
Coral: Maliciously Secure Computation Framework for Packed
and Mixed Circuits

Zhicong Huang

Ant Group

Hangzhou, China

zhicong.hzc@antgroup.com

Wen-jie Lu
∗

Ant Group

Hangzhou, China

fionser@gmail.com

Yuchen Wang

Ant Group

Beijing, China

tianwu.wyc@antgroup.com

Cheng Hong
†

Ant Group

Beijing, China

vince.hc@antgroup.com

Tao Wei

Ant Group

Hangzhou, China

lenx.wei@antgroup.com

WenGuang Chen

Ant Group

Beijing, China

yuanben.cwg@antgroup.com

Abstract
Achieving malicious security with high efficiency in dishonest-

majority secure multiparty computation is a formidable challenge.

The milestone works SPDZ and TinyOT have spawn a large family

of protocols in this direction. For boolean circuits, state-of-the-art

works (Cascudo et. al, TCC 2020 and Escudero et. al, CRYPTO 2022)

have proposed schemes based on reverse multiplication-friendly

embedding (RMFE) to reduce the amortized cost. However, these

protocols are theoretically described and analyzed, resulting in a

significant gap between theory and concrete efficiency.

Our work addresses existing gaps by refining and correcting sev-

eral issues identified in prior research, leading to the first practically

efficient realization of RMFE. We introduce an array of protocol

enhancements, including RMFE-based quintuples and (extended)

double-authenticated bits, aimed at improving the efficiency of

maliciously secure boolean and mixed circuits. The culmination

of these efforts is embodied in Coral, a comprehensive framework

developed atop the MP-SPDZ library. Through rigorous evaluation

across multiple benchmarks, Coral demonstrates a remarkable effi-

ciency gain, outperforming the foremost theoretical approach by

Escudero et al. (which incorporates our RMFE foundation albeit

lacks our protocol enhancements) by a factor of 16-30×, and sur-

passing the leading practical implementation for Frederiksen et al.

(ASIACRYPT 2015) by 4-7×.

CCS Concepts
• Security and privacy→ Information-theoretic techniques.

Keywords
RMFE; MFE; embedding; pack; MPC; MAC; SPDZ; TinyOT; boolean;

malicious; binary field; composite field; daBit; edaBit

∗
Also with Zhejiang University.

†
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3690223

ACM Reference Format:
Zhicong Huang, Wen-jie Lu, YuchenWang, Cheng Hong, TaoWei, andWen-

Guang Chen. 2024. Coral: Maliciously Secure Computation Framework

for Packed and Mixed Circuits. In Proceedings of the 2024 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’24), October
14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 17 pages.

https://doi.org/10.1145/3658644.3690223

1 Introduction
Protocols for secure multiparty computation (MPC) enable a set of

parties to jointly compute an agreed-upon function of their private

inputs without revealing anything else other than the output. In

recent years, MPC has rapidly moved from academic research to

practical applications, thanks to various performant algorithmic

upgrades and efficient implementations [26, 34, 35, 41].

In spite of these impressive results, maliciously secure MPC

frameworks have been applied with limited scale in practice, due

to their high performance penalty in communication and com-

putation. Malicious security in the dishonest-majority setting is

one of the strongest models in MPC, where more than half of the

parties are corrupted by adversaries and may deviate arbitrarily

from the prescribed protocol. This includes the interesting case of

two-party computation. The SPDZ protocols [15, 16] fall into this

setting over Z𝑞 when 𝑞 is a prime, and use somewhat homomorphic
encryption for preprocessing (authenticating secret-shared inputs

with information-theoretic MACs and generating multiplication

triples). Follow-up works from Keller et al. (MASCOT [27] based

on oblivious transfer, and Overdrive [28] based on RLWE homo-

morphic encryption) improve the performance by several orders

of magnitude under the same setting. Frameworks for arithmetic

circuits in the ring modulo 𝑞 = 2
𝑘
are also explored in this line of

research (SPDZ
2
𝑘 [13] based on oblivious transfer, Overdrive2k [32]

and MHz2k [12] based on RLWE homomorphic encryption).

To achieve the same security for boolean circuits, SPDZ-style or

TinyOT-style protocols have been proposed to handle the F2 do-

main [7, 17, 21, 22, 29]. However, these protocols require the MAC

on every secret-shared bit to be at least as big as the statistical secu-

rity parameter (e.g., 40 bits), blowing up the complexity by a large

factor. For example, the MP-SPDZ library [26] implements a Tinier

protocol based on the work from Frederiksen et al. [21], appending

a MAC in F
2

40 to every shared bit. The SPDZ
2
𝑘 scheme could also

1

https://orcid.org/0000-0003-1338-611X
https://orcid.org/0009-0006-2512-5274
https://orcid.org/0008-9242-2476
https://orcid.org/0009-0008-0477-0359
https://orcid.org/0000-0001-9537-7051
https://orcid.org/0000-0002-4281-1018
https://doi.org/10.1145/3658644.3690223
https://doi.org/10.1145/3658644.3690223

be adapted
1
to the special boolean case of 𝑘 = 1, by sharing bits and

MACs in Z
2

1+𝑠 for 𝑠 > 40. To reduce the blown-up factor, a batch

authentication idea has been applied in MiniMAC [17], by relying

on a linear error correcting code (LECC) to combine a vector of

bits into a codeword and authenticate them together with a single

MAC. A similar LECC-based approach is also discussed in Commit-

ted MPC [22]. Recently, more efficient constructions based on re-
verse multiplication-friendly embedding (RMFE) are proposed [9, 20],
achieving more compact encoding than the approach of LECC. In

boolean circuits, RMFE maps from a vector space F𝑘
2
to a field F2

𝑚

(𝑚 > 𝑘), which essentially enables single-instruction-multiple-data

(SIMD) computation in the vector space by performing field op-

erations in the embedded field. Escudero et al. [20] also propose

more efficient preprocessing protocols by embedding the field F2
𝑚

into a larger vector space F𝑡
2
(𝑡 > 𝑚) with multiplication-friendly

embedding (MFE) such that oblivious linear evaluation (OLE) over

F2
𝑚 can be obtained by evaluating many small OLEs over F2. These

RMFE-based MPC protocols give state-of-the-art performance over

F2 as shown in their analysis. Comparing these works in terms of

practical efficiency is challenging, as most lack both implementa-

tion and framework integration. Part of the contribution in this

work is to further boost the concrete efficiency of state-of-the-art

protocols with dedicated implementation.

For many applications, it generally gives optimal performance

by mixing the evaluation of arithmetic circuits and boolean circuits.

Double-authenticated bit (daBit) [38] is a general technique that

authenticates the same bit in two domains, e.g., Z𝑞 domain and

F2 domain. It enables the design of many useful sub-routines such

as comparison, equality testing and integer truncation, which are

necessary to realize complex applications. However, for the above

non-linear primitives that require binary circuits for intermediate

computation, extended double-authenticated bit (edaBit) [19] has
proven to be much more efficient. This technique authenticates an

integer in Z𝑞 and its bit decomposition in F2, which constitutes the

randomness resource in a wide set of non-linear primitives. The

MP-SPDZ library provides implementation of these techniques and

allows convenient pairing between an arithmetic scheme and a

boolean scheme.

1.1 Our Contributions
This work focuses on RMFE-based MPC, introducing novel primi-

tives and applications for actively secure computationwith a dishon-

est majority in packed (SIMD) and mixed (arithmetic and boolean

gates) circuits. Recognizing the implementation gap in prior RMFE-

based research between (R)MFE construction and its application in

MPC, we present essential fixes, optimizations, and a highly efficient

implementation to bridge this divide and operationalize (R)MFE.

Leveraging these advancements, we design improved solutions for

secure boolean computation and mixed-circuit computation, incor-

porating classical TinyOT insights and recent VOLE-style (vector
oblivious linear evaluation) OT extension developments [6, 44]. Our

contributions in this work are four-fold:

1
The preprocessing protocols are replaced, e.g., with [21] or [18].

• We address the existing gaps within prior RMFE-based frame-

works, present concrete instantiation, and provide highly ef-

ficient implementation of the underlying mathematics. This

could be of general interest to the research line.

• We propose more efficient protocols for RMFE-based boolean

circuit evaluation. Our protocols, crucial for input authenti-

cation and multiplication randomness generation, improve

upon prior works’ efficiency by at least one order of magni-

tude asymptotically.

• We construct RMFE-based daBit and edaBit generation based

on a vectorization of previous protocols [19], achieving more

efficient amortized RMFE-based mixed-circuit evaluation.

• We introduce Coral, a fully implemented framework in MP-

SPDZ, along with compiler support for packed circuits. Ex-

tensive evaluation reveals Coral outperforms state-of-the-art

methods by 4-30× in boolean circuits and 3-5× in mixed

circuits across multiple efficiency metrics. We open source
Coral at: https://github.com/AntCPLab/OpenCoral/.

1.2 Related Work
(R)MFE-basedMPC.MFE in secure computationwas first explored

by Cascudo et al. [33], providing constructions we utilize herein.

RMFE’s application in this context was initiated by Cascudo et al. [8]

and Block et al. [4]. The former employed RMFE to reduce commu-

nication overhead in honest-majority settings necessitating Shamir

secret sharing over large finite fields. Conversely, the latter devised

a protocol enhancing two-party evaluation of linear multiplication

gates over a small field via a single multiplication over a larger field.

Cascudo and Gundersen [9] constructed a complete RMFE-based

framework for boolean circuits in the dishonest-majority setting,

employing SPDZ-style MACs on the embedded field; however, it

necessitated interactive re-encoding after each multiplication, in-

curring two communication rounds. Escudero et al. [20] improved

these outcomes, introducing two key advancements for boolean

circuits: replacing Beaver triples with quintuples to save a commu-

nication round and leveragingMFE for more efficient preprocessing.

Furthermore, their work generalized to the Z𝑝𝑘 domain, building

upon recent advances in ring-based multiplicative secret sharing

schemes [14].

SPDZ protocols. In the actively secure dishonest-majority set-

ting, SPDZ (Damgård et al., [16]) has been a milestone work that

spawns a family of protocols. It introduces the SPDZ-style MAC

where a global MAC 𝑚 for each value 𝑥 and a global key 𝛼 is

shared among parties, satisfying the relation𝑚 = 𝛼𝑥 . Besides the

arithmetic protocols that are discussed in the previous paragraphs,

recent works begin to seek further optimizations that target com-

plex applications, such as matrix and convolution triples [11, 36].

These proposals are orthogonal to our work and can be paired with

our scheme to boost concrete efficiency in applications. In fact,

MiniMAC [17] and RMFE-based MPC [9, 20] belong to the SPDZ

family as they also rely on the SPDZ-style MAC for authentication.

TinyOT protocols. Before SPDZ, information-theoretic MACs

in arithmetic circuits have been studied by Bendlin et al. [3] in

secret-sharing based multiparty computation that builds upon ad-

ditive homomorphic encryption. These MACs are established be-

tween every pair of players and later referred to as BDOZ-style

2

https://github.com/AntCPLab/OpenCoral/

MACs that are widely used in various TinyOT-style protocols for

boolean circuits. TinyOT (Nielsen et al., [31]) introduces the usage

of OT extension in the preprocessing phase of a two-party com-

putation framework for boolean circuits. Several follow-up works

extend TinyOT to the multi-party setting [7, 21, 29], but they in-

stead produce SPDZ-style shares. Wang et al. [42] propose more

efficient TinyOT-style preprocessing in a two-party scheme and

later extend it to the multiparty setting [43]. These works give

state-of-the-art performance for TinyOT triple generation. Up to

now, techniques based on TinyOT remain the most efficient method

for preprocessing AND triples in the dishonest-majority setting.

Mixed-circuit computation. [18] is a self-contained frame-

work that extends SPDZ
2
𝑘 [13] and evaluates mixed circuits in

Z
2
𝑘 and Z2. It introduces the idea of obtaining Z2 triples by con-

verting from TinyOT triples and performs daBit-style conversions

between arithmetic sharing and boolean sharing. After the orig-

inal introduction of daBit [38], later works have proposed more

efficient daBit generation protocols in various secure computation

contexts [1, 5, 37]. In addition to the contribution of edaBit, Es-

cudero et al. [19] also propose efficient daBit construction in their

work.

2 Preliminaries
2.1 Notations
For a set D, 𝑥

$← D means 𝑥 is sampled from D uniformly at

random. The logical AND and XOR is ∧ and ⊕, respectively. We use

bold letters such as a to represent vectors, and use a[𝑗] to denote the
𝑗-th component of a. The Hadamard product of vectors is written

as a ⊙ b.

2.2 Cryptographic Primitives
2.2.1 Authenticated Secret Sharing. Throughout this manuscript,

we use additive secret sharing schemes.Malicious security is achieved

by binding secret shares with information-theoretic MACs. Two

prevalent styles of MACs are used in this work.

SPDZ-style MACs. In the SPDZ protocol family, for a secret

value 𝑥 ∈ S, 𝑛 parties maintain the authentication formula:

∑𝑛
𝑖=1

𝑥𝑖 ·∑𝑛
𝑖=1

𝛼𝑖 =
∑𝑛
𝑖=1

𝑚𝑖
, where party 𝑖 holds value share 𝑥𝑖 , MAC share

𝑚𝑖
, and key share 𝛼𝑖 , and 𝛼 =

∑𝑛
𝑖=1

𝛼𝑖 is a global secret MAC key.

Let J𝑥K denote SPDZ sharing where party 𝑖 holds tuple (𝑥𝑖 ,𝑚𝑖),
respectively (we omit 𝛼𝑖 since it is the same across all sharings).

The space S depends on concrete schemes. For example, in MAS-

COT [27], S is a prime field F𝑞 or a binary field F
2
ℓ , whereas in

Spdz2k [13], S is the ring Z
2
ℓ (with shares 𝑥𝑖 and𝑚𝑖

over a larger

ring Z
2
ℓ+𝑠). In this work, we use several different spaces (for both

binary field and modulo ring) that will be highlighted whenever

necessary.

BDOZ-style MACs. A pairwise MAC is used for boolean field

F2 in various works including the TinyOT family of protocols [31,

42, 43]. For a secret bit 𝑥 ∈ F2, party 𝑃𝑖 holds a share 𝑥
𝑖
such that

𝑥 =
⊕

𝑖 𝑥
𝑖
. 𝑃𝑖 authenticates its share to 𝑃 𝑗 , with 𝑃𝑖 holding tuple

(𝑥𝑖 , 𝑀𝑗 [𝑥𝑖]) and 𝑃 𝑗 holding tuple (𝐾𝑗 [𝑥𝑖],Δ 𝑗) such that:𝑀𝑗 [𝑥𝑖] ⊕
𝐾𝑗 [𝑥𝑖] = 𝑥𝑖 · Δ 𝑗

, where 𝑀𝑗 [𝑥𝑖], 𝐾𝑗 [𝑥𝑖] ∈ F2
ℓ , and Δ 𝑗

is a fixed

MAC key held by party 𝑗 . Let J𝑥K𝐵 denote such TinyOT sharing

that works as above.

2.2.2 Oblivious Transfer. We rely on oblivious transfer (OT) for

several protocols in this work. In a general 1-out-of-2 OT, a sender

inputs twomessages𝑚0 and𝑚1 of length ℓ bits and a receiver inputs

a choice bit 𝑐 ∈ {0, 1}. At the end of the protocol, the receiver learns
𝑚𝑐 , whereas the sender learns nothing. When sender messages are

correlated, the Correlated OT (COT) is more efficient in communi-

cation [2]. In COT with XOR correlation, a sender inputs a function

𝑓 (𝑥) = 𝑥 ⊕ Δ for some Δ ∈ F
2
ℓ , and a receiver inputs a choice bit 𝑐 .

At the end of the protocol, the sender learns 𝑥 ∈ F
2
ℓ whereas the

receiver learns 𝑥 ⊕𝑐 ·Δ ∈ F
2
ℓ . OT can be implemented efficiently via

IKNP-style OT extension [24] or VOLE-style OT extension [6, 44],

and the latter proves to have a much lower communication when

sender messages can be random.

2.2.3 (Reverse)Multiplication-Friendly Embedding. RMFE/MFE pre-

serves multiplication (and addition trivially) between two spaces.

In this work, we focus on their usage for improving boolean com-

putation.

Definition 1 (RMFE ([8])). A reverse multiplication-friendly em-
bedding, or (𝑘,𝑚)𝑞-RMFE for short, is a pair of embedding map
𝜙 : F𝑘𝑞 → F𝑞𝑚 and recovery map𝜓 : F𝑞𝑚 → F𝑘𝑞 , such that∀x, y ∈ F𝑘𝑞 ,
it holds that x ⊙ y = 𝜓 (𝜙 (x) · 𝜙 (y)).

In particular,𝑚 ≥ 𝑘 . We have the following results for construct-

ing RMFE instances.

Theorem 1 (Lemma 4 in [8], and Theorem 2 in [9]). For all
1 ≤ 𝑘 ≤ 𝑞 + 1, there exists a (𝑘,𝑚)𝑞-RMFE with𝑚 = 2𝑘 − 1, and a
(𝑘,𝑚)𝑞-RMFE with𝑚 = 2𝑘 .

In the following, we describe the construction of maps for the

case of 𝑚 = 2𝑘 in [9] (similarly for 𝑚 = 2𝑘 − 1). Let 𝛼 ∈ F𝑞𝑚
such that (1, 𝛼, · · · , 𝛼𝑚−1) is a basis of F𝑞𝑚 as a F𝑞-vector space.
Let 𝛽1, 𝛽2, · · · , 𝛽𝑘−1

be 𝑘 − 1 distinct elements in F𝑞 , and 𝑓𝑖 be the

coefficient of 𝑋 𝑖
in 𝑓 ∈ F𝑞 [𝑋]≤𝑛 (polynomials whose degree is not

greater than 𝑛 and whose coefficients are in F𝑞). We define maps:

𝜉1 : F𝑞 [𝑋]≤𝑘−1
→ F𝑘𝑞 ; 𝑓 ↦→ (𝑓 (𝛽1), · · · , 𝑓 (𝛽𝑘−1

), 𝑓𝑘−1
)

𝜋1 : F𝑞 [𝑋]≤2𝑘−1
→ F𝑞2𝑘 ; 𝑓 ↦→ 𝑓 (𝛼)

𝜉2 : F𝑞 [𝑋]≤2𝑘−1
→ F𝑘𝑞 ; 𝑓 ↦→ (𝑓 (𝛽1), · · · , 𝑓 (𝛽𝑘−1

), 𝑓
2𝑘−2
)

The embedding and recovery maps are constructed as:

𝜙 : 𝜋1 ◦ 𝜉−1

1
and 𝜓 : 𝜉2 ◦ 𝜋−1

1

This construction satisfies the property x ⊙ y = 𝜓 (𝜙 (x) · 𝜙 (y)). In
addition, we define the normalization map 𝜏 : 𝜙 ◦ 𝜓 . An element

𝑥 ∈ F𝑞𝑚 is called a normal element if 𝜏 (𝑥) = 𝑥 . We abuse the

notation𝜓−1
to let𝜓−1 (x) denote the set of preimages for x under

𝜓 .

Definition 2 (MFE ([33])). A multiplication-friendly embedding,
or (𝑡,𝑚)𝑞-MFE for short, is a pair of embedding map 𝜎 : F𝑞𝑚 → F𝑡𝑞
and recovery map 𝜌 : F𝑡𝑞 → F𝑞𝑚 , such that ∀𝑥,𝑦 ∈ F𝑞𝑚 , it holds that
𝑥𝑦 = 𝜌 (𝜎 (𝑥) ⊙ 𝜎 (𝑦)).

Similarly, 𝑡 ≥ 𝑚. We have the following results for constructing

MFE instances:

Theorem 2 (Theorem 8 in [33]). Let𝑚 ≥ 2 be an integer with
𝑞 ≥ 2𝑚−2, then there exists a (𝑡,𝑚)𝑞-MFE between F𝑞𝑚 and F𝑡𝑞 with
𝑡 = 2𝑚 − 1.

3

To complete the above theorem, we provide a detailed con-

struction of the two maps by adapting the result from [33]. Let

𝛽1, 𝛽2, · · · , 𝛽2𝑚−2 be 2𝑚 − 2 distinct elements in F𝑞 . We define

maps:

𝜇1 : F𝑞 [𝑋]≤𝑚−1 → F𝑞𝑚 ; 𝑓 ↦→ 𝑓 (𝛼)
𝜈1 : F𝑞 [𝑋]≤𝑚−1 → F2𝑚−1

𝑞 ;

𝑓 ↦→ (𝑓 (𝛽1), · · · , 𝑓 (𝛽2𝑚−2), 𝑓𝑚−1)
𝜇2 : F𝑞 [𝑋]≤2𝑚−2 → F2𝑚−1

𝑞 ;

𝑓 ↦→ (𝑓 (𝛽1), · · · , 𝑓 (𝛽2𝑚−2), 𝑓2𝑚−2)
𝜈2 : F𝑞 [𝑋]≤2𝑚−2 → F𝑞𝑚 ; 𝑓 ↦→ 𝑓 (𝛼)

Then, the embedding and recovery maps are constructed as:

𝜎 : 𝜈1 ◦ 𝜇−1

1
and 𝜌 : 𝜈2 ◦ 𝜇−1

2

It can be shown that this construction satisfies the property 𝑥𝑦 =

𝜌 (𝜎 (𝑥) ⊙ 𝜎 (𝑦)), and we skip the proof here.

Concatenation [9]. To construct mappings for large space, it

is necessary to concatenate small (R)MFE instances. A (𝑡1,𝑚1)𝑞-
MFE and a (𝑡2,𝑚2)𝑞𝑚1 -MFE can be concatenated to produce a

(𝑡1𝑡2,𝑚1𝑚2)𝑞-MFE. Similarly, a (𝑘1,𝑚1)𝑞-RMFE and a (𝑘2,𝑚2)𝑞𝑚1 -

RMFE can be concatenated to produce a (𝑘1𝑘2,𝑚1𝑚2)𝑞-RMFE. For

example, (3, 5)2-RMFE and (7, 13)32-RMFE give us (21, 65)2-RMFE.

There is still a large gap between the above results and its applica-

tion in MPC, which we will address in Section 3.

2.2.4 Background of RMFE-based MPC. For boolean computation,

our protocols build upon the previous best-performing RMFE-based

MPC framework [20] that is proposed for the more general ring

Z𝑝𝑒 . We restrict the setting to 𝑝𝑒 = 2 and introduce necessary

background only for this setting. The frameworkmaintains a critical

invariant throughout the whole circuit: the parties virtually store

a vector x ∈ F𝑘
2
by actually storing an element 𝑥 ∈ F2

𝑚 with

𝜓 (𝑥) = x. Online computation respects this invariant, accepting

inputs from F2
𝑚 and producing outputs in F2

𝑚 . We summarize

their core protocols below:

Input. J𝑥K ← RInput(x, 𝑃𝑖), where x ∈ F𝑘
2
, and 𝑥 ∈ F2

𝑚 . It

secret shares and authenticates a private input vector x from party

𝑃𝑖 .

Linear combination. J𝑧K← 𝑎J𝑥K + J𝑦K + 𝑏, where 𝑎 ∈ F2 and

𝑏 ∈ F2
𝑚 . Because the recovery map 𝜓 is only F2-linear, but not

F2
𝑚 -linear, their constant multiplication only accepts 𝑎 in F2. This

might be sufficient for some SIMD evaluation, but we will show that

it is not enough for simple circuits (e.g., comparison) and propose

necessary extension.

Multiplication. J𝑧K← J𝑥K · J𝑦K. A preprocessed quintuple (J𝑎K,
J𝑏K, J𝜏 (𝑎)K, J𝜏 (𝑏)K, J𝜏 (𝑎)𝜏 (𝑏)K) is needed instead of a Beaver triple.

In our work, a different type of quintuples is produced from a more

efficient preprocessing phase.

Partial opening. x← ROpen(J𝑥K), where MAC checking can

be deferred and batched for greater efficiency. A random authen-

ticated kernel element J𝑟K with 𝑟 ← 𝜓−1 (0) is necessary to mask

J𝑥K in order to avoid potential leakage.

Packing, Unpacking, and Repacking [20]. In this study, we

adopt the information flow as presented in [20]. Initially, an input

vector of 𝑘 bits undergoes packing (RMFE encoding), resulting in an

element within F2
𝑚 . This allows for the execution of operations on

RMFE Encode
𝐱 ∈ 𝔽! " 𝑥 ∈ 𝔽!!

𝑥

COPE (MASCOT [27])

𝛼
IKNP-style OT
Multiplication

𝑧# + 𝑧$ = 𝑥 ∗ 𝛼

MFE
Encode

COPE ([20])

𝐱′ ∈ 𝔽! %

𝑧# + 𝑧$ = 𝑥 ∗ 𝛼

𝐚′ ∈ 𝔽! %𝛼
𝐱&⊙𝐚& = 𝐳𝟎& + 𝐳𝟏&

1-bit
OLEs

𝑧#, 𝑧$ ∈ 𝔽!!

𝑶(𝒎𝟐)

𝑶(𝒕)

RMFE Decode

MFE
Encode

MFE
Decode

Figure 1: RMFE and MFE usage in [20]. RMFE is used to map
between the input domain F𝑘

2
and the computation domain

F2
𝑚 , whereas MFE is used as an optimization for the offline

preprocessing that authenticates an element in the computa-
tion domain. A comparison is given between the traditional
MASCOT approach [27] and the MFE-based approach [20]
for the authentication.

the packed element, mirroring the intended computations on the

original bits via SIMD processing. Upon completion, we reverse the

process by unpacking (RMFE decoding), extracting the length-𝑘 bit

vector from any F2
𝑚 output. Multiplication operations additionally

require a repacking step, invoking the 𝜏 operator, which combines

RMFE decoding and subsequent encoding.

3 Bringing (R)MFE into Practice
In traditional SPDZ protocols, authenticating bits and enabling

boolean computations requires appending an 𝑠-bit MAC to each bit.

For instance, [21] uses F2
𝑠 MACs for 𝑠-bit statistical security, while

Spdz2k [13] represents bits with value and MAC shares in Z
2

1+𝑠 for

(𝑠 − log 𝑠)-bit security. This seemingly incurs a substantial time and

space overhead, with 𝑠-fold increase. Recently, Cascudo et al.[9] and

Escudero et al.[20] demonstrated the feasibility of packing𝑘 bits and

authenticating them with a single MAC using (R)MFE. However,

a significant gap exists between this theory and practical MPC

applications. This section fills this gap, presenting a comprehensive

framework integrating (R)MFE into boolean circuits.

We give a simplified overview of using (R)MFE for boolean cir-

cuits in Figure 1. To enable parallel computation for x ∈ F𝑘
2
(𝑘

bits), we first use RMFE to map x to 𝑥 ∈ F2
𝑚 (i.e., degree-𝑚 binary

extension field). Afterwards, online computation works in the field

F2
𝑚 . Traditionally, to authenticate 𝑃0’s input element 𝑥 ∈ F2

𝑚 ,

MASCOT [27] uses an IKNP-style OT multiplication to compute an

additive sharing of the product 𝑥𝛼 , where 𝛼 is 𝑃1’s MAC key. This

stage essentially performs the correlated oblivious product evalua-
tion (COPE), where 𝑃0 holds 𝑥 , 𝑃1 holds 𝛼 , and they end up with

𝑧0 and 𝑧1 respectively such that 𝑧0 + 𝑧1 = 𝑥𝛼 . The communication

cost of this process is 𝑂 (𝑚2). To further boost this performance,

Escudero et al. [20] propose to use MFE to map 𝑥 (respectively, 𝛼)

to x′ ∈ F𝑡
2
(respectively, a′ ∈ F𝑡

2
) such that the communication cost

drops from 𝑂 (𝑚2) to 𝑂 (𝑡). Essentially, it computes a list of one-bit

oblivious linear evaluations (OLEs): z′0 [𝑖] + z
′
1 [𝑖] = x′ [𝑖] · a′ [𝑖], for

𝑖 ∈ {1, · · · , 𝑡}. Afterwards, an MFE decoding suffices to bring the

resulting bits back to elements 𝑧0, 𝑧1 ∈ F2
𝑚 . Instead of directly

working on F2
𝑚 , MFE allows to break down the COPE procedure

4

0	1 ∈ 𝔽! !

0	1	0 	 0	0	0 ∈ 𝔽"!

0	0	0	1	1	0 ∈ 𝔽!"

1	0	1	0	0	0
0	0	1	1	0	1
0	0	1	0	0	1
0	1	1	0	0	1
0	1	0	0	1	1
0	0	0	0	1	0

	×

1	0	0	1	1	1
0	0	1	1	0	0
0	0	0	1	1	1
0	1	1	0	0	0
0	0	0	0	0	1
0	0	1	1	1	1

	×

1	1	0	1	0	1
0	1	1	0	0	0
0	0	0	1	1	0
0	1	0	0	0	1
0	1	0	1	0	0
0	1	0	1	0	1

	×

1	0	0	0	0	1
0	0	0	1	1	1
0	1	0	1	1	1
0	0	0	1	0	1
0	0	1	1	0	1
0	0	0	0	1	1

	×

0	0 0	1 1	1 ∈ 𝔽##

0	0	0	1	1	0	1	1	0	0	0	0	1	0	1 ∈ 𝔽! $%

1	1	1	1	0	0 ∈ 𝔽!"

1	1 0	1 0	0 ∈ 𝔽##

0	0	1 0	0	0 ∈ 𝔽"!

0	1 ∈ 𝔽! !

2, 3 !-RMFE
+ 1, 2 "-RMFE

2, 3 !-RMFE
+ 1, 2 "-RMFE

Section 3.3 Section 3.3

Bin. to Comp.
Section 3.2

Comp. to Bin.
Section 3.2

Comp. to Bin.
Section 3.2

Bin. to Comp.
Section 3.2

2, 6 !-RMFE

15, 6 !-MFE

Same field 𝔽!" for (R)MFE
Section 3.1

3, 2 !-MFE
+ 5, 3 #-MFE

3, 2 !-MFE
+ 5, 3 #-MFE

Section 3.3 Section 3.3

𝔽" defined on: 1 + 𝑥! + 𝑥& (RMFE,	Field	Conversion)
𝔽"! defined on: 𝑥 ⋅ 1	 +	 1 + 𝑥! ⋅ 𝑦	 +	 1 ⋅ 𝑦! (RMFE,	Field	Conversion)
𝔽# defined on: 1 + 𝑥 + 𝑥! (MFE,	Field	Conversion)
𝔽## defined on: 𝑥 ⋅ 1	 +	 1 + 𝑥 ⋅ 𝑦	 +	 1 ⋅ 𝑦! + 1 ⋅ 𝑦& (MFE,	Field	Conversion)
𝔽!" defined on: 1 + 𝑥 + 𝑥' (RMFE,	MFE,	Field	Conversion)

Figure 2: An example explaining the encoding and decoding
procedures with our contributions. Various fields are defined
on their respective irreducible polynomials. “Comp." is short
for “Composite field" and “Bin." is short for “Binary field".
The 6 × 6 conversion matrices are precomputed only once.
Note: these example parameters are insecure for MPC due to
their small size.

into 𝑡 small OLEs over F2, offering enhanced execution efficiency.

This approach also necessitates the field consistency between RMFE

output and MFE input, which should both be F2
𝑚 . As introduced

before, it is required that 𝑘 ≤ 𝑚 ≤ 𝑡 .
We summarize our contribution in Figure 2 with an illustra-

tive example. First of all, we fix a critical problem for choosing

parameters so that RMFE and MFE can seamlessly connect with

each other by defining them on the same binary field, e.g., F
2

6

in Figure 2 (Section 3.1). Secondly, concatenating (𝑘1,𝑚1)2-RMFE

and (𝑘2,𝑚2)2𝑚1 -RMFE only gives these conversions: (F2)𝑘1𝑘2 ↔
(F2

𝑚
1)𝑘2 ↔ F(2𝑚1)𝑚2 . We fill in the last missing piece of com-

posite/binary field conversion between F(2𝑚1)𝑚2 and F2
𝑚

1
𝑚

2 so as

to be interoperable with existing MPC frameworks (Section 3.2).
Thirdly, some necessary revision is proposed to allow correct RMFE

decoding, and to enable more efficient mapping computation (Sec-
tion 3.3). At last, we analyze the implementation results with several

engineering optimizations.

3.1 Bridging the Gap from RMFE to MFE
Figure 1 illustrates Escudero et al.’s [20] proposal of using MFE to

minimize communication overhead for input authentication in the

preprocessing phase. However, this approach is flawed if RMFE’s

output fails to align with MFE’s input, a critical issue overlooked

in their work, potentially impacting the scheme’s overall efficiency.

Specifically, certain constructions exhibit incompatibility between

Table 1: Example (R)MFE parameter sets. The 3 sets have simi-
lar expansion ratios and give at least 40-bit statistical security
level in MPC. “concat." means a concatenated instance from
the previous row. (R)MFEs on the left are obtained by con-
catenating those on the right, e.g., (195, 42)2-MFE is obtained
by concatenating (3, 2)2-MFE, (5, 3)4-MFE, and (13, 7)64-MFE.

Example Param. 1 (RMFE ratio: 3, MFE ratio: 4.64)

(14, 42)2-RMFE (2, 3)2-RMFE (7, 14)8-RMFE

(195, 42)2-MFE

(3, 2)2-MFE (5, 3)4-MFE

concat. (13, 7)64-MFE

Example Param. 2 (RMFE ratio: 4, MFE ratio: 4.69)

(12, 48)2-RMFE (2, 4)2-RMFE (6, 12)16-RMFE

(225, 48)2-MFE

(3, 2)2-MFE (5, 3)4-MFE

concat. (15, 8)64-MFE

Example Param. 3 (RMFE ratio: 3, MFE ratio: 4.69)

(16, 48)2-RMFE (2, 3)2-RMFE (8, 16)8-RMFE

(225, 48)2-MFE

(3, 2)2-MFE (5, 3)4-MFE

concat. (15, 8)64-MFE

RMFE and MFE. For instance, the compact (21, 65)2-RMFE (also

employed in their complexity analysis) with an expansion ratio of

𝑚/𝑘 = 65/21 ≈ 3.1 can be constructed by concatenating (3, 5)2-
RMFE and (7, 13)32-RMFE. Nonetheless, the construction in Sec-

tion 2.2.3 demonstrates the absence of a compatible MFE for this

RMFE. Given our focus on binary computation, MFE concatenation

must commence from a basic construction with 𝑞 = 2. Theorem 2

implies that𝑚 = 2 when𝑚 ≥ 2 and 𝑞 ≥ 2𝑚 − 2, resulting in all con-

catenated MFE with input from F
2
𝑚′ having even𝑚′ values due to

multiplication with𝑚 = 2, rendering them incompatible with F
2

65 .

Consequently, RMFE and MFE construction must be cohesively

considered, a requirement neglected in prior studies.

Table 1 presents three practical and relatively efficient RMFE con-

structions. Set 1 offers the smallest expansion ratio 3 for (14, 42)2-
RMFE and 4.64 for (195, 42)2-MFE. Set 2 (packing size 12) and Set

3 (packing size 16, a power of two) cater to applications favoring

smaller or pow-of-two packing sizes, respectively.

3.2 Composite/Binary Field Conversion
Section 2.2.3 introduces concatenation to construct large mappings.

However, concatenating (𝑘1,𝑚1)2-RMFE and (𝑘2,𝑚2)2𝑚1 -RMFE

gives these conversions: (F2)𝑘1𝑘2 ↔ (F2
𝑚

1)𝑘2 ↔ F(2𝑚1)𝑚2 . Math-

ematically speaking, F(2𝑚1)𝑚2 is an equivalent field to F2
𝑚

1
𝑚

2

through isomorphism. From an implementation’s point of view,

in order to be interoperable with existing MPC frameworks (e.g.,

MP-SPDZ [26]) that are generally designed and implemented in

F2
𝑚

1
𝑚

2 , we need to explicitly compute this isomorphism to obtain

elements in F2
𝑚

1
𝑚

2 . Moreover, for later optimization with MFE, it is

required that the input comes from the binary field F2
𝑚

1
𝑚

2 , instead

of a composite field F(2𝑚1)𝑚2 .

To fill the gap, we adopt the composite field representation

construction method from [40]. It generates a conversion matrix

𝑀 ∈ {0, 1}𝑚×𝑚 that transforms 𝑥 ′ ∈ F(2𝑚1)𝑚2 into 𝑥 ∈ F2
𝑚

5

(𝑚 = 𝑚1𝑚2) via 𝑥 = 𝑀 · 𝑥 ′, where 𝑥 ′ can be viewed as a simple

concatenation of𝑚2 elements in F2
𝑚

1 . Denoting the transforma-

tion as 𝜃 , it preserves multiplication (and addition), i.e., 𝑥 ′𝑦′ =
𝜃−1 (𝜃 (𝑥 ′)𝜃 (𝑦′)) for 𝑥 ′, 𝑦′ ∈ F(2𝑚1)𝑚2 . In Figure 2, (2, 3)2-RMFE

and (1, 2)8-RMFE convert [0, 1] ∈ (F2)2 to [[0, 1, 0], [0, 0, 0]] ∈ F
8

2

(viewed as a length-6 vector). Multiplying a precomputed matrix

yields [0, 0, 0, 1, 1, 0] ∈ F
2

6 .

To concretely instantiate the transformation, a degree-(𝑚1𝑚2)
primitive polynomial is required to construct the binary fieldF2

𝑚
1
𝑚

2 ,

and the various fields used in the whole encoding and decoding

procedures have to be consistent, as shown in the top of Figure 2.

Fortunately, we can use the primitive polynomials that have been

found by Hansen and Mullen [23] back to the 90s.

3.3 Optimized Embedding/Recovery Maps
From embedding/recovery to encode/decode. Ideally, we want
RMFE to serve as an encoding method so that we can store values

and compute in the encoded domain F2
𝑚 , and decode back to the

original domain F𝑘
2
correctlywhen necessary. Namely, decode should

be an inverse map of encode.2 However, in the original definition of

RMFE, this is not a necessary requirement. Actually, in its current

construction in Section 2.2.3, the recovery map𝜓 is not an inverse

function of the embedding map 𝜙 , i.e.,𝜓 (𝜙 (x)) ≠ x for some x ∈ F𝑘
2
.

Indeed, 𝜓 ◦ 𝜙 = 𝜉2 ◦ 𝜋−1

1
◦ 𝜋1 ◦ 𝜉−1

1
= 𝜉2 ◦ 𝜉−1

1
, where 𝜉1 and 𝜉2

are not inverse of each other due to different arrangement for their

images (𝑓𝑘−1
vs 𝑓

2𝑘−2
). Without the requirement of invertibility,

correctness is not guaranteed for some simple operations
in MPC, e.g., direct recovery of an input x or addition of two

inputs immediately after embedding. In [20], they require that

𝜙 (1) = 1 in order to guarantee 𝜓 (𝜙 (x)) = x, without providing a

concrete construction. One simple fix is to replace 𝑓𝑘−1
and 𝑓

2𝑘−2

with evaluation on another distinct element, namely, 𝑓 (𝛽𝑘) for
𝛽𝑘 ∈ F2

𝑚 . Nonetheless, this requires interpolation and evaluation

of polynomials with a higher degree. Instead, we propose to use 𝑓0
for both. It can be proven that this construction maintains both the

multiplicative property and 𝜙 (1) = 1. For both fixes, it is required

in Theorem 1 that 𝑘 ≤ 𝑞 instead of 𝑘 ≤ 𝑞 + 1 because F𝑞 needs to

contain at least 𝑘 distinct elements (𝑓0 is equivalent of evaluation

on element 0).

Simplified basis construction. In practice, when construct-

ing the embedding and recovery maps, we can select the basis in

an efficient way. Let 𝑃 (𝑋) be the irreducible polynomial used to

construct field F𝑞𝑚 . Setting 𝛼 = 𝑋 mod 𝑃 (𝑋) gives us the basis
(1, 𝑋, · · · , 𝑋𝑚−1). In this setting, 𝜇1 and 𝜋1 turn out to be identity

maps and thus can be removed. This gives the optimal compu-

tational performance of embedding and recovery, which happen

frequently in almost every protocol (e.g., multiplication) and result

in non-trivial runtime overhead in our observation.

To summarize, we obtain the following constructions in the

end. Based on Section 2.2.3, we fix 𝛼 = 𝑋 ∈ F𝑞𝑚 . MFE maps are

constructed as: 𝜎 = 𝜈1 and 𝜌 = 𝜈2 ◦ 𝜇−1

2
, where we have abused the

math notation of treating elements of F𝑞𝑚 as those of F𝑞 [𝑋]≤𝑚−1

for the convenience of implementation. RMFEmaps are constructed

2
Since the two domains have different sizes, it is not required the other way around,

i.e., encode does not need to be the inverse of decode.

Table 2: (R)MFE usage of different operations.

MFE MFE RMFE RMFE

Op encode decode encode decode

Auth. 𝑘-bit Input 1 2 1 0

Quintuple 10 20 10 0

Secret Mult. (Online) 0 0 4 4

as:

𝜉1 : F𝑞 [𝑋]≤𝑘−1
→ F𝑘𝑞 ; 𝑓 ↦→ (𝑓0, 𝑓 (𝛽1), · · · , 𝑓 (𝛽𝑘−1

))

𝜉2 : F𝑞 [𝑋]≤2𝑘−1
→ F𝑘𝑞 ; 𝑓 ↦→ (𝑓0, 𝑓 (𝛽1), · · · , 𝑓 (𝛽𝑘−1

))
𝜙 : 𝜉−1

1
and 𝜓 : 𝜉2

where 𝛽𝑖 ≠ 0 for all 𝑖 ∈ {1, · · · , 𝑘 − 1}.

3.4 Optimizations and Implementation
Current RMFE-based MPC frameworks lack practical implementa-

tions, a challenge that can lead to (R)MFE computations becoming

performance bottlenecks without adequate optimization. Consid-

ering the protocols in Section 4, Table 2 presents the RMFE and

MFE usage for commonly employed boolean circuit operations. A

straightforward sorting circuit for 128 32-bit integers, involving

over 100 thousand AND gates (approx. 10 thousand quintuples),

necessitates a highly efficient (R)MFE implementation to remain

competitive with less CPU-intensive boolean MPC frameworks

like [21].

Our baseline implementation, leveraging the NTL library [39],

handles (R)MFE for fields and vectors of arbitrary length but falls

short of the desired performance level. To enhance efficiency, we

focus on the parameter sets in Table 1, complementing the op-

timized mappings from Section 3.3 with additional insights and

optimizations that significantly improve performance.

Lookup table and cache. In MPC contexts, RMFE encoding

can be implemented with lookup tables due to the restricted length

of input vectors (e.g., 12 bits). This observation extends to encod-

ing and decoding of numerous small instances of RMFE and MFE

(e.g., (15, 6)2-MFE) that compose larger instances. For mappings

exceeding lookup table capacity, a hash-based cache is utilized.

Small field precomputation.Mapping constructions rely heav-

ily on operations (multiplication, power, inverse) in common small

fields like F16 and F64. Consequently, these operations can be ex-

haustively precomputed and stored for subsequent use.

Figure 3 details the throughput of the baseline and optimized

implementations for (14, 42)2-RMFE and (195, 42)2-MFE. The base-

line, with its rate of several thousand operations per second, incurs

a tens-of-seconds latency for tasks like sorting circuit computation,

significantly lagging behind Tinier [21] (Table 7). Our optimizations

elevate throughput to millions of operations per second, slashing

computation time to under one second. Consequently, our protocols

outperform state-of-the-art alternatives in both local and wide area

network settings, as demonstrated in the evaluation.

4 Packed Circuit Optimization
This section presents improved secure boolean computation frame-

works surpassing the prior state-of-the-art [20]. Enhancements

6

RMFE enc. RMFE dec. MFE enc. MFE dec.
10

12

14

16

18

20

22

lo
g 2

(T
hr

ou
gh

pu
t)

269x

111x
794x 403x

Baseline w/ Opt. 1 w/ Opt. 1 & 2 Final

Figure 3: Throughput (operations per second) with various
optimizations, for (14, 42)2-RMFE and (195, 42)2-MFE. ‘Opt. 1’
refers to optimized mapping in Section 3.3. ‘Opt. 2’ refers
to lookup table and cache. ‘Final’ includes the previous two
and small field precomputation. The improvement of ‘Final’
compared to ‘Baseline’ is annotated explicitly.

The functionality maintains a dictionary, TVal, to keep track of

the authenticated values J·K𝐵 in TinyOT sharing, and RVal, to
keep track of the authenticated values J·K in RMFE sharing. We

only list critical commands below, and leave the full specification

of some standard commands in Appendix A, such as tOpen,
tCheck for TinyOT sharing, and rInput, rOpen, rCheck for

RMFE sharing.

tBit: On input (tBit, id) from all parties, sample a random value

𝑎 ∈ F2, and set TVal[id] ← 𝑎.

tTriple: On input (tTriple, id1, id2, id3) from all par-

ties, sample two random values 𝑎, 𝑏 ∈ F2, and set

(TVal[id1], TVal[id2], TVal[id3]) ← (𝑎, 𝑏, 𝑎 · 𝑏).
rQuintuple: On input (rQuintuple, id1, id2, id3, id4, id5) from
all parties, sample two random values 𝑎, 𝑏 ∈ F2

𝑚 , and

set (RVal[id1],RVal[id2],RVal[id3], ,RVal[id4],RVal[id5]) ←
(𝑎, 𝑏, 𝜙 (𝜓 (𝑎) ⊙𝜓 (𝑏)), 𝜏 (𝑎), 𝜏 (𝑏)).
rEnc: On input (rEnc, id1, id2) from all parties, sample a random

value 𝑎 ∈ F2
𝑚 , and set (RVal[id1],RVal[id2]) ← (𝑎, 𝜏 (𝑎)).

Figure 4: Functionality Fprep

rConv: On input (rConv, tid1, · · · , tid𝑘 , rid) from all parties, set

RVal[rid] ← 𝜙 ([TVal[tid1], · · · , TVal[tid𝑘]]).

Figure 5: Functionality FrConv

include a more efficient preprocessing phase and essential exten-

sions enabling comprehensive evaluation of typical circuits. An

overview of the Fprep functionality employed in these protocols is

provided in Figure 4.

Input: TinyOT sharings J𝑥1K𝐵, · · · , J𝑥𝑛 ·𝑘K𝐵

Output: RMFE sharings J𝑦1K, · · · , J𝑦𝑛K, where
𝑦 𝑗 = 𝜙 ([𝑥 (𝑗−1)𝑘+1, · · · , 𝑥 𝑗𝑘])
[Construct]
1: Call Fprep.tBit to sample 𝑠 · 𝑘 additional shared bits

J𝑟1K𝐵, · · · , J𝑟𝑠 ·𝑘K𝐵 .
2: Each party 𝑃𝑖 :

- partitions his shares (including those in step 1) into (𝑛 + 𝑠)
groups and computes:

𝑦𝑖
𝑗
= 𝜙 ([𝑥𝑖(𝑗−1)𝑘+1, · · · , 𝑥

𝑖
𝑗𝑘
]),∀𝑗 ∈ [1, 𝑛]

𝑞𝑖
𝑗
= 𝜙 ([𝑟 𝑖(𝑗−1)𝑘+1, · · · , 𝑟

𝑖
𝑗𝑘
]),∀𝑗 ∈ [1, 𝑠]

- calls Fprep.rInput to obtain J𝑦𝑖
𝑗
K and J𝑞𝑖

𝑗
K

3: Parties sum up the shares to obtain (possibly incorrect) J𝑦 𝑗 K =∑
𝑖J𝑦𝑖𝑗 K, for 𝑗 ∈ [1, 𝑛], and J𝑞 𝑗 K =

∑
𝑖J𝑞𝑖𝑗 K, for 𝑗 ∈ [1, 𝑠].

[Check normality]

4: Sample 𝑛 ·𝑠 random bits 𝑐 𝑗,𝑔
$← {0, 1}, for 𝑗 ∈ [1, 𝑛], 𝑔 ∈ [1, 𝑠].

5: Compute: J𝑤𝑔K = (
∑𝑛

𝑗=1
𝑐 𝑗,𝑔 · J𝑦 𝑗 K) + J𝑞𝑔K

and call Fprep.rOpen to obtain𝑤𝑔 .

6: Check that 𝜏 (𝑤𝑔) = 𝑤𝑔 for all 𝑔. If not, abort.

[Check consistency]
7: Compute:

J𝑧𝑔,ℎK𝐵 = (∑𝑛
𝑗=1

𝑐 𝑗,𝑔 · J𝑥 (𝑗−1)𝑘+ℎK𝐵) + J𝑟 (𝑔−1)𝑘+ℎK𝐵

and call Fprep.tOpen to obtain 𝑧𝑔,ℎ for ℎ ∈ [1, 𝑘].
8: Check that𝜓 (𝑤𝑔) = [𝑧𝑔,1, · · · , 𝑧𝑔,𝑘] for all 𝑔. If not, abort.
9: Call F

prep.rCheck
and F

prep.tCheck
on the opened values.

10: Output the sharings J𝑦1K, · · · , J𝑦𝑛K

Figure 6: Protocol for converting TinyOT sharings to RMFE
sharings ΠrConv.

4.1 General Boolean Share Conversion
Drawing inspiration from Damgård et al. [18], we observe that

certain preprocessing materials, like AND triples, can be efficiently

produced by adapting protocols from a source domain to a target

domain, particularly when input authentication costs are low, as in

our setting. Given authenticated boolean sharings (⟨𝑥1⟩ , · · · , ⟨𝑥𝑘 ⟩)
with 𝑥𝑖 ∈ F2 and ⟨·⟩ representing a specific scheme, Figure 5 and

Figure 6 outline the functionality and a general protocol for convert-

ing any valid authenticated boolean sharing (with ⟨·⟩ instantiated
as TinyOT sharing J·K𝐵) to RMFE sharing. This conversion proves

instrumental in generating preprocessing materials more efficiently,

exemplified by enhanced quintuple generation in Section 4.2.

Theorem 3. ΠrConv securely implements FrConv in the Fprep-
hybrid (Figure 4) model with statistical security parameter 𝑠 .

Proof (Sketch). FrConv requires the conversion output to be

both consistent and normal (note that 𝜏 (𝜙 (x)) = 𝜙 (x)). This is
achieved by a normality check and a consistency check. Each check

contains opening and checking 𝑠 random linear combinations. If the

adversary causes incorrect values to be authenticated as outputs, it

can pass the check for each linear combination with a probability

of at most 1/2. Detailed proof is provided in Appendix B. □

7

4.2 Quintuple Generation
To remove one online communication round from [9], Escudero et

al. [20] propose to replace a triple with a quintuple (J𝑎K, J𝑏K, J𝜏 (𝑎)K,
J𝜏 (𝑏)K, J𝜏 (𝑎)𝜏 (𝑏)K), where J𝑎K and J𝑏K are used for masking and

the rest are used to maintain the invariant𝜓 (𝑧) = z for the multi-

plication result 𝑧 ∈ F2
𝑚 and z = x ⊙ y ∈ F𝑘

2
. In F

prep.rQuintuple
, our

specification is actually different from that in the previous work,

where they generate a quintuple by first generating random encod-

ing pairs (J𝑎K, J𝜏 (𝑎)K) and (J𝑏K, J𝜏 (𝑏)K) with Fprep.rEnc and later

applying a relatively expensive multiplication procedure to produce

J𝜏 (𝑎)𝜏 (𝑏)K. Their method applies a classical white-boxOT-style con-

struction to compute secret sharing of the product 𝜏 (𝑎)𝜏 (𝑏), and
proceeds as in [22] and [9] with cut-and-choose, bucket sacrifice

and bucket combine (twice) in order to prevent leakage of 𝜏 (𝑎) and
𝜏 (𝑏) in the OT-based multiplication. This has a cubic complexity

𝑂 (𝐵3) with a bucket size of 𝐵, which could be more costly than

other existing bucketing protocols with quadratic or linear com-

plexity [21, 42, 43]. To improve the quintuple generation, we prefer

to first generate boolean triples with the efficient TinyOT approach,

convert them to RMFE sharings with FrConv, and finally use stan-

dard sacrificing technique to complete the quintuples. Nonetheless,

the quintuples generated by our protocol have a different presen-

tation (J𝑎K, J𝑏K, J𝑐K, J𝜏 (𝑎)K, J𝜏 (𝑏)K) where 𝑐 = 𝜙 (𝜓 (𝑎)𝜓 (𝑏)), but we
will later present a corresponding updated online multiplication

protocol that relies on such quintuples.

Figure 7 gives our quintuple generation protocol. F
prep.tTriple

and FrConv guarantee that a generated triple (J𝑎 𝑗 K, J ˆ𝑏 𝑗 K, J𝑐 𝑗 K) has
normality constraint (𝜏 (𝑎 𝑗) = 𝑎 𝑗 , etc.) and multiplication relation

(𝑐 𝑗 = 𝜙 (𝜓 (𝑎 𝑗) ⊙ 𝜓 (ˆ𝑏 𝑗))). We still need to prepend the triple with

random 𝑎, 𝑏 ∈ F2
𝑚 such that 𝜏 (𝑎) = 𝑎 𝑗 and 𝜏 (𝑏) = ˆ𝑏 𝑗 . To achieve

this, a standard approach is applied: parties input satisfying ele-

ments, additively combine them, and finally sacrifice a small set of

sharings. The sacrificing technique takes insight from the method

Escudero et al. [20] use in generating encoding pairs (J𝑎K, J𝜏 (𝑎)K)
and kernel elements (J𝑟K with 𝑟 ∈ 𝜓−1 (0)), hence the security

analysis flows through similarly.

Theorem 4. Π
rQuintuple

securely implements F
prep.rQuintuple

in
the (Fprep, FrConv)-hybrid model with 𝑠-bit statistical security.

Proof (Sketch). FrConv produces consistent and normal triples

(J𝑎 𝑗 K, J ˆ𝑏 𝑗 K, J𝑐 𝑗 K). The remaining part of the protocol is to generate

random 𝑎 𝑗 and 𝑏 𝑗 such that 𝜏 (𝑎 𝑗) = 𝑎 𝑗 and 𝜏 (𝑏 𝑗) = ˆ𝑏 𝑗 . This con-

straint is guaranteed by sacrificing additional 𝑠 values through ran-

dom linear combinations. Full proof is provided in Appendix B. □

The corresponding online multiplication protocol with our quin-

tuple is presented in Figure 8. We have the following theorem with

corresponding proof in Appendix B.

Theorem 5. Π
rMult

securely implements F
mpc.rMult

in the Fprep-
hybrid model. (The standard online MPC functionality Fmpc is listed
in Appendix A.)

4.3 Extensions and Optimizations
4.3.1 Mixed-circuit computation. Prior RMFE-based MPC frame-

works focus on either boolean circuits [9], or arithmetic circuits [14,

Output: 𝑁 quintuples (J𝑎𝑖K, J𝑏𝑖K, J𝑐𝑖K, J𝜏 (𝑎𝑖)K, J𝜏 (𝑏𝑖)K), for 𝑖 =
1, · · · , 𝑁 , where 𝑎𝑖 , 𝑏𝑖 ∈ 𝑅 are random elements, and 𝜓 (𝑐𝑖) =
𝜓 (𝑎𝑖) ⊙𝜓 (𝑏𝑖).
[Construct]
1: Parties call F

prep.tTriple
to generate (𝑠 +𝑁) ·𝑘 TinyOT triples

(J𝑥𝑖K𝐵, J𝑦𝑖K𝐵, J𝑧𝑖K𝐵), for 𝑖 = 1, · · · , (𝑠 + 𝑁) · 𝑘 .
2: Parties call FrConv to convert the above TinyOT sharings to

RMFE sharings (J𝑎 𝑗 K, J ˆ𝑏 𝑗 K, J𝑐 𝑗 K), where for 𝑗 = 1, · · · , 𝑠 + 𝑁 ,

𝑎 𝑗 = 𝜙 ([𝑥 (𝑗−1)𝑘+1, · · · , 𝑥 𝑗𝑘]),
ˆ𝑏 𝑗 = 𝜙 ([𝑦 (𝑗−1)𝑘+1, · · · , 𝑦 𝑗𝑘]),
𝑐 𝑗 = 𝜙 ([𝑧 (𝑗−1)𝑘+1, · · · , 𝑧 𝑗𝑘]).

3: 𝑃𝑖 samples 𝑎𝑖
𝑗

$← 𝜓−1 ([𝑥𝑖(𝑗−1)𝑘+1, · · · , 𝑥
𝑖
𝑗𝑘
]) and 𝑏𝑖

𝑗
∈

𝜓−1 ([𝑦𝑖(𝑗−1)𝑘+1, · · · , 𝑦
𝑖
𝑗𝑘
]) for 𝑗 = 1, · · · , 𝑠 + 𝑁 .

4: 𝑃𝑖 call Fprep.rInput to obtain J𝑎𝑖
𝑗
K and J𝑏𝑖

𝑗
K for 𝑗 = 1, · · · , 𝑠 +𝑁 .

5: Parties compute J𝑎 𝑗 K =
∑
𝑖J𝑎𝑖𝑗 K, and J𝑏 𝑗 K =

∑
𝑖J𝑏𝑖𝑗 K, for 𝑗 =

1, · · · , 𝑠 + 𝑁 .

[Sacrifice]
6: Parties sample random vectors rℎ = (𝑟ℎ,1, · · · , 𝑟ℎ,𝑁) ∈
{0, 1}𝑁 for ℎ ∈ [1, 𝑠].

7: Compute:

J𝑑ℎK =
∑𝑁

𝑗=1
𝑟ℎ,𝑗 J𝑎 𝑗 K + J𝑎𝑁+ℎK

J𝑒ℎK =
∑𝑁

𝑗=1
𝑟ℎ,𝑗 J𝑎 𝑗 K + J𝑎𝑁+ℎK

J𝑓ℎK =
∑𝑁

𝑗=1
𝑟ℎ,𝑗 J ˆ𝑏 𝑗 K + J ˆ𝑏𝑁+ℎK

J𝑔ℎK =
∑𝑁

𝑗=1
𝑟ℎ,𝑗 J𝑏 𝑗 K + J𝑏𝑁+ℎK

and call Fprep.rOpen to obtain 𝑑ℎ, 𝑒ℎ, 𝑓ℎ, 𝑔ℎ .

8: If 𝜏 (𝑒ℎ) ≠ 𝑑ℎ or 𝜏 (𝑔ℎ) ≠ 𝑓ℎ for some ℎ ∈ 1, · · · , 𝑠 , then abort.

9: Call F
prep.rCheck

on the opened values.

10: Output (J𝑎𝑖K, J𝑏𝑖K, J𝑐𝑖K, J𝑎𝑖K, J ˆ𝑏𝑖K) for 𝑖 = 1, · · · , 𝑁 .

Figure 7: Protocol for quintuple generation Π
rQuintuple

.

Input: J𝑥K, J𝑦K.
Output: J𝑧K such that𝜓 (𝑧) = 𝜓 (𝑥) ⊙𝜓 (𝑦).
1: Call F

prep.rQuintuple
to obtain a quintuple

(J𝑎K, J𝑏K, J𝑐K, J𝜏 (𝑎)K, J𝜏 (𝑏)K).
2: Compute J𝑑K← J𝑥K − J𝑎K and J𝑒K← J𝑦K − J𝑏K.
3: Call Fprep.rOpen to obtain 𝑑 ← J𝑑K and 𝑒 ← J𝑒K.
4: Compute J𝑧K← 𝜏 (𝑑)J𝜏 (𝑏)K + 𝜏 (𝑒)J𝜏 (𝑎)K + 𝜏 (𝑑)𝜏 (𝑒) + J𝑐K.

Figure 8: Protocol forRMFE-basedmultiplicationwith a quin-
tuple Π

rMult
.

20]. Our work extends state-of-the-art ideas to facilitate mixed-

circuit computation by incorporating RMFE-based daBit (double-
authenticated bit [38]) and edaBit (extended double-authenticated

bit [19]). DaBits, ubiquitous in mixed-circuit frameworks before

edaBit’s introduction, are integral to operations like Spdz2k com-

parison that involves arithmetic random bits and their boolean

conversions (essentially a series of daBits). While edaBits offer effi-

ciency gains in numerous mixed-circuit protocols (e.g., comparison),

8

The functionality extends Fprep, and maintains a dictionary,QVal,
to keep track of the authenticated arithmetic values J𝑥K𝐴 for

𝑥 ∈ Z𝑞 .
rDabit: On input (rDabit, id1, · · · , id𝑘 , id′) from all parties,

sample (𝑟1, · · · , 𝑟𝑘) ∈ {0, 1}𝑘 uniformly at random, and set

QVal[id𝑗] ← 𝑟 𝑗 , for 𝑗 = 1, · · · , 𝑘 , together with RVal[id′] ←
𝜙 ([𝑟1, · · · , 𝑟𝑘]).
rEdabit: On input (rEdabit, id0, · · · , id𝑘−1

, id′
0
, · · · , id′ℓ−1

) from
all parties (ℓ ≤ log𝑞), sample (𝑟0, · · · , 𝑟𝑘ℓ−1

) ∈ Z𝑘ℓ
2

uniformly

at random, and set RVal[id′𝑗] ← 𝜙 ([𝑟 𝑗 , 𝑟ℓ+𝑗 , · · · , 𝑟 (𝑘−1)ℓ+𝑗]) for
𝑗 = 0, · · · , ℓ − 1, together with QVal[id𝑖] ←

∑(𝑖+1)ℓ−1

𝑗=𝑖ℓ
𝑟 𝑗2

𝑗−𝑖ℓ

for 𝑖 = 0, · · · , 𝑘 − 1.

rEdabitPriv: On input (rEdabitPriv, 𝑖 , id0, · · · , id𝑘−1
, id′

0
, · · · ,

id′ℓ−1
) from all parties, follow the description of rEdabit, and

output (𝑟0, · · · , 𝑟𝑘ℓ−1
) to party 𝑖 . If party 𝑖 is corrupted, it gets to

choose these bits.

rB2A: On input (rB2A, id, id′
0
, · · · , id′

𝑘−1
) from all parties, set

QVal[id′𝑖] ← 𝜓 (RVal[id]) [i] for 𝑖 = 0, · · · , 𝑘 − 1.

Figure 9: Functionality F
mixed

daBits remain valuable in contexts such as boolean to arithmetic
(B2A) conversion and edaBit generation. Figure 9 outlines the mini-

mal set of mixed-circuit functionalities used in this section.

RMFE-based daBit. In Coral, daBits exist in a packed version:

(JrK𝐴 , J𝑟K), where r ∈ {0, 1}𝑘 and 𝑟 = 𝜙 (r). We let JrK𝐴 denote a

vector of authenticated arithmetic sharings in Z𝑞 .

RMFE-based edaBit. Packed edaBits are specified as: (JrK𝐴 ,
J𝑟0K, · · · , J𝑟ℓ−1K) for an ℓ-bit RMFE-based edaBit (equivalent to 𝑘

plain edaBits), where r ∈ Z𝑘𝑞 and r[𝑖] = ∑ℓ−1

𝑗=0
𝜓 (𝑟 𝑗) [𝑖] · 2𝑗 .

Naive construction. Packed edaBits (or daBits) can be easily gen-

erated by first generating 𝑘 standard edaBits (or daBits) and call

FrConv to convert the boolean part to RMFE sharings (FrConv can

be adapted to handle authenticated boolean sharings other than

TinyOT sharings). Nonetheless, treating standard edaBits as an

opaque intermediate step incurs a higher amortized cost.

Our construction. Escudero et al. [19] propose daBit and ed-

aBit generation protocols applicable across various arithmetic and

boolean domains. We extend these protocols (vector length 𝑘) to

utilize RMFE-based MPC for the boolean component, harnessing

RMFE optimizations for optimal performance. The vectorized ver-

sion largely mirrors the standard one; thus, Figure 10 presents an

RMFE-based edaBit generation specification, with remaining pro-

tocols detailed in Appendix D. Analogous to the original, Π
rEdabit

constructs global packed edaBits from private ones, and correct

the arithmetic part via the RMFE-based boolean-to-arithmetic func-

tionality F
mixed.rB2A

that can be implemented with packed daBits

(details in the Appendix).

4.3.2 SIMD constant multiplication. In Section 2.2.4, we briefly

discuss the limitation of [20] in handling linear combination. The

problem stems from the case of 𝑧 ← 𝑎J𝑥K when 𝑎 ∈ F2
𝑚 instead

of 𝑎 ∈ F2. Unlike traditional constant multiplication, simple local

computation heremay compromise correctness:𝜓 (𝑧) ≠ 𝜓 (𝑎)⊙𝜓 (𝑥)
because𝜓 is not F2

𝑚 -linear. In fact, this case turns out to be common

Output: (JrK𝐴, J𝑟0K, · · · , J𝑟ℓ−1K) where r ∈ Z𝑘𝑞 and r[𝑖] =∑ℓ−1

𝑗=0
𝜓 (𝑟 𝑗) [𝑖] · 2𝑗 .

[Construct]
1: Parties call the functionality F

mixed.rEdabitPriv
to get random

shares (Jr𝑖K𝐴, J𝑟𝑖,0K, · · · , J𝑟𝑖,ℓ−1K) for 𝑖 = 1, · · · , 𝑛. Party 𝑃𝑖
additionally learns 𝑟𝑖, 𝑗 and ri [ℎ] =

∑ℓ−1

𝑗=0
𝜓 (𝑟𝑖, 𝑗) [ℎ] · 2𝑗 , for

ℎ ∈ [1, 𝑘].
2: Parties compute Jr′K𝐴 =

∑𝑛
𝑖=1

Jr𝑖K𝐴 .
3: Parties compute an ℓ-bit binary adder with 𝑛 inputs

((J𝑟1, 𝑗 K) 𝑗 , · · · , (J𝑟𝑛,𝑗 K) 𝑗) by calling the functionality

F
mpc.rMult

to evaluate AND gates, obtaining ℓ + log𝑛 RMFE

sharings (J𝑏0K, · · · , J𝑏ℓ+log(𝑛)−1
K).

[Correction]
4: Parties call F

mixed.rB2A
to convert J𝑏 𝑗 K ↦→ J𝜓 (𝑏 𝑗)K𝐴 , for 𝑗 =

ℓ, · · · , ℓ + log(𝑛) − 1. Note that𝜓 (𝑏 𝑗) is a vector.
5: Parties compute JrK𝐴 = Jr′K𝐴 − 2

ℓ ∑log(𝑛)−1

𝑗=0
J𝜓 (𝑏 𝑗)K𝐴2

𝑗
.

6: Output (JrK𝐴, J𝑏0K, · · · , J𝑏ℓ−1K).

Figure 10: Protocol for RMFE-based edaBit generation
Π

rEdabit
.

Input: J𝑥K, c.
Output: J𝑧K such that𝜓 (𝑧) = 𝜓 (𝑥) ⊙ c.
1: Call Fprep.rEnc to obtain an encoding pair (J𝑟K, J𝜏 (𝑟)K).
2: Compute J𝑑K← J𝑥K − J𝑟K.
3: Call Fprep.rOpen to obtain 𝑑 ← J𝑑K.
4: Compute J𝑧K← (𝜏 (𝑑) + J𝜏 (𝑟)K) · 𝜙 (c).

Figure 11: Protocol for RMFE-based constant multiplication
with an encoding pair Π

cMult
.

in simple circuits. For example, a general protocol paradigm for

comparison is presented in many frameworks ([10, 18]): mask input

J𝑥K𝐴 with random J𝑟K𝐴 , open to obtain 𝑐 = 𝑥 + 𝑟 , and compute a

carry-out circuit between 𝑐 and 𝑟 ’s bit decomposition. Vectorizing

this into a SIMD circuit would require the carry-out circuit to

perform the above constant multiplication because each 𝑐 is random

and different inside the SIMD operation.

To fill in this gap, we employ an encoding pair: (J𝑟K, J𝜏 (𝑟)K),
previously used for different purposes in previous works [9, 20].

Our SIMD constant multiplication protocol is depicted in Figure 11.

Though it is more costly than non-SIMD variants due to necessi-

tating a communication round (except when 𝑎 ∈ F2), the protocol

is critical for common computations. The additional expense is

justified by the advantages of RMFE-based MPC and is marginal

for large-scale circuit computations.

4.3.3 VOLE-style OT integration. Our framework capitalizes on

recent advances in VOLE-style OT extension [6, 44] to enhance

preprocessing in our protocols, a feat not fully achievable in prior

research [9, 20, 27]. For example, the functionality FCOPEe

3
in [27]

and [9] are grounded in generalized IKNP-style OT extension [25].

3Correlated oblivious product evaluation with error , a common functionality for authen-

ticating inputs in SPDZ-style protocols and given as Figure 15 in the Appendix.

9

Table 3: Complexity comparison of preprocessing.

Protocol

Comm. (Bits)

Input Auth. Triple/Quintuple
†

[21] 𝜆 6𝐵2𝜆

[20] w/ IKNP-OT (𝜆 + 1)𝑡/𝑘 12𝑡𝐵1𝐵
2

2
(𝜆 + 1)/𝑘

[20] w/ VOLE-OT 2𝑡/𝑘 24𝑡𝐵1𝐵
2

2
/𝑘

Coral 𝑡/𝑘 2(𝜆 + 2)𝐵 + 10𝑡/𝑘
†
For a quintuple, this is the cost divided by RMFE packing size 𝑘

The quintuple generation in [20] relies on FCOPEe that takes two

different inputs in every call, which precludes the chance of vector-

izing underlying OLE calls. Instead, our preprocessing assumes a

black-box access to OT extension. This allows the incorporation of

VOLE-style OT extension, significantly reducing communication

overhead.

TinyOT triple generation. In detail, we make use of the opti-

mized TinyOT protocols by Wang et al. [42, 43], where only semi-

honest OT extension is required to build a maliciously secure AND

triple generation protocol. We re-implement the protocol by replac-

ing the underlying OT engine with VOLE-style OT extension and

integrate this into our quintuple generation protocol.

Vectorizing MFE-based offline phase. In [20], when authenti-

cating an input 𝑥 ∈ F2
𝑚 from 𝑃 𝑗 with 𝑃𝑖 holding MAC key share 𝛼 ,

the ΠCOPEe protocol reduces down to 𝑡 calls of one-bit OLE by first

applying MFE transformation to convert 𝑥 and 𝛼 into space F𝑡
2
. We

instead vectorize ΠCOPEe such that it reduces down to vector OLEs

(Fig. 17), which is a natural form for the output of VOLE-style OT

extension. As the vectorization is a relatively direct extension from

previous works, we omit the details here and leave the vectorized

functionalities, protocols and proofs in Appendix C.

4.4 Complexity Analysis
We compare Coral’s asymptotic complexity with [21] and [20]

in the key preprocessing modules of input authentication and

triple/quintuple generation. [21] (in MP-SPDZ) represents the cur-

rent state-of-the-art practical solution for boolean circuits, while

[20] offers a theoretical blueprint that might be instantiated with

IKNP-OT or VOLE-OT configurations. Table 3 displays complexities

for two parties, scaling linearly with𝑛 parties. For hyper parameters

in the table, we give standard choices to have a fair comparison:

• Security parameter: 𝜆 = 128;

• (R)MFE parameters: 𝑘 = 14, 𝑡 = 195;

• Bucketing parameters: 𝐵 = 3 or 4, 𝐵1 = 𝐵2 = 3 (same in [20]).

For input authentication, Coral demonstrates a tenfold reduction

in communication complexity versus [21] and [20] with IKNP-OT,

and a twofold advantage over [20] even when it employs VOLE-

OT. Moreover, Coral exhibits a substantial, consistently order-of-

magnitude improvement in communication cost for triple/quintuple

generation across various hyperparameter settings, highlighting

its robustness and broad applicability.

Table 4: Microbenchmarks of boolean primitives (single
thread).

Protocol

Commu. LAN / WAN

(MB / 1k ops) (ms / 1k ops)

Input Triple
†

Input Triple
†

Tiny ([13] + [21]) 0.24 66.2 3.15 / 14.80 529 / 3323

Spdz2k-SP [18] 0.24 5.08 3.15 / 14.80 122 / 385

Tinier [21] 0.016 1.84 0.17 / 2.06 10.3 / 120

Coral* w/ [20] 0.0018 0.82 0.15 / 0.26 109 / 213

Coral 0.0018 0.17 0.15 / 0.26 7.7 / 16.1
†
For Coral* and Coral, this is the cost divided by RMFE

packing size for 1k quintuples.

5 Evaluations
5.1 Evaluations Setup
Concrete Parameters. Our code is available at: https://github.

com/AntCPLab/OpenCoral/. Coral is integrated into the MP-SPDZ

framework [26], enhancing the framework with the following gen-

eral features:

• Highly optimized mathematical support for (R)MFE;

• Packed circuit support for both the frontend compiler and

backend protocols;

• Optimized TinyOT protocols for preprocessing;

• Low-communication OT from the EMP toolkit [41].

Coral can be conveniently paired with the existing arithmetic proto-

cols in MP-SPDZ, by using our packed dabit and edabit implementa-

tion. In this section, we construct and evaluate Coral with minimal

two parties required by the dishonest-majority model, from a com-

pact parameter set (14, 42)2-RMFE and (195, 42)2-MFE, achieving

an expansion ratio of 42/14 = 3 for RMFE and 195/42 = 4.64 for

MFE-based input authentication in offline preprocessing. This pa-

rameter setting gives a statistical security level of more than 40

bits.

Testbed Environment. The experiments are conducted on com-

mercial cloud instances featuring 2.7GHz processors and 64GB

RAM, using Linux’s traffic control command to adjust bandwidth

and latency. Benchmarks run under two network configurations:

a LAN with 10Gbps and 0.2ms latency, and a WAN with 200Mbps

and 20ms latency.

Metrics.We measure end-to-end running time including both

computation and network IO. We measure the total communication

including all the messages sent by the parties.

5.2 Microbenchmarks
5.2.1 Boolean primitives. Maliciously secure boolean protocols

consist of two expensive submodules: input authentication and

multiplication randomness generation (including triples and quin-

tuples). Since there exist several possible combinations, we choose

four baselines for a complete comparison: Tinier and Tiny are avail-

able in MP-SPDZ library. The former is implemented based on [21].

The latter authenticates inputs by using Spdz2k [13], but uses the

triple generation technique from [21]. We implement Spdz2k-SP

based on [18] that authenticates inputs using [13], but generates

triples by converting fromTinyOT triples.We also implementCoral*
10

https://github.com/AntCPLab/OpenCoral/
https://github.com/AntCPLab/OpenCoral/

1 4 16 64
Number of threads

0

1

2

3

4

5

Th
ro

ug
hp

ut
 /

s

×107

Spdz2k
Tinier
Coral

(a) LAN, Input

1 4 16 64
Number of threads

0

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 /

s

×105

Tiny
Spdz2k-SP
Tinier
Coral*
Coral

(b) LAN, Triple/Quintuple

1 4 16 64
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 /

s

×104

Tinier+Mascot
Coral+Mascot
Tinier+Spdz2k
Coral+Spdz2k
Tinier+Lowgear
Coral+Lowgear

(c) LAN, Loose edabit

1 4 16 64
Number of threads

0

1

2

3

4

5

6

7

8

Th
ro

ug
hp

ut
 /

s

×103

Tinier+Mascot
Coral+Mascot
Tinier+Spdz2k
Coral+Spdz2k
Tinier+Lowgear
Coral+Lowgear

(d) LAN, Strict edabit

1 4 16 64
Number of threads

0

2

4

6

8

Th
ro

ug
hp

ut
 /

s

×106

Spdz2k
Tinier
Coral

(e) WAN, Input

1 4 16 64
Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Th
ro

ug
hp

ut
 /

s

×105

Tiny
Spdz2k-SP
Tinier
Coral*
Coral

(f) WAN, Triple/Quintuple

1 4 16 64
Number of threads

1

2

3

4

5

Th
ro

ug
hp

ut
 /

s

×102

Tinier+Mascot
Coral+Mascot
Tinier+Spdz2k
Coral+Spdz2k
Tinier+Lowgear
Coral+Lowgear

(g) WAN, Loose edabit

1 4 16 64
Number of threads

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Th
ro

ug
hp

ut
 /

s

×102

Tinier+Mascot
Coral+Mascot
Tinier+Spdz2k
Coral+Spdz2k
Tinier+Lowgear
Coral+Lowgear

(h) WAN, Strict edabit

Figure 12: Preprocessing material generation throughput across different protocols, networks and number of threads.

which reuses all of Coral’s settings but generates quintuples accord-
ing to [20]. The reported costs are amortized for 1000 operations.

Initial tests on microbenchmarks using a single thread show

that Coral significantly outperforms the previously most efficient

protocol, Tinier, with communication overhead improvements of ap-

proximately 10×. Specifically, it achieves an 89% reduction in input

authentication (from 0.016 MB to 0.0018 MB) and a 91% reduction in

triple generation (from 1.84 MB to 0.17 MB). This improvement no-

tably enhances runtime performance in actual network conditions.

For instance, in a WAN setting, Coral is over 6× faster than Tinier.

However, in LAN settings, the gains are somewhat mitigated by the

added computational demands of (R)MFE encoding and decoding.

Additionally, our quintuple generation protocol exhibits efficiency

over an order of magnitude higher than that of [20]. When com-

pared to Spdz2k-SP, which also uses TinyOT triples, Coral proves to
be significantly more efficient largely due to our streamlined, vec-

torized MFE-based input authentication that complements TinyOT

conversion effectively.

Figure 12 illustrates Coral’s preprocessing throughput in mul-

tithreaded settings, from 1 to 64 threads, highlighting its practi-

cal efficiency. In LAN, Coral consistently outperforms or matches

Tinier, especially at higher levels of parallelism. In WAN, Coral’s
throughput is 5-8× and up to 10× greater than Tinier for input

authentication and triple generation, respectively. Notably, the less

efficient variant, Coral*, surpasses Tinier with 16 or more threads,

benefiting from its reduced reliance on network bandwidth, which

hampers more communication-heavy protocols.

5.2.2 Mixed-circuit primitives. Beyond purely boolean computa-

tion, we explore how Coral enhances mixed-circuit computing with

Table 5: Microbenchmarks of edabits (single thread).

Protocol

Commu. LAN / WAN

(MB/1k ops) (s/1k ops)

loose strict loose strict

Tinier+[27] (p, OT) 436 522 2.82 / 23 3.32 / 26.9

Coral+[27] (p, OT) 348 479 3.28 / 17.9 4.07 / 23.8

Tinier+[13] (2
𝑘
, OT) 175 435 1.12 / 10.8 2.23 / 22.5

Coral+[13] (2𝑘 , OT) 50.1 362 1.45 / 3.88 2.79 / 18.1

Tinier+[28] (p, HE) 169 181 1.69 / 11.7 2.02 / 12.8

Coral+[28] (p, HE) 42.1 53.6 1.89 / 4.6 2.23 / 5.6

packed dabit and edabit. We compare the two leading boolean pro-

tocols, Tinier and Coral, paired with top arithmetic protocols from

MP-SPDZ: Mascot [27], Lowgear [28] and Spdz2k [13]. Mascot and

Lowgear operate within prime fields, while Spdz2k works in ring

Z
2
𝑘 . For prime fields, we set log𝑝 ≈ 128 to allow additional room

needed for comparison [19], and use 𝑘 = 64 for mod 2
𝑘
(extended

to 𝑘 + 𝑠 = 128 for malicious security). The preprocessing for Mascot

and Spdz2k uses oblivious transfer, while Lowgear relies on ho-

momorphic encryption. This assortment allows a comprehensive

assessment of Coral across various mixed-circuit integrations.

Dabit generation exhibited only marginal gains with our ap-

proach, primarily due to the cost of arithmetic multiplication triples

(used in generating arithmetic randombits [18] or checking dabits [19]),

so we focus on the more critical results for edabits crucial for mixed-

circuit computations. Following previous work [19], we distinguish

loose and strict edabits, with the latter involving full generation

and contributing to the major costs of fixed-point truncation or

11

Table 6: Evaluated boolean circuits. 𝐼1, 𝐼2 and𝑂 are bit length
of two inputs and the output. The total number of gates and
the number of AND gates are also listed.

Circuit 𝐼1 𝐼2 𝑂 Total AND

Hamming Dist. 1024 1024 12 8148 2036

AES 128 128 128 36663 6400

SHA256 512 256 256 135073 22573

Sorting 4096 4096 4096 643681 114688

comparison in prime field. Loose edabits, suitable for Z
2
ℓ compar-

isons, skip the correction step. Table 5 presents benchmarks for

mixed-circuit schemes in generating both types. Notably, Coral’s
performance gain varies with arithmetic scheme pairing, excelling

with Lowgear (HE-based), offering 73.6% communication reduction

and 2.5× speedup in single-threaded WAN for loose edabits. HE-

based protocols generally exhibit lower communication overhead

than OT-based ones, amplifying Coral’s impact on boolean compu-

tation. Improvement in strict edabit generation is less pronounced

due to heavier reliance on multiplication triples. In LAN, Coral
underperforms with a single thread but multithreading mitigates

this disadvantage, as demonstrated subsequently.

Figure 12 illustrates edabit generation throughput inmultithreaded

environments. In LAN, Coral-supported protocols increasingly sur-

pass Tinier-based counterparts with rising thread count. This per-

formance gap expands in WAN, reaching nearly 4× higher through-
put with Coral-based protocols at 16 threads, evidencing Coral’s
superior concrete efficiency for large circuit evaluation.

5.3 Boolean Circuits
The results of the previous section show that our protocol is more ef-

ficient in various primitives. In this section, we demonstrate Coral’s
capability in boosting the performance of concrete boolean circuit

evaluation. We evaluate Tinier, Coral* and Coral on the circuits that

have been used in previous works [42]: 1) Hamming distance be-
tween two 𝑛-bit strings using an 𝑂 (𝑛)-size circuit where 𝑛 = 1024,

2) AES-128 circuit, 3) SHA256 circuit, 4) Bitonic sorting on an

array of 128 elements of 32 bits. Table 6 lists the details of these

circuits, either provided by SCALE-MAMBA [30] or generated from

EMP toolkit [41]. Our experiments are organized in the amortized
setting: the reported results are amortized for a single instance over

a packed execution of 140 instances so that little waste of buffered

processing material is observed.

In Table 7 we show the performance on the above examples.

Compared to Tinier, the communication improvement is consistent

with the results of Table 5, giving over one order of magnitude

improvement factor. For hamming distance that has a very small

circuit size, we observe a higher waste of preprocessing material in

Coral (due to the packed nature of our method), which results in a

lower factor of 10×. The factor goes up to 11.4× for the large sorting
circuit, which is explained by a full use of preprocessing material

and a low amortized cost of EMP’s Ferret OT (Coral’s results in Ta-

ble 4 waste a certain amount of batch-generatedmaterial in Ferret).
Compared to Coral*, Coral still achieves 5× improvement in com-

munication. When the network is fast, Coral has similar runtime

performance as Tinier. But under the WAN setting, Coral improves

over Tinier by a factor of 4.4×-7.2×, ranging from small circuits to

large circuits that we evaluate. On the contrary, in spite of having

lower communication than Tinier, Coral* has poor performance due

to its complicated quintuple generation protocol. Coral achieves
up to 30× speedup over Coral* in end-to-end circuit evaluation,

demonstrating the high concrete efficiency of our protocols.

5.4 Mixed Circuits
The MP-SPDZ library provides a convenient compiler to translate

machine learning applications written in a python-like language

into low-level multiparty computation instructions. To fully sup-

port Coral in an optimal way, we update the ML compiler to enable

packing and evaluate multiple inputs simultaneously, which en-

sures that Coral-based protocols are used with minimal waste of

computation and communication. In Table 8 we run applications

of various scales with a Coral-based protocol and a Tinier-based

protocol. Based on results in Section 5.2.2, we choose the two best-

performing protocols paired with Lowgear. We list some details of

the applications below:

• The decision tree model is relatively small with depth of 6

and predicts samples from the breast cancer dataset with 30

features.

• Lenet Small and Lenet Large have the same architecture of 6

neural network layers, with different number of internal neu-

rons. They evaluate standard MNIST images of dimension

28 × 28.

• SqueezeNet has 22 layers and evaluate ImageNet images of

dimension 227 × 227 × 3.

• ResNet has 50 layers and evaluate ImageNet images of di-

mension 224×224×3 (specifically, we use ResNet-50 v2 with

FP32 precision).

Applications are executed with parallelism levels tailored to their

sizes, and results are normalized per single input evaluation. Coral
achieves over 50% reduction in communication overhead for entire

applications through non-linear computation optimization. This

significantly enhances performance in the typical WAN setting for

malicious security, with an average 3× speedup across all applica-

tions. Surprisingly, LAN runtime improvements exceed expecta-

tions for certain ML applications, partly due to our ML compiler’s

packing optimizations.

SqueezeNet and ResNet suffer severe bottlenecks in WAN con-

ditions. We estimate a lower bound on runtime based on band-

width and provide comprehensive insights into non-linear compu-

tation that involves Coral and Tinier by using actual throughput of

boolean triples, dabits, and edabits under 64 threads. The compiler-

generated preprocessing materials for these networks’ non-linear

parts are detailed in Appendix E. Analogous results reveal more pro-

nounced communication overhead reductions for pure non-linear

components. Despite these improvements, arithmetic computation

remains the dominant cost in numerous ML applications, neces-

sitating complementary research efforts, as exemplified by recent

advancements inmatrix and convolution triples [11, 36]. Integrating

such enhancements and elevating the performance of maliciously

secure mixed-circuit computation represents a promising avenue

for future work.

12

Table 7: Experimental results for boolean circuits

Commu. (MB) LAN (s) WAN (s)

Circuit Tinier Coral* Coral Tinier Coral* Coral Tinier Coral* Coral

Hamming Dist. 3.81 1.69 0.38 0.017 0.25 0.016 0.22 0.88 0.05

AES 11.9 5.14 1.07 0.054 0.76 0.046 0.67 2.69 0.11

SHA256 41.6 18.1 3.65 0.187 2.72 0.138 2.56 9.57 0.45

Sorting 210.8 91.9 18.5 0.927 14.7 0.65 11.8 48.1 1.65

Table 8: Performance comparison of Coral and Tinier paired with Lowgear in mixed circuits.

Commu. LAN WAN

Application Tinier-LG Coral-LG Factor Tinier-LG Coral-LG Factor Tinier-LG Coral-LG Factor

DTree (1 thread) 19.7 MB 8.87 MB 2.2× 0.36 s 0.32 s 1.1× 5.92 s 1.2 s 4.9×
Lenet Small (1 thread) 13.7 GB 4.55 GB 3× 185 s 159 s 1.2× 1689 s 453 s 3.7×
Lenet Large (8 threads) 90.2 GB 39.8 GB 2.3× 374 s 182 s 2.1× 5038 s 1740 s 2.9×
SqueezeNet (64 threads) 4 TB 1.69 TB 2.4× 2.3 h 0.78 h 2.9× > 46 h

† > 19 h
†

-

SqueezeNet NonLinear Prep.

2.52 TB 0.87 TB 2.9× 0.69 h 0.59 h 1.2× 28.5 h 10 h 2.9×
(64 threads)

‡

ResNet (64 threads) 21.5 TB 13.8 TB 1.6× 10 h 5.1 h 2× > 248 h
† > 158 h

†
-

ResNet NonLinear Prep.

8.86 TB 3.2 TB 2.8× 2.4 h 2 h 1.2× 98.3 h 36.3 h 2.7×
(64 threads)

‡

†
Estimated based on LAN running time and network transmission under WAN’s bandwidth 200Mbps.

‡
Extrapolated based on preprocessing material requirement and throughput under 64 threads (Appendix E).

6 Conclusion
We study and develop RMFE-based MPC in detail, filling in all the

missing pieces in previous works. The resulting implementation

for MFE and RMFE is useful for evaluation of future works in

this research line. The proposed new framework Coral boosts the
concrete efficiency of existing boolean circuits andmixed circuits by

a great scale. We also see that for large applications, more research

and more engineering effort are expected for practical efficiency in

the considered strong security setting.

Acknowledgments
We thank Chaoping Xing and Chen Yuan for their valuable com-

ments on this work.

References
[1] Abdelrahaman Aly, Emmanuela Orsini, Dragos Rotaru, Nigel P. Smart, and Tim

Wood. 2019. Zaphod: Efficiently Combining LSSS and Garbled Circuits in SCALE.

In WAHC@CCS. ACM, 33–44.

[2] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. 2013.

More Efficient Oblivious Transfer and Extensions for Faster Secure Computation.

In CCS. New York, NY, USA, 535–548.

[3] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. 2011.

Semi-homomorphic Encryption and Multiparty Computation. In EUROCRYPT,
Vol. 6632. 169–188.

[4] Alexander R. Block, Hemanta K. Maji, and Hai H. Nguyen. 2018. Secure Computa-

tion with Constant Communication Overhead Using Multiplication Embeddings.

In INDOCRYPT, Vol. 11356. 375–398.
[5] Charlotte Bonte, Nigel P. Smart, and Titouan Tanguy. 2021. Thresholdizing

HashEdDSA: MPC to the Rescue. Int. J. Inf. Sec. 20, 6 (2021), 879–894.
[6] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,

and Peter Scholl. 2019. Efficient Two-Round OT Extension and Silent Non-

Interactive Secure Computation. In CCS. ACM, 291–308.

[7] Sai Sheshank Burra, Enrique Larraia, Jesper Buus Nielsen, Peter Sebastian Nord-

holt, Claudio Orlandi, Emmanuela Orsini, Peter Scholl, and Nigel P. Smart. 2021.

High-Performance Multi-party Computation for Binary Circuits Based on Obliv-

ious Transfer. J. Cryptol. 34, 3 (2021), 34.

[8] Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan. 2018. Amor-

tized Complexity of Information-Theoretically Secure MPC Revisited. In CRYPTO
(3) (Lecture Notes in Computer Science, Vol. 10993). Springer, 395–426.

[9] Ignacio Cascudo and Jaron Skovsted Gundersen. 2020. A Secret-Sharing Based

MPC Protocol for Boolean Circuits with Good Amortized Complexity. In TCC (2)
(Lecture Notes in Computer Science, Vol. 12551). Springer, 652–682.

[10] Octavian Catrina and Sebastiaan de Hoogh. 2010. Improved Primitives for Secure

Multiparty Integer Computation. In SCN, Vol. 6280. Springer, 182–199.
[11] Hao Chen, Miran Kim, Ilya P. Razenshteyn, Dragos Rotaru, Yongsoo Song, and

Sameer Wagh. 2020. Maliciously Secure Matrix Multiplication with Applications

to Private Deep Learning. In ASIACRYPT 2020. 31–59.
[12] Jung Hee Cheon, Dongwoo Kim, and Keewoo Lee. 2021. MHz2k: MPC from HE

over Z
2
𝑘 with New Packing, Simpler Reshare, and Better ZKP. In CRYPTO 2021

(Lecture Notes in Computer Science). 426–456.
[13] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaoping

Xing. 2018. SPDZ
2
𝑘 : Efficient MPC mod 2

𝑘
for Dishonest Majority. In CRYPTO

(2) (Lecture Notes in Computer Science, Vol. 10992). Springer, 769–798.
[14] Ronald Cramer, Matthieu Rambaud, and Chaoping Xing. 2021. Asymptotically-

Good Arithmetic Secret Sharing over Z/𝑝ℓZ with Strong Multiplication and Its

Applications to Efficient MPC. In CRYPTO (3) (Lecture Notes in Computer Science,
Vol. 12827). Springer, 656–686.

[15] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and

Nigel P. Smart. 2013. Practical Covertly Secure MPC for Dishonest Majority - Or:

Breaking the SPDZ Limits. In ESORICS, Vol. 8134. 1–18.
[16] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. 2012. Multi-

party Computation from Somewhat Homomorphic Encryption. In CRYPTO 2012.
643–662.

[17] Ivan Damgård and Sarah Zakarias. 2013. Constant-Overhead Secure Computation

of Boolean Circuits using Preprocessing. In TCC, Vol. 7785. 621–641.
[18] Ivan Damgård, Daniel Escudero, Tore Frederiksen, Marcel Keller, Peter Scholl,

and Nikolaj Volgushev. 2019. New Primitives for Actively-Secure MPC over

Rings with Applications to Private Machine Learning. In 2019 IEEE Symposium
on Security and Privacy (SP). 1102–1120.

[19] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl.

2020. Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits. In

CRYPTO. 823–852.
[20] Daniel Escudero, Chaoping Xing, and Chen Yuan. 2022. More Efficient Dishonest

Majority Secure Computation over Z2
𝑘
via Galois Rings. In CRYPTO. 383–412.

[21] Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter Scholl.

2015. A Unified Approach to MPC with Preprocessing Using OT. In ASIACRYPT
(1) (Lecture Notes in Computer Science, Vol. 9452). Springer, 711–735.

13

The functionality maintains a dictionary, TVal, to keep track of

the authenticated values J·K𝐵 in TinyOT sharing, and RVal, to
keep track of the authenticated values J·K in RMFE sharing.

tOpen: On input (tOpen, id) from all parties, where id ∈
TVal.keys(), send TVal[id] to the adversary and wait for 𝑥 from

the adversary, and output 𝑥 to all parties.

tCheck: On input (tCheck, id1, · · · , id𝑡 , 𝑥1, · · · , 𝑥𝑡) from all par-

ties, wait for an input from the adversary. If it inputs OK, and
TVal[id𝑗] = 𝑥 𝑗 for all 𝑗 , return OK to all parties, otherwise abort.

rInput: On input (rInput, id1, · · · , id𝑙 , 𝑥1, · · · , 𝑥𝑙 , 𝑃 𝑗) from party

𝑃 𝑗 and (Input, id1, · · · , id𝑙 , 𝑃 𝑗) from all other parties, where 𝑥𝑖 ∈
F2

𝑚 , set RVal[id𝑖] ← 𝑥𝑖 for 𝑖 = 1, · · · , 𝑙 .
rOpen: On input (rOpen, id) from all parties, where id ∈
RVal.keys(), send RVal[id] to the adversary and wait for 𝑥 from

the adversary, and output 𝑥 to all parties.

rCheck: On input (rCheck, id1, · · · , id𝑡 , 𝑥1, · · · , 𝑥𝑡) from all par-

ties, wait for an input from the adversary. If it inputs OK, and
RVal[id𝑗] = 𝑥 𝑗 for all 𝑗 , return OK to all parties, otherwise abort.

Figure 13: Functionality Fprep

The functionality maintains a dictionary, Val, to keep track of the

authenticated values of F𝑘
2
.

rAffComb: On input (rAffComb, id, (id1, · · · , id𝐿),
(𝑎1, · · · , 𝑎𝐿), a) from all parties, where 𝑎 𝑗 ∈ F2 for 𝑗 = 1, · · · , 𝐿
and a ∈ F𝑘

2
, computes and sets Val[id] ← a +∑𝐿

𝑗=1
𝑎 𝑗 · Val[id𝑗].

cMult: On input (cMult, id, id′, c), where c ∈ F𝑘
2
, computes and

sets Val[id] ← c ⊙ Val[id′].
rMult: On input (rMult, id, (id1, id2)) from all parties, computes

and sets Val[id] ← Val[id1] ⊙ Val[id2].

Figure 14: Functionality Fmpc

[22] Tore Kasper Frederiksen, Benny Pinkas, and Avishay Yanai. 2018. Committed

MPC - Maliciously Secure Multiparty Computation from Homomorphic Com-

mitments. In Public Key Cryptography (1), Vol. 10769. 587–619.
[23] Tom Albæk Hansen and Gary L. Mullen. 1992. Primitive polynomials over finite

fields. Math. Comp. 59 (1992), 639–643.
[24] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending Oblivious

Transfers Efficiently. In CRYPTO (Lecture Notes in Computer Science, Vol. 2729).
Springer, 145–161.

[25] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending Oblivious

Transfers Efficiently. In CRYPTO. 145–161.
[26] Marcel Keller. 2020. MP-SPDZ: A Versatile Framework for Multi-Party Com-

putation. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security.

[27] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2016. MASCOT: Faster

Malicious Arithmetic Secure Computation with Oblivious Transfer. In CCS. ACM,

830–842.

[28] Marcel Keller, Valerio Pastro, and Dragos Rotaru. 2018. Overdrive: Making SPDZ

Great Again. In EUROCRYPT 2018. 158–189.
[29] Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart. 2014. Dishonest Majority

Multi-Party Computation for Binary Circuits. In CRYPTO (2), Vol. 8617. 495–512.
[30] KU Leuven. 2021. SCALE and MAMBA. https://github.com/KULeuven-COSIC/

SCALE-MAMBA/.

[31] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank

Burra. 2012. A NewApproach to Practical Active-Secure Two-Party Computation.

In CRYPTO (Lecture Notes in Computer Science, Vol. 7417). Springer, 681–700.
[32] Emmanuela Orsini, Nigel P. Smart, and Frederik Vercauteren. 2020. Overdrive2k:

Efficient Secure MPC over Z
2
𝑘 from Somewhat Homomorphic Encryption. In

CT-RSA, Vol. 12006. Springer, 254–283.
[33] Ignacio Cascudo Pueyo, Hao Chen, Ronald Cramer, and Chaoping Xing. 2009.

Asymptotically Good Ideal Linear Secret Sharing with Strong Multiplication over

Any Fixed Finite Field. In CRYPTO (Lecture Notes in Computer Science, Vol. 5677).
Springer, 466–486.

[34] Microsoft Research. 2024. EzPC: Easy Secure Multiparty Computation. https:

//github.com/mpc-msri/EzPC.

[35] Peter Rindal. 2024. libOTe: an efficient, portable, and easy to use Oblivious

Transfer Library. https://github.com/osu-crypto/libOTe.

[36] Marc Rivinius, Pascal Reisert, Sebastian Hasler, and Ralf Küsters. 2023. Con-

volutions in Overdrive: Maliciously Secure Convolutions for MPC. Proc. Priv.
Enhancing Technol. 2023, 3 (2023), 321–353.

[37] Dragos Rotaru, Nigel P. Smart, Titouan Tanguy, Frederik Vercauteren, and Tim

Wood. 2022. Actively Secure Setup for SPDZ. J. Cryptol. 35, 1 (2022), 5.
[38] Dragos Rotaru and Tim Wood. 2019. MArBled Circuits: Mixing Arithmetic

and Boolean Circuits with Active Security. In INDOCRYPT, Vol. 11898. Springer,
227–249.

[39] Victor Shoup. 2023. NTL: A Library for doing Number Theory. https://libntl.org/.

[40] Berk Sunar, Erkay Savas, and Çetin Kaya Koç. 2003. Constructing Composite

Field Representations for Efficient Conversion. IEEE Trans. Computers 52, 11
(2003), 1391–1398.

[41] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. 2022. EMP-toolkit: Efficient

MultiParty computation toolkit. https://github.com/emp-toolkit.

[42] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Authenticated Garbling

and Efficient Maliciously Secure Two-Party Computation. In CCS. ACM, 21–37.

[43] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Global-Scale Secure

Multiparty Computation. In CCS. ACM, 39–56.

[44] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. 2020. Ferret:

Fast Extension for Correlated OTwith Small Communication. In CCS. 1607–1626.

A Missing functionalities
We detail the standard functionalities that are missing in the main

text. Figure 13 list the missing commands in Fprep. Figure 14 list

the missing functionality for the online phase of MPC Fmpc. It is

partially taken from [20], with an additional command cMultwhich
describes the SIMD constant multiplication missing in the previous

work and implemented by our protocol Π
cMult

.

B Missing proofs
Theorem 6. ΠrConv securely implements FrConv in the Fprep-

hybrid (Figure 4) model with statistical security parameter 𝑠 .

Proof. The proof is similar to the argument in [18, 20]. FrConv

requires the conversion output to be both consistent and normal

(note that 𝜏 (𝜙 (x)) = 𝜙 (x)). Suppose the adversary causes incorrect

values 𝑦′
𝑗
or 𝑞′

𝑗
to be authenticated as RMFE sharings. There are

two possible types of incorrectness:

• 𝜏 (𝑦′
𝑗
) ≠ 𝑦′

𝑗
, i.e., 𝑦′

𝑗
is not a normal element and thus 𝑦′

𝑗
≠ 𝑦 𝑗 .

• 𝜓 (𝑦′
𝑗
) ≠ 𝜓 (𝑦 𝑗), 𝑖 .𝑒 .,𝜓 (𝑦′𝑗) [ℎ] ≠ 𝑥 (𝑗−1)𝑘+ℎ for some ℎ ∈

[1, 𝑘];
Check normality. Let 𝜏 (𝑦′

𝑗
) = 𝑦′

𝑗
+ 𝛽 𝑗 , 𝜏 (𝑞′𝑗) = 𝑞

′
𝑗
+𝛾 𝑗 . Assume

that there exists some 𝛽 𝑗 ≠ 0, then the equality

∑𝑛
𝑗=1

𝑐 𝑗,𝑔 ·𝛽 𝑗 +𝛾𝑔 = 0

holds with probability at most 1/2 for a certain 𝑔 because each 𝑐 𝑗,𝑔
is uniformly random and independent of 𝛽 𝑗 and 𝛾𝑔 . The adversary

succeeds with probability as most 2
−𝑠

by passing all 𝑠 checks.

Check consistency. Let 𝜓 (𝑦′
𝑗
) [ℎ] = 𝑥 (𝑗−1)𝑘+ℎ + 𝛿 𝑗,ℎ mod 2,

𝜓 (𝑞′
𝑗
) [ℎ] = 𝑟 (𝑗−1)𝑘+ℎ +𝜖 𝑗,ℎ mod 2. Assume that there exists some

𝛿 𝑗,ℎ ≠ 0, then the equality

∑𝑛
𝑗=1

𝑐 𝑗,𝑔 · 𝛿 𝑗,ℎ + 𝜖𝑔,ℎ = 0 holds with

probability at most 1/2 for a certain (𝑔, ℎ) pair because each 𝑏 𝑗,𝑔
is uniformly random and independent of 𝛿 𝑗,ℎ and 𝜖𝑔,ℎ . Note that

𝜓 (𝑤𝑔) =
∑𝑛

𝑗=1
𝑐 𝑗,𝑔𝜓 (𝑦′𝑗) + 𝜓 (𝑞𝑔). The adversary succeeds with

probability as most 2
−𝑠

by passing all 𝑠 checks.

Taking both checks into account, it follows that the outputs are

correct with probability at least 1 − 2
−𝑠
. □

14

https://github.com/KULeuven-COSIC/SCALE-MAMBA/
https://github.com/KULeuven-COSIC/SCALE-MAMBA/
https://github.com/mpc-msri/EzPC
https://github.com/mpc-msri/EzPC
https://github.com/osu-crypto/libOTe
https://libntl.org/
https://github.com/emp-toolkit

The functionality runs with two parties 𝑃𝑖 and 𝑃 𝑗 and the ad-

versary A. The Initialize phase is run once first. The Multiply
phase can be run an arbitrary number of times.

Initialize: On input 𝛼 (𝑖) ∈ F2
𝑚 from 𝑃𝑖 , store this value.

Multiply: On input 𝑥 ∈ F2
𝑚 from 𝑃 𝑗 :

• If 𝑃 𝑗 is corrupt then receive 𝑣 (𝑗,𝑖) ∈ F2
𝑚 and a vector

x(𝑗,𝑖) ∈ F𝑡
2
from A and compute 𝑢 (𝑖, 𝑗) = 𝜌 (𝜎 (𝛼 (𝑖)) ⊙

x(𝑗,𝑖)) − 𝑣 (𝑗,𝑖) .
• If 𝑃𝑖 is corrupt then receive 𝜶 (𝑖, 𝑗) ∈ F𝑡

2
and 𝑢 (𝑖, 𝑗) from A

and compute 𝑣 (𝑗,𝑖) = 𝜌 (𝜶 (𝑖, 𝑗) ⊙ 𝜎 (𝑥)) − 𝑢 (𝑖, 𝑗)
• If both 𝑃𝑖 and 𝑃 𝑗 are honest then sample 𝑢 (𝑖, 𝑗) and 𝑣 (𝑗,𝑖)

uniformly at random subject to 𝑢 (𝑖, 𝑗) + 𝑣 (𝑗,𝑖) = 𝛼 (𝑖) · 𝑥 .
The functionality sends 𝑢 (𝑖, 𝑗) to 𝑃𝑖 and 𝑣 (𝑗,𝑖) to 𝑃 𝑗 .

Figure 15: Functionality FCOPEe [20]

The functionality runs with two parties 𝑃𝑖 and 𝑃 𝑗 and the ad-

versary A. The Initialize phase is run once first. The Multiply
phase can be run an arbitrary number of times.

Initialize: On input 𝛼 (𝑖) ∈ F2
𝑚 from 𝑃𝑖 , store this value.

Multiply: On input x ∈ F𝐿
2
𝑚 from 𝑃 𝑗 :

• If 𝑃 𝑗 is corrupt then receive v(𝑗,𝑖) ∈ F𝐿
2
𝑚 and a matrix

X(𝑗,𝑖) ∈ F𝐿×𝑡
2

from A and compute u(𝑖, 𝑗) = 𝜌 (𝜎 (𝛼 (𝑖)) ⊙
X(𝑗,𝑖)) − v(𝑗,𝑖) .
• If 𝑃𝑖 is corrupt then receive 𝜶 (𝑖, 𝑗) ∈ F𝑡

2
and u(𝑖, 𝑗) ∈ F𝐿

2
𝑚

from A and compute v(𝑗,𝑖) = 𝜌 (𝜶 (𝑖, 𝑗) ⊙ 𝜎 (x)) − u(𝑖, 𝑗)
• If both 𝑃𝑖 and 𝑃 𝑗 are honest then sample u(𝑖, 𝑗) and v(𝑗,𝑖)

uniformly at random subject to u(𝑖, 𝑗) + v(𝑗,𝑖) = 𝛼 (𝑖) · x.
The functionality sends u(𝑖, 𝑗) to 𝑃𝑖 and v(𝑗,𝑖) to 𝑃 𝑗 .

Figure 16: Functionality FvCOPEe

Upon receiving (vOLE, 𝑎, 𝑃𝐴, 𝑃𝐵) from 𝑃𝐴 and (vOLE, x, 𝑃𝐴, 𝑃𝐵)
from 𝑃𝐵 where 𝑎 ∈ F2, x ∈ F𝐿

2
, the functionality samples uni-

formly random b← F𝐿
2
, sets y = 𝑎x + b, and sends y to 𝑃𝐵 and

−b to 𝑃𝐴 .

Figure 17: Functionality FvOLE

Initialize: On input 𝛼 (𝑖) ∈ F2
𝑚 from 𝑃𝑖

Multiply: On input x ∈ F𝐿
2
𝑚 from 𝑃 𝑗 :

1: 𝑃𝑖 computes 𝜎 (𝛼 (𝑖)) = (𝑎1, · · · , 𝑎𝑡) ∈ F𝑡
2
, and 𝑃 𝑗 computes

𝜎 (x) = X ∈ F𝐿×𝑡
2

. 𝑃𝑖 defines an empty matrix B ∈ F𝐿×𝑡
2

and

𝑃 𝑗 defines an empty matrix Y ∈ F𝐿×𝑡
2

.

2: For ℎ = 1, · · · , 𝑡 , 𝑃𝑖 and 𝑃 𝑗 call FvOLE where 𝑃𝑖 inputs 𝑎ℎ
and 𝑃 𝑗 inputs a column X∗ℎ . 𝑃 𝑗 receives Y∗ℎ , and 𝑃𝑖 receives
−B∗ℎ = 𝑎ℎ · X∗ℎ − Y∗ℎ .

3: 𝑃𝑖 sets u(𝑖, 𝑗) = −𝜌 (B) and 𝑃 𝑗 sets v(𝑖, 𝑗) = 𝜌 (Y).

Figure 18: Protocol ΠvCOPEe.

Theorem 7. Π
rQuintuple

securely implements F
prep.rQuintuple

in
the (Fprep, FrConv)-hybrid model with 𝑠-bit statistical security.

Proof. The proof is similar to the argument in [20]. FrConv pro-

duces consistent and normal triples (J𝑎 𝑗 K, J ˆ𝑏 𝑗 K, J𝑐 𝑗 K). The remain-

ing part of the protocol is to generate random 𝑎 𝑗 and 𝑏 𝑗 such that

𝜏 (𝑎 𝑗) = 𝑎 𝑗 and 𝜏 (𝑏 𝑗) = ˆ𝑏 𝑗 . Suppose the adversary causes incorrect

values 𝑎′
𝑗
or 𝑏′

𝑗
to be authenticated as RMFE sharings.

Let 𝜏 (𝑎′
𝑗
) = 𝑎 𝑗 + 𝛿 𝑗 . Assume that there exists some 𝛿 𝑗 ≠ 0 for

𝑗 ∈ [1, 𝑁], then the equality

∑𝑁
𝑗=1

𝑟ℎ,𝑗 · 𝛿 𝑗 + 𝛿𝑁+ℎ = 0 holds with

probability at most 1/2 for a certain ℎ because each 𝑟ℎ,𝑗 is uniformly

random and independent of 𝛿 𝑗 and 𝛿𝑁+ℎ . The adversary succeeds

with probability as most 2
−𝑠

by passing all 𝑠 checks. Similarly, the

same analysis applies for 𝑏′
𝑗
. □

Theorem 8. Π
rMult

securely implements F
mpc.rMult

in the Fprep-
hybrid model.

Proof. All steps in the protocol resemble those from [20], except

step 4 which is pure local computation, hence we only show its

correctness here and refer the readers to [20] for the complete

security proof. We see that 𝑧 = 𝜏 (𝑑)𝜏 (𝑏) +𝜏 (𝑒)𝜏 (𝑎) +𝜏 (𝑑)𝜏 (𝑒) +𝑐 =
𝜏 (𝑥)𝜏 (𝑦) − 𝜏 (𝑎)𝜏 (𝑏) + 𝑐 . Therefore, we have:

𝜓 (𝑧) = 𝜓 (𝜏 (𝑥)𝜏 (𝑦)) −𝜓 (𝜏 (𝑎)𝜏 (𝑏)) +𝜓 (𝑐)
= 𝜓 (𝜙 (x) · 𝜙 (y)) −𝜓 (𝜙 (a) · 𝜙 (b)) +𝜓 (𝑎) ⊙𝜓 (𝑏)
= x ⊙ y − a ⊙ b + a ⊙ b = x ⊙ y

□

C Vectorized COPEe
In [20], the COPEe functionality is defined with MFE encoding 𝜎

and decoding 𝜌 embedded (Figure 15). In fact, this functionality

can be vectorized to represent multiple independent calls, which

we shown in Figure 16. Such a vectorized usage is present in the

input authentication protocol (Π
Auth

in [20]) that can be updated

to use our vectorized functionality, and the proof can be reused.

The FvCOPEe functionality can be implemented with an access to

FvOLE (Figure 17). The protocol ΠvCOPEe (Figure 18) is a vectorized

version of ΠCOPEe in [20]. We give the adapted proof below.

Theorem 9. ΠvCOPEe securely implements FvCOPEe in the FvOLE-
hybrid model.

Proof. If 𝑃𝑖 is corrupted, the simulator receives 𝜶 (𝑖, 𝑗) ∈ F𝑡
2

from the adversary. The simulator samples B← F𝐿×𝑡
2

uniformly at

random and sends B to the adversary.

If 𝑃 𝑗 is corrupted, the simulator receives X ∈ F𝐿×𝑡
2

from the

adversary. The simulator samples Y← F𝐿×𝑡
2

uniformly at random

and sends Y to the adversary. The indistinguishability is clear since

the output looks uniformly at random both in the real world and

the ideal world. □

The importance of such vectorization is that FvOLE can be im-

plemented efficiently with correlated OT based on recent advances

in VOLE-style OT extension [6, 44]. Note that the previous input

authentication protocol [20] could also potentially benefit from

this, but their quintuple generation fails to enjoy this benefit due

to non-vectorizable usage.

15

Input: RMFE sharings J𝑥K, where𝜓 (𝑥) = x = [𝑥0, 𝑥1, · · · , 𝑥𝑘−1
]

Output: Arithmetic sharings JxK𝐴 = J𝑥0K𝐴, J𝑥1K𝐴, · · · , J𝑥𝑘−1
K𝐴

1: Call F
mixed.rDabit

to obtain a packed daBit: JrK𝐴, J𝑟K.
2: Call Fprep.rOpen on J𝑥K+ J𝑟K and obtain 𝑐0, · · · , 𝑐𝑘−1

= 𝜓 (𝑥 +
𝑟).

3: Compute J𝑥𝑖K𝐴 = 𝑐𝑖 + J𝑟𝑖K𝐴 − 2 · 𝑐𝑖 · J𝑟𝑖K𝐴 .

Figure 20: Protocol for RMFE-based boolean to arithemetic
ΠrB2A.

Output: 𝑁 packed edaBits {(JrjK𝐴, J𝑟 𝑗,0K, · · · , J𝑟 𝑗,ℓ−1K)}𝑁𝑗=1
,

where rj ∈ Z𝑘𝑞 and rj [𝑖] =
∑ℓ−1

𝑔=0
𝜓 (𝑟 𝑗,𝑔) [𝑖] · 2𝑔 , and 𝑃𝑖 knows

the underlying bits.

[Construct]
1: 𝑃𝑖 samples 𝑏 𝑗,0, · · · , 𝑏 𝑗,𝑘ℓ−1

∈ Z2, and calls Fprep.rInput to

obtain J𝑟 𝑗,𝑖K, where 𝑟 𝑗,𝑖 = 𝜙 ([𝑏 𝑗,𝑖 , 𝑏 𝑗,ℓ+𝑖 , · · · , 𝑏 𝑗,(𝑘−1)ℓ+𝑖]),
for 𝑖 = 0, · · · , ℓ − 1 and 𝑗 = 1, · · · , 𝑁𝐵 +𝐶 .

2: 𝑃𝑖 computes rj [𝑖] =
∑ℓ−1

𝑔=0
𝑏 𝑗,𝑖ℓ+𝑔2

𝑔
and call Fprep.qInput to

obtain Jrj [𝑖]K𝐴 .
3: 𝑃𝑖 samples (𝑁 (𝐵 − 1) + 𝐶′)ℓ random quintuples and call

Fprep.rInput to inputs these.

[Cut and Choose]
4: Parties sample two public random permutations and use these

to shuffle the packed edaBits and the private quintuples.

5: Open the first 𝐶 of the shuffled packed edaBits, and the first

𝐶′ · ℓ quintuples. Abort if any of the packed edaBits or the

quintuples are inconsistent.

6: Place the remaining packed edaBits into buckets of size 𝐵

and the quintuples into bucket of size (𝐵 − 1) · ℓ .
7: For each bucket, select the first packed edaBit

(JrK𝐴, J𝑟0K, · · · , J𝑟ℓ−1K), and for the every other packed

edaBit (JsK𝐴, J𝑠0K, · · · , J𝑠ℓ−1K) in the same bucket, perform

the following check:

(1) Let Jr + sK𝐴 = JrK𝐴 + JsK𝐴 .
(2) Let (J𝑐0K, · · · , J𝑐ℓK) =

BitADDCarry(J𝑟0K, · · · , J𝑟ℓ−1K, J𝑠0K, · · · , J𝑠ℓ−1K)
by using the remaining private quintuples to evaluate

AND gates.

(3) Call F
mixed.rB2A

to convert J𝑐ℓK ↦→ J𝜓 (𝑐ℓ)K𝐴 .
(4) Let Jc′K𝐴 = Jr + sK𝐴 − 2

ℓ · J𝜓 (𝑐ℓ)K𝐴 . Open c′ and
J𝑐0K, · · · , J𝑐ℓ−1K, and check that c′ [ℎ] =

∑ℓ−1

𝑖=0
𝜓𝑐𝑖 [ℎ] ·

2
𝑖
.

8: If all the checks pass, output the first packed edaBit from

each of the 𝑁 buckets.

Figure 21: Protocol for RMFE-based private edaBit generation
Π

rEdabitPriv
.

Output: 𝑁 packed daBit {(JbjK𝐴, J𝑏 𝑗 K)}𝑁𝑗=1
, where bj ∈ {0, 1}𝑘

and bj [𝑖] = 𝜓 (𝑏 𝑗) [𝑖].
[Construct]
1: For each party 𝑃𝑖 , it samples bits 𝑏𝑖,1, · · · , 𝑏𝑖,(𝑁+𝑠) ·𝑘 ∈
{0, 1}. 𝑃𝑖 calls Fprep.rInput to obtain J𝑟𝑖, 𝑗 K where 𝑟𝑖, 𝑗 =

𝜙 ([𝑏𝑖,(𝑗−1)𝑘+1, · · · , 𝑏𝑖, 𝑗𝑘]), and calls Fprep.qInput to obtain

Jri,jK𝐴 where ri,j = [𝑏𝑖,(𝑗−1)𝑘+1, · · · , 𝑏𝑖, 𝑗𝑘], for 𝑗 = 1, · · · , 𝑁 +
𝑠 .

2: All parties compute JrjK𝐴 = J⊕𝑛
𝑖=1

ri,jK𝐴 and J𝑟 𝑗 K = J⊕𝑛
𝑖=1
𝑟𝑖, 𝑗 K.

The ⊕ in the arithmetic world is computed as𝑎⊕𝑏 = 𝑎+𝑏−2𝑎𝑏.

[Check]
3: Parties do the following 𝑠 times:

(1) Generate (𝑁 + 𝑠) · 𝑘 fresh public ran-

dom bits 𝑎1, · · · , 𝑎 (𝑁+𝑠) ·𝑘 ∈ {0, 1} and let

aj = [𝑎 (𝑗−1)𝑘+1, · · · , 𝑎 𝑗𝑘].
(2) Compute J⊕𝑁+𝑠

𝑗=1
𝜙 (aj) · 𝑟 𝑗 K and open it.

(3) Compute JrK𝐴 = J
∑𝑁+𝑠

𝑗=1
rj ⊙ ajK𝐴 .

• If 𝑞 = 2
ℓ
, call r′ = open(Jr · 2ℓ−1K𝐴) and com-

pute r′/2ℓ−1 = (r · 2
ℓ−1

mod 2
ℓ)/2ℓ−1 = r

mod 2.

• If 𝑞 is a prime, call r′ = open(JrK𝐴 + 2 ·∑𝑠+1
𝑖=0

JciK𝐴 · 2𝑖) with random bit vector JciK𝐴

and compute r mod 2 = r′ mod 2.

Abort if r mod 2 does not match the bits from the

previous step.

4: Discard (JrjK𝐴, J𝑟 𝑗 K) for 𝑗 ∈ [𝑁 + 1, 𝑁 + 𝑠].
5: For 𝑗 ∈ [1, 𝑁], compute and open Jrj ⊙ (1 − rj)K𝐴 . Abort if

any vector is not zero.

Figure 19: Protocol for RMFE-based daBit generation Π
rDabit

.

D Mixed-circuit protocols
Packed daBit generation. To generate packed daBits, we vec-

torize the protocol from [19] for RMFE sharings in Figure 19. It

securely implements the functionality F
mixed.rDabit

. The security

proof is exactly the same as in [19] that works for any boolean do-

main. Nevertheless, the major cost in this protocol comes from the

arithmetic multiplication, and RMFE’s improvement to the boolean

world is not obivious in the whole execution.

Boolean to arithmetic. To convert a RMFE sharing into a vector

of arithmetic sharings, we use the protocol in Figure 20. It consumes

a packed daBit. The flow is standard in the literature and similar

protocols have been designed for traditional boolean sharings in

previous works [18].

Private RMFE-based edaBit generation. Figure 21 gives the
protocol that is adapted from [19] for RMFE sharings to implement

the functionality F
mixed.rEdabitPriv

. It generates private packed ed-

aBits whose underlying bits are known by one party. The protocol

uses cut-and-choose and bucket sacrifice to ensure that 𝑃𝑖 is pro-

ducing valid packed edaBits. The security proof in [19] is general

for any boolean domain and also applies to RMFE sharings. We

avoid redundant description and refer the readers to [19] for details.

16

Table 9: Preprocessing material in the evaluation of SqueezeNet and ResNet (64 threads).

SqueezeNet ResNet

Commu. LAN Throughput WAN Throughput

(KB / per op) (ops / per second) (ops / per second)

Tinier-LG Coral-LG Tinier-LG Coral-LG Tinier-LG Coral-LG

dabit 5,349,231 10,613,224 7.58 7.77 95130 63976 3167 3081

strict edabit (ℓ = 9) 1,000 0 56.4 40 17229 13309 439.6 616

strict edabit (ℓ = 10) 0 2,048 58.6 40 16478 13300 416 605

strict edabit (ℓ = 12) 2,649,992 20,121,577 63 41.2 15419 13089 386 588

strict edabit (ℓ = 31) 5,349,231 10,613,224 106 46.4 10089 10489 229 522

strict edabit (ℓ = 41) 5,349,231 10,613,224 128.6 49.6 8436 9644 188 490

strict edabit (ℓ = 71) 2,650,992 20,123,625 196.4 58 5610 7363 133 433

bit triple 294,207,705 583,727,320 1.84 0.17 499390 681232 13167 136948

E More experiment details for large
applications

The preprocessing material for non-linear computation in the large

neural networks SqueezeNet and ResNet are listed in the 2nd and

3rd columns of Table 9. They are direct outputs from the compiler

of MP-SPDZ. Based on the material requirement, we benchmark

their communication and throughput under 64-thread environment,

which we use to extrapolate the performance of non-linear compu-

tation for the two neural networks in Table 8.

17

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Notations
	2.2 Cryptographic Primitives

	3 Bringing (R)MFE into Practice
	3.1 Bridging the Gap from RMFE to MFE
	3.2 Composite/Binary Field Conversion
	3.3 Optimized Embedding/Recovery Maps
	3.4 Optimizations and Implementation

	4 Packed Circuit Optimization
	4.1 General Boolean Share Conversion
	4.2 Quintuple Generation
	4.3 Extensions and Optimizations
	4.4 Complexity Analysis

	5 Evaluations
	5.1 Evaluations Setup
	5.2 Microbenchmarks
	5.3 Boolean Circuits
	5.4 Mixed Circuits

	6 Conclusion
	Acknowledgments
	References
	A Missing functionalities
	B Missing proofs
	C Vectorized COPEe
	D Mixed-circuit protocols
	E More experiment details for large applications

