
Practical Blind Signatures in Pairing-Free Groups

Michael Klooß1⋆, Michael Reichle1, and Benedikt Wagner2

1 Department of Computer Science
ETH Zurich, Switzerland

{michael.klooss, michael.reichle}@inf.ethz.ch
2 Ethereum Foundation

benedikt.wagner@ethereum.org

Abstract. Blind signatures have garnered significant attention in recent years, with several
efficient constructions in the random oracle model relying on well-understood assumptions.
However, this progress does not apply to pairing-free cyclic groups: fully secure constructions
over cyclic groups rely on pairings, remain inefficient, or depend on the algebraic group model
or strong interactive assumptions. To address this gap, Chairattana-Apirom, Tessaro, and Zhu
(CTZ, Crypto 2024) proposed a new scheme based on the CDH assumption. Unfortunately,
their construction results in large signatures and high communication complexity.
In this work, we propose a new blind signature construction in the random oracle model
that significantly improves upon the CTZ scheme. Compared to CTZ, our scheme reduces
communication complexity by a factor of more than 10 and decreases the signature size by a
factor of more than 45, achieving a compact signature size of only 224 Bytes. The security of
our scheme is based on the DDH assumption over pairing-free cyclic groups, and we show
how to generalize it to the partially blind setting.

1 Introduction

A blind signature scheme [Cha82] is a special digital signature scheme with a two-party signing
process. Namely, a Signer, who possesses the secret key, interacts with a User holding the message
intended for signing. Once the signing interaction terminates, the User should hold a signature for
the message that can be verified with respect to the Signer’s public key. It is crucial that the scheme
upholds the following security and privacy properties [JLO97, PS00]: One-More Unforgeability
asserts that the User can not generate valid signatures on its own, i.e., without engaging in
the signing protocol with the Signer; Blindness ensures that during the signing process, the
User’s message remains undisclosed to the Signer. More precisely, the Signer can not link the
message-signature pair to the interaction. These two properties render blind signatures a versatile
privacy-preserving tool. They have found use in various domains, including but not limited to
anonymous credentials [CG08, CL01] and electronic cash [Cha82, OO92].

Recent Progress. For a long time, constructions of blind signatures faced considerable challenges,
characterized by prohibitive inefficiency [GRS+11], reliance on strong assumptions [Cha82, Bol03,
BNPS03, FHS15, Gha17], complexity leveraging [GRS+11, GG14] or limited security guaran-
tees [PS00, AO00, HKL19, KLX22a]. Even in the random oracle model [BR93], a fully secure
and efficient blind signature scheme based on well-studied assumptions remained an elusive goal.
Recently, progress in two distinct directions has been made, both contributing significantly to
the resolution of this longstanding issue: The first line of work [KLR21, CHL+22, HLW23] uses
cut-and-choose techniques to turn weakly secure but efficient constructions into fully secure ones
while avoiding the use of strong assumptions. The second line of work [dK22, KRS23, KNR24]
draws inspiration from a generic construction due to Fischlin [Fis06]. By carefully exploiting the
algebraic structure of specific instantiations and with major modifications of Fischlin’s proof tech-
nique, these works provide practical blind signatures based on established assumptions. Notably,
among the aforementioned constructions, the practical ones heavily rely on algebraic properties of
lattices [dK22], pairings [CHL+22, KRS23, HLW23], or the RSA setting [CHL+22, KNR24].

©IACR 2024. This is the full version of an article that will be published in the proceedings of ASIACRYPT
2024.

⋆ Work done at Aalto University. The author’s affiliation changed before publication.

The Pairing-Free Setting. A long-standing goal in the realm of digital signature variants and in
cryptography in general is to understand if and how pairings can be avoided [BGH07, GHKW16,
CKU20, CFGG22, TZ22, PW23, TZ23]. This endeavor holds both scientific intrigue and practical
merit: operations in pairing-friendly groups are more expensive, and pairing-free groups enjoy a
broader library support.

Unfortunately, as we have seen above, the lines of work [KLR21, CHL+22, HLW23] and [dK22,
KRS23] so far did not yield practical blind signatures over pairing-free cyclic groups. And while
there are promising works trying to close this gap, they all fall short in meeting the desired
objectives entirely. Specifically, while some works [KLX22b, TZ22, CKM+23] yield very efficient
pairing-free blind signature based on established assumptions, their analysis relies on the algebraic
group model [FKL18]. Conversely, the very recent work by Chairattana-Apirom, Tessaro, and
Zhu [CTZ24] avoids the use of the algebraic group model. They give efficient constructions based
on interactive variants of CDH, along with a non-interactive CDH-based construction utilizing
techniques from [HLW23]. Unfortunately, this latter construction has signatures containing Θ(λ)
many group elements, where λ is the security parameter. In contrast to that, signatures in the
most efficient pairing-based construction [KRS23] contain only a small constant number of group
elements.

Our Goal. The goal of this work is to close this gap by providing a new blind signature scheme over
pairing-free cyclic groups, that (1) is based on well-studied cryptographic hardness assumptions, (2)
avoids idealizations other than the random oracle model, and (3) is practically efficient, without
the λ overhead in signature size.

1.1 Our Contribution

We achieve our goal by constructing a practical blind signature scheme in pairing-free groups, which
we compare with the state-of-the-art in Tables 1 and 2. To summarize, our scheme comes with the
following key characteristics:

– Unforgeability. One-more unforgeability holds based on the DDH assumption in the random
oracle model. Notably, our proof avoids the need for rewinding, resulting in a tighter security
bound in contrast to CTZ-3 [CTZ24], which is the only other scheme achieving full one-more
unforgeability in pairing-free groups without the algebraic group model.

– Blindness. Our scheme is statistically blind, and we show that it naturally generalizes to the
setting of partially blind signatures [AF96]. This is the first scheme supporting partial blindness
in this regime3.

– Efficiency. Our scheme is both concretely and asymptotically efficient. Especially, comparing to
CTZ-3 [CTZ24], we reduce the communication complexity by a factor of more than 10, and the
signature size from 10.5 Kilobytes to 224 Bytes, see Table 2).

Technically, our starting point is the pairing-based construction by Katsumata, Reichle, and
Sakai [KRS23]. We turn this construction into a pairing-free variant by replacing the pairing with
a (blindly issued) non-interactive proof. It is worth noting that a straightforward substitution
would yield only a weaker notion of one-more unforgeability, similar to CTZ-1 and CTZ-2 [CTZ24].
However, through a strategically devised security proof, we can circumvent this issue, achieving
full one-more unforgeability. A second twist allows us to avoid rewinding, another improvement
over CTZ-3 [CTZ24]. Further, we revist the security of Fischlin’s straightline extractable proof to
achieve statistical blindness for our scheme. Notably, this is in contrast to [KRS23], which is only
computationally blind.

1.2 Related Work

Here, we discuss related work on blind signatures. We focus primarily on recent efficient and secure
constructions in the random oracle model [BR93]. We give a comparison of blind signature schemes
in pairing-free cyclic groups in Table 1.
3 It is not obvious how to modify CTZ [CTZ24] to achieve partial blindness.

2

Scheme Assumption Full OMUF Moves Communication Signature

Cl-Schnorr [FPS20] OMDL, mROS ✓ 3 2G+ 3Zp 1G+ 1Zp

Abe [Abe01, KLX22b] DLOG ✓ 3 λ+ 3G+ 6Zp 2G+ 6Zp

TZ [TZ22] DLOG ✓ 3 2G+ 4Zp 4Zp

Snowblind [CKM+23] DLOG ✓ 3 2G+ 4Zp 1G+ 2Zp

CTZ-1 [CTZ24] CT-OMCDH ✗ 4 5G+ 5Zp 1G+ 4Zp

CTZ-2 [CTZ24] CT-OMCDH ✗ 5 5G+ 5Zp 1G+ 4Zp

CTZ-3 [CTZ24] CDH ✓ 4 Θ(λ)(λ+G+ Zp) Θ(λ)(λ+G+ Zp)
Ours DDH ✓ 4 Θ(λ)(λ+G+ Zp) 2G+ 5Zp

Table 1. Comparison of concurrently secure blind signature schemes in the discrete logarithm setting
without pairings. All constructions rely on the random oracle model, and schemes above the line additionally
require the algebraic group model. We compare the assumptions and security and the communication
complexity and signature size in terms of number of group elements and number of field elements. The
schemes CTZ-1 and CTZ-2 [CTZ24] only satisfy a weaker variant of one-more unforgeability.

Scheme Assumption Full OMUF Moves Communication Signature

CTZ-3 [CTZ24] CDH ✓ 4 27.12 Kilobytes 10.50 Kilobytes
Ours DDH ✓ 4 2.46 Kilobytes 224 Bytes

Table 2. Comparison of the concrete efficiency of concurrently secure blind signature schemes in the
discrete logarithm setting without pairings. We exclude constructions in the algebraic group model and
constructions that do not achieve full one-more unforgeability for this comparison. We assume λ = 128 and
that group and field elements are represented using 256 bit. Numbers are computed using the script in
Appendix F.

Foundations of Blind Signatures. Blind signatures have been introduced by Chaum in
1982 [Cha82] in the context of electronic cash. Pioneering works are by Juels, Luby, and Os-
trovsky [JLO97], by Fischlin [Fis06], and by Pointcheval and Stern [PS00]. Namely, Juels, Luby, and
Ostrovsky have demonstrated that blind signatures can generically (and inefficiently) be constructed
from one-way trapdoor permutations via secure two-party computation. Fischlin also gave a generic
construction of round-optimal (i.e., two moves) blind signatures. On the other hand, Pointcheval
and Stern have shown the security of efficient three-move blind signatures in the random oracle
model, as long as only polylogarithmically many signatures are issued concurrently. Since then,
several impossibility results have been proven [FS10, Pas11, BL13]. For example, Fischlin and
Schröder have ruled out certain statistically blind three-move constructions from non-interactive
assumptions in the standard model [FS10].

Strong Assumptions or Idealized Models. In addition to generic constructions mentioned
earlier, several more direct constructions exist, relying on complexity leveraging [GRS+11, GG14]
or non-standard q-type or interactive assumptions [Oka06, GRS+11, FHS15, Gha17]. Also, there
are blind variants of BLS signatures and RSA-full-domain hash signatures [Bol03, BNPS03], which
are very efficient and round-optimal. However, these constructions rely on interactive one-more
variants of the underlying assumptions, e.g., one-more CDH. If one is willing to rely on the algebraic
group model [FKL18], there are several efficient constructions of blind signatures in pairing-free
groups [KLX22b, TZ22, CKM+23]. A recent scheme due to Fuchsbauer and Wolf [FW24] outputs
regular Schnorr signatures [Sch91]. In terms of assumptions, their result can be interpreted in two
ways: one can assume the security of Schnorr signatures [Sch91] with respect to a fixed hash function,
which is an interactive assumption; alternatively, one can rely on the discrete logarithm assumption
by treating the hash function as a random oracle. In this latter case, however, their protocol proves
relations defined by the random oracle in generic SNARK, which has unclear security implications
and is highly non-standard.

Cut-and-Choose Constructions. The starting point of this line of work lies in efficient construc-
tions of blind signatures with weak security guarantees [PS00, AO00, HKL19, HKLN20, KLX22a]

3

based on witness indistinguishable linear identification schemes [Oka93]. Specifically, these schemes
are insecure if more than polylogarithmically many signatures are issued concurrently. This is not only
an artifact of the security proof but can be exploited in a practical attack [Sch01, Wag02, BLL+21].
By extending a classical construction of Pointcheval [Poi98], Katz, Loss, and Rosenberg have
introduced boosting [KLR21], a technique to turn the aforementioned polylogarithmically-secure
blind signatures into fully secure ones: during the Nth signing interaction, the Signer and User
engage in a 1-of-N cut-and-choose, which results in communication and computation scaling linearly
in N . Subsequently, Chairattana-Apirom et al. [CHL+22] have improved communication to scale
logarithmically in N . They have also developed two concretely efficient constructions leveraging the
cut-and-choose idea. Building on one of these constructions (called PI-Cut-Choo), Hanzlik, Loss,
and Wagner [HLW23] have proposed a construction called Rai-Choo. This scheme is stateless and
round-optimal, and both computation and communication are independent of N . It relies on the
CDH assumption in the pairing-setting. On the downside, signatures in Rai-Choo contain Θ(λ)
many group elements. The latest achievements in this line of work are the pairing-free constructions
by Chairattana-Apirom, Tessaro, and Zhu [CTZ24]. While two of their constructions are very
efficient, they rely on interactive assumptions and only achieve a weaker version of unforgeability.
The third construction, which achieves full unforgeability and relies only on CDH has signatures
containing Θ(λ) many group elements due to techniques inherited from Rai-Choo. Hence, this line
of work did not yet result in a fully secure and efficient scheme with constant4 signature size over
pairing-free groups.

Fischlin and its Descendants. In addition to the line of work using cut-and-choose outlined above,
a second line of constructions managed to construct schemes that are practical and rely on conser-
vative assumptions. This line of work draws inspiration from Fischlin’s generic construction [Fis06]
but introduces several modifications to the proof technique to enable efficient implementations.
Specifically, del Pino and Katsumata [dK22] efficiently instantiate this framework from lattice
assumptions, while Katsumata, Reichle, and Sakai [KRS23] give two constructions utilizing pairings.
Kastner, Nguyen, and Reichle [KNR24] present a construction relying on pairing-free groups and
the strong RSA assumption.

However, this line of research has not yet yielded an efficient scheme with constant signature size
over pairing-free groups alone. Our contribution can be viewed as adapting the second construction
proposed by Katsumata, Reichle, and Sakai to the pairing-free setting. Doing this naively would
result in a weaker form of unforgeability as for the first two constructions in [CTZ24]. With a clever
twist, we can prove full unforgeability.

1.3 Technical Overview

Here, we give an informal overview of our techniques. Our starting point will be the pairing-based
blind signature scheme by Katsumata, Reichle, and Sakai [KRS23]. As this scheme is already very
efficient, our main technical goal is to eliminate the use of pairings.

Our Starting Point: Pairing-based Blind Signatures. Let us briefly recall the construction
by Katsumata et al. [KRS23]. To this end, let G be a pairing-friendly group generated by G ∈ G.
The basis of the scheme is a signature scheme obtained from the Boneh-Boyen identity-based
encryption [BB04], for which signatures σ = (S1, S2) have the structure

S1 = uV + s(mU +H), S2 = sG. (1)

Here, s ∈ Zp is sampled uniformly during the signing process, u ∈ Zp is the secret key, U = uG,
V , and H are public group elements, and m is a hash of the message to be signed. Verification
leverages the pairing. In the construction by Katsumata, Reichle, and Sakai, such signatures are
issued blindly as follows:

1. The User sends a Pedersen commitment C to m. It also includes a proof πPed, proving knowledge
of the commitment randomness and m;

2. The Signer homomorphically computes a blinded version σC of the signature σ from the
commitment C and sends it to the User;

4 Constant signature size here means a constant (in λ) number of group elements.

4

3. The User can remove the commitment randomness to obtain an actual signature σ′. For blindness,
it is also essential that the User rerandomizes the signature into a fresh valid signature σ before
outputting it.

In [KRS23] and in this work, πPed has to be straightline-extractable. Due to their instantiation
of πPed, [KRS23] relies on DDH for blindness. We follow a different approach and instantiate πPed

by revisiting the security of randomized Fischlin’s transform [Fis05, Ks22]. Consequently, our
instantiation is statistically blind. We refer to the technical part of this paper (and Appendix C)
for details.

Towards a Pairing-Free Scheme. We now want to eliminate the use of the pairing from the
scheme. For that, we first observe that we can port the underlying signature scheme into the
pairing-free setting. Essentially, we include a proof π in the signature that proves that Equation (1)
holds. That is, the signature is now σ = (S1, S2, π). We observe that such a proof can be constructed
very efficiently from a Σ-protocol.

While this works in the non-blind setting, computing such a signature σ interactively and blindly
turns out to be challenging: the User needs to obtain π, but it does not know a suitable witness to
do so. Especially, the witness includes the secret key u ∈ Zp. On the other hand, we cannot just let
the Signer generate the proof π, because the statement is the rerandomized signature σ, which we
want to keep hidden from the Signer.

To overcome this first challenge, our starting point is an approach similar to [CTZ24]. Namely,
as π is constructed from an appropriate Σ-protocol, we can issue π interactively and blindly.
Roughly, we adapt the techniques of [CTZ24] to our setting, and obtain a pairing-free variant of
the construction by Katsumata et al. [KRS23] with blind issuance.

Full Unforgeability Fails. Equipped with (a sketch of) our scheme, let us now move our attention
to the security proof, concretely, the proof of one-more unforgeability. The natural idea would
be to translate the security proof from the pairing-based construction [KRS23] to our setting.
Unfortunately, when doing that naively, we can not achieve full one-more unforgeability. To
understand this, the reader may first recall that in the one-more unforgeability game, the adversary
can interact with the Signer in multiple signing sessions. It wins the game, if it outputs valid
signatures for more messages than it completed signing interactions5. Additionally, the reader may
recall the structure of our current blind signing protocol:

1. The Signer and the User interact similarly to the pairing-based scheme sketched above. This
means that the Signer sends σC to the User which allows the User to compute a signature
(S1, S2) of the underlying pairing-based scheme [KRS23];

2. The Signer and the User interactively (and blindly) compute the proof π;

Now, assume that we have an adversary interacting 20 times with the Signer, but only completing
7 interactions. Say the remaining 13 interactions end after the first of the two stages above. Now,
if an adversary outputs 8 valid message-signature pairs, it is deemed successful in the one-more
unforgeability game. However, the reduction from [KRS23] does not apply, as the adversary
essentially finished 13 > 8 interactions of the pairing-based protocol and learned σC . Conceptually,
the reduction would leak σC to the adversary too early, and σC contains a solution to a hard problem
(specifically, CDH). A similar issue with a different underlying scheme also appeared in [CTZ24].
The authors manage to circumvent the issue by outputting a commitment to the signature at first,
in the second, and then opening the commitment only in the very last message of the protocol.
While this is elegant, it also causes some overhead in terms of efficiency. As we will see next, for
our scheme it is possible to prove unforgeability without further modifying the signing protocol.

Achieving Full Unforgeability. Our high-level approach for showing full one-more unforgeability
is to eliminate information about σC from singing interactions that are not finished. To this end,
we observe that σC is pseudorandom as long as the adversary never learns π, so intuitively, it
should not give the adversary any information it can use for its forgeries. To be more concrete,
let us assume for the sake of this overview that the reduction knows ahead of time which signing
5 We could show a weaker form of one-more unforgeability similar to CTZ-1 and CTZ-2 [CTZ24], in which

the adversary has to output valid signatures for more messages than it started signing interactions.

5

interactions are not finished6. Then, the reduction will simply send a random σC to the adversary.
To get an intuition for why that works, observe from Equation (1) that (S1, S2) is indistinguishable
from random by the DDH assumption applied to (sG,H, sH). Coming back to our example from
above, the adversary would now only learn 7 < 8 such σC ’s, and the proof of the pairing-based
scheme applies.

Avoiding Rewinding. So far, we have omitted an important detail: the reduction of the pairing-
based scheme [KRS23] does (of course) not know the secret key, which is part of the witness for
the proof π. It is thus not clear how the reduction can issue π to the User interactively7. A similar
problem appears in [CTZ24], so let us briefly review their solution. Roughly [CTZ24] employs an
OR proof for π. That is, π ensures that the signature is valid or the Signer knows the discrete
logarithm of some group element X ∈ G output by the random oracle. The reduction then makes
sure to know this discrete logarithm, which allows simulating π. Finally, the reduction either obtains
a valid signature, which allows to finish the proof as before, or the discrete logarithm of X. For
the latter, the reduction is required to rewind the adversary, leading to a highly non-tight security
bound.

To avoid rewinding, we make the following twist: we replace X with a Diffie-Hellman (DH) tuple
D. In particular, π now ensures that either σ is well-formed or D is a DH tuple. Interestingly, this
comes at no additional cost in signature size. Intuitively, as we are no longer proving knowledge of
a witness, but rather membership in a language, rewinding should not be needed.

Turning this into a formal proof requires a careful sequence of hybrid games, as outlined next.
Initially, the game simulates the Signer as in the real protocol, which means that the proof π is
computed via the signature branch, i.e., using the witness which testifies the validity of the signature.
Also, D is not a DH tuple. Then, soundness (not knowledge soundness!) of the proofs π contained
in the forgery guarantees that all signatures in the forgery are valid (because D is not a DH tuple).
Call this event E, our strategy is to preserve E while simulating π using the DH branch. If so, we
can argue as above that CDH is solved if the adversary is successful. To carry this out, we need to
switch D to a valid DH tuple. We want to use DDH to argue that the probability of E does not
change significantly when we make this change. To do this formally, we need to present a reduction
that interpolates between the two games and efficiently evaluates whether E occurs. Doing this
naively is equivalent to solving DDH in the first place! The crucial insight here is that this can be
done efficiently using the signing key u and the discrete logarithm h of H. Once we are in a game
where D is a valid DH tuple, we can use the corresponding DH witness to simulate π. Then, if E
occurs in this last game, we can reduce to CDH as discussed above8.

Generalizing to Partial Blindness. Partial blindness allows the Signer and User to agree on a
common message τ that is signed together with the (hidden) message m. This property is useful for
many privacy-preserving applications. To obtain partial blindness, we employ the design principle
from Abe and Okamoto [AO00]. That is, the vector D is output by a random oracle Hddh on input
τ . Otherwise, the entire protocol remains unchanged. By carefully applying the techniques sketched
above, we can prove partial blindness.

1.4 Organization of this Paper

In Section 2, we provide the relevant cryptographic definitions. In Section 3, we sketch the pairing-
free signature scheme that underlies our construction. To improve readability, we first provide an
unblinded version of our protocol in Section 4 and prove one-more unforgeability. In Section 5,
we provide the full protocol and its blindness proof. The Signer in this protocol is the same as in
Section 4, which means that one-more unforgeability follows as in Section 4.

6 Naively, this requires guessing aborted sessions which leads to an exponential security loss. Our approach
actually relies on a slightly more sophisticated argument.

7 Non-interactively and without blindness, this can be done in a standard way, using honest-verifier
zero-knowledge and by programming the random oracle.

8 The final reduction does not need to check if E occurs, and hence it neither needs the secret key u nor
the discrete logarithm h of H.

6

2 Preliminaries

Let λ ∈ N be the security parameter. We use standard notations for probability, algorithms and
distributions 9. We write A(inA) ←→ B(inB) for interactive protocols between parties A and B
with input inA and inB , respectively. Within algorithmic descriptions, we denote by req C that the
algorithm outputs ⊥ if the condition C is false. When describing games, we denote by abort if C
that the game outputs 0 if the condition C is false. Throughout, we denote by G a group of
prime order p with generator G ∈ G. We generally use additive notation for G. Throughout, group
elements G are capital, whereas elements x in N or Zp are lowercase. Vectors of elements G or x
are bold, and generally indexed G = (G1, · · · , Gn) or x = (x1, · · · , xn), respectively.

Assumptions. Throughout the paper, we let G be a group of prime order p with generator G ∈ G.
As common, this should be understood as implicitly being a family of groups, i.e., G = Gλ is
implicitly parameterized by the security parameter λ. We briefly recall the DL, CDH and (Q-)DDH
assumptions and refer to Appendix A for formal definitions. While DDH implies Q-DDH,CDH and
DL tightly, these assumptions will be convenient to prove security later. Below, let a, b, c $← Zp. The
DL assumption states that given G and aG it is hard to compute a. The CDH assumption states
that it is hard given (G, aG, bB) to compute (ab)G. The DDH assumption states that it is hard
to distinguish a real Diffie-Hellman tuple (G, aG, bB, (ab)G) from a random tuple (G, aG, bB, cG).
The Q-DDH assumption states that it is hard to distinguish Q random Diffie-Hellman tuples from
random Q tuples.

(Partially) Blind Signatures. We define the primitive of interest, namely, blind signatures [Cha82].
For convenience, we directly define partially blind signatures [AF96] and note that plain blind
signatures are the special case in which τ is fixed, i.e., |T | = 1.

Definition 1 (Partially Blind Signature Scheme). A partially blind signature scheme with
message space M and common message space T is a tuple of PPT algorithms BS = (KeyGen, S,U,
Verify) with the following syntax:

– KeyGen(1λ): outputs a pair of keys (vk, sk). We assume that sk includes vk implicitly.
– S(sk, τ)←→ U(vk,m, τ): S takes as input a secret key sk and common message τ ∈ T . U takes

as input a key vk, a message m ∈ M and common message τ ∈ T . After the execution, U
returns a signature σ and we write σ ← ⟨S(sk, τ),U(vk,m, τ)⟩.

– Verify(vk,m, τ, σ) is deterministic and takes as input public key vk, message m ∈M, a common
message τ , and a signature σ, and outputs b ∈ {0, 1}.

Definition 2 (Correctness). A partially blind signature BS is correct with correctness error γerr
if for all (vk, sk) ∈ KeyGen(1λ) and all m ∈M, τ ∈ T , it holds that

Pr[σ ← ⟨S(sk, τ),U(vk,m, τ)⟩ : Verify(vk,m, τ, σ) = 1] ≥ 1− γerr(λ).

Intuitively, a (partially) blind signature scheme should not allow any user to obtain signatures
without interacting with the Signer. This is modeled by the notion of one-more unforgeability, which
states that after completing k − 1 signing sessions on some common message τ∗, an adversary can
not output valid signatures on k messages with common message τ∗.

Definition 3 (One-More Unforgeability). Let BS = (KeyGen, S,U,Verify) be a blind signature
scheme. Consider an algorithm A and the following game:

1. Run (vk, sk)← KeyGen(1λ) and let O be an interactive oracle simulating S(sk, ·).
2. Run τ, ((m1, σ1), . . . , (mk, σk))← AO(vk), where A can query O in an arbitrarily interleaved

way.
3. Output 1 if and only if all mi, i ∈ [k] are pairwise distinct, A completed at most k−1 interactions

with O on input τ , and for each i ∈ [k] it holds that Verify(vk,mi, τ, σi) = 1.

9 We use x := v for assignment of value v to x (and x ← v if x is updated with value v), x ← A(in) for
(probabilistic) algorithms A on input in, and x

$← D for sampling from distribution D. (If D is a set, this
denotes sampling from D uniformly and independently at random).

7

We denote by AdvOMUFBS
A (λ) the probability that the above game outputs 1. We say that BS is one-

more unforgeable (OMUF), if for every PPT algorithm A, it holds that AdvOMUFBS
A (λ) = negl(λ).

To protect the privacy of users, blind signatures should satisfy blindness. Intuitively, blindness
states that a malicious signer can not link the signing interaction to the message-signature pair
(except for the common message τ). We emphasize that we consider the malicious signer blindness,
i.e., the malicious signer can freely choose the public key and arbitrarily deviate from the protocol.

Definition 4 (Partial Blindness). Let BS = (KeyGen,S,U,Verify) be a blind signature scheme.
For an algorithm A and bit b ∈ {0, 1}, consider the following game:

1. Run (vk,m0,m1, τ, st)← A(1λ).
2. Let O0 be an interactive oracle simulating U(vk,mb, τ) and O1 be an interactive oracle simulating

U(vk,m1−b, τ).
3. Run st′ ← AO0,O1(st), where A has arbitrary interleaved one-time access to O0 and O1. Let

σb, σ1−b be the local outputs of O0,O1, respectively.
4. If σ0 = ⊥ or σ1 = ⊥, run b′ ← A(st′,⊥,⊥). Else, run b′ ← A(st′, σ0, σ1).
5. Output b′.

We denote by AdvPBlindBSA (λ) difference between the probability that the above game with b = 0
outputs 1 and the probability that the game with b = 1 outputs 1. We say that BS satisfies partial
blindness if AdvPBlindBSA (λ) = negl(λ).

Relations and Σ-Protocols. Next, we define Σ-protocols for NP-relations. We start by defining
NP-relations.

Definition 5 (NP-Relation and Language). Let R ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation.
We say that R is an NP-relation, if there are polynomials p and q such that R can efficiently be
decided and for every (x,w) ∈ R, we have |x| ≤ p(λ) and |w| ≤ q(|x|). We denote by LR = {x ∈
{0, 1}∗ | ∃w s.t. (x,w) ∈ R} the language induced by R.

Let R be an NP-relation with statements x and witnesses w. A Σ-protocol for an NP-relation R for
language LR with challenge space CH is a tuple of PPT algorithms Σ = (Init,Resp,Verify) such that

– Init(x,w): given a statement x ∈ LR and a witness w, outputs a first flow message (i.e.,
commitment) A and a state st, where we assume st includes (x,w),

– Resp(st, c): given a state st and a challenge c ∈ CH, outputs a third flow message (i.e., response) z,
– Verify(x, A, c, z): given a statement x ∈ LR, a commitment A, a challenge c ∈ CH, and a

response z, outputs a bit b ∈ {0, 1}.

We call the tuple (A, c, z) the transcript and say that they are valid for x if Verify(x, A, c, z) outputs
1. When the context is clear, we simply say it is valid and omit x. Next, we define the standard
notions of correctness, special honest-verifier zero-knowledge, and (2-)special soundness.

Definition 6 (Correctness). Let R be an NP-relation and Σ = (Init,Resp,Verify) be an Σ-protocol
for R. We say Σ is correct, if for all (x,w) ∈ R, (A, st)← Init(x,w), c ∈ CH, and z ← Resp(st, c),
it holds that Verify(x, A, c, z) = 1.

Definition 7 (Special HVZK). Let R be an NP-relation and Σ = (Init,Resp,Verify) be a Σ-
protocol for R. We say that Σ is special honest-verifier zero-knowledge (HVZK), if there exists a
PPT zero-knowledge simulator Sim such that for any (potentially unbounded) adversary A, it holds
that for any (x,w) ∈ R and c ∈ CH that Dreal = Dsim for

Dreal := {(A, c, z) | A← Init(x,w), z ← Resp(st, c)},
Dsim := {(A, c, z) | (A, z)← Sim(x, c)}.

In this work, we write HVZK for short.

Definition 8 (Special Soundness). Let R be an NP-relation and Σ = (Init,Resp,Verify) be a
Σ-protocol for R. We say that Σ is (2-)special sound, if there exists a deterministic PT extractor
Ext such that given two valid transcripts {(A, cb, zb)}b∈[2] for statement x with c0 ≠ c1, along with
x, outputs a witness w such that (x,w) ∈ R.

8

Non-Interactive Proof Systems. Here, we define straightline-extractable non-interactive zero-
knowledge proofs. We limit ourselves to security in the random oracle model. Efficient constructions
are known in this case, e.g., using the Fischlin transformation [Fis05], but also [Pas03, Kat21, Ks22].

Definition 9 (Non-Interactive Proof System). A non-interactive proof system NIPS for NP-
relation R using a random oracle H is a pair NIPS = (Prove,Ver) of PPT algorithms with access to
a random oracle, where

– ProveH(x,w): generates a proof π given (x,w) ∈ R.
– VerH(x, π): verifies a proof π for statement x and outputs 0 or 1.

Note that out definitions of zero-knowledge simulator and knowledge extractor are independent
of an adversary, in particular, they are straightline by definition.

Definition 10 (Correctness). Let NIPS = (Prove,Ver) be a non-interactive proof system for a
relation R. It has correctness error γerr if for all (x,w) ∈ R, it holds that

Pr
[
π ← ProveH(x,w) : VerH(x, π) = 1

]
≥ 1− γerr(λ),

where the probability is over the choice of H and the randomness of Prove,Ver. We call NIPS correct
if γerr(λ) = negl(λ). We say it is perfectly correct if γerr = 0.

Definition 11 (Witness Indistinguishability). Let NIPS = (ProveH,VerH) be a non-interactive
proof system for a relation R in the random oracle model. Let A be an algorithm which makes at
most Q = Q(λ) queries to H and let

AdvWINIPSA (Q,λ) = Pr
[
b← AH,O0(1λ) : b = 1

]
− Pr

[
b← AH,O1(1λ) : b = 1

]
,

where Oi(x,w0,w1) returns ProveH(x,wi) for i ∈ {0, 1}. We call NIPS statistically (resp. com-
putationally) witness indistinguishable (WI), if for any unbounded (resp. PPT) adversary A, the
advantage AdvWINIPSA (λ) is negligible.

For knowledge soundness, the extractor must compute a witness from an accepting proof and all
adversarial random oracle queries. In particular, extraction is straightline. We say that knowledge
soundness is relaxed if the witness is for a relaxed relation R̃ ⊋ R. We refer to R̃ as the knowledge
relation.

Definition 12 (Relaxed Knowledge Soundness). Let NIPS = (Prove,Ver) be a non-interactive
proof system for a relation R and let R̃ ⊇ R be an NP-relation. Let Ext be a PPT algorithm. Let A
be an oracle algorithm and let

RealA(λ) := Pr
[
b← AH,OVer(1λ) : b = 1

]
,

IdealA(λ) := Pr
[
b← AH,OExt(1λ) : b = 1

]
.

Here, A has (black-box) access to the random oracle H and to an oracle OProve or OExt, which are
as follows:

– OVer(x, π): Return Ver(x, π).
– OExt(x, π): If Ver(x, π) = 1 and (x,w) /∈ R̃ for w← Ext(Q,x, π), return 0. Else, return 1. Here,
Q denotes the set of A’s H queries.

The advantage of A against knowledge soundness is AdvKSNIPS,R̃A (λ) := |RealA(λ)− IdealA(λ)|. We
say that Ext is a knowledge extractor for NIPS and knowledge relation R̃, if for every PPT algorithm
A, the advantage AdvKSNIPS,R̃A (λ) is negligible in λ. We say that NIPS is knowledge sound, if there
is a knowledge extractor for NIPS.

Remark 1. Any non-interactive proof system meeting above requirements is sufficient for our blind
signature construction, and we present it using the proof system in a black-box way. For concreteness,
we will use a variant of the Fischlin transformation [Fis05, Ks22], which detail in Appendix C.

9

3 Signatures based on the Boneh-Boyen IBE

It is well-known that signatures can generically be constructed from identity-based encryption
(IBE) [BF01]. Our starting point towards constructing blind signatures is the Boneh-Boyen identity-
based encryption scheme [BB04]. Note that without any modification this scheme would rely on
pairings, and so would the derived signature scheme. Here, we provide a pairing-free variant of this
signature scheme. As this scheme is the basis for our partially blind signature, we also provide a
common message τ ∈ {0, 1}∗ as parameter.

Overview. Let HM : {0, 1}∗ → Zp be a random oracle. For any m ∈ {0, 1}∗, denote by m := HM(m).
A signature on a message m ∈ {0, 1}∗ consists of two group elements S1 and S2 such that

S1 = uV + s(mU +H), S2 = sG, (2)

where V,H,U = uG ∈ G are part of the public key and s ∈ Zp. To verify such a signature without
a pairing, signatures in our variant also contain a proof π, which informally shows that one of the
following holds:

(i) (S1, S2) satisfy Equation (2) for U = uG, or
(ii) D = Hddh(τ) is a DDH-tuple, where Hddh : {0, 1}∗ → G2 is a random oracle for common message

τ ∈ {0, 1}∗.

Point (ii) is technically not required for the signature scheme itself but will be useful for the security
proof of our (partially) blind signature construction (cf. Section 4), where it allows simulating the
signer.

Notation. To improve readability, we introduce two functions below, where the reader should
think of the element X as representing X = m · U +H. We define a function that captures the
statement (i). For V ∈ G, we define ϕBB

G,V : G× Z2
p → G3 as follows:

ϕBB
G,V (X, (s, u)) =

u · V + s ·X
s ·G
u ·G

 . (3)

If (X,G) are clear from the context, we write ϕ0 = ϕBB
G,V for short. Note that ϕ0(X, ·) is linear for

fixed input X. We also define Rbb with induced language Lbb as follows:

Rbb :=
{
(x0,w0) | S = ϕ0(X, (s, u))

}
,

where x0 = (G,V,X,S) ∈ G6, w0 = (s, u) ∈ Z3
p.

We also define a linear function that captures statement (ii). That is, for D1 ∈ G, we define
ϕDDH
D1

: Zp → G as follows:

ϕDDH
G,D1

(d2) =

(
d2 ·G
d2 ·D1

)
. (4)

If D1 is clear from the context, we write ϕ1 = ϕDDH
G,D1

for short. Similarly, we define Rddh with induced
language Lddh as follows:

Rddh :=
{
(x1,w1) | (D2, D3) = ϕ1(d2)

}
,

where x1 = (G,D1, D2, D3) ∈ G4, w1 = d2 ∈ Zp.

3.1 Construction

Let Σ0 = (Init0,Resp0,Verify0) and Σ1 = (Init1,Resp1,Verify1) be Σ-protocols with challenge space
Zp for the relations Rbb and Rddh defined above, respectively. We provide concrete instantiations of
both Σ-protocols in Appendix B. Denote by Sim1 the HVZK simulator of Verify1. Let HΣ,HM,Hddh

be random oracles mapping into Zp,Zp and G2, respectively. We define the signature BBSig in the
following.

10

BBSig: Pairing-free signature based on Boneh-Boyen IBE [BB04]

– KeyGen(1λ):
1. Sample u

$← Zp and set U := uG. Sample H,V,D1
$← G.

2. Output vk := (G,U,H, V,D1) and sk := u.
– Sign(sk,m, τ):

1. Set (Dτ
2 , D

τ
3) := Hddh(τ) and Dτ := (D1, D

τ
2 , D

τ
3).

2. Set m := HM(m) and X := mU +H.
3. Sample s← Zp and set S := ϕ0(X, (s, u)).
4. Compute a proof π as follows:

(a) Let (x0,x1) be as above a and set w0 := (s, u).
(b) Sample c1

$← Zp and set (A1, z1)← Sim1(x1, c1).
(c) Run (A0, st0)← Init0(x0,w0).
(d) Set c := HΣ((xb,Ab)b∈{0,1},m) and c0 := c− c1.
(e) Run z0 ← Resp0(st0, c0).
(f) Set π := (A0,A1, c, c0, z0, z1).

5. Output σbb := (S1, S2, π).
– Verify(vk,m, τ, σbb):

1. Parse σbb as σbb = (S1, S2, π) and π as π = (A0,A1, c, c0, z0, z1).
2. Set (Dτ

2 , D
τ
3) := Hddh(τ) and Dτ := (D1, D

τ
2 , D

τ
3).

3. Let (x0,x1) be as above a.
4. Set S := (S1, S2, U), m := HM(m) and X := mU +H.
5. Set c′ := H((xb,Ab)b∈{0,1},m) and c1 := c′ − c0.
6. Output 0 if Verify0(x0,A0, c0, z0) = 0.
7. Output 0 if Verify1(x1,A1, c1, z1) = 0.
8. Otherwise, output 1.

a That is, x0 := (G,V,X,S) and x1 := (G,Dτ).

Note that above, π functions essentially as proof for the disjunctive relation Rbb ∪ Rddh. Also, the
first flow A0,A1 can be omitted from the proof π since these values can be recomputed given
(c, c0, z0, z1).

3.2 Security Analysis

We provide a useful lemma which we employ in our proof of one-more unforgeability (cf. Theorem 1).
Roughly, it shows that it is hard to output a tuple (S1, S2) such that (G,V,Xm∗ , S1, S2, U) ∈ Lbb,
where m∗ ∈ Zp is chosen selectively and Xm∗ := m∗U +H. This even holds if the adversary is given
oracle access to an oracle that outputs (S1, S2) such that (G,V,Xm, S1, S2, U) ∈ Lbb for m ̸= m∗.
Note that this corresponds almost to selective unforgeability of BBSig except that the common
message τ and the proof π is ignored. This can be shown via the puncturing strategy from [BB04]
and we provide a formal proof in Appendix D.

Lemma 1 (Selective Security of BBSig). For any algorithm A, let ϵBBA be the probability that
the following game outputs 1:

1. Run (m∗, stA)← A(1λ).
2. Sample u

$← Zp and set U := uG.
3. Sample (H,V)

$← G and set Xm∗ := m∗U +H.
4. Run (S∗

1 , S
∗
2)← AO(G,U,H, V, stA), where O is given as:

– O(m): Output ⊥ if m = m∗. Otherwise, sample s
$← Zp, set Xm = m ·U +H, and compute

S := ϕ0(Xm, (s, u)). Then return (S1, S2).
5. Set x∗

0 := (G,V,Xm∗ , S∗
1 , S

∗
2 , U) and output 1 if and only if x∗

0 ∈ Lbb.

Then, for any PPT algorithm A, there exists some PPT algorithm B with running time similar to
A such that

ϵBBA ≤ AdvCDHG
B(λ).

11

4 Non-Blind Interactive Signing Protocol

With BBSig signatures as introduced in Section 3 at hand, we now move closer to our blind
signature construction. The goal of this section is to define an interactive protocol for obtaining
BBSig signatures from the Signer. More precisely, what we construct here is a blind signature scheme
that satisfies one-more unforgeability, but is not blind at this point. We stress that consequently,
the protocol presented in this section is not our final blind signature scheme. We will take care of
blindness and present our final signing protocol in Section 5.

S(sk, τ) U(vk,m, τ)

1 : t
$← Zp,m := HM(m),

2 : C := mU + tG

3 : xPed := (C,U,G),wPed := (m, t)

4 : πPed ← NIPSPed.Prove
HPed(xPed,wPed)

C, πPed

5 : xPed := (C,U,G)

6 : req NIPSPed.Ver
HPed(xPed, πPed) = 1

7 : s
$← Zp,w0 := (s, sk)

8 : XC := C +H,T := ϕ0(XC ,w0)

9 : x
C
0 := (G,V,XC ,T),x1 := (G,Dτ)

10 : c1
$← Zp, (A1, z1)← Sim1(x1, c1)

11 : (AC
0 , st0)← Init0(x

C
0 ,w0)

(T,AC
0 ,A1)

12 : S := T− (t · T2, 0, 0)
T

13 : A0 := AC
0 − (t ·AC

0,2, 0, 0)

14 : X := mU +H

15 : x0 := (G,V,X,S),x1 := (G,Dτ)

16 : c := HΣ((xb,Ab)b∈{0,1},m)

c

17 : c0 := c− c1

18 : z0 ← Resp0(st0, c0)

z0, z1, c0

19 : π := (A0,A1, c, c0, z0, z1)

20 : σbb := (S1, S2, π)

Fig. 1. An (unblinded) signing session for PreBS for message m ∈ {0, 1}∗ and common message τ ∈ {0, 1}∗.
The signer aborts (i.e., outputs ⊥) if for condition C, req C is evaluated for false C. Recall that HΣ maps
into Zp and that Dτ := (D1, D

τ
2 , D

τ
3) for (Dτ

2 , D
τ
3) := Hddh(τ). Also, recall that vk = (G,U,H, V,D1) ∈ G5

and sk = u ∈ Zp.

12

4.1 Construction

Let NIPSPed = (NIPSPed.Prove
HPed ,NIPSPed.Ver

HPed) be a NIPS proof system with random oracle
HPed : {0, 1}∗ → YPed with image space YPed for the relation

RPed := {(x,w) | C = mU + tG}, where x = (C,U,G), w = (m, t). (5)

In addition, our construction makes use of random oracles HM : {0, 1}∗ → Zp, and HΣ : {0, 1}∗ → Zp,
and Hddh : {0, 1}∗ → G2. We now present our construction.

PreBS: Unblinded interactive signing protocol for BBSig signatures

– KeyGen(1λ): Output (vk, sk)← BBSig.KeyGen(1λ).
– S(sk, τ)←→ U(vk,m, τ): The signing protocol proceeds in 4 moves and is given in Figure 1.
– Verify(vk,m, τ, σbb): Output b← BBSig.Verify(vk,m, τ, σbb).

Remark 2 (Optimizations). The signer can omit sending T3 = U , as this value is specified in vk.
Also, as discussed in Section 3, the values (A0, A1) can be omitted from the proof π within the
output signature σbb.

4.2 Security Analysis

Correctness follows from inspection and we will give a correctness proof for our final scheme later.
As already mentioned, PreBS is not blind. Here, we show one-more unforgeability. As we instantiate
NIPSPed (cf. Appendix C) with a relaxed knowledge sound NIPS, the extractor ExtPed only extracts
a witness for the relaxed knowledge relation

R̃Ped := {(x,w) | wG = U ∨ (x,w) ∈ RPed}, where x = (C,U,G). (6)

In particular, we show that if NIPSPed is (straightline) knowledge sound with knowledge relation
R̃Ped, then PreBS is one-more unforgeable under the DDH assumption.

Theorem 1 (One-More Unforgeability). Denote by p the order of group G. For any PPT
adversary A that causes at most Q random oracle queries, there are reductions AKS,ADL,ADDH,
and ACDH with running time similar to A such that

AdvOMUFPreBS
A (λ) ≤ 4 ·Q2 + 3 ·Q+ 4

p− 1
+ AdvKSNIPSPed,R̃Ped

AKS
(λ) + AdvDLGAdvDL(λ)

+ Q2
(
10 · AdvDDHG

ADDH
(λ) + AdvCDHG

ACDH
(λ)

)
.

Before we give the proof, let us remark that the quadratic loss is due to partial blindness. For
standard blindness, there is only a factor Q before the sum instead of Q2 and 4 ·Q2 is replaced
with 4 ·Q.

Proof. Let A be a PPT adversary against one-more unforgeability of PreBS. Denote by QΣ, QM,
Qddh, QPed the number of oracle queries to HΣ,HM,Hddh,HPed, respectively, including the queries
made by the game (e.g., during signing queries or during signature verification). Denote by QS the
number of A’s signing queries. Denote by ExtPed the extractor of NIPSPed.

We proceed with a sequence of games. For each game Game i, we denote the probability that
the game outputs 1 by εi.
Game 0 (Honest). This game is the real one-more unforgeability experiment for scheme PreBS
and adversary A with random oracles Hddh,HM,HPed and HΣ. The game first samples vk =
(G,U,H, V,D1) and sk via PreBS.KeyGen. The adversary A obtains verification key vk as input
and access to the random oracles, as well as both signing oracles OS1

,OS2
, and outputs a common

message τ∗ and forgeries (m∗
j , σ

∗
j)j∈[k]. The game outputs 1 iff OS2

was queried at most k− 1 times
with common message τ∗, all messages (m∗

j)j∈[k] are pairwise-distinct, and all signatures verify
(i.e., Verify(vk,m∗

j , τ
∗, σ∗

j) = 1). Note that each signing session is identified by a session identifier
sid which is provided as input in OS1 and OS2 . Recall that the signing oracles behave as follows:

13

– OS1
(sid, C, πPed): Check the proof πPed and abort if NIPSPed.VerHPed(xPed, πPed) = 0 for xPed :=

(C,U,G). Sample s
$← Zp and set w0 := (s, sk). Next, set T := ϕ0(XC ,w0) for XC := C +H

and Dτ := (D1,Hddh(τ)). Prepare both statements xC
0 := (G,V,XC ,S) and x1 := (G,Dτ).

For the Σ1 proof, sample c1
$← Zp and simulate (A1, z1) ← Sim1(x1, c1). For the Σ0 proof,

sample first flow (AC
0 , st0)← Init0(x

C
0 ,w0). Store (z1, c1, st0) as state for session sid and output

(T,AC
0 ,A1).

– OS2
(sid, c): Retrieve (z1, c1, st0) from the state for sid (and abort if this is not possible). Compute

challenge c0 := c− c1 and response z0 ← Resp0(st0, c0) for the Σ0 proof. Output (z0, z1, c0)

For convenience, we provide a detailed description in Figure 3 in Appendix E. By definition, we
have

AdvOMUFPreBS
A (λ) = ε0.

Game 1 (Abort if HM collision). The game aborts if there are collisions for HM. More precisely, it
aborts if there are queries x ≠ x′ such that HM(x) = HM(x

′). A standard birthday-bound argument
yields that

|ε0 − ε1| ≤
Q2

M

p
.

Game 2 (Extract (m, t) from C). We change the first signer oracle OS1
. Namely, whenever the

adversary sends a commitment C with a proof πPed in its first message of a signing interaction,
the game uses the extractor of NIPSPed to extract a preimage (m, t) ∈ Z2

p for C, and aborts
its entire execution if πPed verifies but extraction fails. In more detail, we modify the first part
of the signer oracle (oracle OS1) as follows. Initially, it proceeds as in Game 1 until the check
NIPSPed.Ver

HPed(xPed, πPed) = 1. If the check fails, it outputs ⊥ as before. Else, the game sets
wPed ← ExtPed(QHPed

,xPed, πPed) and parses (m, t) := wPed. (Recall that QHPed
denotes the queries

to HPed made by A and the game.) The game aborts its entire execution if parsing wPed fails or
C ̸= mU + tG.

Let us analyze the advantage of A in Game 2. Roughly, we need to ensure that extraction
succeeds and that the extracted witness wPed is an opening for C, i.e., (xPed,wPed) ∈ RPed. But
because the soundness relation is relaxed, it is possible that (xPed,wPed) /∈ RPed. Instead, the
extracted witness for relation R̃Ped might be the discrete logarithm u of U (cf. Equation (6)). Since
the adversary A provides the proof πPed and u is kept (computationally) hidden from A, this should
occur with negligible probability. But because u is also required to simulate the signing oracles, we
cannot immediately reduce to the DLOG assumption, and a few intermediate games are required.
Roughly, starting with Game 1, we first move to a game where the signing oracles can be simulated
without the secret key sk = u. Then, we add an abort condition if (xPed,wPed) /∈ RPed, where we
can now upper bound the abort probability under the DL assumption. Finally, we revert back the
changes (keeping the abort condition), and obtain Game 2. This is formalized in Lemma 2 below.
We provide a proof in Appendix D.

Lemma 2. There are reductions AKS,Ai
DDH for i ∈ [2] and ADL with running time close to that of

A such that

|ε1 − ε2| ≤ AdvKSNIPSPed,R̃Ped

AKS
(λ) + AdvDLGAdvDL(λ) +

4

p− 1
+

∑
i∈[2]

AdvDDHG
Ai

DDH
(λ).

Game 3 (Guess τ∗). Informally, we now guess the first query to Hddh such that τ∗ is provided as
input. More formally, the game samples q∗τ

$← [Qddh] at its start. When the adversary outputs its
forgeries with common message τ∗ in the end, the challenger additionally checks whether τ∗ was
queried for the first time to Hddh on the q∗τ -th query to Hddh. If not, the game aborts its execution.

Recall that the challenger’s Hddh queries count towards Qddh. Furthermore, note that the
challenger sets (Dτ∗

2 , Dτ∗

3) := Hddh(τ
∗) when it verifies A’s forgeries, so such a query exists. Next,

observe that the guess q∗τ is hidden from A, and so the probability that the challenger guesses this
query is at least 1/Qddh, even conditioned on Game 2 outputting 1. We get that

ε2 ≤ Qddh · ε3.

14

Observe that the game evaluates Hddh on τ in the first signer oracle OS1
to compute (Dτ

2 , D
τ
3) :=

Hddh(τ). Thus, if A succeeds, the game knows the forgery’s common message τ∗ when the first
query to OS1 with τ∗ is made. This will be useful later.
Game 4 (Guess unsigned m∗ in forgery). We guess the first query q∗m to HM such that the
following two conditions hold:

1. The input mq∗m
to the q∗m-th HM query is part of A’s forgeries.

2. No session with common message τ∗ is completed if m = HM(mq∗m
) is extracted from the

commitment C (see Game 2).

Again, the game aborts its execution if the guess was incorrect. If A is successful, then A’s forgeries
(m∗

j , σ
∗
j)j∈[k] with common message τ∗ contain k distinct messages. Because we have ruled out

collisions for HM (see Game 1), the hashed messages (m∗
j)j∈[k] are also pairwise distinct, where

m∗
j = HM(m

∗
j). Furthermore, there are at most k − 1 completed sessions with common message

τ∗ and each corresponding call to the first oracle OS1
, exactly one message m ∈ Zp is extracted

from C via ExtPed. In conclusion, one of the k distinct m∗
j was never extracted from C within a

completed session. Thus, there is an index j ∈ [k] such that mq∗m
:= m∗

j fulfils the above conditions
(also counting the challenger’s queries).

The probability that the challenger guesses q∗m correctly is 1/QM and the guess q∗m is hidden
from the adversary. Thus, we have

ε3 ≤ QM · ε4.

In the following, we denote by m∗ := HM(mq∗m
). Note that if A is successful, we can assume that

m∗ is known by the game from the start on10. Also, we stress that the game aborts only if both
signer oracles OS1

and OS2
are executed with extracted m∗ and common message τ∗, i.e., such

a signing interaction is completed. In particular, it is possible that m∗ is extracted in OS1
if the

session will not be completed.
Game 5 (Sample DDH tuples if τ ̸= τ∗). From now on, the game samples real DDH tuples in
Hddh except in the q∗τ -th query. That is, the game now holds an initially empty table Tddh[·] := ⊥.
Whenever random oracle Hddh is queried on an input τ and the hash value is not yet defined, the
game samples d2

$← Zp and sets (Dτ
2 , D

τ
3) := (d2G, d2D1) instead of (D2, D3)

$← G2. Additionally,
witness d2 is stored in the table, i.e., Tddh[τ] := d2. Importantly, the output on the q∗τ -th Hddh query
(i.e., (Dτ∗

2 , Dτ∗

3)) and all subsequent queries on the same input remain unchanged. Note that by
design, we have Dτ ∈ Lddh for τ ̸= τ∗. Clearly, there is a reduction B1 on Q-DDH with Q = Qddh

with running time similar to A such that

|ε4 − ε5| ≤ AdvQDDHG
B1
(Qddh, λ).

Game 6 (Use DDH witness for Σ1 if τ ̸= τ∗). Now, the game computes the Σ1 transcript
(A1, c, z1) for τ ̸= τ∗ via the witness Tddh[τ]. More precisely, in OS1 with τ ̸= τ∗, the game samples
c1

$← Zp and (A1, st1)← Init1(x1,w1), where w1 := Tddh[τ] and x1 := (G,Dτ). In OS2
with τ ̸= τ∗,

the game computes z1 ← Resp1(st1, c1).
Recall that in Game 5, the game samples c1

$← Zp and (A1, z1) ← Sim1(x1, c1). It follows by
perfect HVZK of Σ1, that the Σ1 transcripts (A1, c1, z1) in Game 5 and Game 6 are identically
distributed. Thus, we have

ε5 = ε6.

Game 7 (Simulate Σ0 if τ ≠ τ∗). The game now simulates the Σ0 transcript (A0, c0, z0) via
HVZK in OS1

and OS2
for all τ ̸= τ∗. In more detail, if τ ̸= τ∗ in OS1

, the game computes AC
0 via

c0
$← Zp, (AC

0 , z0)← Sim0(x0, c0).

In OS2
for τ ̸= τ∗, the game sets c1 := c− c0 and outputs z0 from OS1

. The other response z1 is
computed via w1 as introduced in Game 6.
10 The game samples m∗ at random at the beginning of the game and outputs m∗ in the q∗m-th query to

HM.

15

Recall that in Game 6, the game sets c1
$← Zp and c0 := c − c1. Thus, the challenges (c0, c1)

follow the same distribution in Game 6 and Game 7. Also, observe that in Game 6, the Σ0 transcript
is generated honestly. Thus, by perfect HVZK of Σ0, we have that

ε6 = ε7.

Let us take a closer look at the signer oracle in Game 7 for two specific cases, namely if (1) τ ̸= τ∗,
or (2) τ = τ∗ and the game has extracted m = m∗ from C. Recall that in the signer oracle OS1

,
the game defines the vector T := ϕ0(XC ,w0) for XC = C +H and w0 = (s, sk) where s ∈ Zp is
random. Precisely, this means that T = (skV + s(C +H), sG,U). Now, observe that if (1) occurs,
then due to the change in Game 7, the challenger uses the witness w0 = (s, sk) only to sample T.
Similarly, if (2) occurs, then the challenger uses the witness w0 = (s, sk) to sample T and in OS2 to
compute z0. Due to the abort condition in Game 4, OS2 is never invoked in case (2). In conclusion,
if (1) or (2) occurs, the challenger only uses w0 to sample T in the signing oracles.
Game 8 (Send random T in some sessions). We change the signer oracle OS1

again, for the
cases (1) and (2) mentioned above. Namely, recall that until now, the signer oracle defined the
vector T := ϕ0(XC ,w0). In this game, T is sampled differently. Namely, if (1) or (2) occurs, then
the game samples T1, T2

$← G at random and sets T3 := U . Intuitively, since (H, sG, sH) form
Diffie-Hellman tuples and are included in the definition of T in Game 7, replacing sH by a random
element should be indistinguishable and make the first component of T random.

More formally, we construct a reduction B2 that breaks Q-DDH if A can distinguish between
Game 7 and Game 8. The reduction B2 obtains tuples (G,H1, (H2,i, H3,i)i∈[QS]) from the Q-DDH
game and samples vk = (G,U,H, V,D1) as in Game 7, except that H := H1. Then, B2 proceeds to
simulate Game 7 to adversary A with the aforementioned vk except that in the i-th invocation of
OS1 , it also checks whether either case (1) or case (2) occurs. If so, A sets

T := (uV + (m · sk)H2,i + tH2,i +H3,i, H2,i, U),

else it sets T = ϕ0(XC ,w0) for w0 = (s, sk) and random s
$← Zp as before. As discussed above, B2

can proceed as before. That is, B2 computes AC
0 and A1 as in Game 7 and outputs (T,AC

0 ,A1).
Also, B2 simulates OS2

as in Game 7. When A outputs its forgeries, B2 outputs b′ := 1 if A succeeds,
and b′ := 0 otherwise.

Note that the verification key vk that is output by B2 is identically distributed to vk in Game 7
and Game 8. Further, if we have H = hG,H2,i = siG and H3,i = (h · si)G for all i ∈ [QS], then if
event (1) or (2) occurs in the i-th OS1

query, it holds that

T1 = uV + (m · sk)H2,i + tH2,i +H3,i

= uV + (si ·m)U + (si · t)G+ (h · si)G
= uV + si(mU + tG) + siH

= uV + si(C +H),

and T2 = siG,T3 = U . This is exactly the distribution of T in Game 7. Otherwise, we have
H = hG,H2,i = siG and H3,i

$← G for all i ∈ [QS]. If event (1) or (2) occurs in the i-th OS1
query,

then T follows the distribution of T in Game 8, as H3,i functions as a one-time pad. In case neither
event (1) nor (2) occurs, T follows the distribution in Game 7 and Game 8 in OS1 by design. The
running time of B2 is roughly that of A. In conclusion, we have

|ε7 − ε8| ≤ AdvQDDHG
B2
(QS , λ).

Game 9 (Abort if forgeries not in Lbb). Now, we make the game abort if one of the adversary’s
forgeries σ∗

j = (S∗
1,j , S

∗
2,j , πj) for message m∗

j satisfies (G,V,X∗
j , S

∗
1,j , S

∗
2,j , U) /∈ Lbb with X∗

j =
m∗

jU +H. Here, m∗
j := HM(m

∗
j) denotes the hashed message as before. In more detail, this is done

efficiently as follows: The game initially samples h $← Zp and sets H = hG to set up the verification
key vk. Further, when A outputs its forgeries (m∗

j , σ
∗
j)j∈[k] with common message τ∗, the game

parses σ∗
j = (S∗

1,j , S
∗
2,j , πj). Then, the game checks that for all j ∈ [k], it holds that

S∗
1,j = uV + (m∗

j · u)S∗
2,j + hS∗

2,j . (7)

16

This check is efficient using knowledge of h and u. The game aborts if the check fails. Otherwise it
proceeds as before.

Denote x∗
1 := (G,Dτ∗

) and x
∗
0,j := (G,V,X∗

j , S
∗
1,j , S

∗
2,j , U). Roughly, we have x1 /∈ Lddh

except with probability 1/p. Then, soundness of πj ensures except with negligible probability that
x0,j ∈ Lbb which is equivalent to Equation (7).

More formally, let us analyze the probability that for some j ∈ [k], Equation (7) does not
hold. First, we proof two useful claims. The first claim follows from soundness of the Fiat-Shamir
transformation and the second claim links Equation (7) with Lbb.

Proposition 1. For every HΣ query ((xb,Ab)b∈{0,1},m) with x0 /∈ Lbb and x1 /∈ Lddh, there
exists (c0, c1, z0, z1) such that

tr0 := (A0, c0, z0) is valid for x0 (8)
tr1 := (A1, c1, z1) is valid for x1 (9)
c∗ := HΣ((xb,Ab)b∈{0,1},m

∗
j) = c0 + c1 (10)

with probability at most 1/p.

Proof (Proposition 1). Observe that due to special soundness of Σ1 and because x1 /∈ Lddh,
there is at most one challenge c1 ∈ Zp such that there exists a response z1 with valid transcript
tr1 = (A1, c1, z1) for x1. Similarly, since x0 /∈ Lbb, the same argument applies: There exists exactly
one challenge c0 such that there exists a response z1 with valid transcript tr0 = (A0, c0, z0). Thus,
the pair (c0, c1) is determined by (xb,Ab)b∈{0,1} due to Equations (8) and (9). Further, because
(xb,Ab)b∈{0,1} is part of the input of the HΣ query that determines c∗, the value c∗ is distributed
uniformly and independently from (c0, c1). Then, the probability that Equation (10) holds is at
most 1/p. ⊓⊔

Proposition 2. Equation (7) holds if and only if (G,V,X∗
j , S

∗
1,j , S

∗
2,j , U) ∈ Lbb.

Proof (Proposition 2). Denote U = uG. The claim follows due to

Equation (7) ⇐⇒ S∗
1,j = u · V + (m∗

j · u)S∗
2,j + hS∗

2,j

⇐⇒ S∗
1,j = u · V + (m∗

j · u · s∗j,2)G+ (h · s∗j,2)G ∧ S∗
2,j = s∗j,2G

⇐⇒ S∗
1,j = u · V + s∗j,2(m

∗
jU +H) ∧ S∗

2,j = s∗j,2G

⇐⇒ S∗
1,j = u · V + s∗j,2 ·X∗

j ∧ S∗
2,j = s∗j,2G

⇐⇒ (G,V,X∗
j , S

∗
1,j , S

∗
2,j , U) ∈ Lbb

⊓⊔

Let us assume that A outputs forgeries with common message τ∗ such that Game 8 outputs 1.
This occurs with probability ε8 by definition. Further, let us assume that (G,Dτ∗

) /∈ Lddh (which
holds except with probability 1/p). Denote by x∗

0,j = (G,V,X∗
j , S

∗
1,j , S

∗
2,j , U) the statements within

A’s forgeries as above. Observe that Equations (8) to (10) are satisfied because all k forgeries are
valid. Thus, Proposition 1 yields via a union bound over all HΣ queries that except with probability
QΣ/p, it holds for all j ∈ [k] that x∗

0,j ∈ Lbb. Due to Proposition 2 this implies that Equation (7)
holds for j ∈ [k]. In total, the above considerations yield that

|ε8 − ε9| ≤
QΣ + 1

p
.

We emphasize that it will be essential for the following changes that the winning condition of this
game can still be evaluated efficiently.

Game 10 (Sample DDH tuple if τ = τ∗). In this game, we change how the q∗τ -th query to Hddh

(i.e., the query with τ = τ∗) is answered. Namely, on this query, the challenger samples d2
$← Zp

and sets (Dτ∗

2 , Dτ∗

3) := (d2G, d2D1) instead of (Dτ∗

2 , Dτ∗

3)
$← G2. The witness d2 is stored in the

17

table Tddh[τ
∗]. Other outputs of Hddh remain unchanged. We can easily construct a reduction A3

DDH

against DDH with running time similar to A and with

|ε9 − ε10| ≤ AdvDDHG
A3

DDH
(λ).

Note that now, we have Dτ ∈ Lddh for all common messages τ .

Game 11 (Use DDH witness for Σ1 if τ = τ∗). We change the signer oracle again, for the case
that τ = τ∗. Namely, the Σ1 transcript (A1, c, z1) is now computed via the witness w∗

1 := Tddh[τ
∗]

and is no longer simulated via HVZK. That is, in OS1
with τ∗, the game samples c1

$← Zp and
(A1, st1)← Init1(x1,w1), where w1 := Tddh[τ] and x1 := (G,Dτ∗

). In OS2
with τ∗, the game then

computes z1 ← Resp1(st1, c1).
It follows (as in Game 6) from HVZK of Σ1 that the Σ1 transcripts (A1, c, z1) for τ = τ∗ in

Game 10 and Game 11 are distributed identically. In conclusion, we have

ε10 = ε11.

Game 12 (Simulate Σ0 if τ = τ∗). We change the signer oracle a final time, for the case that
τ = τ∗. Concretely, in OS1 with τ∗, the game computes c0

$← Zp and (AC
0 , z0)← Sim0(x

C
0 , c0) for

x
c
0 := XC := C +H. In OS2

with τ∗, the game sets c1 := c− c0 and outputs z0 from OS1
. The other

branch (i.e., z1) is computed via w1 as in Game 11.
It follows (as in Game 7) that in Game 11 and Game 12, the challenges c0 and c1 follow the

same distribution and that the Σ0 transcripts (A0, c0, z0) are identically distributed (by HVZK of
Σ0). Thus, we have that

ε11 = ε12.

A complete description of Game 12 is given in Figure 4 in Appendix E. The game sets up the
verification key vk as in KeyGen, except that it knows the discrete logarithm h of H. It also guesses
a hash value m∗ = HM(m

∗
j) such that m∗

j is a forgery’s message but no signing session with common
message τ∗ is finished such that m∗ is extracted from πPed, where τ∗ is the forgeries’ common
message. Roughly, the game then simulates the signing oracles as follows. In OS1 , the game outputs
T = (T1, T2, U) computed honestly only if τ = τ∗ and m ̸= m∗ (otherwise random T1, T2

$← G are
chosen). The Σ1 transcripts (A1, c1, z1) in OS1

and OS2
are computed via a DDH witness for Dτ

via (Σ1.Init,Σ1.Resp), and the Σ0 transcripts (A0, c0, z0) are simulated via HVZK of Σ0. In the end,
the challenger aborts if the forgeries are not in Lbb (as in Equation (7) via h). We stress that h is
only required to check Equation (7) in Game 12 and this is only done after A output its forgeries.

Reduction to CDH. Finally, there exists a reduction ACDH such that ε12 ≤ AdvCDHG
ACDH

(λ). This
follows via Lemma 1. In more detail, let us construct a reduction B3 that outputs x∗

0 ∈ Lbb for the
game described in Lemma 1, hereafter denoted by Game BB. Note that B3 has access to an oracle
O(λ) that on input m outputs values (S1, S2). First, B3 samples m∗ $← Zp and obtains (G,U,H, V)

after providing m∗ to Game BB. Next, B3 samples D1
$← G and sets vk = (G,U,H, V,D1). Also, B3

initializes the counters ctrddh and ctrM to 0, samples q∗m and q∗τ at random, and initializes τq∗τ := ⊥.
It then invokes A on input vk and simulates the oracles in Game 12 to A as follows.

– HM,Hddh,HΣ,HPed,Next,OS2
: Simulated as in Game 12. We remark that for HM, the value m∗

is output on the q∗m-th query. Also, note that Game 12 aborts if m∗ is extracted from C in OS1
.

– OS1
: Check that πPed verifies and output ⊥ if not. Else, extract (m, t) such that C = mU + tG

from πPed. If τ ̸= τq∗τ , then set T
$← G2 × {U} as in Game 12, else set (S1, S2) ← O(m) and

T := (S1 + t · S2, S2, U). Then, proceed as in Game 12.

When A outputs its forgeries (m∗
j , σ

∗
j) on common message τ∗, B3 checks whether there is a message

m∗
j such that HM(m

∗
j) = m∗. Finally, B3 parses (S∗

1 , S
∗
2 , π

∗) = σ∗
j and outputs (S∗

1 , S
∗
2) to Game BB.

Clearly, the simulated vk is distributed as in Game 12. Also, it is easy to check that B3’s
simulation of Game 12 is efficient and the running time of B3 is roughly that of A. It remains to
show that T is identically distributed if τ = τq∗τ . Denote by u the (unknown) discrete logarithm of
U . Recall that by definition (cf. Lemma 1), O(m) outputs values (S1, S2) with S1 = uV + sXm

18

and S2 = sG, where s
$← Zp and Xm = mU + H. Note that the simulated (T2, T3) follow the

distribution of Game 12, and due to

T1 = S1 + tS2 = uV + sXm + (t · s)G
= uV + s(mU +H + tG) = uV + s(C +H),

the simulated T1 is also distributed as in Game 12. In conclusion, the view of A is as in Game 12
and with probability at least ε12, there is a message m∗

j with HM(m
∗
j) = m∗ and Equation (7) holds

(where h = DLOGG(H)). As shown in Game 9, this implies that (G,V,Xm∗ , S∗
1 , S

∗
2 , U) ∈ Lbb for

Xm∗ := m∗U +H. Due to Lemma 1, there is an adversary ACDH with running time similar to A
such that ε12 ≤ AdvCDHG

ACDH
(λ). By collecting all the bounds and applying Remark 5, we obtain

the statement.
⊓⊔

5 Blind Interactive Signing Protocol

In this section, we explain how the unblinded protocol from Section 4 can be turned into a partially
blind signature BS.

5.1 Construction

We construct a partially blind signature BS by blinding the signing protocol of PreBS (cf. Section 4).
The requirements are identical to PreBS. That is, let NIPSPed be a NIPS proof system with
random oracle HPed for Pedersen openings (see Equation (5) for the exact relation). Also, let
HM : {0, 1}∗ → Zp, and HΣ : {0, 1}∗ → Zp, and Hddh : {0, 1}∗ → G2 be random oracles.

Our blinding essentially follows the same approach as prior works. The blinding of the statement
X as XC is already present in the unblinded signature, as the proof πPed is constructed relative to
it and required for the OMUF reduction; the statement Dτ corresponding to common message τ
remains unblinded throughout. Except for the blinding, the only additional change is that the user
now verifies the signer’s response. Otherwise, it may output invalid “signatures”, making interactions
linkable.

BS: Partially blind signature

– KeyGen(1λ): Output (vk, sk)← BBSig.KeyGen(1λ).
– S(sk, τ)←→ U(vk,m, τ): The blinded signing protocol proceeds in 4 moves and is given in

Figure 2.
– Verify(vk,m, τ, σbb): Output b← BBSig.Verify(vk,m, τ, σbb).

Remark 3 (Notation). In Figure 2, we follow the convention that variables with a star, such as A∗
0

or c∗ are sent to the signer or received by the user. Variables with a prime, such as A′
0 and c′0 are

random masks to ensure blindness. Other variables are usually outputs, such as A. Sometimes, this
convention is broken for consistency with the unblinded protocol, e.g., for C.

19

S(sk, τ) U(vk,m, τ)

1 : t
$← Zp ; m := HM(m),

2 : C := mU + tG

3 : xPed := (C,U,G); wPed := (m, t)

4 : πPed ← NIPSPed.Prove
HPed(xPed,wPed)

C, πPed

5 : xPed := (C,U,G)

6 : req NIPSPed.Ver
HPed(xPed, πPed) = 1

7 : s∗
$← Zp; w0 := (s∗, sk)

8 : XC := C +H; T∗ := ϕ0(XC ,w0)

9 : x
C
0 := (G,V,XC ,T

∗); x1 := (G,Dτ)

10 : c∗1
$← Zp; (A∗

1, z1)← Sim1(x1, c1)

11 : (A∗
0, st0)← Init0(x

C
0 ,w0)

(T∗,A∗
0,A

∗
1)

12 : s′
$← Zp ;

13 : c′0, c
′
1

$← Zp ;

14 : z′0
$← Z2

p ; z′1
$← Zp

15 : X := mU +H = XC − tG

16 : S := T∗ − (t · T2, 0, 0)
T + ϕ0(X, (s′, 0))

17 : A0 := A∗
0 − (t ·A∗

0,2, 0, 0)
T + ϕ0(X, z′0) − c′0S

18 : A1 := A∗
1 + ϕ1(z

′
1) − c′1D

τ

19 : x0 := (G,V,X,S); x1 := (G,Dτ)

20 : c := HΣ((xb,Ab)b∈{0,1},m)

c∗ = c − c′0 − c′1

21 : c∗0 := c∗ − c∗1

22 : z∗0 ← Resp0(st0, c0)

z∗0, z
∗
1 , c

∗
0 // c

∗
1 = c

∗ − c
∗
0

23 : req A∗
0 = ϕ0(XC , z0)− c∗0T

∗

24 : req A∗
1 = ϕ1(z1)− c∗1D

τ

25 : c0 = c∗0 + c′0 ; c1 = c∗1 + c′1 // c = c0 + c1

26 : z0 = z∗0 + z′0 − c0 · (s′, 0)

27 : z1 = z∗1 + z′1

28 : π := (A0,A1, c, c0, z0, z1)

29 : σbb := (S1, S2, π)

Fig. 2. The blinded version of a signing session of BS. As in the unblinded version (cf. Figure 1), we
have m, τ ∈ {0, 1}∗, vk = (G,U,H, V,D1) ∈ G5 and sk = u ∈ Zp. The signer aborts (i.e., outputs ⊥) if for
condition C, req C is evaluated for false C. Recall that HΣ maps into Zp and that Dτ := (D1, D

τ
2 , D

τ
3) for

(Dτ
2 , D

τ
3) := Hddh(τ). Visually highlighted are the parts which blind the parameters C of the map ϕ0, the

statement T of the map ϕ0, the challenge c of the OR-composition, the responses z0 and z1 . If these
parts are removed, except for parameter blinding, then one recovers the unblinded protocol (cf. Figure 1).

20

5.2 Security Analysis

We show that BS is correct and partially blind in the random oracle model. One-more unforgeability
follows via Theorem 1 under the same conditions.

Remark 4 (OMUF of BS). Observe that in Figure 2 only the user-side was modified compared to
the protocol in Figure 1. The signer’s code is unchanged. As a consequence, Figure 2 is one-more
unforgeable if the unblinded version is. Indeed, one-more unforgeability considers a malicious
user, whose code is adversarial, so only the signer’s code is specified and part of the one-more
unforgeability game.

Theorem 2 (Correctness). BS is correct with error γerr, where γerr is the correctness error of
NIPSPed.

Correctness is straightforward. We provide a formal proof in Appendix D for completeness.

Theorem 3 (Blindness). For any (unbounded) adversary A that causes at most Q queries to
the random oracle HPed (via its own queries or through the oracles O0, O1), then there exists an
adversary AWI with running time roughly that of A, such that

AdvPBlindBSA ≤ 2 · AdvWINIPSAWI
(Q,λ) +

2

p
,

where p = |G| is the group order.

The very high-level idea is that enough randomness is injected to completely randomize the transcript
π (which is part of the blind signature), and also the signature (S1, S2); here we exploit that Rbb

yields perfectly randomizable signatures. Moreover, the proof πPed can be simulated. We give the
formal proof of blindness in Appendix D.

Acknowledgement. This work was supported by the Helsinki Institute for Information Technology
(HIIT) and was conducted while the first author was affiliated with Aalto University.

References

Abe01. Masayuki Abe. A secure three-move blind signature scheme for polynomially many signatures.
In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 136–151. Springer,
Heidelberg, May 2001. (Cited on Page 3)

AF96. Masayuki Abe and Eiichiro Fujisaki. How to date blind signatures. In Kwangjo Kim and
Tsutomu Matsumoto, editors, ASIACRYPT’96, volume 1163 of LNCS, pages 244–251. Springer,
Heidelberg, November 1996. (Cited on Pages 2 and 7)

AO00. Masayuki Abe and Tatsuaki Okamoto. Provably secure partially blind signatures. In Mihir
Bellare, editor, CRYPTO 2000, volume 1880 of LNCS, pages 271–286. Springer, Heidelberg,
August 2000. (Cited on Pages 1, 3, and 6)

BB04. Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption without
random oracles. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 223–238. Springer, Heidelberg, May 2004. (Cited on Pages 4, 10, and 11)

BF01. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer, Heidelberg,
August 2001. (Cited on Page 10)

BGH07. Dan Boneh, Craig Gentry, and Michael Hamburg. Space-efficient identity based encryption
without pairings. In 48th FOCS, pages 647–657. IEEE Computer Society Press, October 2007.
(Cited on Page 2)

BL13. Foteini Baldimtsi and Anna Lysyanskaya. On the security of one-witness blind signature
schemes. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270
of LNCS, pages 82–99. Springer, Heidelberg, December 2013. (Cited on Page 3)

BLL+21. Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana Raykova. On
the (in)security of ROS. In Anne Canteaut and François-Xavier Standaert, editors, EURO-
CRYPT 2021, Part I, volume 12696 of LNCS, pages 33–53. Springer, Heidelberg, October 2021.
(Cited on Page 4)

21

BNPS03. Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The one-
more-RSA-inversion problems and the security of Chaum’s blind signature scheme. Journal of
Cryptology, 16(3):185–215, June 2003. (Cited on Pages 1 and 3)

Bol03. Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the
gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor, PKC 2003, volume 2567
of LNCS, pages 31–46. Springer, Heidelberg, January 2003. (Cited on Pages 1 and 3)

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and
Victoria Ashby, editors, ACM CCS 93, pages 62–73. ACM Press, November 1993. (Cited on
Pages 1 and 2)

CFGG22. Dario Catalano, Dario Fiore, Rosario Gennaro, and Emanuele Giunta. On the impossibility of
algebraic vector commitments in pairing-free groups. In Eike Kiltz and Vinod Vaikuntanathan,
editors, TCC 2022, Part II, volume 13748 of LNCS, pages 274–299. Springer, Heidelberg,
November 2022. (Cited on Page 2)

CG08. Jan Camenisch and Thomas Groß. Efficient attributes for anonymous credentials. In Peng
Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS 2008, pages 345–356. ACM Press,
October 2008. (Cited on Page 1)

Cha82. David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest,
and Alan T. Sherman, editors, CRYPTO’82, pages 199–203. Plenum Press, New York, USA,
1982. (Cited on Pages 1, 3, and 7)

CHL+22. Rutchathon Chairattana-Apirom, Lucjan Hanzlik, Julian Loss, Anna Lysyanskaya, and Benedikt
Wagner. PI-cut-choo and friends: Compact blind signatures via parallel instance cut-and-choose
and more. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part III, volume
13509 of LNCS, pages 3–31. Springer, Heidelberg, August 2022. (Cited on Pages 1, 2, and 4)

CKM+23. Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro, and Chenzhi Zhu. Snowblind:
A threshold blind signature in pairing-free groups. In Helena Handschuh and Anna Lysyanskaya,
editors, CRYPTO 2023, Part I, volume 14081 of LNCS, pages 710–742. Springer, Heidelberg,
August 2023. (Cited on Pages 2 and 3)

CKU20. Geoffroy Couteau, Shuichi Katsumata, and Bogdan Ursu. Non-interactive zero-knowledge
in pairing-free groups from weaker assumptions. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 442–471. Springer, Heidelberg,
May 2020. (Cited on Page 2)

CL01. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. In Birgit Pfitzmann, editor, EUROCRYPT 2001,
volume 2045 of LNCS, pages 93–118. Springer, Heidelberg, May 2001. (Cited on Page 1)

CTZ24. Rutchathon Chairattana-Apirom, Stefano Tessaro, and Chenzhi Zhu. Pairing-free blind signa-
tures from CDH assumptions. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024,
LNCS. Springer, Heidelberg, August 18–22, 2024. (Cited on Pages 2, 3, 4, 5, and 6)

dK22. Rafaël del Pino and Shuichi Katsumata. A new framework for more efficient round-optimal
lattice-based (partially) blind signature via trapdoor sampling. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part II, volume 13508 of LNCS, pages 306–336. Springer,
Heidelberg, August 2022. (Cited on Pages 1, 2, and 4)

EHK+13. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic framework
for Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 129–147. Springer, Heidelberg, August 2013. (Cited on
Page 25)

FHS15. Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practical round-optimal blind
signatures in the standard model. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 233–253. Springer, Heidelberg, August
2015. (Cited on Pages 1 and 3)

Fis05. Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with online extrac-
tors. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 152–168. Springer,
Heidelberg, August 2005. (Cited on Pages 5, 9, 26, 27, and 28)

Fis06. Marc Fischlin. Round-optimal composable blind signatures in the common reference string
model. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 60–77. Springer,
Heidelberg, August 2006. (Cited on Pages 1, 3, and 4)

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of
LNCS, pages 33–62. Springer, Heidelberg, August 2018. (Cited on Pages 2 and 3)

FPS20. Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind schnorr signatures and signed
ElGamal encryption in the algebraic group model. In Anne Canteaut and Yuval Ishai, editors,

22

EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 63–95. Springer, Heidelberg, May
2020. (Cited on Page 3)

FS10. Marc Fischlin and Dominique Schröder. On the impossibility of three-move blind signature
schemes. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 197–215.
Springer, Heidelberg, May / June 2010. (Cited on Page 3)

FW24. Georg Fuchsbauer and Mathias Wolf. Concurrently secure blind schnorr signatures. In Marc
Joye and Gregor Leander, editors, EUROCRYPT 2024, Part II, volume 14652 of LNCS, pages
124–160, Zurich, Switherland, May 26–30, 2024. Springer, Heidelberg. (Cited on Page 3)

GG14. Sanjam Garg and Divya Gupta. Efficient round optimal blind signatures. In Phong Q. Nguyen
and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 477–495.
Springer, Heidelberg, May 2014. (Cited on Pages 1 and 3)

Gha17. Essam Ghadafi. Efficient round-optimal blind signatures in the standard model. In Aggelos
Kiayias, editor, FC 2017, volume 10322 of LNCS, pages 455–473. Springer, Heidelberg, April
2017. (Cited on Pages 1 and 3)

GHKW16. Romain Gay, Dennis Hofheinz, Eike Kiltz, and Hoeteck Wee. Tightly CCA-secure encryption
without pairings. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part I, volume 9665 of LNCS, pages 1–27. Springer, Heidelberg, May 2016. (Cited on Page 2)

GRS+11. Sanjam Garg, Vanishree Rao, Amit Sahai, Dominique Schröder, and Dominique Unruh. Round
optimal blind signatures. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS,
pages 630–648. Springer, Heidelberg, August 2011. (Cited on Pages 1 and 3)

HKL19. Eduard Hauck, Eike Kiltz, and Julian Loss. A modular treatment of blind signatures from
identification schemes. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part III,
volume 11478 of LNCS, pages 345–375. Springer, Heidelberg, May 2019. (Cited on Pages 1
and 3)

HKLN20. Eduard Hauck, Eike Kiltz, Julian Loss, and Ngoc Khanh Nguyen. Lattice-based blind signatures,
revisited. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II,
volume 12171 of LNCS, pages 500–529. Springer, Heidelberg, August 2020. (Cited on Page 3)

HLW23. Lucjan Hanzlik, Julian Loss, and Benedikt Wagner. Rai-choo! Evolving blind signatures to the
next level. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume
14008 of LNCS, pages 753–783. Springer, Heidelberg, April 2023. (Cited on Pages 1, 2, and 4)

JLO97. Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital signatures (extended
abstract). In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 150–164.
Springer, Heidelberg, August 1997. (Cited on Pages 1 and 3)

Kat21. Shuichi Katsumata. A new simple technique to bootstrap various lattice zero-knowledge proofs
to QROM secure NIZKs. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part II,
volume 12826 of LNCS, pages 580–610, Virtual Event, August 2021. Springer, Heidelberg.
(Cited on Page 9)

KLR21. Jonathan Katz, Julian Loss, and Michael Rosenberg. Boosting the security of blind signature
schemes. In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part IV, volume
13093 of LNCS, pages 468–492. Springer, Heidelberg, December 2021. (Cited on Pages 1, 2,
and 4)

KLX22a. Julia Kastner, Julian Loss, and Jiayu Xu. The Abe-Okamoto partially blind signature scheme
revisited. In Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022, Part IV, volume
13794 of LNCS, pages 279–309. Springer, Heidelberg, December 2022. (Cited on Pages 1 and 3)

KLX22b. Julia Kastner, Julian Loss, and Jiayu Xu. On pairing-free blind signature schemes in the
algebraic group model. In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors,
PKC 2022, Part II, volume 13178 of LNCS, pages 468–497. Springer, Heidelberg, March 2022.
(Cited on Pages 2 and 3)

KNR24. Julia Kastner, Ky Nguyen, and Michael Reichle. Pairing-free blind signatures from standard
assumptions in the rom. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, LNCS.
Springer, Heidelberg, August 18–22, 2024. (Cited on Pages 1 and 4)

KRS23. Shuichi Katsumata, Michael Reichle, and Yusuke Sakai. Practical round-optimal blind sig-
natures in the ROM from standard assumptions. In Jian Guo and Ron Steinfeld, editors,
ASIACRYPT 2023, Part II, volume 14439 of LNCS, pages 383–417. Springer, Heidelberg,
December 2023. (Cited on Pages 1, 2, 4, 5, and 6)

Ks22. Yashvanth Kondi and abhi shelat. Improved straight-line extraction in the random oracle
model with applications to signature aggregation. In Shweta Agrawal and Dongdai Lin, editors,
ASIACRYPT 2022, Part II, volume 13792 of LNCS, pages 279–309. Springer, Heidelberg,
December 2022. (Cited on Pages 5, 9, 26, 27, and 28)

Oka93. Tatsuaki Okamoto. Provably secure and practical identification schemes and corresponding
signature schemes. In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages
31–53. Springer, Heidelberg, August 1993. (Cited on Page 4)

23

Oka06. Tatsuaki Okamoto. Efficient blind and partially blind signatures without random oracles. In
Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 80–99. Springer,
Heidelberg, March 2006. (Cited on Page 3)

OO92. Tatsuaki Okamoto and Kazuo Ohta. Universal electronic cash. In Joan Feigenbaum, editor,
CRYPTO’91, volume 576 of LNCS, pages 324–337. Springer, Heidelberg, August 1992. (Cited
on Page 1)

Pas03. Rafael Pass. On deniability in the common reference string and random oracle model. In Dan
Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 316–337. Springer, Heidelberg,
August 2003. (Cited on Page 9)

Pas11. Rafael Pass. Limits of provable security from standard assumptions. In Lance Fortnow and
Salil P. Vadhan, editors, 43rd ACM STOC, pages 109–118. ACM Press, June 2011. (Cited on
Page 3)

Poi98. David Pointcheval. Strengthened security for blind signatures. In Kaisa Nyberg, editor,
EUROCRYPT’98, volume 1403 of LNCS, pages 391–405. Springer, Heidelberg, May / June
1998. (Cited on Page 4)

PS00. David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361–396, June 2000. (Cited on Pages 1 and 3)

PW23. Jiaxin Pan and Benedikt Wagner. Chopsticks: Fork-free two-round multi-signatures from
non-interactive assumptions. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023,
Part V, volume 14008 of LNCS, pages 597–627. Springer, Heidelberg, April 2023. (Cited on
Page 2)

Sch91. Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, January 1991. (Cited on Page 3)

Sch01. Claus-Peter Schnorr. Security of blind discrete log signatures against interactive attacks. In
Sihan Qing, Tatsuaki Okamoto, and Jianying Zhou, editors, ICICS 01, volume 2229 of LNCS,
pages 1–12. Springer, Heidelberg, November 2001. (Cited on Page 4)

Sch22. Tim Scheurer. Universally composable verifiable random oracles. Master’s thesis, Karlsruher
Institut für Technologie (KIT), 2022. 46.23.01; LK 01. (Cited on Pages 26 and 28)

TZ22. Stefano Tessaro and Chenzhi Zhu. Short pairing-free blind signatures with exponential security.
In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume
13276 of LNCS, pages 782–811. Springer, Heidelberg, May / June 2022. (Cited on Pages 2
and 3)

TZ23. Stefano Tessaro and Chenzhi Zhu. Threshold and multi-signature schemes from linear hash
functions. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume
14008 of LNCS, pages 628–658. Springer, Heidelberg, April 2023. (Cited on Page 2)

Wag02. David Wagner. A generalized birthday problem. In Moti Yung, editor, CRYPTO 2002, volume
2442 of LNCS, pages 288–303. Springer, Heidelberg, August 2002. (Cited on Page 4)

24

Appendices

A Assumptions

Let G be a group of prime order p with generator G ∈ G—implicitly parameterized by the security
parameter (cf. Section 2). We formally define the DL, CDH and (Q-)DDH assumptions. While both
DL and CDH is implied by DDH, and Q-DDH is implied by DDH, it will be convenient for us to use
these assumptions explicitly.

Definition 13 (DL Assumption). The discrete logarithm (DL) assumption holds in group G with
generator G if for any PPT adversary A, it holds that

AdvDLGA(λ) := Pr[x← Zp, x
′ ← A(G, xG) : x = x′] = negl(λ).

Definition 14 (CDH Assumption). The computational Diffie-Hellman (CDH) assumption holds
in group G with generator G if for any PPT adversary A, it holds that

AdvCDHG
A(λ) := Pr[a, b← Zp, C ← A(G, aG, bG) : C = (a · b)G] = negl(λ).

Definition 15 (DDH Assumption). The decisional Diffie-Hellman (DDH) assumption holds in
group G with generator G if for any PPT adversary A, it holds that

AdvDDHG
A(λ) :=

∣∣∣Pr[a, b← Zp : A(G, aG, bG, (ab)G) = 1]−

Pr[a, b, c← Zp : A(G, aG, bG, cG) = 1]
∣∣∣ = negl(λ).

Definition 16 (Q-DDH Assumption). The Q-fold decisional Diffie-Hellman (Q-DDH) assumption
holds in group G with generator g if for any PPT adversary A, it holds that

AdvQDDHG
A(Q,λ) :=

∣∣∣Pr[a← Zp,b← ZQ
p : A(G, aG, (biG, (abi)G)i∈[Q]) = 1]

− Pr[a← Zp,b, c← ZQ
p : A(G, aG, (biG, ciG)i∈[Q]) = 1]

∣∣∣ = negl(λ).

Remark 5. Q-DDH is tightly implied by DDH. Namely, for any PPT adversary A on Q-DDH,
there is a PPT reduction B with running time roughly that of A, such that AdvQDDHG

A(Q,λ) ≤
AdvDDHG

B(λ) + 1/(p− 1) (cf. [EHK+13]).

B Σ-protocols for Our Construction

Recall that in our blind signature construction, we use two Σ-protocols for relations Rbb and Rddh

defined in Section 3. The construction of these follows well-known techniques, but we present them
here for completeness.

Σ-protocol for Rbb and Rddh. We provide Σ-protocols for Rbb and Rddh as defined in Section 3.
More generally, let ϕ : Zω

p → Gκ be a linear map. Especially, this covers ϕ0 with fixed statement and
ϕ1 as defined in Section 3. The following is a Σ-protocol with challenge space Zp for the relation of
statements x = T and witnesses w = w with ϕ(w) = T. (Note that if ϕ is parameterized, then the
statement x also contains the parameters, or we can think of it as a class of Σ-protocols.)

Σ-protocol Σ = (Init,Resp,Verify) for Rϕ with x = (ϕ,T) and w0 = w

– Init(x,w):
1. Sample r

$← Zω
p and set A := ϕ(r).

2. Output commitment A and state st := (w, r).
– Resp(st, c): Output z := c ·w + r,
– Verify(x, A, c, z): Output 1 if A = ϕ(z)− c ·T and 0 otherwise.

Properties of the Σ-protocol. It is straightforward to see that the Σ-protocol is correct. It is
also well-known that it is special sound and HVZK. In terms of efficiency, observe that A consists
of κ many elements in G, c consists of 1 element in Zp, and z consists of ω many elements in Zp.

C Construction of Straightline-Extractable Proofs

To instantiate our blind signature scheme, we need a straightline-extractable non-interactive proof
system NIPSPed (cf. Section 4). Note that we wish to avoid computational assumptions for zero-
knowledge for statistical blindness. We propose to use the randomized Fischlin transform [Fis05,
Ks22] to construct such a proof from a Σ-protocol. Concretely, we use the randomized variant of
[Ks22], but with a superpolynomial challenge space. While [Fis05] uses computationally unique
responses to ensure extractability and zero-knowledge11, the randomized variant of [Ks22] requires
the simpler strong (2-)special soundness. Unlike [Ks22], we will assume a superpolynomial challenge
space to prove zero-knowledge. We do so, because for polynomial size challenge space, there is
an attack outlined in [Sch22] on the simpler zero-knowledge simulation given in [Ks22]. We thus
also revisit the proof for completeness. We emphasize again that any straightline-extractable non-
interactive zero-knowledge proof system can be used to instantiate our blind signature construction.

Additional Preliminaries. In the following, we denote by Bin(n, p) the Binomial distribution
with parameters n ∈ N, p ∈ [0, 1]. Also, we write X ∼ Y if X is distributed as Y . For two random
variables X,Y over finite domain D, we denote by

SD(X,Y) :=
1

2

∑
d∈D

|Pr[X = d]− Pr[Y = d]| .

the statistical distance of X and Y . For some random variable V with (finite) image Y, we denote
the min-entropy by

Hmin(V) := − logmax Pr
y∈Y

[V = y].

Before we revisit the Randomized Fischlin Transform, let us recall the Σ-protocol properties
high min-entropy and strong (2-)special soundness. Note that we allow for a relaxed relation in our
definition of strong special soundness.

Definition 17 (High Min-Entropy). Let R be an NP-relation and Σ = (Init,Resp,Verify)
be a Σ-protocol for R. We say that Σ has high min-entropy if for all (x,w) ∈ R, it holds for
(A, st)← Init(x,w) that

2−Hmin(A) = negl(λ).

We denote Hmin(Σ) := minx∈LR
Hmin(A).

Definition 18 ((Relaxed) Strong (2-)Special Soundness). Let R be an NP-relation and
Σ = (Init,Resp,Verify) be a Σ-protocol for R. We say that Σ is strong (2-)special sound for NP-
relation R̃ ⊇ R if there exists a deterministic PT machine extractor Ext such that: Given as input
two accepting transcripts tr = (A, c, z) and tr ′ = (A, c′, z′) for statement x with tr ̸= tr ′, the
extractor w← Ext(tr , tr ′) outputs a witness w such that (x,w) ∈ R̃.

Simplified Randomized Fischlin Transform. Let R be an NP-relation. Let Σ = (Init,Resp,
Verify) be a Σ-protocol for R with challenge space CH. We consider following parameters.
11 Because NIPSPed is a proof of Pedersen opening, the computationally unique responses property holds

only under the DL assumption for the Σ-protocol in Appendix B. We avoid this by relying on [Ks22].

26

– Challenge Space. k := log(|CH|) ∈ R denotes the bit-size of the challenge space.
– Random Oracle. b ∈ N denotes the bit-size of outputs of a random oracle H : {0, 1}∗ → {0, 1}b.
– Repetitions. r ∈ N denotes the number of parallel repetitions the transformation will use.
– Iterations. t ∈ N is used to avoid infinite loops; the transformation aborts if it does not succeed

within at most 2t ∈ N iterations.

Typically, we set the parameters such that r ≥ ⌈λ/b⌉ for λ bits of security, and t ∈ Θ(log(λ)b log(r))
and k = ω(b) for negligible correctness error (and zero-knowledge); to ensure polynomial time
provers, we need 2t = poly(λ). The proof size will only depend on r.

We assume that it is efficiently possible to sample uniformly from CH. For simplicity, we ignore
any optimizations of the transformation, such as hashing the vector of commitments A. Then, the
transform yields a non-interactive proof system NIPS = (Prove,Ver) as follows:

NIPS = (Prove,Ver) for R constructed from Σ = (Init,Resp,Verify)

– ProveH(x,w):
1. For each i ∈ [r], compute (Ai, sti)← Init(x,w).
2. Let A = (A1, . . . , Ar).
3. For i = 1, until i > r, or output ⊥ if total of t tries are exceeded:

(a) Sample ci
$← CH uniformly without replacement within this iteration.

(b) Compute zi ← Resp(sti, ci).
(c) Query hi = H(x,A, i, ci, zi).
(d) If hi = 0b, set i := i+ 1. (Continue to next repetition.)
(e) Else: Go back to Step 3a and try again.

4. Return π := (Ai, ci, zi)
r
i=1.

– VerH(x, π):
1. Parse π = (Ai, ci, zi)

r
i=1.

2. Compute hi = H(x,A, i, ci, zi) for all i ∈ [r].
3. If hi ̸= 0b for some i ∈ [r], return 0.
4. If Verify(x, Ai, ci, zi) = 0 for some i ∈ [r], return 0.
5. Return 1.

Properties of the Transform. The original [Fis05] transformation assumes that Σ is correct,
has high min-entropy, (special) honest-verifier zero-knowledge (HVZK), special soundness and
computationally unique responses. In the randomized [Ks22] Fischlin transformations—which we
build upon—special soundness and computationally unique responses are replaced by strong special
soundness.

Lemma 3 (Correctness). Let NIPS be the randomized Fischlin transformation for Σ-protocol Σ.
Suppose t ≤ k. Then NIPS has correctness error of at most r · e−2t−b

. Moreover, an honest prover
runs in poly(2t) steps.

We note that even for t = r · |CH|, the expected time is concentrated strongly around r2b by
Chernoff bounds, assuming 2b ≫ |CH|. Hence, NIPS is expected polynomial time if r2b = poly(λ).
To counteract large correctness error, the prover can simply retry. This will not by relevant in our
case, as CH must be superpolynomial for security, and thus the correctness error is negligible.

Proof (Sketch). Because we sample ci without replacement, each oracle query is fresh. Thus, each
hi within each iteration is 0b with probability 2−b. The prover fails if no challenge for some round i
hashes to 0b, which happens with probability (1− 2−b)|CH|. Or if 2t queries are exceeded and less
than r accepting queries were found, which happens with probability at most r · (1− 2−b)2

t

. Since
we assume k > t, the latter case will always be reached first. We bound this probability by

r · (1− 2−b)2
t

= r · ((1− 2−b)2
b

)2
t−b

≤ r · e2
t−b

.

⊓⊔

27

Lemma 4 ((Relaxed) Knowledge Soundness). Let NIPS be the randomized Fischlin transfor-
mation for Σ-protocol Σ for NP-relation R. If Σ is strongly knowledge sound for relation R̃ ⊇ R,
then for any (potentially unbounded) adversary A on relaxed knowledge soundness for relation R̃
making at most Q queries12, we have

AdvKSNIPS,R̃A (Q,λ) ≤ Q · 2−r·b.

In particular, if Q = poly(λ) and 2−r·b = negl(λ), then AdvKSNIPS,R̃A (Q,λ) = negl(λ).

Proof (Sketch). The argument is identical to [Fis05, Ks22]. Namely, suppose an adversary A succeeds
to generate π = (Ai, ci, zi)

r
i=1. Let A = (A1, . . . , Ar). By strong special soundness, the extractor

succeeds to extract from π if it finds two accepting transcripts completing (x,A) among the random
oracle queries. Hence, the extractor fails if H was queried as H(x,A, i, ci, zi) with accepting transcript
(x, Aici, zi) only once for every i. By basic probability theory, this happens with probability at most
(2−b)r = 2−rb. By a union bound over all possible A which A may have tried, the claim follows. ⊓⊔

Lemma 5 (Zero-Knowledge and Witness-Indistinguishability). Let NIPS be the randomized
Fischlin transformation for Σ-protocol Σ. Suppose Σ is special honest-verifier zero-knowledge and
N = 2k = |CH| ≥ 24. Then NIPS is statistical zero-knowledge (and thus witness-indistinguishable),
more precisely, any adversary which makes at most Q queries to H has advantage at most
Q · 2−Hmin(Σ) + 3r · 2(k−b)/2 in the zero-knowledge experiment (resp. witness-indistinguishability
experiment).

Proof (Sketch). Let Sim be the HVZK simulator for Σ. The simulator NIPS.Sim for the randomized
Fischlin transform is straightforward:

– For all i ∈ [r]:
1. Pick a random challenge ci

$← CH.
2. Run HVZK simulator (Ai, zi)← Sim(x, ci).

– Let A = (A1, . . . , Ar).
– For all i ∈ [r]:

1. Program H(x,A, i, ci, zi) := 0b.
– Output π = (Ai, ci, zi)

r
i=1.

Before we analyze the simulator’s success probability, observe that the simulator biases the random
oracle outputs towards 0b. In [Sch22] it was shown that for polynomial challenge CH = poly(λ)
this bias is noticeable. Below, we show that for superpolynomial CH, the reprogramming is not
noticeable. Roughly, we show that the statistical distance which programming H at some input
(x,A, i, ci, zi) incurred is at most 4 · 2−(k−b)/2, where 2k = |CH|. The statement of the lemma is
then obtained by a union bound. We proceed with the proof of these claims.

Observe that if no string s = (x,A, ∗) has ever been queried to H, then H is completely free to
program. This happens, except with probability Q · 2−Hmin(Σ). More precisely, observe that the worst
case is when (x,A, ci) uniquely determines zi, as otherwise the space over which the programming
happens is only larger. Thus, we fix the values (x,A, i) and assume that the choice of ci also
fixes the response zi. Then, we must analyze the statistical difference between a random oracle
H′ : CH → {0, 1}b and its programmed13 variant H′[c 7→ 0b] for a random c

$← CH. Let N = |CH|,
p = 2−b, and

X ∼ Bin(N, p), Y ∼ Bin(N − 1, p) + 1, Z ∼ Bin(N − 1, p)

That is, X is (distributed as) the number of 0b in H′, and Y is (distributed as) the number of
0b in H′[c 7→ 0b], while Z is an auxiliary random variable. It is easy to see that, the statistical
distance of H′ and H′[c 7→ 0b] is in fact the statistical distance between X and Y . Moreover, the
binomial distribution Bin(n, p) has it maximum probability (i.e., mode) on ⌊(n+ 1)p⌋. Thus, some
⌊(N + 1)p⌋ ≤ L < ⌊Np⌋+ 1, is the maximal choice for which14

Pr[X = L]− Pr[Y = L] ≥ 0 and Pr[X = L+ 1]− Pr[Y = L+ 1] ≤ 0

12 We also count in Q the queries induced by A through calls to OVer.
13 Here, H′[c 7→ 0b] denotes the random oracle obtained by reprogramming H′ at input c with output 0b.
14 This is clear visually: The peak of the density of X occurs at ⌊(N + 1)p⌋ before the peak of Y , which

occurs before ⌊Np⌋+ 1.

28

Picking this L, the statistical distance is then

L∑
ℓ=0

Pr[X = ℓ]− Pr[Y = ℓ].

Using Bin(N, p) = Bin(N − 1, p) + Bin(1, p), we simplify the expression as follows:

L∑
ℓ=0

Pr[X = ℓ]− Pr[Y = ℓ] =

L∑
ℓ=0

(
Pr[Z = ℓ] · (1− p) + Pr[Z = ℓ− 1] · p

)
− Pr[Z = ℓ− 1]

= (1− p)

L∑
ℓ=0

Pr[Z = ℓ] + p

L∑
ℓ=0

Pr[Z = ℓ− 1]−
L∑

ℓ=0

Pr[Z = ℓ− 1]

= (1− p)

L∑
ℓ=0

Pr[Z = ℓ] + p

L−1∑
ℓ=0

Pr[Z = ℓ]−
L−1∑
ℓ=0

Pr[Z = ℓ]

= (1− p) Pr[Z = L]

where we use that (1− p) + p = 1 and to telescope the summands. As the above holds for any L,
and we know there is a choice for which it equals SD(X,Y), we have shown that

SD(X,Y) ≤ max
L

Pr[Z = L].

To analyze Pr[Z = L], we use the Berry–Esseen theorem, which is an explicit version of the central
limit theorem. Let Bi ∼ Bin(1, p), and σ =

√
Var(Bi) = p(1 − p), and ρ = E[|Bin(1, p) − p|3].

Observe that

ρ = E[|Bin(1, p)− p|3] ≤ E[|Bin(1, p)− p|2] = Var(Bin(1, p)) = σ2 (11)

holds because |Bin(1, p)− p| ≤ 1. The Berry–Esseen theorem, with explicit constant C = 1, asserts
that for the cumulative distribution function Fn of the standardized sum Sn =

∑n
i=1 Bi

σ
√
n

, it holds
that for all x ∈ R

|Fn(x)− Φ(x)| ≤ ρ

σ3 ·
√
n
. (12)

Going back to bounding Pr[Z = L] over all choices of L, observe that for x ∈ Z

Pr[Z = x] = Pr[Z ≤ x]− Pr[Z ≤ x− 1]

= Fn

(
x− np

σ
√
n

)
− Fn

(
x− 1− np

σ
√
n

)
≤ Φ

(
x− np

σ
√
n

)
− Φ

(
x− 1− np

σ
√
n

)
+ 2

ρ

σ3 ·
√
n

≤ Φ

(
x− np

σ
√
n

)
− Φ

(
x− 1− np

σ
√
n

)
+ 2

1

σ ·
√
n

where n = N − 1 and we used the definition of a CDF, Fn, Equation (12) and Equation (11), in
that order. Now, we can bound the difference in Φ by its density φ(t) = 1√

2π
e−t2/2 (i.e., derivative)

integrated over any interval of width 1
σ
√
n
, which yields

Φ

(
x− np

σ
√
n

)
− Φ

(
x− 1− np

σ
√
n

)
≤ 1

σ ·
√
n
·max
x∈R

φ(x) ≤ 1

σ ·
√
n
· 1√

2π

Finally, using
√

15
16

√
n+ 1 ≥

√
n for n+ 1 = N ≥ 24, and plugging p = 2−b into σ =

√
p(1− p) =

2−b/2
√
1− 2b ≥ 2−b/2

√
1
2 , we obtain for all x

max
x∈Z

Pr[Z = x] ≤ 1

σ ·
√
n
· 1√

2π
+ 2

1

σ ·
√
n
≤ 2.5

1

σ ·
√
n
≤ 2.5 ·

√
16

15

1

σ ·
√
n+ 1

≤ 4 · 2−(k−b)/2

29

where we use that 2.5 ·
√

16
15 ·
√
2 ≤ 4. With this bound on Pr[Z = L], we conclude by a union bound

over all r repetitions, that the overall the statistical distance is at most 3r · 2−(k−b)/2 +Q · 2−Hmin(Σ).
⊓⊔

Concrete Instantiation. In our blind signature scheme, we need a non-interactive zero-knowledge
proof for the relation RPed defined in Equation (5) with relaxed soundness relation R̃Ped (Equation (6)).
Note that the relation RPed is given via the linear map

ϕU,G : Z2
p → G, (m, t) 7→ mU + tG, where U,G ∈ G.

Thus, we obtain a suitable Σ-protocol ΣPed for RϕU,G
as explained in Appendix B. We can then

apply the simplified Fischlin transformation on this Σ-protocol if it is strongly special sound for
the relation R̃Ped and has high min-entropy. We briefly show this.

Proposition 3. The Σ-protocol ΣPed is strongly special sound for R̃Ped and has high min-entropy.

Proof (Sketch). The high min-entropy property follows immediately because for (A, st)← Init(x,w),
the commitment A is uniformly distributed over G. In particular, Hmin(ΣPed) = log(p).

For strong special soundness, let tr = (A, c, z) and tr ′ = (A, c′, z′) be two transcripts for
statement x with tr ̸= tr ′. Recall that R̃Ped = {(x,w) | wG = U ∨ (x,w) ∈ RPed}, where
x = (C,U,G). If c ̸= c′, then (standard) special soundness of ΣPed yields a witness w such that
(x,w) ∈ RPed ⊂ R̃Ped. Else, for c = c′, we have that ∆z := z − z′ ̸= 0, and thus

ϕU,G(z
′)− c · C = A = ϕU,G(z)− c · C

=⇒ ϕU,G(z
′ − z) = 0

=⇒ ∆z1U +∆z2G = 0.

Thus, both ∆z1 and ∆z2 are non-zero, and the above equation yields wG = U for w := −∆z2/∆z1.
⊓⊔

Remark 6 (Concrete Parameters). To estimate proof sizes for our concrete parameter calculations
we use b = 8 and r = ⌈λ/b⌉ = 16 to determine the size of the proof. The remaining parameters do
not influence the proof size.

D Deferred Proofs

In this section, we provide formal proofs that were omitted in the main body.

D.1 Proof of Lemma 1

Proof (Lemma 1). Let A be an PPT adversary on the game described in Lemma 1, below denoted
by Game BB. The reduction B obtains the challenge (G,U, V) from the CDH game and proceeds
as follows. Initially, B invokes A on input 1λ to obtain (m∗, stA). Then, B samples δ

$← Zp and sets
H := −m∗ · U + δG. Next, B invokes A and obtains (S∗

1 , S
∗
2) ← AO(G,U,H, V, stA), where O is

simulated by B as follows:

– O(m): If m = m∗, output ⊥. Else, set ∆m := m − m∗ ≠ 0 and sample r
$← Zp. Set S2 :=

rG− 1
∆mV and S1 := (r ·∆m)U + (r · δ)G− (v

∆m · δ)G.

Finally, B outputs C := S∗
1 − δ · S∗

2 as its CDH solution.
Let us analyze the success probability of B. Denote by (u, v) the (unknown) discrete logarithms

of (U, V), respectively. First, observe that B’s elements (G,U,H, V) are distributed as in Game BB.
Recall that in Game BB, the oracle output is (S1, S2) = (u · V + s ·Xm, s ·G) for Xm = m ·U +H.

30

It follows that the simulated S2 = (r − v
∆m)G follows the distribution of S2 in Game BB—with

implicit s = r − v
∆m . Also, the simulated S1 is distributed as in Game BB due to:

S1 = (r ·∆m)U + (r · δ)G−
(v

∆m
· δ
)
G

= u · V − vU + (r ·∆m)U + (r · δ)G−
(v

∆m
· δ
)
G

= u · V +
(
r − v

∆m

)
· (∆m · U + δG)

= u · V + (r − v

∆m
) · (m · U −m∗ · U + δG)

= u · V + (r − v

∆m
) · (m · U +H)

= u · V + s · (m · U +H).

Thus, the view of A in the interaction with the reduction B is as in Game BB. Further, if x∗
0 ∈ Lbb

there is some w∗
0 = (s∗, u∗) such that (x∗

0,w
∗
0) ∈ Rbb, so:

S∗
1 = u∗ · V + s∗ ·Xm∗ (13)

S∗
2 = s∗G (14)
U = u∗G. (15)

Due to Equation (15), it holds that u = u∗. Also, since Xm∗ = δG by construction, Equations (13)
and (14) yield S∗

1 = u · V + δS∗
2 . Thus, B’s output C = u · V is a valid CDH solution conditioned

on A’s output satisfying x∗
0 ∈ Lbb. The runtime of B is roughly that of A. This concludes the

proof. ⊓⊔

D.2 Proof of Lemma 2

Proof (Lemma 2). We introduce a series of intermediate games between Game 1 and Game 2 in
the proof of Theorem 1. Let us give a brief overview. In Game 1.1, the game also extracts a witness
wPed from πPed using the knowledge extractor in the first signing oracle. Then, we gradually move
to Game 1.5 (with intermediate games Game 1.2,Game 1.3,Game 1.4) such that both OS1

and
OS2

are simulated without secret key sk = u in Game 1.5. For this, we follow the techniques in
the proof of Theorem 1—specifically in Game 5 to Game 8—except for minor modifications. In
Game 1.6, we let the game abort if wPed is the discrete logarithm of U which is justified under the
DLOG assumption. Then, we revert the changes made in Game 1.2 to Game 1.5, but we keep the
abort condition added in Game 1.6. The resulting game is identical to Game 2.
Game 1.1 (Extract wPed from πPed). This game is identical to Game 1 except that the game
extracts a witness wPed from πPed in the first signer oracle OS1

. In more detail, we modify the
first part of the signer oracle OS1

as follows. Initially, it proceeds as in Game 1 until the check
NIPSPed.Ver

HPed(xPed, πPed) = 1. If the check fails, it outputs ⊥ as before. Else, the game sets
wPed ← ExtPed(QHPed

,xPed, πPed). (Recall that QHPed
denotes the queries to HPed made by A and the

game.) The game aborts its entire execution if (xPed,wPed) /∈ R̃Ped.
Clearly, there is a reduction AKS on knowledge soundness of NIPSPed with running time similar

to A such that
|ε1 − ε1.1| ≤ AdvKSNIPSPed,R̃Ped

AKS
(λ).

Game 1.2 (Sample DDH tuples). From now on, the game samples real DDH tuples in Hddh.
That is, the game now holds an initially empty table Tddh[·] := ⊥. Whenever random oracle Hddh is
queried on an input τ and the hash value is not yet defined, the game samples d2

$← Zp and sets
(Dτ

2 , D
τ
3) := (d2G, d2D1) instead of (D2, D3)

$← G2. Additionally, witness d2 is stored in the table,
i.e., Tddh[τ] := d2. Note that by design, we have Dτ ∈ Lddh for all τ .

Clearly, there is a reduction B′1 to Q-DDH with Q = Qddh with running time similar to A such
that

|ε1.1 − ε1.2| ≤ AdvQDDHG
B′

1
(Qddh, λ).

31

Game 1.3 (Use DDH witness for Σ1). Now, the game computes the Σ1 transcript (A1, c, z1)

via the witness Tddh[τ]. That is, the game samples c1
$← Zp and (A1, st1)← Init1(x1,w1) in OS1

,
where w1 := Tddh[τ] and x1 := (G,Dτ). In OS2

, the game computes z1 ← Resp1(st1, c1).
By perfect HVZK of Σ1, the Σ1 transcripts (A1, c1, z1) in Game 1.2 and Game 1.3 are identically

distributed. Thus, we have
ε1.2 = ε1.3.

Game 1.4 (Simulate Σ0). The game now simulates the Σ0 transcript (A0, c0, z0) via HVZK in
OS1 and OS2 . In more detail, the game computes AC

0 in OS1 via

c0
$← Zp, (AC

0 , z0)← Sim0(x0, c0).

In OS2
, the game sets c1 := c− c0 and outputs z0 from OS1

. The other response z1 is computed via
w1 as introduced in Game 1.3.

As in Game 7, we can show that by perfect HVZK of Σ0, we have that

ε1.3 = ε1.4.

Game 1.5 (Send random T). We change the signer oracle OS1
again. Recall that until now, the

signer oracle defined the vector T := ϕ0(XC ,w0). In this game, T is sampled differently. Namely,
the game samples T1, T2

$← G at random and sets T3 := U .
Intuitively, since (H, sG, sH) form Diffie-Hellman tuples and are included in the definition of T

in Game 1.4, replacing sH by a random element should be indistinguishable and make the first
component of T random. This intuition can be formalized as in Game 8. That is, there is a reduction
B′2 with running time similar to A, such that

|ε1.4 − ε1.5| ≤ AdvQDDHG
B′

2
(QS , λ).

Note that at this point, the game does not need the secret key sk = u to simulate the signing
oracles. Instead, the game simulates the signing oracles OS1

and OS2
via the witness for Σ1 in Tddh,

and randomized T. This is important for the following game.
Game 1.6 (Abort if (xPed,wPed) /∈ RPed). We change the signer oracle OS1

such that the execution
aborts if (xPed,wPed) /∈ RPed. In more detail, we modify the first part of the signer oracle OS1

as
follows. After the game extracts wPed ← ExtPed(QHPed

,xPed, πPed), the game parses (m, t) := wPed

and aborts its entire execution if parsing wPed fails or C ̸= mU + tG.
Recall that due to the abort condition added in Game 1.1, it holds that (xPed,wPed) ∈ RPed.

Also, by definition of RPed (cf. Equation (5)), if (xPed,wPed) ∈ RPed it holds that wPed = (m, t) and
C = mU + tG. Thus, it remains to bound the probability that xPed = u with U = uG. For this, we
provide a reduction B′3 to DL. Essentially, B′3 simulates Game 1.5 to adversary A except that it
embeds an DL challenge U into the verification key vk. If some extracted wPed in OS1 fulfils uG = U ,
B′3 outputs U to as its DL solution. Note that ADL is well-defined, as the discrete logarithm u of U
is not required to simulate the Game 1.5 anymore. Clearly, it holds that

|ε1.5 − ε1.6| ≤ AdvDLGADL
(λ).

Game 1.7 to Game 1.10 (Revert back the changes). In Game 1.7 to Game 1.10 we revert
back the changes made in Game 1.2 to Game 1.5, but we keep the abort condition introduced in
Game 1.6. Roughly, in Game 1.7, we set T := ϕ0(XC ,w0) again. This change is justified by the
Q-DDH assumption. In Game 1.8, we compute the Σ0 using the witness w0 again and in Game 1.9,
we simulate the Σ1 transcript via the HVZK simulator. Finally, in Game 1.10, we output random
elements in Hddh again (which is again justified by Q-DDH). This follows as above and we omit
details. Observe that Game 1.10 is identical to Game 2. By summing up all the bounds from above,
we obtain

|ε1 − ε2| ≤ AdvKSNIPSPed,R̃Ped

AKS
(λ) + 2 · (AdvQDDHG

B′
1
(Qddh, λ) + AdvQDDHG

B′
2
(QS , λ)) + AdvDLGADL

(λ).

The statement now follows via Remark 5. ⊓⊔

32

D.3 Proof of Theorem 2

Proof (Theorem 2). By NIZK correctness, it may fail with probability at most γerr. If the NIZK
does not fail, the user always outputs a correct signature. In the following, we always assume NIZK
verification succeeded.
Step 0 (Correctness of PreBS). As a first step, we argue that the unblinded signature PreBS is
correct. This is equivalent to the equations

ϕ0(X, z0) = A0 + c0S and ϕ1(z1) = A1 + c1D
τ (16)

being satisfied where c′0, c
′
1, s

′, z′0, z
′
1 all set to 0 in Figure 2. To see this, observe that the user and

signer engage in an OR-compiled Σ-protocol for Rbb or Rddh. Since this Σ-protocol is perfectly
correct (Appendix B), It always holds that

ϕ0(XC , z
∗
0) = A∗

0 + c0T
∗ and ϕ1(z1) = A∗

1 + c1D
τ .

Hence, the user never aborts when checking the response z∗0, z
∗
1 . It is straightforward to check that

unblinding the transcript w.r.t. t yields (16), namely

ϕ0(X, z∗0) = ϕ0(X + tG, z∗0)− t · (z∗0G, 0, 0)

= ϕ0(X + tG, z∗0)− t · (A0,2 + c · T2, 0, 0)

= A∗
0 + cT∗ − t · (A0,2 + c · T2, 0, 0)

= A0 + cS

where the first step uses that ϕ0(X+ tG, (a, b)) = R+ t(R2, 0, 0) holds, where R = ϕ0(X, (a, b)) and
R2 is independent of X. Then we use linearity and the definition of of A0 and S. Thus, correctness
holds if c′0, c′1, s′, z′0, z′1 all set to 0.

Now, we argue that the randomization preserves perfect correctness. We argue in 3 separate
steps, where each step may assume all other randomizations are set to 0. This holds since, by
linearity of each randomization, randomizations do not “interfere” with each other, i.e., consecutive
application still preserves perfect correctness (simply by renaming of variables to include prior
randomization terms and using that the randomized transcripts are again accepting). We leave this
step to the reader.
Step 1 (Randomizing s′). We have for S∗ = T∗ − (t · T2, 0, 0)

T that

((G,V,XC ,T
∗), (s∗, sk)) ∈ Rbb ⇐⇒ ((G,V,X,S∗), (s∗, sk)) ∈ Rbb

⇐⇒ ((G,V,X,S), (s∗ + s′, sk)) ∈ Rbb

(17)

and the transcript w.r.t. S∗ is accepting by correctness of the unblinded scheme. The transcript
verification remains accepting for blinding with s′ ̸= 0 since

ϕ0(X, z0) = ϕ0(X, z∗0 − c0(s
′, 0))

= ϕ0(X, z∗0)− c0ϕ(X, s′, 0)

=
(
A0 + c0(S+ ϕ0(X, (s′, 0)))

)
− c0ϕ(X, s′, 0)

= A0 + c0S.

Thus, perfect correctness is preserved.
Step 2 (Randomizing c). This is a completely standard argument for blind signatures based on Σ-
protocols, except that we additionally need to consider sum of challenges due to the OR-compilation.
For this, observe that

c0 + c1 = c∗0 + c∗1 + c′0 + c′1 = c∗ + (c′0 + c′1) = c.

For the randomization of the transcripts, we consider only the branch of ϕ0, since ϕ1 is completely
analogous. Again, accepting transcripts are preserved by the randomization since

ϕ0(X, z0) = (A0 − c′0S) + (c∗0 − c′0)S = A0 + c∗0S.

33

Hence, perfect correctness is preserved.
Step 3 (Randomizing A0,A1). This is another completely standard argument. Again, we consider
only the branch of ϕ0, since ϕ1 is completely analogous. Again, accepting transcripts are preserved
by the randomization since

ϕ0(X, z0) = ϕ0(X, z∗0 + z′0) = (A∗
0 + c0S) + ϕ0(X, z′0) = A0 + c0S.

Again, perfect correctness is preserved. ⊓⊔

D.4 Proof of Theorem 3

Proof (Theorem 3). We consider an unbounded adversary and reduction (except for the number of
random oracle queries). We argue by game hops, and proceed in roughly three phases: Firstly, we
self-sign m by brute-forcing the secret key. Secondly, we use our knowledge of a witness to compute
(A0,A1) fresh and honestly, and run the Σ-protocols straightline instead of randomizing transcripts.
Thirdly, we remove any leakage from (C, πPed) by simulating the proof.

Let A be a PPT adversary against blindness of BS. Denote by QΣ, QM, Qddh, QPed the number
of oracle queries to HΣ,HM,Hddh,HPed, respectively, including the queries made by the game. We
proceed with a sequence of games. For each game Game i, we denote by εi the advantage of A in
Game i.
Game 0 (Honest). The partial blindness experiment with bit b. In the following, we modify the
signing oracle O0 (resp. O1) for interaction with τ and mb (resp. m1−b). Let

ε0 := AdvPBlindA(λ).

Game 1 (Abort if DDH tuple). If for any query τ to Hddh with output (Dτ
2 , D

τ
3) it ever occurs

that Dτ := (D1, D
τ
2 , D

τ
3) is a DDH tuple, abort the experiment 15. Denoting Qddh the number of

Hddh queries, we get

ε0 ≤ ε1 +
Qddh

p
.

Game 2 (Abort if (G,V,X,T∗) /∈ Lbb). Observe that the signer runs an OR-compilation
of Σ-protocols for knowledge of a preimage (s∗, sk) with T = ϕ0(XC , (s, sk)) or a preimage d2
with Dτ = ϕ1(d2). Since both Σ-protocols are special sound, so is their OR-compilation (for
relation Rbb ∪ Rddh). By Game 1, Dτ is never a DDH tuple in the challenge interactions. Thus, if
(G,V,XC ,T

∗) /∈ Lbb, then for any choice of (A0,A1) there is a unique challenge pair (c∗0, c
∗
1) for

which c∗ = c∗0 + c∗1 has an accepting response. The probability that c∗ = c+ c′1 + c′2 hits this unique
challenge is 1/p in either interaction. Thus, we get

ε1 ≤ ε2 +
2

p
.

Observe that (G,V,XC ,T
∗) ∈ Lbb implies (G,V,X,S) ∈ Lbb, cf. Equation (17).

Game 3 (Self-sign m). By Game 2, (G,V,XC ,T) ∈ Lbb holds, and therefore by construction of
S = ϕ0(X, (s∗ + s′, sk)), we get (G,V,X,S) ∈ Lbb as well. Moreover, by the rerandomization with
ϕ0(X, (s′, 0)) , (G,V,X,S) ∈ Lbb is a uniformly random “inefficient signature” on m. Thus, we can

equivalently compute S = ϕ0(X, (s, sk)), where sk is obtained from vk via brute-force and s
$← Zp

is fresh signing randomness. For completeness we set s′ = s− s∗. Observe that the distribution of S
and s′ remains unchanged. Again, we apply this change to both oracles. We get

ε2 = ε3.

Game 4 (Sample (A0,A1) fresh). In this game, we sample (r0, r1) ← Z2
p × Zp fresh, set

(A0,A1) = (ϕ0(X, r0), ϕ1(X, r1)), and let

z′0 = r0 − z∗0 − c0 · (s′, 0) and z′1 = r1 − z∗1 .

We make some observations:
15 The probability of this event can be bounded even without an explicit check. But since we consider

unbounded adversary and reduction, checking explicitly is simpler.

34

– (r0, r1) is uniquely defined by (A0,A1).
– By the above equations, given fixed − (t ·A∗

0,2, 0, 0)
T + ϕ0(X, z′0) − c′0S as well as fixed

+ ϕ1(z
′
1) − c′1D

τ , we have a bijection between (r0, r1) and (z′0, z
′
1). Thus, the distribution of

(r0, r1, z
′
0, z

′
1) is unchanged.

– If the user (and game) does not abort, then the derandomized π is accepting for statement
(G,V,X,S). Which means

z0 = r0 − c0(s, sk) and z1 = r1 − c1d2.

In particular, (r0, r1) is uniquely defined by (z0, z1) and (c0, c1).

Overall, we see that the distribution of the game remains unchanged, as we can define uniquely all
variables if we pick random masks (r0, r1) instead of (z′0, z′1). Thus, we have

ε3 = ε4.

An important consequence of this game and our observations, is that now π is computed “honestly”
instead of via rerandomization (but with unbounded power to recover sk).

Game 5 (Sample c∗, c0
$← Zp) Observe that we can sample c∗, c0, c1 instead as

c∗, c0
$← Zp, c1 = c− c0

and set c′0 = c∗0 − c0, c′1 = c∗1 − c1 and that this does not influence the distribution of π. Thus, we
get

ε4 = ε5.

After the change in Game 5, it is clear that (c0, c1) is a uniformly random under the constraint
c0 + c1 = c = HΣ((xb,Ab)b∈{0,1},m), i.e., uniform in {(c0, c1) | c0 + c1 = c}. In particular, the
choice of (c0, c1) is now clearly independent from messages sent to (or received by) the signer.
Game 6 (Simulate πPed). Observe that the Pedersen commitment C ∈ G can always be opened
to any value v by brute-forcing t. Thus, we can simulate the proof πC by brute-forcing an opening
t̂ for m = 0 as C = t̂G and providing a proof for that. We do this in both O0 and O1, so that
the witness (m, t) is not required anymore. By a straight-forward reduction (using the witness-
indistinguishability experiment to compute the proof in O0, and then in O1), we obtain that there
exists some AWI with

ε5 ≤ ε6 + 2 · AdvWINIPSAWI
(QPed, λ).

Game 7 (C $← G). We sample C via C
$← G instead of computing it honestly. Thus, C is now

independent of the message. Observe that t is not used anymore since Game 6. Therefore, the
distribution is unchanged, and we get

ε6 = ε7.

Game 8 (Wrapping up). After Game 7, the transcript π = (A0,A1, c, c0, z0, z1) is computed
entirely by information local to the oracles, and the oracles only send an independently random C,
simulated π, and random c∗. In particular, computation of (S, π) can be delayed until after the
protocol completed and the outputs σ0 resp. σ1 are required. Thus, it is clear that the interactions
are independent of the messages m0, m1 (and that even holds if the common message τ differs).16
Since both interactions and thus final signatures use the same τ , we deduce that the bit b it perfectly
hidden from the adversary’s view. Hence,

ε7 = ε8 = 0.

Putting everything together we arrive at

ε0 ≤
2

p
+ 2 · AdvWINIPSAWI

(Q,λ)

which concludes the proof. ⊓⊔
16 In other words, we have an (unbounded) straightline simulator, which (1) takes no input and simulates a

signing session, and then (2) takes as input (m, τ) and generates a signature σ on m w.r.t τ .

35

E Deferred Figures

In this section, we provide figures that were deferred from the main body.

Game 0 (One-more Unforgeability)

1 : ∀H ∈ {Hddh,HΣ,HM,HPed},QH[·] := ⊥
2 : SID := ∅,QT [·] := 0

3 : common[·] := ⊥, state[·] = ⊥, round[·] = ⊥

4 : u
$← Zp, H, V

$← G, U := uG

5 : vk := (G,U,H, V,D1), sk := u

6 : oracles := (OS1 ,OS2 ,Hddh,HΣ,HM,HPed)

7 : (τ∗, (m∗
j , σ

∗
j)j∈[k])← Aoracles(vk)

8 : abort if queried[τ∗] ≥ k

9 : abort if ∃j ∈ [k],Verify(vk,m∗
j , τ

∗, σ∗
j) = 0

10 : abort if ∃(i, j) ∈ [k]2, i ̸= j,m∗
i = m∗

j

11 : return 1

Hddh(τ)

1 : if QHddh [τ] = ⊥ then

2 : (Dτ
2 , D

τ
3)

$← G2,QHddh [τ]← (Dτ
2 , D

τ
3)

3 : return QHddh [τ]

HΣ(x)

1 : if QHΣ [x] = ⊥ then

2 : c
$← Zp,QHΣ [x]← c

3 : return QHΣ [x]

HM(m)

1 : if QHM [m] = ⊥ then

2 : m
$← Zp,QHM [m]← m

3 : return QHM [m]

HPed(x)

1 : if QHPed [m] = ⊥ then

2 : y
$← YPed,QHPed [x]← y

3 : return QHPed [x]

Next(sid, τ)

1 : if sid ∈ SID then return ⊥
2 : SID ← SID ∪ {sid}
3 : common[sid]← τ, round[sid]← 0

4 : return 1

OS1(sid, C, πPed)

1 : req round[sid] = 0

2 : τ := common[sid]

3 : xPed := (C,U,G)

4 : req NIPSPed.Ver
HPed(xPed, πPed) = 1

5 : s
$← Zp,w0 := (s, sk)

6 : XC := C +H,T := ϕ0(XC ,w0)

7 : Dτ := (D1,Hddh(τ))

8 : x
C
0 := (G,V,XC ,S),x1 := (G,Dτ)

9 : c1
$← Zp, (A1, z1)← Sim1(x1, c1)

10 : (AC
0 , st0)← Init0(x

C
0 ,w0)

11 : state[sid]← (z1, c1, st0)

12 : round[sid]← 1

13 : return (T,AC
0 ,A1)

OS2(sid, c)

1 : req round[sid] = 1

2 : req c ∈ Zp

3 : (z1, c1, st0) := state[sid]

4 : c0 := c− c1

5 : z0 ← Resp0(st0, c0)

6 : queried[τ]← queried[τ] + 1

7 : return (z0, z1, c0)

Fig. 3. Description of Game 0, identical to the real one-more unforgeability game. For some condition C,
abort if C makes the game output 0 if C is true and req C makes the oracle output ⊥ if C is false.

36

Game 12 (One-more Unforgeability)

1 : ∀H ∈ {Hddh,HΣ,HM,HPed},QH[·] := ⊥
2 : SID := ∅,QT [·] := 0

3 : common[·] := ⊥, state[·] = ⊥, round[·] = ⊥

4 : ctrM := 0, q∗m
$← [QM],m

∗ $← Zp // Game 4

5 : ctrddh := 0, q∗τ
$← [Qddh], τq∗τ := ⊥ // Game 3

6 : h
$← Zp, H := hG

7 : u
$← Zp, V

$← G, U := uG

8 : vk := (G,U,H, V,D1), sk := u

9 : oracles := (OS1 ,OS2 ,Hddh,HΣ,HM,HPed)

10 : (τ∗, (m∗
j , σ

∗
j)j∈[k])← Aoracles(vk)

11 : abort if queried[τ∗] ≥ k

12 : abort if ∃j ∈ [k],Verify(vk,m∗
j , τ

∗, σ∗
j) = 0

13 : abort if ∃(i, j) ∈ [k]2, i ̸= j,m∗
i = m∗

j

14 : abort if ∀j ∈ [k],HM(m
∗
j) ̸= m∗ // Game 4

15 : abort if τ∗ ̸= τq∗τ // Game 3

16 : parse (S∗
1,j , S

∗
2,j , πj)j∈[k] ← (σ∗

j)j∈[k] // Game 9

abort if ∃j ∈ [k], S∗
1,j ̸= Sj , // Game 9

17 : Sj = uV + (HM(m
∗
j) · u)S∗

2,j + hS∗
2,j

18 : return 1

Hddh(τ)

1 : ctrddh ← ctrddh + 1 // Game 3

2 : if ctrddh = q∗τ then τq∗τ := τ // Game 3

3 : if QHddh [τ] = ⊥ then

4 : d2 ← Zp,Tddh[τ]← d2 // Game 5, Game 10

5 : (Dτ
2 , D

τ
3) := (d2G, d2D1) // Game 5, Game 10

6 : QHddh [τ]← (Dτ
2 , D

τ
3)

7 : return QHddh [τ]

HM(m)

1 : ctrM ← ctrM + 1 // Game 4

2 : if QHM [m] = ⊥ then

3 : if ctrM = q∗m then m := m∗ // Game 4

4 : else m
$← Zp

5 : abort if ∃m,QHM [m] = m // Game 1

6 : QHM [m]← m

7 : return QHM [m]

HΣ(x) and HPed(x) and Next(sid, τ)

// Identical to HΣ and HPed and Next in Game 0

OS1(sid, C, πPed)

1 : req round[sid] = 1

2 : τ := common[sid]

3 : xPed := (C,U,G)

4 : req NIPSPed.Ver
HPed(xPed, πPed) = 1

5 : (m, t)← ExtPed(QHPed ,xPed, πPed) // Game 2

6 : abort if C ̸= mU + tG // Game 2

7 : XC := C +H

8 : Dτ := (D1,Hddh(τ))

9 : x
C
0 := (G,V,XC ,S),x1 := (G,Dτ)

10 : if τ ̸= τq∗τ ∨m∗ = m then

11 : T
$← G2 × {U} // Game 8

12 : else

13 : s
$← Zp,w0 := (s, sk)

14 : T := ϕ0(XC ,w0)

// Game 7,Game 12

15 : c0
$← Zp, (A

C
0 , z0)← Sim0(x

C
0 , c0)

16 : w1 := Tddh[τ] // Game 6,Game 11

17 : (A1, st1)← Init1(x1,w1) // Game 6,Game 11

18 : state[sid]← (z0, c0, st1,m)

19 : round[sid]← 1

20 : return (T,AC
0 ,A1)

OS2(sid, c)

1 : req round[sid] = 1

2 : req c ∈ Zp

3 : (z0, c0, st1,m) := state[sid]

4 : abort if m = m∗ // Game 4

5 : c1 := c− c0 // Game 7,Game 12

6 : z1 ← Resp1(st1, c1) // Game 6,Game 11

7 : queried[τ]← queried[τ] + 1

8 : return (z0, z1, c0)

Fig. 4. Description of Game 12, where the differences to Game 0 are highlighted in gray. Note that the
changes marked with Game 5,Game 10 (resp. Game 7,Game 12) are introduced for τ ̸= τq∗τ in Game 5
(resp. Game 7), and later for τ = τq∗τ in Game 10 (resp. Game 12). For some condition C, abort if C
makes the game output 0 if C is true and req C makes the oracle output ⊥ if C is false.

37

F Script for Concrete Efficiency

Listing 1.1. Python script to compute the efficiency metrics in Table 2.
#!/usr/bin/env python
import math
import sys
from tabulate import tabulate

size_ge = 256
size_fe = 256
secpar = 128

#---#
Functions to compute size of Fischlin proof
the proofs prove knowledge of preimage of lin
func mapping witness (fe) to statement (ge)
#---#
def size_fischlin_proof(num_fe_witness , num_ge_statement):

b = 8 # output bits of the hash function that need to be 0
r must satistfy that br = secpar
r = math.ceil(secpar / b)
num_coms = r
num_chal = r
num_resp = r
size_com = num_ge_statement * size_ge
size_chall = size_fe
size_resp = num_fe_witness * size_fe
size_proof = num_coms * size_com + num_chal * size_chall + num_resp * size_resp
return size_proof

#--------------------------------------#
Communication for CTZ and Our Scheme
#--------------------------------------#

communication of CTZ -3, according to Table 1 in
the eprint version https :// eprint.iacr.org /2023/1780. pdf
comm_ctz_ge = 3 * secpar + 6
comm_ctz_fe = 2 * secpar + 9
comm_ctz_bits = secpar + 3 * secpar * secpar
comm_ctz = comm_ctz_ge * size_ge + comm_ctz_fe * size_fe + comm_ctz_bits

print("Communication CTZ: " + str("{:.2f}".format ((comm_ctz /8000))) + " Kilobytes")

communication for our scheme
comm_ours_wo_proof = 8 * size_ge + 5 * size_fe
comm_ours = comm_ours_wo_proof + size_fischlin_proof (2, 1)

print("Communication Ours (using Fischlin): " + str("{:.2f}".format ((comm_ours /8000))) + " Kilobytes")

#--------------------------------------#
Signature for CTZ and Our Scheme
#--------------------------------------#
print("")

signature of CTZ -3, according to Table 1 in
the eprint version https :// eprint.iacr.org /2023/1780. pdf
sig_ctz_ge = secpar + 1
sig_ctz_fe = secpar + 7
sig_ctz_bits = secpar * secpar
sig_ctz = sig_ctz_ge * size_ge + sig_ctz_fe * size_fe + sig_ctz_bits

print("Signature CTZ: " + str("{:.2f}".format ((sig_ctz /8000))) + " Kilobytes")

signature size for our scheme
sig_ours = 2 * size_ge + 5 * size_fe
print("Signature Ours: " + str("{:.2f}".format ((sig_ours /8))) + " Bytes")

38

	Practical Blind Signatures in Pairing-Free Groups
	Introduction
	Our Contribution
	Related Work
	Technical Overview
	Organization of this Paper

	Preliminaries
	Signatures based on the Boneh-Boyen IBE
	Construction
	Security Analysis

	Non-Blind Interactive Signing Protocol
	Construction
	Security Analysis

	Blind Interactive Signing Protocol
	Construction
	Security Analysis

	Assumptions
	Sigma-protocols for Our Construction
	Construction of Straightline-Extractable Proofs
	Deferred Proofs
	Proof of 1
	Proof of 2
	Proof of 2
	Proof of 3

	Deferred Figures
	Script for Concrete Efficiency

