier sid indicating which

(multi-key) FOPRF instance it communicates with, the description of two

hash functions 𝐻2 : {0, 1}∗ × G → {0, 1}𝑙 , 𝐻1 : {0, 1}∗ → G with 𝑙 ∈ N
and G = ⟨𝑔⟩ a group of order 𝑞, and a number 𝑁 ∈ N.

(1) Pick and record 𝑁 random numbers 𝑟1, . . ., 𝑟𝑁 ∈ Z𝑞 and set 𝑔1 ←
𝑔𝑟1 , . . ., 𝑔𝑁 ← 𝑔𝑟𝑁 . Set counter 𝐽 ← 1 and 𝐼 ← 1.

(2) On (Init, sid, kid, S) from FOPRF, record ⟨𝐹, S, kid, 𝑘, 𝑧 = 𝑔𝑘 ⟩ for
𝑘

$←− Z𝑞 and record ⟨S, kid⟩.
(3) On (Compromise, sid, kid, S) from A, retrieve ⟨S, kid⟩ and de-

clare it Compromised. Retrieve tuple ⟨𝐹, S, ∗, kid, 𝑘, ∗⟩, send

(Compromise, sid, kid) to FOPRF, and send (sid, kid, 𝑘) to A.

(4) Every time when there is a fresh query 𝑥 to 𝐻1 (·), answer it with
𝑔𝐽 and record ⟨𝐻1, 𝑥, 𝑟 𝐽 ⟩. Set 𝐽 ← 𝐽 + 1.

(5) Upon receiving (Eval, sid, kid, ssid,C, S) from FOPRF, send

(sid, kid, ssid, 𝑔𝐽) to A as C’s message to S and record

⟨kid, ssid,C, 𝑟 𝐽 ⟩. Set 𝐽 ← 𝐽 + 1.

(6) Upon receiving (SndrComplete, sid, kid, ssid) from FOPRF and

(sid, kid, ssid, 𝑎) from A as some client’s C message to some hon-

est server S:
• If there is a record ⟨𝐹, S, kid, 𝑘, ∗⟩, then send (sid, ssid, 𝑎𝑘) as

the response of S for client C to A.

(7) Upon receiving (sid, ssid, 𝑏) with 𝑏 ∈ G from A as some server’s

S′ message to a client C, retrieve record ⟨∗, ssid,C, 𝑟 ⟩ and 𝑔 𝑗 sent
in step 5 for ssid,C.
• [A delivers honestly.] If there is a record ⟨𝐹, S, kid, 𝑘, ∗⟩ with
𝑏 = 𝑔𝑘

𝑗
and record ⟨S, kid⟩ is not marked Compromised, send

(RcvComplete, sid, kid, ssid,C, S) to FOPRF.
• [A plays server using non-fresh adversarial key.] If there is

a record ⟨𝑀,A, 𝑖,⊥, 𝑏1/𝑟 ⟩, send (SndrComplete, sid, 𝑖, ssid)
and (RcvComplete, sid, 𝑖, ssid,C,A) to FOPRF.

• [A plays server with compromised key.] If there is a

record ⟨𝐹, S, kid, ∗, 𝑏1/𝑟 ⟩ and record ⟨S, kid⟩ is marked

Compromised, send (SndrComplete, sid, kid, ssid) and

(RcvComplete, sid, kid, ssid,C, S) to FOPRF.
• [A uses fresh key.] If there is no such record

⟨𝑇, ∗, ∗, ∗, 𝑏1/𝑟 ⟩, set 𝑖 ← 𝐼 , record ⟨𝑀,A, 𝑖,⊥, 𝑏1/𝑟 ⟩,
and set 𝐼 + +. Send (SndrComplete, sid, 𝑖, ssid) and

(RcvComplete, sid, 𝑖, ssid,C,A) to FOPRF. // 𝑏1/𝑟 = 𝑔
¯𝑘

serves as identifier of a malicious key
¯𝑘 not known to

SimOPRF.

(8) Every time when there is a fresh query (𝑥,𝑢) to 𝐻2 (·, ·), retrieve
record ⟨𝐻1, 𝑥, 𝑟 ⟩. If there is no such record, then pick 𝐻2 (𝑥,𝑢) $←−
{0, 1}𝑙 . Otherwise, do the following:

• [𝑢 = 𝐻 (𝑥)𝑘 for a server’s key.] If some record ⟨𝐹, S, kid, 𝑘, 𝑧⟩
satisfies 𝑧 = 𝑢1/𝑟

do:

– [Compute PRF value for 𝑘, 𝑥 offline.]

If S is Compromised or corrupt, send

(OfflineEval, sid, kid, S, 𝑥) to FOPRF, and on response
(OfflineEval, sid, kid, S, 𝑥,𝑦), set 𝐻2 (𝑥,𝑢) ← 𝑦.

– [Compute PRF value for 𝑘, 𝑥 online, relying on a

ticket tx[S, kid].] If S is not Compromised, pick a fresh
identifier ssid∗ and send (Eval, sid, kid, ssid∗,⊥, 𝑥)
and (RcvComplete, sid, kid, ssid∗,A, S) to FOPRF. If
FOPRF ignores the last message then abort. Else, on

FOPRF’s response (Eval, sid, ssid∗, 𝑦), set 𝐻2 (𝑥,𝑢) ←
𝑦.

• [𝑢 = 𝐻 (𝑥)𝑘 for an adversarial 𝑘 .] Else, if there is a tu-

ple ⟨𝑀,A, 𝑖,⊥, 𝑢1/𝑟 ⟩ then send (OfflineEval, sid, 𝑖,A, 𝑥)
to FOPRF, and on response (OfflineEval, sid, 𝑖,A, 𝑥,𝑦) set
𝐻2 (𝑥,𝑢) ← 𝑦

• [Fresh adversarial key.] Else, record ⟨𝑀,A, 𝑖,⊥, 𝑢1/𝑟 ⟩ for 𝑖 = 𝐼 ,
send (OfflineEval, sid, 𝑖,A, 𝑥) to FOPRF, and on response

(OfflineEval, sid, 𝑖,A, 𝑥,𝑦) set 𝐻2 (𝑥,𝑢) ← 𝑦 and 𝐼 + +.

Figure 8: The simulator that demonstrates that “multi-key”

2HashDH UC-realizes our “multi-key“ FOPRF, restated from

[DFG
+
23b].

Functionality F ℓOPRF
The functionality is parametrized by a PRF output-length ℓ . For every

kid, 𝑥 , value 𝐹sid,S,kid (𝑥) is initially undefined, and if an undefined value

𝐹sid,S,kid (𝑥) is referenced then FOPRF assigns 𝐹sid,S,kid (𝑥) $←− {0, 1}ℓ .
Initialization:

On (Init, sid, kid) from S, if this is the first Init message for kid, set
tx[S, kid] = 0, store ⟨S, kid⟩ and send (Init, sid, kid, S) to A. Ignore all

subsequent Init messages for kid from S. // Unique key identifiers per

server.

Server Compromise:

On (Compromise, sid, kid, S) from A, mark ⟨S, kid⟩ as Compromised. If
S is corrupted, all key identifiers kid with records ⟨S, kid⟩ are marked as

Compromised. Note: Message (Compromise, sid, kid, S) requires permission

from the environment. // Key-wise compromise is possible.

Offline Evaluation:

On (OfflineEval, sid, kid∗, S, 𝑥) from A, send

(OfflineEval, sid, kid∗, S, 𝑥, 𝐹sid,S,kid (𝑥)) to A if any of the follow-

ing hold: (i) ⟨S, kid∗⟩ is marked Compromised, (ii) kid∗ = kid for a kid
previously received via the Init interface from S (iii) kid∗ ≠ kid for all

values kid previously received via the Init interface from S.

Evaluation:

• On (Eval, sid, kid, ssid, S, 𝑥) from P ∈ {U,A}, record

⟨kid, ssid, P, 𝑥⟩ and send (Eval, sid, kid, ssid, P, S) to A.

• On (SndrComplete, sid, kid′, ssid) from P ∈ {S′,A}:
– Ignore the message if P = S′ is honest and there is no record

⟨S′, kid′⟩. // Honest servers do not use unknown keys.

– If P = A then record ⟨A, kid′⟩ (if it does not exist already) //
Adversary can play server with its own keys.

– Increment tx[S′, kid′].
– Send (SndrComplete, sid, kid′, ssid, S′) to A.

• On (RcvComplete, sid, kid∗, ssid, P, S∗) from A:

– Ignore this message if there is no record ⟨∗, ssid, P, 𝑥⟩ or if
tx[S∗, kid∗] = 0.

– Decrement tx[S∗, kid∗].
– Send (EvalOut, sid, ssid, 𝐹sid,S∗,kid∗ (𝑥)) to P.

Figure 7: Amulti-key version of the ideal functionality FOPRF
[DFG

+
23b].

B The 2HashDH simulator

We restate a result of Davies et al. [DFG
+
23b] about the multi-

session security of the 2HashDH OPRF protocol of Jarecki et al

[JKKX16]. The security is proven under the following assumption.

Definition 4 ((𝑁,𝑄) one-more DH assumption [JKKX16]). The

(𝑁,𝑄) one-more Diffie–Hellman (DH) assumption holds in a cyclic

group G = ⟨𝑔⟩ if for any polynomial-time adversary A,

Adv(𝑁,𝑄)-OMDH
A,G (𝜆) B

Pr

𝑘
$←−Z𝑞 ,𝑔𝑖 $←−G

[
A (·)

𝑘 ,DDH(·,·,·,·) (𝑔,𝑔𝑘 , 𝑔1, . . ., 𝑔𝑁) = 𝑆
]

is negligible, where 𝑆 = {(𝑔 𝑗𝑠 , 𝑔𝑘𝑗𝑠) | 𝑠 = 1, . . ., 𝑄 + 1} with 𝑗𝑠 ∈ [𝑁]
for 𝑠 ∈ [𝑄 + 1] and

• (·)𝑘 is an exponentiation oracle that A can query 𝑄 times

and on input ℎ ∈ G it returns ℎ𝑘 ;

17

Sebastian Faller, Tobias Handirk, Julia Hesse, Máté Horváth, & Anja Lehmann

• DDH(·, ·, ·, ·) is a Diffie–Hellman oracle that takes as input

(𝑔,𝑔𝑘 , 𝑔𝑥 , 𝑔𝑦) with 𝑔 ∈ G and returns 1 if 𝑦 = 𝑘𝑥 and 0

otherwise.

Theorem 4. Let 𝐻1 : {0, 1}∗ → G be a hash function into a group

of order 𝑞 ∈ N, 𝐻2 : {0, 1}∗ × G → {0, 1}ℓ with ℓ ∈ N be another

hash function, and let 𝑘
$←− Z𝑞 . Suppose the (𝑁,𝑄) one-more DH

assumption holds for G, where 𝑄 B 𝑞𝐸 is the maximum number of

(Eval, ∗, kid, S, ∗) queries over all tuples (kid, S) made by the envi-

ronmentZ, 𝑁 B 𝑞𝐸 + 𝑞𝐻 , and 𝑞𝐻 is the total number of 𝐻1 queries

made by Z. Then the “multi-key” protocol 2HashDH UC-realizes

the “multi-key” functionality FOPRF of Figure 7, with hash functions

𝐻1, 𝐻2 modeled as random oracles.

More precisely, for any adversary against 2HashDH, there is a

simulator SimOPRF that interacts with FOPRF and produces a view

that no environmentZ can distinguish with advantage better than

Pr[Fail] ≤ 𝑞𝐼Adv
(𝑞𝐸+𝑞𝐻 ,𝑞𝐸)-OMDH
A,G (𝜆) + (𝑞𝐸 + 𝑞𝐻)2/𝑞,

where 𝑞𝐼 is the number of honestly initialized keys in the system.

The full proof can be found in [DFG
+
23b]. Because in our work

we will make use of the simulator of this statement, we restate it in

Figure 8.

18

Password-Protected Key Retrieval with(out) HSM Protection

Functionality FOPRF-PPKR
HSM

The functionality initially computes (sk, pk) $←− Sig.KeyGen(1𝜆)
On (GetPK, ssid) from anyone:

• Output pk.

On (Init, ssid, 𝑎, IDC) from S:
• (skEnc, pkEnc) ← PKE.Gen(1𝜆)
• 𝑘OPRF $←− Z𝑞 , 𝑏 ← 𝑎𝑘OPRF

• send (ssid, 𝑏, IDC, pkEnc) to S

On (ssid,𝐶) from S:
• (ssid′, pkC, 𝑐) ← PKE.Dec(skEnc,𝐶)
• if ssid′ ≠ ssid: 𝑜𝑢𝑡 ← Fail

else:

store ⟨File, IDC, pkC, 𝑐, 𝑘OPRF, ctr← 10⟩, 𝑜𝑢𝑡 ← Succ

• send (InitRes, ssid, 𝑜𝑢𝑡) to S

On (Rec, ssid, 𝑎′, IDC) from S:
• Retrieve ⟨File, IDC, [pkC], [𝑐], [𝑘OPRF], [ctr]⟩
• if no record can be found: send (RecRes, ssid, Fail) to S

else:

if ctr = 0: delete ⟨File, IDC, pkC, 𝑐, 𝑘OPRF, ctr⟩
else:

set ctr in the record to ctr − 1, 𝑏′ ← 𝑎′𝑘OPRF

send (ssid, 𝑏′, 𝑐, IDC) to S

On (ssid, 𝜎) from S:
• if Sig.Vfy(pkC, (𝑎′, IDC, ssid, 𝑏′, 𝑐), 𝜎): set counter in the

record to ctr← 10. Set 𝑜𝑢𝑡 ← Succ

else:

𝑜𝑢𝑡 ← Fail

• send (RecRes, ssid, 𝑜𝑢𝑡) to S

On (LeakFile, sid) from A:

• Set 𝐿 ← ∅
• For every record ⟨File, [IDC], [pkC], [𝑐], [𝑘OPRF], [ctr]⟩

append (IDC, pkC, 𝑐, 𝑘OPRF, ctr) to IDC.
• Output 𝐿 to A.

On (FullyCorrupt, sid) from A:

• Run (LeakFile, sid) to obtain 𝐿.

• Output 𝐿 and sk.

Figure 10: The ideal functionality FOPRF-PPKR
HSM .

Functionality F encPw
HSM / F encPw+

HSM

The functionality initially computes (skEnc, pkEnc)
$←− KeyGen(1𝜆)

and stores ⟨skEnc⟩.
On (Init,GetPK, ssid) from S:

• (skEnc, pkEnc)
$←− PKE.Gen(1𝜆)

• Store ⟨ssid, skEnc⟩.
• Send (Init, ssid, pkEnc) to S.

On (Rec,GetPK, ssid) from S:
• (skEnc, pkEnc)

$←− PKE.Gen(1𝜆)
• Store ⟨ssid, skEnc⟩.
• Send (Rec, ssid, pkEnc) to S.

On (Init, ssid,𝐶, IDC) from S:
• Retrieve ⟨ssid , [skEnc]⟩
• (pw, 𝐾, IDC

′, ssid′) ← PKE.Dec(skEnc,𝐶)
• If IDC

′ ≠ IDC or ssid′ ≠ ssid send (ssid, Fail) to S. Else
continue.

• 𝑠1, 𝑠2
$←− {0, 1}𝜆

• ℎ ← 𝐻 (𝑠1 , pw)
• 𝑐 ← 𝐾 ⊕𝐻 (𝑠2, pw)
• store ⟨File, IDC, 𝑐, ℎ, 𝑠1, 𝑠2,ctr← 10⟩
• Delete record ⟨ssid, skEnc⟩

On (Rec, ssid,𝐶, IDC) from S:
• Retrieve ⟨ssid , skEnc⟩.
• (𝑘𝑠𝑦𝑚, pw′, IDC

′, ssid′) ← PKE.Dec(sk,𝐶)
• If IDC

′ ≠ IDC or ssid′ ≠ ssid: set 𝑟 ← Fail. Else:

• Retrieve ⟨File, IDC, [𝑐], [ℎ] , [𝑠1], [𝑠2] , [ctr]⟩
• If ctr = 0: delete ⟨File, IDC, 𝑐, ℎ, 𝑠1, 𝑠2,ctr⟩ and set 𝑟 ←

DelRec. Else:

• set ctr in the record to ctr − 1

• If ℎ ≠ 𝐻 (𝑠1,pw′) : set 𝑟 ← Fail. Else:

• set ctr in the record to 10

• 𝐶′ $←− SE.Enc(𝑘𝑠𝑦𝑚, 𝑐 ⊕𝐻 (𝑠2, pw)). Set 𝑟 ← 𝐶′.
• In any case: Send (ssid, 𝑟) to S

On (LeakFile) from A:

• Set 𝐿 ← ∅
• For all ⟨File, [IDC], [𝑐], [ℎ], [𝑠1], [𝑠2], [ctr]⟩ append

(IDC, 𝑐, ℎ, 𝑠1, 𝑠2, ctr) to 𝐿.
• Return 𝐿.

Figure 9: The ideal functionalities F encPw
HSM and F encPw+

HSM . The

code in gray boxes is only executed in F encPw+
HSM .

C HSM Functionalities

We define the HSM functionalities used by our protocols in Figure 9

and Figure 10.

19

Sebastian Faller, Tobias Handirk, Julia Hesse, Máté Horváth, & Anja Lehmann

D Full proofs

In this section, we render the full proofs for Theorems 1 to 3.

D.1 Proof of Theorem 1

Proof. We construct a sequence of hybrid games G0 to G14 where

we gradually change the real-world execution of the protocol𝜋encPw

(interacting with the hybrid functionality F encPw
HSM) to reach the

ideal-world execution, where the environment interacts with the

simulator from Figures 11 to 12 and the ideal functionality FPPKR.
We write Pr[G𝑖] to denote the probability that the environment

outputs 1 in the hybrid game G𝑖 .
Game G0: Real world. This is the real world.

Game G1: Create simulator. In this game we create two

new entities called the ideal functionality F and the

simulator Sim. Initially, F just forwards the input of

the dummy parties to Sim and outputs what Sim in-

structs it to output. In particular, F has interfaces

(InitC, ssid, pw), (InitS, ssid, IDC),(RecC, ssid, pw′), and
(RecS, ssid, IDC, pw∗, 𝐾∗, 𝑖) that just forward the input to

Sim. The simulator executes the code of all honest parties of

the protocol internally on the input that it is provided by F
and it internally runs the code of the hybrid functionality

F encPw
HSM . Note that these are just syntactical changes and

the protocol is still executed as in the real world. We have

Pr[G1] = Pr[G0] .
Game G2: Switch ciphertext in initialization. In this game,

we change how Sim computes the ciphertext 𝐶 produced

by honest clients during initialization. Instead of comput-

ing 𝐶
$←− PKE.Enc(pkEnc, (pw, 𝐾, IDC, ssid)), the simulator

computes𝐶
$←− PKE.Enc(pkEnc,⊥), where ⊥ is an arbitrary

string that is used nowhere else. Nonetheless, Sim still re-

ceives the secret input pw from F and chooses𝐾 ← {0, 1}𝜆 ,
which it stores in a record ⟨Init, ssid, IDC,𝐶, pw, 𝐾⟩ (see
I.2). Note that storing pw and 𝐾 in the record is only a

temporary change and we remove this again in G11.

Further, we change how Sim acts when receiving a cipher-

text 𝐶 from an honest IDC or from a corrupt server that

honestly delivers𝐶 from an honest IDC to F encPw
HSM in an ini-

tialization. In more detail, Sim keeps track of all ciphertexts

that it computes for honest IDC as𝐶
$←− PKE.Enc(pkEnc,⊥)

in the ⟨Init, ssid, IDC,𝐶, pw, 𝐾⟩ records.When Sim receives

a message (Init, ssid,𝐶, IDC), then Sim tries to retrieve

⟨Init, ssid, IDC,𝐶, [pw], [𝐾]⟩, i.e., it checks if 𝐶 was com-

puted by Sim for the honest client IDC as an encryp-

tion of ⊥ in subsession ssid. If that is the case, then Sim

does not use skEnc to decrypt 𝐶 (that would yield ⊥ any-

ways) but instead stores a record ⟨File, IDC, pw, 𝐾, 10⟩ and
sends (InitRes, ssid, Succ) to the server (see IC.2 and IC.6).

Again, creating this record is only a temporary change

that we remove again in games G8, G11 and G14. If 𝐶 was

not computed by Sim, indicated by the fact that no record

⟨Init, ssid, IDC,𝐶, ∗, ∗⟩ exists, then Sim continues as in G1.

Note that this may lead to Sim decrypting 𝐶 to ⊥, e.g., if
A replays some 𝐶 that was computed by Sim on behalf of

some honest IDC. However, in that case, in G1, Sim would

output Fail to S as there would be a mismatch between

IDC and ID′C or ssid and ssid′. Thus, we let Sim output Fail

to S if 𝐶 is decrypted to ⊥ (see IC.3 (b) and IC.7).

It is easy to see that the outputs of the server and the

client are just as in G1. Hence, the only difference is the

distribution of 𝐶 . If Z can distinguish G2 from G1, then

we can construct an adversary B1 against the IND-CCA
security of PKE as follows: First, B1 does not compute

(skEnc, pkEnc) itself but uses the pk∗ provided by its chal-

lenger. Let 𝑞Init ∈ N be the number of initializations. We

construct a sequence of games G
(0)
1
, . . .,G

(𝑞Init)
1

, where in

G
(𝑖)
1

the first 𝑖 ciphertexts are computed as encryptions of

⊥ if simulated for an honest IDC and the remaining cipher-

texts are encrypted as in G1 (except that pk∗ is used). We

have G1 = G
(0)
1

and G2 = G
(𝑞Init)
1

. Because Z can distin-

guish G1 from G2, there must be an index 𝑖∗ ∈ [𝑞Init] such
that Z has a non-negligible advantage in distinguishing

G
(𝑖∗)
1

and G
(𝑖∗−1)
1

. Now, in the 𝑖∗-th initialization the re-

duction B1 gives𝑚0 B (𝑘𝑠𝑦𝑚, pw, IDC, ssid) and𝑚1 B ⊥
to the challenger and uses the returned 𝐶∗ as ciphertext
for the 𝑖∗-th initialization. Additionally, whenever B1 re-

ceives a message (Init, ssid,𝐶∗, IDC) from A to F encPw
HSM

on behalf of a corrupt server such that there is no record

⟨Init, ssid,𝐶∗, IDC, [pw], [𝐾]⟩, then B1 uses its decryption

oracle to decrypt𝐶∗. The oracle answerswith (pw∗, 𝐾∗, IDC
∗, ssid∗)

and B1 then proceeds as in G1.

Now, if𝐶∗ encrypts𝑚0, the game is distributed as inG
(𝑖∗−1)
1

and if it encrypts𝑚1, then the game is distributed as inG
(𝑖∗)
1

.

We get

|Pr[G2] − Pr[G1] | ≤ 𝑞InitAdvIND-CCA
PKE,B1

(𝜆).
Game G3: Inform F of malicious initializations. In this

game, we add the MaliciousInit interface as in FPPKR
to F . We also let Sim use MaliciousInit to make F cre-

ate records for malicious initializations. More precisely,

when A instructs a corrupted server to send a message

(InitC, ssid,𝐶∗, IDC) to F encPw
HSM , where 𝐶∗ was never sent

by an honest client before, then Sim first proceeds just as

in G2, i.e., it executes the code of F encPw
HSM , but additionally

gives input (MaliciousInit, ssid, IDC, pw∗, 𝐾∗) to F (see

IC.7).

Note that on receiving the MaliciousInit input F only

responds to Sim. Therefore,Z’s view did not change and

we get

Pr[G3] = Pr[G2] .
Game G4: Provide F with input of corrupted clients in

initialization. In this game we change Sim such that

when it receives a message (Init, ssid,𝐶, IDC) from a cor-

rupted IDC to an honest S, in addition to decrypting

(pw, 𝐾, ID′C, ssid
′), checking IDC = ID′C, ssid = ssid′

and recording ⟨File, IDC, pw, 𝐾, 10⟩, it also gives input

(InitC, ssid, pw) to F (see IC.3 (a)). Since a corrupted IDC
may replay ciphertexts 𝐶 that were computed by Sim as an

encryption of ⊥, Sim sets pw = ⊥ for its InitC query if 𝐶

decrypts to ⊥. This cannot modify the view of Z as Sim

outputs Fail to the corrupt client if such a replay happens

20

Password-Protected Key Retrieval with(out) HSM Protection

Initially, compute (skEnc, pkEnc) ← KeyGen(1𝜆) and store record ⟨sid, skEnc, pkEnc⟩. Wait for X means that Sim
encPw

does not proceed to

the next instruction before receiving X and meanwhile gives back activation toA. Once it receives X, it first proceeds with the instructions

on input X and then continues at the instruction, where it waited for X. If a record cannot be retrieved, the query is ignored. For brevity

we omit session identifier sid from all inputs, outputs, and records.

On (InitC, ssid, IDC) from FPPKR:
I.1 Retrieve record ⟨sid, ∗, [pkEnc]⟩ (G1)

I.2 Compute 𝐶
$←− PKE.Enc(pkEnc,⊥) and record ⟨Init, ssid, IDC,𝐶⟩ (G2). Send (Init, ssid,𝐶, IDC) to S on behalf of IDC (G1).

On (InitS, ssid, IDC) from FPPKR:
I.3 If S is honest, wait for (Init, ssid,𝐶, IDC) from IDC to S. (G1)

On (Init, ssid,𝐶, IDC) from A to S on behalf of IDC:

IC.1 Wait for (InitS, ssid, IDC) from FPPKR. (G1)

IC.2 If IDC is honest, retrieve ⟨Init, ssid, IDC,𝐶⟩. (G2)

IC.3 If IDC is corrupt:

(a) Retrieve ⟨sid, [skEnc], ∗⟩, compute (pw, 𝐾, ID′C, ssid
′) ← PKE.Dec(skEnc,𝐶) (G1) and give input (InitC, ssid, pw) to FPPKR

on behalf of IDC, where pw = ⊥ if the decryption resulted in ⊥. On response (InitC, ssid, IDC) continue below. (G4)

(b) If the decryption resulted in ⊥ (G2), IDC ≠ ID′C, or ssid ≠ ssid′, send (InitRes, ssid, Fail) to IDC (G1) and

(CompleteInitS, ssid, 0) to FPPKR (G5) // 0 meaning fail.

(c) Otherwise, store ⟨File, IDC, 𝐾⟩, overwriting any existing ⟨File, IDC, ∗⟩. (G1) // No need to store pw and ctr, as FPPKR takes

care of this.

IC.4 If a record ⟨Init, ssid, IDC,𝐶⟩ exists, store record ⟨File, IDC, ctr← 10⟩. (G1) // Sim must keep counter for DelRec in honest IDC,

honest server case.

IC.5 Send (InitRes, ssid, Succ) to IDC (G1) and give input (CompleteInitS, ssid, 1) to FPPKR (G5) // 1 meaning no fail.

On (Init, ssid,𝐶, IDC) from A to F encPw
HSM on behalf of corrupt S:

IC.6 If there is a record ⟨Init, ssid, IDC,𝐶⟩ (G2), then give input (InitS, ssid, IDC) to FPPKR (G5). // Honest 𝐶 from IDC is used

On response (InitS, ssid, IDC), send (InitRes, ssid, Succ) to S (G2). Send (CompleteInitS, ssid, 1) to FPPKR (G5). // 𝑏𝑆 = 1 for

successful Init.

IC.7 Else if there is no such record, then retrieve record ⟨sid, [skEnc], ∗⟩ and compute (pw∗, 𝐾∗, ID∗C, ssid
∗) ← Dec(skEnc,𝐶) (G1).

If the decryption results in ⊥ (G2), ID∗C ≠ IDC, or ssid∗ ≠ ssid, then return (RecRes, ssid, Fail) to S (G1). Else give input

(MaliciousInit, IDC, pw∗, 𝐾∗) to FHSM (G3), delete any existing record ⟨File, IDC, ∗⟩ (G12), and send (InitRes, ssid, Succ) to S
(G1). // Maliciously chosen key and pwd.

On (InitRes, ssid, 𝑜𝑢𝑡) from A to IDC on behalf of S:
IO.1 If (InitRes, ssid, 𝑜𝑢𝑡) was never output by SimencPw

on behalf of S or F encPw
HSM (G10), send (CompleteInitC, ssid, 0) to FPPKR (G11).

IO.2 Else, give input (CompleteInitC, ssid, 1) to FPPKR (G11) // 1 meaning no success.

Figure 11: The initialization part of the simulator Sim
encPw

for the protocol 𝜋encPw.

(cf. IC.3 (b)). Note that the InitC interface of F is still a

dummy interface, so this change does not alter the view of

Z, so

Pr[G4] = Pr[G3] .
Game G5: Let F generate server output in initialization.

In this game, we change the initialization interfaces

InitC and InitS, and add the interface CompleteInitS

to F . We change InitC and InitS to be exactly as in

FPPKR except that InitC still provides Sim with the in-

put pw of IDC. Further, we change Sim such that it uses

CompleteInitS to produce output for honest S in the ini-

tialization phase. Now, when Sim receives (InitS, ssid, IDC)
from F and a message (InitC, ssid,𝐶, IDC) to the

server, where either 𝐶 was produced by Sim itself or

(pw, 𝐾, ID′C, ssid
′) ← PKE.Dec(skEnc,𝐶) and ID′C = IDC

and ssid′ = ssid, then Sim does not directly make the

server output (InitRes, ssid, IDC, Succ) but instead gives

(CompleteInitS, ssid, IDC, 1) to F (IC.5). If the decrypted

ID′C is different from IDC or ssid′ is different from ssid,
then Sim gives input (CompleteInitS, ssid, IDC, 0) to F
(IC.3 (b)).

Furthermore, Sim uses the CompleteInitS interface, when-

ever a corrupt S honestly delivers a message from some

honest IDC to F encPw
HSM . Even though in that case the inter-

face gives its output to Sim, this query is necessary to ensure

that F creates a File record. Note that F only creates a File

record, if it received the InitC and InitS input. Thus, since

S is corrupt, Sim first gives the input (InitS, ssid, IDC) to
F (see IC.6).

We can see that the output of the honest server

did not change. In G4 the honest server outputs

(InitRes, ssid, Succ) if it received a ciphertext that de-

crypted to the correct IDC, ssid. If 𝐶 contains a different

ID′C or ssid′, the server aborts. The simulator makes F
provide the corresponding output by choosing the bit 𝑏𝑆

21

Sebastian Faller, Tobias Handirk, Julia Hesse, Máté Horváth, & Anja Lehmann

On (RecC, ssid, IDC,𝑚𝑎𝑡𝑐ℎ) from FPPKR:
R.1 Retrieve record ⟨sid, [skEnc], [pkEnc]⟩. (G1)

R.2 Choose 𝑘𝑠𝑦𝑚
$←− {0, 1}𝜆 (G1). Compute 𝐶

$←− PKE.Enc(pkEnc,⊥) and record ⟨Rec, ssid, IDC,𝐶, 𝑘𝑠𝑦𝑚⟩ (G6). Send (Rec, ssid,𝐶, IDC)
to S on behalf of IDC. (G1)

On (RecS, ssid, ID′C,𝑚𝑎𝑡𝑐ℎ) from FPPKR:
R.3 If S is honest, wait for (Rec, ssid,𝐶, IDC) from IDC to S. (G1)

On (Rec, ssid,𝐶, IDC) from A to S on behalf of IDC:

RC.1 Wait for (RecS, ssid, IDC,𝑚𝑎𝑡𝑐ℎ) from FPPKR. (G1)

RC.2 If IDC is honest:

(a) Retrieve ⟨Rec, ssid, IDC,𝐶, [𝑘𝑠𝑦𝑚]⟩. (G6)

(b) Retrieve record ⟨File, IDC, [ctr]⟩. If ctr = 0 set 𝐶′ ← DelRec. Else if𝑚𝑎𝑡𝑐ℎ = 1 (G14), compute 𝐶′ $←− SE.Enc(𝑘𝑠𝑦𝑚,⊥) (G9)

and set ctr in the record to 10. Else set 𝐶′ ← Fail (G1) and ctr in the record to ctr − 1.

RC.3 If IDC is corrupt:

(a) Retrieve ⟨sid, [skEnc], ∗⟩, compute (𝑘𝑠𝑦𝑚, pw′, ID′C, ssid
′) ← PKE.Dec(skEnc,𝐶) (G1), and give input (RecC, ssid, pw′) to

FPPKR on behalf of IDC, where pw′ = ⊥ if the decryption resulted in ⊥. On response (RecC, ssid, IDC,𝑚𝑎𝑡𝑐ℎ) continue below.
(G7)

(b) If the decryption resulted in ⊥ (G6), IDC ≠ ID′C, or ssid ≠ ssid′, send (RecRes, ssid, Fail) to IDC. (G1)

(c) Send (CompleteRecC, ssid, 1) to FPPKR. On response (RecRes, ssid, 𝐾), if 𝐾 ∈ {Fail,DelRec}, set 𝐶′ ← 𝐾 . (G12)

(d) If 𝐾 ∉ {Fail,DelRec} and a record ⟨File, IDC, [𝐾 ′]⟩ exists, compute𝐶′ $←− SE.Enc(𝑘′𝑠𝑦𝑚, 𝐾 ′) (G12). // Ignore, 𝐾 , it is different

from the extracted 𝐾 ′

(e) If no such record exists, compute 𝐶′ $←− SE.Enc(𝑘′𝑠𝑦𝑚, 𝐾). (G1) // IDC was honest at Init

RC.4 Send (CompleteRecS, ssid, 1) to FPPKR (G8) and (RecRes, ssid,𝐶′) to IDC. (G1)

On (Rec, ssid, IDC,𝐶) from A to F encPw
HSM on behalf of corrupt S:

RC.5 If a record ⟨Rec, ssid, IDC,𝐶, [𝑘𝑠𝑦𝑚]⟩ exists, then give input (RecS, ssid, IDC,⊥,⊥,⊥) to FPPKR. On response

(RecS, ssid, IDC,𝑚𝑎𝑡𝑐ℎ), give input (CompleteRecS, ssid, 1) to FPPKR (G8) and on the subsequent response (RecRes, ssid, 𝐾 ′)
execute the step RC.2 (b). (G14)

RC.6 If no record ⟨Rec, ssid, IDC,𝐶, ∗⟩ exists, then retrieve ⟨sid, skEnc, pkEnc⟩ and compute (𝑘𝑠𝑦𝑚, pw′, ID′C, ssid
′) ← Dec(skEnc,𝐶).

(G1)

RC.7 If the decryption results in ⊥ (G6), ID′C ≠ IDC, or ssid′ ≠ ssid, then send (RecRes, ssid, Fail) to S. (G1)

RC.8 Give input (MaliciousRec, ssid, IDC, pw′) to FPPKR and on response 𝐾 ′ determine the output as follows (G12).

(a) If 𝐾 ′ ∈ {DelRec, Fail}, then send (RecRes, ssid, 𝐾 ′) to S. (G12)

(b) If 𝐾 ′ ∉ {DelRec, Fail}, then compute 𝐶′ ← SE.Enc(𝑘𝑠𝑦𝑚, 𝐾) if a record ⟨File, IDC, [𝐾]⟩ exists and 𝐶′ ← SE.Enc(𝑘𝑠𝑦𝑚, 𝐾 ′)
otherwise. Send (RecRes, ssid,𝐶′) to S (G12)

On (RecRes, ssid, 𝑜𝑢𝑡) from A to IDC on behalf of S:
RO.1 If (RecRes, ssid, 𝑜𝑢𝑡) was never output by SimencPw

on behalf of S or F encPw
HSM (G10), send (CompleteInitC, ssid, 0) to FPPKR (G11).

RO.2 Else, give input (CompleteRecC, ssid, 1) to FPPKR. (G11) // 𝑜𝑢𝑡 = 𝐶
′
is attestated by the HSM and A didn’t tamper with it.

Figure 12: The recovery part of the simulator Sim
encPw

for the protocol 𝜋encPw.

accordingly for the CompleteInitS message. Hence,

Pr[G5] = Pr[G4] .
Note that due to the changes introduced in Games G3-G5,

F now stores File records in all initializations, although F
does not use them in recoveries, yet.

Game G6: Switch ciphertext in recovery. In this game, we

change how Sim computes the ciphertext 𝐶 produced by

honest clients during recovery. Instead of computing the

ciphertext as 𝐶
$←− PKE.Enc(pkEnc, (𝑘𝑠𝑦𝑚, pw′, IDC, ssid))

the simulator computes it as 𝐶
$←− PKE.Enc(pkEnc,⊥). Still,

it chooses a symmetric key 𝑘𝑠𝑦𝑚
$←− {0, 1}𝜆 and stores a

record ⟨Rec, ssid, IDC,𝐶, 𝑘𝑠𝑦𝑚, pw′⟩ to remember the sym-

metric key (see R.2). Note that Sim still gets the client’s

input pw′ from F , which we change in G14).

We further change how Sim reacts on a message

(Rec, ssid,𝐶, IDC) to F encPw
HSM , where 𝐶 was computed by

Sim itself for the recovery of an honest client. Then,

Sim does not retrieve skEnc to decrypt 𝐶 (that would

yield ⊥ anyways). Instead, Sim retrieves the record

⟨Rec, ssid, IDC,𝐶, [𝑘𝑠𝑦𝑚], [pw′]⟩ (RC.2 (a)) and proceeds as
in G5 by executing the code of F encPw

HSM . Similarly to G2, the

changes introduced here may lead to Sim decrypting 𝐶 to

⊥, e.g., if A replays some 𝐶 that was computed by Sim on

behalf of some honest IDC. Again, we let Sim output Fail

to S in that case (cf. RC.3 (b) and RC.7).

Note that the output behavior of Sim did not change. That

is because Sim essentially behaves like F encPw
HSM except that

it does not encrypt and decrypt pw′, 𝑘𝑠𝑦𝑚 but it stores

these values and uses the stored values later. However, the

22

Password-Protected Key Retrieval with(out) HSM Protection

distribution of𝐶 did change. Now, if the environment could

distinguish G6 from G5, we can construct an adversary B2

against the IND-CCA security of PKE as follows:

Let 𝑞Rec ∈ N be the number of recovery phases executed.

First, B2 does not compute (skEnc, pkEnc) itself anymore

but uses the pk∗ provided by its challenger. We construct

a sequence of games G
(0)
5
, . . .,G

(𝑞Rec)
5

, where in G
(𝑖)
5

the

first 𝑖 ciphertexts that honest clients produce in recovery

are replaced by encryptions of ⊥ and the remaining ci-

phertexts stay as in G5 (except that pk∗ is used). If Z
can distinguish G6 from G5 then there is an index 𝑖∗ ∈
[𝑞Rec] such that Z distinguishes G

(𝑖∗)
5

and G
(𝑖∗−1)
5

with

non-negligible advantage. B2 internally runsZ and simu-

lates G
(𝑖∗−1)
5

except for the 𝑖∗-th recovery. In this recovery,

B2 gives the messages 𝑚0 B (𝑘𝑠𝑦𝑚, pw′, IDC, ssid) and
𝑚1 B ⊥ to its challenger. When the challenger responds

with a ciphertext 𝐶∗ then B2 uses 𝐶∗ as the ciphertext

in the message (Rec, ssid,𝐶∗, IDC) that the honest client
sends to S. Further, if B2 receives at some point a mes-

sage (Rec, ssid,𝐶, IDC) from a corrupted server to F encPw
HSM ,

where there is no record ⟨Rec, [ssid′], [ID′C],𝐶, [𝑘𝑠𝑦𝑚]⟩,
i.e., the ciphertext towards the HSM is tampered with,

then B2 gives 𝐶 to the decryption oracle provided by the

IND-CCA challenger. On the oracle’s answer (𝑘∗𝑠𝑦𝑚, pw∗, IDC
∗, ssid∗)

the reduction checks if IDC
∗ = IDC and ssid∗ = ssid. If

these checks, fail the reduction gives output (ssid, Fail) to
the server. Else, the reduction retrieves the record ⟨File, sid, IDC, [pw], [𝐾], [ctr]⟩.
If ctr = 0, then the reduction deletes the record and sends

(DelRec, IDC) to S. Else, if pw = pw∗, the reduction sets

ctr ← 10, computes 𝐶′ $←− SE.Enc(𝑘∗𝑠𝑦𝑚, 𝐾), and sends

(ssid,𝐶′) to S. Else, the reduction decrements ctr and sends
(ssid, Fail) to S. Finally, B2 outputs whateverZ outputs.

Note that if 𝐶∗ encrypts 𝑚0, then the view of Z is dis-

tributed exactly as in G
(𝑖∗−1)
5

, and if 𝐶∗ encrypts𝑚1, then

the view ofZ is distributed exactly as in G
(𝑖∗)
5

. We get

|Pr[G6] − Pr[G5] | ≤ 𝑞RecAdvIND-CCA
PKE,B2

(𝜆) .
Game G7: Provide F with input of corrupted clients in

recovery. In this game we change Sim such that when

it receives a message (Rec, ssid,𝐶, IDC) from a cor-

rupted IDC the simulator now, in addition to decrypt-

ing (𝑘′𝑠𝑦𝑚, pw′, ID′C, ssid
′) ← PKE.Dec(skEnc,𝐶) and

checking IDC = ID′C, ssid = ssid′, also gives input

(RecC, ssid, IDC, pw′) to F . Similarly to G4, we use pw′ =
⊥ if 𝐶 is decrypted to ⊥ (RC.3 (a)). Note that the RecC in-

terface of F is still a dummy interface, so this change does

not alter the view ofZ, so

Pr[G7] = Pr[G6] .
Game G8: Let F generate server output in recovery. In this

game, we change the RecC and RecS interfaces of F and

we add the CompleteRecS interface to F .
We change RecC and RecS such that they are as in FPPKR
except that RecC still forwards the secret client input pw′

to the simulator. Further, we change Sim such that it uses

the interfaces to produce outputs for honest servers in

the recovery phase. That means, when Sim receives a mes-

sage (Rec, ssid,𝐶, IDC) from an honest or corrupt IDC, it

first proceeds as in G7, and before sending its output to

IDC, it sends the message (CompleteRecS, ssid, IDC, 1) to
F (RC.4).

Additionally, Sim uses the CompleteRecS interface when-

ever the corrupt server honestly delivers a message from

some honest IDC to F encPw
HSM . Similarly to G5, this query

gives its output back to Sim, but this query is again nec-

essary to appropiately update the internal state of F , in
particular this interface resets the counter of IDC to 10 if

the recovery is successful. Again, note that this requires the

simulator to first give the input (RecS, ssid, IDC,⊥,⊥,⊥)
to F (RC.5).

First, note that by definition, the interface RecC, resp. RecS,

is called whenever an honest client, resp. honest server,

starts a recovery. Next, note that Sim also ensures that the

RecC input is given to F when a corrupted client performs

a recovery. As Sim controls skEnc, it is able to extract pw′

by decrypting 𝐶 and can give this as input to F . Thus, F
always retrieves a record ⟨RecC, ssid, IDC, pw′, pw, 𝐾⟩ with
pw′ ≠ ⊥ when Sim provides it with the CompleteRecS

input. Consequently, if the provided password was correct,

F outputs Succ to S and else it outputs Fail to S. Finally,
note that F maintains the counter exactly as F encPw

HSM did,

i.e., the counter is set to 10 when a new File record is

created, the counter is decremented when a password guess

was wrong, and the counter is reset to 10 when a password

guess was correct. Thus, from now on, Sim no longer keeps

a counter in its File records. Overall, the output of an honest

server did not change in this game and we get

Pr[G8] = Pr[G7] .
Game G9: Switch symmetric ciphertext in recovery. In this

game, we change how Sim computes the ciphertext 𝐶′ pro-
duced by the HSM during recoveries of honest clients. In-

stead of computing 𝐶′ $←− SE.Enc(𝑘𝑠𝑦𝑚, 𝐾), where 𝐾 is

the recovered key, the simulator now computes 𝐶′ $←−
SE.Enc(𝑘𝑠𝑦𝑚,⊥) (RC.2 (b)). Note that 𝑘𝑠𝑦𝑚 is still chosen

by Sim uniformly at random for every honest client that

starts a recovery.

Thus, if Z can distinguish G8 and G9, then we can con-

struct an adversary B3 against the IND-CPA security of SE.

We construct a sequence of games G
(0)
8
, . . .,G

(𝑞Rec)
8

, where

inG
(𝑖)
8

the first 𝑖 ciphertexts𝐶′ are replaced by encryptions
of ⊥ as described above. IfZ can distinguish G8 from G9,

then there is an index 𝑖∗ such that Z has non-negligible

advantage in distinguishing G
(𝑖∗)
8

from G
(𝑖∗−1)
8

. The re-

duction B3 internally runsZ and plays the role of F and

Sim in G
(𝑖∗)
8

except for the 𝑖∗-th recovery. There, B3 does

not choose a symmetric key 𝑘𝑠𝑦𝑚 but sends the messages

𝑚0 B 𝐾 and 𝑚1 B ⊥ to its challenger, where 𝐾 is the

backup key that the HSM would use to compute 𝐶′. When

the challenger returns a ciphertext 𝐶∗, B3 outputs the mes-

sage (RecRes, ssid,𝐶∗).

23

Sebastian Faller, Tobias Handirk, Julia Hesse, Máté Horváth, & Anja Lehmann

Note that the view of Z in the case that 𝐶∗ encrypts𝑚0

is distributed exactly as in G
(𝑖∗−1)
8

and in the case that

𝐶∗ encrypts𝑚1 the view is distributed exactly as in G
(𝑖∗)
8

.

Therefore we get

|Pr[G9] − Pr[G8] | ≤ 𝑞RecAdvIND-CPA
SE,B3

(𝜆).
Game G10: Output Fail on tampered message from HSM.

In this game, we change how the simulator reacts when

an honest client receives a message from the HSM that

was tampered with. Whenever an honest client receives a

message (InitRes, ssid, Succ) where Sim never produced

this message on behalf of S or F encPw
HSM , then Sim makes

the client output Fail (see IO.1). Similarly, when an honest

client receives a message (RecRes, ssid, 𝑜𝑢𝑡) that was never
produced by Sim on behalf of the HSM, then Sim makes the

client output Fail (see RO.1).

This game is identical to G9 unless A delivers a message

to IDC that was never output by Sim but the attestation

signature is still valid. If an environment Z∗ exists that
can distinguish between G10 and G9, we can construct an

adversary B4 against the sEUF-CMA security of the sig-

nature scheme Sig used for attestation. B4 internally runs

the whole experiment includingZ∗ and outputs the above

described message with the signature to its challenger. We

get

|Pr[G10] − Pr[G9] | ≤ AdvsEUF-CMA
Sig,B4

(𝜆) .

Game G11: Generate output for honest clients by F . In this

game, we change F and Sim such that Sim lets F produce

the output for an honest client in the initialization and

recovery phase. To this end, Sim will make use of the inter-

faces CompleteInitC and CompleteRecC that we add to

F exactly as in FPPKR. We change the following things:

• Whenever the simulator produces a message

(Init, ssid,𝐶, IDC) on behalf of some honest client

IDC, the simulator no longer draws a random backup

key 𝐾 . Further, when it then receives a message

(InitRes, ssid, 𝑜𝑢𝑡) to IDC, it uses the CompleteInitC

interface with the bit 𝑏𝐶 set accordingly (IO.2 and

IO.1).

• Similarly, when Sim receives a message

(RecRes, ssid,𝐶′) towards an honest client IDC,

the simulator now uses the CompleteRecC interface

with the bit 𝑏𝐶 set depending on the value of 𝑜𝑢𝑡

(RO.1 and RO.2).

As a consequence, Sim no longer needs to store the key 𝐾

in the File records for honest initializations and the values

pw and 𝐾 in the Init records.

Note that as of G5, F already chooses a uniformly random

key 𝐾 when it receives an InitC message, although that

key is not used up to this game. Now, the CompleteInitC

interface ensures that it is given as output to IDC in the

initialization phase. Similarly, in the recovery phase of G10

the simulator retrieved its own stored backup key from

the initialization phase to give it as output to IDC in the

recovery phase. Now, F , and not Sim, stores the backup key

𝐾 in its File record, retrieves it when a recovery is success-

ful, and gives it as output to IDC or Sim when Sim sends a

CompleteRecC message for a successful subsession.

Overall, the distribution of Z’s view did not change and

we get

Pr[G11] = Pr[G10] .
Game G12: Retrieve maliciously initialized records from

F . In this game we change how Sim responds in re-

coveries by a corrupt party. When it receives a message

(RecC, ssid,𝐶∗, IDC) from A on behalf of a corrupted IDC,

after checking ID′C = IDC and ssid′ = ssid, Sim now ad-

ditionally sends (CompleteRecC, ssid, 1) to F . If F an-

swers with (RecRes, ssid, 𝐾 ′), where 𝐾 ∈ {Fail,DelRec},
then Sim forwards this to IDC on behalf of S (RC.3 (c)). If

𝐾 ′ ∉ {Fail,DelRec}, then Sim needs to produce the ci-

phertext 𝐶′. However, the key 𝐾 ′ received from F may be

different from the key 𝐾 that the corrupt IDC chose in its

last initialization, as F always chooses a random key when

receiving the input InitC even for a corrupted IDC. There-

fore, if a record ⟨File, IDC, [𝐾]⟩ exists, which implies that

IDC executed an initialization phase after being corrupted,

then Sim encrypts𝐾 instead of𝐾 ′ to obtain𝐶′ (RC.3 (d) and
RC.3 (e)). Note that this requires the simulator to delete any

potentially existing File record of some IDC whenever the

corrupted S maliciously initializes for IDC to ensure that it

always returns the key of the most recent initialization (cf.

IC.7).

Furthermore, we add the MaliciousRecover interface as

in FPPKR to F , which Sim now uses in recoveries by a

corrupt S. When A instructs the corrupted server to send

a message (RecC, ssid,𝐶∗, IDC) to F encPw
HSM , where 𝐶∗ was

never sent by an honest client, which is again captured by

checking if 𝐶∗ decrypts to ⊥ (RC.7), Sim gives the input

(MaliciousRecover, ssid, IDC, pw∗) to F , where pw∗ is
the password it obtained from decrypting 𝐶∗ (RC.8). If the
response of F is (DelRec, IDC) or Fail, then Sim forwards

the response to the server (RC.8 (a)). Else, F responds with

𝐾 ′. As before, we need to check whether the key returned

by F is the correct one by checking whether a File record

exists for IDC (RC.8 (b)).

Note that the added interface does not output anything

to the protocol parties but only to Sim. Further, note that

F now behaves exactly as F encPw
HSM did in G11 when a cor-

rupted server interacts with F encPw
HSM . More precisely, on a

(MaliciousInit, ssid, IDC, pw∗, 𝐾∗) the functionality cre-

ates a record containing the password pw∗ and the backup

key 𝐾∗ together with a counter, initialized to 10. Then

on a (MaliciousRecover, ssid, IDC, pw∗) the functional-

ity tries to retrieve this record, checks the counter, and

compares the provided password with the stored password.

Pr[G12] = Pr[G11] .
Game G13: Add unused attack interfaces. In this game, we

add the interfaces LeakFile, Corrupt, FullyCorrupt, and

OfflineAttack to F . Note that our simulator never uses

these interfaces. That is because F encPw
HSM does not leak any

key files and cannot be corrupted. Thus, the protocol even

24

Password-Protected Key Retrieval with(out) HSM Protection

realizes a version of FPPKR that does not allow offline at-

tacks. We get

Pr[G13] = Pr[G12] .
Game G14: Ideal world.We change the ideal functionality such

that no more private input pw, pw′ is given to Sim. Note

that Sim only used these inputs to determine if the password

pw′ used in a recovery is correct. Instead it can now use

the output𝑚𝑎𝑡𝑐ℎ from F (RC.2 (b) and RC.5). Hence, we

finally remove pw′ from the Rec and File records. Also, we

take away the ability of Sim to give output to parties. This

is also not used anymore. Thus we get

Pr[G14] = Pr[G13] .
After this change, we reached the ideal-world execution

of the protocol encPw with the simulator Sim = Sim
encPw

as described in Figures 11 and 12 and the functionality

F = FPPKR as described in Figures 1 and 2. In particular,

we never had to change how Sim reacts on receiving a

Getpk message when acting as F encPw
HSM .

□

D.2 Proof of Theorem 2

Proof. As in the proof of Theorem 1 we construct a sequence of

hybrid games starting from the real world and ending in the ideal

world. As the majority of game hops are identical to the previous

proof, we only provide the games that are new. We write G𝑥 for

𝑥 ∈ (𝑖, 𝑖 + 1) ⊂ R to denote that the game is added between game

G𝑖 and G𝑖+1 in the sequence of games from the proof of Theorem 1.

Game G1.1: Abort on salt collision. In this game, the simulator

aborts if it randomly samples a salt value that is already used

for some other IDC. More precisely, when Sim simulates

F encPw+
HSM and draws 𝑠1 and 𝑠2 uniformly at random during

initialization, Sim checks if it already sampled either value

in some previous initialization. If that is the case, Sim aborts

the execution (see LF.3 (b)).

Let 𝑞Init ∈ N be the number of initializations. We get

|Pr[G1.1] − Pr[G1] | ≤
𝑞Init (2𝑞Init − 1)

2
𝜆

.

Game G5.1: Add OfflineAttack and LeakFile interfaces

to F . In this game, we add the interfaces OfflineAttack

and LeakFile to F exactly as they are in FPPKR. Because
Sim does currently not use them, we get

Pr[G5.1] = Pr[G5] .
Game G5.2: Use LeakFile interface of F . In this game, we

change how Sim responds to a (LeakFile) message from

A to F encPw+
HSM . Sim gives input (LeakFile) to F and re-

ceives a list IDC from F (see LF.1). The simulator initializes

𝐿 ← ∅. Now, for all (IDC, ctr) ∈ IDC the simulator tries to

retrieve a record ⟨leaked, IDC, [𝑐], [ℎ], [𝑠1], [𝑠2], ∗, ∗⟩ that
is not marked old.

If no such record exists then Sim chooses 𝑠1, 𝑠2 ←
{0, 1}𝜆 uniformly at random. Then, Sim computes

ℎ ← 𝐻 (𝑠1, pw) and 𝑐 ← 𝐾 ⊕ 𝐻 (𝑠2, pw) and cre-

ates a record ⟨leaked, IDC, 𝑐, ℎ, 𝑠1, 𝑠2, ctr, 1⟩. Sim appends

(IDC, 𝑐, ℎ, 𝑠1, 𝑠2, ctr) to 𝐿.

Otherwise, Sim adds (IDC, 𝑐, ℎ, 𝑠1, 𝑠2, ctr) to 𝐿 and records

⟨leaked, IDC, 𝑐, ℎ, 𝑠1, 𝑠2, ctr, 𝑖 + 1⟩, where 𝑖 is the biggest

number such that a record ⟨leaked, IDC, 𝑐, ℎ, 𝑠1, 𝑠2, ∗, 𝑖⟩ ex-
ists.

Sim also does an additional step when an initialization was

completed, i.e., in IC.6 or IC.8 , depending on whether the

server is corrupted or not. Sim goes through all so far leaked

records and marks them as old. That means that they still

can be offline attacked, but the next time when a record

is leaked, Sim will simulate the creation of a new file. In

particular, Sim keeps leaked records of already overwritten

initializations. This will be important for programming 𝐻

later. However, the records that are added to 𝐿 are always

the “current” records, i.e., records that correspond to File

records of F .
Also, note that Sim only appends leaked data for IDC
if IDC ∈ IDC. However, in the previous games, we en-

sured that F creates a File record whenever F encPw+
HSM

would have done so. More precisely, when Sim receives

a message (Init, ssid,𝐶, IDC) from A to S on behalf of

a corrupted IDC and all the checks pass then Sim gives

input (CompleteInitC, ssid, IDC, 1) to F so F creates

a File record. Similarly, when Sim receives a message

(Init, ssid,𝐶, IDC) from A to F encPw+
HSM on behalf of S and

all the checks pass then Sim sends either a MalInit mes-

sage or (CompleteInitS, ssid, IDC, 1) to F so F creates a

File record.

Overall, the view ofZ did not change.

Pr[G5.2] = Pr[G5.1] .
Game G5.3: Simulate the password hash ℎ. In this game, we let

Sim simulate ℎ = 𝐻 (𝑠1, pw) without using pw and we let

Sim program the random oracle accordingly.

First, when Sim creates a record ⟨leaked, IDC, 𝑐, ℎ, 𝑠1, 𝑠2, ctr, 𝑖⟩
it no longer computes ℎ like in the real protocol but now

chooses it uniformly at random, i.e.,ℎ
$←− {0, 1}𝜆 (see LF.3 (b))

Second, Sim observes the random oracle queries.

If there is a query 𝐻 (𝑠∗
1
, pw∗) such that a record

⟨leaked, [IDC], ∗, [ℎ], 𝑠∗1, ∗, ∗, [𝑖]⟩ exists, then Sim gives

input (OfflineAttack, IDC, pw∗, 𝑖) to F . If F answers

with Fail, then Sim responds with a uniformly random

value. If F answers with 𝐾 ≠ Fail, then Sim programs

𝐻 (𝑠∗
1
, pw∗) to ℎ (see H.2). This ensures that if A guesses

the password of some client whose file was leaked

previously, then the output of the random oracle query is

consistent with the values that Sim output in the leaked

file.

Since 𝐻 is modeled as a random oracle, choosing ℎ as a

uniformly random value does not modify the distribution

of ℎ. However, observe thatZ could distinguish this game

from the previous one ifA guesses the salt 𝑠∗
1
that some IDC

uses together with the password pw∗ before leaking the file
of IDC. If that happens, Sim would output a random value

ℎ∗ on the oracle query (𝑠∗
1
, pw∗). Then, uponA leaking the

file of IDC, the simulator would not output ℎ∗ in the leaked

file and instead choose a random value ℎ since it cannot

know that IDC chose the password pw∗. As 𝑠1 is chosen

25

Sebastian Faller, Tobias Handirk, Julia Hesse, Máté Horváth, & Anja Lehmann

On (InitC, ssid, IDC) from FPPKR:
I.1 Wait for (Init, ssid, pkEnc) from S to IDC. (G1)

On (InitS, ssid, IDC) from FPPKR:
I.2 Compute (skEnc, pkEnc)

$←− PKE.Gen(1𝜆) and store ⟨ssid, skEnc, pkEnc⟩. Send (Init, ssid, pkEnc) to IDC on behalf of S. (G1)

On (Init, ssid, pkEnc) from A to IDC on behalf of S:
IPK.1 Compute𝐶

$←− PKE.Enc(pkEnc,⊥) and store ⟨Init, ssid, IDC,𝐶⟩ (G2). Send (Init, ssid,𝐶, IDC) to S on behalf of IDC. (G1) // pkEnc
cannot be tampered with.

On (RecC, ssid, IDC,𝑚𝑎𝑡𝑐ℎ) from FPPKR:
R.1 Wait for (Rec, ssid, pkEnc) from S to IDC. (G1)

On (RecS, ssid, IDC
′,𝑚𝑎𝑡𝑐ℎ) from FPPKR:

R.2 Compute (skEnc, pkEnc)
$←− PKE.Gen(1𝜆) and store ⟨ssid, skEnc, pkEnc⟩. Send (Rec, ssid, pkEnc) to IDC on behalf of S. (G1)

On (Rec, ssid, pkEnc) from A to IDC on behalf of S:
RPK.1 Compute 𝐶

$←− PKE.Enc(pkEnc,⊥), choose 𝑘𝑠𝑦𝑚
$←− {0, 1}𝜆 , and store ⟨Rec, ssid, IDC,𝐶, 𝑘𝑠𝑦𝑚⟩ (G2). Send (Rec, ssid,𝐶, IDC) to S

on behalf of IDC (G1). // RecC came before pkEnc.

On (Init, ssid,GetPK) from A to F encPw
HSM on behalf of S:

G.1 Compute (skEnc, pkEnc)
$←− PKE.Gen(1𝜆) and store ⟨ssid, skEnc, pkEnc⟩. Send (Init, ssid, pkEnc) to S on behalf of F encPw

HSM (G1). //

attestated

On (Rec, ssid,GetPK) from A to F encPw
HSM on behalf of S:

G.2 Compute (skEnc, pkEnc)
$←− PKE.Gen(1𝜆) and store ⟨ssid, skEnc, pkEnc⟩. Send (Rec, ssid, pkEnc) to S on behalf of F encPw

HSM (G1). //

attestated

On (Init, ssid,𝐶, IDC) from A to S on behalf of IDC:

IC.1 through IC.5 as in Figure 11.

IC.6 Try to retrieve all records ⟨leaked, IDC, [𝑐], [ℎ], [𝑠1], [𝑠2], ∗, ∗⟩ not marked old. If such records exist, then mark all of them as old.

(G5.2) // After init, the file contains fresh values.

On (Init, ssid,𝐶, IDC) from A to F encPw+
HSM on behalf of S:

IC.6 and IC.7 as in Figure 11.

IC.8 Try to retrieve all records ⟨leaked, IDC, [𝑐], [ℎ], [𝑠1], [𝑠2], ∗, ∗⟩ not marked old. If such records exist, then mark all of them as old.

(G5.2)// After init, the file contains fresh values.

On a query (LeakFile) from A to F encPw+
HSM :

LF.1 Give input (LeakFile) to FPPKR. FPPKR returns IDC. (G5.2)

LF.2 𝐿 ← ∅ (G5.2)

LF.3 For each (IDC, ctr) ∈ IDC:
(a) Try to retrieve a record ⟨leaked, IDC, [𝑐], [ℎ], [𝑠1], [𝑠2], ∗, [𝑖]⟩ not marked old. (G5.2)

(b) If no such record exists, choose 𝑐, ℎ, 𝑠1, 𝑠2
$←− {0, 1}𝜆 (G5.3 and G5.4). If 𝑠1 or 𝑠2 was used before as salt by Sim, then abort

(G1.1). Else store ⟨leaked, IDC, 𝑐, ℎ, 𝑠1, 𝑠2, ctr, 1⟩. Append (IDC, 𝑐, ℎ, 𝑠1, 𝑠2, ctr) to 𝐿. (G5.2)

(c) Else store a record ⟨leaked, IDC, 𝑐, ℎ, 𝑠1, 𝑠2, ctr, 𝑖 + 1⟩, where 𝑖 is the biggest number such that a record

⟨leaked, IDC, [𝑐], [ℎ], [𝑠1], [𝑠2], ∗, 𝑖⟩ exists. Append (IDC, 𝑐, ℎ, 𝑠1, 𝑠2, ctr) to 𝐿. (G5.2)

LF.4 Send 𝐿 to A on behalf of F encPw+
HSM . (G1)

On a query 𝐻 (𝑠∗, pw∗) :
H.1 If a record ⟨𝐻, 𝑠∗, pw∗, [𝑦]⟩ exists, output 𝑦. (G1)

H.2 Try to retrieve the record ⟨leaked, [IDC], ∗, [ℎ], 𝑠∗, ∗, ∗, [𝑖]⟩. If such a record exists, give input (OfflineAttack, IDC, pw∗, 𝑖) to
FPPKR. If FPPKR responds with 𝐾 ≠ Fail, record ⟨𝐻, 𝑠∗, pw∗, ℎ⟩ and output ℎ. If 𝐾 = Fail, choose 𝑦

$←− {0, 1}𝜆 , record ⟨𝐻, 𝑠∗, pw∗, 𝑦⟩
and output 𝑦. (G5.3)

H.3 If no such leaked record exists, try to retrieve the record ⟨leaked, [IDC], [𝑐], ∗, ∗, 𝑠∗, ∗, [𝑖]⟩. If such a record exists, give input

(OfflineAttack, IDC, pw∗, 𝑖) to FPPKR. If FPPKR responds with 𝐾 ≠ Fail, record ⟨𝐻, 𝑠∗, pw∗, 𝑐 ⊕ 𝐾⟩ and output 𝑐 ⊕ 𝐾 . If 𝐾 = Fail,

choose 𝑦
$←− {0, 1}𝜆 , record ⟨𝐻, 𝑠∗, pw∗, 𝑦⟩ and output 𝑦. (G5.4)

H.4 If both such leaked do not exist (G5.4), choose 𝑦 $←− {0, 1}𝜆 , record ⟨𝐻, 𝑠∗, pw∗, 𝑦⟩ and output 𝑦 (G1).

Figure 13: Differences from the simulator Sim
encPw

(Figures 11 to 12) to the simulator Sim
encPw+

.

26

Password-Protected Key Retrieval with(out) HSM Protection

uniformly at random from {0, 1}𝜆 , the probability of this

happening can be bounded by 𝑞𝐻 2
−𝜆

, where 𝑞𝐻 ∈ N is

the number of queries to 𝐻 . Note that this even holds if

other clients use the same pw∗ because due to G1.1 they

will use a different salt 𝑠′
1
and 𝐻 (𝑠′

1
, pw∗) is independent of

𝐻 (𝑠∗
1
, pw∗). Thus, we have

|Pr[G5.3] − Pr[G5.2] | ≤
𝑞Init𝑞𝐻

2
𝜆

.

Game G5.4: Simulate the password hash 𝑐. In this game, we let

Sim simulate the leaked records without using 𝐾 and pw
and we let Sim program the random oracle accordingly.

First, when Sim creates a record ⟨leaked, IDC, 𝑐, ℎ, 𝑠1, 𝑠2, ctr, 𝑖⟩
it no longer computes 𝑐 like in the real protocol but now

chooses it uniformly at random, i.e., 𝑐 ← {0, 1}𝜆 (see LF.3 (b)).
Second, Sim observes the random oracle queries.

If there is a query 𝐻 (𝑠∗
2
, pw∗) such that a record

⟨leaked, [IDC], [𝑐], ∗, ∗, 𝑠∗2, ∗, [𝑖]⟩ exists, then Sim gives

input (OfflineAttack, IDC, pw∗, 𝑖) to F . If F answers

with Fail, then Sim responds with a uniformly random

value. If F answers with 𝐾 ≠ Fail, then, Sim programs

𝐻 (𝑠∗
2
, pw∗) ← 𝑐 ⊕ 𝐾 . Note that for honest IDC, Sim uses

the key 𝐾 it chose on behalf of IDC in the initialization

instead of the one returned by F . Once we let F generate

the output of honest clients in G11, we change this to

use the key returned from F . This again ensures that the

leaked files are consistent with the random oracle outputs

(H.3).

Again, it holds that the distribution of 𝑐 does not change by

choosing it as uniformly random value since 𝐻 is a random

oracle. However, similarly to G5.3, the environment could

distinguish this game from the previous one if A guesses

the salt 𝑠∗
2
of some ID∗C. Following the same arguments as

in G5.3, we have

|Pr[G5.4] − Pr[G5.3] | ≤
𝑞Init𝑞𝐻

2
𝜆

.

Changed Reductions. Also, we have to change the reductions

on IND-CCA security in G2 and G6 because of the difference in

computing (skEnc, pkEnc):
Game G2: Let 𝑞Init ∈ N be the number of initializations. We

construct a sequence of games G
(0)
1
, . . .,G

(𝑞Init)
1

, where in G
(𝑖)
1

the first 𝑖 ciphertexts are computed as encryptions of ⊥ and the

remaining ciphertexts are encrypted as in G1. We have G1 = G
(0)
1

and G2 = G
(𝑞Init)
1

. Because Z can distinguish G1 from G2, there

must be an index 𝑖∗ ∈ [𝑞Init] such that Z has a non-negligible

advantage in distinguishing G
(𝑖∗)
1

and G
(𝑖∗−1)
1

. Now, in the 𝑖∗-th
initialization the reduction B1 does not choose a new key-pair

(sk, pk) when it receives a Getpk or InitS message, but uses the

public key that it is provided by the challenger. When it simulates

IDC in the 𝑖∗-th simulation, it gives𝑚0 B (𝑘𝑠𝑦𝑚, pw′, IDC, ssid)
and 𝑚1 B ⊥ to the challenger and uses the returned 𝐶∗ as the
ciphertext for the initialization. Further, if B1 receives a message

(Init, ssid,𝐶, IDC) from A to S or to F encPw
HSM such that 𝐶 ≠ 𝐶∗,

then B1 uses its decryption oracle to decrypt 𝐶∗ and proceeds as

in G1.

Now, if𝐶∗ encrypts𝑚0 the game is distributed as in G
(𝑖∗−1)
1

and

if it encrypts𝑚1 then the game is distributed as in G
(𝑖∗)
1

.

Game G6: Let 𝑞Rec ∈ N be the number of recovery phases exe-

cuted. We construct a sequence of games G
(0)
5
, . . .,G

(𝑞Rec)
5

, where

inG
(𝑖)
5

the first 𝑖 ciphertexts that honest clients produce in recovery

are replaced by encryptions of⊥ and the remaining ciphertexts stay

as in G5. IfZ can distinguish G6 from G5, then there is an index

𝑖∗ ∈ [𝑞Rec] such thatZ distinguishes G
(𝑖∗)
5

and G
(𝑖∗−1)
5

with non-

negligible advantage. B2 internally runsZ and simulates G
(𝑖∗−1)
5

except for the 𝑖∗-th recovery. In this recovery, B2 does not choose

a fresh pair (pkEnc, skEnc) when it receives a Getpk message, but

uses the public key pk∗Enc provided by the challenger. B2 gives the

messages𝑚0 B (pw, 𝐾, IDC, ssid) and𝑚1 B ⊥ to its challenger.

When the challenger responds with a ciphertext𝐶∗, thenB2 uses𝐶
∗

as the ciphertext in the message (Rec, ssid,𝐶∗, IDC) that the honest
client sends to S. Further, if B2 receives at some point a message

(Rec, ssid,𝐶, IDC) to S or F encPw
HSM , where 𝐶 ≠ 𝐶∗, then B2 gives 𝐶

to the decryption oracle provided by the IND-CCA challenger and

proceeds as in G5. Finally, B2 outputs whateverZ outputs.

Note that if 𝐶∗ encrypts𝑚0 then the view of Z is distributed

exactly as in G
(𝑖∗−1)
5

and if 𝐶∗ encrypts𝑚1 then the view ofZ is

distributed exactly as in game G
(𝑖∗)
5

. □

D.3 Proof of Theorem 3

We depict our simulator in Figures 14 to 17. In the below, when

referring to blue-colored boxes such as I.1 , we always mean the

ones from these figures. The gray boxes CIS.4 refer to FPPKR in-

structions from Figures 1 and 2. The simulator works with session

state records

⟨Init, IDC, kid, ssid, 𝑎, ID
∗
C, kid, 𝑎

∗, skEnc, sk𝐶 , 𝑏,𝐶⟩
for initialization. All values are initialized to ⊥ and potentially

updated throught an initialization. At the end of an initialization

by IDC, the record has the following semantics.

Init1 ∈ {IDC,⊥} is either the IDC of an honest client running

initialization or it is set to ⊥ if the client is corrupt or if the

corrupt S impersonates IDC;

Init2 ∈ {kid,⊥} is either the number of initializations started by

IDC, as seen by the HSM, or it is set to ⊥ if the client is

corrupt or if the corrupt S impersonates IDC;

Init3 = ssid indicates the sub-session id used by IDC;

Init4 ∈ {𝑎,⊥} is either the 𝑎 value sent by a honest IDC, or ⊥ if

IDC is corrupt or if the corrupt S impersonates IDC.

Init5 ∈ {ID∗C,⊥} is either the client name, delivered to the HSM,

or set to ⊥ if the server is fully corrupt;

Init6 ∈ {kid,⊥} is the number of initializations started by ID∗C,
as seen by the HSM, or set to ⊥ if the server is fully corrupt;

Init7 ∈ {𝑎∗,⊥} indicates the 𝑎 value, delivered to the HSM, or

set to ⊥ if the server is fully corrupt;

Init8 ∈ {skEnc,⊥} is the encryption secret key, generated by the

HSM for the current sub-session, or set to ⊥ if the server is

fully corrupt;

Init9 ∈ {skC,⊥} is the client’s signature secret key either de-

crypted from 𝑐 or simulated for an honest client. It is set to

⊥ if it cannot be extracted from a corrupted initialization;

27

Sebastian Faller, Tobias Handirk, Julia Hesse, Máté Horváth, & Anja Lehmann

Simulator Sim
OPRF-PPKR

, part 1

Sim
OPRF-PPKR

stores a list kid[·]. Initially Sim
OPRF-PPKR

executes (pk, sk) $←−
Sig.KeyGen(1𝜆) and stores ⟨𝑃𝐾, pk, sk⟩. Whenever it outputs a message towards some

IDC or from FOPRF-PPKR
HSM to a corrupt S, it attestates the message with sk.

Wait for X means that Sim
OPRF-PPKR

does not proceed to the next instruction before

receiving X and meanwhile gives back activation toA. Once it receives X, it first proceeds

with the instructions on input X and then continues at the instruction, where it waited

for X. If a record cannot be retrieved, the query is ignored. For brevity we omit session

identifier sid from all inputs, outputs, and records. (G1)

On (InitC, ssid, IDC) from FPPKR: // honest IDC
I.1 If kid[IDC] is undefined, set kid[IDC] ← 0. Otherwise, set kid[IDC] ← kid[IDC] +1.

(G3) // new OPRF key for each init

I.2 Give input (Eval, sid, IDC ∥ kid[IDC], ssid, S, 0) to FOPRF from IDC. This triggers

Step 5 of SimOPRF, which outputs (sid, IDC, ssid, 𝑎). (G3)

Record ⟨Init, IDC, kid[IDC], ssid, 𝑎,⊥,⊥,⊥,⊥,⊥,⊥,⊥⟩ and send (ssid, 𝑎, IDC) as
message from IDC to S. (G1) // Output of FOPRF (eval. of 0) ignored

On (InitS, ssid, IDC) from FPPKR: // honest S
I.3 If S honest, wait for (ssid, 𝑎, IDC) from IDC to S. (G1) // See (ssid, 𝑎, IDC) interface

On (Init, ssid, 𝑎, IDC) from A to S on behalf of IDC: // any IDC, honest S
Ia.1 If S is honest, wait for (InitS, ssid, IDC) from FPPKR. (G1)

Ia.2 If IDC is corrupt:

• If kid[IDC] is undefined, set kid[IDC] ← 0, otherwise set kid[IDC] ←
kid[IDC] + 1. Set kid ← kid[IDC]. (G3) // Ensure new oprf key. If IDC is

honest this is ensured in InitC

• Record ⟨Init,⊥,⊥, ssid,⊥,⊥,⊥,⊥,⊥,⊥,⊥,⊥⟩ (G1)

Ia.3 If IDC is honest, retrieve ⟨Init, IDC, [kid], ssid, ∗,⊥,⊥,⊥,⊥,⊥,⊥,⊥⟩. (G3)

Ia.4 Give input (Init, sid, IDC ∥ kid) to the simulated FOPRF from the simulated S. This
triggers Step 2 of SimOPRF. (G3) // Create new OPRF key

Ia.5 Give input (SndrComplete, sid, IDC ∥ kid, ssid) to the simulated FOPRF from the

simulated S. This triggers Step 6 of SimOPRF, which outputs (sid, ssid, 𝑏). (G3)

Ia.6 Compute (pkEnc, skEnc)
$←− PKE.Gen(1𝜆) and overwrite the entries 6-

11 in ⟨Init, ∗, ∗, ssid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ with IDC, kid, 𝑎, skEnc,⊥, 𝑏. Send

(ssid, 𝑏, IDC, pkEnc) as HSM-signed message from S to IDC. (G1) // Can

later access OPRF keys via 𝐹 records in SimOPRF

On (Init, ssid, 𝑎, IDC) from A to FOPRF-PPKR
HSM on behalf of corrupt S: // any IDC

Ia.7 If no record ⟨Init, ∗, [kid], ssid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ exists, create

⟨Init,⊥,⊥, ssid,⊥,⊥,⊥,⊥,⊥,⊥,⊥,⊥⟩. (G1)

Additionally, if kid[IDC] is undefined set kid[IDC] ← 0 and otherwise

kid[IDC] ← kid[IDC] + 1 and set kid← kid[IDC]. (G3) // IDC corrupt and S just

forwards or S impersonates IDC
Ia.8 Execute Steps Ia.4 - Ia.6 , except that the output is returned to S instead of sending

it from S to IDC. (G3)

On (ssid, 𝑏, ID∗C, pkEnc) from A to IDC: // honest IDC, any S
Ib.1 Retrieve ⟨Init, IDC, [kid], ssid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩. (G1)

Ib.2 If S is not honest, give input (InitS, ssid, IDC) to FPPKR. On response

(InitS, ssid, IDC) from FPPKR or if FPPKR ignores the input, continue below. (G10)

// Ensures that we can produce output for IDC
Ib.3 If S is not fully corrupt and (ssid, 𝑏, ID∗C, pkEnc) was never output by Sim

OPRF-PPKR

on behalf of S or FOPRF-PPKR
HSM , or if S is fully corrupt and the attestation signature

does not verify, send (CompleteInitC, ssid, 0) to FPPKR. (G10)

Ib.4 If IDC ≠ ID∗C, send (CompleteInitC, ssid, 0) to FPPKR. (G10) // IDC’s 𝑎 rerouted

Ib.5 Compute (skC, pkC) ← Sig.Gen(1𝜆). (G1)

Ib.6 If S is fully corrupt:

(a) Send (CompleteInitS, ssid, 1) to FPPKR. (G10)

(b) For each record ⟨𝐻2, [pw] ∥ IDC, ∗, [𝑦]⟩ marked Consistent (G14)

send (OfflineAttack, IDC, pw, 𝑖 + 1) to FPPKR, where 𝑖 ∈ N is the largest

number such that a record ⟨leaked, IDC, ∗, ∗, ∗, 𝑖⟩ exists. (G10)

(c) If for any query the output is 𝐾 ≠ Fail (G10), compute 𝑐
$←−

AE.Enc(𝑦, (𝐾, skC)). Else set 𝑐 $←− SimEQV (𝜆 + |skC |). (G6)

(d) Record ⟨File, IDC, kid, pkC, skC, 𝑐⟩ and ⟨leaked, IDC, kid, skC, 𝑐, 𝑖 + 1⟩, where
𝑖 ∈ N is the largest number such that a record ⟨leaked, IDC, ∗, ∗, ∗, 𝑖⟩ exists or
𝑖 = 0 if no such record exists. (G1)

(e) Compute 𝐶
$←− PKE.Enc(pkEnc, (ssid, pkC, 𝑐)). (G1)

(f) Overwrite the three last entries of the Init record retrieved abovewith skC, 𝑏,𝐶 .
(G1)

Ib.7 If S is not fully corrupt:

(a) Compute 𝑐
$←− SimEQV (𝜆 + |skC |). (G6)

(b) Compute 𝐶 ← PKE.Enc(skEnc,⊥), (G13)

(c) overwrite the tenth entry of the record retrieved above with skC and the last

entry with 𝐶 . (G1)

Ib.8 Send (ssid,𝐶) to S (G1)

and (CompleteInitC, ssid, 1) to FPPKR. (G10). Store ⟨𝐶, ssid, pkC, 𝑐⟩ (G13) .

Figure 14: Simulator Sim
OPRF-PPKR

for 𝜋OPRF-PPKR
, part 1.

Init10 = 𝑏 is either the 𝑏 value computed by the honest HSM or

the value received by IDC if S is fully corrupt;

Init11 ∈ {𝐶,⊥} is the ciphertext 𝐶 computed by IDC or ⊥ if IDC
is corrupt.

Similarly, the simulator works with the sollowing session state

records

⟨Rec, IDC, kid, ssid, 𝑎,𝑚𝑎𝑡𝑐ℎ, ID
∗
C, kid

∗, 𝑎∗, pkC, 𝑏, 𝑐⟩
in the recovery. Again, all values are initialized to ⊥ and potentially

updated throught a recovery. At the end of the recovery by IDC,

the record has the following semantics.

Rec1 ∈ {IDC,⊥} is either the IDC of an honest client running

recovery or it is set to ⊥ if the client is corrupt or if the

corrupt S impersonates IDC;

Rec2 ∈ {kid,⊥} is either the number of initializations started by

IDC when IDC starts this recovery, as seen by the HSM,

or it is set to ⊥ if the client is corrupt or if the corrupt S
impersonates IDC;

Rec3 = ssid indicates the sub-session id used by IDC;

Rec4 ∈ {𝑎,⊥} is either the 𝑎′ value sent by a honest IDC, or ⊥ if

IDC is corrupt or if the corrupt S impersonates IDC.

Rec5 ∈ {0, 1} indicates whether the password in the recovery is

correct

Rec6 ∈ {ID∗C,⊥} is either the client name, delivered to the HSM,

or set to ⊥ if the server is fully corrupt;

Rec7 ∈ {kid∗,⊥} is the number of initializations started by ID∗C
when S receives the first message in this recovery, as seen

by the HSM, or set to ⊥ if the server is fully corrupt;

Rec8 ∈ {𝑎∗,⊥} indicates the 𝑎′ value, delivered to the HSM, or

set to ⊥ if the server is fully corrupt;

Rec9 ∈ {pkC,⊥} is the signature public key used by the HSM in

this recovery, or set to ⊥ if the server is fully corrupt;

Rec10 = 𝑏′ is either the 𝑏 value computed by the honest HSM or

the value received by IDC if S is fully corrupt;

Rec11 ∈ {𝑐} is the ciphertext 𝑐 sent by the honest HSM or ⊥ if S
is fully corrupt.

We construct a sequence of hybrid games G0 to G14 where we

gradually change the real-world execution of the protocol𝜋OPRF-PPKR

(interacting with the hybrid functionality FOPRF-PPKR
HSM) to reach the

ideal-world execution, where the environment interacts with the

simulator from Figures 14 to 17 and the ideal functionality FPPKR.
We write Pr[G𝑖] to denote the probability that the environment

outputs 1 in the hybrid game G𝑖 .
Game G0: Real world. This is the real world.

Game G1: Create simulator. In this game we create two new

entities called the ideal functionality F and the simula-

tor Sim. Initially, F just forwards the input of the dummy

parties to Sim and outputs what Sim instructs it to out-

put. In particular, F has interfaces (InitC, ssid, IDC, pw),
(InitS, ssid, IDC),(RecC, ssid, IDC, pw′), and (RecS, ssid, IDC)
that just forward the input to Sim. Additionally, F has the

corruption and attack interfaces LeakFile, FullyCorrupt,

MaliciousInit,MaliciousRec, and OfflineAttack with

the exact same code as in FPPKR. Note, however, that Sim
does not use these interfaces yet.

28

Password-Protected Key Retrieval with(out) HSM Protection

The simulator executes the code of all honest parties of

the protocol internally on the input that it is provided by

F and it internally runs the code of the hybrid functional-

ity FOPRF-PPKR
HSM . Additionally, it creates records exactly as

Sim
OPRF-PPKR

does, but at this point never uses the values

from any of these records. Note that these are just syntacti-

cal changes and the protocol is still executed as in the real

world. We have

Pr[G1] = Pr[G0] .
Game G2: Output Fail on tampered message from HSM.

In this game, we change how the simulator reacts when

an honest client receives a message from the HSM that

was tampered with. Whenever an honest client receives a

message (InitRes, ssid, Succ) while S is not fully corrupt,

where Sim never produced this message on behalf of S or

FOPRF-PPKR
HSM , then Sim makes the client output Fail (see

Ib.3). Similarly, when an honest client receives a message

(RecRes, ssid, 𝑜𝑢𝑡) that was never produced by Sim on be-

half of the HSM, then Sim makes the client output Fail (see

Rb.5).

This game is identical to G1 unless A delivers a message

to IDC that was never output by Sim but the attestation

signature is still valid. If an environment Z∗ exists that
can distinguish between G2 and G1, we can construct an

adversary B1 against the sEUF-CMA security of the sig-

nature scheme Sig used for attestation. B1 internally runs

the whole experiment includingZ∗ and outputs the above

described message with the signature to its challenger. We

get

|Pr[G2] − Pr[G1] | ≤ AdvsEUF-CMA
Sig,B1

(𝜆) .

Game G3: Simulate the OPRF execution. In this game, we

replace the 2HashDH protocol with its ideal execution,

namely functionality F ℓOPRF of Figure 7 and simulator

SimOPRF (sid, 𝐻1, 𝐻2, 𝑁) of Figure 8. We consequently let

the simulated parties use the interfaces of F ℓOPRF, e.g., in-
stead of computing 𝑎 ← 𝐻1 (pw ∥ IDC)𝑟 , a party sends

(Eval, sid, IDC ∥ kid, ssid, S, pw ∥ IDC) to F ℓOPRF, where for
the first initialization by IDC we have kid = 0 and with

each subsequent initialization by IDC it is incremented by

1. Whenever a party is supposed to obtain a PRF value, the

simulator calls the RcvComplete interface of F ℓOPRF. Since
in this ideal OPRF execution, OPRF keys are chosen by

SimOPRF (sid, 𝐻1, 𝐻2, 𝑁) (see Step 2 of Figure 8), the simula-

tor takes these keys whenever it has to store a file. Finally,

the 2HashDH protocol messages 𝑎, 𝑏 sent by honest parties

are now simulated by SimOPRF (sid, 𝐻1, 𝐻2, 𝑁). The formal

changes can be read from Figures 14 to 17, marked with

(G3).

This and the previous game are indistinguishable up to the

advantage of distinguishing the real 2HashDH execution

from the ideal execution ofF ℓOPRF and SimOPRF (sid, 𝐻1, 𝐻2, 𝑁),
which by Theorem 4 (originally Theorem 2 of [DFG

+
23a])

is bounded by

| Pr[G3]−Pr[G2] | ≤ 𝑞InitAdv
(𝑞𝐸+𝑞𝐻 ,𝑞𝐸)−OMDH
B2,G

(𝜆)+(𝑞𝐸+𝑞𝐻)2/𝑞,

where 𝑞Init is the number of Init inputs, 𝑞𝐸 the number of

overall Init and Rec inputs, 𝑞𝐻 the number of 𝐻1 queries,

𝑞 is the order of G and Adv(𝑥,𝑦)−OMDH
B2,G

(𝜆) denotes the ad-
vantage of breaking the one-more Diffie-Hellman problem

in G (see Definition 4).

Game G4: Abort upon ambiguous ciphertexts.We let the sim-

ulator abort if it obtains an adversarially-generated AE
ciphertext 𝑐 such that for two values 𝑘, 𝑘′ from records

⟨𝐹, S, [kid], 𝑘, ∗⟩, ⟨𝐹, S, [kid′], 𝑘′, ∗⟩ stored by the OPRF sim-

ulator SimOPRF, 𝑐 successfully decrypts under 𝑘 and 𝑘′, i.e.,
the output of AE.Dec is not ⊥ (cf. IC.2 (c), IC.7 (c)(ii), and

Rb.3 (a)).

This and the previous game are indistinguishable by the

random-key robustness of AE. The reduction is straight-

forward, running on two challenge keys 𝑘, 𝑘′: it randomly

chooses two occasionswhereFOPRF samples 𝐹sid,S,kid (𝑥) $←−
{0, 1}ℓ and instead sets 𝐹sid,S,kid (𝑥) ← 𝑘 for the first one

and← 𝑘′ for the second. Note that this does not change
the distribution as 𝑘, 𝑘′ are uniformly random. Ciphertexts

𝑐 passing the winning condition of the random-key robust-

ness game can be detected by trial-decrypting with 𝑘 and

𝑘′. We hence have

| Pr[G4] − Pr[G3] | ≤ 𝑞2

𝐸Adv
rkr
B3,AE

(𝜆).
Game G5: Honest IDC fails upon malicious AE ciphertext.

In this game, we modify how Sim proceeds when receiv-

ing an adversarial message or honestly delivered message

(ssid, 𝑏′, 𝑐, IDC) from A to some honest IDC. Sim checks

whether all of the following conditions hold:

• 𝑐 was not produced by Sim,

• There is no value 𝐹sid,S,∗ (pw′ ∥ IDC) defined in FOPRF
that successfully decrypts 𝑐 ,

• There is a value 𝐹sid,S,[kid] (pw′∥IDC) defined inFOPRF
that successfully decrypts 𝑐 , but in this recovery a

malicious S did not use the OPRF key with kid kid.
Formally, Sim executes these checks via the code in Rb.3 (a)

and Rb.3 (b). If all conditions hold, then Sim lets IDC im-

mediately output (RecRes, ssid, Fail) instead of following

the protocol as in G4. If any condition does not hold, it

proceeds as in G4. Note that G5 only differs if IDC outputs

(RecRes, ssid, Succ) in G4 and (RecRes, ssid, Fail) in G5,

which we denote by the event 𝐸AE. We now construct an ad-

versary B4 that breaks the INT-CTXT-security of AE given

any environmentZ that causes 𝐸AE.

B4 acts like Sim and chooses 𝑖∗ $←− {1, . . . , 𝑞Init}. Let ID∗C
denote the IDC that executes the 𝑖∗-th initialization. If ID∗C
is corrupt, B4 aborts. Otherwise, it does not compute 𝑐 by

encrypting (𝐾, skC) under 𝜌∗ but instead submits (𝐾, skC)
to its encryption oracle. Note that this implicitly programs

𝜌∗ to the key 𝑘∗ chosen by the INT-CTXT experiment. Since

𝑘∗ is chosen uniformly at random and FOPRF chooses its
outputs uniformly at random, this means that there is no

change in the distribution of 𝑐 .

In any subsequent recovery by ID∗C before ID∗C executes

another initialization,B4 checks the conditions listed above,

and if they hold, it outputs the 𝑐′ received in that recovery

to the INT-CTXT experiment. Further, if the file from the

29

Sebastian Faller, Tobias Handirk, Julia Hesse, Máté Horváth, & Anja Lehmann

Simulator Sim
OPRF-PPKR

, part 2

On (ssid,𝐶) from A to S on behalf of IDC: // any IDC, honest S
IC.1 Retrieve ⟨Init, ∗, ∗, ssid, ∗, ∗, [kid], ∗, [skEnc], [skC], ∗, [𝐶′]⟩. (G1)

IC.2 If IDC is corrupt: (G8)

(a) Execute HSM code, (G1)

where the entry 𝑘OPRF of the stored File record is set to ⊥, (G3)

up to determining 𝑜𝑢𝑡 and denote the decryption by (ssid′, pkC, 𝑐). (G1)

If 𝑜𝑢𝑡 = Fail, send (CompleteInitS, ssid, 0) to FPPKR and otherwise continue.

(G11) // SimOPRF has the OPRF key

(b) Find a record ⟨𝐻2, [pw] ∥ ∗, ∗, [𝑦]⟩ that is marked Consistent such that

⊥ ≠ (𝐾, skC) ← AE.Dec(𝑦, 𝑐). Otherwise set pw← ⊥. (G8)

(c) If more than one consistent record is found, abort the simulation. (G4)

(d) Send input (InitC, ssid, pw) to FPPKR on behalf of IDC. (G8)

On response (InitC, ssid, IDC) from FPPKR send message

(CompleteInitS, ssid, 1) to FPPKR (G11).

IC.3 If IDC is honest, retrieve ⟨𝐶, ssid, [pkC], [𝑐]⟩. (G13)

Store ⟨File, IDC, pkC, 𝑐,⊥, 10⟩ overwriting any ⟨File, IDC, ∗, ∗, ∗, ∗⟩ (G1), and send

message (CompleteInitS, ssid, 1) to FPPKR. (G10)

On (ssid,𝐶) from A to FOPRF-PPKR
HSM on behalf of corrupt S: // any IDC, corrupt S

IC.4 Retrieve ⟨Init, [IDC], ∗, ssid, [𝑎], [ID∗C], [kid], [𝑎
∗], [skEnc], [skC], ∗, [𝐶′]⟩. (G1)

IC.5 If 𝐶′ = ⊥, give input (InitS, ssid, IDC) to FPPKR. On response (InitS, ssid, IDC)
from FPPKR continue below. (G10) // 𝐶

′ ≠ ⊥ implies that 𝑏 was deliverd to IDC,

where the simulator gave input InitS to FPPKR
IC.6 If𝐶 = 𝐶′, retrieve record ⟨𝐶, [ssid], [pkC], [𝑐]⟩ (G13). Give input (CompleteInitS,

ssid, 1) to FPPKR (G10),

record ⟨File, ID∗C, kid, pkC, skC, 𝑐⟩ overwriting any ⟨File, ID
∗
C, ∗, ∗, ∗, ∗⟩, and send

(InitRes, ssid, Succ) to S as output of the HSM. (G1) // honest delivery of𝐶 , which

also implies honest delivery of 𝑎 and IDC = ID∗C as otherwise 𝐶′ = ⊥
IC.7 If 𝐶 ≠ 𝐶′:

(a) Search for a record ⟨𝐶, [ssid′], [pkC], [𝑐]⟩. (G13)

If ssid′ ≠ ssid, send (InitRes, ssid, Fail) to S. Otherwise, record

⟨File, ID∗C, kid, pkC, skC, 𝑐⟩ overwriting any ⟨File, ID∗C, ∗, ∗, ∗, ∗⟩. (G1)

(b) If no such record ⟨𝐶, ∗, ∗, ∗⟩ exists (G13), execute the HSM code on input

(ssid,𝐶), (G1)

where the entry 𝑘OPRF of the stored File record is set to ⊥, (G3)

up to determining 𝑜𝑢𝑡 and denote the result of the decryption by (ssid′, pkC, 𝑐).
If 𝑜𝑢𝑡 = Fail, send (InitRes, ssid, Fail) to S. If 𝑜𝑢𝑡 ≠ Fail, record

⟨File, ID∗C, kid, pkC, skC, 𝑐⟩ overwriting any ⟨File, ID∗C, ∗, ∗, ∗, ∗⟩. (G1)

(c) Search a record ⟨𝐻2, [pw] ∥ ∗, ∗, [𝑦]⟩ that is marked Consistent such that

⊥ ≠ (𝐾, skC) ← AE.Dec(𝑦, 𝑐). Overwrite the third to last entry of the Rec

record retrieved above with skC. (G8)

(i) If no such record exists, send (MaliciousInit, ID∗C,⊥,⊥) to FPPKR. (G8)

//Z has not yet computed the PRF value for 𝑎

(ii) If more than one consistent record is found, abort the simulation. (G4)

(iii) In all other cases, send (MaliciousInit, ssid, ID∗C, pw, 𝐾) to FPPKR. (G8)

//Z can decrypt 𝑐

(d) Send (InitRes, ssid, Succ) to S as output of the HSM. (G1)

On random oracle query 𝐻1 (pw ∥ IDC) from A:

H1.1 Query 𝐻1 (pw ∥ IDC) to SimOPRF (→ Step 4 of SimOPRF). Return output. (G3)

On random oracle query 𝐻2 (pw ∥ IDC, 𝑥) from A:

H2.1 If a record ⟨𝐻2, pw ∥ IDC, 𝑥,𝑦⟩ exists, output 𝑦. (G1)

H2.2 If there exists a record ⟨𝐹, S, IDC ∥ [kid], [𝑘OPRF], ∗⟩ in SimOPRF such that 𝑥 =

𝐻1 (pw ∥ IDC)𝑘OPRF : (G14)

(a) Retrieve ⟨leaked, IDC, kid, [skC], [𝑐], [𝑖]⟩. If multiple exist, choose smallest

𝑖 . (G10)

(b) Send (OfflineAttack, IDC, pw, 𝑖) to FPPKR. If it outputs 𝐾 ≠ Fail, (G10)

run 𝑦
$←− SimEQV (𝑐, (𝐾, skC)), record ⟨𝐻2, pw ∥ IDC, 𝑥,𝑦⟩ and output 𝑦. (G6)

Otherwise continue.

H2.3 Query𝐻2 (pw ∥ IDC, 𝑥) to SimOPRF, which triggers Step 8 of SimOPRF. Let𝑦 denote

its output. Record ⟨𝐻2, pw ∥ IDC, 𝑥,𝑦⟩. If𝑦 was produced by FOPRF mark the record

as Consistent. Output 𝑦. (G3)

On (RecC, ssid, IDC,𝑚𝑎𝑡𝑐ℎ) from FPPKR // Any IDC
R.1 If no record ⟨File, IDC, [kid], ∗, ∗, ∗⟩ exists, set kid← ⊥. (G3)

R.2 Give input (Eval, sid, IDC ∥kid, ssid, S, 0) to the simulated FOPRF from the simulated

IDC. This triggers Step 5 of SimOPRF, which outputs (sid, IDC, ssid, 𝑎′). (G3)

R.3 If a record ⟨Rec,⊥,⊥, ssid,⊥,⊥, ∗, ∗, ∗, ∗, ∗, ∗⟩ exists, overwrite the second, third,

fifth, and sixth entry with (IDC, kid, 𝑎′,𝑚𝑎𝑡𝑐ℎ). (G1) // This record exists if RecS

was executed previously

R.4 Otherwise, record ⟨Rec, IDC, kid, ssid, 𝑎′,𝑚𝑎𝑡𝑐ℎ,⊥,⊥,⊥,⊥,⊥,⊥⟩. (G1)

R.5 Send (Rec, ssid, 𝑎′, IDC) as message from IDC to S. (G1)

On (RecS, ssid, IDC,𝑚𝑎𝑡𝑐ℎ) from FPPKR: // honest, corrupt, or fully corrupt S
R.6 If a record ⟨Rec, ∗, ∗, ssid, ∗,⊥, ∗, ∗, ∗, ∗, ∗, ∗⟩ exists, overwrite ⊥ with𝑚𝑎𝑡𝑐ℎ. (G1) //

This record exists if RecC was executed previously

R.7 Otherwise, record ⟨Rec,⊥,⊥, ssid,⊥,𝑚𝑎𝑡𝑐ℎ,⊥,⊥,⊥,⊥,⊥,⊥⟩. (G1)

R.8 Wait for (Rec, ssid, 𝑎′, IDC). (G1) // See the (Rec, ssid, 𝑎′, IDC) interface below.

Figure 15: Simulator Sim
OPRF-PPKR

for 𝜋OPRF-PPKR
, part 2.

𝑖∗-th initialization was leaked, in any subsequent recovery

by ID∗C, B4 checks the same conditions and outputs the 𝑐′

received in that recovery to the INT-CTXT experiment if

they hold.

If such a recovery by ID∗C is the first that causes the event

𝐸AE, which happens with probability 1/𝑞Init, B4 wins the

INT-CTXT experiment due to the following. Let 𝑐∗ be the
ciphertext that causes 𝐸AE, which means that in G4, ID∗C
would successfully decrypt 𝑐∗ using 𝜌∗. Since B4 implicitly

set 𝜌∗ = 𝑘∗, 𝑐∗ successfully decrypts under 𝑘∗ and consti-

tutes a forgery in the INT-CTXT experiment. Therefore, we

have

|Pr[G5] − Pr[G4] | ≤ 𝑞InitAdvINT-CTXT
B4,AE

(𝜆).

30

Password-Protected Key Retrieval with(out) HSM Protection

Simulator Sim
OPRF-PPKR

, part 3.

On (Rec, ssid, 𝑎′, IDC) from A to S on behalf of IDC: // any IDC, any (if jumping here

from the (Rec, ssid, 𝑎′, IDC) from A to FOPRF-PPKR
HSM interface) S

Ra.1 If S is honest, wait for (RecS, ssid, IDC,𝑚𝑎𝑡𝑐ℎ) message from FPPKR. (G1) // See

(RecS, ssid, IDC,𝑚𝑎𝑡𝑐ℎ) interface.
Ra.2 Retrieve ⟨File, IDC, [kid], [pkC], ∗, [𝑐′]⟩. If no such record exists and S is honest,

send (CompleteRecS, ssid, 0) to FPPKR (G12)

Ra.3 Execute HSM code on input (Rec, ssid, 𝑎′, IDC) up to determining the output (G1)

and with the computation of 𝑏′ substituted as follows. Give input

(SndrComplete, sid, IDC ∥ kid, ssid) to the simulated FOPRF from the sim-

ulated S. This triggers Step 6 of SimOPRF, which outputs (sid, ssid, 𝑏′). (G3)

Ra.4 If the HSM output is ssid,DelRec, record ⟨DelRec, ssid⟩ and send (ssid,DelRec)
as HSM-signed message from S to IDC. If the output is ssid, 𝑏′, 𝑐, IDC, overwrite

the six last entries of ⟨Rec, ∗, ∗, ssid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ with IDC, kid, 𝑎′, pkC, 𝑏
′, 𝑐′

and send (ssid, 𝑏′, 𝑐′, IDC) as HSM-signed message to IDC. (G1)

On (Rec, ssid, 𝑎′, IDC) from A to FOPRF-PPKR
HSM on behalf of corrupt S:

Ra.5 If no record ⟨Rec, ∗, ∗, ssid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ exists, create

⟨Rec,⊥,⊥, ssid,⊥,⊥,⊥,⊥,⊥,⊥,⊥,⊥⟩. (G1)

Ra.6 Execute Steps Ra.2 -Ra.4 except that the output is returned to S instead of sending
it from S to IDC (G3)

On (ssid,DelRec) from A to IDC on behalf of S: // honest IDC, any S
Del.1 If no record ⟨Rec, IDC, ∗, ssid, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗⟩ exists or if there already was a

message (ssid, 𝑏′, 𝑐, ID∗C) to IDC, ignore. (G1)

Del.2 If S is not honest, send (RecS, ssid, IDC, 0,DelRec, 0) to FPPKR. On response

(RecS, ssid, IDC,𝑚𝑎𝑡𝑐ℎ) from FPPKR continue below. (G10)

Del.3 If HSM signature verifies, send (CompleteRecC, ssid, 1) to FPPKR and otherwise

(CompleteRecC, ssid, IDC, 0). (G10)

On (ssid, 𝑏′, 𝑐, ID∗C) from A to IDC on behalf of S: // honest IDC, any S
Rb.1 Retrieve ⟨Rec, IDC, ∗, ssid, [𝑎′], [𝑚𝑎𝑡𝑐ℎ], ∗, [kid], ∗, ∗, ∗, ∗⟩. (G1)

If no such record exists or if there already was a message (ssid,DelRec) to IDC,

ignore. (G1) // IDC did not start recovery or record deleted.

Rb.2 If S is corrupt, set pw← ⊥, 𝐾 ← ⊥, 𝑖 ← ⊥. (G12)

Rb.3 If S is fully corrupt:

(a) If record ⟨𝐻2, [pw] ∥ IDC, [𝑢], [𝑦]⟩ marked Consistent exists (G14) and

records ⟨IDC ∥ kid, ssid, IDC, [𝑟 ′]⟩ and ⟨𝐻1, pw ∥ IDC, [𝑟]⟩ exist in SimOPRF
s.t. ⊥ ≠ (𝐾, skC) ← AE.Dec(𝑦, 𝑐), and 𝑏′1/𝑟 ′ = 𝑢1/𝑟

, (G5)

set 𝑖 ← 0. (G10)

If more than one consistent record is found, abort the simulation. (G4) //

Adversarial OPRF key

(b) Otherwise, if records ⟨leaked, IDC, [kid′], [skC], 𝑐, [𝑖]⟩ and

⟨Init, IDC, kid′, ∗, [𝑎], ∗, ∗, ∗, ∗, ∗, [𝑏], ∗⟩ exist and a record ⟨𝐹, S, ∗, [𝑘], ∗⟩
exists in SimOPRF such that 𝑎𝑘 = 𝑏 and 𝑎′𝑘 = 𝑏′, (G5)

set pw← ⊥, 𝐾 ← ⊥. (G10) // Impersonation with old file

(c) Otherwise, set pw← 0, 𝐾 ← Fail, 𝑖 ← 0, skC ← ⊥. (G10)

Rb.4 If S is not honest, give input (RecS, ssid, ID∗C, pw, 𝐾, 𝑖) to FPPKR. On response

(RecS, ssid, ID∗C,𝑚𝑎𝑡𝑐ℎ) overwrite the sixth entry in the record retrieved in Step 1

with𝑚𝑎𝑡𝑐ℎ. (G10) // Ensures that we can produce output for IDC
Rb.5 If S is not fully corrupt and (ssid, 𝑏′, 𝑐, ID∗C) was never output by Sim

OPRF-PPKR

on behalf of S or FOPRF-PPKR
HSM , or if S is fully corrupt and the attestation signature

does not verify, send (CompleteInitC, ssid, 0) to FPPKR. (G10)

Rb.6 If IDC ≠ ID∗C, send (CompleteRecC, ssid, 0) to FPPKR. (G10) // IDC’s 𝑎 rerouted

Rb.7 If S is not fully corrupt, retrieve ⟨File, IDC, kid, ∗, [skC], ∗⟩. (G14)

Rb.8 If𝑚𝑎𝑡𝑐ℎ = 1 and skC ≠ ⊥, compute 𝜎 ← Sig.Sign(skC, (𝑎′, IDC, ssid, 𝑏′, 𝑐)), send
(ssid, 𝜎) as message from IDC to S (G14)

and send (CompleteRecC, ssid, 1) to FPPKR. (G10)

Rb.9 If𝑚𝑎𝑡𝑐ℎ = 0 or skC = ⊥, (G14)

send (CompleteRecC, ssid, 0) to FPPKR. (G10)

Figure 16: Simulator Sim
OPRF-PPKR

for 𝜋OPRF-PPKR
, part 3.

Game G6: Simulate ciphertexts of honest initializationswith-

out passwords. In this game, we change how Sim com-

putes the AE ciphertext 𝑐 in initializations of honest clients.

Now, when Sim receives a message (ssid, 𝑏, IDC, pkEnc) and
A has not yet queried (pw ∥ IDC, 𝑏

1/𝑟) to the random or-

acle 𝐻2, Sim does not compute 𝑐
$←− AE.Enc(𝜌, (𝐾, skC)).

Instead it uses the equivocability simulator of AE and runs

𝑐
$←− SimEQV (𝜆 + |skC |). Note that this can only happen

with non-negligible probability if S is fully corrupt as other-
wiseA would have to guess the OPRF key used by SimOPRF.

Then, Sim records ⟨AE, 𝑐, pw ∥ IDC, 𝑏
1/𝑟 , 𝐾, skC⟩. Recall that

Sim still receives pw as input and can create these records.

We emphasize that the creation of these records is only a

temporary change that will be removed later inG14 and any

step introduced in this game that relies on these records

will be changed later to work without them (cf. G10 and

G14).

We now use the AE records to ensure that recovery still

works correctly. To that end, we change Sim such that

when it receives a message (ssid, 𝑏′, 𝑐, IDC) in a recovery

of an honest IDC, Sim retrieves the record ⟨AE, 𝑐, pw′ ∥
IDC, 𝑏

′1/𝑟 ′ , [𝐾], [skC]⟩. If such a record exists, 𝑐 was pro-

duced SimEQV, and Sim proceeds using 𝐾 and skC from

that record. If no such record exists, then 𝑐 was computed

by Z, and Sim checks whether IDC can decrypt it. For

this, it again checks the conditions from G5. If they hold,

Sim let’s IDC output Fail and otherwise decrypts 𝑐 using

𝐹sid,S,IDC ∥∗ (pw′ ∥ IDC) to obtain 𝐾 and skC. Note that the
output behavior of IDC here is the same as in G5. Formally,

all these changes that do not rely on the AE records are

done in Ib.6 (c) and Ib.7 (a).

To ensure thatZ cannot distinguish G6 from G5, Sim addi-

tionally has to properly program the random oracle 𝐻2 to

account for password guessing. For each query (pw∥IDC, 𝑦)
to𝐻2, it retrieves the record ⟨AE, [𝑐], pw∥IDC, 𝑦, [𝐾], [skC]⟩,
then runs 𝜌 ← SimEQV (𝑐, (𝐾, skC)), and sets 𝐻2 (pw, 𝑦) ←
𝜌 (H2.2 (b)). That means, whenever A queries 𝐻2 on the

input that would yield the key for 𝑐 in G5, Sim now equivo-

cates 𝑐 to the matching message and programs 𝐻2 accord-

ingly. If no such record exists, Sim forwards the query to

the random oracle 𝐻2 of SimOPRF as in G5.

We claim that for any Z that is able to distinguish G6

and G5, we can construct an adversary B5 that wins the

EQV experiment for AE. Since in G5, 𝜌 is chosen by FOPRF
uniformly at random and 𝑐 is encrypted under 𝜌 , the dis-

tribution of 𝜌 and 𝑐 in G5 is exactly the same as in the real

game of the EQV experiment. In G6, 𝑐 is output by SimEQV
and thus its distribution is exactly the same as in the ideal

game of the EQV experiment. The distribution of 𝜌 in G6

remains unchanged unless there is a query to 𝐻2 such that

Sim equivocates 𝑐 . In that case 𝜌 is distributed exactly the

same as in the ideal world in the EQV experiment as it is

computed by SimEQV. Thus, we have

|Pr[G6] − Pr[G5] | ≤ AdvEQVB5,AE
(𝜆) .

Game G7: Abort upon signature forgery. In this game, we let

Sim abort upon observing a forged signature. Concretely, if

Sim receives a message (ssid, 𝜎∗) from A to S on behalf of

IDC then Sim aborts if all of the following conditions hold

(cf. 𝜎 .1):

• There is a record ⟨File, IDC, [pkC], ∗, ∗, ∗⟩ such that

Sig.Vfy(pkC, (𝑎′, IDC, ssid, 𝑏′, 𝑐), 𝜎∗) = 1,

• The signed 𝑐 was not equivocated using SimEQV, i.e.,

Sim never computed 𝜌 ← SimEQV (𝑐, (𝐾, skC)),
• 𝜎∗ was not computed by Sim on behalf of an honest

IDC.

31

Sebastian Faller, Tobias Handirk, Julia Hesse, Máté Horváth, & Anja Lehmann

Similarly, if Sim receives a message (ssid, 𝜎∗) from A to

FOPRF-PPKR
HSM on behalf of S then Sim aborts if all of the

above conditions hold (cf. 𝜎 .2). We call this event 𝐸Sig.

If A can provoke 𝐸Sig to happen, then we can use A to

construct an adversary B6 against the sEUF-CMA security

of Sig. B6 internally runsZ and plays the role of Sim and

F in the execution of the protocol. B6 starts by randomly

choosing 𝑖∗ ∈ {1, . . . , 𝑞Init}, where 𝑞Init is the number of

initializations. Let ID∗C denote the IDC that exeutes the 𝑖∗-th
initialization. If ID∗C is honest, then B6 does not generate a

signing key pair (skC, pkC) but instead uses the public key

pk∗ that it gets from its challenger. Since it does not know

the key sk∗, it stores ⊥ instead of skC in the AE record in

the 𝑖∗-th initialization.

If ID∗C is corrupt, then B6 aborts. Further, if A makes an

𝐻2 query such that Sim would equivocate 𝑐∗ by computing

𝜌 ← SimEQV (𝑐∗, (𝐾, skC)), where 𝑐∗ is the AE ciphertext

produced in the 𝑖∗-th initialization, then B6 also aborts.

Now, whenever ID∗C executes a recovery, B6 checks two

conditions:

• ID∗C receives a message (ssid, 𝑏′, 𝑐∗, ID∗C), where 𝑐
∗
is

the ciphertext it produced in the 𝑖∗-th initialization.

• The recovery is successful (in this game, B6 still gets

the client input pw′ and can check pw = pw′).
If both conditions are satisfied, then B6 does not com-

pute Sig.Sign(skC, (𝑎′, IDC, ssid, 𝑏′, 𝑐∗)) but instead uses its
Sign(·) oracle provided by its challenger to get a signature

𝜎 on the message𝑚 = (𝑎′, IDC, ssid, 𝑏′, 𝑐∗). If any condition
does not hold,B6 proceeds just like Sim inG6. Now,B6 con-

tinues the simulation and observes all (ssid, 𝜎) messages

that it receives fromA. If there is a message such that 𝐸Sig
happens, then B6 outputs 𝜎 .

Note that the view of Z in the reduction did not change

with respect to G7. The public key pkC and the signatures

𝜎 are distributed exactly as in G6. In the 𝑖∗-th initialization,

B6 did not use skC, as it simulated 𝑐∗ $←− SimEQV (𝜆 + |skC |)
without skC as in G6. B6 also did not have to equivocate

𝑐∗ with 𝜌 ← SimEQV (𝑐∗, (𝐾, skC)) (which it would not be

able to do). If the first signature 𝜎∗ that caused the event

𝐸Sig is valid under pk∗, which happens with probability at

least 1/𝑞Init, B6 wins. Overall, we get

|Pr[G7] − Pr[G6] | ≤ 𝑞InitAdvsEUF-CMA
B6,Sig

(𝜆) .

Game G8: Extract frommalicious initialization. In this game,

we change the behaviour of Sim whenever it receives a mes-

sage (ssid,𝐶) from a corrupt IDC or the corrupt S queries

(ssid,𝐶) to FOPRF-PPKR
HSM . For this, we first modify F in the

following way. We change the interface (InitC, ssid, pw)
such that it acts exactly as FPPKR if and only if the IDC that

makes the query is corrupt. Further, we add an interface

(CompleteInitS, ssid, IDC, pw, 𝐾) that executes the steps
CIS.3 and CIS.4 of FPPKR. Again, the addition of this inter-

face is only a temporary change and it is removed again in

G11.

When receiving a message (ssid,𝐶) from a corrupt party,

Sim executes the protocol as in G7 and then searches for a

record ⟨𝐻2, pw ∥ ∗, ∗, 𝑦⟩ such that 𝑐 decrypts successfully

to some (𝐾, skC) under 𝑦. Note that as of game G4, there

is at most one such 𝑦. If no such record exists, it sets 𝐾 ←
⊥, pw← ⊥.
If the message (ssid,𝐶) came from a corrupt IDC, Sim gives

the input (InitC, ssid, pw) to FPPKR on behalf of IDC and

sends (CompleteInitS, ssid, IDC, pw, 𝐾) to FPPKR. On the

other hand, if (ssid,𝐶) came from the corrupt S, Sim queries

(MaliciousInit, ssid, IDC, pw, 𝐾) to FPPKR, where IDC is

the value the corrupt S sent in the first message of the

subsession ssid. Formally, the changes can be read from

IC.2 (Step IC.2 (b) and the first part of Step IC.2 (d)) and

IC.7 (c) (Steps IC.7 (c)(i) and IC.7 (c)(iii)).

The changes introduced in this game are only syntactical

and do not affect any output of Sim. Essentially we only

let F store some records for initializations executed by a

corrupt party, but F never uses these records yet to produce

an output for any party. Hence, we have

Pr[G8] = Pr[G7] .
Game G9: Extract frommalicious Recoveries.We change the

simulator whenever it receives message (ssid, 𝜎) from a

corrupt IDC to S, or from a corrupt S to FOPRF-PPKR
HSM . As of

game G7, we know that if 𝜎 verifies under pkC stored in

the file of IDC, either the adversary previously initialized

(on behalf of corrupt IDC or a corrupt S) that file record or

it guessed the password of IDC. As in the previous game,

we let the simulator extract pw from that malicious ini-

tialization or password guess and submit (RecC, ssid, pw)
to FPPKR on behalf of corrupt IDC (see 𝜎 .2 (a) and 𝜎 .2 (b)),

resp. (MaliciousRec, ID∗C, pw
′) for a corrupt S (see 𝜎 .8).

Because the changes in the simulation again only affect

the state of FPPKR which is not yet influencing protocol

outputs, the change is only syntactical, and we have

𝑃𝑟 [G9] = Pr[G8] .
Game G10: Let F produce the output of the client. In this

game, we change the simulator such that the output for

honest clients is generated by F . To this end we have to

introduce several changes to F . We modify the interfaces

(InitC, ssid, pw) and (RecC, ssid, pw) to act exactly like

FPPKR, except that they still forward all inputs to Sim. Next,
we add the interfaces (InitS, ssid, IDC), (RecS, ssid, IDC),
(CompleteInitC, ssid, 𝑏𝐶), and (CompleteRecC, ssid, 𝑏𝐶)
and let them act exactly like in FPPKR. Finally, we

introduce the interfaces (CompleteInitS, ssid, 𝑏𝑆) and

(CompleteRecS, ssid, 𝑏𝑆), which both act as in FPPKR, ex-
cept that they never give any output to S.
Furthermore, we change Sim to always use the interfaces

CompleteInitC and CompleteRecC of F whenever it

wants to produce output of some honest IDC with 𝑏𝐶 set

appropriately (Ib.3 , Ib.4 , Ib.8 , Del.3 , Rb.5 , Rb.6 , Rb.8 , last

step, and Rb.9 , last step). Note that these interfaces only

produce output if both InitC and InitS, resp. RecC and

RecS, were queried previously and thus require Sim to give

the inputs to F on behalf of S if S is not honest (Ib.2 , Del.2 ,
Rb.4). Additionally, Sim has to ensure that F internally

creates File records that can be accessed during recoveries.

32

Password-Protected Key Retrieval with(out) HSM Protection

Simulator Sim
OPRF-PPKR

, part 4.

On (ssid, 𝜎) from A to S on behalf of IDC: // any IDC, honest S
𝜎 .1 Abort if all of the following conditions hold: (G7)

• There is either a record ⟨File, IDC, [pkC], ∗, ∗, ∗⟩ or Sim leaked pkC to A such

that Sig.Vfy(pkC, (𝑎′, IDC, ssid, 𝑏′, 𝑐), 𝜎∗) = 1, (G7)

• The signed 𝑐 was not equivocated using SimEQV, i.e., Sim never computed

𝜌 ← SimEQV (𝑐, (𝐾, skC)), (G7)

• Sim never output 𝜎 on behalf of an honest IDC. (G7)

𝜎 .2 If IDC is corrupt, do the following.

(a) Retrieve ⟨Rec, ∗, ∗, ssid, ∗, ∗, IDC, ∗, [𝑎′], [pkC], [𝑏′], [𝑐]⟩. If a record

⟨DelRec, ssid⟩ exists, ignore. (G1)

Determine pw′ as follows:
• If Sig.Vfy(pkC, (𝑎′, IDC, ssid, 𝑏′, 𝑐), 𝜎) = 0, set pw′ = ⊥. (G9)

• Otherwise, search for a record ⟨𝐻2, [pw′] ∥ ∗, ∗, [𝑦]⟩ marked Consistent

such that ⊥ ≠ (𝐾, skC) ← AE.Dec(𝑦, 𝑐). If noch such a record exists, set

pw′ = ⊥. (G9)

(b) Give input (RecC, ssid, pw′) to FPPKR on behalf of IDC. On response

(RecC, ssid, IDC,𝑚𝑎𝑡𝑐ℎ) from FPPKR continue below. (G9)

(c) Execute HSM code on input (ssid, 𝜎) up to determining 𝑜𝑢𝑡 . (G1)

If 𝑜𝑢𝑡 = Fail, send message (CompleteRecS, ssid, 0) to FPPKR (G12), and oth-

erwise (CompleteRecS, ssid, 1) (G10)

𝜎 .3 If IDC is honest, execute HSM code on input (ssid, 𝜎) and
send message (CompleteRecS, ssid, 1) to FPPKR. (G12) // If IDC is honest, we

only simulate 𝜎 if 𝑚𝑎𝑡𝑐ℎ = 1 and do not need to check again here. Due to IDC-

authentication the adversary also cannot inject any messages

On (ssid, 𝜎) from A to FOPRF-PPKR
HSM on behalf of corrupt S: // any IDC

𝜎 .4 Abort if all of the following conditions hold: (G7)

(a) There is either a record ⟨File, IDC, [pkC], ∗, ∗, ∗⟩ or Sim leaked pkC to A such

that Sig.Vfy(pkC, (𝑎′, IDC, ssid, 𝑏′, 𝑐), 𝜎∗) = 1, (G7)

(b) The signed 𝑐 was not equivocated using SimEQV, i.e., Sim never computed

𝜌 ← SimEQV (𝑐, (𝐾, skC)), (G7)

(c) Sim never output 𝜎 on behalf of an honest IDC. (G7)

𝜎 .5 Retrieve ⟨Rec, [IDC], ∗, ssid, ∗, [𝑚𝑎𝑡𝑐ℎ], [ID∗C], ∗, [𝑎
′], [pkC], [𝑏′], [𝑐]⟩. If a record

⟨DelRec, ssid⟩ exists, ignore. Execute HSM code on input (ssid, 𝜎) up to determining

𝑜𝑢𝑡 . (G1)

𝜎 .6 If 𝑚𝑎𝑡𝑐ℎ = ⊥, give input (RecS, ssid, ID∗C,⊥,⊥,⊥) to FPPKR. On response

(RecS, ssid, ID∗C,𝑚𝑎𝑡𝑐ℎ) from FPPKR continue below. (G10) //𝑚𝑎𝑡𝑐ℎ = ⊥ indicates

that RecS input was not given to FPPKR yet, which is necessary to decrease counter

𝜎 .7 If 𝑜𝑢𝑡 = Fail, send (RecRes, ssid, Fail) to S. (G1)

𝜎 .8 If 𝑜𝑢𝑡 = Succ, search for a record ⟨𝐻2, [pw′] ∥ ∗, ∗, [𝑦]⟩ marked Consistent such

that ⊥ ≠ (𝐾, skC) ← AE.Dec(𝑦, 𝑐), otherwise set pw′ ← ⊥. Then do: (G9) // need

to reset ctr in FPPKR
(a) // both messages in this recovery come from corrupt S If IDC = ⊥, give input
(MaliciousRec, ID∗C, pw

′) to FPPKR. (G9)

Independent of the response from FPPKR, send (RecRes, ssid, Succ) to S. (G1)

// We give the same password as in the MaliciousInit query, which ensures

that the counter is reset

(b) // 𝑎′ message came from IDC, 𝜎 from corrupt S If IDC ≠ ⊥:
• If IDC is corrupt, input (RecC, ssid, pw′) to FPPKR (G9)

• Give input (CompleteRecS, ssid, 1) to FPPKR and send

(RecRes, ssid, Succ) to S. (G10)

On GetPK from anyone to FOPRF-PPKR
HSM :

pk.1 Retrieve ⟨𝑃𝐾, [pk], ∗⟩ and return pk. (G1)

On LeakFile from A to FOPRF-PPKR
HSM on behalf of S:

LF.1 Send (LeakFile) to FPPKR to obtain IDC. (G10)

LF.2 𝐿 ← ∅. For each (IDC, 𝑐𝑡𝑟) in IDC: (G10)

(a) Retrieve ⟨File, IDC, [kid], [pkC], [skC], [𝑐]⟩. (G10)

(b) Retrieve ⟨𝐹, S, IDC ∥ kid, [𝑘OPRF], ∗⟩ in OPRF simulator. (G10)

(c) If no record ⟨leaked, IDC, ∗, ∗, ∗, ∗⟩ exists, record ⟨leaked, IDC, kid, skC, 𝑐, 1⟩.
Otherwise, record ⟨leaked, IDC, kid, skC, 𝑐, 𝑖 + 1⟩ where 𝑖 ∈ N is the

biggest number such that a record ⟨leaked, IDC, ∗, ∗, ∗, 𝑖⟩ exists. Append
(IDC, pkC, 𝑐, 𝑘OPRF, 𝑐𝑡𝑟) to 𝐿. (G10)

LF.3 Output 𝐿 to A. (G10)

On FullyCorrupt from A to FOPRF-PPKR
HSM on behalf of S: (G10)

FC.1 Send (FullyCorrupt, S) to FPPKR, which outputs IDC. (G10)

FC.2 Execute Step 2 of LeakFile using IDC. (G10)

FC.3 Retrieve ⟨𝑃𝐾, ∗, [sk]⟩ and output sk. (G10)

Figure 17: Simulator Sim
OPRF-PPKR

for 𝜋OPRF-PPKR
, part 4.

For this reason, whenever A sends some (ssid,𝐶) from an

honest IDC, Sim sends (CompleteInitS, ssid, 1) to F (IC.3 ,

IC.6), once again first giving the InitS input to F if S is

not honest to ensure that the CompleteInitS query pro-

ceeds (IC.5). Lastly, Sim acts exactly like Sim
OPRF-PPKR

on

the queries LeakFile and (FullyCorrupt, S) by A (LF.1-

LF.3 , FC.1-FC.3).

A difficulty for Sim resulting from these changes is that for

honest clients, 𝐾 is now chosen by F instead of Sim and

is unknown to Sim. In particular, this affects the changes

introduced in G6 as Sim cannot use the records ⟨AE, . . .⟩
anymore in G10 to store and obtain 𝐾 . Instead, whenever

Sim equivocates some ciphertext 𝑐 during a query to 𝐻2, it

has to extract𝐾 from F . Note thatA can only make a query

that requires Sim to equivocate if the corresponding file

containing 𝑐 was leaked or if S is fully corrupt as otherwise

A does not know the OPRF key used by SimOPRF. This

means that in F there is now a leaked record that Sim

can address in the OfflineAttack interface (H2.2 (a) and

the first part of H2.2 (b)). This allows Sim to obtain 𝐾 by

using the password from the query by A and properly

equivocate 𝑐 . Sim proceeds analagously if some honest IDC
receives a message (ssid, 𝑏, ID∗C, pkEnc) and A has already

queried (pw ∥ IDC, 𝑏
1/𝑟) to 𝐻2, except that it first has to

send (CompleteInitS, ssid, 1) to F in order to let F create

the leaked record (Ib.6 (a)- Ib.6 (c)).

Next, we change the handling of messages (ssid, 𝑏′, 𝑐, ID∗C)
in Sim. Here we need to appropriately choose the values

pw∗, 𝐾∗, and 𝑖 for the RecS query if S is fully corrupt. For

this, Sim again relies on similar checks as introduced in

G5. If there is a record 𝐹sid,S,∗ (pw′ ∥ ID∗C) that successfully
decrypts 𝑐 , Sim sets pw∗ ← pw′ and 𝐾∗ ← 𝐾 , where

𝐾 is the key obtained from decrypting 𝑐 (Rb.3 (a)). If no

such record exists but S used the same OPRF key as in the

initalization that produced 𝑐 , Sim sets pw∗ ← ⊥, 𝐾 ← ⊥
and chooses 𝑖 such that it indicates the leaked record that

contains 𝑐 (Rb.3 (b)). Otherwise, it sets pw∗ ← 0 and 𝐾∗ ←
Fail, which ensures that IDC outputs Fail independent of

the password (Rb.3 (c)). Further, Sim uses the skC obtained

from decrypting 𝑐 , resp. the leaked record, to compute the

signature 𝜎 .

Finally, we need to ensure that the counter for IDC
is updated in F . Hence, whenever Sim gives the

output (RecRes, ssid, Succ) to S, it additionally sends

(CompleteRecS, ssid, 1) to F (last part of 𝜎 .2 (c), 𝜎 .3 , sec-

ond step of 𝜎 .8 (b)).

Let us now argue why the changes introduced in G10 are

indistinguishable from G9. In G9, 𝐾 was chosen uniformly

at random by Sim, and 𝐾 is chosen uniformly at random

by F in G10. Therefore the distribution of 𝐾 obviously

does not change. Moreover, the other significant change

introduced in G10 to the initialization phase is removing 𝐾

from the records ⟨AE, . . .⟩. However, as argued above, Sim

is always able to extract 𝐾 from F whenever necessary.

Thus, all outputs for any IDC in the initialization phase

remain unchanged.

In the recovery phase, the removal of 𝐾 from the records

⟨AE, . . .⟩ has no effect, since in G9 in the recovery phase

the record was only used to obtain 𝐾 when Sim needed

to output it to IDC in a successful recovery, where IDC

33

Sebastian Faller, Tobias Handirk, Julia Hesse, Máté Horváth, & Anja Lehmann

received an equivocal 𝑐 . However, this is not necessary in

G10, as 𝐾 is output by F to IDC.

In both phases, the ouputs of S remain unchanged as S
still gets its output from Sim and the CompleteInitS and

CompleteRecS interfaces introduced here do not produce

output to S. Overall, we therefore have

Pr[G10] = Pr[G9] .
Game G11: Let F produce the output of honest servers in

initialization. In this game, we change Sim such that it

produces the output for honest servers by calling the appro-

priate interfaces of F . We also change the CompleteInitS

interface of F to provide output to S.
Concretely, in IC.2 (a), we still let Sim compute (ssid′, pkC, 𝑐) ←
Dec(skEnc,𝐶) and check ssid = ssid′. However, if the check
fails, Sim now sends (CompleteInitS, ssid, 0) to F to let

the server output Fail.

Further, we remove the (CompleteInitS, ssid, IDC, pw, 𝐾)
interface from F that we introduced in G8. In G8

the interface was used by Sim to let F create File

records. However, as of G10, F stores all the necessary

records because of the added InitC and InitS interfaces.

Therefore, Sim can execute IC.2 (d) exactly as SimOPRF,

i.e., Sim sends (CompleteInitS, ssid, 1) to F instead of

(CompleteInitS, ssid, IDC, pw, 𝐾).
We argue that the above changes do not alter the view

of Z: First, whenever in G10 Sim would have given out-

put (InitRes, ssid, IDC, Fail) directly to the honest S, we
now use the (CompleteInitS, ssid, 0) message to F . The
effect is the same and F outputs (InitRes, ssid, IDC, Fail)
to S. The same holds for the (CompleteInitS, ssid, 1) mes-

sages and Succ output. In addition, CompleteInitS makes

F record File records that use IDC, pw, 𝐾 from F ’s Init
records (instead of the values provided to CompleteInitS).

But these records were already created inG10, and therefore

IDC, pw, 𝐾 are the same in both games. We get

Pr[G11] = Pr[G10] .
Game G12: Let F produce the output of honest servers in

recovery. In this game, we change Sim such that it pro-

duces the output for honest servers in recovery by calling

the appropriate interfaces of F . In G11, Sim only used the

CompleteRecS interface when it wanted to produce the

output Succ for S. Hence, here we change Sim to also send

the message (CompleteRecS, ssid, 0) to F when it wants

to produce the output Fail for S (Ra.2 and 𝜎 .2 (c)). By set-

ting 𝑏𝑆 = 0, S always gets output Fail from F unless F
deletes the file for IDC in this recovery, however in that case

Sim ignores the message (ssid, 𝜎) (see 𝜎 .2 (a), 𝜎 .5). There-
fore, whenver Sim sends (CompleteRecS, ssid, 0) to F , this
produces the output (RecResssid, Fail) to S.
Further, it is easy to verify that any (CompleteRecS, ssid, 1)
query from Sim, where S is honest, produces the output

(RecRes, ssid, Succ) to S (𝜎 .2 (c), 𝜎 .3). In 𝜎 .2 , Sim is ei-

ther able to extract the correct password due to G9, which

leads to CompleteRecS outputting Succ, or if it cannot

extract a password the file must have been created in a

malicious initialization and CompleteRecS then outputs

Succ as well. If IDC is honest (cf. 𝜎 .3), the signature 𝜎 re-

ceived in this interface is only valid if it was output by Sim,

which only happens if IDC used the correct password. Thus,

CompleteRecS outputs Succ as well and we have

Pr[G12] = Pr[G11] .
Game G13: Simulate𝐶 during Init. In this game, we change how

Sim computes the message (ssid,𝐶) for honest IDC as long

as S is not fully corrupt. Whenever Sim receives a message

(ssid, 𝑏, IDC, pkEnc) to an honest IDC, the simulator does

not compute 𝐶
$←− PKE.Enc(pkEnc, (ssid, pkC, 𝑐)) but now

computes 𝐶
$←− PKE.Enc(pkEnc,⊥) (see Ib.7 (b)).

We also change Sim such that it does not decrypt the cipher-

text𝐶 produced for an honest IDC anymore. In IC.3 , when

𝐶 was computed by Sim for an honest IDC, then Sim re-

trieves the record containing pkC and 𝑐 that it stored when

computing 𝐶 . Similarly, in IC.6 , when 𝐶 was computed by

Sim, then Sim just retrieves the stored values pkC and 𝑐 . Ad-

ditionally, we need to check if the corrupt S replays some𝐶

that was computed as𝐶
$←− PKE.Enc(pkEnc,⊥) and if so, re-

trieve the corresponding values from the record instead of

decrypting 𝐶 (cf. IC.7 (a) and IC.7 (b)). The only change in

the view ofZ is that the distribution of the ciphertexts𝐶 . If

Z can detect this difference, we can construct an adversary

B7 against the IND-CCA security of PKE as follows:

Let 𝑞Init ∈ N be the number of initializations. We construct

a sequence of games G
(0)
12
, . . .,G

(𝑞Init)
12

, where in G
(𝑖)
12

the

first 𝑖 ciphertexts are computed as encryptions of ⊥ and

the remaining ciphertexts are encrypted as inG12. We have

G12 = G
(0)
12

and G13 = G
(𝑞Init)
12

. BecauseZ can distinguish

G12 from G13 there must be an index 𝑖∗ ∈ [𝑞Init] such
that Z has a non-negligible advantage in distinguishing

G
(𝑖∗−1)
12

and G
(𝑖∗)
12

. its challenger. Now, let ssid∗ denote the
ssid of the 𝑖∗-th initialization and ID∗C denote the IDC that

executes that initialization. In that initialization the reduc-

tion B7 does not compute (skEnc, pkEnc) itself in Ia.6 but

uses the pk∗ provided by its challenger. Then, in Ib.7 (b),

B7 gives 𝑚0 B (ssid∗, pkC, 𝑐) and 𝑚1 B ⊥ to the chal-

lenger and uses the returned 𝐶∗ as ciphertext for the 𝑖∗-
th initialization. In any subsequent recovery by ID∗C In

IC.7 (b), when B7 receives a message (ssid,𝐶) from A to

F encPw
HSM on behalf of a corrupted server such that there is no

record ⟨Init, ∗, ∗, ssid∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗,𝐶⟩ then B7 uses the

challenger’s decryption oracle to decrypt 𝐶 . Similarly, in

IC.2 (a), if there is no record ⟨Init, ∗, ∗, ssid∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗,𝐶⟩
then Sim again uses the challenger’s decryption oracle to

decrypt 𝐶 .

Then we have that if𝐶∗ encrypts𝑚0 the game is distributed

as in G
(𝑖∗−1)
12

and if it encrypts 𝑚1 then the game is dis-

tributed as in G
(𝑖∗)
12

. We get

|Pr[G13] − Pr[G12] | ≤ 𝑞InitAdvIND-CCA
PKE,B7

(𝜆) .
Game G14: Remove password forwarding fromF . In this game,

we do not give Sim any private input of the parties any-

more. Up to G13, Sim still stored the records ⟨AE, 𝑐, pw ∥
34

Password-Protected Key Retrieval with(out) HSM Protection

IDC, 𝑏
1/𝑟 , skC⟩ and used them for three purposes: (1) to

obtain the skC that is supposed to be contained in an equiv-

ocable 𝑐 , (2) to check whether a client used the correct pass-

word in a recovery, and (3) to determine critical queries

(pw ∥ IDC, 𝑏
1/𝑟) to 𝐻2 that require Sim to equivocate 𝑐 . As

we now finally remove the AE records, we have to simulate

these steps in another way.

Issue (1) can be solved trivially, and we instead use the File

records, which also store 𝑐 and skC (see Rb.7). For issue

(2), we now rely on the bit𝑚𝑎𝑡𝑐ℎ that Sim receives from F
and indicates whether the password used in the recovery

is correct (see Rb.8 and Rb.9).

To solve issue (3), we can instead rely on the records ⟨𝐻2, pw∥
IDC, 𝑢,𝑦⟩ and the Consistent marking. An 𝐻2 record if

marked Consistent if and only if 𝑢 = 𝐻1 (pw ∥ IDC)𝑘 for

some OPRF key𝑘 , where𝑘 can be either created by SimOPRF
(cf. H2.2), i.e., when S is not fully corrupt, or adversarially

chosen (cf. Ib.6 (b)), i.e., when S is fully corrupt. Then, when-
ever Sim would query the OfflineAttack interface in G13

with the password pw obtained from the AE record, in this

game we instead query the interface with all passwords pw
from Consistent 𝐻2 records (Ib.6 (b)).

With this change, we finally reach the point where Sim =

Sim
OPRF-PPKR

and F = FPPKR. We clearly added all inter-

faces of FPPKR to F . One can also verify that Sim is indeed

Sim
OPRF-PPKR

.

35

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Works

	2 Preliminaries
	3 Security model
	3.1 Ideal PPKR Functionality
	3.2 Modelling Server (and HSM) Corruption

	4 Constructions
	4.1 Lev-1 Protocol: Basic Encrypt-to-HSM
	4.2 Lev-2 Protocol: Enhanced Encrypt-to-HSM
	4.3 Lev-3 Protocol: OPRF-Based PPKR

	5 Evaluation & Discussion
	Acknowledgments
	References
	A Comparison with FPPKR of C:DFGHHHJ23
	B The 2HashDH simulator
	C HSM Functionalities
	D Full proofs
	D.1 Proof of Theorem 1
	D.2 Proof of Theorem 2
	D.3 Proof of Theorem 3

