
Disclaimer. Purpose of this work is to document the PeerDAS update for Ethereum in a way that is accessi-
ble to the cryptographic community. Our analysis concerns commit 54093964c95f of the Ethereum consensus
specification [Eth24a], and analysis does not necessarily carry over to future versions.
Acknowledgments. We thank Justin Traglia, Gottfried Herold, George Kadianakis, Dmitry Khovratovich, and all
members of Ethereum Foundation Cryptography Research for providing feedback on earlier drafts of this document.

A Documentation of Ethereum’s PeerDAS
Benedikt Wagner 1 Arantxa Zapico 1

1 Ethereum Foundation Cryptography Research
{benedikt.wagner,arantxa.zapico}@ethereum.org

Abstract

Data availability sampling allows clients to verify availability of data on a peer-to-peer network
provided by an untrusted source. This is achieved without downloading the full data by sampling
random positions of the encoded data. The long-term vision of the Ethereum community includes a
comprehensive data availability protocol using polynomial commitments and tensor codes. As the next
step towards this vision, an intermediate solution called PeerDAS is about to integrated, to bridge the
way to the full protocol. With PeerDAS soon becoming an integral part of Ethereum’s consensus layer,
understanding its security guarantees is essential.

This document aims to describe the cryptography used in PeerDAS in a manner accessible to the
cryptographic community, encouraging innovation and improvements, and to explicitly state the
security guarantees of PeerDAS.

Contents
1 Introduction 2

1.1 History and Ethereum’s Roadmap . 2
1.2 Outline of this Document . 3

2 Preliminaries 3
2.1 Reed-Solomon Codes and Roots of Unity . 3
2.2 Groups and Assumptions . 4
2.3 The Algebraic Group Model . 5
2.4 KZG Commitments and Multiproofs over Cosets . 6
2.5 Erasure Code Commitments and Data Availability Sampling 6

3 The Erasure Code Commitment used in PeerDAS 8
3.1 Warm-Up: Single Row Commitment Scheme . 8
3.2 The Full Commitment Scheme . 11

4 Optimizations 14
4.1 Computing Commitment and All Openings . 14
4.2 Optimizations for Verification . 15
4.3 Efficient Reconstruction of Data . 17

mailto:{\@@par }
mailto:{\@@par }

1 Introduction
Data availability sampling [ASBK21, HASW23] enables clients to verify the availability of data (e.g., a list
of transactions) on a peer-to-peer network. To this end, data is redundantly encoded and stored across
different nodes on the network. Clients are only assumed to have downloaded a succinct commitment to
the data. To check availability, clients query random positions of the encoding from these nodes and
verify them against the commitment. If a sufficient number of these random samples succeed, clients can
conclude that the data is available.

To formalize the security guarantees provided by data availability sampling (DAS), Hall-Andersen,
Simkin, and Wagner [HASW23] recently defined it as a cryptographic primitive and analyzed several
constructions. In essence, a data availability solution must satisfy two key properties: (1) soundness,
meaning that if enough clients accept, then some data can be reconstructed from their transcripts,
ensuring availability, and (2) consistency, ensuring that clients with the same commitments will always
reconstruct the same data.

The concept of data availability sampling is central to Ethereum’s roadmap [D’A23]. One of the
solutions analyzed in [HASW23] is expected to be used in the future. At the time of writing, an
intermediate solution called PeerDAS is about to be integrated into the Ethereum protocol. PeerDAS
aims to pave the way for the full data availability solution and will soon become an essential part of
Ethereum’s protocol. Therefore, it is crucial to formally understand its security guarantees.

This document focuses on PeerDAS as described in Ethereum’s consensus specifications [Eth24a,
Eth24b]. Our intention is two-fold: first, we aim to provide a description of the cryptography used
in PeerDAS that is accessible to the cryptographic community, potentially leading to new ideas and
improvements that can be incorporated in the future. Second, we want to explicitly state the security and
efficiency guarantees of PeerDAS. In terms of security, this document justifies the following claim.

Theorem 1 (Main Theorem, Informal). Assuming plausible cryptographic hardness assumptions, PeerDAS is
a secure data availability sampling scheme in the algebraic group model, according to the definition in [HASW23].

1.1 History and Ethereum’s Roadmap
We use this section to provide some context explaining how PeerDAS relates to the roadmap of Ethereum.
For more details, we refer the reader to [D’A23]. Motivated by increasing scalability of Ethereum using
rollups, Ethereum’s long term vision is to use data availability sampling. The solution that is currently
envisioned is based on KZG commitments and a two-dimensional tensor code of the Reed-Solomon code.
PeerDAS is an intermediate solution that is used to introduce the concept of sampling and most of the
cryptographic building blocks that are needed for this full solution.
The Scaling Problem. Modern blockchains, including Ethereum, face significant scalability challenges.
At the heart of this issue is keeping balance between making space expensive enough to limit workload
on nodes and providing sufficient capacity for transactions. The current approach involves setting a gas
limit, which controls the amount of computational work that can be included in each block. On the
downside, this limits the capacity for transactions. One can not simply increase the gas limit per block, as
this would also require nodes to perform more work to verify the blockchain.
Rollups to the Rescue. One promising solution to this scalability problem is the implementation
of rollups, which are a type of Layer 2 (L2) scaling solution. Rollups operate under the control of
an Ethereum mainnet contract (called Layer 1, or L1) and are designed to handle large volumes of
transactions off-chain, thereby reducing the computational burden on the Ethereum mainnet. In a
nutshell, a rollup functions as follows: a sequencer collects a batch of L2 transactions and submits this
batch to the rollup contract on L1. Importantly, nodes on L1 do not execute and verify all transactions,
but could, for example, verify a succinct proof that the transactions are correct. In this way, the block can
execute much more transactions without increasing the work for nodes on L1. At the same time, the L2
transactions inherit security and consensus from Ethereum L1. That being said, it is clear that Ethereum
mainnet (L1) primarily stores data, and the availability of this data on L1 is essential for maintaining the
liveness of the rollup and enabling nodes to synchronize the rollup’s state accurately.
Proto-Danksharding and EIP 4844. To prepare for the use of data availability sampling, EIP 4844 [BFL+22]
has introduced a blob-carrying transaction type. Essentially, transactions can now contain so-called

2

blobs of data. More precisely, a blob consists of dr field elements, and there are separate fees for blobs
and execution. Notably, there is no data availability sampling yet: all nodes ensure data availability by
downloading the entire blob. This also means that blobs are limited in size, but it is a first step towards
the full solution.
PeerDAS. The next step after EIP 4844 is PeerDAS, which is what we study in this document. In
PeerDAS, data is first split into blobs as in EIP 4844. Then, these blobs are individually extended using
a Reed-Solomon code: each blob defines a polynomial of some degree dr − 1, and this polynomial is
evaluated at 2dr points to obtain an extended blob. These extended blobs are then arranged in a matrix,
where each extended blob is one row, and clients download KZG commitments [KZG10a] for each
extended blob. In addition to this encoding, PeerDAS also introduces sampling: to check availability, each
client now downloads random columns of this matrix and verifies their KZG opening proofs with respect
to the commitments.
Tensor Codes and the Future of DAS. The long-term vision for data availability sampling in Ethereum
is a two-dimensional variant of PeerDAS. Concretely, after the matrix is obtained from horizontally
extending each blob as in PeerDAS, this matrix is also extended vertically. This can again be done using
a Reed-Solomon code: if we assume that there are dc blobs, then each column of the PeerDAS matrix
contains dc field elements, and so each column can be interpreted as a degree dc − 1 polynomial and
evaluated at 2dc points. As a result, the matrix contains 4dcdr evaluations of a bivariate polynomial over
variablesX,Y of individual degree at most dr−1 inX and dc−1 in Y . From a coding theory perspective,
this means that the data is encoded using the tensor code of two Reed-Solomon codes, see [HASW23].
The second change compared to PeerDAS would be that clients sample single cells instead of entire
columns. We note that this scheme has been analyzed formally in [HASW23]. Compared to PeerDAS,
its main advantage is that individual rows or columns can easily be reconstructed, and that sampling
individual cells is more efficient in terms of bandwidth [NB23].

1.2 Outline of this Document
In Section 2, we introduce our notation and recall the necessary background. This includes Reed-
Solomon codes and KZG commitments, as well as the formal framework for data availability sampling
by Hall-Andersen, Simkin, and Wagner [HASW23]. Then, in Section 3, we define and analyze the
cryptographic core of PeerDAS. The final section is Section 4, where we discuss how algorithms in
PeerDAS are implemented efficiently.

2 Preliminaries
For a finite setZ, we write z $← Z to say that z is sampled uniformly at random fromZ. For an algorithm A,
we denote the running time of A by T(A). The notation y := A(x) implicitly means that A is deterministic
and that A is run on input x and the output is y. For a probabilistic A, we instead write y := A(x; ρ) if we
want to make the random coins ρ explicit and y ← A(x) if not. We use the notation y ∈ A(x) to indicate
that y is a possible output of A on input x. Throughout this document, we use standard cryptographic
notions such as a security parameter λ, PPT (probabilistic polynomial-time) algorithms, and negligible
functions. We denote the set of the first r natural numbers by [r] = {1, . . . , r} ⊆ N. For strings x ∈ Σℓ1

and y ∈ Σℓ2 over the same alphabet, we write x ∥ y ∈ Σℓ1+ℓ2 to denote their concatenation.

2.1 Reed-Solomon Codes and Roots of Unity
In this section, we call relevant mathematical background. This includes Reed-Solomon codes, basic facts
about roots of unity and Lagrange polynomials, and the reverse bit ordering.
Erasure Codes. An erasure code is specified by an encoding function C : Γk → Λn that maps messages
over an alphabet Γ to codewords over an alphabet Λ. The crucial property of such an erasure code is that
given any t < n symbols of a codeword, one can reconstruct the message. Sometimes, we also refer to
the image of the function as the erasure code, which is standard in the coding theory literature. That is,
we treat the erasure code as a set C ⊆ Λn given by C = C(Γk). For this document, we will only focus on
(variants of) one particular erasure code, as discussed next.

3

Reed-Solomon Codes. PeerDAS uses (a variant of) the Reed-Solomon code, so we recall this code here.
The Reed-Solomon code is defined over a finite field F, which in our context typically is F = Zq for some
large prime q. It is also parameterized by an integer d ∈ N and a setL ⊆ F. With these parameters at hand,
the Reed-Solomon code (viewed as a set, see above) contains all codewords of the form (f(x))x∈L, where
f ∈ F[X] is a polynomial of degree strictly less than d. We sometimes interpret codewords as vectors in
F|L|, assuming there is an implicit ordering on L. Alternatively, we can interpret codewords as maps
f : L → F. We denote this code, i.e., the set of all such codewords, byRS[d,L,F]. Often it is also useful
to view the Reed-Solomon code by its encoding function taking d field elements specifying a polynomial
f as input, and returning its evaluations over L, i.e.,RS[d,L,F] : Fd → F|L|. The Reed-Solomon code is a
so-called MDS code: any d of the evaluations allow to reconstruct the polynomial via interpolation.
Lagrange Polynomials and Roots of Unity. Given some finite field F, let ω be a primitive mth root of
unity, i.e., ωm = 1 and ωr ̸= 1 for all 1 ≤ r < m. We denote by H = {ω1, . . . , ωm} the group generated
by ω, that has cardinality m. As we will use H as the evaluation domain of a Reed-Solomon code, we
assume that H is implicitly ordered. The most natural ordering would be ω1, . . . , ωm, but we will see a
more useful ordering below. The ith Lagrange basis polynomial associated to H is denoted by λi(X).
The vanishing polynomial of H will be denoted by zH(X). These polynomials are:

zH(X) = Xm − 1, and λi(X) = ωi

m

(Xm − 1)
(X − ωi) for all i ∈ [m].

Cosets and Reverse Bit Ordering. Assume that m is a power of two, that is, m = 2t for some t.
For each j ∈ [t], there exists a subset Hj of H of size 2t−j that is a subgroup. In particular, we have
Hj = {ωi ∈ H | i ≡ 0 mod 2j}. Note that ν = ω2j is a 2t−jth root of unity and Hj = {ν, ν2, . . . , ν2t−j}.
Also, for any s with 0 ≤ s < 2j , the set ωsHj = {ωi ∈ H | i ≡ s mod 2j} is a coset of Hj , that we will
denote by Hj,s. We are interested in these cosets because, as it is the case for subgroups, their vanishing
and Lagrange polynomials have sparse representations. We denote by {λj,s

i (X)}r
i=1 and zj,s(X) these

Lagrange and vanishing polynomials and set r = 2t−j . Then, we have

zj,s(X) = Xr − ωsr, and λs,r
i (X) = ωi

rωs(r−1)
Xr − ωsr

X − ωsi
for all i ∈ [r].

For this reason, we order the elements in H following a reverse bit ordering [KDF22]. That is, for a set
of roots of unity of size 2t, H = {1, ω, ω2, . . . , ω2t−1}, we consider the binary representation of all the
indices from 0 to 2t− 1 and take the ordering given by reversing each binary representation. For instance,
if m = 23, then H = {1, ω, ω2, ω3, ω4, ω5, , ω6, ω7} with indices {000, 001, 010, 011, 100, 101, 110, 111}.
Then, the reverse bit ordering is {1, ω4, ω2, ω6, ω, ω5, ω3, ω7}, where the re-ordering is given by set
{000, 100, 010, 110, 001, 101, 011, 111}. We will denote by ω̃i the ith element in this ordering. In general,
we notice that for any j ∈ [t], if we split the elements in this ordering into consecutive chunks of size 2t−j ,
then these chunks exactly correspond to the cosets Hj,s. We show an example in Figure 1.

2.2 Groups and Assumptions
A bilinear group G is a tuple G = (q,G1,G2,GT , e,P1,P2) whereG1,G2 andGT are groups of prime order
q with generators P1,P2, respectively, and e : G1×G2 → GT is an efficiently computable, non-degenerate
bilinear map, i.e., the point PT = e(P1,P2) generates GT . We also assume that there is no efficiently
computable isomorphism between G1 and G2 (this is sometimes called the type-3 pairing setting [GPS08]).
Elements in these groups are denoted implicitly as [a]γ = aPγ , where γ ∈ {1, 2, T}. With this notation,
we have e([a]1, [b]2) = [ab]T . While in practice a fixed G is used, security proofs asymptotically only
make sense if we consider a family of groups. Therefore, we assume that there is some algorithm PGGen
that takes as input the security parameter 1λ and outputs the description of G. The security of KZG
commitments with batch opening [KZG10b], as well as our security proof for PeerDAS, relies on the
d-BSDH assumption as defined next. This assumption is an instance of the Uber assumption for rational
fractions and flexible targets as studied by Bauer, Fuchsbauer and Loss [BFL20]. To gain confidence in
this class of assumptions, they show that it is implied by a suitable q-type variant of the discrete logarithm
assumption.

4

H = (1, ω, ω2, ω3, ω4, ω5, ω6, ω7, ω8, ω9, ω10, ω11, ω12, ω13, ω14, ω15)

H1 = (1, ω2, ω4, ω6, ω8, ω10, ω12, ω14)

H2 = (1, ω4, ω8, ω12)

H3 = (1, ω8)

1

ω̃0

ω8

ω̃1

ω4H3

ω4

ω̃2

ω12

ω̃3

ω2H2 = (ω2, ω6, ω10, ω14)

ω2H3

ω2

ω̃4

ω10

ω̃5

ω6H3

ω6

ω̃6

ω14

ω̃7

ωH1 = (ω, ω3, ω5, ω7, ω9, ω11, ω13, ω15)

ωH2 = (ω, ω5, ω9, ω13)

ωH3

ω

ω̃8

ω9

ω̃9

ω5H3

ω5

ω̃10

ω13

ω̃11

ω3H2 = (ω3, ω7, ω11, ω15)

ω3H3

ω3

ω̃12

ω11

ω̃13

ω7H3

ω7

ω̃14

ω15

ω̃15

Figure 1: The tree of subgroups and cosets for the group of mth roots of unity where m = 24. The figure
visualizes the reverse bit ordering.

Definition 1 (d-BSDH Assumption). We say that the d-BSDH assumption holds relative to PGGen, if for
every PPT algorithm A the following advantage is negligible:

Advd-BSDH
A,PGGen(λ) := Pr

[
c ̸= τ ∧W = [1/(τ − c)]T

∣∣∣∣ G ← PGGen(1λ), τ $← Zq,
(c,W)← A(G, d, ([τ i]1)d

i=0, ([τ i]2)d
i=0)

]
.

2.3 The Algebraic Group Model
For parts of our security proof (concretely, for code-binding), we will rely on the algebraic group model
introduced by Fuchsbauer, Kiltz, and Loss [FKL18], which is widely used to analyze cryptographic
protocols. When proving security in the algebraic group model, we assume that the adversary is a
so-called algebraic algorithm. Informally, an algebraic algorithm derives new group elements only by
applying the group operation to received group elements, and it can therefore explain each group element
that it outputs by explaining how it combined the received group elements. This is formalized as follows:
suppose an adversary A outputs a group element [z]γ ∈ Gγ for γ ∈ {1, 2, T}. Let [x1]γ , . . . , [xm]γ ∈ Gγ

be the list of all group elements that A received so far, either as input or via oracles. Then, Amust also
output coefficients z1, . . . , zm ∈ Zq such that z =

∑m
i=1 zixi.

Remark 1 (Extensions of the Algebraic Group Model). Lipmaa [Lip22], and later Lipmaa, Parisella, and
Siim [LPS23] have proposed refined versions of the algebraic group model, which give adversaries access
to obliviously sampled group elements. This is motivated by the observation that in practice, one can
sample a random group element [z]γ obliviously, i.e., without learning z ∈ Zq. To formally model this,
they give the adversary access to an oracle that outputs obliviously sampled group elements, for which
neither the adversary nor the reduction knows the discrete logarithms. They also note that one can prove
false knowledge assumptions in the algebraic group model without their extension, which means that
results in algebraic group model have to be used with care. Still, we opted not to use their model in
this document to keep the proofs as readable as possible. Instead, we avoid using the algebraic group
model whenever possible, and only use it in the proof of code-binding in Lemma 3. We view studying
code-binding in the extended algebraic group models [Lip22, LPS23] or even without the algebraic group
model as an interesting problem for future work. The results in [LPS23] about extractability of KZG seem
promising in this regard.

5

2.4 KZG Commitments and Multiproofs over Cosets
The polynomial commitment scheme introduced by Kate, Zaverucha and Goldberg [KZG10a] for a
degree d ∈ N allows to commit succinctly to a polynomial f ∈ Zq[X] of degree d and later compute
succinct opening proofs that convince a verifier that f(x) = y for evaluation points x ∈ Zq. In PeerDAS,
we need to open multiple elements at once, i.e., we make use of so-called KZG multiproofs. We first
define the setup and commitment algorithms of the KZG scheme. The setup algorithm samples a random
secret τ and outputs its powers over the groups. The commitment algorithm then evaluates f on τ over
G1:

• KZG.Setup(1λ, 1d)→ ck:

1. Generate G ← PGGen(1λ), where G = (q,G1,G2,GT , e,P1,P2).
2. Sample τ $← Zq and set commitment key ck :=

(
G, d, ([τ i]1)d

i=0, ([τ i]2)d
i=0
)
.

• KZG.Com(ck, f)→ com for f ∈ Zq[X] with deg f ≤ d:

1. Write f(X) =
∑d

i=0 fiX
i.

2. Set com = [f(τ)]1 =
∑d

i=0 fi[τ i]1.

We now turn to multiproofs and their verification. For concreteness, we focus on opening polynomials
over cosets of a subgroup of the group of roots of unity H where we assume H ≥ d. The algorithms take
as input the size of H, denoted by m = 2t, the size of the subgroup, denoted by r = 2t−j , and an index ŝ
with 0 ≤ ŝ < 2j identifying the coset:

• KZG.MultiOpen(ck, f,m, r, ŝ)→ π for f ∈ Zq[X] with deg f ≤ d, m = 2t, r = 2t−j , and 0 ≤ ŝ < 2j :

1. Set m̂i := f(ω̃ŝr+i) for each i ∈ [r].
2. Let s be such that 0 ≤ s < 2j and ωsHj = {ω̃ŝr, . . . , ω̃ŝr+(r−1)}.

3. Set I(X) :=
∑r

i=1 m̂iλ
j,s
i (X) ∈ Zq[X].

4. Let Q(X) := (f(X)− I(X))/zj,s(X) and observe that Q ∈ Zq[X] and degQ ≤ d.

5. Write Q(X) =
∑d

i=0 QiX
i and set π := [Q(τ)]1 =

∑d
i=0 Qi[τ i]1.

• KZG.MultiVer(ck, com,m, r, ŝ, m̂, π)→ b for m̂ ∈ Zl
q and m = 2t, r = 2t−j , and 0 ≤ ŝ < 2j :

1. Let s be such that 0 ≤ s < 2j and ωsHj = {ω̃ŝr, . . . , ω̃ŝr+(r−1)}.

2. Set I(X) :=
∑r

i=1 m̂iλ
j,s
i (X) ∈ Zq[X].

3. If e (com− [I(τ)]1, [1]2) = e (π, [zj,s(τ)]2), return b := 1. Otherwise, return b := 0.

This scheme is correct, i.e., honestly committing and opening makes the verification algorithm accept.

2.5 Erasure Code Commitments and Data Availability Sampling
Hall-Andersen, Simkin, and Wagner [HASW23] have introduced a cryptographic framework to analyze
data availability sampling schemes. In a nutshell, their framework consists of three steps:

1. Erasure Codes. Given a string of data, an erasure code is used to encode the data. For example, one
could use the Reed-Solomon code.

2. Erasure Code Commitment. The cryptographic core is formalized as a special commitment scheme
that commits to codewords of an erasure code. For example, a polynomial commitment scheme
may be used to commit to codewords of a Reed-Solomon code.

3. Compilation to Data Availability Sampling. The erasure code commitment scheme is compiled to a
data availability sampling scheme. If the commitment scheme satisfies suitable security notions,
then the data availability sampling scheme is secure.

6

We follow this approach to justify the security of PeerDAS. Concretely, we will specify an erasure code
and an associated erasure code commitment scheme that models what happens in PeerDAS. We will
show the security properties of this commitment scheme, which then implies the security of PeerDAS
using [HASW23]. Let us now recall the definition of erasure code commitments from [HASW23].

Definition 2 (Erasure Code Commitment Scheme). Let C : Γk → Λn be an erasure code. An erasure code
commitment scheme for C is a tuple CC = (CC.Setup,CC.Com,CC.Open,CC.Ver) of PPT algorithms, with
the following syntax:

• CC.Setup(1λ)→ ck : takes as input the security parameter and outputs a commitment key ck.

• CC.Com(ck,m)→ (com, St) : takes as input a commitment key ck and a string m ∈ Γk, and outputs
a commitment com and a state St.

• CC.Open(ck, St, j)→ π : takes as input a commitment key ck, a state St, and an index j ∈ [n], and
outputs an opening π.

• CC.Ver(ck, com, j, m̂j , π)→ b : is deterministic, takes as input a commitment key ck, a commitment
com, and index j ∈ [n], a symbol m̂j ∈ Λ, and an opening π, and outputs a bit b ∈ {0, 1}.

Further, we require that the following completeness property holds: For every ck ∈ Setup(1λ), every
m ∈ Γk, and every j ∈ [n], we have

Pr
[
CC.Ver(ck, com, j, m̂j , π) = 1

∣∣∣∣ (com, St)← CC.Com(ck,m),
m̂ := C(m), π ← CC.Open(ck, St, j)

]
= 1.

Having defined the syntax and completeness of erasure code commitments, we now turn to the
security properties that are needed for the compiler from [HASW23] to apply:

• Position-Binding. One cannot open the commitment at a position to two different codeword symbols.

• Code-Binding. Any set of openings output by an adversary is consistent with some codeword.

We now give the formal definitions taken from [HASW23].

Definition 3 (Position-Binding of CC). Let CC be an erasure code commitment scheme for an erasure
code C. We say that CC is position-binding if for every PPT algorithm A the following advantage is
negligible:

Advpos-bind
A,CC (λ) := Pr

 m̂j ̸= m̂′
j

∧ CC.Ver(ck, com, j, m̂j , π) = 1
∧ CC.Ver(ck, com, j, m̂′

j , π
′) = 1

∣∣∣∣∣∣ ck← CC.Setup(1λ),
(com, j, m̂j , π, m̂

′
j , π

′)← A(ck)

 .
Definition 4 (Code-Binding of CC). Let CC be an erasure code commitment scheme for an erasure code
C. We say that CC is code-binding if for every PPT algorithm A the following advantage is negligible:

Advcode-bind
A,CC (λ) := Pr

[
¬
(
∃c ∈ C(Γk) : ∀j ∈ J : cj = m̂j

)
∧ ∀j ∈ J : CC.Ver(ck, com, j, m̂j , πj) = 1

∣∣∣∣ ck← CC.Setup(1λ),
(com, J, (m̂j , πi)j∈J)← A(ck)

]
.

Erasure code commitments will be the central cryptographic object we study in this document. Still,
we want to informally explain how an erasure code commitment scheme can be used in data availability
sampling, and state the main properties of the compiler in [HASW23]. For an extensive formal treatment,
we refer the reader to [HASW23].

So, let us assume Alice holds some string of data, denoted by data, that should be posted on the
peer-to-peer network, and that some clients want to check if data is available using data availability
sampling. To do so, Alice will use the code C to encode data into a codeword d̂ata. For instance, if C is
the Reed-Solomon code, Alice will interpret her data as coefficients of a polynomial of suitable degree
and then compute the codeword as the evaluations of this polynomial. Alice then uses the erasure
code commitment scheme. Namely, she computes (com, St)← Com(ck, data). The commitment com is
downloaded by the clients. We emphasize that it is not part of data availability sampling how to agree on

7

com. On the peer-to-peer network, Alice stores the codeword d̂ata. She also attaches to every position i
its corresponding opening πi ← Open(ck, St, i).

Now, suppose that clients want to check availability of the data. To do so, the clients sample random
positions i of the codeword, and try to download d̂atai and πi from the network. If this succeeds for
enough samples, i.e., they always get back the symbols and the opening verifies with respect to com, then
they accept. In terms of security, Hall-Andersen, Simkin, and Wagner [HASW23] show that (1) from
accepting samples of sufficiently many1 clients, one can reconstruct the data, meaning that it is indeed
available, and (2) no matter where the accepting samples come from, one will always extract the same
data. We informally summarize the sketched transformation in the following lemma. For the formal
statement, see [HASW23], Section 6.2.

Lemma 1 (Informal). Let C be an erasure code and let CC be an erasure code commitment for C. Assume that CC
is position-binding and code-binding. From that, one can construct a secure data availability sampling scheme.

3 The Erasure Code Commitment used in PeerDAS
As outlined in Section 2.5, the cryptographic core of PeerDAS is an erasure code and a corresponding
erasure code commitment scheme. In this section, we explain and formally specify this code and
commitment scheme. From a bird’s eye view, PeerDAS splits the data into chunks of equal size, which
are called blobs. Each such blob is then extended individually using a Reed-Solomon code, and a KZG
commitment for that blob is computed. These extended blobs are then assembled into a matrix, where each
row is one extended blob. This matrix is the codeword of the erasure code. In what follows, we take a
two-step approach to explain this in more detail and analyze the security of this construction. Concretely,
in Section 3.1, we focus on what happens to a single blob, i.e., we look at one row of the final codeword.
Then, in Section 3.2, we define and analyze the full code and commitment scheme.

3.1 Warm-Up: Single Row Commitment Scheme
As already explained, data in PeerDAS is treated as a sequence of blobs, and each blob is encoded and
committed to individually, before the resulting extended blobs are combined into a matrix. Here, we
focus on encoding and committing to a single blob.
Erasure Code. Let us explain the erasure code used for a single row, which we denote by RSrow.
Intuitively, it is a Reed-Solomon code, where contiguous segments of D evaluations are interpreted as a
single symbol. We call these segments cells (see Remark 2). To be more precise, let k, n ∈ N with n > k
be parameters defining the number of cells of a blob (i.e., message) and extended blob (i.e., codeword),
respectively. We assume that D, k, and n are all powers of two. Consider the Reed-Solomon code
RS[kD,L,Zq], where L = H is the group of roots of unity such that |H| = nD. By grouping together
segments of D symbols, we obtain codewords in RSrow. More formally, let ι :

(
ZD

q

)n → ZnD
q be the

natural bĳection given by concatenation, i.e., ι : (c1, . . . , cn) 7→ c1 ∥ · · · ∥ cn. Then, we define

RSrow :=
{
c ∈

(
ZD

q

)n
∣∣∣ ι(c) ∈ RS[kD,L,Zq]

}
⊂
(
ZD

q

)n
.

In other words, we haveRSrow = ι−1(RS[kD,L,Zq]). We visualize the codeRSrow in Figure 2.

Remark 2 (The Role of Symbols). It is natural to wonder why we explicitly say that the symbols of the
codeword are in ZD

q . Of course, we could also say that the codeword contains Dn symbols that are in Zq .
However, recall that an erasure code commitment allows one to open individual symbols of the codeword.
This has the following implication: if we define the codeword to consist of n symbols in ZD

q , i.e., of n cells,
then we need to open cells. In the other case, we would have to open individual evaluations. Taking
this to the level of data availability sampling, defining symbols as cells instead of individual evaluations
would mean that clients never download individual evaluations but always entire cells. We will see in
the full commitment construction in Section 3.2 that symbols will consist of columns containing multiple
cells, and so clients in PeerDAS download entire columns of cells.

1Here, what sufficiently many means depends on the properties of the erasure code. We refer to Section 6.2, Section 10, and
Appendix J of [HASW23] for detailed discussion. Roughly, using a Reed-Solomon code of rate 1/2 as in PeerDAS, the clients in total
need to make at least Ω(k+ λ) many samples, where k is the dimension of the Reed-Solomon code and λ is the security parameter.

8

Extended BlobBlob Cell 0 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7

f(ω̃0) f(ω̃1) f(ω̃2) f(ω̃3) f(ω̃4) f(ω̃5) f(ω̃6) f(ω̃7)

Figure 2: Visualization of the encoding in a single row as described and analyzed in Section 3.1. The
figure shows a codeword of the codeRSrow with parameters D = 8, k = 4, and n = 8. This codeword is
also called an extended blob, and it contains as its first half the data, which is called the blob. Intuitively,
the codeword is a codeword of a Reed-Solomon code where contiguous segments of evaluations are
interpreted as symbols called cells.

Remark 3 (The Role of the Reverse Bit Ordering). As explained in Section 2.1, we assume that elements in
H are ordered following the reverse bit ordering. As a consequence, we know that each cell (i.e., symbol
of the codeword) corresponds to the evaluations of the polynomial over a coset of a subgroup of H. This
subgroup has order D.

Erasure Code Commitment Scheme. Below, we define an erasure code commitment scheme CCrow
that models how to commit to an extended blob. The algorithms make use of the KZG polynomial
commitment scheme as defined in Section 2. Intuitively, a blob defines a polynomial of degree less than
Dk. The erasure code commitment is simply the KZG polynomial commitment for this polynomial.
Symbols of the extended blob, i.e., cells, are opened using KZG multiproofs. We now give the formal
definition:

• CCrow.Setup(1λ)→ ck

1. Sample ck← KZG.Setup(1λ, 1d) for d = kD − 1.

• CCrow.Com(ck,m)→ (com, St) for m ∈ ZDk
q

1. Let f ∈ Zq[X] with deg f < Dk such that f(ω̃i) = mi for all i ∈ [Dk].
2. Set com := KZG.Com(ck, f) and St := f .

• CCrow.Open(ck, St, j)→ π for j ∈ [n]

1. Compute π := KZG.MultiOpen(ck, f,Dk,D, j − 1).

• CCrow.Ver(ck, com, j, m̂, π)→ b for i ∈ [n] and m̂ ∈ ZD
q

1. Set b := KZG.MultiVer(ck, com, Dk,D, j − 1, m̂, π).

Correctness of this scheme follows directly from the correctness of KZG.
Security Analysis. Here, we show that CCrow is position-binding and code-binding. We will use these
results when we prove position-binding and code-binding of the full commitment construction in
Section 3.2. Note that the proof of Lemma 3 is the only proof where we use the algebraic group model.

Lemma 2 (Position-Binding of CCrow). Let d = kD−1. If the d-BSDH assumption holds relative to PGGen, then
CCrow is position-binding. Concretely, for any PPT algorithm A, there is a PPT algorithm B with T(B) ≈ T(A)
and

Advpos-bind
A,CCrow

(λ) ≤ Advd-BSDH
B,PGGen(λ).

Proof. We consider a PPT adversary A against position-binding of CCrow as in the statement. Our goal is
to construct a reduction B that breaks the d-BSDH assumption if A breaks position-binding. To recall, in
the position-binding game,A takes as input the commitment key ck← KZG.Setup(1λ, 1d) for d = kD− 1,
which has the form ck =

(
G, d, ([τ i]1)d

i=0, ([τ i]2)d
i=0
)
. When completing its computation,A then outputs a

9

commitment com ∈ G1, a position j ∈ [n], and two symbol-opening pairs (m̂, π) ∈ ZD
q ×G1 and (m̂′, π′) ∈

ZD
q ×G1. Recall that Awins the position-binding game if m̂ ̸= m̂′, CCrow.Ver(ck, com, j, m̂, π) = 1, and

CCrow.Ver(ck, com, j, m̂′, π′) = 1. By definition of CCrow.Ver and KZG.MultiVer, this means that

e (com− [I(τ)]1, [1]2) = e (π, [z(τ)]2) , e (com− [I ′(τ)]1, [1]2) = e (π′, [z(τ)]2) ,

where I (resp. I ′) is the interpolation polynomial for m̂ (resp. m̂′) over the coset indexed by j, and z is the
vanishing polynomial of this coset. Let2 ψ ∈ Zq (resp. ψ′ ∈ Zq) be such that π = [ψ]1 (resp. π′ = [ψ′]1).
Let ζ ∈ Zq be such that com = [ζ]1. Then, because e is non-degenerate, we get

ψ · z(τ) + I(τ) = ζ = ψ′ · z(τ) + I ′(τ). (1)

There is at least one i ∈ [D] for which m̂i ̸= m̂′
i. This is because m̂ ̸= m̂′. Fix the minimal such i. Write

z(X) = (X − ω)z̃(X) ∈ Zq[X], where ω ∈ Zq is the root of unity associated with this i, i.e., I(ω) = m̂i.
With this z′ at hand, define the polynomials φ,φ′ via

φ(X) = I(X)− I(ω)
X − ω

= I(X)− m̂i

X − ω
, φ′(X) = I ′(X)− I ′(ω)

X − ω
= I ′(X)− m̂′

i

X − ω
.

Now, from Equation (1), we get

ψ · (τ − ω) · z̃(τ) + φ(τ) · (τ − ω) + m̂i = ψ′ · (τ − ω) · z̃(τ) + φ′(τ) · (τ − ω) + m̂′
i.

Isolating (τ − ω), rearranging, and taking to GT yields[
1

τ − ω

]
T

= 1
m̂i − m̂′

i

· (e(π − π′, [z̃(τ)]2) + e([φ(τ)]1, [1]2)− e([φ′(τ)]1, [1]2)) . (2)

Note that our reduction B can compute the right hand side efficiently, given A’s output. With this
observation, we can now describe the reduction B:

1. Reduction B takes as input
(
G, d, ([τ i]1)d

i=0, ([τ i]2)d
i=0
)
. It defines ck :=

(
G, d, ([τ i]1)d

i=0, ([τ i]2)d
i=0
)
.

2. The reduction runs A on input ck and obtains a commitment com ∈ G1, a position j ∈ [n], and two
symbol-opening pairs (m̂, π) ∈ ZD

q ×G1 and (m̂′, π′) ∈ ZD
q ×G1 from A.

3. The reduction computes [1/(τ − ω)]T usingA’s output via Equation (2). Note that the reduction can
compute [z̃(τ)]2 via the [τ i]2’s that it received as input. The reduction then outputs (ω, [1/(τ − ω)]T).

It is clear that ck is distributed as in the position-binding game, which means that B perfectly simulates
the game for A. It is also clear that B’s running time is about that of A. Finally, the observation above
implies that B breaks Q-BSDH whenever A breaks position-binding, which concludes the proof.

Lemma 3 (Code-Binding of CCrow). Let d = kD − 1. If the d-BSDH assumption holds relative to PGGen, then
CCrow is code-binding in the algebraic group model. Concretely, for any algebraic PPT algorithm A, there is a PPT
algorithm B with T(B) ≈ T(A) and

Advcode-bind
A,CCrow

(λ) ≤ Advd-BSDH
B,PGGen(λ).

Proof. LetA be an algebraic PPT adversary against code-binding of CCrow as in the statement. Our strategy
will be to construct a reductionR that simulates the code-binding game forA and breaks position-binding
of CCrow if A breaks code-binding. We first make an observation and then give the reduction: Recall that
in the code-binding game, A takes as input the commitment key ck← KZG.Setup(1λ, 1d) for d = kD − 1,
and it outputs a commitment com ∈ G1 and a set of positions J ⊆ [n] and pairs (m̂j , πj) ∈ ZD

q × G1
for each j ∈ J . We denote the ith coordinate of m̂j by m̂j,i ∈ Zq for i ∈ [D]. By definition, A breaks
code-binding if all openings verify, i.e., CCrow.Ver(ck, com, j, m̂j , πj) = 1 for all j ∈ J , and there is no
polynomial f ∈ Zq[X] of degree at most d that is consistent with these openings, i.e., no polynomial f

2Note: we do not use the algebraic group model here. Our reduction never uses ψ or ψ′ over Zq .

10

with f(ω̃j·D+i) = m̂j,i for all j ∈ J and i ∈ [D] and deg f ≤ d. In particular, if A breaks code-binding, we
must have |J | > k, as otherwise, there is always such a polynomial f . As A is algebraic, in particular it
has to output (coefficients of) a polynomial f of degree at most d such that com = [f(τ)]1. Because f is
of degree at most d, we know that there is at least one (j, i) ∈ J × [D] such that f(ω̃j·D+i) ̸= m̂j,i. We
can now use this observation to break position-binding for position j: one of the openings is the one
provided byA, and the other one can be computed honestly by the reduction which knows f . Concretely,
our reductionRworks as follows:

1. ReductionR takes as input the commitment key ck from the position-binding game. It uses this
commitment key to simulate the code-binding game for A.

2. Namely, it runs A on input ck and obtains a commitment com ∈ G1, a set of positions J ⊆ [n], and
pairs (m̂j , πj) ∈ ZD

q ×G1 for each j ∈ J from A. Because A is algebraic, it also outputs (coefficients
of) a polynomial f of degree at most d such that com = [f(τ)]1.

3. The reduction now identifies the first pair (j, i) ∈ J × [D] such that f(ω̃j·D+i) ̸= m̂j,i. If A breaks
code-binding, we know that this exists. If it does not exist, the reduction aborts.

4. The reduction computes π′
j := KZG.MultiOpen(ck, f,Dk,D, j − 1) and defines m̂′

j ∈ ZD
q by setting

m̂′
j,i := f(ω̃j·D+i) for all i ∈ [D].

5. The reduction outputs (com, j, m̂j , πj , m̂
′
j , π

′
j) to the position-binding game.

Clearly,R perfectly simulates the code-binding game for A, and its running time is dominated by the
running time of A. From the observation above, we know thatR breaks position-binding whenever A
breaks code-binding. Using Lemma 2, we obtain the reduction B as in the statement.

Remark 4 (Algebraic Group Model). The proof of Lemma 3 relies on the algebraic group model. Concretely,
our reduction exploits the fact that when the adversary outputs a commitment com ∈ G1, it also has
to output an algebraic representation of com, given by a polynomial f such that com = [f(τ)]1. That is,
thanks to the algebraic group model, the reduction can know such a polynomial f and later use it to
break position-binding (which is proven without the algebraic group model in Lemma 2). In practice, an
adversary may just sample a random group element for com, for which it does not know any discrete
logarithm or algebraic representation. Such an adversary is not captured by our proof, as it is not
algebraic. However, we stress that such an adversary would not automatically break code-binding: it
would have to compute valid openings, and intuitively this requires to know an algebraic representation
of the commitment. We leave making this intuition formal as an interesting problem for future work.

3.2 The Full Commitment Scheme
Equipped with the erasure code and commitment for a single blob, we now define the full erasure code
and erasure code commitment used in PeerDAS. We will show that its security follows from the security
of the commitment scheme we have defined in Section 3.1. Intuitively, we split the data into multiple
blobs and apply the erasure code and commitment from Section 3.1 to each blob individually. Then, we
think of the extended blobs as being the rows of a matrix, and open the resulting codeword column-wise,
see Figure 3.
Erasure Code. Consider the codeRSrow introduced in Section 3.1 and let ℓ ∈ N be a parameter. Intuitively,
ℓ corresponds to the number of rows in the matrix, or equivalently, the number of blobs into which we
split the data. We define our new codeRS full by describing how data m ∈ ZDkℓ

q is encoded:

1. The data is naturally split into ℓ blobs m1, . . . ,mℓ, where mi ∈ ZDk
q for all i ∈ [ℓ].

2. Each blob is individually encoded using the code RSrow. As a result, we obtain extended blobs
c1, . . . , cℓ, where ci ∈

(
ZD

q

)n for all i ∈ [ℓ].

3. The jth symbol of the codeword is (c1,j , . . . , cℓ,j) ∈
(
ZD

q

)ℓ, where ci,j ∈ ZD
q denotes the jth cell of

ci.

11

Extended Blob 0 Cell (0, 0) Cell (0, 1) Cell (0, 2) Cell (0, 3) Cell (0, 4) Cell (0, 5) Cell (0, 6) Cell (0, 7)

Extended Blob 1 Cell (1, 0) Cell (1, 1) Cell (1, 2) Cell (1, 3) Cell (1, 4) Cell (1, 5) Cell (1, 6) Cell (1, 7)

Extended Blob 2 Cell (2, 0) Cell (2, 1) Cell (2, 2) Cell (2, 3) Cell (2, 4) Cell (2, 5) Cell (2, 6) Cell (2, 7)

Extended Blob 3 Cell (3, 0) Cell (3, 1) Cell (3, 2) Cell (3, 3) Cell (3, 4) Cell (3, 5) Cell (3, 6) Cell (3, 7)

Symbol 0 Symbol 1 Symbol 2 Symbol 3 Symbol 4 Symbol 5 Symbol 6 Symbol 7

Figure 3: Visualization of the encoding of data in PeerDAS. The figure shows a codeword of the code
RS full. Data is split into multiple chunks, which are called blobs. Each blob (a row of shaded cells) is
then individually extended as shown in Figure 2. The resulting extended blobs are treated as the rows of a
matrix, and the columns are the symbols of the resulting codeword.

As a result, we have
RS full ⊂

((
ZD

q

)ℓ
)n

.

That is, a codeword consists of n many symbols, where each symbol consists of ℓ cells, each containing D
many field elements. We visualize a codeword ofRS full in Figure 3.

Remark 5 (Interleaved Code). For readers familiar with coding theory or with the notation in [HASW23],
the codeRS full is the interleaved code of codeRSrow. Using their notation: RS full = RSrow

≡ℓ.

Erasure Code Commitment Scheme. Next, we specify the erasure code commitment scheme CCfull used
in PeerDAS. We do so by invoking the erasure code commitment scheme CCrow that we have defined in
Section 3.1:

• CCfull.Setup = CCrow.Setup

• CCfull.Com(ck,m)→ (com, St) for m ∈ ZDkℓ
q

1. Parse m = m1 ∥ · · · ∥mℓ with mi ∈ ZDk
q for all i ∈ [ℓ].

2. For each i ∈ [ℓ], compute (comi, Sti) := CCrow.Com(ck,mi).
3. Set com = (com1, . . . , comℓ) and St := (St1, . . . , Stℓ).

• CCfull.Open(ck, St, j)→ π for j ∈ [n]

1. Parse St = (St1, . . . , Stℓ).
2. For each i ∈ [ℓ], compute πi := CCrow.Open(ck, Sti, j).
3. Set π := (π1, . . . , πℓ).

• CCfull.Ver(ck, com, j, m̂, π)→ b for j ∈ n and m̂ ∈
(
ZD

q

)ℓ

1. Parse com = (com1, . . . , comℓ), π = (π1, . . . , πℓ), and m̂ = (m̂1, . . . , m̂ℓ).
2. If CCrow.Ver(ck, comi, j, m̂i, πi) = 1 for all i ∈ [ℓ], set b := 1. Otherwise, set b := 0.

Correctness of CCfull follows directly from correctness of CCrow.
Security Analysis. We now show position-binding and code-binding of CCfull. For that, we will use our
results on position-binding and code-binding of CCrow, see Lemmata 2 and 3.

Lemma 4 (Position-Binding of CCfull). If CCrow is position-binding, then CCfull is position-binding. Concretely,
for any PPT algorithm A, there is a PPT algorithm B with T(B) ≈ T(A) and

Advpos-bind
A,CCfull

(λ) ≤ Advpos-bind
B,CCrow

(λ).

12

Proof. Intuitively, breaking position-binding of CCfull means breaking position-binding of CCrow for at
least one of the rows. More formally, consider an adversary A breaking position-binding of CCfull.
This means that on input ck ← CCfull.Setup(1λ), A outputs a commitment com = (com1, . . . , comℓ), an
index j ∈ [n], and two symbols with corresponding opening proofs. Namely, it outputs a symbol m̂ =
(m̂1, . . . , m̂ℓ) ∈

(
ZD

q

)ℓ with an opening proof π = (π1, . . . , πℓ) and a symbol m̂′ = (m̂′
1, . . . , m̂

′
ℓ) ∈

(
ZD

q

)ℓ

with an opening proof π′ = (π′
1, . . . , π

′
ℓ). Assuming that A breaks position-binding, we know that (1)

m̂ ̸= m̂′, and (2) that both opening proofs verify with respect to the commitment com. Let i ∈ [ℓ] be the
minimal index such that m̂i ̸= m̂′

i. This index exists because of (1). Because of (2) and the definition
of CCfull.Ver, we know that CCrow.Ver(ck, comi, j, m̂i, πi) = 1 and CCrow.Ver(ck, comi, j, m̂

′
i, π

′
i) = 1. This

suggests the following reduction B running in the position-binding game of CCrow:

1. Get as input a commitment key ck and run A on input ck.

2. When A outputs a commitment com, an index j, and m̂, π, m̂′, π′ as above, abort if m̂ = m̂′.

3. Otherwise, let i ∈ [ℓ] be the minimal index such that m̂i ̸= m̂′
i as above.

4. Output (comi, j, m̂i, πi, m̂
′
i, π

′
i).

As CCfull.Setup = CCrow.Setup, the reduction perfectly simulates the position-binding game of CCfull for
A. By the discussion above, if A breaks position-binding of CCfull, then B breaks position-binding of
CCrow. Finally, the running time of B is dominated by that of A, finishing the proof of the claim.

Lemma 5 (Code-Binding of CCfull). If CCrow is code-binding, then CCfull is code-binding. Concretely, for any
PPT algorithm A, there is a PPT algorithm B with T(B) ≈ T(A) and

Advcode-bind
A,CCfull

(λ) ≤ Advcode-bind
B,CCrow

(λ).

Proof. Similar to the proof of Lemma 4, the proof easily follows from the observation that to break
code-binding of RS full, there needs to be at least one row for which the adversary already breaks
code-binding of CCrow. We now make this more formal. Let A be an adversary against code-binding of
RS full as in the lemma. By definition of the code-binding game, A gets as input ck← CCfull.Setup(1λ). It
then outputs a commitment com = (com1, . . . , comℓ), a set of positions J ⊆ [n], and symbols with opening
proofs for these positions. Concretely, it outputs (m̂j , πj)j∈J , where m̂j = (m̂1,j , . . . , m̂ℓ,j) ∈

(
ZD

q

)ℓ

and πj = (π1,j , . . . , πℓ,j) for every j ∈ J . Conditioned on A breaking code-binding, we know from the
definition that the following two properties hold:

• No Consistent Codeword. For any c ∈ RS full, we denote by ci,j ∈ ZD
q the cell in the ith row and

jth column. Namely, we have c = (c1, . . . , cn) ∈
((

ZD
q

)ℓ
)n

and cj = (c1,j , . . . , cℓ,j) ∈
(
ZD

q

)ℓ for
each j ∈ [n]. With this notation, there is no c ∈ RS full such that ci,j = m̂i,j for all (i, j) ∈ [ℓ] × J .
By definition of RS full, this implies that there is at least one i ∈ [ℓ] such that there is no ci =
(ci,1, . . . , ci,n) ∈ RSrow with ci,j = m̂i,j for all j ∈ J . Let i∗ ∈ [ℓ] denote the minimal such i.

• Openings Verify. For every j ∈ J , we have CCfull.Ver(ck, com, j, m̂j , πj). By definition of CCfull.Ver,
this means that in particular, CCfull.Ver(ck, comi∗ , j, m̂i∗,j , πi∗,j) for every j ∈ J .

We now use this observation to design a reduction B running in the code-binding game of CCrow:

1. Get as input a commitment key ck and run A on input ck.

2. When A, terminates, it outputs a commitment com, a set J ⊆ [n], and (m̂j , πj)j∈J as above.

3. If i∗ as above does not exist, then abort. Otherwise, output (comi∗ , J, (m̂i∗,j , πi∗,j)j∈J).

As CCfull.Setup = CCrow.Setup, B perfectly simulates the code-binding game of CCfull for A. Note that the
check in Step 3 can be performed efficiently by B, e.g., by interpolating a polynomial from the first Dk
points and checking the remaining points on that row for consistency. Hence, reduction B has about the
same running time asA. Using our observation above, we also get that ifA breaks code-binding of CCfull,
then B does not abort in Step 3, and hence breaks code-binding of CCrow.

13

We can now combine Lemmata 3 and 5 to obtain code-binding of CCfull and Lemmata 2 and 4 to
obtain position-binding of CCfull. With that, we our main result, stated next.

Corollary 1 (Security of CCfull). If the d-BSDH assumption holds relative to PGGen, for d as in Lemma 4, then
CCfull is position-binding, and code-binding in the algebraic group model. Concretely, for any PPT algorithmA and
any algebraic PPT algorithm A′, there are PPT algorithms B and B′ with T(B) ≈ T(A), T(B′) ≈ T(A′), and

Advpos-bind
A,CCfull

(λ) ≤ Advd-BSDH
B,PGGen(λ) and Advcode-bind

A′,CCrow
(λ) ≤ Advd-BSDH

B′,PGGen(λ).

Concrete Instantiation. Finally, we specify how parameters are set in PeerDAS:

• Curve and Field. The pairing-friendly curve BLS12-381 is used. This means that elements in the
field Zq are of size 32 bytes.

• Size of a Cell. A cell consists of D = 64 evaluations.

• Size of a Blob. A blob consists of 4096 field elements, or equivalently, of k = 64 cells. This means a
blob represents 217 bytes of data.

• Size of an Extended Blob. An extended blob consists of 8192 field elements or of n = 2k = 128 many
cells. This means an extended blob has size 218 bytes.

• Number of Blobs. The concrete setting of ℓ depends on networking conditions and is still subject to
ongoing research.

4 Optimizations
In the final section of this document, we discuss common optimizations that are used when implementing
PeerDAS. We discuss their efficiency as well as their implications for security. Concretely, we discuss
three optimizations: (1) how to compute the commitment and all openings efficiently in one shot, (2) how
to verify multiple proofs at once efficiently using batch verification, and (3) how to efficiently reconstruct
data and opening proofs if a large enough subset of openings is given. We emphasize that only (2) impacts
security, as security only depends on how proofs are verified. To show that security is preserved when
using (2), we prove a simple lemma showing that batch verification is as good as individual verification.

4.1 Computing Commitment and All Openings
In PeerDAS, the party computing the extended blob from the data also needs to compute all KZG opening
proofs. It turns out that computing all opening proofs at once can be done more efficiently than computing
each opening proof individually. This has been observed in 2020 by Feist and Khovratovich [FK20], who
introduced a technique to pre-compute all KZG opening proofs of a polynomial of degree d over an
evaluation domain of d roots of unity3 in only Θ(d log d) steps and storing d elements in G1 during the
computation. Naively, computing every opening proof individually would require Θ(d2) steps.

In [FK20, Section 3], Feist and Khovratovich also introduced an extended algorithm to precompute
KZG multiproofs for cosets. As openings in PeerDAS are KZG multiproofs, this is what is used for PeerDAS.
Recall that H is the group of roots of unity of size Dn. Also, recall that a cell consists of D evaluations
of a polynomial over a coset of a subgroup of size D. The polynomial has degree less than Dk, and
there are n such cells in an extended blob, containing all evaluations over H in reverse bit ordering. By
using Feist and Khovratovich’s algorithm, one can compute all KZG multiproofs for an extended blob in
Θ(log(Dk − 1)Dk) steps.

3This has been further formalized in [FK23].

14

4.2 Optimizations for Verification
When using the KZG-based commitment scheme we have presented for data availability sampling, clients
need to verify multiple openings. Instead of verifying each opening individually, it has been shown that
one can efficiently batch these verification checks [KDF22]. In this way, one can verify a set of openings
using an equation that only involves two pairing evaluations, which significantly reduces the work load
for clients. In the following, we first derive and motivate this batched verification equation. Then, we
prove a lemma stating that using it preserves security: if the batched verification equation holds, then all
openings individually verify as well.
The Setting: Verifying Multiple Openings. We consider the matrix explained in Section 3.2, Figure 3.
Now, suppose Alice holds the commitment com = (com1, . . . , comℓ), and she is given L cells4 m̂k ∈ ZD

q

and openings πk ∈ G1 for each k ∈ {0, . . . , L− 1}. Namely, opening πk is a KZG multiproof for the cell
m̂k in row5 ik and column jk with respect to commitment comik

. Alice’s goal is to verify all of these
openings efficiently, i.e., she only wants to accept if all of the openings are valid. To recall, verifying an
opening πk individually, Alice would check the equation

e (πk, [Zk(τ)]2) = e (comik
− [Ik(τ)]1, [1]2) , (3)

where Ik(X) (computed from m̂k) and Zk(X) are the interpolation polynomial and vanishing polynomial
of the cell, respectively. Naively, this costs evaluating 2L pairings.
The Batched Verification Equation. To derive a more efficient way of checking Equation (3) for each k, we
first recall the structure of the vanishing polynomials. Namely, recall that a row in Figure 3 corresponds
to evaluations of a polynomial over a group of roots of unity of size D · n with generator ω, and each cell
is associated with a coset of a subgroup of size D. The vanishing polynomial for this coset has the form
Zk(X) = XD − ωskD, where sk is determined by the column index jk ∈ [n] and can be thought of as
identifying the coset. Using this definition of Zk and rewriting Equation (3), we get

e
(
πk, [τD]2

)
− e

(
πk, [ωskD]

)
= e (comik

− [Ik(τ)]1, [1]2) .

Rearranging, and noting that ω is public, we get

e
(
πk, [τD]2

)
= e

(
comik

− [Ik(τ)]1 + ωskDπk, [1]2
)
.

We observe that now on both sides of the equation, one of the operands for the pairing is independent of
k. In particular, this means that if Equation (3) holds for every k, then we know that for every coefficient
r ∈ Zq , we have

L−1∑
k=0

rk · e
(
πk, [τD]2

)
=

L−1∑
k=0

rk · e
(
comik

− [Ik(τ)]1 + ωskDπk, [1]2
)
. (4)

This is not the final batched verification equation, but it is already mathematically equivalent to it.

Remark 6. To make this point clear, we now only know that if the individual equations hold, then
Equation (4) holds for a random r. We will see in our analysis that it follows from Schwartz-Zippel that
the converse direction also holds with overwhelming probability. This means that checking Equation (4)
is as good as verifying the proofs individually.

Coming back to Equation (4), we use the bilinearity of the pairing, and get

e

(
L−1∑
k=0

rkπk, [τD]2

)
= e

(
L−1∑
k=0

rkcomik
−

[
L−1∑
k=0

rkIk(τ)
]

1

+
L−1∑
k=0

(rkωskD)πk, [1]2

)
. (5)

4Recall that a cell consists of D field elements, see Section 3.1.
5In the commitment in Section 3.2, we always open entire columns, but the batched verification works for every subset of cells of

the matrix.

15

This is the batched verification equation6, which allows us to verify the L openings using just two pairings.
Notably, the random coefficient r is derived using a random oracle H : {0, 1}∗ → Zq to make verification
deterministic. That is, Alice would compute

r := H
(
L, (comi)ℓ

i=1, (ik, jk, m̂k, πk)L−1
k=0

)
.

Security Implications. Mathematically, the batched verification equation does not imply that all
individual verification equations hold. That is, if Alice is unlucky, the random coefficient r could be a bad
coefficient for which even non-verifying openings make the batched verification equation accept. We
show that this happens with negligible probability. In other words, no efficient adversary can find an
input for which the batched verification equation holds but the individual openings do not all verify.
This justifies that using the batched verification equation is secure.

Lemma 6 (Batched Verification Preserves Security). Let H : {0, 1}∗ → Zq be a random oracle. Consider any
PPT algorithm A in the following experiment:

1. Generate a commitment key ck← KZG.Setup(1λ, 1d) for d = kD − 1 as in Section 3.1.

2. Run A with access to H on input ck.

3. Obtain from A an integer L, a commitment com = (com1, . . . , comℓ), and cells with indices and openings
(ik, jk, m̂k, πk)L−1

k=0 .

4. Output 1 if and only if Equation (5) holds but there is a k ∈ {0, . . . , L− 1} such that Equation (3) does not
hold for k.

Then, if QH denotes the number of queries A makes to H and Lmax denotes the maximum L submitted to H, the
probability that the game outputs is at most QH(Lmax − 1)/q.

Proof. We define the event BadQuery if there is a random oracle query H
(
L, (comi)ℓ

i=1, (ik, jk, m̂k, πk)L
k=1
)

returning a field element r such that with these inputs and this coefficient Equation (5) holds but there
is a k ∈ {0, . . . , L− 1} such that Equation (3) does not hold for k. Clearly, if the game outputs 1, then
BadQuery must occur. Hence, we can focus on bounding the probability of BadQuery. We now consider
a fixed query and later do a union bound over all QH queries. For this fixed query, we now consider
Equation (5) over the field Zq . Namely, we let ci ∈ Zq be such that [ci]1 = comi for all i ∈ [ℓ] and Qk ∈ Zq

be such that [Qk] = πk for all k ∈ {0, . . . , L− 1}. Then, if Equation (5) holds, we get(
L−1∑
k=0

rkQk

)
· τD =

L−1∑
k=0

rkcik
−

L−1∑
k=0

rkIk(τ) +
L−1∑
k=0

rkωskDQk.

This is a polynomial equation in the variable r. More precisely, define the polynomial Ψ ∈ Zq[X] of
degree L− 1 with

Ψ(X) =
L−1∑
k=0

(τDQk + Ik(τ)− cik
− ωskDQk) ·Xk = (QkZk(τ)− (cik

− Ik(τ))) ·Xk.

Then we know that Ψ(r) = 0 if Equation (5) holds. Note that if there is a k such that Equation (3) does not
hold for k, then Ψ is not the zero polynomial. Also, Ψ is fully determined by the inputs to the random
oracle query and the system parameters. Therefore, the probability that Ψ(r) = 0 is at most (L− 1)/q by
the Schwartz-Zippel lemma. In combination, this means that the probability that BadQuery occurs for
this fixed query is at most (Lmax − 1)/q, concluding the proof via a union bound over all queries.

6There are further optimizations possible to compute the terms
∑L−1

k=0 r
kcomik

and [
∑L−1

k=0 r
kIk(τ)]1. For example, to

compute
∑L−1

k=0 r
kcomik

using less group operations, one can first add up all coefficients for a commitment over the field, and
then use a single multi-scalar multiplication.

16

4.3 Efficient Reconstruction of Data
As long as at least half of the cells in an extended blob (see Figure 2) are given, one can recover the entire
extended blob, and thus the original data, using polynomial interpolation. Here, we explain how this
can be done efficiently.
Setting. Let m̂1, . . . , m̂n ∈ ZD

q be the cells of an extended blob (see Section 3.1). We consider the scenario
where some cells (m̂j)j∈J , J ⊂ [n] are not available. Given the properties of erasure codes, we can recover
them as soon as |J | ≤ n− k = k by computing the unique polynomial P (X) ∈ Zq[X] of degree at most
Dk − 1 that interpolates the available cells (m̂j)j /∈J . In this section, we describe an optimized way of
doing so, which is used in PeerDAS, see [But18].
Algorithm. Letting H denote the group of roots of unity of size nD, which is used as the evaluation
domain for the extended blob, the algorithm works as follows:

1. Compute Z(X) with deg(Z) ≤ |J |, the vanishing polynomial of all roots of unity in H whose
evaluations are missing, in evaluation form.

2. Define the vector e ∈
(
ZD

q

)n such that ej = 0 if j ∈ J (i.e., if the cell is missing) and ej = m̂j

otherwise, where ej ∈ ZD
q .

3. Compute the polynomial E(X) with deg(E) ≤ nD − 1, which interpolates vector e over H.

4. Compute the evaluations of E(X)Z(X) over H. This can be done efficiently because E(X) and
Z(X) are given in evaluation form.
Claim. We have P (x)Z(x) = E(x)Z(x) for all x ∈ H.
Indeed, for all points in H, for which evaluations are missing, both sides of the equation are zero.
For the ones that are available, P agrees with e by definition.

5. Compute P (X)Z(X) in coefficient form. To do so, note that deg(PZ) ≤ nD − 1, and so we can
recover P (X)Z(X) from the evaluations of E(X)Z(X) in H.

6. Divide P (X)Z(X) by Z(X). This last step can be done inefficiently in the coefficient form, or
efficiently the following way:

(a) Choose some β such that βH is a coset of H7.
(b) Evaluate P (X)Z(X) over βH.
(c) Evaluate Z(X) over βH.
(d) Divide P (X)Z(X) by Z(X) in evaluation form over βH.
(e) Interpolate P (X) over βH.

Finally, note that all evaluations and Interpolations can be done efficiently using (inverse) FFTs over
groups of roots of unity or cosets thereof.

7β must be an element in a group of roots of unity Ĥ such that H ⊂ Ĥ and β /∈ H.

17

References
[ASBK21] Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi. Fraud and data

availability proofs: Detecting invalid blocks in light clients. In Nikita Borisov and Claudia
Díaz, editors, Financial Cryptography and Data Security - 25th International Conference, FC 2021,
Virtual Event, March 1-5, 2021, Revised Selected Papers, Part II, volume 12675 of Lecture Notes in
Computer Science, pages 279–298. Springer, 2021. (Cited on page 2.)

[BFL20] Balthazar Bauer, Georg Fuchsbauer, and Julian Loss. A classification of computational
assumptions in the algebraic group model. In Daniele Micciancio and Thomas Ristenpart,
editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages 121–151. Springer, Heidelberg,
August 2020. (Cited on page 4.)

[BFL+22] Vitalik Buterin, Dankrad Feist, Diederik Loerakker, George Kadianakis, Matt Garnett, Mofi
Taiwo, and Ansgar Dietrichs. EIP-4844: Shard Blob Transactions. https://eips.ethereum.
org/EIPS/eip-4844, 2022. Accessed: 2024-07-10. (Cited on page 2.)

[But18] Vitalik Buterin. Reed-Solomon erasure code recovery
in n*log2̂(n) time with FFTs. https://ethresear.ch/t/
reed-solomon-erasure-code-recovery-in-n-log-2-n-time-with-ffts/3039, 2018.
Accessed: 2024-06-27. (Cited on page 17.)

[D’A23] Francesco D’Amato. From 4844 to Danksharding: a path to scaling Ethereum DA. https:
//ethresear.ch/t/from-4844-to-danksharding-a-path-to-scaling-ethereum-da/
18046, 2023. Accessed: 2024-06-27. (Cited on page 2.)

[Eth24a] Ethereum. Ethereum Consensus Specs - Commit 54093964c95f. https://github.com/
ethereum/consensus-specs/commit/54093964c95fbd2e48be5de672e3baae8531a964,
2024. Accessed: 2024-08-09. (Cited on page 1, 2.)

[Eth24b] Ethereum. Ethereum Consensus Specs - EIP 7594. https://github.com/ethereum/
consensus-specs/tree/dev/specs/_features/eip7594, 2024. Accessed: 2024-06-24.
(Cited on page 2.)

[FK20] Dankrad Feist and Dmitry Khovratovich. Fast amortized Kate proofs. https://github.
com/khovratovich/Kate/blob/master/Kate_amortized.pdf, 2020. Accessed: 2024-06-27,
Commit f4e5472. (Cited on page 14.)

[FK23] Dankrad Feist and Dmitry Khovratovich. Fast amortized KZG proofs. Cryptology ePrint
Archive, Report 2023/033, 2023. https://eprint.iacr.org/2023/033. (Cited on page 14.)

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992
of LNCS, pages 33–62. Springer, Heidelberg, August 2018. (Cited on page 5.)

[GPS08] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptographers.
Discret. Appl. Math., 156(16):3113–3121, 2008. (Cited on page 4.)

[HASW23] Mathias Hall-Andersen, Mark Simkin, and Benedikt Wagner. Foundations of data availability
sampling. Cryptology ePrint Archive, Paper 2023/1079, 2023. https://eprint.iacr.org/
2023/1079. (Cited on page 2, 3, 6, 7, 8, 12.)

[KDF22] George Kadianakis, Ansgar Dietrichs, and Dankrad Feist. A Universal Ver-
ification Equation for Data Availability Sampling. https://ethresear.ch/t/
a-universal-verification-equation-for-data-availability-sampling/13240, 2022.
Accessed: 2024-06-24. (Cited on page 4, 15.)

[KZG10a] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to
polynomials and their applications. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477
of LNCS, pages 177–194. Springer, Heidelberg, December 2010. (Cited on page 3, 6.)

18

https://eips.ethereum.org/EIPS/eip-4844
https://eips.ethereum.org/EIPS/eip-4844
https://ethresear.ch/t/reed-solomon-erasure-code-recovery-in-n-log-2-n-time-with-ffts/3039
https://ethresear.ch/t/reed-solomon-erasure-code-recovery-in-n-log-2-n-time-with-ffts/3039
https://ethresear.ch/t/from-4844-to-danksharding-a-path-to-scaling-ethereum-da/18046
https://ethresear.ch/t/from-4844-to-danksharding-a-path-to-scaling-ethereum-da/18046
https://ethresear.ch/t/from-4844-to-danksharding-a-path-to-scaling-ethereum-da/18046
https://github.com/ethereum/consensus-specs/commit/54093964c95fbd2e48be5de672e3baae8531a964
https://github.com/ethereum/consensus-specs/commit/54093964c95fbd2e48be5de672e3baae8531a964
https://github.com/ethereum/consensus-specs/tree/dev/specs/_features/eip7594
https://github.com/ethereum/consensus-specs/tree/dev/specs/_features/eip7594
https://github.com/khovratovich/Kate/blob/master/Kate_amortized.pdf
https://github.com/khovratovich/Kate/blob/master/Kate_amortized.pdf
https://eprint.iacr.org/2023/033
https://eprint.iacr.org/2023/1079
https://eprint.iacr.org/2023/1079
https://ethresear.ch/t/a-universal-verification-equation-for-data-availability-sampling/13240
https://ethresear.ch/t/a-universal-verification-equation-for-data-availability-sampling/13240

[KZG10b] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Polynomial Commitments. https:
//cacr.uwaterloo.ca/techreports/2010/cacr2010-10.pdf, 2010. Accessed: 2024-07-10.
(Cited on page 4.)

[Lip22] Helger Lipmaa. A unified framework for non-universal SNARKs. In Goichiro Hanaoka,
Junji Shikata, and Yohei Watanabe, editors, PKC 2022, Part I, volume 13177 of LNCS, pages
553–583. Springer, Heidelberg, March 2022. (Cited on page 5.)

[LPS23] Helger Lipmaa, Roberto Parisella, and Janno Siim. Algebraic group model with oblivious
sampling. In Guy N. Rothblum and Hoeteck Wee, editors, TCC 2023, Part IV, volume 14372 of
LNCS, pages 363–392. Springer, Heidelberg, November / December 2023. (Cited on page 5.)

[NB23] Valeria Nikolaenko and Dan Boneh. Data availability sampling and danksharding: An
overview and a proposal for improvements. https://a16zcrypto.com/posts/article/
an-overview-of-danksharding-and-a-proposal-for-improvement-of-das/, 2023. Ac-
cessed: 2024-08-14. (Cited on page 3.)

19

 https://cacr.uwaterloo.ca/techreports/2010/cacr2010-10.pdf
 https://cacr.uwaterloo.ca/techreports/2010/cacr2010-10.pdf
https://a16zcrypto.com/posts/article/an-overview-of-danksharding-and-a-proposal-for-improvement-of-das/
https://a16zcrypto.com/posts/article/an-overview-of-danksharding-and-a-proposal-for-improvement-of-das/

	Introduction
	History and Ethereum's Roadmap
	Outline of this Document

	Preliminaries
	Reed-Solomon Codes and Roots of Unity
	Groups and Assumptions
	The Algebraic Group Model
	KZG Commitments and Multiproofs over Cosets
	Erasure Code Commitments and Data Availability Sampling

	The Erasure Code Commitment used in PeerDAS
	Warm-Up: Single Row Commitment Scheme
	The Full Commitment Scheme

	Optimizations
	Computing Commitment and All Openings
	Optimizations for Verification
	Efficient Reconstruction of Data

