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Abstract. Attribute-based encryption (ABE) is a powerful primitive that has found
applications in important real-world settings requiring access control. Compared
to traditional public-key encryption, ABE has established itself as a considerably
more complex primitive that is additionally less efficient to implement. It is therefore
paramount that the we can simplify the design of ABE schemes that are efficient,
provide strong security guarantees, minimize the complexity in their descriptions and
support all practical features that are desirable for common real-world settings. One
of such practical features that is currently still difficult to achieve is multi-authority
support. Motivated by NIST’s ongoing standardization efforts around multi-authority
schemes, we put a specific focus on simplifying the support of multiple authorities in
the design of schemes.
To this end, we present ISABELLA, a framework for constructing pairing-based
ABE with advanced functionalities under strong security guarantees. At a high level,
our approach builds on various works that systematically and generically construct
ABE schemes by reducing the effort of proving security to a simpler yet powerful
“core” called pair encodings. To support the amount of adaptivity required by multi-
authority ABE, we devise a new approach to designing schemes from pair encodings,
while still being able to benefit from the advantages that pair encodings provide.
As a direct result of our framework, we obtain various improvements for existing
(multi-authority) schemes as well as new schemes.
Keywords: attribute-based encryption · multi-authority attribute-based encryption

1 Introduction
Attribute-based encryption (ABE) [SW05] is a powerful primitive that enables more
fine-grained enforcement of access control to data. As a cryptographic tool that allows
this functionality, ABE has found many applications in practical settings [GPSW06a,
ETS18, VAH23, LVV+23], including in cloud settings [KL10, SRGS12, WMZV16] and the
Internet of Things [ETS18, VA22]. Most notably, Cloudflare is using Portunus, an access
control system based on ABE, on a global scale to terminate TLS connections [LVV+23].
Furthermore, standardization institutes such as NIST [Nat23] and ETSI [ETS18] have
recently put efforts in standardizing ABE and its multi-authority variant [Cha07]. Despite
the ample research in the modular design of efficient single-authority ABE with strong
security guarantees, the design of multi-authority ABE schemes with similarly desirable
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features is still a tedious and difficult task. As a result, few such schemes exist at all, and
all of them have limitations, either with respect to security or practicality.

Pair encodings. The most promising frameworks that can be leveraged to simplify
the design of pairing-based ABE with advanced functionalities such as multi-authority
ABE are based on pair encoding schemes (PES) [Att14, Wee14] with algebraic security
notions [AC17b]. Roughly, pair encodings consider “what happens in the exponent” of
pairing-based ABE schemes. They allow us to abstract away the complexities of concrete
instantations of schemes in pairing groups, and instead focus on the algebraic “core” of
the scheme. The most broadly applicable security notion is the symbolic property, first
introduced by Agrawal and Chase (AC17) [AC17b] to cover their class of pair encodings,
which we refer to as PES-AC17. They show that the symbolic property essentially applies
to any scheme that is not algebraically broken. Several frameworks are centered around pair
encodings [Att14, Wee14, CGW15, AC16, ABGW17], and more specifically the symbolic
property and the AC17 framework [Att19, Amb21, VB24], but the ones that we use as a
more direct starting point for our work are

• FABEO [RW22], which focuses on efficiently achieving the strongest notion of security
for ABE in the generic group model [Sho97];

• Ven23 [Ven23], which focuses on achieving more advanced functionalities such as
multi-authority support;

• ACABELLA [dlPVA23], which focuses on unifying various algebraic security notions
in pair encodings and provides an automated tool that helps proving the symbolic
property.

The gap. Despite the practical features provided by these frameworks, there remains a
gap to be bridged. The most notable shortcoming of FABEO and ACABELLA is that
they consider the more restricted class of pair encodings PES-AC17. So far, there exist
no practical multi-authority schemes that can be covered by this class of PES-AC17. To
address this gap, the Ven23 framework extends the class of encodings, which we refer
to as PES-Ven23, to cover many existing multi-authority ABE, as well as several new
multi-authority schemes. Additionally, the compiler provided in the Ven23 framework
supports the use of full-domain hashes, which is necessary to construct practical (multi-
authority) schemes. However, the main drawback of this framework is that the schemes
generated with the compiler are proven secure in a weaker security model that captures
only static attackers. Moreover, this staticity is also present in the functionality of the
compiler itself. Although it is explained how this functional staticity can be addressed in
practical applications by making the functionality more adaptive, its security arguments
do not extend to the adaptive setting.

The ISABELLA framework. We present ISABELLA, which is a framework based
on pair encodings and the symbolic property, which unifies and extends the above three
frameworks to simplify the design of ABE schemes with advanced functionalities under
strong security guarantees. We achieve this by extending the class PES-Ven23 even further,
allowing more efficient instantiations of almost all existing multi-authority ABE schemes
via our compiler. Additionally, the ISABELLA compiler does support functional adaptivity
by design. Not only does this functional adaptivity allow us to support multi-authority
schemes in a fully adaptive setting, but it also allows us to support other types of functional
adaptivity, which can be considered an additional feature of our compiler. At the “security
core” of our framework, we show that the symbolic property for our class of schemes implies
the required security notions to achieve strong security in the generic group model for the
compiled schemes. For completeness, we also prove security for our extension of the Ven23
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compiler in the weaker model that they consider. By proving security using two different
proof methodologies, we obtain security guarantees against multiple different types of
attackers, which strengthens the confidence in the schemes’ security. To simplify proving
the symbolic property, we also extend the ACABELLA tool to cover PES-Ven23 and our
class of PES. In this way, we can improve existing ABE schemes as well as design new
schemes with advanced functionalities required for practice with high security guarantees.

New results that follow from ISABELLA. Using the ISABELLA compiler, we obtain
the following results. For all PES for which the symbolic property was previously proven
[AC17b, Att19, Amb21, VA22, VA23, Ven23, VB24], we obtain new security-efficiency
trade-offs. More specifically, compared to the Ven23 compiler, we obtain stronger notions
of security for all PES-Ven23 schemes, and more efficient instantiations for all multi-
authority schemes. Compared to the AC17 compiler [AC17b], we obtain schemes that are
at least a factor 2 more efficient in all metrics, at the cost of requiring the generic group
model for the security proofs. Furthermore, we show that, for many pair encoding schemes,
we can support a functional adaptivity that is valuable for the scalability of schemes in
practice. An example of functional adaptivity is that keys can be updated for newly added
attributes. Lastly, we introduce two new multi-authority schemes, both of which provide a
combination of practical features that has not been achieved before.

1.1 Technical overview of our contributions
We give a technical overview of our contributions. To this end, we first establish some
(informal) definitions and notations.

Attribute-based encryption and predicates. Attribute-based encryption is a type of
public-key encryption that associates the keys and ciphertexts with predicates. A predicate
P : X ×Y → {0, 1} takes as input a ciphertext predicate x ∈ X and a key predicate y ∈ Y
and evaluates to 1 (“true”) if the key predicate satisfies the ciphertext predicate. The idea
is that the ciphertext for x can be decrypted by a secret key for y if P (x, y) = 1, and that
the message remains computationally hidden if not.

Pairing groups. Many ABE schemes use pairings, which is a map e : G×H→ GT over
three groups G,H,GT of prime order p, with generators g ∈ G, h ∈ H, such that for all
x, y ∈ Zp, we have e(gx, hy) = e(g, h)xy.

Starting point: PES-AC17 and PES-Ven23. As a starting point for our framework,
we consider PES-AC17. These pair encodings are defined by the master key α, common
variables b = (b1, ..., bn), the key encodings (r, k(α, r, r̂, b), y) and the ciphertext encodings
(s, c(s, ŝ, b), x), where b, r, r̂, s, ŝ denote vectors of variables and k and c denote vectors of
polynomials over the other variables. Compiling the encodings into an ABE scheme results
in a scheme that has master public keys, keys and ciphertexts of the following form:

MPK =
(
e(g, h)α, gb) , SKy =

(
hr, hk(r,̂r,α,b)) ,

CTx =
(
M · e(g, h)αs, gs, gc(s,̂s,b)) ,

where M is the message. Although this results in schemes with a structure that can
support some basic functionality, it does not allow us to generate the secret keys by
multiple authorities. Roughly, each authority should be able to hold its own copy of a
master key α. To enable the support of multiple authorities, the Ven23 compiler extends
PES-AC17 to include extra master-key variables α and extra ciphertext encodings c′
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instantiated in GT :

MPK =
(
e(g, h)α, gb) , SKy =

(
hr, hk(r,̂r,α,b)) ,

CTx =
(
M · e(g, h)cM , gs, gc(s,̂s,b), e(g, h)c′(s,̃s,α)) ,

where cM denotes a polynomial over α, s, s̃. This new structure allows us to construct
multi-authority schemes. In fact, many existing multi-authority schemes have a similar
structure [LW11, RW15, DKW23a, Ven23]. The drawback is that most multi-authority
schemes require a linear number of ciphertext elements in GT . Because group elements
and operations in GT are often several factors more expensive than in G or H [dlPVA22],
this significantly impacts the efficiency of multi-authority schemes compared to their
single-authority counterparts.

The ISABELLA class of PES. To address this, we extend the class of PES-Ven23 even
further. In particular, we add extra public-key variables called “semi-common” variables
β and add extra ciphertext components c′′ in the source group G.

MPK =
(
e(g, h)α, gb, gβ

)
, SKy =

(
hr, hk(r,̂r,α,β,b)),

CTx =
(
M · e(g, h)cM , gs, gc(s,̂s,b), e(g, h)c′(s,̃s,α,β), gc′′(s,̃s,β)).

To improve the efficiency of the aforementioned schemes, the idea is roughly that the
ciphertext components generated via c′ are moved to c′′. To enable this, we require new
proof techniques, which we will explain in more detail later, in Sections 3 and 5.

Adding more (advanced) functionalities. Equipped with a “core compiler” for ABE,
we can extend it with more advanced functionalities. Like the Ven23 compiler, we also
allow that certain “variables” are generated implicitly via full-domain hashes, and we also
facilitate a more flexible instantiation of the pair encodings in the groups. For example,
we may want to put gs in H and hk(r,̂r,α,β,b) in G to speed up decryption [dlPVA22].
Furthermore, hashes allow the support of multiple advanced features, such as unlimited
use of attributes (in the sense that any string can be used as attribute). Hashes are also
an important key ingredient to the stronger notion of decentralized multi-authority ABE
[LW11], which allows authorities to act more independently and autonomously than in
schemes that require interaction among the authorities [Cha07, CC09, MJ18]. To facilitate
this, we define mappings that specify for all encoding variables and polynomials in which
group they are instantiated, and for the variables in particular, whether they are generated
via a full-domain hash.

Adaptively generating keys. To support multiple authorities, we need to be able to
split the public keys and secret keys, so that each authority can manage its own part of the
MPK (and associated MSK) and generate secret keys for its own “part of the key predicate
y”. Although Ven23 does give concrete ideas on how to model this from a functional point
of view for a specific class of multi-authority ABE, the framework does not describe how
the encodings interact with ABE syntax for such advanced functionalities. Furthermore,
the secret keys are split in partial secret keys after being compiled. From a technical point
of view, this does not allow us to prove adaptive security, because the attacker cannot
adaptively request partial secret keys from different authorities. Hence, we devise a new
approach that allows us to prove adaptive security and gives us a concrete (yet generic)
syntax that interacts naturally with existing syntax such as that of multi-authority ABE.
Our technique is also more generically applicable to any predicate P , whereas the Ven23
framework only considers multi-authority ciphertext-policy ABE.
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Split-predicate mold. Our new approach considers the use of what we call a “split-
predicate mold”, which we can place on top of the PES to show that it satisfies a certain
structure. Roughly, the split-predicate mold consists of three components: a description of
how the inputs to the public-key and (secret-)key encodings are split in parts, a description
of how the outputs, i.e., the encodings, are split in parts, and how the split inputs interact
with the split outputs. In addition, we require an auxiliary input for the key generation,
which connects the keys together, so that they cannot be combined with “other keys”
(which would break the collusion resistance property). To enable that keys are strongly
connected, the auxiliary input can be used to generate implicitly key variables from a
full-domain hash. In fact, we require that the only key variables r that are shared among
different splits of the original key must be generated via a hash in the compiled scheme.
Further, the split keys need to be completely disjoint and, when “aggregated” for the
original predicate, they should be identical, i.e., symbolically indistinguishable, from the
original encodings (for correctness and security).

Splitting the key predicates in sub-predicates. The inputs that need to be split
include key predicates y and their associated spaces Y , which can be sets, Boolean formulas
or something else, and thus, do not have a fixed structure that we can exploit. Therefore,
we formalize the notion of “sub-predicate spaces” and “aggregation function”, which
roughly describe the properties that the sub-predicate spaces need to have to be suitable
for our mold and compiler. A description of the sub-predicate spaces and aggregation
functions need to be given as part of the mold. As part of our framework, we give several
examples of commonly used predicates and sub-predicate spaces that can be used to
achieve functionalities such as multi-authority ABE, but also other types of functionalities.

The ISABELLA compiler. Armed with a definition for PES, mappings that specify
how the variables are instantiated in the pairing groups and a split-predicate mold that
describes how the predicates and encodings are split, we can now define our compiler in
such a way that the syntax matches the split-predicate mold. Roughly, the setup and
key generation algorithms are split in an analogous way as the encodings, as well as their
inputs. Hence, if the predicate for the original PES is a “multi-authority predicate”, i.e.,
specifies how authorities are related to the predicate, and the key generation algorithms
take as input a sub-predicate that is a valid sub-predicate for the multi-authority predicate,
then we obtain a multi-authority scheme. Since the naming conventions of our algorithms
are generic and therefore do not match any existing ABE syntax, we further illustrate
how our syntax corresponds to existing syntax. We give a generic description of how
multi-authority ABE can be constructed using the ISABELLA compiler, and specifically,
how it interacts with multi-authority ABE syntax. We also show how it could interact
with other types of functionality.

Functional adaptivity. An advantage of our generic formalizations is that they can also
be applied for other purposes than the support of multiple authorities. For example, it can
be used to generate keys of single-authority schemes in which y is an attribute set in an
“attribute-wise” fashion rather than in one query. We call such functionalities “functional
adaptivity”, as it enables users to request keys more adaptively than schemes typically
allow (both from a functional and security point of view). Such features are beneficial
in practice, because it allows users to update their keys rather than requesting entirely
fresh keys for each update of the key predicate. To the best of our knowledge, the only
examples of ABE schemes that could already support such a feature are multi-authority
ABE schemes, and in almost all cases except one (that we know of) [DKW23b], the security
proofs do not model this adaptivity.
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Proving security. To generically prove security for schemes generated with the IS-
ABELLA compiler, we use the special selective symbolic property (SSSP). SSSP is an
adaptation of the symbolic properties in PES-AC17 and PES-Ven23 adapted to our class
of PES. From this property, we obtain two security results with our compiler: fully adap-
tive security in the generic group model (GGM) [Sho97] and static security from q-type
assumptions. In the fully adaptive model, the attacker gets to make queries for the key and
ciphertext predicates after observing public keys, secret keys and the challenge ciphertext.
Static attackers, on the other hand, need to commit to the key or ciphertext predicates
(or both) before even seeing any public keys. (Similarly, we distinguish between static and
adaptive corruptions of public keys, which is a security feature that multi-authority ABE
provides.)

Security in the fully adaptive setting is generally harder to achieve, and therefore, to
allow for the best efficiency, we restrict to adversaries in the GGM that only exploit the
group structure. We then also prove static security in the standard (or random oracle)
model1 under q-type assumptions. This provides additional confidence: any attacker that
might be able to attack the schemes (because we do not model security against it) would
need to be very sophisticated. On the one hand, it needs to be fully adaptive (exploiting
that it can observe keys and ciphertexts before formulating that it wants to attack a certain
ciphertext predicate). On the other hand, it should also exploit the group structures that
are used when instantiating the scheme rather than the group and pairing operations. (Of
course, attacks on the implementations of schemes provided by our compiler might still be
possible.)

Our proof strategy. Our proof strategy follows closely the structural layers of our
compiler. At the core, we have PES and SSSP, which consider security for the “stripped
down” version of the scheme (that in particular does not consider advanced functionalities).
This allows us to leverage existing results in the field of PES and the symbolic property, and
extend the results to apply to our larger class of schemes. To achieve this, we strengthen
the relationship between the symbolic property and the algebraic notions of security that
are used in GGM proofs. We use this “security core” in our proofs by reducing the
schemes, provided by our compiler and the split-predicate mold, to itself, but as if no
mold was applied at all (or alternatively, a trivial mold that splits everything in one part).
Intuitively, this part of the reduction uses that the split keys (generated using split inputs)
are indistinguishable from keys that were generated directly via the PES (instantiated
with a trivial mold and using the original predicate). Furthermore, full-domain hashes (if
present) are modeled as random oracles which allows us to program the components that
were generated by it in the same way we would have if they were not generated via a hash.
To enable flexible instantiation of the PES in the groups, we use techniques based on the
security models in which we prove security.

Leveraging linear algebra. Our “security core”, consisting of PES and SSSP, is largely
powered by linear algebra. At a high level, SSSP states that there must exist some vectors
and matrices (with some additional properties) that, when substituted into the polynomials
in the pair encodings, evaluate to all-zero vectors. (The only exception is cM , which should
be nonzero.) This property is applied in its literal sense in the security reduction (to a
variant of decisional bilinear Diffie-Hellman). Roughly, the substitution of vectors and
matrices corresponds to the programming of the components associated with the variables
(additionally using terms of the security assumption). The symbolic property ensures that
components associated with the key and ciphertext polynomials can be programmed by
canceling out the components that cannot be programmed using the assumption.

1The random oracle model (which is a strictly milder heuristic than the generic group model [ZZ23]) is
required only if the scheme uses a full-domain hash function.
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For the GGM proofs, we require another algebraic security notion. In particular,
this algebraic notion states that cM should not be recoverable from key and ciphertext
encodings for y and x for which the predicate is false by computing linear combinations
over products of those encodings. In fact, this property should hold, even when considering
multiple key predicates y1, ..., ynk

(to model security against colluding users). To prove
multi-key security, FABEO gives a stronger notion of security for the single-key setting
that implies security in the multi-key setting. ACABELLA later shows that the multi-key
security property is implied by a slightly stronger version of the symbolic property for
PES-AC17 (which considers security in the single-key setting). It is also shown that the
variant of the symbolic property is significantly weaker than the FABEO security property.
In fact, a similar such property adapted to our class of schemes would be too strong to
prove it for the schemes considered in this paper or in Ven23. Hence, we extend the
ACABELLA results to the class of PES-Ven23 and ours and prove that our version of
SSSP implies multi-key (and multi-ciphertext) security.

ACABELLA extension. In addition to SSSP being broadly applicable, another ad-
vantage is that its algebraic character can be exploited in the design of automated tools.
ACABELLA [dlPVA23] provides a tool that generates, on input a description of a pair
encoding scheme, a “proof” for SSSP. A proof here consists of the aforementioned sub-
stitution vectors and matrices. We extend the tool to cover PES-Ven23 and our class of
PES. To enable this, we again leverage linear algebra. Because some of the requirements
for our definition of SSSP are more abstract than that of PES-AC17, we provide new
techniques to compute the proofs. The code of the ACABELLA extension is available at
https://github.com/lincolncryptools/ISABELLA.

Improving existing schemes and designing new schemes. As a direct result of
our framework, we improve (on) existing schemes in the efficiency and security. We also
include two new pair encoding schemes that can be instantiated with our compiler that
improve on the state of the art in the field of multi-authority ABE.

1.2 Roadmap

We start by providing necessary preliminaries in Section 2, where we define (multi-
authority) attribute-based encryption and predicates. In Section 3 we give our class of
pair encoding schemes PES-ISA and several notions of security: the special symbolic
property (Section 3.1), multi-key and multi-ciphertext security (Section 3.2) and security
in the matrix notation (Section 3.3). We also extend the two latter ones to capture
corruptions (Section 3.4) and show they are equivalent to the special symbolic property
(Section 3.5). Each of these notions has their advantage in security proofs. In particular,
our computer-assisted proofs use the matrix notation, which we explain in Section 3.6,
with a more detailed description and additional proofs in Appendices A and B.

In Section 4 we give our compiler. When instantiating a PES-ISA in a pairing group,
several choices have to be made to ensure correctness and security. Therefore, we first
discuss distributions of encodings over the pairing group and how to use full-domain
hashes (Section 4.1). Further, since PES-ISA is static, we define a split-predicate mold
(Section 4.2) to capture more advanced schemes that support functional adaptivity. Putting
these together, we get the final compiler (Section 4.3). Section 5 is dedicated to the security
of the compiler. We first provide a detailed description of the security model (Section 5.1),
capturing different levels of adaptivity. Then we give the theorem statements for static
security under q-type assumptions (Section 5.2) and adaptive security in the generic group
model (Section 5.3), with full proofs in Appendices C and D.

https://github.com/lincolncryptools/ISABELLA
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In Section 6 we show how to use our compiler to construct multi-authority ABE
(Section 6.1) and schemes with functional adaptivity (Section 6.2), e.g., those supporting
attribute-wise or label-wise key generation and negations. In addition to that, we elaborate
in Appendix E how exisiting pair encoding schemes can be instantiated using our compiler
and we give new pair encoding schemes and instantiations in Appendix F. Finally, we
give a concrete efficiency comparison for decentralized ciphertext-policy ABE schemes in
Appendix G.

2 Preliminaries
2.1 Notation
We use λ to denote the security parameter. A negligible function parametrized by λ is
denoted as negl(λ). If an element x is chosen uniformly at random from a finite set S, then
we denote this as x ∈R S. If an element x is produced by running algorithm Alg, then we
denote this as x← Alg. We use Zp = {x ∈ Z | 0 ≤ x < p} for the set of integers modulo
p. For integers a < b, we denote [a, b] = {a, a + 1, ..., b− 1, b}, [b] = [1, b] and [b] = [0, b].
We use boldfaced variables A and v for matrices and vectors, respectively, where (A)i,j

denotes the entry of A in the i-th row and j-th column, and (v)i denotes the i-th entry of
v. We use Ai to denote the i-th row of matrix A. We denote a : A to substitute variable
a by a matrix or vector A. We define 1d1×d2

i,j ∈ Zd1×d2
p as the matrix with 1 in the i-th

row and j-th column, and 0 everywhere else, and similarly 1d1
i and 1d2

i as the row and
column vectors with 1 in the i-th entry and 0 everywhere else. If some algorithm yields no
output or outputs an error message, then we use ⊥ to indicate this. We use a∥b to indicate
that two strings a and b are concatenated. We use span(v) = {

∑
i ci(v)i | ∀i[ci ∈ Zp]}

and span(A) = {
∑

i ciAi | ∀i[ci ∈ Zp]} to denote the span of vector v and matrix A,
respectively. We use Ker(A) = {w | A ·w⊺ = 0} to denote the kernel of matrix A. If we
want to construct a vector from elements in some set S, then we denote this as (S), e.g.,
({x1, ..., xn}). A special variant of this is a truncated vector, i.e., let v denote a vector and
I is a set of indices of v, then vI = ({(v)i | i ∈ I}) denotes the vector truncated to the
indices in I. Similarly, we define xI = {xi | i ∈ I}.

2.2 Access structures
We represent access policies A by linear secret sharing scheme (LSSS) matrices, which
support monotone span programs [Bei96].

Definition 1 (Access structures represented by LSSS [GPSW06b]). An access structure
is represented as a pair A = (A, ρ) such that A ∈ Zn1×n2

p is an LSSS matrix, where
n1, n2 ∈ N, and ρ is a function that maps its rows to attributes in the universe. Then, for
some vector v = (s, v2, ..., vn2) ∈R Zn2

p , the i-th share of secret s generated by this matrix
is λi = Aiv⊺, where Ai denotes the i-th row of A. In particular, if S satisfies A, then
there exist a set of rows Υ = {i ∈ [n1] | ρ(i) ∈ S} and coefficients εi ∈ Zp for all i ∈ Υ
such that

∑
i∈Υ εiAi = (1, 0, ..., 0), and by extension

∑
i∈Υ εiλi = s, holds. If S does not

satisfy A, there exists w = (1, w2, ..., wn2) ∈ Zn2
p such that Aiw⊺ = 0 for all i ∈ Υ [Bei96].

2.3 Pairings (or bilinear maps)
We define a pairing to be an efficiently computable map e on three groups G,H and GT of
prime order p, so that e : G×H→ GT , with generators g ∈ G, h ∈ H is such that (i) for all
a, b ∈ Zp, it holds that e(ga, hb) = e(g, h)ab (bilinearity), and (ii) for ga ̸= 1G, hb ≠ 1H, it
holds that e(ga, hb) ̸= 1GT

, where 1G′ denotes the unique identity element of the associated
group G′ (non-degeneracy). We denote by PG = (G,H,GT , p, e, g, h) the description of
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a pairing group and by PGGen a PPT algorithm that on input the security parameter
λ, returns a pairing group PG. Furthermore, we use the implicit representation used for
group elements [EHK+13]. In particular, we use [x]G′ to denote the element (g′)x, where
g′ ∈ G′ is the generator of some group G′ ∈ {G,H,GT }.

2.4 Attribute-based encryption
We define ABE for predicates following [Att14, AC17b].

Predicate family. A predicate P : X ×Y → {0, 1} is a map over the ciphertext attribute
space X and the key attribute space Y such that, for x ∈ X , y ∈ Y , P (x, y) = 1 if and only
if the predicate evaluates to true for x and y.

Syntax. An attribute-based encryption scheme ABE for a predicate P : X × Y → {0, 1}
over a message space M consists of four algorithms:

• Setup(λ) → (MPK, MSK): On input the security parameter λ, this probabilistic
algorithm generates the master public key MPK and the master secret key MSK.

• KeyGen(MSK, y)→ SKy: On input the master secret key MSK and some y ∈ Y , this
probabilistic algorithm generates a secret key SKy.

• Encrypt(MPK, x)→ (CTx, K): On input the master public key MPK and some x ∈ X ,
this probabilistic algorithm generates a ciphertext CTx and an encapsulated key K.

• Decrypt(MPK, SKy, CTx)→ K: On input the master public key MPK, the secret key
SKy, and the ciphertext CTx, if P (x, y) = 1, then it returns K. Otherwise, it returns
⊥.

Note that we are using a KEM-style definition from which one can generically construct
an encryption scheme.

Correctness. For all M ∈M, x ∈ X , and y ∈ Y with P (x, y) = 1,

Pr[(MPK, MSK)← Setup(λ); (CTx, K)← Encrypt(MPK, x) :
Decrypt(MPK, KeyGen(MSK, y), CTx) ̸= K] ≤ negl(λ).

Security. We define the security game capturing security against chosen-plaintext attacks
(CPA) as in [AC17b]. The game IND-CPA between a challenger and an adversary A proceeds
as follows:

• Setup phase: The challenger runs Setup(λ) to obtain MPK and MSK, and sends
the master public key MPK to A.

• First query phase: A queries secret keys for y ∈ Y, and obtains SKy ←
KeyGen(MSK, y) in response.

• Challenge phase: A specifies some x∗ ∈ X such that for all y in the first key query
phase, we have P (x∗, y) = 0, and sends y to the challenger. The challenger flips a
coin, i.e., δ ∈R {0, 1}, computes (CTx∗ , K0)← Encrypt(MPK, x∗) and K1 ∈R K, and
sends the ciphertext (CTx∗ , Kδ to A.

• Second query phase: This phase is identical to the first query phase, with the
additional restriction that the adversary can only query y ∈ Y such that P (x∗, y) = 0.

• Decision phase: A outputs a guess δ′ for δ.
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Definition 2 (Security against CPA). Let ABE be an ABE scheme and let A be an
adversary in the above game. We define the advantage of A as

AdvIND-CPA
ABE,A (λ) :=

∣∣∣∣Pr[δ′ = δ]− 1
2

∣∣∣∣ .

We say that ABE is fully secure if all polynomial-time adversaries A have at most a
negligible advantage in this security game, i.e., AdvIND-CPA

ABE,A (λ) ≤ negl(λ).

Similarly, we can define weaker variants of the above definition. In the selective security
model, the adversary commits to the predicate x∗ ∈ X before the Setup phase. In the
co-selective security model, the adversary commits to all y ∈ Y before the Setup phase. In
the static security model, the attacker commits to x∗ ∈ X and all y ∈ Y before the Setup
phase.

2.5 Specific predicate types
Ciphertext-policy and key-policy ABE. A specific instance of ABE is ciphertext-
policy ABE, where the key predicate y is a set of attributes S over attribute universe U ,
and the ciphertext predicate x is an access policy A = (A, ρ), in this work represented as
LSSS matrices (Definition 1), which is known to support all monotone Boolean formulas.
We denote XCP-basic as the basic ciphertext predicate space containing all the tuples
(A, ρ) and YCP-basic as the basic key predicate space containing all S ⊆ U . The dual
variant of CP-ABE, i.e., key-policy ABE (KP-ABE), sets XKP-basic := YCP-basic and
YKP-basic := XCP-basic.

Supporting negations. The type of negations that we support is the same as the
OSWOT-type, which was first proposed by Attrapadung and Tomida [AT20]. This type
of negation is enforced on the value within an attribute type. In particular, a negation
is satisfied by a set S if S contains at least one attribute with the same label as the
negated attribute and none of the values of the attributes with the same label is equal
to the negated attribute. For this predicate, we require the ciphertext space XCP-basic
to be extended with the map ρlab (that maps the rows of the policy matrix to labels),
and the map ρ′ (that specifies for each row whether the attribute is negated or not),
i.e., XCP-not = {(A, ρ, ρ′, ρlab) | (A, ρ) ∈ XCP-basic, ρ′ : [n1] → {0, 1}, ρlab : [n1] → L}. We
extend the sets in YCP-basic with an additional entry in the tuple, i.e., YCP-not = {S |
S ⊆ L × U}. Hence, each attribute in the set is now represented as a pair (lab, att) with
label lab ∈ L and attribute value att ∈ U . We define the predicate on these ciphertext
and key predicate spaces as PCP-not : XCP-not × YCP-not → {0, 1}, where PCP-not(x, y) = 1
if and only if, for Υ = {j ∈ [n1] | (ρlab(j), ρ(j)) ∈ S ∧ ρ′(j) = 1} and Υ = {j ∈ [n1] |
(ρlab(j), ρ(j)) /∈ S ∧ ρ′(j) = 0 ∧ ∃att : (ρlab(j), att) ∈ S}, there exist {εj}j∈Υ∪Υ with∑

j∈Υ∪Υ εjAj = (1, 0, ..., 0).

2.6 Multi-authority ABE
In the multi-authority setting, the Setup is split in two algorithms, where one is run globally
and the other one is run by each authority in the system. Furthermore, each authority
executes the key generation with its own input.

Syntax. A multi-authority ABE scheme MA-ABE for a predicate P : XMA×YMA → {0, 1}
and for authorities A1, . . . ,Anaut such that each authority Ai manages a sub-predicate
space YSA of YMA, consists of five algorithms:
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• GlobalSetup(λ)→ GP: On input the security parameter λ, this algorithm generates
the global domain parameters GP.

• AuthoritySetup(GP)→ (A, MPKA, MSKA): This algorithm takes as input the global
parameters and outputs an authority identifier A and its master public and secret
key.

• KeyGen(A, MSKA, GID, yGID,A) → SKGID,A,yGID,A : This algorithm takes as input an
authority identifier, the authority’s master secret key, a user identifier GID and some
yGID,A ∈ Y. It outputs a secret key SKGID,A,yGID,A for this user.

• Encrypt({Ai, MPKAi}i, x) → (CTx, K): This algorithm takes as input a set of au-
thority identifiers, their master public keys and some x ∈ X . It outputs a ciphertext
CTx and an encapsulated key K.

• Decrypt(GP, {SKGID,Aj ,yGID,Aj
}j∈J ′ , CTx)→ K: This algorithm takes as input a set

of user secret keys issued by authorities J ′ ⊆ [naut] and a ciphertext. If decryption
is successful, then it outputs an encapsulated key K.

Sometimes interaction between authorities is required and the number of authorities
may be fixed in advance.

Extending predicates with multi-authority support. Let AID = {0, 1}∗ be the
set of authority identifiers. We extend the predicate spaces for single-authority schemes
as follows. For the policies, we include the ρ̃ : [n1]→ AID, which maps the rows of the
policy to authority identifiers. For the sets, we extend the attribute representation with an
additional entry for the authority, e.g., (l, att) ∈ S denotes an attribute att in U managed by
authority Al ∈ AID. We prefix the indices of the extended predicate spaces with “MA-”,
e.g., XMA-CP-basic = {(A, ρ, ρ̃) | (A, ρ) ∈ XCP-basic, ρ̃ : [n1] → AID} and YMA-CP-basic =
{S | S ⊆ AID × U}. Subsequently, we define the predicate PMA-CP-basic : XMA-CP-basic ×
YMA-CP-basic → {0, 1} to be PMA-CP-basic((A, ρ, ρ̃),S) = 1 if and only if there exists
Υ = {j ∈ [n1] | (ρ̃(j), ρ(j)) ∈ S} and {εj}j∈Υ such that

∑
j∈Υ εjAj = (1, 0, ..., 0). Note

that our notation implies that all authorities in the system share the same attribute
universe. This is only syntactic: any requirements on the universes managed by the
authorities (e.g., the universes must be disjoint) can be made by restricting the space
YMA-CP-basic. However, note that the schemes provided in this paper do not require this
restriction.

Multi-authority key-policy ABE. We further extend the predicate spaces for KP-ABE
to the multi-authority setting by constructing an AND-statement over policies for each
authority. We denote this as YMA-KP-basic = {{yl}l∈S′

A
| S ′

A = {Al ∈ {0, 1}∗}l∈[naut], yl ∈
YKP-basic} and XMA-KP-basic = {{xl}l∈SA | SA = {Al ∈ {0, 1}∗}l∈[naut], yl ∈ YKP-basic},
and PMA-KP-basic : XMA-KP-basic × YMA-KP-basic → {0, 1} with PMA-KP-basic(x, y) = 1 with
x = {xl}l∈SA and y = {yl}l∈S′

A
, iff SA ⊆ S ′

A and PKP-basic(xl, yl) = 1 for all l ∈ SA.
Intuitively, the key space describes a set of authority-specified policies, and the ciphertext
space describes for which subset of authorities the keys must satisfy the policies.

Security. The security model extends the one for single-authority ABE by additional
oracles to capture the ability to create (and corrupt) authorities. It is in fact very similar
to our general security game in Section 5.1. Similar to standard ABE, the adversary may
have to provide key or ciphertext predicates in advance. In the multi-authority setting,
the adversary may also commit to the set of corrupted authorities. There exist several
naming conventions for this in the literature (cf. e.g., [RW15, AG23]).
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Corruption and its effect on the predicate. Multi-authority ABE typically provides
security against corruption, i.e., if the corrupted authorities and the decryption capabilities
of the generated keys do not yield sufficient knowledge to satisfy the predicate, then the
scheme should still be secure. For example, if we consider the policy att1 ∧ att2 ∧ att3,
where att1 is mapped to authority A1, att2 to A2 and att3 to A3, authority A1 is corrupted
and the adversary has a key for att2, then the message should remain hidden.

3 Our class of pair encoding schemes
Our compiler extends the class of pair encoding schemes covered by the Ven23 compiler to
a broader class of PES which we call PES-ISA. Roughly, the definition of PES is adapted
in such a way that the associated the master public key, the secret keys and the ciphertexts
have the following form:

MPK =
(
e(g, h)α, (g′)b, (g′)β

)
, SKy =

(
(g′)r, (g′)k(r,̂r,α,β,b)),

CTx =
(
M · e(g, h)cM , (g′)s, (g′)c(s,̂s,b), e(g, h)c′(s,̃s,α,β), (g′)c′′(s,̃s,β)),

(where g′ indicates that either g′ = g or g′ = h for each entry of the vector in the exponent).
The associated pair encoding are denoted “in the exponent”, and are supposed to illustrate
the main differences between PES-Ven23 and PES-ISA. Compared to the Ven23 compiler,
ours includes variables β. In contrast to the variables α, these can also occur in the
ciphertext encodings that are instantiated in the source group, whereas the α variables
occur exclusively in the ciphertext encodings that are instantiated in the target group.
More formally, like the α variables, these β variables occur as lone variables in the keys
and as non-lone variables in the ciphertexts. Hence, structurally speaking, the β encodings
are closer to α than to b, and the difference between α and β is mostly syntactical. More
concretely, PES-ISA is defined as follows.
Definition 3 (Our class of pair encoding schemes (PES-ISA)). A pair encoding scheme
ΓPES-ISA for the class of schemes covered by our compiler, and for a predicate P : X ×Y →
{0, 1} and a prime integer p ∈ N, is given by four deterministic polynomial-time algorithms
as described below.

• Param(par)→ (nα, nb, nβ , α, b, β): On input parameters par, the algorithm outputs
nα, nb, nβ ∈ N that specify the number of master key variables, common variables
and semi-common variables, respectively, which are denoted as α = (α1, ..., αnα

),
b = (b1, ..., bnb

) and β = (β1, ..., βnβ
), respectively.

• EncKey(y) → (m1, m2, k(r, r̂, α, β, b)): On input y ∈ Y, this algorithm outputs a
vector of polynomials k = (k1, ..., km3) defined over non-lone variables r = (r1, ..., rm1)
and lone variables r̂ = (r̂1, ..., r̂m2). Specifically, the polynomial ki is expressed as

ki =
∑

j∈[nα]

δ1,i,jαj +
∑

j∈[nβ ]

δ2,i,jβj +
∑

j∈[m2]

δ̂i,j r̂j +
∑

j∈[m1]
k∈[nb]

δ3,i,j,krjbk,

for all i ∈ [m3], where δ1,i,j , δ2,i,j , δ̂i,j , δ3,i,j,k ∈ Zp.

• EncCt(x) → (w1, w2, w′
2, cM , c(s, ŝ, b), c′(s, s̃, α, β), c′′(s, s̃, β)): On input x ∈ X ,

this algorithm outputs a blinding variable cM and three vectors of polynomials
c = (c1, ..., cw3), c′ = (c′

1, ..., c′
w4

) and c′′ = (c′′
1 , ..., c′′

w5
) defined over non-lone

variables s = (s = s0, s1, s2, ..., sw1), lone variables ŝ = (ŝ1, ..., ŝw2) and special lone
variables s̃ = (s̃1, ..., s̃w′

2
). Specifically, the polynomial ci is expressed as

ci =
∑

j∈[w1]
k∈[nb]

η1,i,j,ksjbk +
∑

j∈[w2]

η̂1,i,j ŝj
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for all i ∈ [w3], where η1,i,j,k, η̂1,i,j ∈ Zp, the polynomial c′
i is expressed as

c′
i =

∑
j∈[nα]
j′∈[w1]

η′
1,i,j,j′αjsj′ +

∑
j∈[nβ ]
j′∈[w1]

η′
2,i,j,j′βjsj′ +

∑
j∈[w′

2]

η̂′
i,j s̃j ,

for all i ∈ [w4], where η′
1,i,j,j′ , η′

2,i,j,j′ , η̂′
i,j ∈ Zp, the polynomial c′′

i is expressed as

c′′
i =

∑
j∈[w1]
k∈[nβ ]

η2,i,j,ksjβk +
∑

j∈[w′
2]

η̂2,i,j s̃j ,

for all i ∈ [w5], where η2,i,j,k, η̂2,i,j ∈ Zp, and the polynomial cM is expressed as

cM =
∑

j∈[w′
2]

ζj s̃j +
∑

j∈[nα]
j′∈[w1]

ζ1,j,j′αjsj′ +
∑

j∈[nβ ]
j′∈[w1]

ζ2,j,j′βjsj′ ,

where ζj , ζ1,j,j′ , ζ2,j,j′ ∈ Zp.

• Pair(x, y) → (e′, e′′, E, E): On input x, and y, this algorithm outputs two vectors
e′ ∈ Zw4

p , e′′ ∈ Zw5
p and two matrices E and E of sizes (w1 + 1)×m3 and w3 ×m1,

respectively.
A PES-ISA is correct if, for every x ∈ X and y ∈ Y such that P (x, y) = 1, it holds that
e′c′⊺ + e′′c′′⊺ + sEk⊺ + cEr⊺ = cM .

Remark 1. PES-AC17 and PES-Ven23 are subclasses of our class of PES. In particular,
schemes with α = α, β = ∅, cM = αs and c′ = c′′ = ∅ are also PES-AC17 and schemes
with β = c′′ = ∅ are PES-Ven23.

3.1 The special symbolic property
We introduce a new definition for the special selective symbolic property. Concretely, we
formalize the behavior of the predicate after the corruption of variables.

Corruptable variables and the predicate. Our definition of the symbolic property
supports the corruption of variables by listing a set of corruptable variables. Roughly, the
special symbolic property can be invoked in the security proof, as long as it has been proven
for a set of corruptable variables that contains the subset of corrupted variables in the
security game. Because corruption of the variables often impacts the satisfiability of the
predicate P , we also include a predicate Pcor that is related to the original predicate P and
the corruptable variables. In particular, Pcor, with cor = (ΓPES-ISA, a1, a2, b), expands the
predicate P for scheme ΓPES-ISA with respect to the corruptable variables. For example,
suppose that the keys are generated by two authorities, and the first authority manages
attribute att1 and the second one manages att2. If none of the authorities’ keys are
corrupted, then the predicate P evaluates true on the policy att1 ∧ att2 on any set that
contains both att1 and att2. However, if the first authority’s keys are corrupted, then any
set containing att2 evaluates to true, because the first authority can always generate a key
for att1 if needed. The predicate Pcor expresses this expansion of the predicate P .
Definition 4 (Special selective symbolic property (SSSP) for PES-ISA). A scheme
ΓPES-ISA = (Param, EncKey, EncCt, Pair) for a predicate P : X ×Y → {0, 1} satisfies the
(d1, d2)-selective symbolic property for positive integers d1 and d2 and indices of corruptable
variables a1 ⊊ [nα], a2 ⊊ [nβ ], b ⊊ [nb] and the predicate Pcor that expands the predicate
P with respect to the corruptable variables, if there exist deterministic polynomial-time
algorithms EncB, EncS, and EncR such that for all x ∈ X and y ∈ Y with Pcor(x, y) = 0,
such that we have that



14 ISABELLA: Improving Structures of ABE Leveraging Linear Algebra

• EncB(x, a1, a2, b)→ a1, ..., anα
, b1, ..., bnβ

∈ Zd1
p , B1, ..., Bnb

∈ Zd1×d2
p ;

• EncR(x, y)→ r1, ..., rm1 ∈ Zd2
p , r̂1, ..., r̂m2 ∈ Zd1

p ;

• EncS(x)→ s0, ..., sw1 ∈ Zd1
p , ŝ1, ..., ŝw2 ∈ Zd2

p , s̃1, ..., s̃w′
2
∈ Zp;

such that, if we substitute

ŝi′ : ŝi′ s̃i′′ : s̃i′′ sibj : siBj αl : a⊺
l βl′ : b⊺

l′

αlsi : sia⊺
l βl′si : sib⊺

l′ r̂k′ : r̂⊺k′ rkbj : Bjr⊺k,

for i ∈ [w1], i′ ∈ [w2], i′′ ∈ [w′
2], j ∈ [nb], k ∈ [m1], k′ ∈ [m2], l ∈ [nα], l′ ∈ [nβ ] in

all the polynomials of k and c, c′ and c′′ (output by EncKey and EncCt, respectively),
they evaluate to 0d1 , 0d2 , 0, 0 and 0, respectively, and the polynomial cM to nonzero.
Furthermore,

• for j ∈ a1, j′ ∈ a2, we have aj = bj′ = 0d1 ;

• and for j ∈ b, we have that Bj = 0d1×d2 .

Remark 2. Because the substitution vectors in the SSSP proofs are the same for the c′

and c′′ parts (as well as the α and β parts), we can simply move all polynomials in c′′ to
c′ for the security proofs, and split the two before instantiation with our compiler.

3.2 Multi-key and multi-ciphertext security
We also give more general security definitions for PES-ISA that we use as a foundation
for the security proofs in the generic group model. Our multi-key and multi-ciphertext
definitions are derived from the notion of trivially broken by Agrawal and Chase [AC17b]
and the notions of trivial and collusion security in [dlPVA23]. We start by recalling trivial
security which we then strengthen to multi-key and multi-ciphertext security.

Definition 5 (Trivial security for PES-ISA). We call a PES-ISA for predicate P : X ×Y →
{0, 1} trivially secure if, for all x ∈ X and y ∈ Y with P (x, y) = 0, (w1, w2, w′

2, cM , c(s, ŝ, β, b),
c′(s, s̃, α, β))← EncCt(x), and (m1, m2, k(r, r̂, α, β, b))← EncKey(y), it holds that

e′c′⊺ + e′′c′′⊺ + sEk⊺ + cEr⊺ ̸= cM ,

for all (e′, e′′, E, E) ∈ (Zw4
p ,Zw5

p ,Z(w1+1)×m3
p ,Zw3×m1

p ). This is equivalent to stating that
the span consisting of c′, c′′, all combinations of s and k and all combinations of c and r
does not contain cM .

Definition 6 (Multi-key and multi-ciphertext (MK-MC) security). We call a PES-ISA
for predicate P : X × Y → {0, 1} multi-key and multi-ciphertext secure if, for all nk, nc =
poly(λ), x1, ..., xnc

∈ X and y1, ..., ynk
∈ Y with P (xi, yj) = 0 and

cx1,...,nc
, c′

x1,...,nc
, c′′

x1,...,nc
, sx1,...,nc

,

cM = (cM,x1 , ..., cM,xnc
), ky1,...,nk

, ry1,...,nk
,

obtained by running EncCt(xi), and EncKey(yj) for all i and j and concatenating the
encodings, we have

e′(c′
x1,...,nc

)⊺ + e′′(c′′
x1,...,nc

)⊺

+sx1,...,nc
Ek⊺

y1,...,nk
+ cx1,...,nc

Er⊺y1,...,nk
̸= eMcM

⊺,

for all e′, e′′, E, E and eM (each with entries in Zp).
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We show that considering the listed combinations of key and ciphertext encodings is
sufficient to argue security of PES-ISA. The reason is that products of other combinations,
e.g., common variables and key encodings, are not helping an attacker break the scheme.
We prove this in Section 3.3.

Definition 7 (Strong MK-MC security). We call a PES-ISA for predicate P : X ×
Y → {0, 1} strongly multi-key and multi-ciphertext secure if, for all nk, nc = poly(λ),
x1, ..., xnc ∈ X and y1, ..., ynk

∈ Y with P (xi, yj) = 0 and

cx1,...,nc
, c′

x1,...,nc
, c′′

x1,...,nc
, sx1,...,nc

,

cM = (cM,x1 , ..., cM,xnc
), ky1,...,nk

, ry1,...,nk
,

obtained by running EncCt(xi), and EncKey(yj) for all i and j and concatenating the
encodings, we have

e · pall
⊺ ̸= eMcM

⊺,

for all e ∈ Z|pall|
p , where

pall = α∥c′
x1,...,nc

∥(pcombis \ pspecial),

where

pcombis = {pipj | pi, pj ∈ (1, β, b, sx1,...,nc
, ky1,...,nk

, cx1,...,nc
, c′′

x1,...,nc
, ry1,...,nk

)}

consists of all combinations that can be made and

pspecial = {sjβk | ∀i ∈ [nc], sj ∈ sxi
, βk ∈ β [ ∃i′ ∈ [m3] [ η2,i′,j,k ̸= 0 ∨ η′

2,i′,j,k ̸= 0 ] ] }

consists of all combinations sjβk that do not occur in the ciphertext polynomials.

Note that the pspecial combinations are excluded from the combinations because they
cannot be created once instantiated in the pairing groups with the restrictions we will
pose on the distributions (cf. Section 4.1).

3.3 Security notions in matrix notation
At the core of our security results, we analyze, formalize and systematize the relationship
between the special selective symbolic property and the strong MK-MC security for our
class of schemes. In this way, we can use SSSP to derive security results in multiple security
models. We achieve this by showing that SSSP implies the strong MK-MC security notion.
To prove this, we use the matrix notation proposed in ACABELLA [dlPVA23], which is
used to show that their variant of SSSP implies multi-key security (for one ciphertext)
for the AC17 class of PES. Roughly, the matrix notation allows us to use the strong
relationship between the (column) kernel and the row span of the matrix to argue about
the relationship between SSSP (which is strongly related to the kernel) and strong MK-MC
security (which is strongly related to the row span).

Definition 8 (Matrix notations for all key-ciphertext combinations). For any PES-ISA
for predicate P : X × Y → {0, 1}, we define the vector

pencx,y :=
(
{(c′)i}i∈[w4] ∪ {(c′′)i}i∈[w5] ∪ {sjki}j∈[w1]

i∈[m3]
∪ {rjci}j∈[m1]

i∈[w3]

)
,

for all x ∈ X , y ∈ Y, as well as its matrix decomposition

pencx,y = Mx,y · v⊺
x,y ,
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so that the entries of Mx,y consist of the coefficients

δ1,i,j , δ2,i,j , δ̂i,j , δ3,i,j,k, ζj , ζ1,j,j′ , ζ2,j,j′ ,

η1,i,j,k, η̂1,i,j , η2,i,j,k, η̂2,i,j , η′
1,i,j,j′ , η′

2,i,j,j′ , η̂′
i,j ,

and the entries of vx,y consist of monomials

αjsj′ , βjsj′ , s̃j′ , r̂jsj′ , rjsj′bk, rj ŝj′ .

Both pencx,y and (Mx,y, vx,y) represent all key-ciphertext combinations considered in
the trivial security security definitions.

Lemma 1. Let pencx,y be as in Definition 8. Then, pencx,y represents all key-ciphertext
combinations considered in the trivial and multi-key and multi-ciphertext security definitions,
i.e.,

{e′c′⊺ + e′′c′′⊺ + sEk⊺ + cEr⊺ | (e′, e′′, E, E) ∈ (Zw4
p ,Zw5

p ,Z(w1+1)×m3
p ,Zw3×m1

p )}
= {epenc

⊺
x,y | e ∈ Zw4+w5+(w1+1)m3+w3m1

p }

Proof. The proof in Section 3.2 of [dlPVA23] generalizes naturally to our class of schemes.

In ACABELLA [dlPVA23, §3.2], it is proven that finding a linear combination for
pencx,y that yields some polynomial tv is equivalent to finding a linear combination of the
rows of Mx,y that yields the vector tv such that tv = tv · v⊺

x,y.

Lemma 2. Let pencx,y and (Mx,y, vx,y) be as in Definition 8, let tv be some polynomial
and tv = tv · v⊺

x,y be its decomposition with respect to the vector vx,y. Then the following
two statements are equivalent:

(i) There exists some e ∈ Zw4+w5+(w1+1)m3+w3m1
p such that e · penc

⊺
x,y = tv;

(ii) There exists some e ∈ Zw4+w5+(w1+1)m3+w3m1
p such that e ·M⊺

x,y = tv.

To show that a vector is not in the span of a matrix, we use an important result from
linear algebra, which has been frequently used in the field of ABE [GPSW06b, §A] (and
has been proven in many works before it):

Proposition 1. A vector tv is not in the span of the rows of M if and only if there exists
a vector w such that M ·w⊺ = 0⊺ and tv ·w⊺ ̸= 0.

Although we can use this proposition to prove trivial security (i.e., by considering
the key-ciphertext combinations in matrix notation and subsequently showing that some
vector w exists), we cannot use it to prove strong trivial security, which requires that a
span of vectors cannot overlap the span of the rows of M. Following a similar approach
as ACABELLA, we strengthen the above definition to consider vectors w of a certain
structure. This structure is strongly related to the properties we require from the vectors
and matrices in the special selective symbolic property (Definition 4). In fact, we show
later that the vector w can be directly used to construct a special selective symbolic
property proof.

Definition 9 (Kernel property for MK-MC security). Let x ∈ X and consider for all
y ∈ Y with P (x, y) = 0 the matrix decomposition pencx,y = Mx,y ·v⊺

x,y for some PES-ISA,
where vx,y = vx,y,1∥vx,y,2 is such that the entries of vx,y,1 are of the form αjsj′ , βjsj′ and
s̃j′ and the entries of vx,y,2 are of the form r̂jsj′ , rjsj′bk, rj ŝj′ . Let tv = tvx,y · v⊺

x,y be the
target vector with respect to vx,y. If, for all y ∈ Y , there exist wx,y = wx,y,1∥wx,y,2 (with
|wx,y,1| = |vx,y,2|) such that



Doreen Riepel, Marloes Venema, Tanya Verma 17

• Mx,y ·w⊺
x,y = 0 for all y ∈ Y;

• tvx,y ·w⊺
x,y ̸= 0 for all y ∈ Y;

• wx,y,1 = wx,y′,1 for all y, y′ ∈ Y,

then we say that the PES-ISA satisfies the kernel property for multi-key and multi-
ciphertext security.

Proposition 2. Consider a PES-ISA with the kernel property for multi-key and multi-
ciphertext security (Definition 9). Then the PES-ISA is multi-key and multi-ciphertext
secure (Definition 6).

Proof. The proof is almost identical to the proof of Theorem 2 in ACABELLA [dlPVA23],
except that we also need to prove multi-ciphertext security, and we only require that the
“vx,y,1-part” of wx,y, i.e., wx,y,1, is the same for each x, y. First, we show that we can
construct a matrix decomposition M · v⊺ from the matrix decompositions Mx,y · v⊺

x,y,
as well as the associated target vector tv from tvx,y. (Note that vx,y and vx′,y are
completely disjoint.) Analogously, we can construct a vector w in the kernel of M, from
the vectors wx,y for which it holds that tv ·w⊺ ̸= 0. This can be done in the same way as
in ACABELLA. The only distinction is that we have to prove that we cannot construct
any linear combination of cM,xi

. To do this, we argue that the vector w that we construct
from all wx,y can be used to construct a vector wxi that proves that there exists no linear
combination of cM,x1,...,xnc

in which cM,xi is used, i.e., has a nonzero coefficient. We
construct wxi from w by setting the entries associated with vxi′ ,yj for all i′ ≠ i and j to
zero. We then have tv ·w⊺

xi
= tvxi,y ·w⊺

xi,y ̸= 0. In particular, if we decompose cM,xi′

with respect to v for all i′ ̸= i, i.e., tvx′
i
·v⊺ = cM,xi′ , and compute any linear combination

of tvx′
i

and add it to tv, obtaining tv′, then we have tv′ ·w⊺
xi

= tv ·w⊺
xi
̸= 0. Because

tv · v⊺ =
∑

i∈[nc] cM,xi , it therefore holds that tv′ is the decomposition of any linear
combination of cM,x1 , ..., cM,xnc

for which the coefficient for cM,xi is 1. By Proposition
1, it then follows that tv′ is not in the span of M (for any linear combination, for any
xi). Hence, there is no linear combination of cM,x1 , ..., cM,xnc

in the span, and therefore,
it follows with Lemma 2 that the scheme is MK-MC secure.

We also show that other combinations, e.g., key polynomials with key polynomials, do
not affect the security of the PES.

Proposition 3 (Completeness of the kernel property for MK-MC). Consider a PES-ISA
that satisfies the kernel property for multi-key and multi-ciphertext security, and let
{p1, ..., pn} be any set of polynomials over the variables α, β, b, r, r̂, s, ŝ, s̃ and coefficients
in Zp. If none of the monomials of all pi occurs in any of the polynomials in pencx,y for
all x ∈ X , y ∈ Y, then {pi}i does not affect the security of the PES-ISA. More formally,
we say that polynomial {pi}i do not affect the MK-MC security of the PES-ISA if

e ·
(
pencx,y ∪ {pi}i∈[n]

)
̸= eMcM

⊺

for all e ∈ Z|pencx,y|+n
p and eM ∈ Z|cM|

p .

Proof. Let Mx,y ·v⊺
x,y denote the matrix decomposition of pencx,y and let Mp1,...,pn

·v⊺
p1,...,pn

denote the matrix decomposition of ({pi}i∈[n]). Then, because none of the monomials
in p1, ..., pn occur in pencx,y, we know that vx,y and vp1,...,pn are disjoint. We can then
create a matrix decomposition for (pencx,y ∪ {pi}i∈[n]) as(

Mx,y 0
0 Mp1,...,pn

)
·
(

v⊺
x,y

v⊺
p1,...,pn

)
,
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and similarly, we can create some vector w′ by taking wx,y and appending |vp1,...,pn
| zeros.

This is then a proof for the kernel property for MK-MC security as in Definition 9, and
thus, the scheme is MK-MC secure.

Via this proposition, we can prove that none of the combinations in pall (that are
not the combinations of the form pencx,y) affect the MK-MC security of the scheme, and
therefore, that a PES-ISA that satisfies the kernel property fro MK-MC security is strongly
MK-MC secure.

Lemma 3. Consider a PES-ISA that satisfies the kernel property for MK-MC security,
and let the polynomial pi be any of the entries in pall (Definition 7) that does not occur in
pencxi,yj

(for all i ∈ [nc], j ∈ [nk]). Then pi does not affect the security of the PES-ISA.

Proof. We can apply Proposition 3 to prove this. To invoke that proposition, we have
to show that none of the polynomials in pall that do not occur in pencxi,yj

(for all
i ∈ [nc], j ∈ [nk])) have any monomials that also occur in the polynomials in pall. To show
this, we first observe that the monomials in pencxi,yj

are of the form:

αjsj′ , βjsj′ , s̃j′ , r̂jsj′ , rjsj′bk, rj ŝj′ .

For the other polynomials in pall, we can see that the monomials that occur in α do
not occur in the list above. For the other polynomial combinations, we argue with what
monomials they need to be combined in order to obtain a monomial that occurs in the list
above:

• βj would need to be paired with sj′ , and these combinations do exist in pall, but
those combinations of βj and sj′ that do occur in the above polynomials are filtered
out with pspecial;

• bk would need to be paired with rjsj′ , which is not a combination that occurs;

• sj′ would need to be paired with αj , βj , r̂j or rjbk, but these only occur in the key
polynomials, and these pairs are in pencxi,yj

;

• ki would need to be paired with sj′ , but these pairs are in pencxi,yj
;

• ci would need to be paired with rj , but these pairs are in pencxi,yj
;

• c′′
i does not need to be pair, but is part of pencxi,yj

;

• rj would need to be paired with sj′bk or s̃j′ , but these occur only in the ciphertext
polynomials, and these pairs are in pencxi,yj

.

Thus, these polynomials do not affect the security.

Corollary 1. A PES-ISA that satisfies the kernel property for MK-MC security is strongly
MK-MC secure.

Discussion on the MK-MC security property in FABEO. We prove strong MK-
MC security, which is a property for multiple keys and multiple ciphertexts, from the
kernel property for MK-MC security, which is a property for one key and one ciphertext.
This approach is similar to that in FABEO [RW22], in that we also prove security for
multiple keys and multiple ciphertexts from a security notion for one key and one ciphertext.
However, the crucial difference is in that our single-key and single-ciphertext property
considers the kernel of the matrix Mx,y, whereas FABEO considers its span. Additionally,
we consider the existence of some vector in the kernel, whereas FABEO considers the
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absence of any linear combination of the vectors corresponding to αsj (i.e., the products
that do not depend on the randomness r, r̂ introduced in the key).

Although ACABELLA gives a kernel property that implies the span property required
in FABEO, it requires essentially an SSSP proof for each product αsj (including αs itself).
This seems to suggest that the span property in FABEO is significantly stronger than
the kernel property. However, note that ACABELLA does not prove this. In fact, all the
schemes analyzed with the ACABELLA tool satisfy both the weaker kernel property and
the (seemingly stronger) span property, which might mean that, e.g., an SSSP proof for αs
implies an SSSP proof for any product αsj . (Note, however, that this is also not proven in
ACABELLA.) It is thus interesting to briefly consider whether a similar span property
could be leveraged as a starting point to prove strong multi-key and multi-ciphertext
security for PES-ISA.

We argue that a similar span property would be strictly stronger for PES-ISA. A
natural generalization of the span property for PES-AC17 to the class of PES-ISA would
disallow linear combinations of the vectors associated with αisj , βisj and s̃j . We can show
that this property is too strong for most (if not all) multi-authority ABE schemes. In
particular, the ciphertext polynomials c′ and c′′ are linear combinations of these monomials,
and thus, any scheme with c′, c′′ ̸= ∅ (like most existing multi-authority schemes) would
not satisfy the property. Possibly, there exist less straightforward generalizations, e.g., by
considering linear combinations of αisj , βisj and s̃j that contains at least one monomial
that occurs in cM . However, this specific relaxation does not hold for the PESs implied by
most existing multi-authority schemes either, because cM = s̃ and there exists at least one
polynomial in c′ and c′′ in which s̃ occurs with a nonzero coefficient.

3.4 Handling corruption
To prove security against corruptions, we extend the results for the case without corruptions.
To this end, we introduce the notion of corruption-induced key and ciphertext encodings.
These replace the master-key, semi-common and common variables that are corrupted for
integers. For example, if one of the key encoding polynomials is α + rb, and b is corrupted,
the corruption-induced key encoding polynomial would sample an integer for b and move
it to the coefficient space. Note that this also changes the structure of the polynomials,
and therefore expands the potential combinations that can be made in an attack.

Definition 10 (Corruption-induced key and ciphertext encodings). Consider a PES-ISA as
defined in Definition 3 and corruptable variables a1, a2, b. Let Evα : a1 → Zp, Evβ : a2 → Zp

and Evb : b→ Zp be evaluation functions that map all corruptable variables to integers.
Let αhon, βhon, bhon denote the subsets of master-key, semi-common and common variables
α, β, b that are not corrupted. We define the corruption-induced key and ciphertext
encodings as follows.

• CorruptKey(y, a1, a2, b, Evα, Evβ , Evb) → kcor(r, r̂, αhon, βhon, bhon): On input y ∈
Y, corruptable variables a1, a2, b and its evaluation functions Evα, Evβ , Evb, this
algorithm first runs (m1, m2, k(r, r̂, α, β, b)) ← EncKey(y) and then outputs a
vector of corruption-induced key polynomials kcor = (ǩcor,1, ..., ǩcor,m3), where

ǩcor,i = δ0,i +
∑

j∈[nα]\a1

δ1,i,jαj +
∑

j∈[nβ ]\a2

δ2,i,jβj +
∑

j∈[m2]

δ̂i,j r̂j

+
∑

j∈[m1]
k∈[nb]\b

δ3,i,j,krjbk +
∑

j∈[m1]
k∈b

δ̌3,i,j,krj ,

where δ0,i =
∑

j∈a1
δ1,i,jEvα(j) +

∑
j∈a2

δ2,i,jEvβ(j) and δ̌3,i,j,k = δ3,i,j,kEvb(k).
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• CorruptCt(x, a1, a2, b, Evα, Evβ , Evb)→ (cM , ccor(s, ŝ, bhon), c′
cor(s, s̃, αhon, βhon), c′′

cor(s,
s̃, βhon)): On input x ∈ X , corruptable variables a1, a2, b and its corresponding evalua-
tion functions Evα, Evβ , Evb, this algorithm first runs (w1, w2, w′

2, cM , c(s, ŝ, b), c′(s, s̃,
α, β), c′′(s, s̃, β))← EncCt(x) and then outputs a vector of corruption-induced ci-
phertext polynomials (čM , ccor(s, ŝ, bhon), c′

cor(s, s̃, αhon, βhon), c′′
cor(s, s̃, βhon)), where

čcor,i =
∑

j∈[w1]
k∈[nb]\b

η1,i,j,ksjbk +
∑

j∈[w2]

η̂1,i,j ŝj +
∑

j∈[w1]
k∈b

η̌1,i,j,ksj ,

where η̌1,i,j,k = η1,i,j,kEvb(k),

č′
cor,i =

∑
j∈a1

j′∈[w1]

η̌′
1,i,j,j′sj′ +

∑
j∈[nα]\a1

j′∈[w1]

η′
1,i,j,j′αjsj′

+
∑
j∈a2

j′∈[w1]

η̌′
2,i,j,j′sj′ +

∑
j∈[nβ ]\a2

j′∈[w1]

η′
2,i,j,j′βjsj′ +

∑
j∈[w′

2]

η̂′
i,j s̃j ,

where η̌′
1,i,j,j′ = η′

1,i,j,j′Evα(j) and η̌′
2,i,j,j′ = η′

2,i,j,j′Evβ(j),

č′′
cor,i =

∑
j∈[w1]
k∈a2

η̌2,i,j,ksj +
∑

j∈[w1]
k∈[nβ ]\a2

η2,i,j,ksjβk +
∑

j∈[w′
2]

η̂2,i,j s̃j ,

where η̌2,i,j,k = η2,i,j,kEvβ(k), and

čM =
∑

j∈[w′
2]

ζj s̃j +
∑
j∈a1

j′∈[w1]

ζ̌1,j,j′sj′ +
∑

j∈[nα]\a1

j′∈[w1]

ζ1,j,j′αjsj′

+
∑
j∈a2

j′∈[w1]

ζ̌2,j,j′sj′ +
∑

j∈[nβ ]\a2

j′∈[w1]

ζ2,j,j′βjsj′ ,

where ζ̌1,j,j′ = ζ1,j,j′Evα(j) and ζ̌2,j,j′ = ζ2,j,j′Evβ(j).

Remark 3. To simplify the specification of the inputs to the corruption-induced key and
ciphertext encoding algorithms, we use the fact that the original key and ciphertext
encodings are deterministic.

We adjust our security definitions (for trivial and strong MK-MC security) to take into
account the corruption-induced encodings. To ensure secure against any integer that is
sampled for the corrupted variables, we define the maps Evα, Evβ , Evb, which map each
corruptable variable to a value in Zp.

Definition 11 (Trivial security under corruptions for PES-ISA). Let (nα, nb, nβ , α, b, β)←
Param(par) and a1 ⊊ [nα], a2 ⊊ [nβ ], b ⊊ [nb] be indices of corruptable variables with Pcor
being the predicate that expands the predicate P with respect to the corruptable variables.
We call a PES-ISA for predicate P : X × Y → {0, 1} trivially secure under corruption of
a1, a2, b if, for all x ∈ X and y ∈ Y with Pcor(x, y) = 0, and corruption-induced polynomi-
als čM , ccor(s, ŝ, bhon), c′

cor(s, s̃, αhon, βhon), c′′
cor(s, s̃, βhon), kcor(r, r̂, αhon, βhon, bhon), where

Evα, Evβ , Evb map each corruptable variable to a value in Zp, it holds that

e′c′⊺
cor + e′′c′′⊺

cor + sEk⊺
cor + ccorEr⊺ ̸= čM ,
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for all (e′, e′′, E, E) ∈ (Zw4
p ,Zw5

p ,Z(w1+1)×m3
p ,Zw3×m1

p ). This is equivalent to stating that
the span consisting of c′

cor, c′′
cor, all combinations of s and kcor and all combinations of ccor

and r does not contain čM .

Definition 12 (Strong MK-MC security under corruptions). We call a PES-ISA for pred-
icate P : X ×Y → {0, 1} strongly multi-key and multi-ciphertext secure under corruptions,
with corruptable variables a1 ⊊ [nα], a2 ⊊ [nβ ], b ⊊ [nb] and the predicate Pcor that
expands the predicate P with respect to the corruptable variables, if it satisfies the strong
MK-MC security property (Definition 7) for the corruption-induced key and ciphertext
encodings. More formally, we require that, for all nk, nc = poly(λ), x1, ..., xnc

∈ X and
y1, ..., ynk

∈ Y with Pcor(xi, yj) = 0 and

cx1,...,xnc
, c′

x1,...,xnc
, c′′

x1,...,xnc
, sx1,...,xnc

,

cM = (cM,x1 , ..., cM,xnc
), ky1,...,ynk

, ry1,...,ynk
,

which are obtained by running, for all i and j, the corruption-induced ciphertext encodings
CorruptCt(xi, a1, a2, b, Evα, Evβ , Evb), and corruption-induced key encodings CorruptKey(yj ,
a1, a2, b, Evα, Evβ , Evb), where Evα : a1 → Zp, Evβ : a2 → Zp and Evb : b → Zp be evalua-
tion functions that map all corruptable variables to integers, and then concatenating the
resulting encodings, we have

e · pall
⊺ ̸= eMcM

⊺,

for all e ∈ Z|pall|
p , where

pall = αhon∥c′
x1,...,nc

∥(pcombis \ pspecial),

where

pcombis = {pipj | pi, pj ∈ (1, βhon, bhon, sx1,...,nc
, ky1,...,nk

, cx1,...,nc
, c′′

x1,...,nc
, ry1,...,nk

)}

consists of all combinations that can be made and

pspecial = {sjβk | ∀i ∈ [nc], sj ∈ sxi
, βk ∈ βhon [ ∃i′ ∈ [m3] [ η2,i′,j,k ̸= 0 ∨ η′

2,i′,j,k ̸= 0 ] ] }

consists of all combinations sjβk that do not occur in the ciphertext polynomials.

To prove security against corruptions, we use the results from Section 3.3, and combine
it with the insight that all the monomials in the entries in v for which w is 0 are “irrelevant”
to the attacker’s abilities. Roughly, if w is 0 in all entries associated with a corrupted
variable, they do not help the attacker break the scheme, as adding a monomial pi that
contains the corrupted variable to the set of possible combinations will not affect the
security. In particular, because the vector w is 0 in the associated entry, it will also be
orthogonal to pi, where pi = pi · v⊺, and therefore, it will still be in the kernel of the
matrix with pi appended to it in the last row. Therefore, we define our kernel property
for MK-MC security under corruptions as follows.

Definition 13 (Kernel property for MK-MC under corruptions). Consider a PES-ISA
that satisfies the kernel property for MK-MC security (Definition 9). Furthermore, let
a1 ⊊ [nα], a2 ⊊ [nβ ], b ⊊ [nb] and the predicate Pcor that expands the predicate P with
respect to the variables a1, a2, b be such that, for all x ∈ X , y ∈ Y with Pcor(x, y) = 0,
the vector wx,y has the following property. If (vx,y)i is a monomial that is a product of
at least one of the variables, i.e., αj with j ∈ a1, βj with j ∈ a2 or bk with k ∈ b, then
(wx,y)i = 0. We say that the PES-ISA satisfies MK-MC security under corruptions, with
corruptable variables a1, a2, b.
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We formulate the following theorem that we apply in our security proof in the generic
group model in Theorem 4.

Theorem 1. Consider a PES-ISA with the kernel property for MK-MC security under
corruptions. Then it is strongly multi-key and multi-ciphertext secure under corruptions.

Proof. Let pencx,y = Mx,y · v⊺
x,y denote the matrix decomposition for the key-ciphertext

combinations before corruption. Because the PES-ISA satisfies the kernel property for MK-
MC security under corruptions, we know that, for each x and y, there is a vector wx,y in the
kernel of Mx,y such that tvx,y ·w⊺

x,y ̸= 0 and, for each entry i associated with a corruptable
variable (in vx,y), we have that (wx,y)i = 0. Now, we can use wx,y to construct a vector
wx,y,cor for the corruption-induced encodings. First, let pencx,y,cor denote the combinations
of keys and ciphertexts (as in Definition 8) of the corruption-induced key and ciphertext
encodings. We can construct a matrix decomposition pencx,y,cor = Mx,y,cor · v⊺

x,y,cor from
Mx,y and vx,y as follows. First, we split Mx,y and vx,y, without loss of generality, in the
part associated with honestly generated variables and corruptable variables, respectively:

Mx,y =
(
Mx,y,1 Mx,y,2

)
, vx,y =

(
v⊺

x,y,1
v⊺

x,y,2

)
,

so that vx,y,1 consists of non-corruptable variables only and each entry in vx,y,2 consists
of at least one corruptable variable. Note that the associated kernel vector wx,y =
wx,y,1∥wx,y,2 is such that wx,y,2 is all-zero and tvx,y ·w⊺

x,y = tvx,y,1 ·w⊺
x,y,1 ̸= 0 (where

tvx,y = tvx,y,1∥tvx,y,2). We now construct a decomposition Mx,y,2,cor · v⊺
x,y,2,cor from

Mx,y,2 ·v⊺
x,y,2 by treating the corruptable variables as integers (to be moved to the matrix)

and the honestly generated variables as regular variables. In this way, we obtain the matrix
decomposition

pencx,y,cor =
(
Mx,y,1 Mx,y,2,cor

)
·
(

v⊺
x,y,1

v⊺
x,y,2,cor

)
,

where each entry in vx,y,2,cor is of the form 1 or rjsj′ . (This follows from our definition
of corruption-induced encodings.) We similarly construct tvx,y,cor = tvx,y,1∥tvx,y,2,cor.
Finally, we construct wx,y,cor = wx,y,1∥0|vx,y,2,cor|, which is in the kernel of Mx,y,cor and
we have tvx,y,cor ·w⊺

x,y,cor = tvx,y,1 ·w⊺
x,y,1 ̸= 0. Via the MK-MC security results (without

corruption), this proves that the PES-ISA is MK-MC secure.
Then, to achieve strong MK-MC security, we show that this property is complete in a

similar sense as in Proposition 3. This means that we want to prove that the occurrences
of rjsj′ combinations in the critical key-ciphertext combinations that are introduced
with these corruptions do not help the attacker break the scheme. To show this, we
consider a set of polynomials {p1, ..., pn} such that each pi may contain monomials that
also occur in vx,y,2,cor (for any x, y). (In particular, we had already ruled out that pi

can contain monomials in vx,y,1 in the proof of Lemma 3.) Hence, the vector vpi
in the

decomposition pi = pi · v⊺
pi

is not disjoint from vx,y,cor. Without loss of generality, we
can split vx,y,cor = v′

x,y,1∥v′
x,y,2 and vpi = vpi,1∥vpi,2, such that v′

x,y,1 = vpi,1 and v′
x,y,2

and vpi,2 are disjoint. (We split Mx,y,cor and pi accordingly.) Note that v′
x,y,1 contains

entries that also occur in vx,y,2,cor but not in vx,y,1. We can now construct a vector w′

from wx,y,cor, which is orthogonal to the matrix(
M′

x,y,cor,1 M′
x,y,cor,2 0

pi,1 0 pi,2

)
,

by setting w′ = w′
x,y,1∥w′

x,y,2∥0|vpi,2|, where w′
x,y,1 = 0|v′

x,y,1| because of what we have
proven earlier. Thus, similarly as in the proof of Proposition 3, {p1, ..., pn} do not affect
the MK-MC security of the PES-ISA.
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3.5 Equivalence with SSSP
We show that the special selective symbolic property as formulated in Definition 4 and the
kernel property for MK-MC security under corruptions (Definition 13) are equivalent. Our
proof for this is constructive, and can therefore be used to generated proofs for SSSP.

Theorem 2. The following two statements are equivalent.

• The PES-ISA satisfies the special selective symbolic property with corruptable variables
a1 ⊊ [nα], a2 ⊊ [nβ ], b ⊊ [nb] and the predicate Pcor that expands the predicate P
with respect to the corruptable variables.

• The PES-ISA satisfies the kernel property for MK-MC security under corruptions,
with corruptable variables a1, a2, b.

Proof. Proving that the kernel property holds when we have a proof for SSSP is almost
trivial. In particular, we can construct a vector wx,y by taking an SSSP proof and
constructing its associated pencx,y vector and matrix decomposition Mx,y · v⊺

x,y. For each
entry in vx,y, we substitute the vectors and matrices from the SSSP proof. Because the
SSSP proof requires that substituting the key and ciphertext polynomials yields all-zero
vectors, this yields a kernel vector. Because the proof requires that substituting cM with
the appropriate vectors yields a nonzero value, the resulting vector is not orthogonal to
the target vector. Furthermore, because of the requirements that corrupted variables are
substituted with all-zero vectors and matrices, all entries in wx,y that are associated with
corrupted variables are 0. Lastly, the part of wx,y that is associated with the entries αjsj′

and s̃j is the same for each y, because these are generated with only x as input.
Proving that SSSP holds when we have a proof for the kernel property is more intricate.

In particular, we need to prove that the vector wx,y can be decomposed. For this part of
the proof, we use a similar approach as in the proof of Theorem 3 in [dlPVA23]. We first
note that the entries of wx,y that are associated with s̃j directly describe the substitution
values for the lone ciphertext variables s̃j . For the substitution vectors for sj , we assign
1d1

j+1, where d1 = w1 + 1 (i.e., the number of non-lone key variables). The rough idea
behind this is that this vector selects the (j + 1)-th row of the substitution matrices for the
common variables, and the (j + 1)-th entry of the substitution vectors for the master-key
and semi-common variables. Consequently, we encode the substitution vectors for the
master-key and semi-common variables with the entries in wx,y that are associated with
αjsj′ and βjsj′ . That is, the (j′ + 1)-th entry of these vectors is the associated value
in wx,y. Similarly, we can encode the substitution vectors for the lone key variables r̂j

by taking the values in the entries of wx,y that are associated with r̂jsj′ and setting the
(j′ + 1)-th entry of the substitution to be that value.

To encode the substitution matrices for the common variables (as well as the substitu-
tions for the lone ciphertext variables ŝj), we need a more advanced approach. For the
corruptable common variables, we simply output all-zero matrices. For the non-corruptable
variables, we take the following steps. We first consider the matrix decomposition for the
ciphertext encodings c(s, ŝ, b) = Mc · v⊺

c . Let Vc = {vc,1, ..., vc,d2} denote a basis for the
kernel of Mc, and note that d2 (as in the definition of SSSP) is determined by the size
of this kernel. The entries of vc are of the form sjbk and ŝj , meaning that each kernel
vector in Vc has entries associated with ŝj . We construct the substitution vectors for ŝj

by taking the associated entry in the i-th vector vc,i in Vc and setting the i-th entry of
the substitution vector to be that value. For the substitution matrices for the common
variables bk, we extend this process to the two-dimensional setting. The value that we
place in the (j + 1)-th row and i-th column of the substitution matrix for bk is the value
in the entry associated with sjbk of vc,i. Hence, the (j + 1)-th row encodes the basis for
the kernel of Mc associated with sj and bk. Note that this process already ensures that
substituting the ciphertext polynomials in c yields all-zero vectors.
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To encode the substitution vectors for the non-lone key variables rj , we use that the
kernel bases for Mx,y and Mc are closely related. In particular, the rows of Mx,y that are
associated with the key-ciphertext combinations rjci are just “expanded” versions of the
rows in Mc associated with ci. Essentially, Mc is a submatrix of Mx,y. As is proven in
[dlPVA23], this means that the kernel of Mx,y is a subspace of the kernel of the submatrix
of Mx,y implied by Mc, meaning that wx,y can be written as a linear combination of
expanded versions of vc,1, ..., vc,d2 (for each rj). Conversely, we can, for each rj , “cut out
the c-part” from wx,y and write each of these vectors as a linear combination of the basis
vectors vc,1, ..., vc,d2 . The coefficients of this linear combination are exactly the entries
of the substitution vector for rj , where the coefficient for vc,i is the i-th entry of the
substitution vector.

Note that this process yields substitution vectors and matrices for the variables such
that the requirements for SSSP hold. This follows from the same insights as for the other
direction of this proof.

3.6 Computer-assisted proofs with ACABELLA
One of the main advantages of SSSP is that it has been shown, for the more restricted
class PES-AC17, that it can be proven with computer-assisted tools such as ACABELLA
[dlPVA23]. To benefit from this advantage, we extend the ACABELLA tool to compute
substitution vectors and matrices that satisfy the SSSP requirements for PES-ISA (and, by
extension, also PES-Ven23), if such vectors and matrices exist. The code for the extension
is available at https://github.com/lincolncryptools/ISABELLA.

High-level description of our extension. The tool takes as input a JSON file with a
description of the PES-ISA. To generate the required substitution vectors and matrices,
our tool extension performs the following steps:

• It first parses the inputs and verifies the correctness, i.e., whether the input encodings
satisfy the scheme format in Definition 3;

• It then computes the kernel vector w that functions as a proof for the kernel
property for MK-MC (with or without corruptions is determined by whether the
input describes corruptable variables);

• It decomposes the kernel vector w into proofs.

The input file and parser. Compared to the original tool, our JSON input takes one
extra input: the corruptable variables. Furthermore, much like ACABELLA, we have
minimized the required user input. First, the tool does not distinguish between c′ and
c′′, because the substitution vectors for the master-key and semi-common variables are
generated in the same way. Second, the user can give all the public-key variables (master-
key, semi-common, common) in one entry field. The same holds for all the key encodings
(which includes non-lone key variables and key polynomials) and all the ciphertext encodings
(which includes the non-lone ciphertext variables and all the ciphertext polynomials). The
tool derives their role in the PES from this user input. We describe the algorithm for the
parser and correctness checker in Appendix A.1.

Finding a suitable kernel vector. Compared to the proving functionality for PES-AC17,
we have several hurdles to overcome when generating a suitable kernel vector that proves
the MK-MC security property (Definitions 9 and 13). In particular, the requirements for
the kernel vector are, in some sense, a bit more abstract than for PES-AC17. Furthermore,
because we allow corruptions, the requirements are also stronger, i.e., certain entries need

https://github.com/lincolncryptools/ISABELLA
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to be 0. To enable the latter, we adapt the algorithms that ACABELLA provides to
transform a basis into a basis for which the entries for some specified set are set to zero. The
more difficult requirement to overcome is that the part of the vector w that is associated
with αjsj′ , βjsj′ or s̃j′ needs to be the same for each key and ciphertext predicate. In
contrast, for PES-AC17, this part of the vector needs to be (1, 0, ..., 0). This property
is too strong for PES-ISA. (In fact, none of the decentralized schemes in the appendix
or in [Ven23] have this property.) Additionally, because ACABELLA cannot interpret
predicates, nor gets it a second input for the keys, solving this problem is essentially
impossible. To circumvent the problem, our tool extension computes a basis for candidates
for the vector w that are independent of the keys, instead. The motivation for this is
that the substitution vectors for α, β are generated independently of the key inputs y.
Hence, any vector w for which the stronger property holds is also key independent and
must therefore be in this basis. For future work, if ACABELLA is updated with a parser
that does interpret the key and ciphertext predicates, our tool extension can be further
extended to compute a better candidate. Currently, it outputs any kernel vector that is
not orthogonal to the target vector.

Computing a basis for key-independent kernel vectors. The main technical
contribution that our tool extension provides compared to ACABELLA is our algorithm to
compute a basis for suitable kernel candidates for w. As a starting point, we first compute
a basis for M, where M is as in the matrix decomposition of the vector of key-ciphertext
combinations, pencx,y = Mx,y · v⊺

x,y. (Note that we call it M because the x and y are
implicit to the tool.) Then we apply an algorithm to transform the basis into a basis for
the kernel of M whose vectors set the entries associated with corruptable variables to 0.
Using this basis as input, we transform it into a basis that additionally ensures that the
entries associated with αjsj′ , βjsj′ or s̃j′ are key independent. We define a vector to be
key independent if none of the symbols in the entries occur in the keys but not in the
ciphertext. For example, if xatt is a variable that occurs in the keys but not the ciphertexts,
and it occurs in one of the entries, then the vector is key dependent. To transform the
basis, we leverage the following givens: the ciphertext encodings c′ are key independent
by definition, and its matrix decomposition has αjsj′ , βjsj′ and s̃j′ in the entries of the
vector. Furthermore, from some linear algebra arguments, it follows that the basis vectors
of the kernel truncated to the entries associated with αjsj′ , βjsj′ or s̃j′ is in the kernel of
the matrix of this decomposition. This means that we can write each truncated vector as
a linear combination of basis vectors for the kernel of c′, which are key independent by
definition. The goal is then to find linear combinations of the basis vectors that are key
independent, linearly independent and whose span is “complete” in that it describes all
key independent vectors in the kernel. To this end, we leverage the algebraic properties
that the reduced row echelon form (RREF) of a matrix provides us. Specifically, we put
the coefficients of these linear combinations in the matrix (i.e., each row corresponds to a
basis vector of the kernel of the key-ciphertext vector) and deduce the RREF. The nonzero
rows are linearly independent and span the whole kernel. The rough idea is then to remove
all the key dependent rows and let the remaining nonzero rows determine the basis of
key-independent kernel vectors.

Proofs of correctness and completeness of the algorithm. We have proven that
our algorithms are correct and complete, i.e., the steps yield a basis for the kernel of the
matrix for the key-ciphertext combinations, with the additional restriction that the vectors
are key independent and 0 in the corruptable-variable entries. These proofs can be found
in Appendix B.
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Decomposing the suitable kernel vector. Once we have computed a suitable candi-
date for w, we decompose it into a proof for SSSP, using the proof for Theorem 2. This
algorithm is fairly similar to that of ACABELLA for the PES-AC17 class of schemes.

Full descriptions of the algorithms and proofs of correctness. The full descriptions
of the algorithms can be found in Appendix A. The linear-algebra tools that lie at the core
of our algorithms (and subsequently provide proofs of correctness for these algorithms)
can be found in Appendix B.

4 Our generic compiler
Equipped with our “security core”, consisting of PES-ISA and SSSP, we can discuss our
compiler and the missing “ingredients” that we need to support advanced functionalities.
Roughly, when instantiating our class of PES in the groups, the master public key, secret
keys and ciphertexts have the following form:

MPK =
(
e(g, h)α, (g′)b, (g′)β

)
, SKy =

(
(g′)r, (g′)k(r,̂r,α,β,b)) ,

CTx =
(
M · e(g, h)cM , (g′)s, (g′)c(s,̂s,b), e(g, h)c′(s,̃s,α,β), (g′)c′′(s,̃s,β)) .

To support additional functionalities, we use the Ven23 approach to include mappings that
assign groups to the above variables (indicating in which groups they will be instantiated),
and that indicate that certain variables can be generated via full-domain hashes. We
review how this is done in the following subsection. After that, we define the notion of
split-predicate mold to allow for a more adaptive interaction between the user (requesting
a key for y) and the authority (generating the key), before we turn to the final ISABELLA
compiler in Section 4.3.

4.1 Distribution of encodings and FDHs
In order to instantiate the PES-ISA in a pairing group, we need to specify which components
are instantiated in which of the groups. We also want to allow the implicit generation of
variables via full-domain hash functions. In both cases we need to ensure that correctness
is preserved. We model this via distributions, similar to the Ven23 compiler.

Distribution of the encodings. Our compiler takes as input explicit definitions for
the distribution of the encodings over the two source groups G and H when they are
instantiated. Such a distribution should ensure that the correctness of the PES is preserved,
such that the correctness of the ABE scheme is also guaranteed. In particular, for the
correctness of the decryption algorithm, we require that each pair of key and ciphertext
encodings that needs to be paired has one input in G and one in H. Furthermore, to
ensure that encryption can be performed correctly, the master public keys required in
computing a ciphertext encoding element need to be in the same group. We additionally
also have some restrictions on the distributions of s and β. In particular, these need to be
in the same group when they occur in a product in c′′. Note that this last requirement
also ensures that pspecial can be excluded from all products that can be generated by the
attacker in Definitions 7 and 12.

Definition 14 (Distribution of the encodings over G and H). Let ΓPES-ISA = (Param,
EncKey, EncCt, Pair) be a PES-ISA for a predicate P : X × Y → {0, 1} and let G, H
and GT be three groups. Let E = (β, b, r, k, s, c′, c′′) denote the set of possible encodings
and non-lone variables that can be sampled with Param, EncKey and EncCt, and let
E ′ ⊆ E denote its subset containing the master key variables α and ciphertext encodings
c′. Then, we define D : E → {G,H} to be the distribution of Γ over G and H such that
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the correctness of the encoding is preserved. This is the case, if for every x ∈ X and y ∈ Y
such that P (x, y) = 1, it holds that

• for all i ∈ [m3], j ∈ [w1], if D(ki) = D(sj), then Ej,i = 0;

• for all i ∈ [w3], j ∈ [m1], if D(ci) = D(rj), then Ei,j = 0;

• for all k ∈ [nb] for which there exist some i ∈ [w3], j ∈ [w1] with ηi,j,k ̸= 0, we have
D(bk) = D(ci);

• for all k ∈ [nβ ] for which there exist some i ∈ [w5], j ∈ [w1] with η2,i,j,k ≠ 0, we have
D(βk) = D(c′′

i );

• for all j ∈ [w1], k ∈ [nβ ] for which there exists some i ∈ [w5] with η2,i,j,k ̸= 0, we
have D(sj) = D(βk).

Full-domain hashes and random oracles. When variables are generated implicitly by
a full-domain hash (FDH), the description of the scheme needs to specify the hash input
strings. Our definition also allows for explicit domain separation. For the security proofs,
we require that an FDH can be modeled as a random oracle.

Definition 15 (FDH-generated encoding variables). Let ΓPES-ISA = (Param, EncKey,
EncCt, Pair) be a PES-ISA for a predicate P : X × Y → {0, 1}. Let E = (b, r, r̂, s, ŝ, s̃)
denote the set of common and (non-)lone key and ciphertext variables that are generated
with Param, EncKey and EncCt. Then, we define F : E → N× {0, 1}∗ to be the mapping
that assigns whether the encoding variables are generated by an FDH or not, and if so,
what inputs the FDH expect. If not, then the encoding variable is mapped to (0, ϵ) (where
ϵ denotes an empty string). Otherwise, it is mapped to any integer larger than 0. When
the FDH is instantiated, it expects the index of the encoding variable as input, e.g., if
F(batt) = (2, att), then H expects (2, att) as input in the scheme, and outputs and element
in group D(batt). For simplicity of notation, when we only need to select the integer output
in the first entry of the function F , we denote this as F1, e.g., F1(batt) = 2.

To ensure correctness of the scheme, we place some restrictions on the distributions and
full-domain hashes. Like in the Ven23 compiler, we require the distribution over the two
source groups to be such that, for any common variable bk that is provided implicitly by a
hash, and each associated encoding ki and ci, it holds that they are placed in the same
group. Similarly, we can define such a restriction for the other variables. Furthermore,
if a non-lone variable and a common variable occur together in a product in one of the
polynomials, then it cannot be the case that both are generated by an FDH. We formalize
these restrictions as follows.

Definition 16 (Correctness of variables generated by an FDH). Let D be as in Definition
14. Then, the following restrictions should hold. For any common variable bk with
F1(bk) > 0 (i.e., generated implicitly by the full-domain hash), it holds that:

• For all i ∈ [m3], if D(ki) ̸= D(bk), then δi,j,k = 0 for all j ∈ [m1];

• For all i ∈ [w3], if D(ci) ̸= D(bk), then ηi,j,k = 0 for all j ∈ [w1].

For any non-lone variable rj or sj with F1(rj) > 0, F1(sj) > 0, it holds that:

• For all i ∈ [m3], if D(ki) ̸= D(rj), then δi,j,k = 0 for all k ∈ [n];

• For all i ∈ [w3], if D(ci) ̸= D(sj), then ηi,j,k = 0 for all k ∈ [n];

• For all i ∈ [m3], k ∈ [n], if δi,j,k ̸= 0, then F1(bk) = 0;
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• For all i ∈ [w3], k ∈ [n], if ηi,j,k ̸= 0, then F1(bk) = 0.

Furthermore, for each ℓ, ℓ′ ∈ N with ℓ, ℓ′ > 0 and ℓ ≠ ℓ′, we require that all the encodings
that are mapped to it are of the same kind, e.g., common variables, lone key variables,
etc., and that these are mapped to the same group with D.

Default distributions. There are two distributions that work by default: placing all
non-lone variables in G (or H), all the polynomials k, c in H (or G), and the polynomials
c′′ in G (or H). It is easy to see that this satisfies the correctness requirements for the
distributions and the FDHs. If no FDHs are used to generate the common variables, it is
possible to place all ciphertext components (except c′) in G (or H) and all key components
in H (or G).

4.2 Split-predicate mold for PES
To generate the master public keys, secret keys and ciphertext more adaptively, we introduce
the notion of a split-predicate mold for PES. Roughly, the idea is that the master keys, the
secret keys and the ciphertexts can be generated more adaptively if their structure allows
this. This is necessary for, e.g., multi-authority ABE, because the keys are generated for
the subsets of the whole set possessed by the user that are managed by each authority.
Essentially, our definition of split-predicate PES generalizes and formalizes the role of
independent encodings of the Ven23 compiler. We take a more general approach so that
we can support such adaptivity for all algorithms, and additionally, we allow more generic
splits.

Sub-predicate spaces. An important component of our definition for split-predicate
mold is the notion of sub-predicate spaces, which splits the predicates into “shares” to be
taken as input to the split-predicate encodings. Intuitively, we need to be able to split the
key predicate space Y (and any element therein) in “sub-predicate spaces” such that we
can split any key predicate y ∈ Y in “sub-predicates”. These sub-predicates can be used
to reconstruct the original key predicate, and the equivalence of the original predicate is
logically preserved. (That is, it should not be the case that the sub-predicates are more
powerful and trivially enable us to violate the original predicate.) To check whether the
predicate is satisfied for a set of sub-predicates, we define an aggregation function that
reconstructs the predicate y from any set of sub-predicates. More formally, we define this
as follows. Let J denote some (potentially exponentially sized) indexing space. Then, let
{Yj}j∈J ′ denote any subset of sub-predicate spaces for Y, where J ′ ⊆ J is polynomially
sized. Further, we define the aggregation function Aggkey,J ′ :

∏
j∈J ′ Yj → Y, such that

Aggkey,J ′({yj}j∈J ′) = y. Using these functions, we can efficiently verify whether the
ciphertext predicate x is satisfied by a set of key sub-predicates {yj}j∈J ′ by aggregating
to reconstruct y and evaluating P (x, y).

Tying key sub-predicates to one key predicate. The second problem that we need
to address is that we should not be able to aggregate {yj}j∈J ′ for different keys. On a
syntactic level, we ensure this by introducing an “anchor” auxy, which is a set of strings
that is given as auxiliary input to the split version of the key generation. Roughly, auxy

ties together the sub-predicates {yj}j∈J ′ to one split key. Specifically, (auxy, y1) and
(auxy, y2) would be able to aggregate a key to (auxy, y) but (auxy, y1) and (aux′

y, y2) with
auxy ∩ aux′

y = ∅ would not. This trick is similar to how decentralized ABE [LW11] ties the
keys generated at different authorities to the same user and can be seen as a generalization
of it. In particular, auxy can be used as input to generate the values associated with the
non-lone variables, which can be used to tie different instances of the split key generation
to one auxy.



Doreen Riepel, Marloes Venema, Tanya Verma 29

Definition 17 (Split-predicate mold for PES-ISA). Let ΓPES-ISA = (Param, EncKey,
EncCt, Pair) be a PES-ISA for a predicate P : X × Y → {0, 1} and a prime integer p ∈ N.
We define a split-predicate mold for ΓPES-ISA, denoted by SPM[ΓPES-ISA], as follows. First,
we assume that the inputs par can be split in sub-parameters {pari}i∈I such that I denotes
a polynomially sized set of strings, and par can be reconstructed from {pari}i∈I . Second,
we assume that the key predicate y ∈ Y can be split in “sub-predicates” {yj}j∈J ′ where
J ′ ⊆ J is some polynomially sized set of strings, and accordingly Y can be split in sub-
predicate spaces {Yj}j∈J ′ , such that yj ∈ Yj and y can be reconstructed from {yj}j∈J ′ with
some aggregation function Aggkey,J ′ :

∏
j∈J ′ Yj → Y, such that Aggkey,J ′((yj)j∈J ′) = y.

Additionally, we define a mapping AssignMPK : J → P(I), where P(I) = {I ′ ⊆ I} is the
power set of I, which maps every sub-predicate index j ∈ J to a subset of the parameter
indices I. Third, we assume that the algorithms Param, EncKey can be split (the EncCt
algorithm remains the same):

• SplitParami(pari)→ (αi, βi, bi): This algorithm is the same as Param in Definition
3, except that it takes as input the parameter index i ∈ I and the sub-parameters
pari and outputs a subset of the original algorithm.

• SplitEncKeyj(yj , auxy) → kj(rj , r̂j , αAssignMPK(j), βAssignMPK(j), bAssignMPK(j)): This
algorithm is the same as EncKey(y) in Definition 3, except that it takes as input
the sub-predicate index j ∈ J and the sub-predicate yj as well as a set of strings
auxy, which we call the auxiliary key inputs, and it outputs a subset of the original
algorithm.

In particular, it should hold that:

• Well-formed parameters: The parameters (nα, nb, nβ , α, b, β) ← Param(par)
and (αi, βi, bi)← SplitParami(pari) are such that

(α, b, β) ≈ ({αi, βi, bi}i∈I),

and for all bj ∈ b for which there are at least two distinct i, i′ ∈ I with bj ∈ bi, bi′ ,
we have F1(bj) > 0.

• Well-formed keys: Firstly, the keys need to be well-defined, meaning that kj(rj , r̂j ,
αAssignMPK(j), βAssignMPK(j), bAssignMPK(j)) can be generated from the subsets αAssignMPK(j),
βAssignMPK(j), bAssignMPK(j) and do not require other values from α, β, b. Further-
more, the keys (m1, m2, k(r, r̂, α, β, b))← EncKey(y) and (kj(rj , r̂j , αAssignMPK(j),
βAssignMPK(j), bAssignMPK(j)))← SplitEncKeyj(yj , auxy) are such that

k(r, r̂, α, β, b) ≈ ({kj(rj , r̂j , αAssignMPK(j), βAssignMPK(j), bAssignMPK(j))}j∈J ),

r ≈ ({rj}j∈J ), r̂ ≈ ({r̂j}j∈J ),

and for all rj ∈ r for which there exist at least two distinct i, i′ ∈ [n′
y] with rj ∈ ri, ri′ ,

we have F(rj) = (ℓ, string) with ℓ > 0 and string is derived from auxy.

Remark 4. Any PES-ISA is a split-predicate mold for itself, where each key predicate is
split in one part, as well as the parameters par.

Examples of sub-predicate spaces and aggregation function. By how we defined
the key and ciphertext predicates in Section 2.5, we obtain various sub-predicate spaces
for the keys and the ciphertexts (i.e., each space that is extended with a mapping is
the sub-predicate space of the extended predicate space). For example, YCP-basic,l is a
sub-predicate space for each Al ∈ AID of YMA-CP-basic. Another example is the predicate
space YCP-single = {y ∈ YCP-basic | |y| = 1}, which is a sub-predicate space of YCP-basic.
For examples of aggregation functions, we refer to Appendices E and F.
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4.3 The ISABELLA compiler
Based on the definitions from Section 3 and those above, we are now ready to give our
compiler.

Compatibility. We define the notion of compatibility in the context of our compiler,
which ensures that the inputs to the compiler are compatible for some PES-ISA. This
covers the correctness properties for the mappings D and F . Additionally, we require that
the PES-ISA uses the same prime order p as the pairing group generated by PGGen(λ)
and that there exist full-domain hash functions into groups G, H.

Notation. In the following, we will often run the algorithms of the PES-ISA and in-
stantiate the polynomials in the groups, i.e., we sample uniform values from Zp and
compute group elements whose exponents correspond to the PES-ISA polynomials eval-
uated on these values. To simplify notation, we will use algorithms SampleSplitParam,
SampleSplitKey, SampleCt to sample those values. E.g., we write (αi, βi, bi)F1(·)=0 ←
SampleSplitParami(pari), where F1(·) = 0 indicates that we skip those variables that are
instantiated with an FDH. To improve readability, we will not distinguish between formal
variables and scalars. In cases where a distinction is not clear from context, we will add a
note.

Definition 18 (Compiler). Let ΓPES-ISA be a PES-ISA for predicate P : X × Y → {0, 1}
as defined in Definition 3 with distributions D and F , and let PGGen be a pairing group
generation algorithm. Further, let SPM[ΓPES-ISA] be a split-predicate mold for ΓPES-ISA
with I, J , Aggkey,J , AssignMPK and sub-predicate spaces {Yj}j∈J as in Definition 17. We
define the scheme ABE-ISA = Comp[PGGen, ΓPES-ISA, SPM[ΓPES-ISA],D,F ] as follows:

• GlobalSetup(λ)→ GP: On input the security parameter λ, this algorithm generates
a pairing group PG = (G,H,GT , p, e, g, h)← PGGen(λ), compatible with ΓPES-ISA,
and full-domain hash functions HG : {0, 1}∗ → G and HH : {0, 1}∗ → H modeled as
random oracles. It outputs global parameters GP = (PG,HG,HH).

• Setupi(PG, pari)→ (MPKi, MSKi): On input an index i ∈ I, the group description
PG and parameters pari, this algorithm runs (αi, βi, bi)F1(·)=0 ← SampleSplitParami

(pari), sets MSKi = (i, αi, {bj | bj ∈ bi ∧ F1(bj) = 0}) as the master secret key, and
outputs MSKi along with

MPKi =
(
i, {[αj ]GT

}αj∈αi
, {[βj ]D(βj) | βj ∈ βi ∧ F1(βj) = 0} ,

{[bj ]D(bj) | bj ∈ bi ∧ F1(bj) = 0}
)

as the master public key.

• KeyGenj(MSKAssignMPK(j), yj , auxy) → SKyj
: On input a set of master secret keys

MSKAssignMPK(j), a sub-predicate yj ∈ Yj and auxiliary input auxy, this algorithm gen-
erates (kj(rj , r̂j , αAssignMPK(j), βAssignMPK(j), bAssignMPK(j))) ← SplitEncKeyj(y) and
(ri, r̂i)F1(·)=0 ← SampleSplitKeyj(yj), and outputs the secret key SKyj as

SKyj
=
(
yj , {[rj ]D(rj) | j ∈ [m1] ∧ F1(rj) = 0}, {[ki]D(ki)}i∈[m3]

)
• Encrypt(MPKIx

, x) → (CTx, K): On input a set of master public keys MPKIx
=

{MPKi}i∈Ix
, where Ix ⊆ I, some x ∈ X , this algorithm first generates (w1, w2, w′

2, cM ,
c(s, ŝ, b), c′(s, s̃, α, β), c′′(s, s̃, β) ← EncCt(x) and (s, ŝ, s̃)F1(·)=0 ← SampleCt(x),
and outputs the ciphertext CTx

CTx =
(
x, [s]D(s), {[sj ]D(sj) | j ∈ [w1] ∧ F1(sj) = 0},
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{[ci]D(ci)}i∈[w3], {[c′
i]GT
}i∈[w4], {[c′′

i ]D(c′′
i

)}i∈[w5]
)

and key K = e(g, h)cM .

• Decrypt(GP, {SKyj}j∈J ′ , CTx)→ K: On input the global parameters GP, a set of se-
cret keys {SKyj}j∈J ′ and a ciphertext CTx, if P (x, y) = 1, where y = Aggkey,J ′((yj)j∈J ′),
then this algorithm first obtains (e′, e′′, E, E)← Pair(x, y), sets

P = {(sj , ki, Ej,i) | i ∈ [m3], j ∈ [w1], Ej,i ̸= 0 ∧D(sj) = G}

∪ {(ki, sj , Ej,i) | i ∈ [m3], j ∈ [w1], Ej,i ̸= 0 ∧D(sj) = H}

∪ {(rj , ci, Ei,j) | i ∈ [w3], j ∈ [m1], Ei,j ̸= 0 ∧D(rj) = G}

∪ {(ci, rj , Ei,j) | i ∈ [w3], j ∈ [m1], Ei,j ̸= 0 ∧D(rj) = H} ,

and

IG = {i ∈ [w5] | D(c′′
i ) = G} , IH = {i ∈ [w5] | D(c′′

i ) = H}

and then retrieves∏
i∈[w4]

[c′
i]

e′
i

GT

∏
i∈IG

e([c′′
i ]G, h)

∏
i∈IH

e(g, [c′′
i ]H)

∏
(l,r,e)∈P

e([l]G, [r]H)e

= e(g, h)e′c′⊺+e′′c′′⊺+sEk⊺+cEr⊺

= e(g, h)cM .

Remark 5. The above algorithms are defined for valid inputs. We implicitly assume that
inputs are validated and that the algorithms output a failure symbol ⊥ when given an
invalid input. For example, this is the case if KeyGenj does not get as input all MSKi for
all i contained in AssignMPK(j) or yj /∈ Yj , or if Encrypt does not get MPKi necessary for
x ∈ X .

5 Security of our generic compiler
In this section, we define a generic security game for schemes covered by the compiler. As
the compiler itself, the security game is carefully designed to argue about different levels of
security. More importantly, security will be strong to enough to imply security for different
types of ABE, which we will show in Section 6, and close enough to the symbolic analysis
of the PES-ISA such that the heavy lifting from Section 3 can be carried over to prove
security in the generic group model and from q-type assumptions.

5.1 Security model
We give a pseudocode description of the security game in Fig. 1. It captures different levels
of adaptivity, depending on variables X, Y, Z ∈ {s, a} which indicate whether ciphertext
(challenge), secret key and corruption queries can be made adaptively or have to be
announced before the actual game starts. The game draws a challenge bit δ and depending
on this bit, the adversary will receive either real keys cM or group elements chosen at
random from GT . We will now provide more details of the exact modeling.

Master public keys and corruptions. The adversary can create master public keys
adaptively via oracle MPK by specifying any i ∈ I. The game runs the corresponding
Setupi algorithm, stores i in a set Qmpk and returns MPKi. We further distinguish between
static and adaptive corruptions, the former being announced via oracle InitCor. During
the game, oracle Cor will then leak MSKi. In any case, we require that the key pair was
previously created using oracle MPK.
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Game G(X,Y,Z)-CPA
ABE-ISA,A (λ)

00 (Qmpk,Qc,Qk,Q′
k,Qcor) := (∅, ∅, ∅, ∅, ∅)

01 PG ← PGGen(λ)
02 for G′ ∈ {G,H} : HG′ [·] := ⊥
03 δ ∈R {0, 1}
04 st← AInitChall,InitKey,InitCor(λ)
05 δ′ ← AMPK,Chall,KeyGen,Cor,ROG,ROH(st)
06 for (·, ·, auxy) ∈ Qk

07 y := Aggkey,J ({yj | (·, yj , auxy) ∈ Qk})
08 Q′

k := Q′
k ∪ {y}

09 for (x, y) ∈ Qc ×Q′
k

10 if Pcor(x, y) = 1 return δ′ ∈R {0, 1}
11 return (δ′ = δ)

Oracle InitMPK(I′) �only one query
12 req Z = s
13 req I′ ⊆ I
14 Smpk := I

Oracle InitChall({xi′}i′∈[nc]) �only one query
15 req X = s
16 Sc := {xi}i∈[nc]

Oracle InitKey({(j, yj′,j)j∈J ′ , auxyj′ )j′∈[nk]}) �only one query
17 req Y = s
18 req auxyj′ ∩ auxyj′′ = ∅ ∀j′, j′′ ∈ [nk], j′ ̸= j′′

19 Sk := {(j, yj′,j , auxyj′ )j∈J ′,j′∈[nk]}

Oracle InitCor(Icor) �only one query
20 req Z = s
21 req Icor ⊂ I
22 Scor := Icor

Oracle MPK(i) �i ∈ I
23 if Z = s
24 req i ∈ Smpk
25 Smpk := Smpk \ {i}
26 else
27 req i /∈ Qmpk
28 (MPKi, MSKi)← Setupi(PG, pari)
29 Qmpk := Qmpk ∪ {i}
30 return MPKi

Oracle Chall(Ix, x) �Ix ⊆ I
31 req Ix ⊆ Qmpk
32 if X = s
33 req x ∈ Sc

34 Sc := Sc \ {x}
35 else
36 req |Qc| < nc

37 (CTx, cM,x)← Encrypt(MPKIx , x)
38 K0 := cM,x

39 K1 ∈R GT

40 Qc := Qc ∪ {x}
41 return (CTx, Kδ)

Oracle Cor(i) �i ∈ I
42 if Z = s
43 req i ∈ Scor
44 Scor := Scor \ {i}
45 req i ∈ Qmpk
46 Qcor := Qcor ∪ {i}
47 return MSKi

Oracle KeyGen(j, yj , auxy) �j ∈ J
48 req AssignMPK(j) ∈ Qmpk
49 if Y = s
50 req (j, yj , auxy) ∈ Sk

51 Sk := Sk \ {(j, yj , auxy)}
52 else
53 req (j, ·, auxy) /∈ Qk

54 if (·, ·, auxy) /∈ Qk

55 req |{aux′
y | (·, ·, aux′

y) ∈ Qk}| < nk

56 SKyj ← KeyGenj(MSKAssignMPK(j), yj , auxy)
57 Qk := Qk ∪ {(j, y, auxy)}
58 return SKyj

Oracle ROG′ (ℓ, inp) �G′ ∈ {G,H}
59 if HG′ [ℓ, inp] ̸= ⊥ return HG′ [ℓ, inp]
60 g′ ∈R G′

61 HG′ [ℓ, inp] := g′

62 return g′

Figure 1: Security games for the class of schemes ABE-ISA = Comp[PGGen,
ΓPES-ISA, SPM[ΓPES-ISA],D,F ], where X, Y, Z ∈ {s, a}, modeling static and adaptive chal-
lenge queries, secret key queries and corruptions. Integers nc, nk are the number of
challenge and secret key queries.

One-use restriction. The security model enforces a one-use restriction on the key
queries, i.e., each KeyGenj (for j ∈ J ) can be queried at most once per auxyj′ . This is to
ensure that the split keys generated from the split key generation are indistinguishable from
keys directly generated with the aggregated predicate. Although it is possible that concrete
constructions may remain secure even when multiple split keys are generated for the
same sub-predicate space, there are examples of schemes that would break (non-trivially).
Similarly, we require that all auxyj′ are disjoint. In particular, if the auxiliary inputs are
used to generate key components associated with non-lone variables from an FDH, using
the same inputs for different key queries yields the same randomness in two keys for two
different key predicates. This could be exploited to break the scheme.

Static security. The game models static security via oracles InitChall, InitKey,
InitCor. These are given to the adversary (along with the security parameter λ) and
each can be queried once. More specifically, the challenge oracle InitChall expects nc
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ciphertext predicates xi′ . For secret key queries, oracle InitKey expects inputs consistent
with the split-predicate mold of ΓPES-ISA, i.e., nk vectors of j split-predicates yj′,j each,
where j ∈ J ′, along with auxiliary inputs auxyj′ for each vector. Recall that auxiliary
inputs are sets of strings and here we require that they are all disjoint (cf. line 18). The
announced key and ciphertext predicates are stored in sets Sc and Sk. During the game,
only those values will be allowed to be queried to oracles Chall and KeyGen (cf. lines
33, 50) and sets Qc and Qk record the queries for which ciphertexts and keys are actually
provided.

Adaptive security. The game can also allow ciphertext and secret key queries to be
made adaptively (when X resp. Y are set to a). In this case, only Chall and KeyGen will
be available. We enforce the same one-use restriction as for static queries and additionally
enforce the maximum number of queries by checking the sizes of sets Qc and Qk (cf. lines
36 and 55). While we also check whether the required master public keys have been created,
we do not explicitly check validity of inputs (cf. Remark 5), but assume w.l.o.g. that the
adversary does not issue invalid queries.

Random oracles. We also provide the adversary access to random oracles mapping into
each of the source groups. Outputs are generated via lazy sampling, storing queries in
lists HG and HH to provide consistent responses. The mapping F defines which inputs
the random oracles expect and also enforce domain separation (cf. Definition 15). Again,
we assume w.l.o.g. that the adversary makes only queries of this form.

Evaluating the winning condition. Eventually, the adversary terminates and outputs
a bit δ′. While we have already enforced the one-use restriction, we now need to check
whether for all ciphertext predicates xi′ and key predicates yj′ , we have P (xi′ , yj′) = 0.
Note however, that we also need to account for trivial wins via corruptions which is why
we use Pcor instead. The game returns whether the adversary has provided the correct
challenge bit (i.e., δ′ = δ) or a random bit (in case of a trivial attack).

Definition 19. Consider the games described in Fig. 1 for a scheme ABE-ISA = Comp[PGGen,
ΓPES-ISA, SPM[ΓPES-ISA],D,F ], adversary A and security parameter λ. We define the ad-
vantage of A in game G(X,Y,Z)-CPA

ABE-ISA,A (λ), where X, Y, Z ∈ {s, a}, as

Adv(X,Y,Z)-CPA
ABE-ISA,A (λ) :=

∣∣∣∣Pr[δ′ = δ]− 1
2

∣∣∣∣ .

Remark 6 (Adversarially generated public keys). Our game only allows corruption of
honestly generated master public keys. We can easily extend the model with another
oracle that allows to register adversarially generated public key material and we refer to
the discussion in [AG21] for more details. Due to the strong guarantees of our SSSP, we
expect that the theorem statements given below also hold in this stronger setting, when
additionally relying on NIZK properties.

5.2 Static security under q-type assumptions
To prove static security, we will use a similar q-type assumption as in Ven23 [Ven23],
whereas ours gives out some extra terms to support the PES extension. We call it strong
(d1, d′

1, d2)-parallel DBDH assumption and provide its definition below. Compared to the
Ven23 compiler, we need these extra terms to simulate the components associated with
semi-common variables β and non-lone ciphertext variables sj that occur in a product
with semi-common variables in c′′. Specifically, in the simulation, these terms act more
like parallel DDH instances in one of the source groups than like parallel DBDH instances.
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Definition 20 (The strong (d1, d′
1, d2)-parallel DBDH assumption). Let λ be the security

parameter and let PG = (G,H,GT , p, e, g, h)← PGGen(λ) be a pairing group description.
The challenger generates x, y, z, ci, c′

j ∈R Zp for all i ∈ [2, d1], j ∈ [2, d2], sets c1 = c′
1 = 1

and outputs for all G′ ∈ {G,H},

[xci]G′ , for all i ∈ [d1] \ I
[

xzci
ci′ c′

j

]
G′

, for all i, i′ ∈ [d1], i ̸= i′, j ∈ [d2][
yc′

j
]
G′ , for all j ∈ [d2]

[
yzc′

j
cic′

j′

]
G′

, for all i ∈ [d1], j, j′ ∈ [d2], j ̸= j′[
z

cic′
j

]
G′

, for all i ∈ [d1], j ∈ [d2]
[xci]D(i) , for all i ∈ I[

yz
ci

]
D(i)

, for all i ∈ I
[

xyzci
ci′

]
D(i)

, for all i, i′ ∈ I, i ̸= i′

where D : I → {G,H} can be any distribution with I ⊆ [d1] and |I| = d′
1. By setting

c1 = c′
1 = 1, we also have that [x]G′ , [y]G′ , [z]G′ are included in these terms. The challenger

also flips a coin δ ∈R Zp and outputs T ∈R GT if δ = 0 and T = e(g, h)xyz if δ = 1. The
adversary outputs a guess δ′ for δ.

The advantage of the adversary is defined as

Adv(d1,d′
1,d2)-spDBDH

PGGen,A (λ) :=
∣∣∣∣Pr[δ′ = δ]− 1

2

∣∣∣∣ .

The strong (d1, d′
1, d2)-parallel DBDH assumption ((d1, d′

1, d2)-spDBDH) holds if any PPT
adversary A has at most a negligible advantage, i. e., Adv(d1,d′

1,d2)-spDBDH
PGGen,A (λ) ≤ negl(λ).

We now state our theorem capturing static security. The full proof is given in Ap-
pendix C. To provide additional confidence in the hardness of the assumption, we give
concrete bounds in the generic group model in Appendix D.1.

Theorem 3. Let ΓPES-ISA be a PES-ISA scheme that satisfies SSSP for some d1 and d2.
Let D and F be compatible distributions and SPM[ΓPES-ISA] be a split-predicate mold for
ΓPES-ISA. Let ABE-ISA = Comp[PGGen, ΓPES-ISA, SPM[ΓPES-ISA],D,F ] be the compiled
scheme. Then, for any adversary A in the (s, s, s)-CPA game with ABE-ISA, there exists
an adversary B against (d1, d′

1, d2)-spDBDH such that

Adv(s,s,s)-CPA
ABE-ISA,A(λ) ≤ nc · Adv(d1,d′

1,d2)-spDBDH
PGGen,B (λ) ,

where d′
1 is implied by the number of non-lone CT variables that are paired with semi-

common variables. If F specifies that variables are generated by full-domain hashes (i.e.,
F1 maps them to nonzero), these hash functions are modeled as random oracles.

Further, if SPM[ΓPES-ISA] does not use auxy to generate (non-)lone key variables, then
we also get (s, a, s)-CPA security.

Proof sketch. To prove static security from the (d1, d′
1, d2)-spDBDH assumption, we con-

struct a reduction that uses an adversary against static security to break the (d1, d′
1,

d2)-spDBDH assumption. Our reduction follows a hybrid argument over the challenges,
replacing each encapsulated key by a random key in a series of games. For each game hop,
we embed an instance of the (d1, d′

1, d2)-spDBDH assumption in the (public and queried
secret) keys and the challenge ciphertext, using the substitution matrices and vectors in
the SSSP proof to cancel out the terms that we cannot create.

Roughly, we encode the terms
[
yc′

j
]
G′ in the secret keys associated with the non-lone

key variables, the terms
[

z
cic′

j

]
G′

in the public keys associated with the common variables

and we pair
[

z
ci

]
G′

and
[
yc′

j
]
G′ to obtain the proper substitutions for the public keys
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associated with the master-key variables. For the non-lone ciphertext variables, we use
[xci]G′ if they are not paired with semi-common variables. If they are paired, then we
use the restricted terms [xci]D(i). Similarly, we use the restricted terms

[
yz
ci

]
D(i)

for the

(associated) semi-common variables. Note that the indices i and j are used to encode the
substitution vectors and matrices, e.g., embedding the vector entry (rj)j requires us to use
the term

[
yc′

j
]
G′ .

If we encode the non-lone variables and public-key variables in this way, the key and
ciphertext components associated with the polynomials can be programmed using the terms[

xzci
ci′ c′

j

]
G′

(for the ciphertext polynomials c), the terms
[

yzc′
j

cic′
j′

]
G′

(for the key polynomials),

the terms
[

xyzci
ci′

]
D(i)

(for the ciphertext polynomials c′′) and, by pairing the terms [xci]G′

and
[

yzc′
j

cic′
j′

]
G′

, we can program the ciphertexts associated with the polynomials c′. Note

that these terms can be used to program the components associated with the products
among the vectors and matrices that do not follow an actual matrix-vector product. For
example, the product of rj and Bk in the encodings yields

∏
i,j,j′(Bk)i,j(rj)j′ , whereas a

real product of the matrix Bk and rj yields the product
∏

i,j(Bk)i,j(rj)j. Hence, we use the
aforementioned terms for j ̸= j′ (which do not follow the matrix-vector product) and we
use the SSSP proof to cancel out the terms for j = j′ (which do follow the matrix-vector
product).

Lastly, we need to give the adversary access to the associated secret keys of the
corrupted public-key components. We use here the fact that the substitution vectors and
matrices for the master-key, semi-common and common variables are all-zero because of
the SSSP proof. This ensures that we do not encode any terms of the (d1, d′

1, d2)-spDBDH
assumption in those components. Hence, we know the exponents of those components (i.e.,
ᾱj , β̄j and b̄k) and can give those to the adversary.

5.3 Adaptive security in the GGM
Similar to previous works [ABGW17, AG21, RW22], we prove security in the generic
group model (GGM). For an overview of the GGM we refer to Appendix D. We improve
upon previous works by additionally considering adaptive corruptions, using our carefully
designed notion of strong MK-MC security under corruptions (cf. Definition 12). This
gives us the following statement.

Theorem 4. Let ΓPES-ISA be a PES-ISA scheme that satisfies SSSP. Let D and F be
compatible distributions and SPM[ΓPES-ISA] be a split-predicate mold for ΓPES-ISA. Let
ABE-ISA = Comp[PGGen, ΓPES-ISA, SPM[ΓPES-ISA],D,F ] be the compiled scheme. Let A
be a generic adversary in game (a, a, a)-CPA game with ABE-ISA, issuing at most nmpk
queries to MPK, nc queries to Chall, nk queries to KeyGen with distinct auxy, nro
queries to both random oracles, nop queries to Op and npair queries to Pair. Then,

Adv(a,a,a)-CPA
ABE-ISA,A (λ) ≤ 4n2

p
,

where n ≤ 2+nmpk|MPK|+nc|CT|+nk|SK|+nro +nop +npair with |MPK| = max{MPKi |
i ∈ Qmpk}, |CT| = max{|CTx| | x ∈ Qc} and |SK| = max{|SKy| | y ∈ Q′

k}.
If F specifies that variables are generated by full-domain hashes (i.e., F1 maps them to

nonzero), these hash functions are modeled as random oracles.

We provide the full proof in Appendix D.2 and sketch the main ideas below. Assuming
that n is dominated by the number of group operation queries nop and random oracle
queries nro (because these can be considered offline computation), the bound matches that



36 ISABELLA: Improving Structures of ABE Leveraging Linear Algebra

of breaking the discrete logarithm problem up to a small constant factor and is therefore
optimal.

Proof sketch. The adversary in the GGM has access to the oracles defined in the security
game, as well as a group operation and pairing oracle. In order to perform group operations,
the challenger provides the adversary with unique (and representation-independent) handles
to them. We want to show that the simulation in the GGM is indistinguishable from
a symbolic execution, where the challenger instead uses polynomials to represent and
determine equality of group elements. Luckily, the PES scheme ΓPES-ISA already uses
polynomials to describe exactly what is happening in the exponents of master public keys,
ciphertexts and secret keys. Using the group operation and pairing oracle, the adversary
can further combine group elements. However, by strong MK-MC security of the PES
(Definition 7), these combinations do not help the adversary in breaking security. Therefore,
in the symbolic model the challenge is independent of the secret bit δ and we only need to
bound the difference between the symbolic simulation and the simulation in the GGM. For
this we look at the probability that two polynomials are different, but their evaluation is
the same. That is, when replacing formal variables with uniformly random elements from
Zp, we might produce a collision. We can bound the probability using the Schartz-Zippel
Lemma (Lemma 13) and the maximum number of group elements n in the simulation.

So far, we have ignored that the adversary can also corrupt master public keys. It
turns out that the above approach fails when considering adaptive corruptions because
they reveal exponents to the adversary which can be used in future queries. Therefore,
instead of applying the Schwartz-Zippel Lemma once, we have to use it more carefully
after each corruption. In particular, the challenger assigns a random value to the formal
variable that the adversary asks to corrupt and then it checks whether its simulation is still
perfect or whether a collision occurred. In the latter case, we abort. When the adversary
terminates and outputs its guess, we rely on strong MK-MC security under corruptions
(Definition 12) to argue that the adversary’s view is independent of the challenge bit. Then
we carefully sum up the probabilities to get the bound in the theorem.

6 Applications and new schemes
In this section, we demonstrate how our compiler can be used to construct schemes with
several types of advanced functionalities from pair encodings. It is straightforward to see
that, if we take the trivial mold for a PES-ISA, we get a regular ABE scheme.

6.1 Multi-authority attribute-based encryption
We can create multi-authority schemes in a more modular way using our compiler. In
particular, we would take as input a PES for multi-authority predicate spaces XMA and
YMA with auxiliary key inputs auxy containing a global identifier GID, such that we also
have a split-predicate mold for authority-independent sub-predicate spaces for YMA. Using
this PES and mold as input, our compiler yields a scheme that can be directly used to build
an ABE scheme for the multi-authority ABE syntax. As we show below, the difference
between the scheme generated with our compiler and the scheme following the MA-ABE
syntax is purely syntactical, and thus, the resulting scheme is immediately secure if the
scheme created with our compiler is secure.

Generic construction. Let PES-ISA = (Param, EncKey, EncCt, Pair) be a PES for a
multi-authority predicate P : XMA × YMA → {0, 1} with compatible encodings specified
by D and F , such that SSSP holds for some d1 and d2. Suppose that PES-ISA has a
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split-predicate mold with sub-predicate spaces YSA and auxiliary key inputs auxy that in-
cludes GID, such that each y ∈ YMA associated with auxy can be split in {yGID,Aj

| j ∈ J ′}
with J ′ ⊆ [naut]. Let ABE = Comp[PG, PES-ISA, SPM[ΓPES-ISA],D,F ] be the ABE
scheme generated via the ISABELLA compiler, with algorithms ABE = (GlobalSetupABE,
{SetupABE,Ai

}i∈[naut], {KeyGenABE,Aj
| j ∈ [naut]}, EncryptABE, DecryptABE). Then, we con-

struct a multi-authority scheme MA-ABE from the compiled scheme ABE using the proper
syntax as follows:

• GlobalSetup(λ): The algorithm returns the global parameters GP = (PG,HG,HH)←
GlobalSetupABE(λ).

• AuthoritySetup(GP): The algorithm computes authority key pair (MPKA, MSKA)←
SetupABE,A(PG, parA) and returns (A, MPKA, MSKA).

• KeyGen(A, MSKA, GID, yGID,A): The algorithm returns the key SKGID,A,yGID,A ←
KeyGenGID,A(MSKGID,A, yGID,A, auxy), where auxy contains GID.

• Encrypt({Ai, MPKAi}, x): The algorithm returns (CTx, K)← EncryptABE({MPKAi}i, x).

• Decrypt(GP, {SKGID,Aj ,yGID,Aj
}j∈J ′ , CTx): The algorithm returns the decapsulated

key K output by Decrypt(GP, {SKGID,A,yGID,A}j∈J ′ , CTx).

Corruptions and Pcor. For MA-ABE, we can describe Pcor as follows. In particular,
corrupting an authority automatically sets a sub-predicate for that authority to true. For
example, for CP-ABE, the predicate PMA-CP-basic : XMA-CP-basic × YMA-CP-basic → {0, 1}
is defined as PMA-CP-basic((A, ρ, ρ̃),S) = 1 if and only if there exists Υ = {j ∈ [n1] |
(ρ̃(j), ρ(j)) ∈ S} and {εj}j∈Υ such that

∑
j∈Υ εjAj = (1, 0, ..., 0). Let C ⊆ ρ̃([n1]) denote

a set of corrupted authorities. Then the corruptable-variable predicate Pcor is defined as
Pcor((A, ρ, ρ̃),S) = 1 if and only if there exists Υ = {j ∈ [n1] | ρ̃(j) ∈ C ∨ (ρ̃(j), ρ(j)) ∈ S}
and {εj}j∈Υ such that

∑
j∈Υ εjAj = (1, 0, ..., 0).

Corollary 2. The multi-authority scheme MA-ABE is statically secure assuming (d1, d′
1,

d2)-spDBDH, where d1 and d2 are as in the proof for SSSP. Further, MA-ABE is fully
secure in the GGM.

Proof. This follows directly from Theorems 3 and 4 and by observing that the changes to
ABE are purely syntactic.

One-use restriction. There is a one-use restriction on the key generation oracle in
that KeyGen can be queried only once per (A, GID) combination that must technically also
be enforced in practice. For some schemes, it seems that the scheme would not break if
the key generation is queried multiple times on the same inputs because either the key is
generated completely deterministically or provides sufficient randomness to be secure even
if multiple instances of attributes occur, but it is strictly speaking not proven that it is
secure to do so.

Existing schemes and new schemes. In Appendices E and F, multiple constructions
of PES-ISA are given, for which we describe explicit molds, that allow for multi-authority
support. In particular, Definition 23 is a new multi-authority KP-ABE scheme that allows
the encrypting user to pick the set of authorities for which the decrypting user needs to
have a key. The scheme in Definition 24 is a new decentralized CP-ABE scheme that
supports negations in a completely unbounded fashion. This is the first of its kind.
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Demonstrating our framework via an example. Furthermore, to demonstrate our
framework, we show how to build a full-fledged (multi-authority) ABE scheme from pair
encodings using our methodology. Specifically, we give descriptions of F and D, and
describe the SPM for multi-authority ABE. In addition, to illustrate that including β and
c′′ in our scheme improves the efficiency of multi-authority schemes, we have included
an efficiency analysis of this scheme, and compare its instantiation with the ISABELLA
compiler with its instantation with the Ven23 compiler. We also compare it with other
state-of-the-art decentralized schemes to show that the resulting scheme compares favorably
with those as well.

6.2 Functional adaptivity in ABE
We introduce the new notion of functional adaptivity in the context of ABE, which is
intrinsic in our compiler definition. At a high level, functional adaptivity allows, e.g.,
secret keys, to be generated adaptively rather than in one key query. Instead of generating
a key for the entire key predicate, functional adaptivity allows us to split this process in
phases. For example, for regular CP-ABE (with predicate spaces XCP-basic and YCP-basic),
we would be able to generate keys in an attribute-wise fashion [VAH23] rather than for
an entire set. In this way, users can request secret keys for attributes that are used in
ciphertexts but for which they have not yet obtained a key without having to obtain keys
for the entire updated set. This mitigates the computational effort required from the
authority, and could also improve the resilience of the system. Oftentimes, some form of
key rotation is deployed to ensure that keys can be revoked once attributes have changed
[LVV+23]. Rather than renewing the entire key, it would be possible to renew only parts
of the key, affecting fewer users in the same system, therefore reducing the impact both on
the user and authority side. We provide more details in the paragraphs below.

CP-ABE with attribute-wise key generation. We define a general mold for CP-ABE
with attribute-wise key generation. Let YCP-var be a key predicate space for the attribute
universe U such that each y ∈ YCP-var is a tuple (of length ℓ ≥ 1) with, without loss
of generality, set S ∈ YCP-basic in one of the entries. We define, for each att ∈ U , the
sub-predicate space YCP-var-sub,att = {(att, (y)[2,ℓ]) | y ∈ YCP-var}. Hence, each y ∈ YCP-var
(where (y)1 = S) can be split in sub-predicates (att, (y)[2,ℓ]) for all att ∈ S. Let ΓPES-ISA
be a PES-ISA for some predicate PCP-var : XCP-var × YCP-var → {0, 1}. If there exists a
split-predicate mold for ΓPES-ISA with these sub-predicate spaces and auxiliary key inputs
auxy that include a global identifier GID, then our compiler yields a CP-ABE scheme
for the original predicate with attribute-wise key generation. To distinguish the key
generation of a scheme with a “regular” key generation from a scheme with a “attribute-
wise” key generation, we change the syntax of the key generation algorithm from KeyGen
to AttrKeyGen, and the algorithm takes as input the sub-predicates (att, (y)[2,ℓ]) for the
keys rather than the whole key predicate. In Appendix E.2, we give an example of a
CP-ABE scheme with attribute-wise key generation.

Functional adaptivity in schemes that support negations. For some types of
predicates, we can support only a limited type of functional adaptivity (as also mentioned
in [VAH23]). For example, for large-universe CP-ABE schemes that support negations in
the policies, we cannot support an attribute-wise key generation, because the mechanism
that is in place to support negations is incompatible with an attribute-wise key generation
support. Roughly, there exist three mechanisms to support negations:

• Using negative attributes: which implements a negation by considering negative
attributes;
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• Comparing the whole set: which compares the whole set with the negated
attribute to verify that the negated attribute is not in the set;

• Labeled comparison with the set: which compares only the attributes in the
set with the same label as the negated attribute, and there must be at least one
attribute in the set that has the same label as the negated attribute.

For the first type, it is strictly speaking not possible to support it in the large-universe
setting, because each user would require a secret key for an exponential number of attributes.
Nevertheless, an attribute-wise key generation as defined in our paper could support a
type of “lazy sampling”, where a user would request a key for a negative attribute once
this is needed. However, we argue that it difficult to enforce securely and efficiently in
practice. Most notably, to implement this securely, the authority would need to keep a
database of all the attributes (positive and negative instances) for which it has issued
keys to a user. If the authority does not do this, then it could issue a key for both the
positive and the negative instance of the attribute, breaking the security with respect to
this attribute. This database’s size would scale in the number of users and in the number
of positive and negative attributes, which may be impractical.

For the other two types, it is impossible to support it. In the first place, concrete
schemes that support this type of negations do not have the structural independence that
we require for the split-predicate algorithms. More generally, it also seems impossible
to support attribute-wise key generation in schemes that support this type of negations,
because the required independence of the “attribute-related keys” implies a trivial attack
on this type of negation. That is, we could simply “leave out” the negated attribute
from our set of “attribute-related keys” when decrypting. To protect against such attacks,
schemes that support this type of negations strongly link the keys together so that it is
impossible to simply “leave out” the negated attribute.

Although none of the non-monotone schemes can support an attribute-wise key gen-
eration (at all or efficiently), we argue that schemes of the third type can support a
label-wise key generation, which allows for a better balance between the two addressed
issues. Roughly, the idea is that users can request keys for those attributes that they
possess whose labels are the same. Hence, users issue a set of keys for one label in each key
request instead of the whole set. We show that schemes that support this type of negation
satisfy the structural requirements posed by the split-predicate mold. Furthermore, to
enforce this type of negation securely in practice, the authority does not need to store all
the attributes for which it issues keys, only the labels. Not only does this scale better,
but this could also provide better privacy properties, for example, if the attributes may
contain sensitive information.

CP-ABE with label-wise key generation. We define the notion of CP-ABE with label-
wise key generation for CP-ABE that defines an explicit mapping for the labels associated
with the attributes, i.e., which have predicate spaces XCP-var-ρlab and YCP-var-ρS,lab (where
the labeling for the key space may be implicit, like in [Ven23] and in Definition 24)). We
define, for each label lab, the sub-predicate space YCP-var,lab = {(lab, ylab) | ylab ∈ YCP-var}.
If there exists a split-predicate mold for ΓPES-ISA with these sub-predicate spaces and
auxiliary key inputs auxy that include a global identifier GID, then our compiler yields
a CP-ABE scheme for the original predicate with label-wise key generation. We show
that the new decentralized CP-ABE scheme in Appendix F.2 can support a label-wise key
generation by giving a split-predicate mold for this functionality.
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A The ACABELLA extension
For the automated proofs, we expand the ACABELLA framework [dlPVA23], which
currently covers only PES-AC17. In this section, we describe all the algorithms on which
our extension of the ACABELLA tool is based.

A.1 Our parser and correctness checker
On the representation of the encodings. For the proof generation, it is beneficial
to consider a simpler representation of the encodings than Definition 3, and let the tool
derive assignment for the variables (e.g., master-key/semi-common/common/(non-)lone
key/(non-)lone ciphertext) and encodings (variable or polynomial). Furthermore, instead
of distinguishing between master-key variables α and semi-common variables β, and
non-primed and primed ciphertext encodings over β and α, we can treat them the same in
the proof generation. (This is because the proof generation for these variables follows the
same strategy. The only things that distinguishes these values is in which groups they are
instantiated, which is in part influenced by whether they are generated by a full-domain
hash or not.)

The inputs. The tool gets as input:

• The master public key encodings abenc;

• The key encodings kenc;

• The ciphertext encodings cenc;

• The blinding/target value: cM ;

• A set of known variables.

The goal is to parse the inputs in multiple passes over the inputs.

The first pass: distinguishing variables from polynomials. In the first pass over
the inputs, we first make a split in the key and ciphertext encodings:

• The key encodings kenc are split in r and k, where r consists of non-lone variables
that occur only in the keys (and not in the master public key encodings) and k
consists of polynomials over variables in r and abenc, as well as lone variables r̂,
which can also be determined in this pass (by checking for all monomials in each
polynomial if it is a product of a known variable and a variable that does not occur
in abenc - then it is a lone key variable).

• The ciphertext encodings cenc are split in s and c, where s consists of non-lone
variables that occur only in the ciphertexts (and not in the master key encodings),
and c consists of polynomials over variables in s and abenc, as well as lone variables
ŝ and s̃ (to be determined later).

The second pass: distinguishing master-key from common variables. In the
second pass over the inputs, the master-key/semi-common variables αβ are distinguished
from the common variables b. Note that we treat master-key/semi-common variables the
same for the proof generation. We do this by going over the key polynomials:

• For each key polynomial ki in k, we inspect all monomials. If a monomial is

– a product of a known variable and a variable α that occurs in abenc, then we
put the variable α in αβ;
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– a product of a known variable, a variable that occurs in r and a variable b that
occurs in abenc, then we put the variable b in b.

• If the lists αβ and b are not disjoint (i.e., some variable in abenc occurs in both
lists), then the encodings are not well-formed and the checker outputs that the input
scheme is not a PES-ISA.

• If the lists αβ and b together do not contain all variables in abenc, keep a list of
unused abenc variables: abenc′.

The third pass: distinguishing primed from non-primed ciphertext polynomials.
In the third pass over the inputs, the ciphertext polynomials are split in the set of
non-primed ciphertext polynomials c and primed ciphertext polynomials c′. For each
polynomial in c, we do the following:

• If the polynomial contains only monomials of the form:

– a product of a known variable, a non-lone variable in s and a common variable
in b;

– a product of a known variable, a non-lone variable in s and a variable b′ in
unused master public key abenc′;

– a product of a known variable and a lone variable ŝ that does not occur in
abenc;

then it is placed in c, and the lone variables ŝ are placed in ŝ. Furthermore, if the
polynomial contains at least on monomial of the first case and monomials of the
second form, with variable b′, then b′ is placed in b.

• If the polynomial contains only monomials of the form:

– a product of a known variable, a non-lone variable in s and a master-key/semi-
common variable in αβ;

– a product of a known variable, a non-lone variable in s and a variable α′ in the
unused master public key abenc′;

– a product of a known variable and a lone variable s̃ that does not occur in
abenc;

then it is placed in c′, and the lone variables s̃ are placed in s̃. Furthermore, if the
polynomial contains at least on monomial of the first case and monomials of the
second form, with variable α′, then α′ is placed in αβ.

• If the polynomial does not satisfy any of the two forms above, then the encodings are
not well-formed and the checker outputs that the input scheme is not a PES-ISA.

The fourth pass: validating all encodings. In the fourth pass, all encodings are
validated.

• The master public key encodings: αβ and b should be disjoint. We can consider
outputting when some of the MPK encodings are not used (outputting abenc′).

• The key encodings:

– The lists r and r̂ should be disjoint;
– For each key polynomial ki in k, it should be verified that each monomial in it

is of the form:
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∗ a product of a known variable and a master-key/semi-common variable in
αβ;

∗ a product of a known variable, a non-lone variable in r and a common
variable in b;

∗ a product a known variable and a lone variable in r̂.
If any of these does not hold, then the key encodings are not well-formed and
the checker outputs the input scheme is not a PES-ISA.

• The ciphertext encodings:

– The lists s, ŝ and s̃ should be disjoint;
– For each ciphertext polynomial ci in the list of non-primed ciphertext encodings,

it should be verified that each monomial in it is of the form:
∗ a product of a known variable, a common variable in b and a non-lone

variable in s;
∗ a product a known variable and a lone variable in ŝ.

– For each ciphertext polynomial c′
i in the list of primed ciphertext encodings as

well as the blinding/target value cM , it should be verified that each monomial
in it is of the form;

∗ a product of a known variable, a master-key/semi-common variable in αβ
and a non-lone variable in s;

∗ a product a known variable and a lone variable in s̃.
If any of these does not hold, then the ciphertext encodings are not well-formed
an the checker outputs that the input scheme is not a PES-ISA.

A.2 Proof generation - finding a suitable kernel vector
We describe the algorithm for the SSSP proof generation by first finding a suitable kernel
vector (as in Theorems 2 and 2).

The inputs. The proof generation takes as input:

• The master public keys consisting of

– The master-key/semi-common variables αβ

– The common variables b

• The key encodings consisting of

– The key polynomials k
– The non-lone key variables r
– The lone key variables r̂

• The ciphertext encodings consisting of

– The non-primed ciphertext polynomials c
– The primed ciphertext polynomials c′

– The non-lone ciphertext variables s
– The (non-primed) lone ciphertext variables ŝ
– The (primed) lone ciphertext variables s̃
– The blinding value cM
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Step one: setting up the penc vector. In the first step, we set up the penc vector that
we decompose in the next step. To simplify the eventual decomposition of the vector w, we
store another vector penc

′ alongside it that keeps track of which (products of) encodings
are stored in the entries of penc.

• Compute sjki for all sj in s and ki in k, and store it in penc (and store a tuple
(non-lone ct, j, key_poly, i) in penc

′ in the corresponding entries)

• Compute rjci for all rj in r and ci in c, and store it in penc (and store a tuple
(non-lone key, j, ct_poly, i) in penc

′ in the corresponding entries)

• Add c′
i for all c′

i in c′ to penc (and store a tuple (primed_ct, i) in penc
′ in the

corresponding entries)

Step two: decomposing the penc vector. Then, we decompose the vector penc in
the product penc = M · v⊺ as follows:

• Set up an empty matrix M and empty vector v

• Add the following monomials to v:

– αjsj′ for all αj in αβ and sj′ in s
– s̃j for all s̃j in s̃
– rjsj′bk for all rj in r, sj′ in s and bk in b
– rj ŝj′ for all rj in r and ŝj′ in ŝ
– r̂jsj′ for all r̂j in r̂ and ŝj′ in ŝ

• We have v = v1∥v2, where v1 consists of the monomials in the first two cases above
(αjsj′ and s̃j) and v2 consists of the monomials in the rest

• Then, for each polynomial pi in penc, we construct a vector Mi such that Mi ·v⊺ = pi,
and Mi consists of known variables. This is done by considering each monomial in
the polynomial, identifying its known variable and which entry of v corresponds with
the monomial – this entry is the entry of Mi that gets assigned that known variable.
(The rest is set to 0.) We append the matrix M with the row Mi.

• Lastly, decompose the blinding value cM = tv · v⊺.

Step three: make “corrupted-variables” basis for kernel of M. The ultimate
goal is to find a kernel vector w for M that is independent of the keys and that is not
orthogonal to tv, i.e., tv ·w⊺ ̸= 0. Furthermore, we require that each entry of w for which
the corresponding entry in v is associated with a corrupted variable to be 0. The goal of
step three is to create a basis for the kernel of M, and then reduce it to a basis that sets
the entries associated to corrupted variables to 0. To do this, we do the following.

• Compute the basis V for the kernel of M

• Create a list of indices I of v such that i ∈ I if the i-th entry of v′ is associated with
a corrupted variable

• Create a set V ′ of truncated vectors in V with respect to I, i.e., each vector in V ′ is
a vector in V truncated to the entries with indices in I

• Create a matrix V′ where each column is a vector in V ′

• Create a matrix V where each column is a vector in V
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• Compute a basis W for the kernel of V′

• Compute the set of vectors Wcor = {V · w⊺ | w ∈ W}, which is a basis for {v ∈
Ker(M) | ∀i ∈ I[(v)i = 0]} (Lemma 4)

Step four: make the basis Wcor key independent. The goal is to transform the
basis Wcor into a basis for the subspace of kernel vectors that are independent of the key.
With independent of the key, we mean that the entries of the basis vectors associated with
the entries in v1 do not contain any known variables associated with the key that do not
occur in the ciphertext. To do this, we do the distinguish between two cases, when c′

is not empty, and when c′ is not empty. In Appendices B.2 and B.3, we prove that our
algorithms below work.

When c′ is not empty, we take the following steps.

• Extract a list of known variables kvk that occurs in the key encodings

• Extract a list of known variables kvc that occurs in the ciphertext encodings

• Create a list of known variables kvknc that occurs in the key encodings but not in
the ciphertext encodings

• Decompose the primed ciphertext polynomials c′ in the product c′ = Mc′ · v⊺
c′

• Compute a basis Vc′ for Mc′

• Create a truncated basisWtrunc,cor by truncating the basis vectors inWcor to consider
only the entries associated with v1

• Write each vector in Wtrunc,cor as a linear combination of the vectors in Vc′

• Create a matrix Mlc of these linear combinations, such that each row corresponds to
a vector in Wtrunc,cor

• Create a matrix Mrref by putting the matrix Mlc in reduced row echelon form and
remove the all-zero rows

• Remove each row from Mrref that is associated with known variables in kvknc (i.e.,
that contains at least one entry that is a function of at least one variable in kvknc)

• Initialize an empty list that will become the new basis Wcor,ki

• For each row Mrref,i of Mrref :

– find a linear combination ei of the rows of Mlc that yields that row, i.e.,
ei ·Mlc = Mrref,i

– create a new basis vector wcor,ki by rescaling the vectors in Wcor according to
the linear combinations, i.e., if Wcor is the matrix in which each column is a
basis vector in Wcor, then wcor,ki = Wcor · e⊺

i

– add wcor,ki to the list Wcor,ki

• Output the vector basis Wcor,ki for the subspace of the kernel of M in which each
entry associated with a corrupted variable is 0 and all entries associated with v1 are
independent of the key
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When c′ is empty, we take the following steps.

• Extract a list of known variables kvk that occurs in the key encodings

• Extract a list of known variables kvc that occurs in the ciphertext encodings

• Create a list of known variables kvknc that occurs in the key encodings but not in
the ciphertext encodings

• Create a truncated basisWtrunc,cor by truncating the basis vectors inWcor to consider
only the entries associated with v1

• Create a matrix Mtrunc,cor, where each row is a vector in Wtrunc,cor

• Let Mrref be matrix Mtrunc,cor in reduced row echelon form

• Remove each row from Mrref that is associated with known variables in kvknc (i.e.,
that contains at least one entry that is a function of at least one variable in kvknc)

• Initialize an empty list that will become the new basis Wcor,ki

• For each row Mrref,i of Mrref :

– find a linear combination ei of the rows of Mtrunc,cor that yields that row, i.e.,
ei ·Mtrunc,cor = Mrref,i

– create a new basis vector wcor,ki by rescaling the vectors in Wcor according to
the linear combinations, i.e., if Wcor is the matrix in which each column is a
basis vector in Wcor, then wcor,ki = Wcor · e⊺

i

– add wcor,ki to the list Wcor,ki

• Output the vector basis Wcor,ki for the subspace of the kernel of M in which each
entry associated with a corrupted variable is 0 and all entries associated with v1 are
independent of the key

Step five: find a basis vector that is not orthogonal to tv. The goal is to find a
kernel vector w for M that is independent of the keys and that is not orthogonal to tv,
i.e., tv ·w⊺ ̸= 0. Furthermore, we require that each entry of w for which the corresponding
entry in v1 is associated with a corrupted variable to be 0. To do this, output a vector w
in Wcor,ki such that tv ·w⊺ ̸= 0. If it does not exist, then the scheme does not satisfy the
SSSP (Proposition 5). Otherwise, one of the vectors in the set Wcor,ki should satisfy the
requirement.

A.3 Proof generation - decomposing the kernel vector
We now describe the second half of the proof-generation algorithm for SSSP, by decomposing
the appropriate kernel vectors. Roughly, we create a matrix decomposition for the ciphertext
encodings c in a similar way as for penc. Then, we first construct the substitution vectors
for the ciphertext variables in s and ŝ and the substitution matrices for the common
variables in b, by considering the kernel of the decomposition for the ciphertexts. We then
use the suitable kernel vector w to construct the substitution vectors for the rest of the
variables. We describe the steps in more concrete detail below.

The inputs. The second step of the proof generation takes as additional input the vector
w produced by the first step of the proof generation algorithm.
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Step one: decomposing the ciphertext polynomials. We decompose c in Mc · v⊺
c ,

such that vc consists of all entries of the form sjbk and ŝj . Compute a basis Vc for the
kernel of Mc.

Step two: constructing substitution vectors/matrices for s, ŝ and b. We then
construct substitution vectors for the variables in s, ŝ and b as follows. Let d1 be the
number of (non-lone) variables in s and d2 be the number of vectors in Vc.

• For each variable sj in s, let j denote the entry in s (e.g., the first entry in s has
j = 0, the second j = 1), and set sj = 1d1

j to be its substitution matrix (i.e., a vector
in which the j-th entry is 1 and the rest is 0)

• For each bk in b that is corruptable, we return the substitution vector 0d1×d2

• For each bk in b that is not corruptable, we compute the substitution matrix Bk as
follows:

– Determine the indices of the entries in vc in which bk occurs

– Truncate all vectors in Vc to consider only the entries associated with those
indices

– Reorder the entries of the truncated vectors so that they correspond to bks, i.e.,
the first entry is associated with s0bk, the second with s1bk, etc.

– Create Bk by using the resulting truncated vectors as its column vectors, which
is a (d1 × d2)-matrix, because d2 corresponds to the number of basis vectors
(i.e., the column vectors) and d1 corresponds to the length of s

• For each ŝj in ŝ, we compute the substitution vector ŝj as follows:

– Initialize an empty list ŝj

– Determine the index of the entry in vc in which ŝj occurs

– For each vector in basis Vc, select the associated entry with that index, and
append it to ŝj

• (Make sure that the i-th column of each substitution matrix Bk and the j-th entry
of each substitution vectors ŝj corresponds to the i-th vector in Vc)

Step three: constructing substitution vectors for αβ. We then construct substi-
tution vectors for the variables in αβ, for which we use the kernel vector w generated
previously. In particular, for each αj in αβ, we compute the substitution vector aj as
follows:

• Initialize an empty list for aj

• We select the entries in v corresponding to αjsj′ and determine the associated indices
I

• We order the indices in I so that the j′-th entry in I corresponds to αjsj′ , i.e., the
first entry corresponds to αjs0, the second to αjs1, etc.

• For each i ∈ I, we select the i-th entry of w and append it to aj
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Step four: constructing substitution vectors for r̂. We construct the substitution
vectors for the variables in r̂, for which we use the kernel vector w generated previously.
For each variable r̂j in r̂, we compute the substitution vector r̂j as follows:

• Initialize an empty list for r̂j

• We select the entries in v corresponding to r̂jsj′ and determine the associated indices
I

• We order the indices in I so that the j′-th entry in I corresponds to r̂jsj′ , i.e., the
first entry corresponds to r̂js0, the second to r̂js1, etc.

• For each i ∈ I, we select the i-th entry of w and append it to r̂j

Step five: constructing substitution vectors for s̃. We construct the substitution
values for the variables in s̃, for which we use the kernel vector w generated previously. For
each variable s̃j in s̃, we set the substitution value s̃j to be the entry in w corresponding
to the entry in v with s̃j .

Step six: constructing substitution vectors for r. Lastly, we construct the substi-
tution vectors for the variables in r, for which we use both the kernel basis Vc (for the
matrix Mc) and the kernel vector w (of the matrix M). For each variable rj in r, we
compute the substitution vector rj as follows:

• We select the entries in v corresponding to the monomials in which rj occurs and
determine the associated indices I

• We order the indices in I so that the j′-th entry in I corresponds to rj(vc)j′ , i.e.,
the first entry corresponds to rj(vc)0, the second to rj(vc)1, etc.

• Initialize an empty list wrj

• For each i ∈ I, we select the i-th entry of w and append it to wrj

• Create a matrix Vc,rj by taking all the vectors in Vc as its first |Vc| column vectors
and the last column vector is −wrj

• Compute a basis for the kernel of Vc,rj

• Find a vector v in the basis such that the last entry is nonzero

• Divide all entries of v by the last entry and remove the last entry

• Output the resulting vector as rj = v

A.4 Verifying the proofs
Lastly, we verify the substitution vectors and matrices output by the tool. The substitution
vectors and matrices should satisfy four properties:

• Substituting the vectors and matrices in the polynomials yields all-zero vectors
(except for the blinding value cM )

• All corrupted master-key/semi-common variables in αβ are substituted by all-zero
vectors

• All corrupted common variables in b are substituted by all-zero matrices

• All entries of the substitution vectors for the master-key/semi-common variables αβ
should be independent of the known variables in the keys

These properties are verified in four steps.
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Step one: verifying the substitutions. For the blinding value cM , we verify that
the substitutions yield a nonzero value. For the following polynomials, we verify that the
substitutions yield all-zero vectors:

• The key polynomials k

• The non-primed ciphertext polynomials c

• The primed ciphertext polynomials c′

Step two: verifying the corrupted master-key/semi-common variables. For
each master-key/semi-common variable that is corrupted, we verify that the substitution
vector is all-zero.

Step three: verifying the common variables. For each common variable that is
corrupted, we verify that the substitution matrix is all-zero.

Step four: verifying the key independence. For each master-key/semi-common
variable, we verify that none of the entries in the substitution vector depends on known
variables that occur in the keys but not in the ciphertext.

B Linear algebra tools
For our tool, we use many of the linear algebra results of ACABELLA [dlPVA23]. We
also add several new results that we need to find all vectors with certain properties in the
kernel.

B.1 Constructing the basis Wcor

In the first lemma, we show how to construct a basis Wcor for the subspace of the kernel
of M, in which all entries I associated with the corrupted variables are set to 0. Note that
this lemma is identical to Lemma 7 in [dlPVA23] apart from some notational changes as
well as removing parts that are not required for the proof.

Lemma 4. Let M be a matrix, let V = {v1, ..., vn} be a basis for the kernel of M,
and let I be a set of indices. Let V ′ = {v′

1, ..., v′
n} be the set of vectors in V truncated

to only consider the indices in I, i.e., v′
j = ({(vj)i}i∈I). Let V = (v⊺1 , ..., v⊺n) and

V′ = ((v′
1)⊺, ..., (v′

n)⊺) be the matrices associated with V and V ′. Consider then a vector
basis W of Ker(V′) = {w | V′ · w⊺ = 0⊺}. Then, Wcor = {V · w⊺ | w ∈ W} is a basis for
{v ∈ Ker(M) | ∀i ∈ I [(v)i = 0]}.

Proof. The proof of Lemma 7 in [dlPVA23] applies.

B.2 Constructing the basis Wcor,ki (when |c′| ≥ 1)
To prove that step four of our algorithm in Appendix A.2 works (when |c′| ≥ 1), we prove
the following results. First, we prove that the resulting set of vectors Wcor,ki provides a
basis for a space that is a linear subspace of the space spanned by the basis vectors Wcor.
Then, we prove that the space spanned by Wcor,ki consists only of vectors that are key
independent in the entries associated with v1. After this, we show that all vectors in the
space spanned by Wcor that are key independent are also in the space spanned by Wcor,ki.
Lastly, we show that the resulting set of vectors is linearly independent, making it a basis
for the space {v ∈ Ker(M) | ∀i ∈ I [(v)i = 0] ∧ ∀j ∈ J [(v)j is key independent]}.
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The span of Wcor,ki is a subspace of the span of Wcor.

Proposition 4. Let Wcor be a basis for {v ∈ Ker(M) | ∀i ∈ I [(v)i = 0]}. Then, the
space spanned by Wcor,ki, as generated in step four of our algorithm in Appendix A.2, is a
linear subspace of Wcor.

We prove this in several steps via the following lemmas.

Lemma 5. Let V be a basis for the kernel of M, and let Vc′ be a basis for Ker(Mc′) =
{v |Mc′ · v⊺ = 0⊺}, where Mc′ · v⊺

c′ is the matrix decomposition of the primed ciphertext
encodings c′. Let V ′ be the set of vectors in V truncated to the v1 part, i.e., if J is the set
of indices such that (v)j is either of the form αjsj′ or s̃j , then V ′ = {({(v)j}j∈J ) | v ∈ V}.
Then, span(V ′) is a subspace of span(Vc′).

Proof. The proof for this is similar as for the ciphertext polynomials c, which we have also
proven (via [dlPVA23]) in the proof of Theorem 2.

Note that, because the span of Wcor is a subspace of the span of V, we also have that
the span of the truncated vectors of Wcor is in the span of Vc′ .

Corollary 3. Let Wcor be a basis for {v ∈ Ker(M) | ∀i ∈ I [(v)i = 0]}, and let W ′
cor be

the set of vectors in Wcor truncated to the v1 part. Then, the span of W ′
cor is a subspace

of the span of Vc′ .

As a result of Lemma 5, we can write each vector in V ′ = {v′
1, ..., v′

n′} as a linear
combination of the vectors in Vc′ = {vc′,1, ..., vc′,nc′}. The goal is to find linear combinations
of the vectors in Vc′ that span the same space as V ′, of which we can easily determine
a basis that spans a subspace of span(V ′) that consists only of key-independent vectors.
We do this by constructing a matrix consisting of linear coefficients such that the i-th
row corresponds to v′

i and the coefficients ci,j are such that v′
i =

∑
j ci,jvc′,j . Then, we

consider the reduced row echelon form of this matrix, whose row span is equivalent to the
row span of the original matrix. Additionally, the reduced row echelon form will simplify
determining a basis for the subspace of V ′ consisting of key-independent vectors.

Lemma 6. Let V ′ and Vc′ be any sets of vectors such that span(V ′) is a subspace of
span(Vc′). Let Mlc denote the matrix in which the i-th row of Mlc consists of coefficients
(ci,1, ..., ci,nc) such that v′

i =
∑

j ci,jvc′,j. Let Mrref denote the reduced row echelon form
of Mlc. Let Vc′ be the matrix in which the i-th column vector is vc′,i, and let vrref,i =
Vc′ ·M⊺

rref,i be the vector that is obtained by taking the i-th row of Mrref as the coefficients
for a linear combination of the vectors in Vc′ . Then, span(Vrref) = span(V ′), where
Vrref = {vrref,1, ..., vrref,n′}.

Proof. For simplicity, we also write each row i of Mrref as coefficients ĉi,j , so that each
vrref,i =

∑
j ĉi,jvc′,j . Furthermore, because the row spaces of Mrref and Mlc are equiv-

alent, we can write each row of Mrref as a linear combination of the rows of Mlc, i.e.,
(ĉi,1, ..., ĉi,nc

) =
∑

j ei,j(cj,1, ..., cj,nc
), meaning that ĉi,j =

∑
k ei,kck,j . Therefore, each

vector vrref,i is a linear combination of the vectors in V ′, i.e.,

vrref,i =
∑

j

ĉi,jvc′,j =
∑
j,k

ei,kck,jvc′,j

=
∑

k

ei,k

∑
j

ck,jvc′,j

 =
∑

k

ei,kv′
k.

We use this to prove that any v̂ ∈ span(Vrref) is also in span(V ′), i.e.,

v̂ =
∑

i

divrref,i =
∑
i,j

diei,jv′
j
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=
∑

j

(∑
i

diei,j

)
v′

j ,

so, indeed, v̂ ∈ span(V ′). Proving that any v̂ ∈ span(V ′) is also in v̂ ∈ span(Vrref) is almost
the same, i.e., we write each row of Mlc as a linear combination of the rows in Mrref and
then write each vector v′

i as a linear combination of the vectors in Vrref .

By extension, any subset of Vrref spans a linear subspace of span(V ′). From this, it
also follows that Wcor,ki spans a linear subspace of the span of Wcor = {wcor,1, ..., wcor,n′},
as required by the proposition. In particular, this follows from noting that the vectors
in Wcor,ki are constructed from the same linear combinations that yield Vrref . That is, if
vrref,i ∈ Vrref is generated by computing vrref,i =

∑
j ejv′

j , where V ′ is the set of vectors in
Wcor truncated to the v1 part, then each vector wcor,rref,i =

∑
j ejwcor,j is generated as a

linear combination of vectors in Wcor. As such, Wcor,ki = {wcor,rref,1, ..., wcor,rref,n′} spans
a linear subspace of span(Wcor).

Any vector in spanki(Vrref,ki) is key independent. Equipped with Mrref and Vrref , it is
much easier to determine a basis for the subspace of V ′ that consists of all key-independent
vectors. In particular, we will construct this basis by taking the subset of rows of Mrref
(and associated vectors in Vrref) that do not depend on the known variables that occur in
the keys but not the ciphertexts. It follows rather easily that the span of the resulting
set of vectors yields a space of key-independent vectors (provided that the coefficients for
each linear combination are key independent). To express a span consisting of only linear
combinations with key-independent coefficients, we use the notation spanki.

Lemma 7. Let V ′, Mlc, Mrref and Vrref be as in Lemma 6, and let Varknc denote the
set of known variables that occurs in the key but not in the ciphertext. Let I ′ denote the
set indices corresponding to the rows of Mrref in which none of the entries consists of
known variables in Varknc or all zeros, and construct a submatrix Mrref,ki of Mrref from
those rows. Let Vrref,ki = {vrref,i | i ∈ I} ⊆ Vrref consist of the associated vectors. Then,
spanki(Vrref,ki) is a subspace of span(V ′) consisting of only key-independent vectors.

Proof. That spanki(Vrref,ki) is a subspace of span(V ′) is trivial, because Vrref,ki ⊆ V ′.
Furthermore, all the vectors in spanki(Vrref,ki) are key independent in the sense that none
of the entries of any vector in this span consist of values that are dependent on the variables
in Varknc. Let v̂ ∈ spanki(Vrref,ki), i.e., v̂ =

∑
i∈I divrref,i. By definition of spanki, the

coefficients di do not depend on the variables in Varknc. Hence, we only have to prove that
each vector vrref,i for i ∈ I is key independent. To show this, we use that each vrref,i is a
linear combination of vectors in Vc′ , which are by definition also key independent. These
linear combinations use the coefficients provided by Mrref . Because Mrref,ki considers only
the rows of Mrref that are key independent, the coefficients are key independent as well.
Therefore, v̂ is key independent.

Any key-independent vector in span(V ′) is in spanki(Vrref,ki).

Lemma 8. Let V ′, Mlc, Mrref , Vrref , Varknc, Mrref,ki and Vrref,ki be as in Lemma 7.
Then, any key-independent vector in span(V ′) is also in spanki(Vrref,ki).

Proof. Let v̂ ∈ span(V ′). Because span(Vrref) = span(V ′), this means that we can write v̂
as a linear combination of vectors in Vrref . We show that, in particular, there can be no
nonzero coefficients for the vectors in {vrref,i | i ∈ [n′] \ I ∧ vrref,i ̸= 0}. Suppose that this
is not the case, i.e., let d1, ..., dn′ be coefficients such that v̂ =

∑
i divrref,i for which there

exists at least one ispecial ∈ [n′] \ I such that dispecial ̸= 0 and vrref,ispecial ̸= 0. We know
that vrref,i =

∑
j ĉi,jvc′,j . Because the coefficients ĉi,j come from the matrix Mrref , which
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is in reduced row echelon form, we know that, if ĉi,j ̸= 0 for some j, then ĉi′,j = 0 for all
i′ ̸= i. Hence, we can write v̂ as a linear combination of vectors in Vc′ :

v̂ =
∑

i

divrref,i =
∑
i,j

diĉi,jvc′,j ,

so the coefficient for vc′,j is
∑

i diĉi,j . Let J denote the set of j for which dispecial ĉispecial,j ̸= 0.
Note that, for all these j ∈ J , we have that ĉi,j = 0 for all i ̸= ispecial.

Furthermore, because the ispecial-th row is not key independent, there should be at
least two nonzero entries ĉispecial,j1 , ĉispecial,j2 ̸= 0, and there should be at least one entry
that is key dependent. Note that, because the first nonzero entry in the row needs to
be 1 (per the definition of the reduced row echelon form), we cannot scale the row to be
key independent. To “cancel out” the key-dependent entry, we need to cancel it out with
the other vectors in the linear combination

∑
i divrref,i. Let jspecial ∈ J denote the key

dependent entry, i.e., ĉispecial,jspecial is key dependent. Putting this all together, we have

v̂ = dispecial ĉispecial,jspecialvc′,jspecial + dispecial

∑
j∈J \{jspecial}

ĉispecial,jvc′,j +
∑

i̸=ispecial
j∈[nc]\J

diĉi,jvc′,j .

Note that the coefficient for vc′,jspecial is now dispecial ĉispecial,jspecial , which is key dependent
and therefore, each nonzero entry of dispecial ĉispecial,jspecialvc′,jspecial is key dependent. To
ensure that the key-dependent entries are canceled out, the whole vector needs to be
canceled out by the other vectors. However, because the set Vc′ is a basis, all vectors in it are
linearly independent, so this cannot be done. Hence, v̂ cannot be key independent, and as a
result, there can be no nonzero coefficients for the vectors in {vrref,i | i ∈ [n′]\I∧vrref,i ̸= 0}
for any key-independent vector in span(V ′).

To wrap up the proof, we note that we have now proven that each key-independent v̂ ∈
span(V ′) is in span(Vrref,ki). It is relatively easy to see now that it is also in spanki(Vrref,ki),
because all the vectors in Vrref,ki are key independent and they are linearly independent.
Via a same argument as above, it must therefore be the case that any key-independent
vector in span(Vrref,ki) is also in spanki(Vrref,ki).

The set Wcor,ki is linearly independent.

Lemma 9. The set of vectors Wcor,ki is linearly independent. It is therefore a basis for
{v ∈ Ker(M) | ∀i ∈ I [(v)i = 0] ∧ ∀j ∈ J [(v)j is key independent]}.

Proof. This follows directly from the fact that the set of truncated vectors Vrref,ki (that
truncates the vectors of Wcor,ki to the v1-part) are linearly independent. These vectors
are linearly independent owing to the linear independence of the nonzero rows of Mrref as
well as the linear independence of Vc′ .

B.3 Constructing the basis Wcor,ki (when |c′| = 0)
We now prove that our algorithm in Appendix A.2 works (when |c′| = 0).

Lemma 10. Let Wcor be a basis for {v ∈ Ker(M) | ∀i ∈ I [(v)i = 0]}, and let W ′
cor be

the set of vectors in Wcor truncated to the v1 part, i.e., if J is the set of indices such that
(v)j is either of the form αjsj′ or s̃j, then W ′ = {({(v)j}j∈J ) | v ∈ Wcor}. Let Mtrunc,cor
be the matrix in which each row is a vector in W ′, and let Mtrunc,cor,rref be the reduced row
echelon form of Mtrunc,cor. Let Mtrunc,cor,rref,ki be Mtrunc,cor,rref but with the rows removed
that are key dependent or all-zero. Then, spanki(Mtrunc,cor,rref,ki) is a key independent and
linearly independent subspace of span(Mtrunc,cor).
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Proof. This follows immediately from the fact that all the rows of Mtrunc,cor,rref,ki are key
independent, and that the reduced row echelon form spans the same space as Mtrunc,cor.
By taking a submatrix of the reduced row echelon form, we obtain a (possibly strictly
smaller) subspace. Furthermore, the nonzero rows of the reduced row echelon form are
linearly independent.

Lemma 11. LetW ′ and Mtrunc,cor,rref,ki be as in Lemma 10, and let v be a key-independent
vector in the span(W ′). Then, v ∈ spanki(Mtrunc,cor,rref,ki).

Proof. Let v be a key-independent vector in the span(W ′). Suppose that it is not in
spanki(Mtrunc,cor,rref,ki). Then there must be at least one key-dependent row ispecial of
Mtrunc,cor,rref for which v =

∑
i ciMtrunc,cor,rref,i with cispecial ̸= 0 and Mtrunc,cor,rref,i is key

dependent. Because Mtrunc,cor,rref is in the reduced row echelon form, the nonzero entries
of the row cannot be canceled by the other rows. Furthermore, the first nonzero entry in
the row is 1, meaning that another entry in that row is key dependent. Dividing the row
by the key dependent entry will make the entry that is 1 key dependent. So, v cannot have
any nonzero coefficients for the key dependent rows of Mtrunc,cor,rref . And thus, it must
be in span(Mtrunc,cor,rref,ki). Furthermore, it must be a linear combination for which the
coefficients are key independent, because multiplying a row with a key dependent scalar
yields a key dependent vector (as it cannot be canceled out by the other rows). Hence,
v ∈ spanki(Mtrunc,cor,rref,ki).

Lemma 12. Let Wcor,ki be constructed as in step four of the algorithm in Appendix A.2.
The set of vectors Wcor,ki is a basis for {v ∈ Ker(M) | ∀i ∈ I [(v)i = 0] ∧ ∀j ∈
J [(v)j is key independent]}.

Proof. This follows directly from the fact that the set of row vectors Mtrunc,cor,rref,ki
(that truncates the vectors of Wcor,ki to the v1-part) are linearly independent. These
vectors are linearly independent owing to the linear independence of the nonzero rows of
Mtrunc,cor,rref .

B.4 Completeness of the algorithm

Putting together the results of the previous subsections, we formulate the following
proposition. By proving this proposition, we prove that our algorithm in Appendix A.2 is
complete in that it finds a suitable kernel vector if one exists.

Proposition 5. Let M be a matrix and tv be a target vector that is not in the span of
the rows of M. Let I be a set of indices associated with corrupted variables, and let J
be a set of indices associated with the v1 part of the matrix. Let Wcor,ki be a basis for
{v ∈ Ker(M) | ∀i ∈ I [(v)i = 0] ∧ ∀j ∈ J [(v)j is key independent]}. Let W ′ ⊆ Wcor,ki
be such that W ′ = {v ∈ Wcor,ki | tv · v⊺ ̸= 0}. Then, if some vector w̄ ∈ Ker(M) exists
with tv · w̄⊺ ̸= 0 and (w̄)i = 0 for all i ∈ I and (w̄)j is key independent for all j ∈ J , then
W ′ ̸= ∅.

Proof. Let Wcor,ki = {w1, ..., wn} for some n ∈ N, and let w̄ ∈ Ker(M) be some vector
such that tv · w̄⊺ ̸= 0 and (w̄)i = 0 for all i ∈ I and (w̄)j is key independent for all j ∈ J .
This means that w̄ ∈ span(Wcor,ki), and in particular, that some coefficients c1, ..., cn exist
such that w̄ =

∑
i ciwi. If W ′ = ∅, then tv · w⊺

i = 0. By extension, it then also follows
that tv · w̄⊺ = tv · (

∑
i ciwi)⊺ =

∑
i citv · w⊺

i =
∑

i 0 = 0. This is a contradiction, so it
must be that W ′ ̸= 0.
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C Proof of Theorem 3
Proof. To prove the theorem, we look at the (s, s, s)-CPA game first and we will see that
when auxy is not used to generate (non-)lone key variables, then the proof will not require
y to be announced at the beginning of the game.

Let A be an adversary in the (s, s, s)-CPA game with scheme ABE-ISA such that the
(d1, d2) SSSP holds for some d1, d2. Also let d′

1 be the number of non-lone CT variables
that are paired with semi-common variables. Then we show how to use A to construct an
adversary B against the (d1, d′

1, d2)-spDBDH assumption. To help keep track of the terms
that can be programmed and which need to be canceled, we use colors. We use red for
the terms that cannot be canceled, and blue for terms for which some of the terms can
be programmed but not all. If no colors are used, the terms can be programmed using
known values or terms from the assumption. Furthermore, because the terms “in the
exponent” are substantially large, we will use implicit representation of group elements,
e.g., hr = [r]H.

Simulating the public keys and ciphertexts related to β. A large part of our
reduction is similar to the reduction in [Ven23], except for the simulation of the public
keys instantiated from β, the ciphertexts instantiated from c′′ and the non-lone ciphertext
variables s that are combined with the β variables in c′′. In the reduction, we simulate
these using the terms from the (d1, d′

1, d2)-spDBDH assumption that are restricted to one
group, i.e., [xci]D(i),

[
yz
ci

]
D(i)

and
[

xyzci
ci′

]
D(i)

(for i ̸= i′). More specifically, these non-lone

ciphertext variables use [xci]D(i), the public-key variables use
[

yz
ci

]
D(i)

, and we use
[

xyzci
ci′

]
D(i)

to simulate the parts of the polynomial that we cannot cancel out using SSSP. To enable
simulation, it is essential that the substitution vectors for the non-lone variables (resp. the
semi-common variables) do not have overlap in the nonzero entries if they are instantiated
in different groups. For example, if sj and sj′ both have a nonzero value in the substitution
vector in the first entry and they are instantiated in different groups, this is problematic.
Fortunately, we can prove from relatively simple-to-check properties that this follows from
our restrictions on the distributions. In particular, this follows if the non-lone variables
sj are substituted by standard basis vectors 1d1

j (which have pairwise no overlap among
nonzero entries). (Note that our algorithms implemented in Section 3.6 yields substitution
vectors of this form and can generally be applied to argue that this property holds if SSSP
holds. Specifically, by applying Theorem 2 twice: first convert the SSSP proof into a
kernel vector and then decompose the vector using our algorithm to obtain an SSSP proof
with the required properties.) Subsequently, the substitution vectors of the semi-common
variables βk have no overlap in nonzero entries if they do not occur together with the
same non-lone variables or in the same polynomials as other products of non-lone and
semi-common variables. This follows from the fact that we can set the (j + 1)-th entry of
βk to 0 if sjβk does not occur in any of the polynomials. In evaluating the polynomials
with the substitutions, sjb⊺

k = (b⊺
k)j+1, we select the (j + 1)-th entry of the substitution

vector of βk. If it is never selected (which is the case when sjbk does not occur anywhere),
then its value does not matter for the correctness of the evaluations and can thus be 0.

Handling multiple challenge queries. We will prove security for multiple challenge
queries via a standard hybrid argument. That is, we let G0 be the game where all challenge
queries are answered with cM and Gnc

be the game where all challenge queries are answered
with a random element from the target group. To transition from game Gi′−1 to Gi′ ,
we replace cM of the i′-th challenge query with a random element from the target group.
Each transition can be bounded by an adversary Bi′ against (d1, d′

1, d2)-spDBDH. In the
following, we will describe the simulation of Bi′ . For better readability, we will write B
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instead of Bi′ and x instead of xi′ .

Simulation. Adversary B gets as input the terms from the assumption (cf. Definition 20)
as well as a challenge T . Let EncB, EncR, EncS be the three algorithms that generate the
necessary substitutions for the variables in the encodings. Adversary B now runs A and
simulates the (s, s, s)-CPA game as follows:

• Initialization: Using oracles InitMPK, InitChall, InitKey and InitCor, A
commits to MPK indices I ′, challenge predicates x1, ..., xnc

∈ X , key predicates
y1, ..., ynk

and a set of indices Icor indicating corruptions. Adversary B runs Parami

for all i ∈ I ′ and obtains variables (αi, bi, βi) such that the combined vectors α, b,
β (as in the property well-formed parameters, Definition 17) are of length nα, nβ ,
nb, respectively. We define a1, a2, b to be the corrupted subsets of those variables.
B then runs (a1, ..., anα

, b1, ..., bnβ
, B1, ..., Bnb

)← EncB(xi′ , a1, a2, b) to obtain the
necessary substitutions which will be used to compute MPKi when i ∈ I ′ is queried
to MPK.

• MPK oracle: B can basically generate all MPKi at the beginning of the simulation
and then only output those requested by A. It does so by sampling ᾱj , b̄k and β̄j

uniformly from Zp and then it sets{
[αj ]GT

= e(g, h)ᾱj ·
∏

i∈[d1]

e

(
[y]G,

[
z
ci

]
H

)(aj)i
}

j∈[nα]

,

{
[βj ]D(βj) = [β̄j ]D(βj) ·

∏
i∈[d1]

[
yz
ci

](bj)i

D(bj)

}
j∈[nβ ]

,

{
[bk]D(bk) = [b̄k]D(bk) ·

∏
i∈[d1]
j∈[d2]

[
z

cic′
j

](Bk)i,j

D(bk)

}
k∈[nb]

.

Note that when aj ∈ a1, βj ∈ a2 and bk ∈ b, then the last term is 1 since a, b and
B equal 0. Thus, B can also answer queries to Cor for those indices. Note that
[βk]D(βk) can be simulated like this because of the restrictions on the distributions,
as well as our argument that sj can be represented by the standard basis vectors.
These ensure that substitution vectors bk for the semi-common variables are nonzero
only in the entries associated with the sj variables that they are paired with. Thus,
these variables can be simulated from the restricted terms in the assumption.

• KeyGen oracle: When queried on (j, yj , auxy), where auxy has not yet been queried,
we aggregate all yj′ with the same auxy to y. If auxy has already been queried, we
have already computed the key and just return those parts that correspond to yj .
Also note that if auxy is empty (or not used to derive (non-)lone variables), then yj

is already the aggregated key predicate y and we do not need to rely on adversary A
to announce it.

To compute SKy, B generates (r1, ..., rm1 , r̂1, ..., r̂m2) ← EncR(x, y) and r̄j ∈R Zp

for all j ∈ [m1] and programs part of the ciphertext as{
[rj ]D(rj) = [r̄j ]D(rj) ·

∏
j∈[d2]

[yc′
j]

(rj)j
D(rj)

}
j∈[m1]

, {[ki]D(ki)}i∈[m3] ,
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and implicitly sets r̂j = řj +
∑

i∈[d1]

(
(r̂j)i ·

yz
ci

)
j∈[m2]

,

such that

[ki]D(ki) =

 ∑
j∈[nα]

δ1,i,jαj +
∑

j∈[nβ ]

δ2,i,jβj +
∑

j∈[m2]

δ̂i,j r̂j +
∑

j∈[m1]
k∈[nb]

δ3,i,j,krjbk


D(ki)

is programmed implicitly as follows: ∑
j∈[nα]

δ1,i,jαj


D(ki)

=
∏

j∈[nα]

[δ1,i,jᾱj ]D(ki) ·
∏

i∈[d1]

[
(aj)i

yz
ci

]δ1,i,j

D(ki)

 ,

 ∑
j∈[nβ ]

δ2,i,jβj


D(ki)

=
∏

j∈[nβ ]

[δ2,i,j β̄j ]D(ki) ·
∏

i∈[d1]

[
(bj)i

yz
ci

]δ2,i,j

D(ki)

 ,

 ∑
j∈[m2]

δ̂i,j r̂j


D(ki)

=
∏

j∈[m2]

[δ̂i,j řj

]
D(ki)

·

 ∏
i∈[d1]

[
yz
ci

](r̂j)i

D(ki)

δ̂i,j
 ,

 ∑
j∈[m1]
k∈[nb]

δ3,i,j,krjbk


D(ki)

=
∏

j∈[m1]
k∈[nb]

[r̄jbk + rj b̄k − r̄j b̄k

]
D(ki) ·

∏
i∈[d1]

j,j′∈[d2]

[
yzc′

j′

cic′
j

](Bk)i,j(rj)j′

D(ki)


δ3,i,j,k

,

where řj ∈R Zp for all j ∈ [m2]. All the terms, including those of the form[
yzc′

j′

cic′
j

](Bk)i,j(rj)j′

D(ki)
with j ̸= j′, can be programmed using earlier-generated values or

terms from the assumption, except the terms with
[

yz
ci

]
D(ki)

, which are canceled

because of the symbolic property (which ensures that ki evaluates to 0d1 when all
variables are substituted by their associated vectors and matrices):

∏
j∈[nα]

∏
i∈[d1]

[
(aj)i

yz
ci

]δ1,i,j

D(ki)
·
∏

j∈[nβ ]

∏
i∈[d1]

[
(bj)i

yz
ci

]δ2,i,j

D(ki)
·
∏

j∈[m2]

 ∏
i∈[d1]

[
yz
ci

](r̂j)i

D(ki)

δ̂i,j

·
∏

j∈[m1]
k∈[nb]

 ∏
i∈[d1]
j∈[d2]

[
yz
ci

](Bk)i,j(rj)j

D(ki)


δ3,i,j,k

=
∏

i∈[d1]

[
yz
ci

]exp

D(ki)
= 1,

where exp =
∑

j∈[nα] δ1,i,j(aj)i +
∑

j∈[nβ ] δ2,i,j(bj)i +
∑

j∈[m2] δ̂i,j(r̂j)i +∑
j∈[m1],k∈[nb],j∈[d2] δ3,i,j,k(Bk)i,j(rj)j = 0.
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• Challenge oracle: Subsequently, B creates a ciphertext for x and sends CTx along
with the challenge cM to A. For this, it first runs (s0, ..., sw1 , ŝ1, ..., ŝw2 , s̃1, ..., s̃w′

2
)←

EncS(x), and it sets (explicitly and implicitly, respectively)[sj ]D(sj) = [s̄j ]D(sj) ·
∏

i∈[d1]

[(sj)ixci]D(sj)


j∈[w1]

,

ŝj = šj +
∑

j∈[d2]

(
(̂sj)j ·

xz
c′

j

)
j∈[w2]

where s̄j ∈R Zp. As mentioned earlier, [sj ]D(sj) can be simulated like this because the
restrictions on the distributions, as well as our argument that sj can be represented
by the standard basis vectors. These ensure that the non-lone variables that occur
together with semi-common can be simulated from the restricted terms in the
assumption. For all i ∈ [w3], it programs

[ci]D(ci) =

 ∑
j∈[w2]

η1,i,j ŝj +
∑

j∈[w1]
k∈[nb]

η1,i,j,ksjbk


D(ci)

as follows: ∑
j∈[w2]

η1,i,j ŝj


D(ci)

=
∏

j∈[w2]

[η1,i,j šj ]D(ci) ·

 ∏
j∈[d2]

[
xz
c′

j

](̂sj)j

D(ci)

η1,i,j


 ∑
j∈[w1]
k∈[nb]

η1,i,j,ksjbk


D(ci)

=
∏

j∈[w1]
k∈[nb]

[s̄jbk + sj b̄k − s̄j b̄k

]
D(ci) ·

∏
i,i′∈[d1]
j∈[d2]

[
xzci′

cic′
j

](Bk)i,j(sj)i′

D(ci)


η1,i,j,k

where šj ∈R Zp for all j ∈ [w2]. Furthermore, all the terms, including those of the
form

[
xzci′
cic′

j

]
G

with i ̸= i′, can be programmed using earlier-generated values or terms

from the assumption, except the terms with
[

xz
c′

j

]
G

, which are canceled because of
the symbolic property (which ensures that ci evaluates to 0d2 when all variables are
substituted by their associated vectors and matrices):

∏
j∈[w2]

∏
j∈[d2]

[
xz
c′

j

]η1,i,j (̂sj)j

D(ci)

·
∏

j∈[w1]
k∈[nb]
i∈[d1]
j∈[d2]

[
xz
c′

j

]η1,i,j,k(Bk)i,j(sj)i′

D(ci)

=
∏

j∈[d2]

[
xz
c′

j

]exp

D(ci)

= 1,

where exp =
∑

j∈[w2] η1,i,j (̂sj)j +
∑

j∈[w1],k∈[nb],i∈[d1] η1,i,j,k(Bk)i,j(sj)i = 0.
Furthermore, it programs

[c′
i]GT

=

 ∑
j∈[nα],j′∈[w1]

η′
1,i,j,j′αjsj′ +

∑
j∈[nβ ],j′∈[w1]

η′
2,i,j,j′βjsj′ +

∑
j∈[w′

2]

η̂′
i,j s̃j


GT

for all i ∈ [w4] as follows: ∑
j∈[nα]
j′∈[w1]

η′
1,i,j,j′αjsj′


GT

=
∏

j∈[nα]
j′∈[w1]

[ᾱjsj′ + αj s̄j′ − ᾱj s̄j′ ]GT
·
∏

i,i′∈[d1]

[
xyzci′

ci

](aj)i(sj′ )i′

GT

η′
1,i,j,j′
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 ∑
j∈[nβ ]
j′∈[w1]

η′
2,i,j,j′βjsj′


GT

=
∏

j∈[nα]

j′∈[w1]

[β̄jsj′ + βj s̄j′ − β̄j s̄j′
]
GT
·
∏

i,i′∈[d1]

[
xyzci′

ci

](bj)i(sj′ )i′

GT

η′
2,i,j,j′

 ∑
j∈[w′

2]

η̂′
i,j s̃j


GT

=
∏

j∈[w′
2]

(
[s̆j ]GT

· [xyz]s̃j

GT

)η̂′
i,j

,

where all the terms, including those with[
xyzci′

ci

]
GT

= e

(
[xci]G,

[
yzc′

j
cic′

j′

]
H

)
for i ̸= i′, can be programmed using earlier-generated values or terms from the
assumption, except the terms with [xyz]GT , which are canceled because of the symbolic
property (which ensures that c′

i evaluates to 0 when all variables are substituted by
their associated vectors and values):∏
j∈[nα]
j′∈[w1]
i∈[d1]

[xyz]
η′

1,i,j,j′ (aj)i(sj′ )i′

GT
·
∏

j∈[nβ ]
j′∈[w1]
i∈[d1]

[xyz]
η′

2,i,j,j′ (bj)i(sj′ )i′

GT
·
∏

j∈[w′
2]

[xyz]η̂
′
i,j s̃j

GT
= [xyz]exp

GT
= 1,

where exp =
∑

j∈[nα],j′∈[w1],i∈[d1] η′
1,i,j,j′(aj)i(sj′)i′+

∑
j∈[nβ ],j′∈[w1],i∈[d1] η′

2,i,j,j′(bj)i(sj′)i′+∑
j∈[w′

2] η̂′
i,j s̃j = 0.

Ciphertext elements c′′ can be simulated similar to c. Adversary B programs

[c′′
i ]D(c′′

i
) =

 ∑
j∈[w′

2]

η̂2,i,j s̃j +
∑

j∈[w1]
k∈[nβ ]

η2,i,j,ksjβk


D(c′′

i
)

as follows: ∑
j∈[w′

2]

η̂2,i,j s̃j


D(c′′

i
)

=
∏

j∈[w′
2]

[η̂2,i,j s̆j ]D(c′′
i

) ·

 ∏
j∈[d2]

[xyz](̃sj)j
D(c′′

i
)

η̂2,i,j


 ∑
j∈[w1]
k∈[nb]

η1,i,j,ksjβk


D(c′′

i
)

=
∏

j∈[w1]
k∈[nβ ]

[s̄jβk + sj β̄k − s̄j β̄k

]
D(c′′

i
) ·
∏

i,i′∈[d1]

[
xyzci′

ci

](bk)i(sj)i′

D(c′′
i

)

η2,i,j,k

where all the terms, including those of the form
[

xyzci′
ci

]
D(c′′

i
)

with i ̸= i′, can be

programmed using earlier-generated values or terms from the assumption, except the
terms with [xyz]D(c′′

i
), which are canceled because of the symbolic property (which

ensures that c′′
i evaluates to 0 when all variables are substituted by their associated

vectors and matrices):∏
j∈[w1]
k∈[nβ ]

[xyz]η2,i,j,ksjbk

D(c′′
i

) ·
∏

j∈[w′
2]

[xyz]η̂2,i,j s̃j

D(c′′
i

) = [xyz]exp
D(c′′

i
) = 1,
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where exp =
∑

j∈[w1],k∈[nβ ] η2,i,j,ksjbk +
∑

j∈[w′
2] η̂2,i,j s̃j = 0.

Note that the terms of the form
[

xyzci′
ci

]
D(c′′

i
)

can be simulated because we had shown

that the substitution vectors for βk are nonzero in only the entries associated with the
non-lone variables that they occur together with. In accordance with our restrictions
on the distributions, these should occur in the same groups, as well as their associated
polynomials. Thus, all the nonzero products are also in the same group. Lastly, the
challenge is computed as follows:

e(g, h)cM =

 ∑
j∈[w′

2]

ζj s̃j +
∑

j∈[nα]
j′∈[w1]

ζ1,j,j′αjsj′ +
∑

j∈[nβ ]
j′∈[w1]

ζ2,j,j′βjsj′


GT

=
∏

j∈[w′
2]

(
[s̆j ]GT

· [xyz]s̃j

GT

)ζj

·
∏

j∈[nα]
j′∈[w1]

[ᾱjsj′ + αj s̄j′ − ᾱj s̄j′ ]GT
·
∏

i,i′∈[d1]

[
xyzci′

ci

](aj)i(sj′ )i′

GT

ζ1,j,j′

·
∏

j∈[nβ ]
j′∈[w1]

[β̄jsj′ + βj s̄j′ − β̄j s̄j′
]
GT
·
∏

i,i′∈[d1]

[
xyzci′

ci

](bj)i(sj′ )i′

GT

ζ2,j,j′

where, again, most of the terms can be programmed using earlier-generated values
or terms from the assumption, except the following part, which is replaced by the
challenge value T from the (d1, d′

1, d2)-spDBDH assumption:∏
j∈[w′

2]

[xyz]ζj s̃j

GT
·
∏

j∈[nα]
j′∈[w1]
i∈[d1]

[xyz]ζ1,j,j′ (aj)i(sj′ )i
GT

·
∏

j∈[nβ ]
j′∈[w1]
i∈[d1]

[xyz]ζ2,j,j′ (bj)i(sj′ )i
GT

= T Γ,

where Γ =
∑

j∈[w′
2] ζj s̃j+

∑
j∈[nα],j′∈[w1],i∈[d1](aj)i(sj′)i+

∑
j∈[nβ ],j′∈[w1],i∈[d1](bj)i(sj′)i ≠

0 because of the symbolic property. Note that this ciphertext component is well-
formed if T = [xyz]GT

, and uniformly random if not.

• Random oracle queries: If auxy is used to generate non-lone key variables via
the random oracle, then the relevant queries are known to the challenger at the start
of the game and can be simulated accordingly. Other outputs of the form [bk] or
[sj ] can also be simulated as described above. When asked for inputs that are not
related to the predicates, B simply draws a random group element.

• Decision phase: Adversary A outputs a guess δ′ and adversary B outputs the same
bit to its own challenger.

All remaining challenge ciphertexts are simulated as described in the hybrid game. Note
that whenever A distinguishes between hybrid Gi′−1 and Gi′ , then adversary B solves
(d1, d′

1, d2)-spDBDH. Hence, collecting the probabilities over all hybrids yields the claimed
bound.
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D The generic group model and omitted proofs
In the generic group model (GGM), the adversary gets access to the (pairing) group
operations via oracles. Each group element is represented by a unique handle which is
usually a random string or an index in a list of already seen elements. In this work, we will
consider the latter approach which is essentially based on the model by Maurer [Mau05].
The group operation oracle Op takes as input two handles to group elements ga and gb

and outputs a handle to gc = ga+b. In the pairing group setting, the oracle additionally
takes an identifier indicating whether the operation is performed in group G, H or GT .
The pairing oracle Pair takes as input handles to group elements ga and hb and outputs
a handle to gab

T . When analyzing a complexity assumption or scheme in the GGM, we
only look at the exponents and simulate via polynomials. This is also sometimes referred
to as the symbolic model. We argue that a certain polynomial cannot be created using
those polynomials that the adversary knows, showing that the adversary cannot win in
the symbolic model. It then remains to show that the simulation using polynomials is
statistically close to the simulation in the GGM. We recall a useful lemma that is often
used in those proofs.

Lemma 13 (Schwartz-Zippel Lemma). Let f(x1, .., xn) be a non-zero multivariate polyno-
mial of degree d ≥ 0 over a field F. Let S be a finite subset of F. Let α1, . . . , αn be chosen
uniformly at random from S. Then

Pr[f(α1, . . . , αn) = 0] ≤ d

|S|
.

D.1 Generic hardness of (d1, d′
1, d2)-spDBDH

We prove GGM bounds for our q-type assumption given in Definition 20.

Theorem 5. Let d1, d′
1, d2 be positive integers such that d′

1 ≤ d1. Let A be a generic
adversary against the (d1, d′

1, d2)-spDBDH assumption, issuing at most nop queries to Op
and npair queries to Pair. Then,

Adv(d1,d′
1,d2)-spDBDH

PGGen,A (λ) ≤ (2d1d2 + 6) · n2

p
,

where n = (nop + npair + 3 + 3 max{d2
1d2, d1d2

2}).

Proof. We want to simulate the terms provided by the assumption via polynomials. At the
beginning of the game, the challenger initializes lists LG and LH with the generators, i.e.,
LG[1] = LH[1] = 1 as well as the terms provided by the assumption. List LGT

is initialized
with the challenge, that is either the polynomial xyz or an independent formal variable
u. The challenger outputs the indices to the adversary who can now perform operations
via oracles Op and Pair. This will add new polynomials to the lists. At the end, the
adversary will output a bit. We want to show that when the simulator uses polynomials
the adversary can only win with probability 1/2. Further, we analyze the probability that
the simulation fails which happens if there exist two polynomials p and p′ such that the
polynomials are not equal, but they evaluate to the same value when assigning random
values to the formal variables.

Bounding the degree of polynomials. Since some of the exponents are rational
fractions, the degree of polynomials may increase when the adversary performs group
operations via oracle Op. To bound the maximum degree of polynomials the adversary
creates (in each of the groups), we view an exponent ρ as the ratio of two polynomials p1
and p2 and compute the degree of p1/p2 as max{deg(p1), deg(p2)}.
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We observe that the least common multiple of all denominators of terms is ∆ =∏
i∈[d1],j∈[d2] cic′

j. That is, the adversary can create polynomials of degree at most δG′ =
maxi{deg(∆ · ρG′)} where ρG′ are all the terms (represented as polynomials) provided by
the assumption in group G′ ∈ {G,H}. Since c1 = c′

1 = 1 and assuming that D maps at
least one index into each group, we get δG′ = (d1− 1)(d2− 1) + 3. Using the pairing oracle
Pair, the adversary can further create polynomials of degree at most δGT

= δG + δH =
2(d1 − 1)(d2 − 1) + 6.

To bound the difference between the symbolic simulation via polynomials and the actual
simulation, we apply the Schwartz-Zippel Lemma. We know that |L∗| = |LG∪LH∪LGT

| ≤
nop + npair + 3 + 3 max{d2

1d2, d1d2
2}, where the last term bounds the number of terms

provided by the assumptions. Then an inconsistency occurs with probability at most(|L∗|
2
)
· δGT

/p, which yields the bound in the theorem.

Symbolic Security. It remains to show that in the symbolic model the challenge bit
is information-theoretically hidden from the adversary’s view. This can be observed by
looking at the combination of terms from the assumption and that no linear combination
allows to recover the polynomial xyz.

D.2 Proof of Theorem 4
Proof. We simulate the security game using polynomials provided by ΓPES-ISA which
describes exactly what is happening in the exponents of master public keys, ciphertexts
and secret keys. The main technical difficulty and difference to previous work lies in
answering adaptive corruption queries. Luckily, our setting allows to handle corruptions
similar to [KPRR23] who analyze Diffie-Hellman assumptions with corruptions. Since in
our case, corruptions can also only asked for group elements created by the challenger,
we do not need to answer arbitrary discrete logarithm queries, which makes the proof in
[BFP21] more involved. So instead of applying the Schwartz-Zippel Lemma once, we will
use it after each corruption. We will now describe the simulation in more detail.

At the beginning of the game, the challenger initializes lists LG and LH with the
generators, i.e., LG[1] = LH[1] = 1. List LGT

is initialized as empty. The challenger also
picks a random bit δ to simulate challenge queries.

The adversary A now gets access to all oracles of the game, as well as GGM oracles
Op and Pair as described above. When A queries MPK(i), then Parami is run and the
monomials are appended to the corresponding lists and the new indices are provided to
A. Similarly, when Chall or KeyGen are run, the polynomials are also appended so
that they can be used to compute new group elements. If a polynomial repeats, the list
is not extended, but A is given the index where this polynomial is stored. During these
queries, the challenger may also create new formal variables representing group elements
that are generated via hashing in the actual scheme. The adversary can ask for their
handles by querying the random oracles. If the random oracles are queried on inputs that
have not been used yet, a new variable is appended to the list and its index in LG (or LH)
is returned to A.

Simulating corruptions. So far, the simulation happens on a symbolic level only.
However, during a corruption, the challenger will have to assign a value to the formal
variable that A asks to corrupt. The challenger thus draws an element uniformly from Zp.
This might reveal an inconsistency in the simulation. For example, consider a corruption
of a formal variable b, representing a group element in G. Whenever there exist two indices
i, i′ such that LG[i] ̸= LG[i′], but (partly) evaluating the polynomials on b ∈R Zp results
in LG[i] = LG[i′]. In this case, the challenger will abort. Luckily, since b is uniform, we
can bound such an inconsistency using Lemma 13. For this we look at the combined list
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L∗ = LG ∪ LH ∪ LGT
. Note that due to the structure of ΓPES-ISA, polynomials in LG and

LH have at most degree 2. Thus, polynomials in LGT
and L∗ have at most degree 4. We

let ℓ1 = |L∗| be the length of L∗ at the time the first corruption query happens. Then the
challenger will only abort with probability

(
ℓ1
2
)
· 4

p . If no such inconsistency has happened,
the challenger updates all lists by (partly) evaluating the polynomials on the corrupted
values and proceeds with the simulation. Subsequent corruptions are handled in the same
way. We define ℓt to be the length of L∗ at the time of the t-th corruption. In order to
avoid overcounting, we want to make use of the fact that we already know that there
are no collisions in the previous ℓt−1 entries. We can thus bound the probability of the
challenger aborting on the t-th corrupt query by (

(
ℓt−ℓt−1

2
)

+ ℓt−1 · (ℓt − ℓt−1)) · 4
p . We will

look closer at the overall abort probability and the polynomials stored in the final list L∗

in the next paragraph.

Applying the SSSP. Finally, A returns a bit δ′. We will apply Schwartz-Zippel one last
time, now choosing random values for all remaining formal variables. Let ℓ := ℓncor+1 be
the length of L∗ at the end of the game. Then, the probability of the challenger aborting
at any time during the game or after the final assignment is bounded by∑

t∈[ncor]

((
ℓt+1 − ℓt

2

)
+ ℓt · (ℓt+1 − ℓt))

)
· 4

p
≤ 4ℓ2

p
.

We still have to argue that the probability that δ′ = δ is exactly 1/2. Note that if the
adversary violated the predicate in any of its queries, the challenger returns a random bit,
so we can now restrict to an adversary that does not violate the predicate. In order to
argue that δ is independent of the adversary’s view, we will use the SSSP and in particular
the fact that it implies strong MK-MC security under corruptions by combining Theorems 1
and 2. Observing that before the final assignment we have L∗ ⊂ span(pall), where pall is
as defined in Definition 12, we conclude that Pr[δ′ = δ] = 1/2.

Further, we can upper bound ℓ by (2+nmpk|MPK|+nc|CT|+nk|SK|+nro +nop +npair),
where | · | denotes the maximum length of that instance queried by A, which yields the
bound stated in the theorem.

E Existing pair encoding schemes
We review several existing pair encoding schemes from the literature and define explicit
molds for those so that we can instantiate them with the ISABELLA compiler. In this
section, we instantiate the pair encoding schemes with one overarching c′ that also covers
c′′ to simplify proving security (see Remark 2).

E.1 Decentralized large-universe ABE based on RW15 and AC17
We give a description of the PES that was given in [Ven23], which is based on the
Rouselakis-Waters (RW15) [RW15] scheme and uses the multi-use techniques by Agrawal
and Chase [AC17b] to speed up the decryption algorithm. For this scheme, we define the
multi-use mapping τ : [n1]→ [m], which maps the rows associated with the same attributes
to different integers, i.e., m = maxj∈[n1] |ρ−1(ρ(j))|, and τ is injective on the sub-domain
ρ−1(ρ(j)) ⊆ [n1]. Let S̃ be the set of authorities in the first entry of the attributes in S.

Definition 21 (Decentralized large-universe CP-ABE from FDH). Let U denote a universe
of attributes and let naut denote a number of authorities. We define a PES-ISA for
the predicate PMA-CP-mu : XMA × YMA → {0, 1}, where XMA = {(A, ρ, ρ̃, τ) | (A, ρ) ∈
XCP-basic, ρ̃ : [n1]→ [naut], τ is a multi-use map} and YMA = {S | S ⊆ [naut]× U}.
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• Param(U)→ (nα, nb, α, b): Let {Al}[naut] be the authority identifiers, and nα = naut
and nb = 2naut + |U|, α = ({αl}l∈[naut], and b = ({bl, b′

l}l∈[naut], {b′′
att}att∈U ).

• EncKey(S)→ (m1, m2, k(r, r̂, α, b)): We set m1 = |S̃|+1, m2 = 0 and k = ({{k1,l =
αl + rGIDbl + rlb

′
l, k2,(l,att) = rlb

′′
att}(l,att)∈S).

• EncCt(A, ρ, ρ̃, τ)→ (w1, w2, w′
2, cM , c(s, ŝ, b), c′(s, s̃, α)): We set w1 = m+n1, w2 =

n2−1, w′
2 = n2−1, cM = s̃, c = ({c1,j = µj +sjbρ̃(j), c2,j = sjb′

ρ̃(j) +s′
τ(j)b

′′
ρ(j)}j∈[n1])

and c′ = ({c′
j = λj + αρ̃(j)sj}j∈[n1]), where λj = Aj,1s̃ +

∑
k∈[2,n2] Aj,kv̂k and

µj =
∑

k∈[2,n2] Aj,kv̂′
k.

Supporting unbounded authorities. The use of naut to denote the number of au-
thorities is purely syntactical and for simplicity of notation. Instead of mapping the rows
and attributes to the interval [naut], we can also map to our authority identifier universe
AID. The proofs extend readily to this notational change.

Full-domain hashes and distributions. We set F(b′′
att) = (1, att) for all att ∈ U and

F(rGID) = (2, GID). Furthermore, any distributions that take correctness of the FDHs into
account is suitable. For our concrete instantiations below, we optimize the distribution
of the keys and ciphertexts so that encryption and decryption efficiency are optimized
(following the ABE Squared approach [dlPVA22]). Almost all ciphertext components can
be placed in G, except s′

ℓ for ℓ ∈ [m], which needs to be paired with k2,att and contains a
common variable that is generated via an FDH and must thus be placed in G. For the
scheme instantiated with the Ven23 compiler, the c′ encodings need to be placed in GT ,
while with the ISABELLA compiler, we can move those encodings to c′′ and instantiate in
G. (Note that we have to place it in the same group as sj , which is in G.)

SPM for multi-authority support. We can define a split-predicate mold for multi-
authority CP-ABE for the scheme above. In particular, we define a sub-predicate space
YSA,l = {Sl ∈ YCP-basic} for authority l ∈ [naut] of the key predicate space YMA. We
define the aggregation function as Aggkey,J ′({Sl}l∈J ′) = {(l, att) | l ∈ J ′, att ∈ Sl} (with
J ′ ⊆ [naut]). The sub-predicate spaces are connected together with auxy = GID. The split
algorithms are indexed in l ∈ [naut]:

• SplitParaml(U)→ (αl = αl, βl = ∅, bl = (bl, b′
l, {b′

att}att∈U ));

• SplitEncKeyl(Sl, GID)→ kl = (k1,l = αl + rGIDbl + rlb
′
l, {k2,(l,att) = rlb

′′
att}att∈Sl

).

We can also generate {b′
att}att∈U in a separate instance of SplitParam0, but note that we

would have to alter our multi-authority construction in Section 6 accordingly to support this,
and since these variables are generated via an FDH, this distinction is purely syntactical.
The effect of corruptions is as explained in Section 6.1.

Instantiation with the Ven23 and ISABELLA compilers. To illustrate the effec-
tiveness of our framework, we also give concrete descriptions of this scheme with the syntax
for multi-authority ABE. The instantiations of the PES-ISA in Definition 21 with the
above descriptions is in Fig. 2, which describes the scheme generated with the ISABELLA
compiler, with differences highlighted when the scheme is instantiated with the Ven23
compiler. We provide further evaluation in Appendix G, comparing the schemes also to
RW15 [RW15] and AG21 [AG21].
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GlobalSetup(1λ). Pick a pairing group PG := (G,H,GT , p, e, g, h) and hash functions H1 : U → G
and H2 : GID → H. Define GP := (PG, H1, H2).

AuthoritySetup(GP,Al). Pick βl, bl, b′
l ∈R Zp. Compute the master public key of authority Al as

MPKAl
:=
(
GP, Al = gβl , Bl = gbl , B′

l = gb′
l
)

.

Let MSKAl
:= (βl, bl, b′

l) be the master secret key of authority Al.

KeyGen(Al, MSKAl
, GID,SAl

⊆ UAl
). Pick rl ∈R Zp. Compute

K0,l := hrl K1,l := hβl · H2(GID)bl · hrlb′
l K2,att := H1(att)rl

for each att ∈ SAl
. Output SKAl,GID := (K0,l, K1,l, {K2,att}att∈SAl

).

Encrypt({Al, MPKAl
}l∈ρ̃([n1]), (A, ρ, ρ̃, τ)). Let MPKAl

= (GP, Al, Bl, B′
l). Pick s̃ ∈R Zp, s ∈R Zn1

p ,
s′ ∈R Zm

p , v, v′ ∈R Zn2−1
p . For ℓ ∈ [m] and for each row j ∈ [n1] compute

C1,ℓ := hs′
ℓ C2,j := gsj C3,j := gµj ·Bsj

ρ̃(j)

C4,j := (B′
ρ̃(j))sj · H1(ρ(j))s′

τ(j) C5,j := gλj ·Asj

ρ̃(j) ,

where λj = Aj(s̃∥v)⊤ and µj = Aj(0∥v′)⊤. Further, compute K := e(g, h)s̃ and output (K, CT)
with CT := ((C1,ℓ)ℓ∈[m], (C2,j , C3,j , C4,j , C5,j)j∈[n1]).

Decrypt({Al, MPKAl
, SKAl,GID}l∈ρ̃S (S), CT). If S satisfies (A, ρ, ρ̃, τ), there exist constants {εj}j∈Υ

s.t.
∑

j∈Υ εjAj = (1, 0, . . . , 0), where Υ = {j ∈ [n1] | ρ(j) ∈ S}. Let KAl,GID = (K0,l, K1,l, K2,att).
Compute

Z := e

(∏
j∈Υ

C
εj

5,j , h

)
·
∏

l∈ρ̃S (S)

e
(∏

j∈Υ,ρ̃(ρ(j))=l C
εj

4,j , K0,l

)
e
(∏

j∈Υ,ρ̃(ρ(j))=l C
εj

2,j , K1,l

) · e
(∏

j∈Υ C
εj

3,j , H2(GID)
)

∏
ℓ∈[m] e

(∏
j∈Υ,τ(j)=ℓ K

εj

2,ρ(j), C1,ℓ

)
and output M = CM /Z.

Figure 2: The decentralized CP-ABE scheme for monotone span programs (A ∈ Zn1×n2
p ,

ρ : [n1]→ U , ρ̃ : [n1]→ [naut]) based on the PES-ISA in Definition 21, instantiated with
the ISABELLA compiler. Let ρ̃S : S → [naut] be the function that maps each attribute to
an authority. We further define m = maxj∈[n1] |ρ(j)| corresponding to maximum number
of times an attribute is used in A, and τ : [n1]→ [m] maps each row that is associated with
the same attribute injectively in [m], i.e., for j ≠ j′ with ρ(j) = ρ(j′), we have τ(j) ̸= τ(j′).
We have highlighted the differences between this instantiation and the Ven23 instantiation
in red.

E.2 ABE with attribute-wise key generation based on RW13
We give the PES for attribute-wise key generation (based on the CP-ABE scheme by
Rouselakis and Waters (RW13) [RW13]) as specified in [Ven23]. Via our framework, this
scheme is adaptively secure in GGM. In contrast, this scheme was only statically secure in
[Ven23].

Definition 22 (RW13 with attribute-wise key generation). We define the PES-ISA for the
predicate P : XCP-basic×YCP-basic → {0, 1} that will support attribute-wise key generation
as follows.

• Param(∅)→ (nα, nb, α, β, b): We set nα = 1, nβ = 0 and nb = 4, where α = α, and
b = (b, b′, b0, b1).
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• EncKey(S) → (m1, m2, k(r, r̂, α, β, b)): We set m1 = |S| + 1 and m2 = 0, where
k = ({k1 = α + rGIDb, katt = rGIDb′ + ratt(b0 + xattb1)}att∈S) such that xatt is the
integer representation of att in Zp.

• EncCt(A, ρ) → (w1, w2, w′
2, cM , c(s, ŝ, b), c′(s, s̃, α, β), c′′(s, s̃, β): We set w1 = n1,

w2 = n2 − 1, w′
2 = 0, cM = αs,

c =
(
{c1,j = λj + sjb′, c2,j = sj(b0 + ρ(j)b1)}j∈[n1]

)
,

and c′ = c′′ = ∅, where λj = Aj,1sb +
∑

k∈[2,n2] Aj,kv̂k.

Full-domain hashes and distributions. We set F(rGID) = (1, GID). Furthermore, any
distributions that take correctness of the FDH into account are suitable.

SPM for attribute-wise key generation. We can define a split-predicate mold for
CP-ABE with attribute-wise key generation for the scheme above. In particular, we
define a sub-predicate space Yatt = {att} for each att ∈ U of the key predicate space
YCP-basic. We define the aggregation function as Aggkey,S({att}att∈S) = S (with S ⊆ U).
The sub-predicate spaces are connected together with auxy = GID. The split parameter
generation has only a single instance and the split key generation algorithm is indexed in
0 and att ∈ U :

• SplitParam1(∅)→ (α = α, β = ∅, b = (b, b′, b0, b1));

• SplitEncKey0(∅, GID)→ k0 = α + rGIDb;

• SplitEncKeyatt(att, GID)→ katt = rGIDb′ + ratt(b0 + xattb1).

F New pair encoding schemes
F.1 Decentralized large-universe KP-ABE from FDH
We give a new decentralized KP-ABE scheme, which allows the encrypting user to determine
for which authorities the decrypting user needs to have secret keys. Not only does this
give the encrypting user more control over the authorities they “trust”, this also makes the
scheme more resilient to authorities joining and leaving the system. In contrast, existing
schemes such as [Cha07, CC09, LHC+11] fix the set of authorities used in the system upon
setup.

The predicate PMA-KP-ABE : XMA × YMA → {0, 1} is defined over the ciphertext predi-
cate space XMA = {(S,SA) | S ⊆ U ,SA ⊆ [naut]}, which denotes pairs consisting of one
attribute set and one authority set, and the key predicate space YMA = {{(Al, ρl)}l∈S′

A
|

S ′
A ⊆ [naut], (Al, ρl) ∈ YKP-basic}, which consists of a monotone policy (Al, ρl) for each

authority l in some set of authorities S ′
A. The predicate evaluates to true if, for each

authority l in the ciphertext authority set SA, the key policy (Al, ρl) is satisfied by the
ciphertext attribute set S. (By extension, we need it to hold that SA ⊆ S ′

A.)

Definition 23 (Decentralized large-universe KP-ABE from FDH with flexible authority
choice). Let U denote a universe of attributes. We define a PES-ISA for the predicate
PMA-KP-ABE : XMA × YMA → {0, 1}, where XMA = {(S,SA) | S ⊆ U ,SA ⊆ [naut]} and
YMA = {{(Al, ρl)}l∈S′

A
| S ′

A ⊆ [naut], (Al, ρl) ∈ YKP-basic}. The predicate PMA-KP-ABE
evaluates PMA-KP-ABE(x, y) = 1 with x = (S,SA) and y = {(Al, ρl)}l∈S′

A
iff SA ⊆ S ′

A and,
for all l ∈ SA, the set S satisfies (Al, ρl).

• Param(U) → (nα, nb, α, b): Let {Al}l∈[naut] be the authorities, and nα = naut + 1
and nb = naut + |U|, α = ({αl}l∈[naut]), and b = ({bl}l∈[naut], {b′

att}att∈U ), where U
denotes the universe.
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• EncKey(A) → (m1, m2, k(r, r̂, α, b)): Parse A = {(Al, ρl)}l∈S′
A

with S ′
A ⊆ [naut]

and Al ∈ Zn1,l×n2,l
p . We set m1 =

∑
l n1,l, m2 =

∑
l n2,l, k = ({kj,l = λl,j +

rj,lb
′
ρl(j)}l∈S′

A,j∈[n1,l]), where λl,j = Al,j,1(αl + rGIDbl) +
∑

k∈[2,n2,l] Al,j,kv̂l,k.

• EncCt(S,SA) → (w1, w2, w′
2, cM , c(s, ŝ, b), c′(s, s̃, α)): We set w1 = 1, w2 = 0,

w′
2 = 0, cM =

∑
l∈SA

αls, where SA ⊆ [naut], and c = ({c1,l = sbl + vl, catt =
sb′

att}l∈SA,att∈S), such that vlmax = −
∑

l∈SA\{lmax} vl and c′ = ∅, where lmax =
maxl∈SA l.

Full-domain hashes and distributions. We set F(b′
att) = (1, att) for all att ∈ U and

F(rGID) = (2, GID). Furthermore, any distributions that take correctness of the FDHs into
account is suitable. Note that we can support a more efficient instantiation by moving the
α variables to β and the c′ polynomials to c′′.

Split-predicate mold for multi-authority support. We can define a split-predicate
mold for multi-authority KP-ABE for the scheme above. In particular, we define a sub-
predicate space YSA,l = {(Al, ρl) ∈ YKP-basic} for authority l ∈ [naut] of the key predicate
space YMA such that Aggkey,S′

A
((Al, ρl)l∈S′

A
) = {(Al, ρl)}l∈S′

A
. The sub-predicate spaces

are connected together with auxy = GID. The split algorithms are indexed in l ∈ [naut]:

• SplitParaml(U)→ (αl = αl, βl = ∅, bl = (bl, {b′
att}att∈U ));

• SplitEncKeyl((Al, ρl), GID) → kl = ({kj,l = λl,j + rj,lb
′
ρl(j)}j∈[n1,l]).

Pair/correctness. We show how the Pair algorithm functions by “simulating” decryp-
tion. If A |= (S,SA), this algorithm determines, for all l ∈ SA ⊆ S ′

A, Υl = {j ∈ [n1,l] |
ρl(j) ∈ S}, and {εl,j ∈ Zp}j∈Υl

so that
∑

j∈Υl
εl,jλl,j = αl + rGIDbl (Definition 1), and

computes∑
l∈SA

j∈[n1,j ]

εl,j

(
s · kj,l −Al,j,1rGID · c1,l − rj,l · cρl(j)

)
=

∑
l∈SA

j∈[n1,j ]

εl,j

(
λl,js + rj,lsb′

ρl(j) −Al,j,1rGIDsbl −Al,j,1rGIDvl − rj,lb
′
ρl(j)

)

=
∑

l∈SA
j∈[n1,j ]

εl,j (λl,js−Al,j,1rGIDsbl −Al,j,1rGIDvl)

=
∑

l∈SA

((αl + rGIDbl)s− rGIDsbl − rGIDvl)

=
∑

l∈SA

(αls + rGIDvl) =
∑

l∈SA

αls

Corruptions and Pcor. The predicate for our scheme is expanded upon corruption of
authorities in the following way. Let C ⊆ [naut] denote a set of corrupted authorities and
consider x = (S,SA) and y = {(Al, ρl)}l∈S′

A
. Then Pcor evaluates true if S satisfies (Al, ρl)

for all l /∈ C. (For l ∈ C, the adversary can generate the required key material to satisfy it.)

Security. We prove that the PES-ISA satisfies SSSP.

Lemma 14. The PES-ISA in Definition 23 satisfies SSSP.
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Proof. We set d1 = 1 and d2 = |SA \ C|. Let C ⊆ [naut] denote some set of corrupted
authorities.

• EncB(S,SA)→ ({al, Bl}l∈[naut], {B′
att}att∈U ), where al = 0 and Bl = 0d1×d2 for all

l ∈ C ∪ [naut] \ SA. Let lmax denote the highest entry in SA \ C. We set:

{al = 1}l∈SA\C ,
{

Bl =− 1d1×d2
l

}
l∈SA\(C∪{lmax}) ,

{
B′

att = 0d1×d2
}

att∈S ,

Blmax =
∑

l∈SA\(C∪{lmax})

1d1×d2
l , {B′

att =−
∑

l∈[naut]

1d1×d2
l }att/∈S .

• EncR((S,SA),A)→ (rGID, {rj,l}l∈S′
A

, {v̂l,k}l∈S′
A,k∈[2,n2,l]). Then we have two cases:

SA ⊆ S ′
A and SA ̸⊆ S ′

A. If SA ⊆ S ′
A, we assume without loss of generality that

l′ ∈ SA \ C is such that (Al′ , ρl′) is not satisfied by S (which must exist because the
key predicate does not satisfy the ciphertext predicate). Assume that l′ is not the
highest entry lmax. (The proof is similar for when l′ = lmax, because we set w′

l to be
1 for all l ̸= l′.) Then, let {w′

l}l∈SA\C be such that w′
l = 1 for all l /∈ {lmax, l′} and

w′
l′ = |SA \ C| − 1.

rGID =
∑

l∈SA\(C∪{lmax})

w′
l1

d2
l ,

{
rj,l′ =

∑
k∈[n2,l]

Al′,j,k(wl′)k1d2
l′

}
j∈[n1,l′ ]

, {v̂l′,k = (wl′)k}k∈[2,n2,l′ ] ,

{
rj,l = 0d2}

l∈S′
A\{l′}

j∈[n1,l′ ]
, {v̂l,k = 0}l∈S′

A\{l′}
k∈[2,n2,l]

,

and the vector wl′ is such that (wl′)1 = 1 − w′
l′ and Al,jw⊺

l′ = 0 for all j ∈ [n1,l′ ]
with ρl′(j) ∈ S.
If SA ̸⊆ S ′

A, then there must exist some l′ ∈ SA that is not in S ′
A and C (or we

again have the case that there is some l′ such that (Al′ , ρl′) is not satisfied by S, in
which case we can fall back on the first part of the proof). Assume, without loss of
generality, that l′ ̸= lmax. (The proof is similar for when l′ = lmax, because we set w′

l

to be 1 for all l ̸= l′.) Then, let {w′
l}l∈SA\C be such that w′

l = 1 for all l /∈ {lmax, l′}
and w′

l′ = |SA \ C| − 1.

rGID =
∑

l∈SA\(C∪{lmax})

w′
l1

d2
l ,

{
rj,l = 0d2}

l∈S′
A

j∈[n1,l′ ]
, {v̂l,k = 0} l∈S′

A
k∈[2,n2,l]

.

• EncS(S,SA)→ (s, {vl}l∈SA\{lmax}), where s = 1, vl = 0d2 for all l ∈ C and vl = 1d2
l

for all l ∈ SA \ (C ∪ {lmax}).

The proof verifies correctly, i.e., filling in the substitutions in the polynomials yields
all-zero entries, and cM is substituted by a nonzero value, i.e.,

∑
l∈SA

αls : |SA| ≠ 0. For
the keys with SA ⊆ S ′

A, we have, for all l ∈ S ′
A ∩ (C ∪ ([naut] \ SA)) that

kj,l =

Al,j,1(αl + rGIDbl) +
∑

k∈[2,n2,l]

Al,j,kv̂l,k

+ rj,lb
′
ρl(j) :

Al,j,1(0 + 0d1×d2rGID) +
∑

k∈[2,n2,l]

Al,j,k0

+ B′
ρl(j)0

d2 = 0 ,
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for l ∈ SA′ \ (C ∪ {l′}), we have

kj,l =

Al,j,1(αl + rGIDbl) +
∑

k∈[2,n2,l]

Al,j,kv̂l,k

+ rj,lb
′
ρl(j) :

Al,j,1

1 +−1d1×d2
l

 ∑
l∈SA\(C∪{lmax})

w′
l1

d2
l

 +
∑

k∈[2,n2,l]

Al,j,k0

+ b′
ρl(j)0

d2

= Al,j,1(1− w′
l) = Al,j,1(1− 1) = 0,

and for l′, we have

kj,l′ =

Al′,j,1(αl′ + rGIDbl′) +
∑

k∈[2,n2,l]

Al′,j,kv̂l′,k

+ rj,l′b′
ρl′ (j) :

Al′,j,1

1− 1d1×d2
l′

 ∑
l∈SA\(C∪{lmax})

w′
l1

d2
l

+
∑

k∈[2,n2,l]

Al′,j,k(wl′)k



+ B′
ρl′ (j)

 ∑
k∈[n2,l]

Al′,j,k(wl′)k1d2
l′



=

Al′,j,1 (1− w′
l′) +

∑
k∈[2,n2,l]

Al′,j,k(wl′)k

+ B′
ρl′ (j)

(
Al′,j(wl′)⊺1d2

l′

)

=
∑

k∈[n2,l]

Al′,j,k(wl′)k + B′
ρl′ (j)

(
Al′,j(wl′)⊺1d2

l′

)
.

If ρl′(j) ∈ S, then we have that∑
k∈[n2,l]

Al′,j,k(wl′)k + B′
ρl′ (j)

(
Al′,j(wl′)⊺1d2

l′

)
= 0 + 0d1×d2

(
Al′,j(wl′)⊺1d2

l′

)
= 0 .

If ρl′(j) /∈ S, then∑
k∈[n2,l]

Al′,j,k(wl′)k + B′
ρl′ (j)

(
Al′,j(wl′)⊺1d2

l′

)
=

∑
k∈[n2,l]

Al′,j,k(wl′)k −
∑

l∈[naut]

1d1×d2
l

(
Al′,j(wl′)⊺1d2

l′

)
= Al′,j(wl′)⊺ −Al′,j(wl′)⊺ = 0 .

Verification of the keys with SA ̸⊆ S ′
A such that there exists l′ ∈ SA that is not in S ′

A and
C is similar.

For the ciphertext polynomials with l ∈ SA \ C, we have

c1,l = sbl + vl : 1 · (−1d1×d2
l ) + 1d2

l = −1d2
l + 1d2

l = 0d2
.

For l ∈ SA ∩ C, we have

c1,l = sbl + vl : 1 · 0d1×d2 + 0d2 = 0d2
.
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For the other ciphertext polynomials, we have

catt = sb′
att : 1 · 0d1×d2 = 0d2

.

F.2 Completely unbounded decentralized CP-ABE with negations
We give a decentralized large-universe CP-ABE scheme that supports negations in a
completely unbounded way. This is in contrast to existing such schemes that support
negations [AG23, Ven23], which are bounded in the number of key attributes that can
be issued per authority [AG23] and the number of re-uses of the same label in the keys
[Ven23]. To achieve this, we generalize the decentralized variant of the TKN20 [TKN20]
scheme in [Ven23, §5.1] to the unbounded label-use setting (in both the key sets and
ciphertext policies). We do this by leveraging the techniques in [Att19], which binds each
attribute within a label together with an AND-statement. In this way, the comparison
with the negated attribute (within the label) needs to be done for each attribute with that
label. Our SSSP proofs below can be seen as a generalization of the proof for the bounded
version to the unbounded setting. (Although we note that our proof uses considerably
much more “layering” of matrices than the bounded scheme in [Ven23, §5.1].)

The predicate for our scheme is the multi-authority variant of the single-authority
predicate denoted as PCP-not : XCP-not × YCP-not → {0, 1}. That is, compared to the basic
CP-ABE predicate, the policies are extended with a mapping that represents negations
ρ′ and mappings for the labeling ρlab, and the sets also come with a similar extension
to support labeling. In the scheme, we represent the elements in the set as tuples, i.e.,
S ⊆ [naut] × L × U = {(l, lab, att) | Al ∈ AID, lab ∈ L, att ∈ U}, and we denote the
subset managed by authority l as Sl = {(lab, att) | (l, lab, att) ∈ S}. We do this to
simplify notation. To evaluate the predicate PMA-CP-not(x, y) to true, it must hold that,
for x = (A, ρ, ρ′, ρlab, ρ̃) and y = S, and for Υ = {j ∈ Ψ | (ρlab(j), ρ(j)) ∈ Sρ̃(j)} and
Υ = {j ∈ Ψ | (ρlab(j), ρ(j)) ̸∈ Sρ̃(j) ∧ ∃(ρlab(j), att) ∈ Sρ̃(j)}, there exist {εj ∈ Zp}j∈Υ∪Υ
so that

∑
j∈Υ∪Υ εjλj = s̃.

Definition 24 (Completely unbounded decentralized large-universe CP-ABE with nega-
tions). Let L denote a universe of labels and let naut denote a number of authorities. We
define a PES-ISA for the predicate PMA-CP-not as follows.

• Param(L): Let {Al}[naut] be the authorities. On input the label universe L, we set
nα = naut and nb = (2 + 4|L|)naut, where α = {αl}l∈[naut], and b = ({bl, b̄l, {bl,lab,0,

bl,lab,1, b̄l,lab,0, b̄l,lab,1}lab∈L}l∈[naut]).

• EncKey(S, GID): We set m1 = 2|S|+ 1, m2 = 0, and

k =
({

k1,l,(lab,att) = αl + rGIDbl + rl,att(bl,lab,0 + xattbl,lab,1),

k2,l,lab = αl + rGIDb̄l + r̄l,labb̄l,lab,1,

k3,l,(lab,att) = r̄l,att(b̄l,lab,0 + xattb̄l,lab,1)
}

(l,lab,att)∈S

)
where Sl = {(lab, att) | (l, lab, att) ∈ S}, and r̄l,lab =

∑
(lab′,att)∈Sl:lab′=lab r̄l,att and

xatt is the representation of att in Zp.

• EncCt(A, ρ, ρ̃, ρ′, ρlab): We set w1 = n1, w2 = n2 − 1, w′
2 = n2 − 1, cM = s̃,

c =
({

c1,j = µj + sjbρ̃(j), c2,j = sj(bρ̃(j),ρlab(j),0 + xρ(j)bρ̃(j),ρlab(j),1)
}

j∈Ψ,
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{
c1,j = µj + sj b̄ρ̃(j), c2,j = sj(b̄ρ̃(j),ρlab(j),0 + xρ(j)b̄ρ̃(j),ρlab(j),1)

}
j∈Ψ

)
and c′ = ({c′

j = λj + αρ̃(j)sj}j∈[n1]), where λj = Aj,1s̃ +
∑

k∈[2,n2] Aj,kv̂k and
µj =

∑
k∈[2,n2] Aj,kv̂′

k, and Ψ = {j ∈ [n1] | ρ′(j) = 1} and Ψ = [n1] \Ψ (i.e., the set
of rows associated with the non-negated and negated attributes, respectively), and
s = ({sj}[n1]).

Supporting unbounded authorities and sharing attribute universe. The use of
naut to denote the number of authorities is purely syntactical and for simplicity of notation.
Instead of mapping the rows and attributes to the interval [naut], we can also map to our
authority identifier universe AID. The proofs extend readily to this notational change.

Pair/correctness. We show how the Pair algorithm functions by “simulating” de-
cryption. Let Sl = {(lab, att) | (l, lab, att) ∈ S}. If (A, ρ, ρ̃, ρ′, ρlab) |= S, this algo-
rithm determines Υ = {j ∈ Ψ | (ρlab(j), ρ(j)) ∈ Sρ̃(j)}, Υ = {j ∈ Ψ | (ρlab(j), ρ(j)) ̸∈
Sρ̃(j) ∧ ∃(ρlab(j), att) ∈ Sρ̃(j)} and {εj ∈ Zp}j∈Υ∪Υ so that

∑
j∈Υ∪Υ εjλj = s̃ (Definition

1), and computes∑
j∈Υ∪Υ

εjc′
j −

∑
j∈Υ

εjsjk1,ρ̃(j),(ρlab(j),ρ(j))

+
∑
j∈Υ

εj

(
rGIDc1,j + rρ̃(j),ρ(j)c2,j

)
−
∑
j∈Υ

εj

(
sjk2,ρ̃(j),ρlab(j) − rGIDc1,j

)
+
∑
j∈Υ

εj

∑
(ρlab(j),att)∈Sρ̃(j)

(
r̄ρ̃(j),attc2,j − sjk3,ρ̃(j),(ρlab(j),att)

xatt − xρ(j)

)
.

Full-domain hashes and distributions. We set F(bl,lab,i) = (4l + i, (Al, lab, 1, i)) and
F(b̄l,lab,i) = (4l + i + 2, (Al, lab, 0, i)) for all l ∈ [naut], i ∈ {0, 1}, lab ∈ L. We further set
F(rGID) = (2, GID). Note that we can support a more efficient instantiation by moving the
α variables to β and the c′ polynomials to c′′.

SPM for multi-authority support. We can define a split-predicate mold for multi-
authority CP-ABE for the scheme above. In particular, we define a sub-predicate space
YSA,l = {Sl ∈ YCP-basic} for authority l ∈ [naut] of the key predicate space YMA. We
define the aggregation function as Aggkey,J ′({Sl}l∈J ′) = {(l, att) | l ∈ J ′, att ∈ Sl} (with
J ′ ⊆ [naut]). The sub-predicate spaces are connected together with auxy = GID. The split
algorithms are indexed in l ∈ [naut]:

• SplitParaml(U)→
(
αl = αl, βl = ∅, bl = ({bl,lab,0, bl,lab,1, b̄l,lab,0, b̄l,lab,1}lab∈L)

)
;

• SplitEncKeyl(Sl, GID) → kl =
(
{k2,l,lab = αl + rGIDb̄l + r̄l,labb̄l,lab,1,

k1,l,(lab,att) = αl + rGIDbl + rl,att(bl,lab,0 + xattbl,lab,1),
k3,l,(lab,att) = r̄l,att(b̄l,lab,0 + xattb̄l,lab,1)}(lab,att)∈Sl

)
.

SPM for MA-ABE and label-wise key generation. We can define a split-predicate
mold for multi-authority CP-ABE with label-wise key generation for the scheme above.
In particular, we define a sub-predicate space YSA,l,lab = U for authority l ∈ [naut] and
label lab ∈ L of the key predicate space YMA. We define the aggregation function as
Aggkey,J ′({Sl,lab}(l,lab)∈J ′) = {(l, lab, att) | (l, lab) ∈ J ′, att ∈ Sl,lab} (with J ′ ⊆ [naut]×L).
The sub-predicate spaces are connected together with auxy = GID. The split algorithms
are indexed in (l, lab) ∈ [naut]× L:
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• SplitParaml(U)→ (αl = αl, βl = ∅, bl = ({bl,lab,0, bl,lab,1, b̄l,lab,0, b̄l,lab,1}lab∈L));

• SplitEncKey(l,lab)(Sl,lab, GID) → kl,lab = ({k2,l,lab = αl + rGIDb̄l + r̄l,labb̄l,lab,1,
k1,l,(lab,att) = αl + rGIDbl + rl,att(bl,lab,0 + xattbl,lab,1),
k3,l,(lab,att) = r̄l,att(b̄l,lab,0 + xattb̄l,lab,1)}att∈Sl,lab).

Security. We prove that the PES-ISA satisfies SSSP.

Lemma 15. The PES-ISA in Definition 24 satisfies SSSP.

Proof. We set d1 = n1 and d2 = ((n1 +2)|ρlab([n1])|+1)n2 +1. Let C ⊆ [naut] denote some
set of corrupted authorities. We also use a special notation from e.g., [VA22, Ven23, VA23]
for the column indices that makes the relationship between the input indices and the
columns of the substitution matrices clearer. In particular, we map the tuples (1, k),
(2, j, k, lab), (3, k, lab), (4, 1), (5, k, lab) injectively in the interval [d2], where j ∈ [n1]
are the rows of the policy matrix, k ∈ [n2] are the columns of the policy matrix, and
lab ∈ ρlab([n1]) are the labels that occur in the ciphertext policy.

• EncB(S) → ({al, Bl, B̄l}l∈[naut], {Bl,lab,i, B̄l,lab,i}lab∈L,i∈{0,1}}l∈[naut]), where al =
0d1 and Bl, B̄l, Bl,lab,i, B̄l,lab,i = 0d1×d2 for all l ∈ C and i ∈ {0, 1}, and let v ∈ Zn2

p

(with v1 = 1) be the vector orthogonal to each row j ∈ ρ̃−1(C) associated with a
corrupted authority. For all l ∈ [naut] \ C, we set:

al =
∑

j∈ρ̃−1(l)
k∈[n2]

Aj,kvk1d1
j ,

Bl =
∑

j∈ρ̃−1(l)∩Ψ1
k∈[2,n2]

Aj,k

(
1d1×d2

j,(1,k) + vk1d1×d2
j,(1,1)

)
−

∑
j∈ρ̃−1(l)∩Ψ0

k∈[n2]

Aj,kvk1d1×d2
j,(4,1) ,

B̄l =
∑

j∈ρ̃−1(l)∩Ψ0
k∈[2,n2]

Aj,k

(
1d1×d2

j,(1,k) + vk1d1×d2
j,(1,1)

)
−

∑
j∈ρ̃−1(l)∩Ψ1

k∈[n2]

Aj,kvk1d1×d2
j,(4,1) ,

Bl,lab,0 =
∑

j∈ρ̃−1(l)∩Ψ1∩ρ−1
lab (lab)

k∈[n2]

−xρ(j)Aj,k1d1×d2
j,(2,j,k,lab) +

∑
j∈ρ̃−1(l)∩Ψ1\ρ−1

lab (lab)
k∈[n2]

Aj,k1d1×d2
j,(3,k,lab) ,

B̄l,lab,0 =
∑

j∈ρ̃−1(l)∩Ψ0∩ρ−1
lab (lab)

k∈[n2]

−xρ(j)Aj,k1d1×d2
j,(2,j,k,lab) +

∑
j∈ρ̃−1(l)∩Ψ0\ρ−1

lab (lab)
k∈[n2]

Aj,k1d1×d2
j,(5,k,lab) ,

Bl,lab,1 =
∑

j∈ρ̃−1(l)∩Ψ1∩ρ−1
lab (lab)

k∈[n2]

Aj,k1d1×d2
j,(2,j,k,lab) ,

B̄l,lab,1 =
∑

j∈ρ̃−1(l)∩Ψ0∩ρ−1
lab (lab)

k∈[n2]

Aj,k1d1×d2
j,(2,j,k,lab) +

∑
j∈ρ̃−1(l)∩Ψ0\ρ−1

lab (lab)
k∈[n2]

Aj,k1d1×d2
j,(3,k,lab) ,

where Ψ0 = {j ∈ [n1] | ρ′(j) = 0} and Ψ1 = {j ∈ [n1] | ρ′(j) = 1}.

• EncR((A, ρ, ρ̃, ρ′, ρlab),S)
→ (rGID, {rl,att, r̄l,att}(l,lab,att)∈S), where

rGID = 1d2
(4,1) −

∑
k∈[n2]

wk1d2
(1,k) ,
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rl,att =
∑

lab′∈χl,att

 ∑
j∈Υl,1∩ρ−1

lab (lab′)
k∈[n2]

wk1d2
(2,j,k,lab′)

xatt − xρ(j)
+
∑

k∈[n2]

wk1d2
(3,k,lab′)

 ,

r̄l,att =
∑

lab′∈χl,att
k∈[n2]

wk

1d2
(3,k,lab′) − xatt1

d2
(5,k,lab′) +

∑
j∈Υl,0∩ρ−1(att)

1d2
(2,j,k,lab′)

 ,

and χl,att = {lab | (lab, att) ∈ Sl}, Υl,1 = {j ∈ [n1] | ρ̃(j) = l ∧ ρ′(j) = 1 ∧
(ρlab(j), ρ(j)) /∈ Sl}, and Υl,0 = {j ∈ [n1] | ρ̃(j) = l ∧ ρ′(j) = 0 ∧ (ρlab(j), ρ(j)) ∈ Sl},
and the vector w is such that (w)1 = −1 and Ajw⊺ = 0 for all j with ρ′(j) = 1 and
(ρlab(j), ρ(j)) ∈ Sρ̃(j) or ρ′(j) = 0 and (ρlab(j), ρ(j)) /∈ Sρ̃(j).

• EncS(A, ρ, ρ̃, ρ′, ρlab)→ ({sj}j∈[n1], {v̂k, v̂′
k}k∈[2,n2], s̃), where

s̃ = 1, sj = −1d1
j , v̂k = vk, v̂′

k = 1d2
(1,k) + vk1d2

(1,1).

Note that cM = s̃ is substituted by a nonzero entry. Furthermore, the proof verifies
correctly, i.e., substituting the variables for the matrices and vectors above yields all-zero
vectors. For the verifications, we define Υl,0 = {j ∈ Ψ0 | ρ̃(j) = l ∧ (ρlab(j), ρ(j)) /∈ Sl}
and Υl,1 = {j ∈ Ψ1 | ρ̃(j) = l ∧ (ρlab(j), ρ(j)) ∈ Sl}. For the key polynomials k1,l,(lab,att) =
αl + rGIDbl + rl,att(bl,lab,0 + xattbl,lab,1), we first compute the substitutions for αl + rGIDbl:

∑
j∈ρ̃−1(l)

k∈[n2]

Aj,kvk1d1
j +

 ∑
j∈ρ̃−1(l)∩Ψ1

k∈[2,n2]

Aj,k

(
1d1×d2

j,(1,k) + vk1d1×d2
j,(1,1)

)

−
∑

j∈ρ̃−1(l)∩Ψ0
k∈[n2]

Aj,kvk1d1×d2
j,(4,1)


1d2

(4,1) −
∑

k∈[n2]

wk1d2
(1,k)



=
∑

j∈ρ̃−1(l)
k∈[n2]

Aj,kvk1d1
j −

∑
j∈ρ̃−1(l)∩Ψ1

k∈[2,n2]

Aj,kwk1d1
j +

∑
j∈ρ̃−1(l)∩Ψ1

k∈[2,n2]

Aj,kvkw11d1
j −

∑
j∈ρ̃−1(l)∩Ψ0

k∈[n2]

Aj,kvk1d1
j

= −
∑

j∈ρ̃−1(l)∩Ψ1
k∈[n2]

Aj,kwk1d1
j

= −
∑

j∈Υl,1
k∈[n2]

Aj,kwk1d1
j

︸ ︷︷ ︸
=0

−
∑

j∈Υl,1
k∈[n2]

Aj,kwk1d1
j .

This is canceled by rl,att(bl,lab,0 + xattbl,lab,1): ∑
j∈ρ̃−1(l)∩Ψ1∩ρ−1

lab (lab)
k∈[n2]

(
xatt − xρ(j)

)
Aj,k1d1×d2

j,(2,j,k,lab) +
∑

j∈ρ̃−1(l)∩Ψ1\ρ−1
lab (lab)

k∈[n2]

Aj,k1d1×d2
j,(3,lab)


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 ∑
lab′∈χl,att

 ∑
j∈Υl,1∩ρ−1

lab (lab′)
k∈[n2]

wk1d2
(2,j,k,lab′)

xatt − xρ(j)
+
∑

k∈[n2]

wk1d2
(3,lab′)




=
∑

j∈Υl,1∩ρ−1
lab (lab)

k∈[n2]

xatt − xρ(j)

xatt − xρ(j)
Aj,kwk1d1

j +
∑

j∈ρ̃−1(l)∩Ψ1\ρ−1
lab (lab)

k∈[n2]

Aj,kwk1d1
j

=
∑

j∈Υl,1∩ρ−1
lab (lab)

k∈[n2]

xatt − xρ(j)

xatt − xρ(j)
Aj,kwk1d1

j +
∑

j∈Υl,1\ρ−1
lab (lab)

k∈[n2]

Aj,kwk1d1
j

=
∑

j∈Υl,1
k∈[n2]

Aj,kwk1d1
j .

For the key polynomial αl + rGIDb̄l + r̄l,labb̄l,lab,1, we compute the first part as before, i.e.,

αl + rGIDb̄l : −
∑

j∈Υl,0
k∈[n2]

Aj,kwk1d1
j ,

and the second part as

r̄l,labb̄l,lab,1 :

 ∑
j∈ρ̃−1(l)∩Ψ0∩ρ−1

lab (lab)
k∈[n2]

Aj,k1d1×d2
j,(2,j,k,lab) +

∑
j∈ρ̃−1(l)∩Ψ0\ρ−1

lab (lab)
k∈[n2]

Aj,k1d1×d2
j,(3,k,lab)


 ∑

(lab′′,att)∈Sl:lab′′=lab

 ∑
lab′∈χl,att

k∈[n2]

wk

1d2
(3,k,lab′) − xatt1

d2
(5,k,lab′) +

∑
j∈Υl,0∩ρ−1(att)

1d2
(2,j,k,lab′)





=
∑

j∈ρ̃−1(l)∩Ψ0\ρ−1
lab (lab)

k∈[n2]

Aj,kwk1d1
j +

∑
j∈Υl,0∩ρ−1

lab (lab)
k∈[n2]

Aj,kwk1d1
j

=
∑

j∈Υl,0
k∈[n2]

Aj,kwk1d1
j ,

where multiplying
∑

j∈ρ̃−1(l)∩Ψ0∩ρ−1
lab (lab),k∈[n2] Aj,k1d1×d2

j,(2,j,k,lab) and
∑

j∈Υl,0∩ρ−1(att) wk1d2
(2,j,k,lab′)

yields
∑

j∈Υl,0∩ρ−1
lab (lab),k∈[n2] Aj,kwk1d1

j , because, for each label lab and j ∈ Υl,0 with
ρlab(j) = lab, there is exactly one attribute in S with the same authority l and label lab
that matches it. Hence, for only that attribute, 1d2

(2,j,k,lab′) is included in the substitution
vector for r̄l,att.
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Furthermore, the key polynomial k3,l,(lab,att) evaluates to the all-zero vector, i.e.,

r̄l,lab
(
b̄l,lab,0 + xattb̄l,lab,1

)
:

 ∑
j∈ρ̃−1(l)∩Ψ0∩ρ−1

lab (lab)
k∈[n2]

(
xatt − xρ(j)

)
Aj,k1d1×d2

j,(2,j,k,lab)

+
∑

j∈ρ̃−1(l)∩Ψ0\ρ−1
lab (lab)

k∈[n2]

Aj,k

(
xatt1d1×d2

j,(3,k,lab) + 1d1×d2
j,(5,k,lab)

)
− ∑

lab′∈χl,att
k∈[n2]

wk

1d2
(3,k,lab′) − xatt1

d2
(5,k,lab′) +

∑
j∈Υl,0∩ρ−1(att)

1d2
(2,j,k,lab′)




= −
∑

j∈Υl,0∩ρ−1
lab (lab)∩ρ−1(att)
k∈[n2]

(
xatt − xρ(j)︸︷︷︸

=xatt

)
Aj,k1d1

j

−
∑

j∈ρ̃−1(l)∩Ψ0\ρ−1
lab (lab)

k∈[n2]

Aj,kwk

(
xatt1d1

j − xatt1d1
j

)
= 0 .

For the ciphertext polynomials with j ∈ Ψ, we have that c1,j = µj + sjbρ̃(j) is substituted
by

∑
k∈[2,n2]

Aj,kv̂′
k − 1d1

j

 ∑
j∈ρ̃−1(l)∩Ψ1

k∈[2,n2]

Aj,k

(
1d1×d2

j,(1,k) + vk1d1×d2
j,(1,1)

)
−

∑
j∈ρ̃−1(l)∩Ψ0

k∈[n2]

Aj,kvk1d1×d2
j,(4,1)


=

∑
k∈[2,n2]

Aj,k

(
1d2

(1,k) + vk1d2
(1,1)

)
−

∑
k∈[2,n2]

Aj,k

(
1d2

(1,k) + vk1d2
(1,1)

)
= 0 ,

and that c2,j = sj(bρ̃(j),ρlab(j),0 + xρ(j)bρ̃(j),ρlab(j),1) is substituted by

1d1
j

∑
j′∈ρ̃−1(ρ̃(j))∩Ψ1∩ρ−1

lab (ρlab(j))
k∈[n2]

xρ(j′)Aj′,k1d1×d2
j′,(2,j′,k,lab) − 1d1

j

∑
j′∈ρ̃−1(ρ̃(j))∩Ψ1\ρ−1

lab (ρlab(j))
k∈[n2]

Aj′,k1d1×d2
j′,(3,k,lab)

− xρ(j)1d1
j

 ∑
j′∈ρ̃−1(ρ̃(j))∩Ψ1∩ρ−1

lab (ρlab(j))
k∈[n2]

Aj′,k1d1×d2
j′,(2,j′,k,lab)


=
∑

k∈[n2]

xρ(j)Aj,k1d2
(2,j,k,lab) −

∑
k∈[n2]

xρ(j)Aj,k1d2
(2,j,k,lab) = 0 .

For j ∈ Ψ, we have that c1,j = µj + sj b̄ρ̃(j) is substituted by

∑
k∈[2,n2]

Aj,kv̂′
k − 1d1

j

 ∑
j∈ρ̃−1(l)∩Ψ0

k∈[2,n2]

Aj,k

(
1d1×d2

j,(1,k) + vk1d1×d2
j,(1,1)

)
−

∑
j∈ρ̃−1(l)∩Ψ1

k∈[n2]

Aj,kvk1d1×d2
j,(4,1)


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(b) Ciphertext sizes

0 20 40 60 80 100
0

10

20

30

Size of the set of attributes

T
im

e
in

m
s

RW15
AG21
Ven23
ISABELLA

(c) Key generation cost
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(d) Encryption cost
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(e) Decryption cost

Figure 3: Comparison of decentralized CP-ABE schemes.

=
∑

k∈[2,n2]

Aj,k

(
1d2

(1,k) + vk1d2
(1,1)

)
−

∑
k∈[2,n2]

Aj,k

(
1d2

(1,k) + vk1d2
(1,1)

)
= 0 ,

and that c2,j = sj(b̄ρ̃(j),ρlab(j),0 + xρ(j)b̄ρ̃(j),ρlab(j),1) is substituted by

− 1d1
j

∑
j′∈ρ̃−1(ρ̃(j))∩Ψ0∩ρ−1

lab (ρlab(j))
k∈[n2]

−xρ(j′)Aj′,k1d1×d2
j′,(2,j′,k,lab) − 1d1

j

∑
j′∈ρ̃−1(ρ̃(j))∩Ψ0\ρ−1

lab (ρlab(j))
k∈[n2]

Aj′,k1d1×d2
j′,(5,k,lab)

− 1d1
j ρ(j)

∑
j′∈ρ̃−1(l)∩Ψ0∩ρ−1

lab (lab)
k∈[n2]

Aj′,k1d1×d2
j′,(2,j′,k,lab) − 1d1

j ρ(j)
∑

j′∈ρ̃−1(l)∩Ψ0\ρ−1
lab (lab)

k∈[n2]

Aj′,k1d1×d2
j′,(3,k,lab)

=
∑

k∈[n2]

xρ(j)Aj,k1d2
(2,j,k,lab) −

∑
k∈[n2]

xρ(j)Aj,k1d2
(2,j,k,lab) = 0 .

Lastly, c′
j = λj + αρ̃(j)sj is substituted by

Aj,1s̃ +
∑

k∈[2,n2]

Aj,kv̂k − 1d1
j

∑
j′∈ρ̃−1(ρ̃(j))

k∈[n2]

Aj′,kvk1d1
j′ = Aj,1 +

∑
k∈[2,n2]

Aj,kvk −
∑

k∈[n2]

Aj,kvk = 0 .

G Comparison of decentralized CP-ABE schemes
In order to demonstrate the effectiveness of our new compiler, we compare the cost of
the decentralized CP-ABE scheme from [Ven23] (Appendix E.1) with our new compiler
(cf. Fig. 2) with other constructions from the literature in Fig. 3. More specifically, we
compare to RW15 [RW15] and AG21 [AG21], and the same decentralized scheme, but
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obtained via the Ven23 compiler [Ven23]. Note that all these schemes are monotone, and
therefore do not support negations.

Estimates for the computational efficiency based on benchmarks in RELIC.
We estimate the computational costs of the schemes by obtaining benchmarks of various al-
gorithms and extrapolating the results by analyzing the descriptions of the schemes. We an-
alyze the efficiency in this way, because it allows us to compare the schemes more accurately
and more fairly. Currently, the simplest and most popular way [RW13, AC17a, VAH23] to
benchmark schemes is by using Charm [AGM+13]. However, Charm only supports curves
that do not provide sufficient security anymore, and de la Piedra et al. [dlPVA22] show that
benchmarking the schemes on these curves yields inaccurate and unfair comparisons. To
compare the schemes more accurately and fairly, we estimate2 the costs of the schemes by
applying the ABE Squared approaches [dlPVA22]. In particular, we use their benchmarks
in RELIC [AGM+], a cryptographic library for efficient implementations of pairing-based
cryptography on state-of-the-art elliptic curves. This library has implementations for
exponentiations, including fixed-base variants. In fixed-base exponentiation, the base g
in gx is fixed after setup, and as such, a precomputation table can be made to speed up
the computation [BGMW92]. For all schemes, we also assume that the access policies
are Boolean formulas, so that for decryption, it is ensured that εj ∈ {0, 1} [LW11]. This
optimizes decryption similarly for all schemes. Our theoretical estimations are for the
BLS12-381 curve [BLS02, Bow], which provides approximately 128 bits of security [Gui20].

Evaluation. To compare the key and ciphertext sizes, we use the same approach as in
[VA]. Since ISABELLA allows us to push elements in the ciphertext from the target group
to the source groups, our ciphertext sizes are comparable to those of AG21 and more than
3 times smaller than those of RW15 and Ven23. The keys are generated as in Ven23 and
are smaller than in RW15 and AG21.

When it comes to the runtime, our scheme gives the best performance for key generation
and for decryption. Both are the same as in Ven23 and outperform the other schemes.
Most notably, we require only a constant number of pairing operations in decryption.
While AG21 is the fastest scheme for encryption, its decryption time grows with the
number of matching attributes.

Jupyter notebook. The Jupyter notebook accompanying these theoretical performance
estimates is available at https://github.com/lincolncryptools/ISABELLA.

2Although approximated theoretically, we expect our estimates to be close to the costs of actual
implementations, as was shown in [VA23].

https://github.com/lincolncryptools/ISABELLA
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