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Abstract. In this work, we consider the setting where one or more users
with low computational resources would like to outsource the task of
proof generation for SNARKs to one external entity, named Prover. We
study the scenario in which Provers have access to all statements and
witnesses to be proven beforehand. We take a different approach to proof
aggregation and design a new protocol that reduces simultaneously prov-
ing time and communication complexity, without going through recursive
proof composition. Our two main contributions: We first design FLIP, a
communication efficient folding scheme where we apply the Inner Pairing
Product Argument to fold R1CS instances of the same language into a
single relaxed R1CS instance. Then, any proof system for relaxed R1CS
language can be applied to prove the final instance. As a second contribu-
tion, we build a novel variation of Groth16 with the same communication
complexity for relaxed R1CS and two extra pairings for verification, with
an adapted trusted setup.
Compared to SnarkPack – a prior solution addressing scaling for multiple
Groth16 proofs – our scheme improves on prover complexity by orders of
magnitude, if we consider the total cost to generate the SNARK proofs
one by one and the aggregation effort.
An immediate application of our solution is Filecoin, a decentralized
storage network based on incentives that generates more than 6 million
SNARKs for large circuits of 100 million constraints per day.

1 Introduction

Succinct Arguments of Knowledge or SNARKs are short proofs that allow to
publicly verify the correctness of a statement (e.g., the result of some compu-
tation, claims of storage etc.) at lower cost than examining the entire witness
or rerunning the entire computation. SNARKs are widely used in decentralized
settings such as blockchains to scale or conceal information published on the
chain. Some of the multiple use cases are for anonymous transactions [HBHW21]
(Zcash), fast light clients or compact blockchain (Celo, Mina), and provable de-
centralized storage [Lab18] (Filecoin).

Nevertheless, due to their rapid and massive adoption, systems that use
SNARKs are facing scalability challenges: proofs are expensive to generate, many
of these are produced constantly. So in the decentralized scenario, all the nodes
in the network have to process each proof individually to agree on a final state,
so some verification fees are required for each proof posted.



To avoid overcharging public bulletin boards with such proofs, many block-
chains have started considering aggregation layers which are practically “Proving
Service” nodes that collect multiple proofs or compute and generate directly in-
stances to be proven, while running offchain. Users in the network can use such
Proving Services to prove many instances and hopefully obtain a single smaller
proof efficiently verifiable to post on the main chain. Recently, many schemes
were developed and offer different features to solve this problem through aggre-
gation, recursion or folding. However, most of the existing solutions alleviate the
communication and verification costs, while sacrificing the prover efficiency.

Aggregation schemes, such as SnarkPack [GMN22a] deployed in Filecoin
blockchain allow to compute a unique short proof for many statements, starting
from already existing individual proofs that are aggregated via Inner Product
Arguments [BMM+21] into a logarithmic size final proof that has verification
costs logarithmic in the number of initial statements.

Another approach to handle multiple instances is by recursion, or incremen-
tal verifiable computation (IVC): this allows to compute sequentially proofs for
each of the individual instances and continue the process until a unique final
proof is obtained. Nevertheless, even by instantiating such IVC by using effi-
cient generic SNARK schemes, we obtain very unsatisfactory solutions. This is
because such construction would require recursion on the verifier algorithm, but
the verification of SNARKs are usually costly and include operations such as
elliptic curve pairings that are not easy to represent in an arithmetic circuit over
a field. So implementing the verification logic in the SNARK proving circuit
incurs a significant overhead.

Some schemes, starting with Halo work [BGH19] show how to save on costs
by using aggregation schemes to batch the expensive operations in the proof
verification and run them only once at the end. This reduces both the recur-
sive verification costs for the prover and the verifier’s effort. However, such ap-
proaches require non-standard structures such as cycle of elliptic curves. This
restricts the choice of tools that can be used by the recursive scheme, since
known impossibility results show there are no optimal (in terms of parameter
sizes) pairing-friendly of secure elliptic curves, the one allowing for the most
efficient constructions. However, hybrid cycles and plain cycles of curves have
been proposed and better studied in the last years, but the absence of optimized
implementations of recursion using this accumulation approach is still a problem
to realizing practical recursive SNARK schemes.

A recent line of work demonstrates a new methodology in order to defer
the expensive operations in the proof verification, via folding schemes. Nova
[KST22], HyperNova [KS23], Protostar [BC23], etc. fold together at each step
the statements to be proven and end up with a single proof system supporting
some relaxed relation (generalizing the initial relation to be proven). These ideas
are quite new, but promising, while extending and applying such methodology
to new settings may have important efficiency implications.

The present work takes a step forward and shows a new way to generate
succinct proofs for multiple instances of the same relation by folding the initial
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statements all together (and not sequentially as prior works) into a single final
proof for the relaxed relation. It also shows an alternative way of proving final
folded statements, by designing a new version of the most efficient SNARK to
date, Groth 16 [Gro16] that can be used by prior works to replace their last step
and obtain better proof sizes and verification times.

1.1 Our Contribution

In the setting we consider, one single Prover needs to generate many different
SNARKs for the same relation and then submit these proofs for validation. For
the solution to be meaningful, the main requirement is that this external Prover
should be able to generate proofs at a faster speed than the individual users and
compress the proofs in some way.

We design a new solution that allows to prove together multiple R1CS in-
stances for the same language at an amortized cost. We present our contribution
in two building blocks that have independent interest for other applications as
well.

First, we introduce FLIP, a new technique to folding R1CS instances that has
minimal communication costs, efficient prover and verifier and does not require
recursion. Our solution drives inspiration from Nova paper [KST22], that shows
how to fold R1CS relations of the form Az◦Bz = Cz with instance-witness pairs
z, avoiding cross terms. They define a new relaxed R1CS relation that preserves
the same structure after folding: Az ◦ Bz = uCz + e, where u is a scaling
constant and e is an error vector. Our scheme FLIP uses the same relaxed R1CS
relations, but realizes their folding through inner pairing products [BMM+21]
(IPP) instead of recursion. In contrast with Nova, the folding in FLIP does not
require foreign-arithmetic to embed the verification algorithm in a proving circuit
or expensive cycle of elliptic curves. Our folding step works over any efficient
pairing-friendly curve. We leave it as an open question to realize folding for
other relations such as Plonk via IPP to reduce communication complexity.

A second contribution and building block is an adaptation of the state-of-the-
art constant-size SNARK system, Groth16 for proving relaxed R1CS relations.
This new efficient constant-size Groth16-like proving system is compatible with
other folding schemes using relaxed R1CS. It can be used to replace currently
used Spartan [Set20] in the last step of Nova when the last step is in a bilinear
group without the need of foreign-field arithmetic. This allows us to achieve
very short proofs and constant verification time for the final folded proof, which
is important in the context of limited communication costs of the blockchain
scenario.

Our new scheme also needs a trusted setup, a structured reference string srs
that is a slight modification of the original Groth16 trusted setup to make it a
commit-and-prove SNARK with minimal communication complexity and opti-
mized verification for the relaxed relation. It allows to prove multiple instances
with a constant-size proof overhead (on top of FLIP proof size).
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Reusing the same trusted setup is a strong requirement from an engineering
point of view, as ceremonies to generate such setups are expensive and chal-
lenging to organize. Therefore, our version of Groth16 cannot be immediately
deployed in practice for R1CS relations that have already a trusted setup srs for
classic Groth16. The change in setup described in Section 4 comes from making
Groth16 implicitly commit-and-prove and as succinct as possible, and to im-
plicitly extract the witness and error terms. The alternative to achieve constant
size proof without a new setup is to adapt a universal SNARK for R1CS such
as Marlin [CHM+20] to the relaxed R1CS relation and to make it commit-and-
prove.

1.2 Technical Overview

Our techniques consist in showing how to first fold many committed R1CS
instances via Inner Pairing Argument using a two-tiered commitment scheme
[AFG+10] resulting in a single relaxed R1CS instance-witness pair. Secondly, we
design a SNARK proof for the folded relaxed R1CS language by starting from
Groth16 system [Gro16].

Concretely, first we propose a new scheme, FLIP that combines folding with
Inner Pairing Product Arguments (IPP). We first commit to the instance-witness
pairs using a two-tiered commitment scheme similar to the ones proposed by
[BMM+21, LMR19, GMN22b].

The construction is based on the folding techniques in Nova [KST22] for
relaxed R1CS instances in order to fold k instances. Our construction builds on
the fact that at the end of an IPP, if the input is a committed vector of group
elements, the result is a linear combination with coefficients that have tensor
structure. With this idea, we view IPP as a derandomization strategy for folding:
at the end, instead of a fully random linear combination, the randomness has
tensor structure. We think this point of view might be useful in other settings.

We show how the “flipping” of all k instances can be done in log k rounds and
O(log k) communication (without counting the communication of the statement)
by using Inner-Pairing Product techniques [BMM+21, BMM+21], which build
on Bulletproofs [BBB+18, BCC+16] and two-tiered commitments.

For the generalization of Groth16, the main idea is that although the setup is
non-universal, what makes it circuit specific is the way to prove linear relations,
so there is hope to design a single proof system for relaxed R1CS relations with
the same matrices A,B,C. Our construction shows that this is possible without
increasing the communication complexity.

Our construction results in massive savings in prover computation costs com-
pared to simply applying Groth16 and SnarkPack combination. The folding step
for k instance-witness pairs has roughly the same cost as applying SnarkPack
to k distinct proofs. A prover has to commit to k R1CS instances and then
fold them, while in SnarkPack the prover computes and commits to k Groth16
proofs and aggregates them (similarly to folding). Then, there is one Groth16
proof to run on the final folded statement (the size of the final statement is the
same as the size of each original statements). This avoids the prover to compute
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k − 1 extra Groth16 proofs, saving on FFTs and multi-exponentiations (around
7 FFTs, and 3 multiexponentiations in G1 and 1 multiexponentiation in G2 per
statement). For concrete values k = 210 and R1CS for circuits of size 216, we
have estimated 210s overhead for computing the k − 1 proofs in SnarkPack in
[ark19] library.

Remark that our approach, as opposed to Nova folding [KST22], does not
need to embed verification of correct folding in the final circuit to be proven via
a SNARK, which is an important overhead in Nova, as this involves to compile
and prove in circuit operations that are not SNARK-friendly, such as hashing.
Also, we do not require cycles of curves, as in our last proving step, one has to
show that the committed values satisfy a relaxed R1CS relation and this is done
over the same curve.

1.3 Related works

Other techniques that aim at scaling SNARKs in the context of multi-instances
proofs have been proposed in the recent years. These are great advancements
into the research area, but very different in the setting they address or the
improvement features they achieve to our result.

SnarkPack [GMN22b], as discussed previously is an aggregation scheme, that
is designed to work externally of the SNARK proof generation, so the main
advantage of SnarkPack offers is that aggregation does not require to know
the original witnesses, but just take valid (or invalid) proofs and “pack” them
together into a final proof to save on communication and verifier computation.
Our advantage leverages the fact that in our scenario a single prover is computing
all proofs, while in SnarkPack prover does not have to access the witnesses, but
only behaves as a pot-proving aggregation node.

SnarkFold [LGZX23] is a very recent proof aggregation scheme that uses
recursive proof composition to aggregate Groth16 proofs. This involves some
recursion for proving that prior statements were correctly folded together and
then generate the new proof. Such techniques allow to reduce the aggregated
proof size and verification time, but at a high overhead for the prover that has
to prove a recursive circuit that implement the verification of folding in order to
save this computation on the verifier side.

Other schemes using folding for recursion, such as Supernova [KS22] and Hy-
pernova [KS23] are recent generalizations of Nova. The first introduces a folding
scheme that can handle multiple relations at once, while the latter constructs
one that can handle arithmetizations with custom gates and lookup arguments.
Protostar [BC23] achieves a combination of the previous two and Protogalaxy
[EG23] serves as a more efficient version of the previous one by closely examining
the trade-offs in prover, verifier and decider complexity when folding different
amounts of instances in each step. Although recursion can achieve proof aggre-
gation, this paper takes a simpler approach to tackle the problem.
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1.4 Application

Filecoin proof-of-space blockchain. Filecoin network is currently the biggest
SNARK consumer. It generates a large number of proofs each day: approximately
500,000 Groth16 proofs, representing 15 PiB of storage, that are aggregated in
batches using SnarkPack.

Filecoin protocol [Lab18] is a descentralized storage network based on incen-
tives, where storage providers have to prove they have encoded some data and
they allocate space on their disk in order to win rewards. To accomplish this,
storage providers need to prove they encoded each unit of storage (a partition of
32 GiB) using a complex encoding function, prove this initial computation and
then show the persistence of the storage over time by answering queries on the
encoded storage.

The specificity of Filecoin provers is that they generate all the proofs them-
selves and have access to all the statements and witnesses beforehand. Snark-
Pack, the solution used today in the Filecoin protocol, does not exploit this
fact, and uses techniques that allow to aggregate proofs potentially created by
different provers.

Our solution allows to save in cost generation for Filecoin proofs, leading
to a more efficient storage provider (prover) and a reduction in the fees spent
in the storage onboarding. A storage provider in Filecoin can simply save on
proof generation as follows: they first encode the units of storage to onboard,
generating the instance-witness pairs to be proven and then use our FLIP to
fold the pairs and finally prove one single instance. This removes the need of
computing many different proofs before the aggregation time.

Moreover, our work can unlock more interesting applications such as “Proving
as a Service” nodes in the network, that allow users with low-computational
resources to onboard storage, by delegating the proving part to this external
Prover nodes. This is a very appealing scenario, since today, storage providers
in Filecoin have to purchase extra specialized hardware in order to generate the
proofs for the storage. Removing such requirements from the storage providers
by outsourcing the proving to a specialized entity can make storage onboarding
more accessible and allow for further network growth.

2 Preliminaries

Bilinear Groups. A bilinear group is given by a description gk = (p,G1,G2,GT ,
P1,P2) such that

– p is prime, so Zp = F is a field.
– G1,G2,GT are cyclic groups of prime order p.
– Elements of these groups are sometimes given in implicit notation, i.e. [a]1 =
aP1, [a]2 = aP2 and [a]T = ae(P1,P2).

– e : G1 × G2 → GT is a bilinear map (pairing), meaning that ∀a, b ∈ Zp,
e([a]1, [b]2) := [ab]T .

– Membership in G1,G2,GT can be efficiently decided, group operations and
the pairing e(·, ·) are efficiently computable, and it is assumed that there is
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no efficient algorithm to compute an isomorphism between G1 and G2, and
the descriptions of the groups and group elements each have linear size.

Polynomial-Time Algorithms. Unless otherwise specified, all the algorithms de-
fined throughout this work are assumed to be probabilistic Turing machines with
running time bounded by a polynomial in their input size, where the expecta-
tion is taken over the random coins of the algorithm - i.e., PPT . We denote the
computational security parameter with λ ∈ N.

2.1 Algebraic Group Model

The Algebraic Group Model (AGM), [FKL18] is an idealized model that captures
the assumption that it is enough to prove security against adversaries that are
algebraic, i.e. adversaries that output only group elements that are computed as
a linear combination of previously seen group elements. Stronger models which
give the adversary the additional ability to sample elements obliviously in the
group [LPS23] will not be considered for simplicity.

In an algebraic security game Ggk, the parameters are set to a fixed group
description, in this case an asymmetric bilinear group gk of order p. Adversaries
are assumed to be algebraic:
– adversaries take as input the group description gk, a string of group elements

σ (where each element is in one of the groups Gs, s ∈ {1, 2, T}), and other
inputs that are independent from all group elements;

– for each element Z in Gs that the adversary outputs, it must also provide a
vector z of coefficients in F that explains Z with the valid operations in gk in
terms of σ, i.e. if Z ∈ G1, Z should be a linear combination of elements of G1

with coefficients z, if Z ∈ G2, Z should be a linear combination of elements
of G2 with coefficients z or if Z ∈ GT , it should be a linear combination with
coefficients z of the inputs in GT and the result of pairing any input of G1

with an input of G2.

2.2 Assumptions

Definition 1. For a fixed integer q, the q-DLOG assumption holds if for every
polynomial time adversary, the following probability is negligible in λ:

Pr
[
gk← G(1λ), x← Z∗

p : x← A
(
gk, {[xi]1, [xi]2}qi=1

)]
.

We recall the following definition:

Definition 2. ([MRV16]) Let Dk be a distribution over vectors y = (y0, . . . , yk−1) ∈
Fk. The Dk-Kernel Matrix Diffie-Hellman Assumption holds in G2 if the follow-
ing probability is negligible in λ:

Pr

[
gk← G(1λ)
y← Dk

, ([w0]1, . . . , [wk−1]1)← A (gk, [y]2) :
∑k−1
i=0 e([wi]1, [yi]2) = [0]T

]
.
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For several distributions Dk, this assumption directly allows to build binding
two-tiered commitments [AFG+10], i.e. commitments in GT to commitments in
G1 that can be used with inner pairing product arguments. However, we want
to use two-tiered commitments in a context where the adversary has vector y
in both source groups. In this case, such a commitment is no longer binding,
i.e. the previous assumption does not hold. For example, taking k = 2, given
{[y0]1, [y1]1, [y0]2, [y1]2}, set [w0]1 = −[y1]1, and [w1]1 = [y0]1, then:

e([w0]1, [y0]2) + e([w1]1, [y1]2) = [0]T .

A standard solution is to use two different vector of commitment keys y and
y′ but this implies doubling the protocol communication. Instead, inspired on
[ABST22], we propose the following assumption:

Definition 3. Let Dk be a distribution over vectors y = (y0, . . . , yk−1) ∈ Fk and
Dn be a distribution over vectors h = (h1, . . . , hn) ∈ Fn. The (Dk,Dn)- Kernel
Diffie-Hellman Assumption with Opening states that the following probability is
negligible:

Pr

[
(c1, . . . , ck)← A

(
gk, {[y]1, [y]2}

)
ci ∈ Fn, [wi]1 = ⟨ci, [h]1⟩

:
∑k−1
i=0 e([wi]1, [yi]2) = [0]T

]
.

The assumption states that it is hard find a vector of group elements w in the
kernel of y together with their openings, i.e. together with an algebraic represen-
tation of each wi with respect to some other commitment key h, even when y is
given in both groups. It is trivially true in the Algebraic Group Model [FKL18]
for most standard distributions (Dk,Dn) in which elements y, h are chosen inde-
pendently. In our final construction y are the powers of some trapdoor element,
and h are the Lagrange polynomial commitments evaluated at some other trap-
door element chosen independently. The assumption is useful in the context of
two-tiered commitments since it implies that if it is possible to extract the open-
ings of commitments in group G1 with respect to a commitment key [h]1, then
the commitments with respect to key [y]2 will be binding even if [y]1 is available
to the committer.

2.3 Commitment Schemes

Definition 4. A commitment scheme is a tuple of algorithms (SetupCom,Com,
VerCom) that work as follows:
– SetupCom

(
1λ

)
→ ck takes as input the security parameter in unary and

returns the commitment key ck, and descriptions of the input space D, com-
mitment space C and opening space O.

– Com(ck, v) → (c, o) takes the commitment key ck and a value v ∈ D, and
outputs a commitment c and an opening o.

– VerCom(ck, c, v, o) → b takes as input a commitment c, a value v and an
opening o, and accepts (b = 1) or rejects (b = 0).
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A commitment scheme should satisfy the correctness and binding properties,
and often they also satisfies a hiding property.
Correctness. For all λ ∈ N and any input v ∈ D we have:

Pr
[
ck← Setup

(
1λ

)
, (c, o)← Com(ck, v) : VerCom(ck, c, v, o) = 1

]
= 1

Binding. For every polynomial-time adversary A, the following probability is
negligible in the security parameter

Pr

[
v ̸= v′ ∧ VerCom(ck, c, v, o) = 1

ck← Setup
(
1λ

)
, (c, v, o, v′, o′)← A(ck) ;VerCom (ck, c, v′, o′) = 1

]
.

Hiding. For ck← Setup
(
1λ

)
and ∀v, v′ ∈ D, the following two distributions are

statistically close:

Com(ck, v) ≈ Com (ck, v′) .

2.4 Non-Interactive Arguments

A universal relation R is a set of triples (R,ϕ,w) where R is a relation, ϕ ∈ Dϕ
is called the instance (or input), w ∈ Dw the witness, and Dϕ,Dw are domains
that may depend on R. RN is the subset of triples (R,ϕ,w) in R such that R
has size at most N , for some size bound N ∈ N. On input 1λ, N , the relation
generator RG returns a relation R ∈ RN and some auxiliary input aux that will
be given to the adversary.

A (publicly verifiable) non-interactive argument for R is a quadruple of prob-
abilistic polynomial algorithms (Setup,Prove,Verify,Sim) such that:
– (R, srs, τ)← Setup(1λ, N) : On input the security parameter in unary λ, the

relation generator RG returns a relation R ∈ RN and a structured reference
string srs, together with a set of trapdoors τ and an auxiliary output aux.
The verifier has access to a subset of the structured reference string, srsV.

– π ← Prove(R, srs, ϕ, w) : On input a common reference string srs and (ϕ,w) ∈
R, the prover algorithm returns a proof π.

– 0/1← Verify(R, srsV, ϕ, π) : The verification algorithm takes as input a com-
mon reference string srsV, a statement ϕ and an argument π and returns 0
(reject) or 1 (accept).

– π ← Sim(R, τ, ϕ) : The simulator takes as input the simulation trapdoor and
statement ϕ and returns an argument π.

A non-interactive argument of knowledge for R should satisfy perfect complete-
ness, computational knowledge soundness.

Perfect completeness. For all λ,N ∈ N, R ∈ RN , (ϕ,w) ∈ R

Pr[(R, srs, τ)← Setup(1λ, N);π ← Prove(R, srs, ϕ, w) | Verify(R, srsV , ϕ, π) = 1] = 1.
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Computational knowledge soundness. We say (Setup,Prove,Verify,Sim) is
an argument of knowledge if for all non-uniform polynomial time adversaries A
there exists a non-uniform polynomial time extractor XA, such that the following
probability is negligible in the security parameter:

Pr

[
(R, aux, srs, τ)← Setup(1λ, N);

((ϕ, π);w)← (A∥XA) (R, aux, srs);

∣∣∣∣ (ϕ,w) /∈ R and Verify(R, srsV, ϕ, π) = 1

]
For some of the arguments considered in this paper, we will also prove the
property of zero-knowledge.

Perfect zero-knowledge. (Setup,Prove,Verify,Sim) is perfect zero-knowledge
if for all λ,N ∈ N and all adversaries A, (ϕ,w) ∈ R,

Pr

[
(R, aux, srs, τ)← Setup(1λ, N);

π ← Prove(R, srs, ϕ, w);

∣∣∣∣ A(R, aux, srs, τ, π) = 1

]
= Pr

[
(R, aux, srs, τ)← Setup(1λ, N);

π ← Sim(R, srs, ϕ);

∣∣∣∣ A(R, aux, srs, τ, π) = 1

]

A non-interactive argument for R is universal if the setup runs in two phases,
one that defines the set of trapdoors τ and which is common to any relation
R ∈ RN , and another one which does not use τ and which derives a structured
reference string specific to R.

2.5 Folding Schemes

Given a number M of instance/witness pairs (ϕi, wi) that satisfy some NP rela-
tion, a folding scheme [KST22] outputs a new instance/witness pair (ϕ,w) that
also satisfies the NP relation, along with a proof π that the new instance ϕ
is indeed an aggregated or “folded” statement derived from the statements ϕi.
Folding schemes have also been termed as reductions of knowledge [KP23], in
the sense that knowledge of a witness for u implies knowledge of the k-witnesses
that are folded.

The definition is adapted from [KST22] by extending it to folding multiple
statements. Since our folding constructions are for a single structure, i.e. a single
type of statement, we omit any reference to the structure type.

Definition 5 (M-Folding scheme). Consider a relation R over public param-
eters, structure, instance, and witness tuples. A folding scheme for R consists of
a PPT generator algorithm G, a deterministic encoder algorithm K, and a pair of
interactive PPT algorithms P and V, denoting prover and verifier, respectively,
that behave as follows:
– G(1λ,M) → pp : On input security parameter λ, and a bound M ∈ poly(λ)

this algorithm samples public parameters pp.
– K(pp) → (pk, vk) : On input pp, this algorithm outputs a prover key pk and

a verifier key vk;
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– We write

⟨P,V⟩ (pk, vk, (ϕ1, w1), . . . , (ϕm, wm))

to express the interaction between the prover and the verifier, where, for some
m ≤ M , the prover takes as input m instance-witness pairs (pp, ϕ1, w1) ∈
R, . . . , (pp, ϕm, wm) ∈ R and the prover’s key pk, and the verifier takes as
input m instance pairs ϕ1, . . . , ϕm and the verifier’s key vk. The interaction
is treated as a function of the inputs that returns a pair (ϕ,w).

A folding scheme should satisfy the following properties:

1. Completeness: for all algorithms A,

Pr


pp← G(1λ,M),
(ϕ1, w1), . . . , (ϕm, wm)← A(pp)

(pp, ϕ, w) ∈ R ∀i, i ∈ [m], (pp, ϕi, wi) ∈ R, m ≤M
(pk, vk)← K(pp),
(ϕ,w)← ⟨P,V⟩ (pk, vk, (ϕ1, w1), . . . , (ϕm, wm))

 = 1.

2. Knowledge soundness: there exists a PPT extractor E such that for all
expected polynomial time adversaries P∗

Pr

 pp← G(1λ,M),
∀i, i ∈ [m] (ϕ1, . . . , ϕm, st)← P∗(pp, r),m ≤M

(pp, ϕi, wi) ∈ R (w1, . . . , wm)← E(pp, r)

 ≥
Pr


pp← G(1λ,M),

(pp, ϕ, w) ∈ R (ϕ1, . . . , ϕm, st)← P∗(pp, r),m ≤M
(pk, vk)← K(pp)
(ϕ,w)← ⟨P∗,V∗⟩ (ϕ1, . . . , ϕm, st)

− negl(λ)

,

where r denotes an arbitrary long random tape.
Our folding schemes will be presented in interactive form following the defini-

tion presented above, but they are all public coin protocols that can be compiled
to a non-interactive variant through the Fiat-Shamir heuristic.

2.6 Folding R1CS Instances

Given three matricesA,B,C ∈ Fn×(m+1) that define an R1CS relation, NOVA [KST22]
introduces a generalization, called relaxed R1CS. The interest of this new con-
straint system is that it is compatible with folding.

The relaxed R1CS language parameterized by these matrices and is defined
as follows:

Lrelaxed
A,B,C =

{
(u,x, e) ∈ F× Fl × Fn | ∃w ∈ Fm−l s.t.

z =

u
x
w

 ∧ Az ◦Bz = uCz+ e
}

11



This corresponds to the standard R1CS language when u = 1 and e = 0. As
several relations are folded together, the values u and e are constructed from
random linear combinations of some cross terms. They can be viewed as some
kind of “error terms”.

The authors of NOVA also modify the language to be compatible with commit
and prove techniques and define Committed Relaxed R1CS. We define it in the
source group G1 of some pairing friendly elliptic curve, as this is where we will
be using this scheme. The language is the following:

Lc-relaxed
ck,c̃k,A,B,C

=
{
(u,x, [e]1, [w]1) ∈ F× Fl × C × C | ∃(w, e) ∈ Fm−l × Fn s.t.

[w]1 = Com(ck,w) ∧ [e]1 = C̃om(c̃k, e) ∧
((u,x, e),w) ∈ Rrelaxed

A,B,C

}
,

where we denote with C, respectively , C̃ the commitment space for two additively
homomorphic commitment schemes with, respectively, key ck and key c̃k.

For completeness, we recall NOVA’s 2-folding scheme for the latter relation in
Fig. 1. In Section 3, we will implicitly be running the 2-folding protocol through
an Inner Pairing Product Argument.

i ∈ {1, 2}: ϕi = (xi, ui, [ei]1, [wi]1), wϕi = (wi, ei)

P : (ϕi, wϕi), zi := (ui,xi,wi) V : ϕi

[t]1 = C̃om(c̃k, t) [t]1

χ χ← F

e = e1 + χt+ χ2e2 [e]1 = [e1]1 + χ[t]1 + χ2[e2]1

w = w1 + χw2 [w]1 = [w1]1 + χ[w2]1

u = u1 + χu2

x = x1 + χx2

wϕ = (w, e) ϕ = (u,x, [e]1, [w]1)

Fig. 1: Public coin protocol for folding committed relaxed R1CS statements
[KST22], where t = Az1 ◦Bz2 +Az2 ◦Bz1 − u1Cz2 − u2Cz1.

If commitments [w]1 and [e]1 are randomized, and the randomness space FR,
FR̃, then relation witness should include this randomness. That is, the relation
should be defined as:

Lc-relaxed
ck,c̃k,A,B,C

=
{
(u,x, [e]1, [w]1) ∈ F× Fl×C×C̃ | ∃(w, e, rw, re) ∈ Fm−l×Fn×FR×FR̃

s.t. [w]1 = Com(ck,w; rw) ∧ [e]1 = C̃om(c̃k, e; re) ∧
(u,x, e,w) ∈ Rrelaxed

A,B,C

}
,

12



but statements are folded analogously and the randomness necessary to open
the folded commitments is the same linear combination of the randomness of the
two statements as for the witness.

3 FLIP: Folding R1CS Instances via IPP

In this section we introduce FLIP, a new folding protocol that allows to aggregate
k committed R1CS statements into a single committed relaxed R1CS statement
that can later be proven very efficiently. Given k initial R1CS statements and
their committed witnesses (xi, [wi]1)0≤i≤k−1, with [wi]1 = Com(ck,wi), FLIP
generates one final tuple (u,x, [e]1, [w]1) ∈ Lc-relaxed

ck,c̃k,A,B,C
for the corresponding

committed relaxed R1CS language and a proof that the initial statements where
folded correctly into the final statement.

In more detail, our setting is the following: a prover wants to prove k dif-
ferent R1CS statements expressed as committed relaxed R1CS statements, or
equivalently, it wants to prove that, for i = 0, . . . , k − 1,

(ui,xi, [ei]1, [wi]1) ∈ Lc-relaxed
ck,c̃k,A,B,C

,

and [ei]1 = [0]1, ui = 1 for the same matrices A,B,C.
We show how this can be done in log2 k rounds and O(log2 k) communica-

tion plus the cost of communicating the k public inputs by using Inner-Pairing
Product (IPP) techniques [BMM+21], which build on Bulletproofs [BBB+18,
BCC+16] and two-tiered commitments [AFG+10]. We assume without loss of
generality that k = 2µ for some µ ∈ N.

At the end of an inner product argument, given some committed vector of
group elements [v]1 ∈ Gk1 , the result is a single group element [v̂]1 ∈ G1 such

that v̂ = ⟨v,⊗log2 k
i=1 (1, αi)⟩, where αi are the verifier challenges. That is, it is a

randomized linear combination of the coordinates of v, where the randomness
has tensor structure. We apply this observation and use the homomorphic com-
mitments to end up with a single folded instance that is a R1CS relaxed instance
where the randomness used to combine the statements has tensor structure. The
verifier reads all the public inputs, but otherwise the communication is sublinear
in k.

The proof has the usual recursive structure. In each round, ν statements

(ui,xi, [ei]1, [wi]1) ∈ Lc-relaxed
ck,c̃k,A,B,C

,

are reduced to new ν/2 statements for the same language. At the beginning of
the round prover and verifier both have commitments:

[W ]T =

ν−1∑
i=0

e([wi]1, [qi]2),

and

[E]T =

ν−1∑
i=0

e([ei]1, [yi]2),

13



and field elements u0, . . . , uν−1, and x0, . . . ,xν−1. The values [W ]T , [E]T are tar-
get group commitments under some keys [q]2, [y]2 which are part of the prover
key for that round, pkν . In the first round, ν = k and the verifier should check
that [E]T = [0]T , and ui = 1, for all i = 0, . . . , k − 1, and the keys [q]2, [y]2 are
fixed (and are not necessarily distinct).

Then, interactively, the statement is reduced to proving that, given new pub-

lic inputs {u′i,x′
i}
ν/2−1
i=0 , and commitments

[W ′]T =

ν/2−1∑
i=0

e([w′
i]1, [q

′
i]2)

[E′]T =

ν/2−1∑
i=0

e([e′i]1, [y
′
i]2)

in the target group under keys [q′]2, [y
′]2, it holds that for all {u′i,x′

i, [e
′
i]1, [w

′
i]1}

ν/2−1
i=0

are satisfying instances of the same committed relaxed R1CS language.
In the last round, the prover opens the final [W ′]T and [E′]T to some [w]1, [e]1,

reducing the initial k claims about membership in R1CS to a single claim of
membership in committed relaxed R1CS. We prove that our construction is a
k-folding scheme, which means that, given as input the witness of the folded
instance, i.e. an opening of [w]1, [e]1 with respect to ck, c̃k, we can extract the
witness of the original instances. In reality, the folding scheme will be used in
combination with a proof system to prove the last step and the extractability of
the witness can be derived from the knowledge soundness of the proof system.

Achieving Logarithmic Verifier. In each round, the verifier has to additionally
check the correctness of the new halved commitment key. To avoid this linear
overhead for the verifier, we can choose a structured commitment key and del-
egate the proof of the derived commitment keys to the prover, a technique due
to Dory [Lee21], and also used in SnarkPack [GMN22a]. If the initial commit-
ment key is [y(k)]2 = {[yi]2}k−1

i=0 , for some y ← Z⋆p, then the final commitment

key [y(0)]2 can be checked in the last round by the verifier in an additional
constant-size proof. This is done by observing that [y(0)]2 is the commitment in
the second source group under the original key [y(k)]2 of a polynomial gα(X)
that has a logarithmic representation. Instead of calculating the commitment
himself, the verifier computes a random opening of this polynomial and checks
it against its supposed commitment [y(0)]2 and the evaluation proof sent by the
prover. This process will be done for both [y(0)]2 and [q(0)]2.

Technical Overview of FLIP: The protocol is described in Fig. 3. We denote
[ELR]T , the commitment to the left part of the vector of commitments under the

right part of the key in the second group, i.e. [ELR]T =
∑ν/2−1
i=0 e([ei]1, [yi+ν/2]2).

Similarly for [ERL]T , [WLR]T , [WRL]T .
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pk =
(
ck, c̃k, {[yi]2}k−1

i=0 , [y]1

)
, vk = ([y]2)

P : {αi}µi=1, [q
(0), y(0)]2, [W ]T , [E]T , pk V : {αi}µi=1, vk

g′α(X) =

µ∏
i=1

(
1 + α−1

µ+1−iX
2i−1

)
gα(X) =

µ∏
i=1

(
1 + α−2

µ+1−iX
2i−1

)
[q(0)]2 = [g′(q, α1, . . . , αµ)]2

[y(0)]2 = [g(y, α1, . . . , αµ)]2

[W ]T = e([w]1, [q
(0)]2)

[E]T = e([e]1, [y
(0)]2)

[w]1, [e]1, [q
(0), y(0)]2

r, ξ ← F,
u = gα(r), u

′ = g′α(r)

r, ξ

u = gα(r), u
′ = g′α(r)

π(X) =
gα(X)− u
X − r + ξ

g′α(X)− u′

X − r

[π]2 := [π(y)]2 =

k−1∑
i=1

πi[y
i]2

[π]2

u′′ = u+ ξu′

[ψ]2 = [y(0)] + ξ[q(0)]

e([1]1, [ψ]2 − [u′′]2)

?
= e([y]1 − [r]1, [π]2)

e([w]1, [q
(0)]2)

?
= [W ]T

e([e]1, [y
(0)]2)

?
= [E]T

Fig. 2: Last round of the FLIP protocol. It proves the statement [y(0)]2 = [gα(y)]2,
[q(0)]2 = [g′α(y)]2 and that the openings of [W ]T , [E]T are correct. If {[yi]1}k−1

i=0

is included in the prover key pk, the proof of correct opening can be computed
in G1 to save prover work.
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pkν = (c̃k, [y]2 ∈ Gν2 , [q]2 ∈ Gν2)

Φ := ([W ]T , [E]T , {(ui,xi)}ν−1
i=0 ), wΦ := {(([ei]1, [wi]1); (wi, ei, rwi

, rei))}
ν−1
i=0

where [W ]T =
∑ν−1
i=0 e([wi]1, [qi]2), [E]T =

∑ν−1
i=0 e([ei]1, [yi]2), [wi]1 =

Com(ck,wi; rwi
) and [ei]1 = C̃om(c̃k, ei; rei).

P : (Φ,wΦ), pkν V : Φ, vkν

zi = (ui,x
⊤
i ,w

⊤
i )⊤

ti = Azi ◦Bzi+ν/2 +Azi+ν/2 ◦Bzi

− uiCzi+ν/2 − ui+ν/2Czi

Compute:

[ti]1 = C̃om(c̃k, ti; rti), rti ← FR̃;

[TL]T =

ν/2−1∑
i=0

e([ti]1, [yi]2); [TR]T =

ν/2−1∑
i=0

e([tν/2+i]1, [yν/2+i]2)

[ELR]T =

ν/2−1∑
i=0

e([ei]1, [yν/2+i]2); [ERL]T =

ν/2−1∑
i=0

e([eν/2+i]1, [yi]2)

[WLR]T =

ν/2−1∑
i=0

e([wi]1, [qν/2+i]2); [WRL]T =

ν/2−1∑
i=0

e([wν/2+i]1, [qi]2)

C = {[TL, TR, ELR, ERL,WLR,WRL]T }

C

α← F

Compute: Compute:

[E′]T = [E]T + α−2[ELR]T+ [E′]T = [E]T + α−2[ELR]T+

α[TL]T + α−1[TR]T + α2[ERL] α[TL]T + α−1[TR]T + α2[ERL]

[W ′]T = [W ]T+ [W ′]T = [W ]T+

α−1[WLR]T + α[WRL]T α−1[WLR]T + α[WRL]T

x′
i = xi + αxi+ν/2 x′

i = xi + αxi+ν/2

u′
i = ui + αui+ν/2 u′

i = ui + αui+ν/2

w′
i = wi + αwi+ν/2, rw′

i
= rwi + αrwi+ν/2

e′
i = ei + αti + α2ei+ν/2, re′i = rei + αrti + α2rei+ν/2

[e′i]1 = [ei]1 + α[t′i]1 + α2[ei+ν/2]1

[w′
i]1 = [wi]1 + α[wi+ν/2]1

[y′i]2 = [yi]2 + α−2[yi+ν/2−1]2

[q′i]2 = [qi]2 + α−1[qi+ν/2−1]2

Set: Set:

Φ′ = ([W ′]T , [E
′]T , {(u′

i,x
′
i)}

ν/2−1
i=0 ) Φ′ = ([W ′]T , [E

′]T

wΦ′ =
{
(([e′i]1, [w

′
i]1); (w

′
i, e

′
i, rw′

i
, re′i))

}
{(u′

i,x
′
i)}

ν/2−1
i=0

pkν/2 = (c̃k, [y′]2 ∈ Gν/2
2 , [q′]2 ∈ Gν/2

2 )

Output: Output:

(Φ′, wΦ′), pkν/2 Φ′

Fig. 3: FLIP: Public coin protocol for folding committed relaxed R1CS statements
through inner pairing product.



We start from two copies of one initial key [y(k)]2 = ([1]2, [y]2, [y
2]2, . . . ,

[yk−1]2) to commit to Wi on one hand, and Ei on the other. At each step of the
protocol one of the copies is folded by linearly combining the two halves with
α(−1) for the Wi’s and with α(−2) for the E′

is. This choice is justified by the
folding formulae detailed in Fig. 1, where ei, wi are combined differently

Denote the keys generated in the final round of folding k = 2µ instances
as [q(0)]2, [y

(0)]2. Then it holds that [q(0)]2 =< [y(k)]2, j > and [y(k)]2 =<
[y(k)]2, s >, where

j = ⊗kj=1(1, α
−1
i ).

s = ⊗kj=1(1, α
−2
i ).

The last round of the protocol, which proves the correctness of the folded
keys, is described in Fig. 2. Define the polynomials g(X,α1, . . . , αµ) = gα(X) =∏µ
i=1

(
1 + α−2

µ+1−iX
2i−1

)
. The vector of coefficients of g(X) is s. Then the fi-

nal key [y(0)]2 is the commitment to the s under the original key, i.e. [y(0)]2 =

Comck2(s), for ck2 = {[y(k)0 ]2, . . . , [y
(k)
k−1]2}. Because g can be evaluated at any

point r ∈ F in logarithmic time by the verifier, the prover can send [y(0)]2, ask
for an evaluation point and respond with a KZG evaluation proof [π]2. The
verifier evaluates g(r, α1, . . . , αµ) and checks it against the evaluation proof and
the commitment to get convinced of the correctness of [y(0)]2 in logarithmic time.

In more detail, write gα(X) = g(X,α1, . . . , αµ), the prover sends [gα(y)]2 =
[y(0)]2 and the verifier responds with r ∈ F. Both evaluate [u]2 = [gα(r)]2, and
the prover demonstrates that [y(0)]2, the commitment to gα, correctly opens
to u. The same thing applies for the polynomial g′(X,α1, . . . , αµ) = g′α(X) =∏µ
i=1

(
1 + α−1

µ+1−iX
2i−1

)
and key [q(0)]2. Because the initial keys are powers of

the same trapdoor, the KZG evaluation proofs can be batched.

Completeness: If we remove the second layer of commitments and observe only
the commitments that the prover is making in group G1, the prover is actually
folding k R1CS statements in parallel (with one challenge per level), building a
tree of folded statements so that the final folded statement is the root of a tree.
Completeness, therefore, follows from the completeness of the folding strategy
in NOVA, and the fact that the commitments are homomorphic.

Knowledge Soundness: (Intuition) With the same analysis as IPP Argu-
ments [BMM+21], which is similar to [BBB+18, BCC+16], we can show that
if the commitment under the key ck2 = [y(k)]2 is binding, then we can extract
commitments to [w1]1, . . . , [wk]1 such that the final value [w]1,[e]1,u, is a correct
folding of these commitments according to the folding strategy for committed re-
laxed R1CS described in 2.6. Then it follows from the results of NOVA [KST22],
that if [w]1,[e]1,u are a valid committed relaxed R1CS statement, then so are
the original statements.

In practice, the key that we might want to use is the result of some already
existing setup ceremony so that the same key is given in both source groups,
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ck2 = ([y(k)]1, [y
(k)]2). Unfortunately, this implies that the key [y(k)]2 is not

binding, or in other words it is possible to find non-trivial relations. For exam-

ple, it is easy to find [a]1, [b]1 such that e([a]1, [y
(k)
i ]2) = e([b]1, [y

(k)
j ]2) choosing

[a]1 = [y
(k)
j ]2, [b]1 = [y

(k)
i ]2. To solve this issue, SnarkPack proposes to uses a

pair of independent commitment keys ck2, ck
′
2 in G2. This solution is relatively

expensive, as essentially the protocol is executed twice. Instead, we use a single
key, following an idea of aPlonk [ABST22]. More specifically, we can avoid using
two keys because we are always committing in the target group to extractable
commitments in G1 under keys ck, c̃k. If ck, c̃k are independently chosen of y,
the target group commitment is still binding. The intuition is that the only way
to find non-trivial pairing product relations involves creating group elements in
G1 that are in the span of [y(k)]1, but if, as part of the proof we prove that these
commitments are extractable with respect to other, independently chosen keys,
it is no longer possible to find these relations. This is captured by the Algebraic
(Dk,Dm)- Kernel Matrix Diffie-Hellman Assumption.

Our protocol in this section assumes the commitments are algebraic, that
is commitments where the keys are vectors of group elements in G1, the com-
mitments and the randomness are in F, and the commitment is of the form

Com(ck,w; rw) = ⟨(w||rw), ck⟩ , C̃om(c̃k, e; re) = ⟨(e||re), c̃k⟩ (any Pedersen type

commitment), for some distributions of the keys ck ← Dm−l+R, c̃k ← D̃n+R̃.
Then, knowledge soundness holds under (Dk,Dm−l+R)- Kernel Matrix Diffie-

Hellman Assumption with Opening and the (Dk, D̃n+R̃)- Kernel Matrix Diffie-

Hellman Assumption with Opening. For any ck, c̃k which satisfies this assump-
tion the protocol is sound. However, our version of Groth16 for committed relaxed
instances (Section 4), requires specific distributions for ck and c̃k.

Theorem 1. If ck← Dm−l+R, c̃k← D̃n+R̃, the protocol described in Fig. (2,3)
is a k-folding scheme with perfect completeness and knowledge soundness under
the (Dk,Dm−l+R)- Kernel Matrix Diffie-Hellman Assumption with Opening and

the (Dk, D̃n+R̃)- Kernel Matrix Diffie-Hellman Assumption with Opening.

Proof. For simplicity we are going to prove the theorem for k = 2, but the gener-
alization to arbitrary length is straightforward. Also, we will present separately
the extraction of [w]1 and [e]1 values through rewinding, but in fact extraction
can be done simultaneously by rewinding as much as the most demanding case
requires.

Assume the verifier interacts with the prover and constructs two final target
group commitments [W ′]T , [E

′]T and that the final keys pass the verification,
i.e.

[y(0)]2 = [y1]2 + α−2[y2]2, [q(0)]2 = [q1]2 + α−1[q2]2 (1)

We show first how to extract [w]1. By construction, we have that,

[W ′]T = [W ]T + α−1[WLR]T + α[WRL]T (2)
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The prover also proves that [W ′]T opens to [w′]1 under the correct final key
[q(0)]2, i.e.,

e([w′]1, [q
(0)]2) = [W ′]T . (3)

We will show that (1) [W ]T = e([δ1]1, [q1]2) + e([δ2]1, [q2]2) and (2) [w′]1 =
[δ1]1+α[δ2]1, that is, we will show that we can extract an opening of [W ]T under
the previous key and that the linear combination of the extracted opening gives
[w′]1 thus completing the proof.

From equations (1),(2),(3) we get that:

e([w′]1, [q1]2) + α−1e([w′]1, [q2]2) = [W ]T + α−1[WLR]T + α[WRL]T (4)

Rewinding the prover 4 times we get αi, [w
′
i]1 that satisfy equation (4). We

use 3 of them to find νi such that the following hold:

3∑
i=1

νiα
γ
i = 0, ∀γ ∈ {−1, 0, 1}

Now, linearly combining the equations (4) with these νi we get that:

[W ]T = e([β1]1, [q1]2) + e([β2]1, [q2]2) (5)

Similarly, by finding different νi, we get that:

[WLR]T = e([β3]1, [q1]2) + e([β4]1, [q2]2) (6)

[WRL]T = e([β5]1, [q1]2) + e([β6]1, [q2]2) (7)

Combining equations (4),(5),(6),(7) we get that the following holds for each
[w′]1 and corresponding α:

e([w′]1, [q1]2) + e(α−1[w′]1, [q2]2) =

e([β1]1 + α−1[β3]1 + α[β5]1, [q1]2)+

e([β2]1 + α−1[β4]1 + α[β6]1, [q2]2)

(8)

This means that the prover breaks the (Dk,Dm−l+R)- Kernel Diffie-Hellman
with Opening Assumption or the following equations hold for each [w′]1 and
corresponding α:

[w′]1 = [β1]1 + α−1[β3]1 + α[β5]1 (9)

[w′]1 = α[β2]1 + [β4]1 + α2[β6]1 (10)

From equations (9), (10) we have:

[β3]1 + α([β1]1 − [β4]1) + α2([β5]1 − [β2]1) + α3[β6]1 = 0 (11)

Because equation (11) holds for 4 αi, except with negligible probability, we
have that:
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[β3]1 = [β6]1 = 0, [β1]1 = [β4]1, [β5]1 = [β2]1 (12)

Finally, from equations (5),(9), (12), we have that:

[W ]T = e([β1]1, [q1]2) + e([β2]1, [q2]2), [w′]1 = [β1]1 + α[β2]1.

We move now to showing the case of [e]1.

Because of the construction, we have that,

[E′]T = [E]T + α−2[ELR]T + α[TL]T + α−1[TR]T + α2[ERL], (13)

where [E]T is the previous target group commitment. The prover also proves
that [E′]T opens to [e′]1 under the correct final key [y′]2, i.e.

e([e′]1, [y
(0)]2) = [E′]T . (14)

We will show that (1) [E]T = e([δ1]1, [y1]2) + e([δ2]1, [y2]2), (2) [TL]T =
e([δ3]1, [y1]2), (3) [TR]T = e([δ3]1, [y2]2) and (4) [e′]1 = [δ1]1 + α[δ3]1 + α2[δ2]1,
that is, we will show that we can extract an opening of [E]T under the previous
key, the same opening for [TL]T , [TR]T under each of the previous keys, and that
the linear combination of the extracted openings gives [e′]1, thus completing the
proof.

From equations (1),(13),(14) we get that:

e([e′]1, [y1]2) + α−2e([e′]1, [y2]2) = [E]T + α−2[ELR]T + α[TL]T + α−1[TR]T

+ α2[ERL] (15)

Rewinding the prover 7 times we get αi, [e
′
i]1 that satisfy equation (15). We

use 5 of them to find νi such that the following hold:

5∑
i=1

νi = 1,

5∑
i=1

νiα
γ
i = 0, ∀γ ∈ {−2,−1, 1, 2}

Now, linearly combining the equations (15) with these νi we get that:

[E]T = e([β1]1, [y1]2) + e([β2]1, [y2]2) (16)

Similarly, by finding different νi, we get that:

[ELR]T = e([β3]1, [y1]2) + e([β4]1, [y2]2) (17)

[TL]T = e([β5]1, [y1]2) + e([β6]1, [y2]2) (18)

[TR]T = e([β7]1, [y1]2) + e([β8]1, [y2]2) (19)
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[ERL]T = e([β9]1, [y1]2) + e([β10]1, [y2]2) (20)

Combining equations (15),(16),(17),(18),(19),(20), we get that the following
holds for each [e′]1 and corresponding α:

e([e′]1, [y1]2) + e(α−2[e′]1, [y2]2) =

e([β1]1 + α−2[β3]1 + α[β5]1 + α−1[β7]1 + α2[β9]1, [y1]2)+

e([β2]1 + α−2[β4]1 + α[β6]1 + α−1[β8]1 + α2[β10]1, [y2]2)

(21)

This means that either the prover breaks the (Dk, D̃n+R̃)- Kernel Diffie-
Hellman with Opening Assumption or the following equations hold for each [e′]1
and corresponding α:

[e′]1 = [β1]1 + α−2[β3]1 + α[β5]1 + α−1[β7]1 + α2[β9]1 (22)

[e′]1 = α2[β2]1 + [β4]1 + α3[β6]1 + α[β8]1 + α4[β10]1 (23)

From equations (22), (23), we have:

[β3]1 + α[β7]1 + α2([β1]1 − [β4]1) + α3([β5]1 − [β8]1)

+ α4([β9]1 − [β2]1)− α5[β6]1 − α6[β10]1 = 0 (24)

Because equation (24) holds for 7 αi, except with negligible probability, we
have that:

[β3]1 = [β6]1 = [β7]1 = [β10]1 = 0, [β1]1 = [β4]1, [β5]1 = [β8]1,

[β2]1 = [β9]1 (25)

Finally, from equations (16),(18), (19),(25) we have that:

[E]T = e([β1]1, [y1]2) + e([β2]1, [y2]2), [e′]1 = [β1]1 + α[β5]1 + α2[β2]1

[TL]T = e([β5]1, [y1]2) [TR] = e([β5]1, [y2]2)

thus concluding the proof.

4 Groth16 for Relaxed R1CS

Groth16 proves the satisfiability of a R1CS constraint system. It is well-known
for its short proof size and verifier efficiency, but its structured reference string
depends on the specific R1CS relation it proves. We propose a proof system to
prove relaxed R1CS instances stemming from the same R1CS instance, i.e. with
the same matrices A,B,C. The key insight for our new scheme is based on the
observation that the “non-universal” part of Groth16 are only the linear relations
defined by A,B,C.
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We also show how to achieve zero-knowledge. We note that the FLIP pro-
tocol presented in last section does not reveal more about the witness than the
commitments to [ei]1, [wi]1. If these are sufficiently randomized and hide the
witness, using our generalized Groth16 proof system on top will not reveal more
information, and the zero-knowledge property of the composition easily follows.

If gk = (p,G1,G2,GT ,P1,P2) is a bilinear group, and F a prime field of
cardinal p, we aim to design a generalization of Groth16 that allows to prove
membership in the following language:

Lc-relaxed
ck,c̃k,A,B,C

=
{
(u,x, [e]1, [w]1) ∈ F× Fl ×G1 ×G1 |

∃(w, e, rw, re) ∈ Fm−l × Fn × F× F s.t.

[w]1 = Comck(pp,w; rw) ∧ [e]1 = Comc̃k(pp, e; re) ∧
((u,x, e),w) ∈ Rrelaxed

A,B,C

}
,

for certain ck, c̃k. In Sec. 3, the key ck could any binding commitment key,
whereas here we choose:

ck = ([ℓl+1(x)/ρ]1, . . . , [ℓm(x)/ρ]1, [δ/ρ]1) ∈ Gm−l+1
1 ,

c̃k = ([ℓ0(x)/ψ]1, . . . , [ℓn−1(x)/ψ]1, [δ/ψ]1) ∈ Gn+1
1 ,

for some x, ρ, ψ ← Z∗
p, and where ℓi(X) is the ith Lagrange basis polynomial as-

sociated to some set H of size n and t(x) the corresponding vanishing polynomial.
We assume n ≥ m+1, and the matricesA,B,C are of dimension n×(m+1). The
language depends on the group key but we do not write this explicitly. The set
H is also the set that is used to define the polynomials {uj(x), vj(x), wj(x)}mj=0

in the setup of Groth16, which are the polynomials that interpolate the matrices
A,B,C column-wise. For efficiency considerations, H is usually chosen to be a
set of roots of unity.

The verification equation of our proof system is more complex than the orig-
inal Groth16, so there are also more possibilities for the adversary to random-
ize the proof and our scheme falls short of proving membership in Lc-relaxed

ck,c̃k,A,B,C

because [w]1, [e]1 may not be a valid commitment under, respectively, ck, c̃k.
In the honest case, for completeness, the prover will be proving membership
in Lc-relaxed

ck,c̃k,A,B,C
, but for knowledge soundness we will argue that the adversary

knows a witness for membership in the language:

Lc-relaxed
CK,C̃K,A,B,C

=
{
(u,x, [e]1, [w]1) ∈ F× Fl ×G1 ×G1 |

∃(w, e,Rw,Re) ∈ Fm−l × Fn × FD+4 × FD+4 s.t.

[w]1 = ComCK(pp,w;Rw) ∧ [e]1 = Com
C̃K

(pp, e;Re) ∧
((u,x, e),w) ∈ Rrelaxed

A,B,C

}
,

where

CK = (ck, [α]1, [δ]1, {[xi]1}Di=0), and C̃K = (c̃k, [α]1, [δ]1, {[xi]1}Di=0),
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for σj defined as specified in the structured reference string and where all trap-

doors are uniformly chosen in Z∗
p, and some bound D. The keys CK, C̃K can

easily be proven to result in binding commitments, so we can still argue that
given an adversary that computes a valid proof it is possible to extract a witness
for the relaxed (non-committed) R1CS Relation.

Our scheme assumes that the choice of x, δ, ψ, ρ is done before the committed
relaxed R1CS relation is defined, since the committed relation depends on ck, c̃k
that depends on these variables. However, this choice means that the commit-
ments [w]1, [e]1 are tailored to a specific circuit since the commitment keys are
circuit-specific. In particular, for example, this means we cannot prove that this
witness satisfies two different R1CS instances. We note that when u = 1 and
e = 0, the relaxed committed language is the language of commitments that open
to a valid R1CS witness, which is quite similar in functionality to commit-and-
prove (CaP) Groth16 as in LegoGroth16 [CFQ19]. However, the CaP formalism
is quite different and has potentially stronger properties since it allows to prove
many statements about a single commitment. This feature is not relevant in our
application scenario, and this is why we do not follow the CaP formalism and
we also find it acceptable to use circuit dependent keys.

We would like our new proof system to be combinable with the FLIP pro-
tocol. For this, we will assume that the relation generator also outputs aux-
iliary information aux =

{
{[yi]1, [yi]2}k−1

i=1

}
, which is given as input to the

adversary, and show that this not compromise security. Also, looking ahead,
we take into account how the structured reference string of our proof system
would need to be generated in a setup ceremony. As in [BGM17], it would make
sense to generate the setup in two phases, in the first phase sample x, α, β, φ
and

{
{[xi]1}Di=0, {[αxi]1, [βxi]1, [φxi]1}

n−1
i=0

}
and

{
{[xi]2}Di=0, [β]2, [φ]2

}
, for some

D ≥ 2n − 1, and in the second phase sample δ, ρ, ψ and all related values. The
value D = 2n − 1 is enough to generate the setup, but we study security also
when more powers of x are available. For this reason, although many of these
values are not used by an honest prover and they should not necessarily be
included in the SRS, these values are also given to the adversary.

The scheme is described in Fig. 4. The proof size is 3 group elements and
non-interactive, as in the original Groth16 scheme, except now the statement
includes two additional group elements [w]1, [e]1. Verification cost is 5 pairings,
l + 1 exponentiations in G1 and one exponentiation in GT . The latter can be
substituted by 4 exponentiations and one product in Zp by multiplying the
verification equation by u−1.

We first present the intuition for knowledge soundness. Groth16 is adding
additional trapdoors to make sure the verifier checks simultaneously that:

– the public input is correct;
– linear relations: [A]1 = [Az]1, [B]2 = [Bz]1, [C]1 = [Cz]1 (linear relations);
– and that Az ◦Bz−Cz = 0 (Hadamard product relation).

The changes with respect to the standard Groth16 [Gro16] paper are: (a) the
numerator of some terms involves an additional φℓj(x) term and (b) there are
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Setup: The setup runs the relation generator that outputs a description of a
R1CS instance R′ associated to matrices A,B,C ∈ Zn×m+1

p . Then it picks
x, δ, α, β, ψ, φ, ρ and it defines the committed R1CS relation with respect to
the commitment keys:

ck = ([ℓl+1(x)/ρ]1, . . . , [ℓm(x)/ρ]1, [δ/ρ]1) ∈ Gm−l+1
1 ,

c̃k = ([ℓ0(x)/ψ]1, . . . , [ℓn−1(x)/ψ]1, [δ/ψ]1) ∈ Gn+1
1 ,

where ℓi(x) is the ith Lagrange basis polynomial of a set H of size n. Then
it defines the polynomials u(x) = ℓ(x)⊤A, v(x) = ℓ(x)⊤B, and w(x) =
ℓ(x)⊤C, and returns the srs defined as follows:

srs :=



[
ck, c̃k, α, β, δ, {xi}n−1

i=0 , {σj := uj(x)β + vj(x)α+ wj(x)}lj=0

{xit(x)/δ}n−2
i=0 ,

{
σj :=

uj(x)β + vj(x)α+ wj(x)+φℓj(x)

δ

}m
j=l+1

]
1

,

[β, δ, [φρ]2 , [ψ]2, {x
i}n−1
i=0 ]2, [αβ]T


where

srsV =
(
{σj}lj=0 , [δ]2, [φρ]2 , [ψ]2, [αβ]T

)
.

The setup also chooses y ← Z∗
p and outputs:

aux = ({[yi]1, [yi]2}ki=1, [φ]1, [φ]2).

Prove, π ← Prove(srsP, ϕ = (z[:l], u, [e]1 , [w]1), W = (z[l:], e, rw, re)): assuming
z0 = 1, it acts as follows,
1. Let A†(x) ←

∑m
j=0 zjuj(x), B†(x) ←

∑m
j=0 zjvj(x), C

†(x) ←∑m
j=0 zjwj(x),

2. Let e†(x) =
∑n−1
i=0 eiℓi(x). Set h(x) =

∑n−2
i=0 hix

i ← (u−1A†(x)B†(x) −
C†(x)− e†(x)u−1)/t(x).

3. Set [h(x)t(x)/δ]1 ←
∑n−2
i=0 hi

[
xit(x)/δ

]
1
.

4. Set ra ←r Zp. Set [A]1 ← u−1
∑m
j=0 zj [uj(x)]1 + [α]1 + ra [δ]1.

5. Set rb ←r Zp. Set [B]2 ← [uβ]2 +
∑m
j=0 zj [vj(x)]2 + rb [δ]2.

6. Set [C]1 ← rb [A]1 + ra [B]1 − rarb [δ]1 +rw[φ]1 − u−1re[1]1 +∑m
j=l+1 zj [σj ]1 + [h(x)t(x)/δ]1,

7. Return π := ([A,C]1 , [B]2).

Verify, {1, 0} ← Verify(srsV, ϕ, π = ([A,C]1 , [B]2)): assuming z0 = 1, checks:

e([A]1 , [B]2)− e([C]1 , [δ]2)− e(
l∑

j=0

zj [σj ]1, [1]2)− e(u
−1 [e]1 , [ψ]2)

+ e([w]1 , [φρ]2) = u [αβ]T .

Fig. 4: Groth16 for committed relaxed R1CS, where z[:l] = (z0, . . . , zl) and z[l:] =
(zl+1, . . . , zm).
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Simulate, π ← S(R,ϕ, srsV, ts): Given the simulation trapdoors ts :=
(β, δ, ψ, φ, ρ) and statement ϕ = (z[:l], u, [e]1 , [w]1) (1) chooses A,B ←r Zp
(2) computes

[C]1 =
1

δ

[A ·B]1 −
l∑

j=0

zj [σj ]1 − uβ [α]1−ψu
−1 [e]1 − φρ [w]1


Fig. 5: Simulator of Groth16 for committed relaxed R1CS.

additional terms in the original verification equation which involve [φρ]2, [ψ]2
and [w]1, [e]1, u.

Modification (a), applies the same technique used in Groth16 for proving lin-
ear relations, except the change makes sure the same witness for [A]1, [B]2, [C]1
and also [w]1 is used. Modification (b) accounts for the fact that now the ver-
ification equation is checking a more complex Hadamard relation that includes
error terms, and the additional trapdoors are there to ensure that [e]1, [w]1 are
in the right space.

We prove the following theorem:

Theorem 2. Groth16 for relaxed committed R1CS in Fig. (4,5)has the following
properties:
– Perfect Completeness: given (u,x, [e]1, [w]1) ∈ Lc-relaxed

ck,c̃k,A,B,C
, the verifier will

accept with probability 1 any proof computed by ah honest prover;
– Computational Soundness in the asymmetric bilinear group model: any ad-

versary that computes a valid proof for (u,x, [e]1, [w]1) /∈ Lc-relaxed
CK,C̃K,A,B,C

, and

receives as auxiliary input

aux =
{
{[yi]1, [yi]2}k−1

i=0 , {[x
i]1, [x

i]2}Di=n, {[αxi]1, [βxi]1, [φxi]1}n−1
i=0

}
,

for some D ≥ 2n− 1, implies an adversary against the symmetric q-DLOG
assumption with q = max(2n,D, k − 1).

Proof (Theorem 2):

Completeness: It can easily be verified that all randomization terms (those
involving ra, rb, re, rw) are the same on both sides of the verification equation.
For the rest of the proofs, we will ignore these terms for simplicity, i.e. we assume
ra = rb = re = rw = 0. Let ℓ(x)⊤ = (ℓ0(x), . . . , ℓn−1(x)). Then,

(1) [w]1 = Comck(z[l:]; 0) =

m∑
j=l+1

zj
ℓj(x)

ρ
, (2) [e]1 = Comc̃k(e; 0) =

1

ψ
ℓ(x)⊤e

(3) A†(x) = u(x)⊤z = ℓ(x)⊤(Az), (4) B†(x) = v(x)⊤z = ℓ(x)⊤(Bz)

There exists a polynomial h(x) of degree at most n− 2 such that:

A†(x)B†(x) = (ℓ(x)⊤(Az)) · (ℓ(x)⊤(Bz)) = ℓ(x)⊤((Az) ◦ (Bz)) + h(x)t(x),

25



since A†(x)B†(x) agrees with ℓ(x)⊤((Az)◦(Bz)) on all of H. On the other hand,
the equation Az ◦Bz = uCz+ e is equivalent to u−1Az ◦Bz−Cz− u−1e = 0.
Therefore,

A†(x)B†(x)− C†(x)− e†(x)u−1 =

ℓ(x)⊤(u−1Az)) · (ℓ(x)⊤(Bz))− ℓ(x)⊤(Cz)− ℓ(x)⊤(u−1e) =

ℓ(x)⊤(u−1Az ◦Bz−Cz− u−1e) + h(x)t(x)

so the polynomial h(x) defined in Step 2 of the prover algorithm exists because
the relaxed R1CS is satisfied. The verification is satisfied since we have,

e([A]1 , [B]2) = u[αβ]T+

 m∑
j=0

zj(uj(x)β + vj(x)α)


T

+u−1[A†(x)B†(x)]T , (26)

and on the other hand,

e([C]1, [δ]2) + e(

 l∑
j=0

zj(uj(x)β + vj(x)α+ wj(x))


1

, [1]2) =

[C†(x)]T + [h(x)t(x)]T + [

m∑
j=0

zj(uj(x)β + vj(x)α)]T + [

m∑
j=l+1

zjφℓj(x)]T . (27)

Subtracting equations (26) and (27),

e([A]1 , [B]2)− e([C]1, [δ]2)− e(

 l∑
j=0

zj(uj(x)β + vj(x)α+ wj(x))


1

, [1]2) =

u[αβ]T + [u−1A†(x)B†(x)− C†(x)− h(x)t(x)]T + [

m∑
j=l+1

zjφℓj(x)]T =

u[αβ]T + e(u−1[e]1, [ψ]2)− e([w]1, [φρ]2),

which is equivalent to the verification equation.

Knowledge Soundness. A significant part of the proof is taken almost verba-
tim from Groth16, accounting for the modifications, the auxiliary input that the
adversary receives and some simplifications that follow from considering secu-
rity only in the asymmetric bilinear group model. For simplicity, the vector of
commitment keys ck is indexed in the natural way from l + 1 to n.

Since the prover is assumed to be an algebraic adversary, there exist known
field elements Aδ, Aσj

, Ackj , Ac̃kj
and polynomials A(X) of degree D, Ah(X) of

degree n− 2, Ay(X) of degree k− 1, and Aα(X), Aβ(X), Aφ(X) of degree n− 1
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such that:

A =Aα(x)α+Aβ(x)β +Aφ(x)φ+Aδδ +

l∑
j=0

Aσjσj +

m∑
j=l+1

Aσjσj

+

m+1∑
j=l+1

Ackjckj +
n∑
j=0

Ac̃kj
c̃kj +A(x) +Ah(x)

t(x)

δ
+Ay(y),

where σj are defined as explained in the protocol description, and ckj , c̃kj are
the jth elements in the commitment keys (indexed, respectively, from l + 1 to
m+ 1 and from 0 to n).

We note that:

l∑
j=0

Aσjσj = α

l∑
j=0

Aσjvj(x) + β

l∑
j=0

Aσjuj(x) +

l∑
j=0

Aσjwj(x) =

= αA′
α(x) + βA′

β(x) +A′(x),

for polynomials A′
β(x), A

′
α(x), A

′(x), of degree at most n−1. That is, any linear
combination of σj , j = 0, . . . , l, can be rewritten as a linear combination of
other terms seen by the adversary, so from now on, we assume without loss of
generality that Aσj

= 0 for j = 0, . . . , l.
In the knowledge soundness definition, the statement is chosen by the prover.

In the AGM, the values [w]1, [e]1 have been computed by the prover as a linear
combination of the values in the structured reference string or in the auxiliary
string. Therefore, we can write out C, w, e in a similar fashion, and we call Ts,
s ∈ {δ, σj , ckj , c̃kj} the coefficients of term T , T ∈ {C,w, e} in the corresponding
variables, and similarly we call T (X), Ty(X), Th(X), Tα(X), Tβ(X), Tφ(X) the
corresponding polynomials. Again, without loss of generality we will assume
that Tσj = 0 for j = 0, . . . , l.

On the other hand, B is in group G2, so it can be written as:

B =Bββ +Bφφ+Bφρφρ+Bδδ +B(x) +By(y),

for field elements Bβ , Bφ, Bφρ, Bδ and polynomials B(X) of degree D and By(x)
of degree k − 1.

The core of the proof consists in writing the verification equation as an
equality of multivariate Laurent polynomials. The verification equation should
hold when A,B,C,w, e are treated as formal polynomials in indeterminates
α, β, γ, φ, δ, x, y. Else, using the same technique used in the proof of Groth16
due to Fuchsbauer et al. (Th. 7.2, [FKL18]) which consists of embedding a
q-DLOG challenge in the trapdoor variables so that the challenge is infor-
mation theoretically hidden, the adversary breaks a q-DLOG challenge (with
q = max(2n,D, k − 1), which is the degree of the values seen by the adversary
in the challenge variable).
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(1) In the first part of the proof, Groth exploits the fact that the only quadratic
term in the equation in which both elements are adversarially chosen is AB.
This implies that

Aβ(x) = 0.

The justification is that the terms with indeterminate β2 are Aβ(x)Bβ = 0,
which means Aβ(x) = 0 or Bβ(x) = 0. Since [αβ]1 is not in the srs, and α
is only given to the adversary in G1, the terms with indeterminate αβ give
us Aα(x)Bβ = u, so Aβ(x) = 0. Additionally, without loss of generality, we
can assume Aα(x) = 1, Bβ = u (rescaling if necessary).

(2) Considering the terms involving 1
δ in A, using the definition of σj , we have m∑

j=l+1

Aσj
(βuj(x) + αvj(x) + wj(x) + φℓj(x)) +Ah(x)t(x)

 .

This term must be 0, since otherwise there is a term with β/δ in AB that
cannot be canceled with any other term in the verification equation.

(3) The same reasoning as in Step (2) allows us to conclude that Ackj , Ac̃kj
are

all zero, as otherwise there will be terms with β/ρ, β/ψ that would only
appear in AB and in no other term of the verification equation.

(4) Since A is of the form A = α + ... and B of the form B = uβ + ..., neither
A nor B can have terms with y (with non-zero coefficients), i.e. Ay(y) = 0
and By(y) = 0, else there would be cross terms involving α and y or β and
y that cannot be canceled otherwise. Similarly, C, w, e cannot have any y
terms since there would be cross terms involving δ and y, φρ and y, or ψ
and y.

(5) We can also conclude that Aφ(x) = Bφ = 0, since if Aφ(x) ̸= 0, then there
is a non-zero term φβ in AB, and if Bφ ̸= 0, then there is a non-zero term
φα in AB, and none of them can appear anywhere else in the verification
equation.

(6) As a result of all previous steps we conclude that:

A = α+A(x) +Aδδ

B = uβ +B(x) +Bδδ +Bψψ +Bφρφρ

(7) Since in the verification equation w is paired with φρ, we conclude that

w = wαα+ wδδ + w(x) +

m∑
j=l+1

wckjckj .

This is because the rest of the terms {wβ(x), wφ(x), {wσj
}mj=l+1, {c̃kj}nj=0,

wh(x), wy(y)} must all be 0 since otherwise there would be terms with φρ
and other variables that cannot be canceled in the verification equation. On
the other hand, the terms in the verification with αφρ are:

Bφρ + wα(x) = 0,
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therefore the polynomial wα(x) is actually a constant wα = −Bφρ ∈ F.
This shows that [w]1 is a valid commitment to some vector w under the key
CK and an opening can be extracted from the algebraic adversary. Define
z[l:] = (wckl+1

, . . . , wckm).
(8) Similarly,

e = eαα+ eδδ + e(x) +

n∑
j=0

ec̃kj c̃kj ,

since the rest of the terms {eβ(x), eφ(x), {eσj
}mj=l+1, {ckj}mj=l+1, eh(x), ey(y)},

and the only term with αψ should be a constant (concretely, u−1eα = Bψ).
This shows that [e]1 is a valid commitment to some vector e under the key

C̃K and an opening can be extracted from the algebraic adversary. Define
e = (ec̃k0 , . . . , ec̃kn−1

) as the extracted value.

(9) To complete the soundness we make the following argument. The terms that
have only αxi, and no other trapdoors are:

αB(x)− α
m∑

j=l+1

Cσj
vj(x)− α

l∑
j=0

zlvj(x)

and the terms that have only βxi, and no other trapdoors are:

uβA(x)− β
m∑

j=l+1

Cσj
uj(x)− β

l∑
j=0

zjuj(x)

and the terms that have only φxi, and no other trapdoors are:

−φ
m∑

j=l+1

Cσj ℓj(x) + φ

m∑
j=l+1

wckj ℓj(x) = −φ
m∑

j=l+1

Cσj ℓj(x) + φ

m∑
j=l+1

zjℓj(x)

From the last equations, we conclude that z[l:] = (Cσl+1
, . . . , Cσn), and that

A(x) = u−1
m∑
j=0

zjuj(x), B(x) =

m∑
j=0

zjvj(x).

The terms that depend only of x and no other trapdoor value are:

A(x)B(x)−
m∑

j=l+1

Cσj
wj(x)−

l∑
j=0

zjwj(x)− u−1
n−1∑
j=0

ec̃kj ℓj(x)− Ch(x)t(x)

Putting all facts together, we conclude that the last equation is equivalent
to:

(u−1Az) ◦ (Bz) = Cz+ u−1e.
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5 Conclusion

The FLIP protocol introduced in this paper, which does folding via inner pair-
ing product, is a simpler way to use folding compared to doing recursive proof
composition. Similar strategies can be used to fold other relations without cycles
of elliptic curves.

The generalization of Groth16 is optimized for low communication complex-
ity. Other alternatives with a simpler setup are possible. If, for example, [e]1, [w]1
are treated as polynomial commitments, extractability can be shown by opening
in a random point and fewer trapdoors are necessary. Lower communication com-
plexity might be achieved by using recent techniques such as Polymath [Lip24].
We leave for future work to explore this option (which requires additional changes
in arithmetization to use some “square” span program) or to combine it with
custom gates or lookups.

Our generalization can be useful in scenarios other than those envisaged in
this paper. Specifically, one could use our proof system to prove the last step
of recursive proof composition based on Nova, an interesting option to explore
particularly as more constructions of embedded curves become available [SH23,
Gui24] .
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