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Abstract

Secure multiparty computation (MPC) protocols enablen parties, each with private inputs, to compute a
given function without leaking information beyond the outputs. One of the main approaches to designing
efficient MPC protocols is to use secret sharing. In general, secret sharing based MPC contains three
phases: input sharing, circuit evaluation, and output recovery. If the adversary corrupts at most t parties,
the protocol typically uses (t, n) threshold secret sharing to share the inputs. In this work, we consider a
weaker variant of threshold secret sharing called lazy threshold secret sharing (or simply lazy sharing) and
show that

• Lazy sharing can serve as a viable alternative to threshold secret sharing in MPC without compro-
mising security.

• Lazy sharing could be generated more efficiently than threshold secret sharing.
As a result, replacing threshold secret sharing with lazy sharing can lead to a more efficient input sharing
phase. Moreover, we propose that the efficiency of the circuit evaluation phase can also be further improved.
To support this claim, we apply lazy sharing to several state-of-the-art MPC protocols and analyze the
efficiency gain in various settings. These protocols include the GMW protocol (Goldreich et al., STOC
1987), the AFLNO protocol (Araki et al., CCS 2016), and the SPDZ protocol (Damgård et al., CRYPTO
2012). By doing so, we analyze the efficiency gains in various settings and highlight the advantages of
incorporating lazy sharing into MPC protocols.

1 Introduction
Secure multiparty computation (MPC) enables individuals to compute a function based on their private
inputs without revealing any information beyond the final outputs. Since its inception by Yao [Yao82], MPC
has been the subject of extensive research, resulting in significant advancements in both theoretical and
practical aspects. Various seminal works [GMW87, CDvdG87, GHY87, BGW88, CCD88, RB89, Bea91b] have
demonstrated the feasibility of MPC in diverse settings.

A key category of MPC protocols is generic MPC protocols, which facilitate the computation of arbitrary
circuits comprising addition and multiplication gates. To date, two primary methodologies are employed for
constructing efficient generic MPC protocols: the secret sharing approach [GMW87, BGW88, CCD88] and
the garbled circuit approach [Yao86, BMR90]. The former necessitates interactions for each layer containing
multiplication gates in the circuit and boasts a low communication cost, while the latter entails a constant
number of rounds but incurs a higher communication cost. Consequently, the secret sharing approach is
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more suitable for low-latency networks like local area networks, whereas the garbled circuit approach excels
in high-latency networks such as wide area networks, albeit with increased communication overhead.

In this study, we focus on MPC protocols based on the secret sharing approach, operating under the
assumption that the adversary may corrupt at most t parties. In this context, a (t, n) threshold secret sharing
scheme is employed to distribute the inputs1. Generally, secret sharing based MPC protocols include
three phases. During the Input Sharing phase, the parties generate (t, n) threshold secret sharings for their
private inputs. Subsequently, in the Circuit Evaluation phase, the parties compute the circuit gate-by-gate
in a predetermined topological order. For each gate, the value in its output wire is computed as a (t, n)
threshold secret sharing. Finally, in the Output Recovery phase, the parties recover the output sharings,
distributing them to the designated parties who are supposed to obtain the outputs.

Currently, MPC primarily relies on three secret sharing schemes: additive secret sharing, Shamir secret
sharing [Sha79], and replicated secret sharing (also known as CNF secret sharing) [ISN89, CDI05]. In
practice, additive secret sharing is predominantly utilized for scenarios involving all-but-one corruptions,
where the adversary may corrupt up to n − 1 parties. On the other hand, the other two secret sharing
schemes are primarily employed in the context of an honest majority, where more than half of the parties
are assumed to be honest2. Notably, replicated secret sharing is commonly employed in MPC protocols
involving a small number of parties [AFL+16, FLNW17].
Protocol Models. To date, MPC is mainly considered in two models: the standard MPC model [Yao82,
GMW87] and the client-server model [CDI05, DI05, DI06]. In the standard model3, inputs are provided
by internal parties who engage in the entire computation, and outputs are received by designated internal
parties. Conversely, in the client-server model, inputs originate from external parties (referred to as clients,
who do not actively participate in the circuit evaluation phase), and outputs are transmitted to specific
clients. A trivial advantage of the standard model over the client-server model is that during input sharing,
only n− 1 shares need to be sent, resulting in communication savings in the input sharing phase by a factor
of (n− 1)/n. However, this advantage may appear relatively minor. Our interest is piqued by the following
question:

What are the benefits of constructing MPC in the standard model beyond the trivial advantage?

1.1 Our Contribution
In this work, we demonstrate a significant disparity in efficiency between the standard model and the
client-server model when developing MPC protocols. Specifically, we reveal that employing threshold
secret sharing is excessive for designing MPC protocols in the standard model. We introduce a unique non-
threshold secret sharing scheme termed "lazy threshold secret sharing" (or simply "lazy sharing"), which
relaxes the privacy requirements of threshold secret sharing. Our findings indicate that

For MPC protocols in the standard model, we can replace threshold secret sharing with lazy sharing without
compromising security.

To substantiate our claim, we consider the additive and replicated secret sharing schemes and demon-
strate that their lazy variants can be generated more efficiently. This enables us to achieve a more efficient
input sharing phase in MPC protocols built from these two secret sharing schemes. Specifically, for addi-
tive secret sharing, we observe that its lazy variant (referred to as lazy additive sharing) can be generated
locally4. Furthermore, for replicated secret sharing, its lazy variant (termed lazy replicated sharing) can be
generated with reduced communication by a factor of at least (n − 1)/(n − t − 1) in the statistical setting.
In the computational setting, using pseudorandom secret sharing [CDI05], replicated secret sharing can be
generated at a very low amortized communication cost, albeit requiring an expensive setup phase involving

1A (t, n) threshold secret sharing scheme generates the sharing of an input in such a way that any t+ 1 parties can reconstruct the
input, while any t parties remain oblivious to the input.

2Recent works [GPS22, EGP+23] have explored the use of (packed) Shamir secret sharing to design efficient MPC protocols in
settings with a dishonest majority, where a constant fraction (not exceeding 0.5) of parties are honest.

3We follow the work of [DI05] to use the term “standard” to represent that the inputs come from the internal parties.
4We can humorously describe this situation that the parties are too “lazy” to interact to share the inputs, which is the reason why

we use the term of “lazy sharing”.
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the distribution of
(
n
t

)
−1 pseudorandom function (PRF) keys to the parties. Lazy replicated sharing, on the

other hand, features a less costly setup phase, distributing at most
(
n−1
t

)
− 1 PRF keys. We refer to Section

6 for further details.
In addition to obtaining a more efficient input sharing phase, we argue that using lazy sharing can

also improve the efficiency of the circuit evaluation phase. To see this, we apply lazy sharing to several
state-of-the-art MPC protocols and analyze the efficiency gain.
Applying to the GMW Protocol [GMW87]. We first consider the passively secure GMW protocol, which is a
fundamental and generic MPC protocol based on additive secret sharing. To facilitate a more comprehensive
analysis of the efficiency gain, we consider the arithmetic version of GMW [IPS09], and we assume that the
parties can invoke an oblivious linear evaluation5 (OLE) functionality Fole. Moreover, we will measure the
communication cost by the number of calls to the OLE functionality and the number of field elements sent
by the parties6.

By replacing additive secret sharing with lazy additive sharing, we derive a variant of the GMW protocol
called lazy GMW (LGMW). Compared to GMW, LGMW enjoys many better efficiency features, as we
described below.

• Sharing the inputs is performed locally, that is to say, the communication cost of the input sharing
phase is zero.

• The computation of a layer-λ multiplication gate (i.e., a multiplication gate in the λ-th layer of the
circuit) requires no more than min{4λ−1, 4λ−1+n−2λ, n2−n} calls to the OLE functionality, while the
GMW protocol always requires n2 − n calls to the OLE functionality. In particular, if λ is a constant,
then the computation of a layer-λ multiplication gate only requires a constant number of calls to the
OLE functionality.

• Similar to GMW, LGMW can also be extended to the preprocessing model. In particular, LGMW has
a cheaper online phase than GMW for the computation of many circuits.

To provide a clearer demonstration of the efficiency improvements of LGMW over GMW, we consider
the computation of various common circuits. Specifically, we observe that LGMW achieves an O(n) im-
provement when computing the product circuit. Additionally, for shallow circuits like the inner product
circuit, LGMW can even achieve an impressive O(n2) improvement. Furthermore, we examine a real-world
application of GMW. We show that by substituting LGMW in place of GMW, the efficiency can be further
improved by a factor of O(n).
Applying to the AFLNO Protocol [AFL+16]. The AFLNO protocol is a highly effective three-party compu-
tation protocol that relies on replicated secret sharing. It provides perfect security against any semi-honest
adversary who corrupts up to one party. This protocol boasts a remarkably low bandwidth requirement,
with a multiplication gate computation or output recovery (to all parties) necessitating each party to trans-
mit only a single field element. However, the input sharing phase of this protocol seems not optimal, as
it requires the input owner to send two field elements to each party. In the standard model, the commu-
nication cost of sharing an input amounts to four field elements. This is less efficient compared to MPC
protocols based on Shamir secret sharing, such as the BGW protocol [BGW88], where the input owner only
needs to send a single element to each party. In other words, Shamir secret sharing offers better efficiency
for input sharing, while replicated secret sharing excels in efficiency for computing multiplication gates
(MPC based on Shamir secret sharing requires at least two field elements per multiplication gate per party
[DN07, GLO+21]). Surprisingly, with lazy sharing, we can achieve the best of both worlds.

By replacing replicated secret sharing with lazy replicated sharing, we obtain a variant of the AFLNO
protocol that we called the lazy AFLNO (LAFLNO) protocol. In comparison to AFLNO, LAFLNO enjoys
a more efficient input sharing phase: if the input is held by a single party, then sharing this input only
requires the input owner to send a single element to each party; if the input is held by two different parties,

5An OLE functionality receives two values a, b from some party Pi and a value x from another party Pj , and sends the value ax+ b
to Pj .

6We remark that our results also hold for GMW over the binary field F = F2, where the OLE functionality is replaced with an
oblivious transfer (OT) functionality which receives two bits x0, x1 from some party Pi and a bit b from another party Pj , and sends
the bit xb to Pj .
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then sharing this input requires no communication! We remark that if the input is held by all three parties,
then this input is essentially a constant. Additionally, for some specific multiplication gates, LAFLNO may
have lower communication than AFLNO, and we refer to Section 6 for more details. Given the effectiveness
of AFLNO, we believe that LAFLNO achieves a nice improvement over AFLNO, especially for circuits with
many inputs (e.g., f((x1, y1), (x2, y2), (x3, y3)) = (x1 + x2 + x3)(y1 + y2 + y3)).
Applying to the SPDZ Protocol [BDOZ11, DPSZ12]. Finally, in Appendix B, we further demonstrate how
to apply our idea to the SPDZ protocol, one of the state-of-the-art generic MPC protocols with malicious
security in the dishonest majority setting. Like GMW, SPDZ is also based on additive secret sharing, and
moreover, it works in the preprocessing model. The key idea of SPDZ for achieving malicious security is to
authenticate each sharing with an information-theoretic message authentication code (MAC) in a pairwise
manner (the BDOZ-style MAC [BDOZ11]) or a global manner (the SPDZ-style MAC [DPSZ12]). We apply
lazy additive sharing to SPDZ and derive a variant called lazy SPDZ (LSPDZ). LSPDZ works in the circuit-
dependent preprocessing model, where the parties know the circuit topology in the offline phase. We will
focus on the online cost and view the offline phase as a black-box that generates the required correlated
randomness. LSPDZ mainly differs from SPDZ in the following three aspects.

• When sharing an input, LSPDZ requires a different precomputed random sharing, which however
does not influence the online cost.

• When computing a multiplication gate, opening a sharing only requires the parties whose shares
decide the shared value to send their shares, which saves communication.

• When recovering an output, an additive sharing of zero is used to randomize the output sharing.

We remark that LSPDZ has the same communication cost as SPDZ for the input sharing and output
recovery phases. For the circuit evaluation phase, when computing a layer-λ multiplication gate, LSPDZ
requires at most 2n+min{2λ, 2n}−4 ≤ 4n−4 field elements of communication, while SPDZ always requires
4n− 4 field elements of communication. We can say that LSPDZ offers a cheaper online phase than SPDZ,
except for an extreme scenario where the inputs of every multiplication gate depend on all parties. In
particular, for small λ (i.e., λ ≪ log n), the communication cost of computing a layer-λ multiplication gate is
almost halved.

Lastly, it is worth noting that beyond the enhancements made to the aforementioned protocols (GMW,
AFLNO, and SPDZ), our findings underscore the advantages of internal parties carrying inputs. This
systematic optimization is not tied to any particular technology. That means, for any MPC protocol, we
can apply our idea as long as the protocol is designed in the standard model7. However, it is important
to note that the potential for efficiency gains hinges on the particular use cases. As we will elaborate in
the conclusion section, when our approach is applied to generic protocols that leverage the Shamir secret
sharing, the anticipated efficiency improvements may not be realized.

1.2 Technical Overview
In the previous secret sharing based MPC framework, the parties generate (t, n) threshold secret sharings
for the inputs. A (t, n) threshold secret sharing requires that any t shares are independent of the input,
which guarantees that any t parties cannot know the input. However, we observe that this level of secrecy is
overkill for MPC in the standard model, where the input owner is one of the computing parties. Specifically,
when one of the t shares belongs to the input owner (this is always the case in the standard MPC model),
we find that it is unnecessary to require that the t shares are independent of the input because the input
owner already possesses the knowledge of the input. Building on this insight, we introduce lazy sharing,
which relaxes the privacy requirements of threshold secret sharing and therefore could be generated more
efficiently. Now, let us delve into the details of two specific threshold secret sharing schemes: additive secret
sharing and replicated secret sharing.

7Our techniques do not work for the client-server model, where inputs are dispersed among the parties and remain undisclosed to
any unauthorized subset of participants. For instance, in threshold cryptography, the secret key is distributed among the parties in
such a manner that it is inaccessible to any unauthorized group.
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Lazy Additive Sharing. Assume that Pi wants to share its input x using additive secret sharing, then it
samples n random values {xj}j∈[n] subject to

∑
j∈[n] xj = x. It is obvious any n− 1 of the n values {xj}j∈[n]

are independent of x. Our idea is that we do not require privacy for the share of the input owner Pi. Namely,
we only require that the n− 1 values {xj}j∈[n]\{i} are independent of x. At the same time, we also require
that

∑
j∈[n] xj = x for guaranteeing correctness. Such a sharing is called lazy additive sharing. Obviously,

an additive secret sharing is a lazy additive sharing. However, lazy additive sharing has a much simpler
form: xi = x, and for each j ̸= i, xj = 0. It is clear that this sharing is a lazy additive sharing, and it could
be generated locally! As we will see, replacing additive secret sharing with lazy additive sharing in MPC
can also improve the efficiency of the circuit evaluation phase.
Lazy Replicated Sharing. If a partyPi wants to generate a (t, n) replicated secret sharing for its input xusing
replicated secret sharing, it samples

(
n
t

)
random values {XT }T⊆[n],|T |=t conditioned on x =

∑
T⊆[n],|T |=t XT

and the j-th share is xj = (XT )|T |=t,j ̸∈T . Note that when t = n/2, each share consists of super-polynomial
(in n) elements, which is why replicated secret sharing can only used for small n. Note that for any T ⊆ [n]
with |T | = t, the parties in T know nothing about x because they do not know XT . Lazy replicated sharing
relaxes the privacy requirement. Concretely, if some t shares contain the share of Pi, we will not require
that these t shares are independent of x. Let us consider the special case of (1, 3) replicated secret sharing,
which is used in the AFLNO protocol [AFL+16].

To generate a (1, 3) replicated secret sharing of an input x, the input owner (say, P1) first samples three
random values X1, X2, X3 subject to x = X1 + X2 + X3, and the i-th share is xi = (Xi−1, Xi+1). It is
obvious that any single xi leaks nothing about x. Based on our idea, we do not require privacy for x1, which
allows us to generate the sharing more efficiently. Concretely, P1 just chooses two random values X2, X3

subject to x = X2 + X3 and sets X1 = 0. Then, P1 sends X3 to P2 and X2 to P3. And the sharing of x is
(X3, X2), (X1, X3), (X2, X1) = (X3, X2), (0, X3), (X2, 0). It is easy to see that both the share of P2 and P3

are independent of x. Now, we consider the case that x is held by two different parties (say, P1, P2). In this
setting, we only require that share of P3 is independent of x. To do this, the parties just locally compute the
sharing as (X3, X2), (X1, X3), (X2, X1) = (x, 0), (0, x), (0, 0). Note that the correctness of the protocol will
be guaranteed as long as we have X1 +X2 +X3 = x.

The above idea can be extended to any number of parties, and we refer to Sections 3.2 and 6.5 for more
details. In Section 6, we further discuss how the protocol will proceed when replacing replicated secret
sharing with lazy replicated sharing. In particular, we will show that for some specific multiplication gates
(where one input to the gate is held by two different parties), we can also improve the efficiency (see Section
6.2).

2 Preliminaries
Basic Notations. For any integer n, we denote [n] the set {1, · · · , n}. Let F be a finite field, and we always
consider circuits over F.

2.1 Threshold Secret Sharing
Definition 2.1 (Threshold Secret Sharing). Let F be a finite field and t, n,m be three integers with t ∈ [n− 1]. A
(t, n) threshold secret sharing scheme over F contains two efficient algorithms (Share,Recover), where Share takes a
field element x ∈ F as input and outputs (x1, . . . , xn) ∈ (Fm)n. Moreover, we require the following properties.

• Correctness. For any A ⊆ [n], if |A| ≥ t+ 1, then we have

Recover({xj}j∈A) = x.

• Privacy. For any U ⊆ [n], if |U | ≤ t, then the distribution of {xj}j∈U is independent of x.

To date, there are three main threshold secret sharing schemes used in MPC protocols: additive secret
sharing, Shamir secret sharing [Sha79], and replicated secret sharing [ISN89, CDI05]. In this work, we focus
on additive and replicated secret sharing, and we describe these two schemes as follows.
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Additive Secret Sharing. Additive secret sharing is an (n− 1, n) threshold secret sharing scheme. To share
a value x, the dealer samples n random values x1, . . . , xn subject to

∑
j∈[n] xj = x. The share of Pj is xj .

Note that to share a value, the dealer needs to send a single element to each party.
Replicated Secret Sharing. Replicated secret sharing is a (t, n) threshold secret sharing scheme for any
t ∈ [n − 1], and it is mainly used for small n. To generate a (t, n) replicated secret sharing for a value x,
the dealer first selects

(
n
t

)
random values {XT }T⊆[n],|T |=t subject to x =

∑
T⊆[n],|T |=t XT . Then the share of

party Pj is xj = (XT )j /∈T . Note that for any T ⊆ [n] with |T | = t, no party in T knows XT , hence the parties
in T cannot recover the shared value x. From the description of replicated secret sharing, we know that the
dealer needs to send

(
n−1
t

)
elements to each party.

We remark that additive secret sharing is actually a special case of replicated secret sharing (with
t = n− 1). However, these two schemes are often used with different corruption thresholds: additive secret
sharing is used when the number of corrupted parties is at most n − 1, while replicated secret sharing is
used in scenarios where the number of corrupted parties is less than n/2 and n is small. For this reason, we
describe these two schemes separately.

2.2 The Universal Composability Framework
Throughout this work, we prove the security of our protocols in the universal composability (UC) framework
[Can01]. In this framework, a probabilistic polynomial time (PPT) adversary called the environment Z
chooses inputs for the honest parties and gets their outputs. It also can corrupt the parties and take control
over their actions. We say that a protocol Π realizes an ideal functionality F in the UC framework if there
exists a PPT simulator S such that Z cannot distinguish the following real and ideal executions.
Real Execution. Z generates inputs for all parties. The parties execute the protocol Π and return the outputs
to Z . Additionally, Z can interact arbitrarily with the corrupted parties during the protocol execution.
Ideal Execution. Z generates inputs for all parties. The parties forward their inputs to the functionality F
and return the outputs to Z . Additionally, the simulator S interacts with Z and F .

3 Lazy Sharing: Definitions and Constructions
In this section, we introduce a weaker variant of threshold secret sharing called lazy threshold secret sharing
(or simply lazy sharing). Lazy sharing has an additional parameter L ⊆ [n], and we call L the lazy set. The
formal definition of lazy sharing is in the following.

Definition 3.1 (Lazy Sharing). Let F be a finite field and t, n,m be three integers with t ∈ [n − 1]. Let L ⊆ [n]
be some set (which is called the lazy set). A (t, n,L) lazy sharing scheme over F contains two efficient algorithms
(Share,Recover), where Share takes a field element x ∈ F as input and outputs (x1, . . . , xn) ∈ (Fm)n. Moreover, we
require the following properties.

• Correctness. For any A ⊆ [n], if |A| ≥ t+ 1, then we have

Recover({xj}j∈A) = x.

• L-Privacy. For any U ⊆ [n]\L, if |U | ≤ t, then the distribution of {xj}j∈U is independent of x.

It is easy to verify that for any L1 ⊆ L2 ⊆ [n], a (t, n,L1) lazy sharing is always a (t, n,L2) lazy sharing.
Moreover, a (t, n) threshold secret sharing is in fact a (t, n,∅) lazy sharing. This implies that a (t, n)
threshold secret sharing is always a (t, n,L) lazy sharing for any L ⊆ [n]. We remark that a (t, n,L) lazy
sharing could be viewed as a non-threshold secret sharing, but we view it as a weaker variant of threshold
secret sharing because we use it as a replacement of threshold secret sharing in secret sharing based MPC.
Now we introduce two lazy sharing schemes called lazy additive sharing and lazy replicated sharing. These
two schemes are the lazy variants of additive and replicated secret sharing.
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3.1 Lazy Additive Sharing
In lazy additive sharing, we always assume that t = n − 1. Let L be the lazy set and l = |L|, we describe a
(n− 1, n,L) lazy additive sharing scheme as follows.
Share. To share a value x, the dealer samples l values {xj}j∈L subject to

∑
j∈L xj = x and sets xj = 0 for

each j ∈ [n]\L. Note that we make no requirements on the distribution of {xj}j∈L except that their sum is
x. The sharing is (x1, . . . , xn).
Recover. Using the shares x1, . . . , xn, we can recover the shared value by computing

∑
j∈[n] xj .

It is easy to verify that (x1, . . . , xn) is an (n − 1, n,L) lazy additive sharing of x. Moreover, we say that
the shares of the parties in L are valid (their shares decide the shared value), and the shares of the parties
in [n]\L are invalid. We use ⟨x⟩L to represent an (n− 1, n,L) lazy additive sharing of x. We say that a lazy
additive sharing ⟨x⟩L = (x1, . . . , xn) is uniform if {xi}i∈L is a (|L| − 1, |L|) additive sharing of x (i.e., any
|L| − 1 shares in {xi}i∈L are independent of x).

Example 3.2. For a value x ∈ F, ⟨x⟩{1} = (x, 0, . . . , 0) is an (n− 1, n, {1}) lazy additive sharing of x.

We remark that in lazy additive sharing, the parties in the lazy set can cooperate to recover the shared
value, rather than that all parties in the lazy set know the shared value.

3.2 Lazy Replicated Sharing
Let L be the lazy set and l = |L|, we describe a (t, n,L) lazy replicated sharing scheme as follows.
Share. To share a value x, the dealer first samples

(
n−l
t

)
random values {XT }T⊆[n]\L,|T |=t subject to

x =
∑

T⊆[n]\L,|T |=t XT and then sets XT = 0 for each T ⊆ [n] with |T | = t and L ∩ T ̸= ∅. The j-th share is
defined as xj = (XT )|T |=t,j ̸∈T . The sharing is (x1, . . . , xn).
Recover. Using t + 1 shares {xj}j∈A where |A| = t + 1, we can recover the shared value by computing∑

T⊆[n]\L,|T |=t XT . Note that for each T ⊆ [n]\L with |T | = t, at least one party in A knows XT because at
most t parties do not have XT .

Note that for any T ⊆ [n]\L with |T | = t, the parties in T do not know the value XT , hence they know
nothing about x. Therefore, (x1, . . . , xn) is a (t, n,L) lazy replicated sharing of x. To generate a (t, n,L)
lazy replicated sharing, the dealer needs to send

(
n−l
t

)
field elements to Pi for each i ∈ L and

(
n−l−1

t

)
field

elements to Pj for each j ∈ [n]\L.

Example 3.3. For a value x ∈ F, let X2 be a random value and X3 = x −X2, then (X3, X2), (0, X3), (X2, 0) is a
(1, 3, {1}) lazy replicated sharing of x.

4 Lazy GMW: GMW with Lazy Additive Sharing
In this section, we improve the efficiency of the semi-honest GMW protocol [GMW87] by replacing the ad-
ditive secret sharing scheme with lazy additive sharing. For simplicity, we directly consider the arithmetic
variant of GMW [IPS09] and assume the parties can invoke the oblivious linear evaluation (OLE) function-
ality Fole. The formal definition of Fole can be found in Appendix A. We consider the GMW protocol in the
Fole-hybrid model and measure the cost with the number of calls to the functionality Fole and the number of
field elements sent by the parties. In Appendix C.1, we present a formal description of the GMW protocol,
which uses the following notations for the computed circuit f .

• Let Min (resp. Mout) be the number of the inputs (resp. outputs) of f . Moreover, for each j ∈ [n], we
use M j

in (resp. M j
out) to denote the number of the inputs (resp. outputs) belong to the party Pj .

• Let Cadd be the number of the addition gates in f and Cmul be the number of the multiplication gates
in f . Let C = Cadd + Cmul be the size of f .

• Let D be the multiplicative depth8 of f .

8The multiplicative depth of a circuit is the number of the layers containing multiplication gates.
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• Let E be the depth of f .

• For each λ ∈ [E], let Cλ
add be the number of the addition gates in the λ-th layer of f and Cλ

mul be the
number of the multiplication gates in the λ-th layer of f . Let Cλ = Cλ

add + Cλ
mul be the total number of

the gates in the λ-th layer of f .

4.1 Overview of the Techniques
Our starting point is that if the input x is offered by some party Pi, then for the sharing of x, we do not
require that the share of Pi is independent of x. In other words, instead of generating an (n− 1, n) additive
secret sharing, we let Pi generate an (n − 1, n, {i}) lazy additive sharing. By the discussion in Section 3.1,
an (n− 1, n, {i}) lazy additive sharing for any i ∈ [n] could be generated locally.

After sharing the inputs, we now describe how to compute the circuit. For the computation of addition
gates, we just let each party locally add its input shares as the output share. As a result, the sum of an
(n− 1, n,L0) lazy additive sharing and an (n− 1, n,L1) lazy additive sharing will be an (n− 1, n,L0 ∪ L1)
lazy additive sharing. For example, the resulting sharing of adding two lazy additive sharings ⟨x⟩{1} =
(x, 0, . . . , 0) and ⟨y⟩{n} = (0, . . . , 0, y) is

⟨z⟩{1,n} = (x, 0, . . . , 0, y).

It is clear that ⟨z⟩{1,n} is an (n− 1, n, {1, n}) lazy additive sharing of x+ y.
Now we consider the computation of multiplication gates. Let ⟨x⟩L0 = (x1, . . . , xn) and ⟨y⟩L1 =

(y1, . . . , yn) be the input sharings. It is obvious that we can just do as in GMW: for each (i, j) ∈ [n]2

with i ̸= j, Pi and Pj additively share xiyj (see the formal description of GMW in Appendix C.1). This
requires n(n− 1) calls to the OLE functionality. However, for each (i, j) ∈ [n]2\(L0 ×L1) we know xiyj = 0,
which implies that Pi and Pj can additively share xiyj without any interaction: xiyj = 0 + 0. In other
words, only when (i, j) ∈ L0 ×L1 and i ̸= j, Pi and Pj need to interactively share xiyj , which only requires
|L0| · |L1| − |L0 ∩ L1| calls to the OLE functionality.

Now we use a simple example to show how our protocol will proceed. Assume that three parties
P1, P2, P3 want to compute the circuit f(x1, x2, x3) = x1x2 + x3, where each Pi holds xi. They do the
following steps.

1. Input Sharing. P1, P2, P3 locally share their inputs: the sharing of x1 is (x1, 0, 0), the sharing of x2 is
(0, x2, 0), and the sharing of x3 is (0, 0, x3).

2. Circuit Evaluation. The parties compute the circuit as follows.

(a) ComputingG1(x1, x2) = x1x2: P1 samples a random value r1, and thenP1 andP2 invoke the OLE
functionality, where P1 playing the sender takes x1,−r1 as inputs and P2 playing the receiver
takes x2 as input; P2 receives r2 = x1x2 − r1 as output; the resulting sharing is (r1, r2, 0).

(b) Computing G2(x1x2, x3) = x1x2 + x3: P3 just takes x3 as its share and the final sharing is
(r1, r2, x3).

At the end of the above computation, the parties obtain an (n − 1, n, [3]) lazy additive sharing of the
output x1x2 + x3. The left problem is how to recover the output.
How to Securely Recover an Output. In GMW, since the output of each gate is computed as an additive
secret sharing, the parties will get additive sharings of the outputs of the computed circuit. Note that a
major feature of additive sharing is that any n− 1 shares are independent of the shared value. Therefore, to
recover an output, the parties just send their shares to the party who is supposed to obtain the output, which
does not hurt the privacy of the inputs. However, this situation is different in our protocol. A lazy additive
sharing cannot guarantee that any n− 1 shares are independent of the shared value, which means that the
shares may contain information about the inputs that should not be leaked to the adversary. Therefore,
we need a more secure way to recover the outputs. Our solution is that the parties securely add up all the
shares. To maintain the statistical security of our protocol in the Fole-hybrid model, we let the parties use
the GMW protocol to securely compute the sum of the shares. We note that a secure sum protocol can
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be made more efficiently by pre-preparing a batch of pseudorandom additive sharings of zero. When the
parties want to recover an output, they locally add an additive sharing of zero to the output sharing, and
then they can send their shares to recover the outputs as in the GMW protocol.

4.2 GMW with Lazy Additive Sharing: LGMW
In this section, we describe lazy GMW (LGMW), which replaces additive secret sharing in GMW with lazy
additive sharing. LGMW requires a secure sum protocol for recovering the outputs. We assume that the
parties can invoke the sum functionality FL,r

sum, and the formal definition of FL,r
sum can be found in Appendix

A. In this work, we assume that FL,r
sum is realized using the GMW protocol, and the communication cost is

|L|2 − τ field elements, where τ equals 1 if r ∈ L and 0 otherwise.
Now we describe the LGMW protocol in the (Fole,FL,r

sum)-hybrid model.

Protocol 4.1 (The LGMW Protocol). Let f : FM1
in × · · · × FMn

in → FM1
out × · · · × FMn

out be the computed circuit.
Each party Pi has M i

in private inputs and M i
out private outputs.

1. Input Sharing. For each input x belonging to Pi, the parties locally compute an (n − 1, n, {i}) lazy additive
sharing ⟨x⟩{i} = (x1, . . . , xn), where for each j ∈ [n], xj is equal to x if j = i and 0 otherwise.

2. Circuit Evaluation. For each gate G, assume that the input sharings are ⟨u⟩L0 = (u1, . . . , un) and ⟨v⟩L1 =
(v1, . . . , vn). Let L = L0 ∪ L1. The parties do the following steps.

• If G is an addition gate, each party Pi computes wi = ui + vi as its share. The resulting sharing is
⟨w⟩L = (w1, . . . , wn).

• If G is a multiplication gate, The parties do the following steps.
(a) For each i ∈ L0 and j ∈ L1\{i}, Pi samples a random value ri,j . Pi and Pj invoke Fole where Pi

acting as the sender takes ui and −ri,j as inputs and Pj acting as the receiver takes vj as input. Pj

receives sj,i = uivj − ri,j from Fole.
(b) For each i ∈ L0\L1, Pi computes wi =

∑
j∈L1

ri,j . For each i ∈ L0 ∩ L1, Pi computes wi =
uivi +

∑
j∈L0\{i} si,j +

∑
j∈L1\{i} ri,j . For each i ∈ L1\L0, Pi computes wi =

∑
j∈L0

si,j . For
each i ∈ [n]\(L0 ∪ L1), Pi sets wi = 0.

(c) The resulting sharing is ⟨w⟩L = (w1, . . . , wn).

3. Output Recovery. To recover a sharing ⟨y⟩L = (y1, . . . , yn) to some party Pi, the parties invoke the sum
functionality FL,i

sum where each party Pj in L takes yj as input.

Theorem 4.1. For any n-party circuit f : FM1
in × · · · × FMn

in → FM1
out × · · · × FMn

out , Protocol 4.1 securely computes
f against a passive adversary statically corrupting any number of parties in the (Fole,FL,r

sum)-hybrid model.

The proof is deferred to Appendix I.1.

4.3 Complexity Analysis of LGMW
In this section, we analyze the cost of the LGMW protocol, which depends on the sizes of the lazy sets of the
lazy additive sharings generated in the protocol. By estimating the size of the lazy sets, we give an upper
bound for the cost of computing a multiplication gate.

Before showing our results, we first introduce the concept of multiplication-immune (MI) depth, which
is used in Corollary 1.

Definition 4.2 (Multiplication-Immune Depth). We define the multiplication-immune depth of a circuit f to be
the maximal integer λ which satisfies that there exists at least one multiplication gate in the λ-th layer of f .

For any circuit f , let M(f),D(f) and MI(f) be its multiplicative depth, depth and MI depth, respectively,
then we have M(f) ≤ MI(f) ≤ D(f).

Example 4.3. For the circuit f(x1, x2, x3, x4, x5) = (x1+x2)(x3+x4)+x5, we haveM(f) = 1,MI(f) = 2,D(f) =
3.
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Cost of LGMW. In the LGMW protocol, for each multiplication gate G, let L0 and L1 be the two lazy sets of
its input sharings, then the parties invoke the OLE functionality |L0| · |L1| − |L0 ∩ L1| times to compute G.
Therefore, if we let G⊛

λ,k be the k-th multiplication gate in the λ-th layer of the circuit and L⊛,0
λ,k ,L

⊛,1
λ,k be the

two lazy sets of the input sharings of G⊛
λ,k, then the cost of the circuit evaluation phase will be∑

λ∈[E]

∑
k∈[Cλ

mul]

(|L⊛,0
λ,k | · |L

⊛,1
λ,k | − |L⊛,0

λ,k ∩ L⊛,1
λ,k |)

calls to the OLE functionality. In the output recovery phase, for each i ∈ [n] and j ∈ [M i
out], let yi,j be the

j-th output of Pi and Lout
i,j be the corresponding lazy set. To recover yi,j to Pi, the parties need to invoke the

sum functionality FLout
i,j ,i

sum that is realized by the GMW protocol. Therefore, the communication cost of the
output recovery phase is

∑
i∈[n]

∑
j∈[Mi

out]
(|Lout

i,j |2 − τi,j) field elements where τi,j equals 1 if i ∈ Lout
i,j and 0

otherwise.
Estimating the Sizes of the Lazy Sets. For each circuit layer9 λ ∈ [E] and each k ∈ [Cλ], let Gλ,k be the
k-th gate in the λ-th layer of f and Lλ,k be the lazy set of the output sharing of Gλ,k. We have the following
claim.

Claim 4.4. For any λ ∈ [E], k ∈ [Cλ], it holds that |Lλ,k| ≤ min{2λ, n}.

The proof is deferred to Appendix J.1.
An Upper Bound for the Cost of Computing a Layer-λ Multiplication Gate. For a layer-λ multiplication
gate G with L0,L1 being the lazy sets of its input sharings, we know that the cost of computing G is
|L0| · |L1| − |L0 ∩L1| calls to the OLE functionality. We give an upper bound for |L0| · |L1| − |L0 ∩L1| using
the following Claim 4.5.

Claim 4.5. If L0,L1 are the lazy sets of the input sharings of a layer-λ multiplication gate, then it holds that

|L0| · |L1| − |L0 ∩ L1| ≤ min{4λ−1, 4λ−1 + n− 2λ, n2 − n}.

The proof is deferred to Appendix J.2.
Claim 4.5 states that the cost of computing a layer-λ multiplication gate is no more than min{4λ−1, 4λ−1+

n− 2λ, n2 − n} calls to the OLE functionality. Intuitively, a multiplication gate of small depth will require a
few calls to the OLE functionality because λ is small. We in fact have the following simple corollary.

Corollary 1. For any n-party circuit f : FM1
in ×· · ·×FMn

in → FM1
out×· · ·×FMn

out with constant MI depth, Protocol 4.1
securely computes f with O(Cmul) calls to the OLE functionality and O(Mout · n2) field elements of communication.
Moreover, if f has constant depth, then the cost will be O(Cmul) calls to the OLE functionality and O(Mout) field
elements of communication.

The proof is deferred to Appendix J.3.
Remark. Circuits with constant depth (and bounded fan-in) capture an important complexity class called
NC0 in computational complexity theory. In particular, the works of [AIK04, AIK06] showed the existence
of one-way function (OWF) and pseudorandom generator (PRG) in NC0.

4.4 Comparison to the GMW Protocol
The efficiency of LGMW depends on the topology of the computed circuit. In particular, its improvements
over GMW are more significant for computing small-depth multiplication gates (i.e., multiplication gates
of small depth) than large-depth multiplication gates. In fact, for the circuits with only a few number
of small-depth multiplication gates10, the LGMW protocol may have limited improvements over GMW.
However, for many natural and common circuits, we can show that the LGMW protocol achieves a nice

9Counting in both multiplications and additions.
10In other words, every party contributes input(s) to most multiplication gates in the circuit. For example, for the circuit

f((x1, y1), . . . , (xn, yn)) = (x1 + · · · + xn)(y1 + · · · + yn), it is easy to verify that using LGMW to compute f requires the same
number of calls to OLE functionality as using GMW.
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improvement over GMW. More concretely, we compare LGMW with GMW for the computation of the sum,
product, and inner product circuits. These circuits have important applications. For instance, in a contest,
secure sum allows the total score to be computed without disclosing the score from each referee. Moreover,
secure product allows us to determine whether a proposal has been unanimously passed without revealing
which party rejected it. For inner product, it has important applications in template matching, which is
very useful in image filtering [CG13], edge detection [JLW+22], feature extraction [CZS08], and other tasks
in digital image processing. Template matching enabling authentication involves computing circuits of
the form f =

∑
i∈[l](xi − yi)

2, where (x1, . . . , xl) is the features of authorized users, and (y1, . . . , yl) is the
features of the person being tested. When f is less than a certain threshold c, the tested person is considered
to have passed the feature matching. In some scenarios where the target feature set (x1, . . . , xl) and the
tested feature set (y1, . . . , yl) should be private, we need to compute f securely. Secure inner product allows
us to do this. Note that f =

∑
i∈[n](x

2
i + y2i − 2xiyi) =

∑
i∈[n] x

2
i +

∑
i∈[n] y

2
i − 2

∑
i∈[n] xiyi. By securely

computing the inner product z =
∑

i∈[n] xiyi to obtain an additive sharing (z0, z1) of z, the parties can locally
compute (

∑
i∈[n] x

2
i − 2z0,

∑
i∈[n] y

2
i − 2z1), which is exactly an additive sharing of f .

We defer the detailed complexity analysis to Appendix E.1 and summarize the results in Table 1. Our
results show that compared to GMW, LGMW reduces the number of calls to the OLE functionality by a
factor of O(n) for the product circuit and O(n2) for the inner product circuit.

Circuit Type GMW LGMW
Sum n2 − 1 FEs n2 − 1 FEs

Product n2 − 1 FEs
& n(n− 1)2 OLEs

n2 − 1 FEs
& n(n− 1)/2 OLEs

Inner Product (2l + 1)(n− 1) FEs
& ln(n− 1) OLEs n2 − 1 FEs & l OLEs

Table 1: The comparison of the efficiency between LGMW and GMW for computing the sum, product, and
inner product circuits. Note that we abbreviate ‘field elements’ by ‘FEs’.

So far, we have only discussed the computation of low-depth circuits. In Appendix F, we further discuss
the improvements for large-depth circuits. Moreover, in Appendix G, we show the efficiency improvements
in the real-world application of online marketplaces.
Remark. We want to note that our optimization for GMW allows us to find better tradeoffs between round
complexity and communication cost. Suppose that n parties want to securely compute some function f .
To compute f using generic MPC protocols, the parties need to represent f as a boolean or arithmetic
circuit. There may exist two circuits C1, C2 that compute f , and moreover, C1 and C2 are of different circuit
topologies (e.g., (x+ y)z and xz+ yz compute the same function). In particular, C1 has fewer multiplication
gates and a larger multiplicative depth than C2. It seems that the protocol will suffer from a large number
of rounds (using C2) or a high communication cost (using C1). However, with our techniques, since C2 has
a smaller depth, computing the multiplication gates in C2 may have a similar communication cost as in C1.
In this way, the protocol will enjoy both a small number of rounds and a low communication cost (using C2

to compute f ).

5 Extending to the Preprocessing Model: Lazy GMW with Preprocess-
ing

Assuming the parties have access to the OLE functionality, any arithmetic circuit consisting of addition and
multiplication gates can be securely computed. However, the realization of the OLE functionality relies on
expensive public-key primitives, which makes the resulting MPC protocols ineffective in practice. To handle
this, we consider the preprocessing model, where the computation is separated into two phases: an offline
phase and an online phase. The offline phase is independent of the inputs, and the online phase makes use
of the inputs. By relocating the offline phase to a much earlier stage before the parties offer their inputs, the
parties can execute a much more efficient online phase to complete the computation.
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In this section, we discuss how to extend the LGMW protocol to the preprocessing model (in Appendix
D, we review the GMW protocol in the preprocessing model). For LGMW, we consider two preprocessing
settings: circuit-independent and circuit-dependent. Circuit-independent preprocessing means that the
parties do not know the inputs and the computed circuit in the offline phase, while circuit-dependent
preprocessing allows the parties to know the topology of the computed circuit in the offline phase.

Throughout this section, we use ⟨x⟩ to represent an additive sharing of x and ⟨x⟩L to represent a lazy
additive sharing of x with lazy set L. Recall that we say that a lazy additive sharing ⟨x⟩L is uniform if for
any set U ⊆ L with |U | ≤ |L| − 1, the shares of the parties in U are independent of x.

5.1 LGMW with Circuit-Independent Preprocessing
In this section, we study LGMW in the circuit-independent preprocessing model, where the parties know
nothing about the topology of the computed circuit in the offline phase.
Preprocessing Input Sharing. Note that the input sharing phase of LGMW could be executed locally,
therefore we make no changes to this phase.
Preprocessing Circuit Evaluation. In LGMW, for a multiplication gate with input sharings ⟨x⟩L0 and ⟨y⟩L1 ,
the parties need to generate a lazy additive sharing ⟨xy⟩L where L = L0 ∪ L1. To preprocess the LGMW
multiplications in this setting, we let the parties generate a Beaver triple (⟨a⟩, ⟨b⟩, ⟨c⟩), where c = ab. In
the online phase, the parties compute the multiplication by two subphases. In the first subphase, the
parties generate (⟨a⟩L0

, ⟨b⟩L1
, ⟨c⟩L) from (⟨a⟩, ⟨b⟩, ⟨c⟩) such that ⟨a⟩L0

, ⟨b⟩L1
, ⟨c⟩L are uniform lazy additive

sharings11.

• For each ⟨η⟩L′ ∈ {⟨a⟩L0
, ⟨b⟩L1

, ⟨c⟩L}, the parties compute ⟨η⟩L′ from ⟨η⟩ = (η1, . . . , ηn) as follows.

1. Let k be the smallest index in L′. For each i ∈ [n]\L′, Pi sends its share ηi to Pk and updates its
own share to 0.

2. Pk computes η′k = ηk +
∑

i∈[n]\L′ ηi as its share in ⟨η⟩L′ .
3. For each i ∈ L′\{k}, Pi takes η′i = ηi as its share in ⟨η⟩L′ .
4. The resulting sharing is ⟨η⟩L′ = {η′i}i∈L′ .

It is easy to verify that the generated ⟨a⟩L0
, ⟨b⟩L1

, ⟨c⟩L are uniform lazy additive sharings. In the second
subphase, the parties compute a lazy additive sharing ⟨xy⟩L as follows.

1. The parties locally compute ⟨α⟩L0
= ⟨x⟩L0

− ⟨a⟩L0
and ⟨β⟩L1

= ⟨y⟩L1
− ⟨b⟩L1

.

2. The parties open α to the parties in L1 and β to the parties in L0 as follows.

(a) If L0 ∩L1 ̸= ∅, let k be the smallest index in L0 ∩L1, otherwise, let k be the smallest index in L1.
Then, for each i ∈ L0\{k}, Pi sends its shares of α to Pk. Finally, Pk recovers and sends α to each
other party in L1.

(b) If L0 ∩ L1 ̸= ∅, let k′ be the smallest index in L0 ∩ L1, otherwise, let k′ be the smallest index in
L0. Then, for each i ∈ L1\{k′}, Pi sends its shares of β to Pk′ . Finally, Pk′ recovers and sends β
to each other party in L0.

3. The parties locally compute ⟨z⟩L = αβ + α⟨b⟩L1 + β⟨a⟩L0 + ⟨c⟩L.

The correctness of the above construction is implied by the following equation:

xy = (x− a+ a)(y − b+ b) = (α+ a)(β + b) = αβ + αb+ βa+ ab.

As for the security, we note that the adversary only obtains the values α and β. Firstly, α leaks nothing if the
adversary does not corrupt all parties in L0 because a is a random value. And if the adversary corrupts all
parties in L0, then it knows the value of x before the execution of the above construction. In other words,

11In fact, for small n, we can directly prepare (⟨a⟩L0 , ⟨b⟩L1 , ⟨c⟩L) in the offline phase for all possible L0,L1. In this way, the first
subphase does not need to be performed.

12



leaking α to the adversary does not hurt the privacy of x. By a similar discussion, leaking β to the adversary
does not hurt the privacy of y.
Preprocessing Output Recovery. For the output recovery phase, to recover an output sharing ⟨x⟩L to some
party Pi, we need to securely add up the shares of the parties in L and let Pi obtain the output. Note that if
|L| = 2 and i ∈ L, we just let the other party in L send its share to Pi. Now we consider the case of |L| ≥ 3
or i /∈ L. If using GMW to add up the shares, then the communication cost will be |L|2 − τ field elements,
where τ equals 1 if i ∈ L and 0 otherwise. We consider the following way to recover the output.

1. In the offline phase, the parties prepare a batch of uniform lazy additive sharings of zero with lazy set
[n] (for small n, the parties can directly prepare uniform lazy additive sharings of zero for all possible
lazy sets).

2. In the online phase, to recover an output sharing ⟨x⟩L to Pi, the parties locally add a uniform lazy
additive sharing of zero (with the lazy set being [n] if n is large and L if n is small) to ⟨x⟩L, and then the
resulting sharing will be a uniform lazy additive sharing of the output. Then, the parties can recover
the output by letting the parties in the lazy set send their shares to Pi.

For large n, the online communication cost of the above approach is n − 1 field elements. For small n,
the online communication cost of the above approach is |L|− τ field elements, where τ equals 1 if i ∈ L and
0 otherwise.

Based on our analysis, for small n, we always use our approach to recover the output. For large n, if
|L|2 ≤ n − 1, we choose to use the GMW protocol to recover the output, and if |L|2 > n − 1, we choose to
use our approach to recover the output.

5.2 LGMW with Circuit-Dependent Preprocessing
Circuit-dependent preprocessing means that the parties are given the computed circuit in the offline phase
(but without knowing the inputs). Given the circuit, the parties can compute the lazy sets in the offline
phase, which allows us to obtain a more efficient online phase.
Preprocessing Input Sharing. We make no changes to this phase.
Preprocessing Circuit Evaluation. In LGMW, for a multiplication gate with input sharings ⟨x⟩L0 and
⟨y⟩L1

, the parties need to generate a lazy additive sharing ⟨xy⟩L where L = L0 ∪ L1. To preprocess an
LGMW multiplication in this setting, we let the parties generate a Beaver triple of form (⟨a⟩L0

, ⟨b⟩L1
, ⟨c⟩L)

where c = ab and L = L0 ∪ L1. In the online phase, the parties just perform the second subphase of the
circuit-independent preprocessing.
Preprocessing Output Recovery. In the output recovery phase, for each output sharing ⟨x⟩L belonging to
some party Pi, we let the parties prepare a uniform lazy additive sharing ⟨0⟩L in the offline phase, and in
the online phase, the parties locally add ⟨0⟩L to ⟨x⟩L. Then, the parties can recover the output by letting
the parties in L send their final shares to Pi. It is clear that the online communication cost for recovering an
output is |L| − τ field elements, where τ equals 1 if i ∈ L and 0 otherwise.

5.3 Complexity Analysis and Comparison
We give a simple analysis of the communication cost of computing multiplication gates for the GMW and
LGMW protocols (see Appendix D for the description of the GMW protocol in the preprocessing model).
Online Cost of GMW with Preprocessing. For the computation of a multiplication gate, the parties need
to open two additive sharings in the online phase. Note that the communication cost of opening an additive
sharing is 2(n − 1) field elements. Therefore, the online cost of GMW for computing a multiplication gate
is 4(n− 1) field elements.
Online Cost of LGMW with Circuit-Independent Preprocessing. For the computation of a multiplication
gate with input sharings ⟨x⟩L0

, ⟨y⟩L1
, the parties first generate (⟨a⟩L0

, ⟨b⟩L1
, ⟨c⟩L) from (⟨a⟩, ⟨b⟩, ⟨c⟩) in the

first subphase, which results in

(n− |L0|) + (n− |L1|) + (n− |L|) = 3n− (|L0|+ |L1|+ |L|)
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field elements of communication. Then, in the second subphase, the parties need to open a lazy additive
sharing with lazy set L0 to the parties in L1 and a lazy additive sharing with lazy set L1 to the parties in
L0, which results in communication 2(|L0|+ |L1| − τ) field elements, where τ equals 1 if L0 ∩L1 = ∅ and 2
otherwise. We remark that if |L0|+ |L1| > n, then it must hold that L0 ∩L1 ̸= ∅. Therefore, the total online
communication cost is

2(|L0|+ |L1| − τ) + 3n− (|L0|+ |L1|+ |L|) = 3n− 2τ + |L0 ∩ L1|

field elements. Now we show that LGMW always has a cheaper online phase than GMW. Concretely, we
have the following claim.

Claim 5.1. For any two non-empty sets L0,L1 ⊆ [n], we have

3n− 2τ + |L0 ∩ L1| ≤ 4(n− 1).

The proof is deferred to Appendix J.4.
Now, let us give an upper bound for the communication cost of computing a layer-λ gate in the circuit-

independent online phase. By Claim 4.4, we know that if L0,L1 are the lazy sets of the input sharings of a
layer-λ multiplication gate, then we have

3n− 2τ + |L0 ∩ L1| ≤ 3n− 2 +min{2λ−1, n}.

Online Cost of LGMW with Circuit-Dependent Preprocessing. For the computation of a multiplication
gate with input sharings ⟨x⟩L0

, ⟨y⟩L1
, the parties only need to perform the second subphase of LGMW in the

circuit-independent preprocessing model, which requires 2(|L0|+|L1|−τ)field elements of communication,
where τ equals 1 if L0 ∩ L1 = ∅ and 2 otherwise. It is obvious that the online cost of circuit-dependent
preprocessing is no more than that of circuit-independent preprocessing. By Claim 4.4, if L0,L1 are the
lazy sets of the input sharings of a layer-λ multiplication gate, then we have

2(|L0|+ |L1| − τ) ≤ min{2λ+1, 4n} − 2.

Comparison for Specific Circuits. We give a comparison of the online communication cost between GMW
and LGMW in the preprocessing model for computing the sum, product, and inner product circuits. We
defer the detailed analysis to Appendix E.2, and the results are summarized in Table 2. Our results show that
with circuit-dependent preprocessing, we can reduce the online communication by a factor of O(n/ log2 n)
for computing the product circuit and O(n) (assume l = O(n)) for computing the inner product circuit.

Circuit Type GMW (CI) LGMW (CI) LGMW (CD)
Sum n− 1 n− 1 n− 1

Product (n− 1)(4n− 3) (n− 1)(3n− 1) n(2 log2 n− 1) + 1

Inner Product (4l + 1)(n− 1) (3l + 1)n− 2l − 1 2l + n− 1

Table 2: The online communication costs (in the number of field elements) of GMW and LGMW in the
circuit-independent preprocessing model and LGMW in the circuit-dependent preprocessing model for
computing the sum, product, and inner product circuits. Note that ‘CI’ means ‘circuit-independent’ and
‘CD’ means ‘circuit-dependent’.

6 Lazy AFLNO: AFLNO with Lazy Replicated Sharing
We have described how to use lazy sharing to improve the GMW protocol. GMW is based on additive
secret sharing. In this section, we consider MPC protocols based on replicated secret sharing. In particular,
we consider the AFLNO protocol [AFL+16] (the formal description of AFLNO can be found in Appendix
C.2), which is an effective three-party computation protocol and is secure against any semi-honest adversary
corrupting up to one party. This protocol has a very low communication cost, and computing a multiplication

14



gate or recovering an output (all parties obtain the output) only requires each party to send a single field
element (addition gates can be computed locally). However, in AFLNO, sharing an input requires the owner
to send four field elements, which seems not optimal.

In this section, we introduce lazy AFLNO (LAFLNO), which is based on lazy replicated sharing. LAFLNO
improves AFLNO in two aspects: the inputs could be shared with less communication; some specific
multiplication gates could be computed with less communication. We assume that the parties in the
protocol are P1, P2, P3.

6.1 More Efficient Input Sharing
In AFLNO, to share an input x (assume that P1 is the owner), P1 samples two random values x1, x2

and computes x3 = x − x1 − x2. Then it sends (x1, x3) to P2 and (x2, x1) to P3. The sharing of x is
(x3, x2), (x1, x3), (x2, x1). It is clear that a single party cannot recover x, and the communication cost of
sharing an input is four field elements. We show how to improve this in two cases: the input is held by a
single party, and the input is held by two different parties.
The Input is Held by A Single Party. In AFLNO, a sharing of the input satisfies that any single share
is independent of the input. In LAFLNO, we throw away this requirement for the share belonging to
the input owner. If P1 wants to share its input x, then we only require that both the share of P2 and P3

are independent of x. Using the scheme described in Section 3.2, P1 samples two random values x2, x3

subject to x2 + x3 = x and sets x1 = 0. Then P1 sends x3 to P2 and x2 to P3, and the sharing of x is
(x3, x2), (x1, x3), (x2, x1) = (x3, x2), (0, x3), (x2, 0), which is a (1, 3, {1}) lazy replicated sharing. It is clear
that the communication cost of sharing an input is two field elements, which is halved compared to the
AFLNO protocol.
The Input is Held by Two Different Parties. We can further reduce the communication if the input is held
by two different parties12. In this case, we want to generate a (1, 3,L) lazy replicated sharing for the input,
where |L| = 2. Assume that the input x is held by P1 and P2, then using the scheme described in Section
3.2, we can set x1 = 0, x2 = 0, x3 = x and let (x3, x2), (x1, x3), (x2, x1) = (x, 0), (0, x), (0, 0) be the sharing.
It is obvious that this sharing is a (1, 3, {1, 2}) lazy replicated sharing of x. Moreover, it can be generated
locally, i.e., we reduce the communication to zero. Finally, we remark that if the input is known to all three
parties, then this input is in fact a public constant.

6.2 Reducing Communication for Specific Multiplication Gates
After sharing the inputs using lazy replicated sharing, the parties can execute the circuit evaluation phase
as in AFLNO to compute the circuit. However, we show that for specific multiplication gates, we can further
reduce the communication. Recall that in AFLNO, given an additive sharing of zero (which can be generated
very efficiently), computing a multiplication gate requires each party to send a single field element, i.e., the
communication cost is three field elements. We show that for a multiplication gate, if one input of this gate
is held by two different parties, then we can reduce the communication cost to two field elements.

Assume that the parties want to compute a multiplication gate with inputs x, y. In particular, we
assume that x is held by two parties (say, P1, P2). In this setting, the sharing of x is (x, 0), (0, x), (0, 0). Let
(y3, y2), (y1, y3), (y2, y1) be the sharing of y. We assume that P1, P2 have two common random values s, r
(which are not known to P3), then the parties can compute a sharing of xy as follows.

1. P1 computes z3 = s and z2 = xy2 + xy3 + r, and sends z2 to P3.

2. P2 computes z1 = xy1 − r − s and z3 = s, and sends z1 to P3.

3. The final sharing is (z3, z2), (z1, z3), (z2, z1).

The correctness follows from that z1 + z2 + z3 = xy. Moreover, given that s, r are two random values, we
know that z1, z2 are also two random values. Therefore, P3 knows nothing about xy from z1, z2. Finally, we
remark that we only require two field elements of communication.

12The situation of multiple parties (but not all parties) holding the same input has been considered in the context of private
information retrieval [CGKS95, CKGS98], where multiple non-colluding servers take the same database as input.
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6.3 AFLNO with Lazy Replicated Sharing: LAFLNO
In this section, we present the full description of LAFLNO. Similar to AFLNO, our protocol also assumes
that the parties can access the functionality Fzero which generates additive zero-sharings (see Appendix C.2
for the definition of Fzero). Moreover, we define the functionality F i,j

coin which generates common random
values for the two parties Pi, Pj . We defer the formal definition of F i,j

coin to Appendix A.
We remark that F i,j

coin can be realized without any interaction beyond a short initial setup. Let Prf :
{0, 1}κ × {0, 1}κ → F be a pseudorandom function (PRF). In the setup phase, each pair of parties Pi, Pj

agree on a random key ki,j . For each id ∈ {0, 1}κ, Pi and Pj can locally agree on a pseudorandom value rid
by computing rid = Prf(ki,j , id).

Now we can describe the LAFLNO protocol in the (F i,j
coin,Fzero)-hybrid model.

Protocol 6.1 (The LAFLNO Protocol). The parties in the protocol are P1, P2, P3, and they offer the inputs of a public
circuit f .

1. Input Sharing. For each input x, its sharing is generated as follows.

• If x is held by a single party (say, P1), then P1 samples two random values x2, x3 subject to x2 + x3 = x.
Next, P1 sends x3 to P2 and x2 to P3. The sharing of x is (x3, x2), (0, x3), (x2, 0).

• If x is held by two different parties (say, P1, P2), then the parties locally compute the sharing as
(x, 0), (0, x), (0, 0).

2. Circuit Evaluation. The parties compute the circuit in a gate-by-gate manner. For each gate G with input shar-
ings (x3, x2), (x1, x3), (x2, x1) (the corresponding value is x) and (y3, y2), (y1, y3), (y2, y1) (the corresponding
value is y). If G is an addition gate, then the parties just locally compute (x3 + y3, x2 + y2), (x1 + y1, x3 +
y3), (x2+y2, x1+y1), which is a sharing of x+y. If G is a multiplication gate, then the parties do the following
steps.

• If x or y is an input held by two different parties (e.g., x is held by P1, P2, and the sharing of x is
(x, 0), (0, x), (0, 0)), then the parties compute the gate as follows.
(a) P1 and P2 ask for two common random values s, r from the functionality F1,2

coin.
(b) P1 computes z3 = s and z2 = xy2 + xy3 + r, and sends z2 to P3.
(c) P2 computes z1 = xy1 − r − s and z3 = s, and sends z1 to P3.
(d) The final sharing is (z3, z2), (z1, z3), (z2, z1).

• Otherwise, the parties compute the gate as follows.
(a) The parties ask for an additive sharing (r1, r2, r3) of zero from the functionality Fzero.
(b) Each party Pi computes zi−1 = xi−1yi−1 + xi−1yi+1 + xi+1yi−1 + ri and sends zi−1 to Pi+1. Note

that (z1, z2, z3) is an additive sharing of xy.
(c) The final sharing is (z3, z2), (z1, z3), (z2, z1).

3. Output Recovery. For a sharing (z3, z2), (z1, z3), (z2, z1), to recover it, each Pi sends zi+1 to Pi+1, and then
each Pi computes z = z1 + z2 + z3.

Theorem 6.1. In the (F i,j
coin,Fzero)-hybrid model, Protocol 6.1 securely computes the circuit f against any static,

passive adversary corrupting up to one party.

The proof is deferred to Appendix I.2.

6.4 Comparison to AFLNO
We give a comparison of the communication cost between AFLNO and LAFLNO for computing the following
sum, product, inner product, and chain circuits (with P1 obtaining the output).

• The sum circuit is x1 + x2 + x3 with each Pi holding xi.

• The product circuit is x1x2x3 with each Pi holding xi.
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• The inner product circuit is
∑

i∈[l] xiyi. For each i ∈ [l], xi and yi are privately held by two different
parties (otherwise, this party just takes xiyi as input).

• The chain circuit is ((y0 + x1)y1 + x2)y2, where for i < 3, each party Pi has a private input xi, and P3

has 3 private inputs y0, y1, y2.

For the sum circuit, there are 3 inputs and no multiplications, hence the communication cost of AFLNO
is 4 · 3 + 1 = 13 elements, and the communication cost of LAFLNO is 2 · 3 + 1 = 7 elements. For the
product circuit, there are 3 inputs and 2 multiplications, hence the communication cost of AFLNO is
4 · 3 + 3 · 2 + 1 = 19 elements, and the communication cost of LAFLNO is 2 · 3 + 3 · 2 + 1 = 13 elements. For
the inner product circuit, there are 2l inputs and l multiplications, hence the communication cost of AFLNO
is 4 · 2l + 3 · l + 1 = 11l + 1 elements and the communication cost of LAFLNO is 2 · 2l + 3 · l + 1 = 7l + 1
elements. For the chain circuit, there are 5 inputs and 2 multiplications, hence the communication cost of
AFLNO is 4 · 5 + 3 · 2 + 1 = 27 elements, and the communication cost of LAFLNO is 2 · 5 + 3 · 2 + 1 = 17
elements.

The results are summarized in Table 3.

Circuit Type AFLNO LAFLNO
Sum 13 7

Product 19 13

Inner Product 11l + 1 7l + 1

Chain 27 17

Table 3: The communication costs (in the number of elements) of AFLNO and LAFLNO for computing the
sum, product, and inner product circuits.

6.5 Extending to Any Number of Parties
Our results can be generalized to MPC based on replicated secret sharing with n parties. Concretely, to
share an input x that is held by some set L of parties, instead of generating a (t, n) replicated sharing, we
let the parties compute a (t, n,L) lazy replicated sharing. As we discussed in Section 3.2, the dealer needs
to send

(
n−l
t

)
elements to each party in L and

(
n−l−1

t

)
elements to each party in [n]\L. Note that all parties

in L know x, hence one of them can serve as the dealer, and the total communication cost is

(l − 1) ·
(
n−l
t

)
+ (n− l) ·

(
n−l−1

t

)
= (n− t− 1) ·

(
n−l
t

)
elements. We can further reduce the communication based on that all parties in L know x. In the lazy
sharing scheme in Section 3.2, the dealer samples

(
n−l
t

)
random values with their sum being x and then

sends all the
(
n−l
t

)
values to each party in L. However, due to that all the parties in L know x, the dealer

only needs to send
(
n−l
t

)
− 1 values to each of them, and then they can infer the last value. In this way,

we reduce the communication by l − 1 field elements (one party in L serves as the dealer). As a result, the
communication cost of sharing x will be (n− t− 1) ·

(
n−l
t

)
− (l− 1) field elements. This matches our results

for t = 1, n = 3. We note that if using (t, n) replicated sharing, the communication cost of sharing an input
will be (n− 1) ·

(
n−l
t

)
field elements.

By our result, if |L| = l ≥ n − t (i.e., the input is known to at least n − t parties), then the parties can
share the input locally! In fact, if l = n− t, we have (n− t− 1) ·

(
n−l
t

)
− (l − 1) = 0, and if l > n− t, we just

choose a size-(n− t) subset of L as the new lazy set to locally generate the sharing.
Going to the Computational Setting. In Appendix H, we show that using pseudorandom secret sharing
[CDI05], we can generate replicated sharing and lazy replicated sharing more efficiently (with computational
security). To generate replicated sharings for a batch of inputs that are known to l parties, the parties need
to generate

(
n
t

)
− 1 PRF keys in the setup phase, and the amortized communication cost of sharing an input

is n− t− l field elements if l < n− t and 0 otherwise. On the other hand, to generate lazy replicated sharings
for a batch of inputs that are known to l parties for l < n− t, the number of the PRF keys generated in the
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setup phase is reduced to
(
n−l
t

)
− 1 and the amortized communication cost remains n− t− l field elements.

Recall that if l ≥ n− t, lazy replicated sharing could be generated locally without any setup.
Summary. We summarize the results in Table 4. Our results show that compared to replicated secret
sharing, lazy replicated sharing could be generated with reduced communication cost (by a factor of at least
(n− 1)/(n− t− 1)) in the statistical setting or reduced number of PRF keys (by a factor of at least n/(n− t))
in the computational setting.

Key Number Security Level Amortized Communication

l < n− t

Replicated Sharing 0 Statistical (n− 1) ·
(
n−1
t

)
Lazy Replicated Sharing 0 Statistical (n− t− 1) ·

(
n−l
t

)
− (l − 1)

Replicated Sharing
(
n
t

)
− 1 Computational n− t− l

Lazy Replicated Sharing
(
n−l
t

)
− 1 Computational n− t− l

l ≥ n− t

Replicated Sharing 0 Statistical (n− 1) ·
(
n−1
t

)
Lazy Replicated Sharing 0 Statistical 0

Replicated Sharing
(
n
t

)
− 1 Computational 0

Table 4: The comparison for generating replicated sharing and lazy replicated sharing, where the input is
known to l parties. ‘Key Number’ represents the required number of PRF keys, and ‘Amortized Communi-
cation’ represents the required number of field elements for sharing an input.

7 Extending to the Malicious Setting
We have shown how to improve two passively secure MPC protocols using lazy sharing. We also extend
our techniques to the malicious setting, where the parties may not follow the protocol specification. We will
focus on the SPDZ protocol [BDOZ11, DPSZ12] and show to apply lazy sharing to it.

At a high level, the general idea of applying lazy sharing to the malicious scenarios is to consider
malicious variants of secret sharing. In the SPDZ protocol, each (additive) sharing is authenticated using
message authentication code (MAC). To apply lazy sharing to SPDZ, we instead use MAC to authenticate
lazy additive sharing. The resulting authenticated lazy additive sharing scheme is much like the original
authenticated additive sharing scheme in SPDZ, as we use the same MAC as in SPDZ. Due to the space
limits, we refer the readers to Appendix B for the formal description of the lazy variant of SPDZ called lazy
SPDZ (LSPDZ). Now, we present the efficiency comparison between SPDZ and LSPDZ for computing the
sum, product, and inner product.
Compared to SPDZ. We focus on the online costs of SPDZ and LSPDZ. We defer the detailed complexity
analysis to Appendix E.3, and the summary can be found in Table 5. Our results show that for the product
circuit, we reduce the online communication by about 1.6×, and for the inner product circuit, we can reduce
the online communication by about 1.5×.

8 Implementations
To estimate the concrete efficiency of our protocol, we ran experiments measuring the cost of our LGMW
and LAFLNO protocols and compared them with the GMW and AFLNO protocols, respectively. The
experiments were run on an Intel Core i9-12900K processor (Alder Lake architecture with a base clock
speed of 3.2 GHz and a max turbo frequency of 5.2 GHz) running Ubuntu 22.04. We simulate the network
connection using the Linux command tc, and the protocols were run in the LAN setting with 10Gbps
bandwidth and 0.05ms RTT latency.
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Circuit Type SPDZ LSPDZ
Sum (n+ 2)(n− 1) (n+ 2)(n− 1)

Product (5n− 2)(n− 1) (3n− 2)(n− 1) + n log2 n

Inner Product (6l + 2)(n− 1) (4l + 2)(n− 1)

Table 5: The online communication costs (in the number of field elements) of SPDZ and LSPDZ for computing
the sum, product, and inner product circuits.

8.1 Experimental Parameters
The input length we used for our experiments is 64 bits.
GMW and LGMW. When implementing GMW and LGMW, we consider 6, 8, 10 parties and the following
three circuits, including two small-depth circuits (product and inner product circuits) and a large-depth
circuit (chain circuit). We do not test the sum circuit since GMW and LGMW proceed the same for the sum
circuit.

• Product. Each party Pi has a private input xi, and the circuit is f =
∏

i∈[n] xi. The multiplicative depth
of this circuit is ⌈log n⌉.

• Inner Product. We consider the inner product circuit with l = n/2. Concretely, each party Pi has a
private input xi, and the circuit is f =

∑
i∈[n/2] x2i−1x2i. The multiplicative depth of this circuit is 1.

• The Chain Circuit. For i < n, each party Pi has a private input xi, and Pn has n private inputs
y0, y1, . . . , yn−1. The circuit is f = (· · · ((y0+x1)y1+x2)y2+ · · ·+xn−1)yn−1. The multiplicative depth
of this circuit is n− 1.

AFLNO and LAFLNO. Both AFLNO and LAFLNO are three-party protocols. We run the protocol for the
following four circuits.

• Sum. Each party Pi has a private input xi, and the circuit is f = x1+x2+x3. The multiplicative depth
of this circuit is 0.

• Product. Each party Pi has a private input xi, and the circuit is f = x1x2x3. The multiplicative depth
of this circuit is 2.

• Inner Product. We consider the inner product circuit with l = 3. Concretely, each party Pi has two
private inputs xi, xi+3, and the circuit is f = x1x2 + x3x4 + x5x6. The multiplicative depth of this
circuit is 1.

• The Chain Circuit. For i < 3, each party Pi has a private input xi, and P3 has 3 private inputs y0, y1, y2.
The circuit is f = ((y0 + x1)y1 + x2)y2. The multiplicative depth of this circuit is 2.

8.2 Experimental Details
The details of our protocol implementations are as follows.

• GMW and LGMW. We implement the OLE functionality using the protocol in [Gil99], which involves
black-box calls to OT. We implement the DDH-based OT proposed in [BM89], which makes use of
hash functions and secret-key encryption. For the underlying DDH group, we use the elliptic curve
in the SM2 digital signature algorithm [Adm10a]. For the hash functions and secret-key encryption,
we use the SM3 hash function [Adm10b] and AES [oSN01], respectively.

• AFLNO and LAFLNO. For the tested circuits, the AFLNO and LAFLNO protocols differ only in the
input sharing phase. When realizing the protocols, we assume the parties have generated zero sharings
required for computing the multiplication gates.
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We use the following four metrics to measure the performance of our protocol.

• Computational cost. We measure the computational cost by doing all the computation in the protocol
using a single thread. In particular, the communication is not considered. When some values need to
be sent, we just store them in memory and execute the computational tasks of each party in sequence.
This way, we can eliminate the time consumption introduced by interactions. This allows us to evaluate
the improvement of our protocols in pure computation.

• Running time. We measure the running time in the LAN setting, i.e., 10Gbps bandwidth and 0.05ms
RTT latency. Unlike computational cost, runtime takes into account the communication time of the
parties, and each party in each round can perform their computing tasks in parallel. The running time
reflects the comprehensive performance of the protocols.

• Communication cost. We measure the communication cost of the protocol by the amount of data sent
by the parties in the protocol.

• Throughput. We measure the throughput using the ratio of the number of gates in the circuit (i.e.,
the circuit size) to runtime. That is, throughput measures the number of gates a protocol can process
per (milli)second.

8.3 Performance and Analysis
We compare LGMW and GMW [GMW87], as well as LAFLNO and AFLNO [AFL+16], respectively. We
consider the number of participants n ∈ {6, 8, 10} for LGMW and GMW. The detailed comparison between
LGMW and GMW is presented in Table 6, while the detailed comparison between LAFLNO and AFLNO is
presented in Table 7.
GMW vs. LGMW. Our LGMW protocol outperforms the GMW protocol in terms of computational and
communication overhead, which is consistent with the theoretical analysis in Table 1. For example, when
there are 10 parties, the computation and communication of our LGMW improves the GMW for computing
the inner product circuit with l = 5 by roughly 90×. In addition to small-depth circuits (product and inner
product circuits), our improvements are still effective for large-depth circuits. For example, for the depth-n
chain circuit, our LGMW protocol achieves a 9− 18× improvement in computational cost.

When considering the running time of the protocol, the improvement factor of our protocol decreases
because all parties involved in the protocol will perform computations simultaneously in each round,
thus amortizing computational costs. Moreover, our (computational and communication) improvement is
asymmetric for some of the tested circuits (e.g., the chain circuit), meaning that the cost savings for each party
are different. This may further reduce the improvement factor of our protocol, as the running time depends
on the party with highest cost in each round. Nevertheless, our experiments show that LGMW still achieves
significant improvements compared to GMW, and the reason is that each party (including the party with
highest cost) performs fewer OLEs in each round, resulting in a faster runtime. For example, the running
time of our LGMW for computing the inner product circuit with 10 parties is 12.7 milliseconds, while
GMW requires 456.8 milliseconds, achieving roughly a 36× improvement. Since throughput represents the
number of gates (i.e., circuit size) that can be processed per second, the throughput improvement of our
LGMW protocol is consistent with the runtime improvement.
AFLNO vs. LAFLNO. Since our LAFLNO protocol only improves the AFLNO protocol in the input sharing
phase, while our LGMW protocol improves both the input sharing and circuit evaluation phases, our
LAFLNO protocol does not improve the AFLNO protocol as much as our LGMW protocol. Nevertheless,
our LAFLNO still achieves notable improvements compared to AFLNO. Our LAFLNO protocol achieves a
1.19−1.31× improvement in computational costs compared to the AFLNO protocol, depending on different
computed circuits. This improvement comes from the fact that our LAFLNO protocol performs simpler
computations during the input sharing phase. Note that our LAFLNO only needs to share each input into
two parts, while the AFLNO protocol needs to share each input into three parts. The running time of our
LAFLNO achieves a 1.09− 1.12× improvement over AFLNO. The reason for the shrinking in improvement
ratio is the same as the LGMW protocol. For communication costs, our LAFLNO protocol achieves a
1.46 − 1.86× improvement compared to the AFLNO protocol, which is consistent with our theoretical
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analysis in Table 3. The throughput improvement of our LAFLNO protocol is also consistent with the
runtime improvement.

Circuit n
Computation (s) Runtime (ms) Communication (MB) Throughput (gates/s)

GMW LGMW Imp GMW LGMW Imp GMW LGMW Imp GMW LGMW Imp

Product
6 3.805 0.376 10.12× 248.9 68.7 3.62× 1.465 0.147 9.97× 2.01 7.28 3.62×
8 9.940 0.683 14.55× 487.6 71.2 6.85× 3.829 0.274 13.97× 1.44 9.83 6.83×
10 20.729 1.110 18.67× 813.5 125.8 6.47× 7.911 0.440 17.98× 1.11 7.15 6.44×

Inner
Product

6 2.318 0.073 31.75× 151.6 11.6 13.07× 0.879 0.029 30.31× 3.30 43.10 13.06×
8 5.695 0.096 59.32× 279.4 12.1 23.09× 2.188 0.039 56.10× 2.51 57.85 23.05×
10 11.407 0.125 91.26× 456.8 12.7 35.97× 4.395 0.050 87.90× 1.97 70.87 35.97×

Chain
6 4.425 0.490 9.03× 276.3 96.7 2.86× 1.465 0.147 9.97× 3.62 10.34 2.86×
8 11.614 0.846 13.73× 556.8 165.9 3.36× 3.829 0.274 13.97× 2.51 8.44 3.36×
10 24.315 1.357 17.92× 953.6 245.6 3.88× 7.912 0.440 17.98× 1.89 7.33 3.88×

Table 6: Comparision of GMW and LGMW for computing the product, inner product, and chain circuits.
“Imp” is an abbreviation for “improvement”. The throughput is computed as the number of gates processed
by the protocol per second.

Circuit
Computation (ms) Runtime (ms) Communication (byte) Throughput (gates/ms)

AFLNO LAFLNO Imp AFLNO LAFLNO Imp AFLNO LAFLNO Imp AFLNO LAFLNO Imp
Sum 0.569 0.434 1.31× 0.174 0.156 1.12× 104 56 1.86× 11.49 12.82 1.12×

Product 0.752 0.633 1.19× 0.276 0.253 1.09× 152 104 1.46× 7.25 7.91 1.09×
Inner

Product
1.567 1.256 1.25× 0.345 0.313 1.10× 272 176 1.55× 14.49 15.97 1.10×

Chain 1.418 1.104 1.28× 0.385 0.344 1.12× 216 136 1.59× 10.39 11.63 1.12×

Table 7: Comparision of AFLNO and LAFLNO for computing the sum, product, inner product, and chain
circuits. “Imp” is an abbreviation for “improvement”. The throughput is computed as the number of gates
processed by the protocol per second.

9 Conclusion and Discussion
In this work, we introduce lazy sharing and show how to use it to improve MPC protocols that are based
on additive or replicated secret sharing. As a result, we can improve the efficiency of the input sharing
phase of protocols. To further analyze the efficiency gain when using lazy sharing, we consider several
state-of-the-art MPC protocols. Our results show that by using lazy sharing, we may also improve the
efficiency of the circuit evaluation phase of the protocols. An interesting point is that it seems difficult to
use lazy sharing to improve MPC protocols that are based on Shamir secret sharing, as we discussed below.
Discussions on Shamir Secret Sharing. If we want to apply the idea of lazy sharing to Shamir secret
sharing, then we can define lazy Shamir sharing which throws away the privacy requirement for the share
of the input owner (say, P1). One way to generate a lazy Shamir sharing is that P1 generates a (t, n − 1)
(instead of (t, n)) Shamir sharing for the parties P2, . . . , Pn and then all the parties locally generate their
shares. More previsely, P1 generates a random degree-t polynomial f(x) subject to f(0) equals the shared
input x. Then P1 sends f(i) to Pi for each i = 2, . . . , n. It is obvious that (f(2), . . . , f(n)) is a (t, n − 1)
Shamir sharing. To locally generate a (t, n) lazy Shamir sharing, we let P1 takes f(a) as it share for some
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a ̸∈ {2, . . . , n}, and the final sharing is (f(a), f(2), . . . , f(n)). In particular, we do not require privacy for
P1, implying that P1 can take f(0) = x as its share. It is obvious that (f(0), f(2), . . . , f(n)) is not a Shamir
sharing (as P1 itself can recover the input), but it is a lazy Shamir sharing.

An important point to consider is that even with the use of lazy Shamir sharing, we are unable to reduce
communication overhead, as the input owner is still required to transmit an element to every other party.
In other words, despite the relaxed privacy property that lazy Shamir sharing offers, we have not been
successful in devising a more efficient method for generating it.
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A Some Important Functionalities
Functionality A.1 (Fole). The functionality Fole receives two values a, b from a party called the sender and a value
x from another party called the receiver. The functionality returns the value ax+ b to the receiver.

Functionality A.2 (FL,r
sum ). For each i ∈ L, Pi sends its input xi to the functionality. The functionality returns the

value x =
∑

i∈L xi to Pr.

Functionality A.3 (F i,j
coin). The functionality F i,j

coin samples a random value r ∈ F and sends r to Pi, Pj .

Functionality A.4 (Fprep). Let f be the circuit to be computed. Let C be the set of corrupted parties and H = [n]\C.
On input (Start, f) from the honest parties and adversary, the functionality performs the following steps.

• Initialization. Receive a share ∆j from the adversary for each j ∈ C and sample a random ∆j for each j ∈ H.
Set ∆ =

∑
j∈[n] ∆j .

• Input. For each input gate with Pi being the input owner.

1. If Pi is honest, choose a random value r. Otherwise, receive the value r from the adversary. Send r to Pi.
2. Set mr = r∆. Wait for a value mj

r for each j ∈ C from the adversary and sample |H| random values
{mj

r}j∈H subject to mr =
∑

j∈[n] m
j
r. Return mj

r to Pj for each j ∈ [n].

• Triple. For each multiplication gate with L0,L1 being the lazy sets of its two input sharings.

1. For each i ∈ L0 ∩H, sample a random value ai and sends ai to Pi. For each i ∈ L1 ∩H, sample a random
value bi and sends bi to Pi.

2. Wait for {aj}j∈L0∩C , {bj}j∈L1∩C and {cj}j∈L∩C from the adversary.
3. Compute a =

∑
j∈L0

aj , b =
∑

j∈L1
bj and c = ab. Sample random values {cj}j∈L∩H subject to

c =
∑

j∈L cj . For each i ∈ L ∩H, sends ci to Pi.

4. Set ma = a∆,mb = b∆,mc = c∆. Wait for three values mj
a,m

j
b,m

j
c for each j ∈ C from the adversary

and sample 3|H| random values {mj
a,m

j
b,m

j
c}j∈H subject to ma =

∑
j∈[n] m

j
a,mb =

∑
j∈[n] m

j
b and

mc =
∑

j∈[n] m
j
c. Return (mj

a,m
j
b,m

j
c) to Pj for each j ∈ [n].

• Zero. For each output sharing with lazy set L, wait for a value rj for each j ∈ L ∩ C from the adversary and
sample |L ∩ H| random values {rj}j∈L∩H subject to 0 =

∑
j∈[n] rj . Return rj to Pj for each j ∈ L.

Functionality A.5 (Fmpc). Let f be the computed circuit.

• Initialization. The functionality receives input (Start, f) from all parties.

• Input. On input (Input, Pi, vid, x) from party Pi and input (Input, Pi) from the other parties, where vid is a
fresh identifier, the functionality stores (vid, x).

• Addition. On input (Add, vid0, vid1, vid) from all parties, the functionality retrieves (if vid0, vid1 are present
in memory and vid is not) the values (vid0, x), (vid1, y) and stores (vid, x+ y).

• Multiplication. On input (Multiply, vid0, vid1, vid) from all parties, the functionality retrieves (if vid0, vid1
are present in memory and vid is not) the values (vid0, x), (vid1, y) and stores (vid, xy).

• Output. On input (Output, vid) from all honest parties, the functionality retrieves (vid, z) and sends z to the
adversary. The functionality waits for a message Abort or Success from the adversary: if receiving Abort then
it aborts, otherwise, it sends z to all parties.
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B Lazy SPDZ: SPDZ with Authenticated Lazy Additive Sharing
In this section, we extend our techniques to the malicious setting, where the adversary can deviate from
the protocol arbitrarily. More concretely, we consider the SPDZ protocol [BDOZ11, DPSZ12], which is
a concretely efficient MPC protocol with malicious security. SPDZ with its subsequent optimizations
[KPR18, BCS19, CKR+20] has made SPDZ one of the most efficient MPC protocols for computing arithmetic
circuits. SPDZ works in the preprocessing model and its description can be found in Appendix C.3.

Now we proceed to introduce lazy SPDZ (LSPDZ), which is derived by replacing additive sharing in
SPDZ with lazy additive sharing. Note that SPDZ can be viewed as a maliciously secure version of GMW (in
the preprocessing model), and to achieve malicious security, SPDZ authenticates each sharing in GMW with
an information-theoretic MAC. Similarly, LSPDZ can be viewed as a maliciously secure version of LGMW.
Before describing the LSPDZ protocol, we first show how to authenticate lazy additive sharing in Section
B.1. The full description of LSPDZ can be found in Section B.2.

B.1 Authenticating Lazy Additive Sharing
In this section, we show how to use BDOZ-style or SPDZ-style MAC to authenticate lazy additive sharing13.
Lazy BDOZ-Style MAC. For a lazy additive sharing ⟨x⟩L0

= (x1, . . . , xn), we only authenticate the valid
shares {xj}j∈L0 . To do this, each party Pj generates a global key ∆j . Then, for each i ∈ L0 and j ∈ [n]\{i},
Pj holds a local key kxj,i, and Pi has the MAC

mx
i,j = xi∆j + kxj,i.

The share of Pj is denoted as
JxKL0,j = (Γx

j ,∆j , {kxj,i}i∈L0\{j}})

where Γx
j is equal to ∅ if j ̸∈ L0 and (xj , {mx

j,i}i∈[n]\{j}}) otherwise. Moreover, the sharing of x is denoted
as

JxKL0 = (JxKL0,1, . . . , JxKL0,n).

Like SPDZ, the parties can compute addition gates locally. Let JyKL1
be another sharing. Assume that

JyKL1 = (JyKL1,1, . . . , JyKL1,n), where

JyKL1,j = (Γy
j ,∆j , {kyj,i}i∈L1\{j}})

and Γy
j is equal to ∅ if j ̸∈ L1 and (yj , {my

j,i}i∈[n]\{j}}) otherwise. Then each party Pj can locally compute
its share of x+ y as

Jx+ yKL,j = (Γx+y
j ,∆j , {kxj,i}i∈L0\L1

,

{kxj,i + kyj,i}i∈L0∩L1
, {kyj,i}i∈L1\L0

)

where L = L0 ∪ L1 and

Γx+y
j =


(xj , {mx

j,i}i∈[n]\{j}), if j ∈ L0\L1

(xj + yj , {mx
j,i +my

j,i}i∈[n]\{j}), if j ∈ L0 ∩ L1

(yj , {my
j,i}i∈[n]\{j}). if j ∈ L1\L0

∅. if j /∈ L

It is easy to verify that Jx+ yKL = (Jx+ yKL,1, . . . , Jx+ yKL,n) is a lazy sharing of x+ y.
Lazy SPDZ-Style MAC. For a lazy additive sharing ⟨x⟩L0

, we authenticate it using the following triple.

JxKL0
= (⟨x⟩L0

, ⟨∆⟩, ⟨mx⟩)

13Similiar to SPDZ, in following descriptions, the shared value is in F, but all the keys and MACs come from an extension field E of
F with log2 |E| ≥ κ.
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where ∆ is the global key that is independent of x and mx = x∆ is the MAC of x. Note that ⟨∆⟩, ⟨mx⟩ are
additive sharings. We can compute addition gates locally. Let JyKL1 = (⟨y⟩L1 , ⟨∆⟩, ⟨my⟩) be another sharing
(set L = L0 ∪ L1). Then the parties can locally compute

Jx+ yKL = (⟨x⟩L0 + ⟨y⟩L1 , ⟨∆⟩, ⟨mx⟩+ ⟨my⟩)

where ⟨x⟩L0 + ⟨y⟩L1 is exactly the LGMW addition. It is obvious that Jx+ yKL is a lazy sharing of x+ y.
Partial Open of Lazy Sharings. The parties partially open an authenticated sharing JxKL = (⟨x⟩L, ⟨∆⟩, ⟨mx⟩)
as follows: for some i ∈ L, each party Pj in L sends its share xj to Pi, then Pi computes and sends
x̄ =

∑
j∈L xj to all other parties. Note that we require that any |L| − 1 values in {xj}j∈L are independent of

x (if this is not the case, the parties should use a uniform lazy additive sharing ⟨0⟩L to randomize ⟨x⟩L before
opening the sharing). The partial open of an authenticated sharing JxKL takes n+ |L| − 2 field elements of
communication.
MAC-Checking on Lazy Sharings. To guarantee that the corrupted parties cannot cheat, we still need to
check the MACs of the opened values. Note that the lazy BDOZ sharing can be locally converted to the lazy
SPDZ sharing using a similar approach in [LOS14], we just show how to check the lazy SPDZ sharing. In
fact, we use the same way as in SPDZ to check an opened value x̄ of a sharing JxKL = (⟨x⟩L, ⟨∆⟩, ⟨mx⟩). The
check procedure is given in Appendix C.3 (Procedure C.5).

B.2 SPDZ with Authenticated Lazy Additive Sharing: LSPDZ
Now we describe the LSPDZ protocol in the circuit-dependent model, where the parties know the topology
of the circuit in the offline phase. We use the lazy SPDZ-style MAC in our protocol, and for lazy BDOZ-style
MAC, the protocol will be similar. Moreover, we focus on the online phase and use the offline phase as a
black-box. In our protocol, the offline phase prepares the following correlated randomness.

• The MAC keys ∆1, . . . ,∆n.

• For each input, let Pi be the input owner, and the parties generate a random sharing JrK{i}.

• For each multiplication gate with L0,L1 being the lazy sets of its two input sharings (let L = L0 ∪L1),
the parties generate an authenticated triple JaKL0 , JbKL1 , JcKL with c = ab.

• For each output sharing with lazy set L, the parties generate a uniform lazy additive sharing of zero
with lazy set L (without MAC).

More formally, we assume that the parties can invoke the preprocessing functionalityFprep that is defined
in Appendix A.

In this work, we do not discuss the realization of Fprep. However, we believe that it is interesting to
study the efficient realization of Fprep for various circuits. Now we can describe the LSPDZ protocol, which
securely realizes the arithmetic MPC functionality Fmpc (its formal definition can be found in Appendix A)
in the (Fcom,Fprep)-hybrid model.

Protocol B.1 (The LSPDZ Protocol). Let f be the computed circuit.

• Initialization. The parties call the functionality Fprep with input (Start, f) to generate the required correlated
randomness.

• Input. To share an input x, a random sharing JrK{i} is used:

1. The owner Pi broadcasts σ = x− r (r is known to Pi).
2. The parties locally compute JxK{i} = JrK{i} + σ.

• Addition. To compute an addition gate with input sharings JxKL0
, JyKL1

(set L = L0 ∪L1), the parties locally
compute Jx+ yKL = JxKL0

+ JyKL1
.
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• Multiplication. To compute a multiplication gate with input sharings JxKL0 and JyKL1 (set L = L0 ∪L1), an
authenticated triple JaKL0 , JbKL1 , JcKL is used, and the parties do the followings:

1. The parties locally compute JαKL0
= JxKL0

− JaKL0
and JβKL1

= JyKL1
− JbKL1

, and then partially open
these two sharings.

2. The parties locally compute JzKL = αβ + αJbKL1
+ βJaKL0

+ JcKL.

• Output. To recover a sharing JzKL = (⟨z⟩L, ⟨∆⟩, ⟨mz⟩) to all parties, the parties do the followings:

1. Run Procedure C.5 to check the MACs on the opened values so far. If some check does not pass, output
Abort.

2. Take a uniform lazy additive sharing ⟨0⟩L of zero and compute Jz0KL = (⟨z⟩L + ⟨0⟩L, ⟨∆⟩, ⟨mz⟩).
3. Finally, partially open Jz0KL to get z̄ and run Procedure C.5 to check the MAC. If the check does not pass,

output Abort, otherwise output Success and return z̄.

B.3 Security of LSPDZ
We state the security of Protocol B.1 by proving Theorem B.1.

Theorem B.1. In the (Fcom,Fprep)-hybrid model, Protocol B.1 securely realizes the functionality Fmpc against any
static, active adversary corrupting any number of parties.

The proof is deferred to Appendix I.3.

B.4 Complexity Analysis of LSPDZ
In this section, we analyze the online cost of LSPDZ and then compare it to the online cost of SPDZ.
Online Cost of LSPDZ. In the input sharing phase, sharing an input requires the parties to send n − 1
field elements. Moreover, computing a multiplication gate with L0,L1 being the lazy sets of its two input
sharings requires the parties to partially open a sharing with lazy set L0 and a sharing with lazy set L1,
which results in 2n+ |L0|+ |L1| − 4 field elements of communication. Finally, in the output recovery phase,
the parties need to partially open the output sharing with lazy set L, which takes n+ |L| − 2 field elements
of communication. Moreover, like SPDZ, the parties also need to run check the MACs of the opened values
and the final output. However, we do not count the communication cost of checking the MACs due to the
following two reasons.

• LSPDZ mainly improves the efficiency of SPDZ in opening sharings. In fact, LSPDZ has the same
efficiency as SPDZ in checking the MACs.

• Using the batch MAC-checking technique of [DKL+13], the communication cost of checking the MACs
in the output recovery phase will be independent of the number of inputs and multiplication gates,
which makes it less significant for the total communication cost.

Remark. In the work of [BNO19], the authors improved the SPDZ online phase using circuit-dependent
preprocessing such that the parties only need to open one sharing, which takes 2(n − 1) field elements of
communication. Concretely, in their protocol, the sharing of a value x is of the form (x− a, JaK), where a is
a random value and x− a is known to all parties. Let (x− a, JaK), (y − b, JbK) be two sharings. Assume the
parties have JabK and a random sharing JrK (which can be computed in the offline phase), then the parties
can compute a sharing of xy as follows.

1. The parties locally compute

Jxy − rK = (x− a)(y − b) + (x− a)JbK + (y − b)JaK + JabK − JrK.

2. The parties partially open Jxy − rK and the sharing is (xy − r, JrK).

28



Using lazy sharing, the sharing of a value x will be (x − a, JaKL), where L is the lazy set, a is a random
value, and x−a is known to all parties. To multiply two sharings (x−a, JaKL0) and (y− b, JbKL1), the parties
do the followings (JabKL and a random sharing JrKL have been prepared in the offline phase).

1. The parties locally compute

Jxy − rKL = (x− a)(y − b) + (x− a)JbKL1
+ (y − b)JaKL0

+ JabKL − JrKL.

2. The parties partially open Jxy − rKL and the sharing is (xy − r, JrKL).

In our protocol, the parties only need to open a sharing with lazy set L, which only takes n + |L| − 2 field
elements of communication. We omit the further details because the analysis will be very similar.

C Several MPC Protocols based on Secret Sharing

C.1 The GMW Protocol
The formal description of the GMW protocol in the Fole-hybrid model is in the following, which uses some
notations that are defined in Section 4.

Protocol C.1 (The GMW Protocol [GMW87, IPS09]). Let f : FM1
in × · · · × FMn

in → FM1
out × · · · × FMn

out be the
computed circuit over F. Each party Pi has M i

in private inputs and M i
out private outputs.

1. Input Sharing. For each input x belonging to Pi, Pi samples n random values {xj}j∈[n] subject to
∑

j∈[n] xj =

x, and then Pi sends xj to Pj for each j ∈ [n]\{i}. The sharing of x is (x1, . . . , xn).

2. Circuit Evaluation. For each gate G, let ui, vi be the two shares on the input wires of G held by Pi. The parties
perform the following steps.

(a) If G is an addition gate, each party Pi computes wi = ui + vi as its final share.
(b) If G is a multiplication gate, The parties perform the following steps.

i. For each i ∈ [n] and j ∈ [n]\{i}, Pi samples a random value ri,j . Pi and Pj invoke the OLE
functionality Fole where Pi acting as the sender takes ui and −ri,j as inputs and Pj acting as the
receiver takes vj as input. Pj receives sj,i = uivj − ri,j from Fole.

ii. Each party Pi computes wi = uivi +
∑

j∈[n]\{i}(si,j + ri,j) as its final share.

3. Output Recovery. For each output sharing (y1, . . . , yn) with Pi obtaining the output, each party Pj sends its
share yj to Pi, and then Pi computes y =

∑
j∈[n] yj .

Cost of the GMW Protocol. In the input sharing phase, to share an input, the input owner sends a field
element to each other party. Note that there are total Min inputs, hence the communication cost of the
input sharing phase is Min · (n − 1) field elements. In the circuit evaluation phase, the parties can locally
compute addition gates, hence we only consider the communication cost of computing multiplication gates.
To compute a multiplication gate, the parties invoke the OLE functionality n(n − 1) times. Since there are
total Cmul multiplication gates, the cost of the circuit evaluation phase is Cmul · n(n − 1) calls to the OLE
functionality. Finally, in the output recovery phase, to recover an output to some party Pi, each other party
sends a field element to Pi. Note that there are total Mout outputs, and the communication cost of the output
recovery phase is Mout · (n− 1) field elements. Overall, the cost of the GMW protocol is (Min +Mout)(n− 1)
field elements of communication and Cmul · n(n− 1) calls to the OLE functionality.

C.2 The AFLNO Protocol
The AFLNO protocol [AFL+16] is an effective three-party computation protocol with semi-honest security
in the honest majority setting (i.e., at most one party can be corrupted). This protocol is based on (1, 3)
replicated secret sharing. Before describing the AFLNO protocol, we first define a functionality Fzero which
generates additive sharings of zero for the parties. We remark that Fzero could be realized without any
interaction beyond a short initial setup (see [AFL+16] for more details).
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Functionality C.2 (Fzero). The functionality Fzero samples two random values r1, r2 ∈ F and computes r3 =
−r1 − r2. Then it sends ri to Pi for each i ∈ [3].

Now we describe the AFLNO protocol14.

Protocol C.3 (The AFLNO Protocol [AFL+16]). The parties P1, P2, P3 offer the inputs.

1. Input Sharing. To share an input x, the input owner (say, P1) samples two random values x1, x2 and computes
x3 = x−x1−x2. Then it sends (x1, x3) toP2 and (x1, x2) toP3. The sharing of x is (x3, x2), (x1, x3), (x2, x1).

2. Circuit Evaluation. The parties compute the circuit gate-by-gate. Concretely, for each gate G with two input
sharings (x3, x2), (x1, x3), (x2, x1) and (y3, y2), (y1, y3), (y2, y1), the parties do the followings.

• If G is an addition gate, each party Pi locally computes (xi−1 + yi−1, xi+1 + yi+1) as its share. The
resulting sharing is (x3 + y3, x2 + y2), (x1 + y1, x3 + y3), (x2 + y2, x1 + y1).

• If G is a multiplication gate, the parties perform the following steps.
(a) The parties ask for an additive sharing (r1, r2, r3) of zero from the functionality Fzero.
(b) Each party Pi computes zi−1 = xi−1yi−1 + xi−1yi+1 + xi+1yi−1 + ri and sends zi−1 to Pi+1. Note

that (z1, z2, z3) is an additive sharing of xy.
(c) The final sharing is (z3, z2), (z1, z3), (z2, z1).

3. Output Recovery. To recover a sharing (z3, z2), (z1, z3), (z2, z1) to all parties, each Pi sends zi+1 to Pi+1 and
then each Pi computes z = z1 + z2 + z3.

Communication Cost. To share an input, the input owner needs to send four field elements. To compute
a multiplication gate, each party only sends one element (given that an additive sharing of zero has been
prepared). To recover an output, each party only sends one element.

C.3 The SPDZ Protocol
The SPDZ protocol [BDOZ11, DPSZ12] is a concretely efficient MPC protocol with malicious security. SPDZ
works in the preprocessing model and contains an offline phase and an online phase. In the offline phase,
the parties generate correlated randomness before knowing the inputs and the computed circuit, and in
the online phase, the parties use the generated correlated randomness to compute the circuit. In SPDZ, to
achieve malicious security, an authenticated additive secret sharing scheme is used, which is realized by
equipping additive secret sharing with an information-theoretic MAC. Now let us describe two types of
MACs used in SPDZ15.
BDOZ-Style MAC [BDOZ11]. For a value x, it is first additively shared between the parties, i.e., an additive
secret sharing ⟨x⟩ = (x1, . . . , xn) is generated. Then each share xi is authenticated by each other party
(such that the parties cannot modify their shares). To do this, each party Pj generates a global key ∆j to
authenticate the shares of other parties. Then, for each i ∈ [n] and each j ∈ [n]\{i}, Pj holds a local key kxj,i
and Pi has the MAC

mx
i,j = xi∆j + kxj,i.

The share of Pj is denoted as

JxKj = (xj ,∆j , {kxj,i,mx
j,i}i∈[n]\{j}}).

And the sharing of x is
JxK = (JxK1, . . . , JxKn).

Note that we can compute the addition gates locally. Let JyK = (JyK1, . . . , JyKn) be another sharing, where
for each j ∈ [n],

JyKj = (yj ,∆j , {kyj,i,m
y
j,i}i∈[n]\{j}}).

14The original AFLNO protocol uses a slightly different form of replicated secret sharing, we describe AFLNO using the form we
introduced in the preliminary section.

15In following descriptions, the shared value is in F, but all the keys and MACs come from an extension field E of F with log2 |E| ≥ κ
(If log2 |F| ≥ κ, then E = F).
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Then each party Pj can locally compute its share of x+ y:

Jx+ yKj = (xj + yj ,∆j , {kxj,i + kyj,i,m
x
j,i +my

j,i}i∈[n]\{j}}).

It is easy to verify that Jx+ yK = (Jx+ yK1, . . . , Jx+ yKn) is a sharing of x+ y.
SPDZ-Style MAC [DPSZ12]. For a value x ∈ F, the sharing of x has the following form

JxK = (⟨x⟩, ⟨∆⟩, ⟨mx⟩),

where ∆ is the global key that is independent of x and mx = x∆ is the MAC of x. Again, using the
SPDZ-Style MAC, addition gates can be computed locally. Let JyK = (⟨y⟩, ⟨∆⟩, ⟨my⟩) another shared value.
Then the parties can locally compute

Jx+ yK = (⟨x⟩+ ⟨y⟩, ⟨∆⟩, ⟨mx⟩+ ⟨my⟩).

We can verify that mx +my is the MAC of x+ y because

mx +my = x∆+ y∆ = (x+ y)∆.

Partial Open. The parties sometimes need to partially open a sharing JxK. To do this, each party sends its
share xi to P1, and then P1 computes and sends x̄ =

∑
i∈[n] xi to other parties. The communication cost is

2(n − 1) field elements. Note that the reason why we use x̄ rather than x is that the corrupted parties can
make the opened value incorrect by sending the wrong shares.
MAC-Checking. To check the correctness of the computation, we still need to check the MACs after opening
the sharings during the protocol. Due to the reason that the BDOZ-style sharing can be locally converted to
the SPDZ-style sharing (see [LOS14] for more details), we just consider checking the SPDZ-style sharings.
In the original SPDZ paper [DPSZ12], the authors check the MACs by revealing the global key ∆ and
the MACs, this however limits the use of the global key to a single evaluation. We adopt the approach
described in [DKL+13] to check the MACs without revealing the global key ∆. Checking the MACs requires
a commitment scheme, and we assume that the parties can access the following commitment functionality
(which could be realized efficiently [DN02, Lin11]).

Functionality C.4 (The Commitment Functionality Fcom). This functionality have two phases.

• Commit. Receive (Com, x, i, hx) from some party Pi, store (x, i, hx) and send (i, hx) to all parties. Note that
hx is a handle for the commitment.

• Open. Receive (Open, i, hx) from Pi and send (x, i, hx) to all parties. If instead receive (NoOpen, i, hx) from
Pi, and Pi is corrupt, then send (⊥, i, hx) to all parties.

Now we show how to check the MAC on an opened value x̄ of a sharing JxK = (⟨x⟩, ⟨∆⟩, ⟨mx⟩).

Procedure C.5 (MAC-Checking). The parties do the following steps16.

1. The parties locally compute ⟨σ⟩ = ⟨mx⟩− x̄⟨∆⟩ and each party calls Fcom to commit its share σi to other parties.

2. The parties call Fcom to open the committed values σ1, . . . , σn and check if
∑

i∈[n] σi = 0. If so, the check passes,
otherwise the computation is aborted.

It can be shown that in Procedure C.5, the probability that the check passes and x̄ ̸= x is negligible in κ
(see [DPSZ12, DKL+13]). Now we describe the SPDZ protocol, which works in the preprocessing model.

Protocol C.6 (The SPDZ Protocol [BDOZ11, DPSZ12, DKL+13]). The SPDZ protocol contains an offline phase
and an online phase. The notation J·K represents a BDOZ or SPDZ sharing.

1. Offline Phase. The parties generate two classes of correlated randomness.

16If we want to check the MACs on a large batch of values, we can use the techniques described in [DKL+13] to do this with higher
efficiency than checking the MAC on each value.
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• A random sharing JrK for each input (r is known to the input owner).
• A random authenticated triple (JaK, JbK, JcK) for each multiplication gate where c = ab.

2. Online Phase. The parties do the followings.

(a) Input Sharing. To share an input x:
i. The owner Pi broadcasts σ = x− r (recall that r is known to Pi).
ii. The parties locally compute JxK = JrK + σ.

(b) Circuit Evaluation. The parties compute the circuit gate-by-gate. We have described the computation of
addition gates. To compute a multiplication gate with inputs JxK, JyK, the parties do the followings:

i. The parties locally compute JαK = JxK − JaK and JβK = JyK − JbK and partially open these sharings.
ii. The parties locally compute JzK = αβ + αJbK + βJaK + JcK.

(c) Output Recovery. To recover an output, the parties first run Procedure C.5 to check the MACs on the
opened values so far. If some check does not pass, then the computation is aborted. Otherwise, the parties
partially open the output sharing and run Procedure C.5 on the opened value. All parties output the opened
value if the check passes and abort the computation otherwise.

In this work, we do not consider the concrete execution of the offline phase and focus on the online cost
of the SPDZ protocol.
Online Cost of SPDZ. To share an input, the input owner needs to send n − 1 field elements. To compute
a multiplication gate, the parties need to partially open two sharings, resulting in 4(n − 1) field elements
of communication. To recover an output, the parties need to partially open a sharing, which takes 2(n− 1)
field elements of communication. Note that in the output recovery phase, the parties also need to check the
MACs on all opened values. Due to that our improvements over SPDZ are mainly in opening the sharings
during the protocol execution, we do not count the communication cost of checking the MACs17, which will
also allow us to present our results more clearly.

D Reviewing GMW in the Preprocessing Model
In this section, we describe how GMW works in the preprocessing model. We use ⟨x⟩ to represent an
additive sharing of x. In the preprocessing model, the GMW protocol can achieve very high efficiency.
Firstly, the input sharing phase can be executed locally in the online phase: the parties prepare a batch of
additive sharings of zero in the offline phase; in the online phase, for each input, the parties consume one
sharing of zero, and the input owner just adds its input to its share as the final share. Moreover, the output
recovery phase remains the same as in the non-preprocessing model (each party sends its share to the party
that is supposed to obtain the output).

Now we recall how to preprocess the circuit evaluation phase. The focal point is to preprocess the
computation of a multiplication gate. To do this, the parties produce a multiplication triple (a.k.a. Beaver
triple [Bea91a]) consisting of three additive sharings ⟨a⟩, ⟨b⟩ and ⟨c⟩ where a, b are uniformly random in F
and unknown to the adversary, and c = ab. In the offline phase, the parties generate one such tuple for
every multiplication gate in the circuit. With such one tuple, the parties can compute a multiplication gate
G(x, y) = xy with input sharings ⟨x⟩, ⟨y⟩ as follows.

1. The parties locally compute ⟨α⟩ = ⟨x⟩ − ⟨a⟩ and ⟨β⟩ = ⟨y⟩ − ⟨b⟩.

2. The parties open the sharings ⟨α⟩ and ⟨β⟩ such that all parties know the values of α and β. Concretely,
for each i ∈ [n − 1], Pi sends its shares of α and β to Pn, and Pn recovers and sends α and β to other
parties.

3. The parties locally compute ⟨z⟩ = αβ + α⟨b⟩+ β⟨a⟩+ ⟨c⟩.

17In fact, our protocol will use the same approach to check the MACs as in SPDZ.
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It is easy to verify that ⟨z⟩ is an additive sharing of xy. In particular, the above construction achieves
information-theoretic security and has high efficiency because it only makes use of simple arithmetic
operations over F.

Assume that the computed circuit has Min inputs, Mout outputs (each party Pi obtains M i
out outputs),

and Cmul multiplication gates, then the online communication cost of GMW in the preprocessing model is
(4Cmul +Mout)(n− 1) field elements.

E Complexity Analysis for Specific Circuits
In this section, we analyze the efficiency of our protocols and previous protocols for computing the sum,
product, and inner product circuits that are defined as follows.

• Sum: fsum(x1, . . . , xn) =
∑

i∈[n] xi. Each party Pi has a private input xi and the party P1 obtains the
output.

• Product: fpro(x1, . . . , xn) =
∏

i∈[n] xi. Each party Pi has a private input xi and the party P1 obtains the
output.

• Inner Product: finp(x1, . . . , xl, y1, . . . , yl) =
∑

i∈[l] xiyi. We assume that each party has input(s). For
each i ∈ [l], xi and yi are privately held by two different parties (otherwise, this party just takes xiyi as
input), and the party P1 obtains the output.

E.1 Complexity Analysis for GMW and LGMW
In this section, we analyze the costs of GMW and LGMW (without preprocessing).
Computing the Sum Circuit fsum. For the sum circuit, we have Min = n,Mout = 1 and Cmul = 0, hence
the communication cost of GMW for computing fsum is n2 − 1 field elements. On the other hand, if using
LGMW to compute fsum, then the input sharing and circuit evaluation phases can be executed locally, and
the output recovery phase requires the parties to invoke the GMW protocol to compute the sum

∑
i∈[n] xi.

Therefore, the communication cost of using LGMW to compute fsum is equal to the communication cost of
using GMW to compute fsum, i.e., n2 − 1 field elements.
Computing the Product Circuit fpro. We assume that n = 2d for some integer d. For the product circuit,
we have Min = n,Mout = 1 and Cmul = n − 1, hence the cost of the GMW protocol for computing fpro is
n(n − 1)2 calls to the OLE functionality and n2 − 1 field elements of communication. Now we clarify the
cost of using LGMW to compute fpro according to the analysis in Section 4.3. Note that there are total 2d−λ

layer-λ multiplication gates for each λ ∈ [d]. For each λ ∈ [d] and k ∈ [2d−λ], let Gλ,k be the k-th gate
in the λ-th layer of the circuit. Then it is easy to see that the lazy sets of the input sharings of Gλ,k are
L0
λ,k = {(k−1)2λ+1, . . . , (2k−1)2λ−1},L1

λ,k = {(2k−1)2λ−1+1, . . . , k2λ}. Therefore, the required number
of calls to OLE functionality for computing fpro using LGMW is∑

λ∈[E]

∑
k∈[Cλ

mul]

(|L0
λ,k| · |L1

λ,k| − |L0
λ,k ∩ L1

λ,k|) =
n(n− 1)

2
.

Moreover, note that the lazy set of the final output sharing is [n], hence the output recovery phase requires
the parties to communicaten2−1field elements (for securely computing the sum of then shares). Compared
to GMW, LGMW reduces the number of calls to the OLE functionality by a factor of 2(n− 1) for computing
the circuit fpro(x1, . . . , xn) =

∏
i∈[n] xi.

Computing the Inner Product Circuit finp. For the inner product circuit, we have Min = 2l,Mout = 1
and Cmul = l, hence the cost of the GMW protocol for computing this circuit is ln(n − 1) calls to the OLE
functionality and (2l+1)(n− 1) field elements of communication. Now we clarify the cost of using LGMW
to compute finp. Note that there are total l layer-1 multiplication gates, and for each multiplication gate, the
lazy sets L0,L1 of its input sharings satisfy that |L0| = |L1| = 1 and L0 ∩ L1 = ∅. Therefore, the number
of calls to OLE functionality for computing finp is l. Moreover, the lazy set of the final output sharing is [n]
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(each party has at least one input), hence the output recovery phase requires the parties to communicate
n2 − 1 field elements. Compared to GMW, the LGMW protocol reduces the number of calls to the OLE
functionality by a factor of n(n− 1) for computing the inner product.

E.2 Complexity Analysis for GMW and LGMW in the Preprocessing Model
In this section, we analyze the costs of GMW and LGMW in the preprocessing model.
Computing the Sum Circuit fsum. In both the GMW and LGMW protocols in the preprocessing model,
the online phase only requires each party to interact to recover an additive sharing. Therefore, the online
communication costs of both GMW and LGMW are n− 1 field elements.
Computing the Product Circuit fpro. Assume that n = 2d for some integer d. If using GMW to compute the
product circuit, the online communication cost will be (n − 1) · 4(n − 1) + (n − 1) = (n − 1)(4n − 3) field
elements. Now we consider using LGMW to compute the product circuit. For each λ ∈ [d] and k ∈ [2d−λ],
let Gλ,k be the k-th gate in the λ-th layer of the circuit. The lazy sets of the input sharings of Gλ,k are
L0
λ,k = {(k − 1)2λ + 1, . . . , (2k − 1)2λ−1},L1

λ,k = {(2k − 1)2λ−1 + 1, . . . , k2λ}. If using circuit-independent
preprocessing, then the online communication cost will be

n− 1 +
∑
λ∈[d]

∑
k∈[2d−λ]

(3n− 2) = (n− 1)(3n− 1)

field elements. If using circuit-dependent preprocessing, then the online communication cost will be

n− 1 +
∑
λ∈[d]

∑
k∈[2d−λ]

2(|L0
λ,k|+ |L1

λ,k| − 1)

=n− 1 +
∑
λ∈[d]

∑
k∈[2d−λ]

2(2λ−1 + 2λ−1 − 1) = n(2 log2 n− 1) + 1

field elements.
Computing the Inner Product Circuit finp. Note that finp has l layer-1 multiplication gates. If using GMW
to compute this circuit, the online communication cost will be l · 4(n − 1) + (n − 1) = (4l + 1)(n − 1) field
elements. Now we consider using LGMW to compute the inner product circuit. For each i ∈ [l], let Gi be
the i-th multiplication gate and L0

i ,L1
i be the lazy sets of its input sharings. We always have |L0

i | = |L1
i | = 1

and L0
i ∩ L1

i = ∅. If using circuit-independent preprocessing, then the online communication cost will be

n− 1 +
∑
i∈[l]

(3n− 2) = (3l + 1)n− 2l − 1

field elements. If using circuit-dependent preprocessing, then the online communication cost will be

n− 1 +
∑
i∈[l]

2(|L0
i |+ |L1

i | − 1) = 2l + n− 1

field elements.

E.3 Complexity Analysis for SPDZ and LSPDZ
In this section, we analyze the costs of SPDZ and LSPDZ.
Computing the Sum Circuit fsum. If using SPDZ, the online phase requires the parties to share n inputs and
partially open a sharing, which results inn(n−1)+2(n−1) = (n+2)(n−1)field elements of communication.
If using LSPDZ, the online phase requires the parties to share n inputs and partially open a lazy sharing
with lazy set [n], resulting in n(n − 1) + n + n − 2 = (n + 2)(n − 1) field elements of communication. In
other words, SPDZ and LSPDZ have the same online communication cost for computing the sum circuit.
Computing the Product Circuit fpro. Assume that n = 2d for some integer d. If using SPDZ to compute the
product circuit, the online communication cost will be n(n− 1)+4(n− 1)2+2(n− 1) = (5n− 2)(n− 1) field
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elements. Now we consider using LSPDZ to compute the product circuit. For each λ ∈ [d] and k ∈ [2d−λ],
let Gλ,k be the k-th gate in the λ-th layer of the circuit. The lazy sets of the input sharings of Gλ,k are
L0
λ,k = {(k − 1)2λ + 1, . . . , (2k − 1)2λ−1},L1

λ,k = {(2k − 1)2λ−1 + 1, . . . , k2λ}. We know that the online
communication cost of LSPDZ is

n(n− 1) +
∑
λ∈[d]

∑
k∈[2d−λ]

(2n+ |L0
λ,k|+ |L1

λ,k| − 4) + (2n− 2)

=(n+ 2)(n− 1) +
∑
λ∈[d]

∑
k∈[2d−λ]

(2n+ 2λ−1 + 2λ−1 − 4)

=(3n− 2)(n− 1) + n log2 n

field elements.
Computing the Inner Product Circuit finp. Note that there are total 2l inputs and l layer-1 multiplication
gates, if using SPDZ to compute this circuit, the online communication cost will be

2l · (n− 1) + l · 4(n− 1) + 2(n− 1) = (6l + 2)(n− 1)

field elements. Now we consider using LSPDZ to compute the inner product circuit. For each i ∈ [l], letGi be
the i-th multiplication gate and L0

i ,L1
i be the lazy sets of its input sharings. We always have |L0

i | = |L1
i | = 1.

Therefore, the online communication cost is

2l · (n− 1) +
∑
i∈[l]

(2n− 2) + 2n− 2 = (4l + 2)(n− 1)

field elements.

F Improvements for Circuits with a Large Depth
Based on our analysis, we claim that our optimization is more suitable for circuits with small depth. For
this reason, we have only discussed the computation of low-depth circuits, i.e., the inner product (which is
in NC0) and product (which is in NC1) circuits. However, for many circuits with a large depth, we can still
achieve impressive improvements. When computing a multiplication gate, our improvement depends on the
size of the lazy sets of the sharings input to this gate. The smaller the lazy sets, the better our improvements.
Since, in general, the size of the lazy sets increases with the depth, we say that the improvements will be
smaller for circuits with a larger depth. Nevertheless, an observation is that in many circuits, the sizes of
lazy sets may grow slowly with the circuit depth. In this case, our techniques can achieve relatively good
savings. Next, we consider two particular circuits with a large depth.

We first consider the following chain circuit

fn =f((y0, y1 . . . , yn), x1, . . . , xn)

=g(· · · g(g(y0 + x1, y1) + x2, y2) + · · ·+ xn, yn)

for some function g. When g is a block cipher with y1 = · · · = yn being the key, then (f1, . . . , fn) in fact
outputs the ciphertext of (x1, . . . , xn) under the cipher block chaining (CBC) mode. Now we analyze our
efficiency obtained for computing the circuit fn. We assume that each xi is held by Pi and y0, y1, . . . , yn are
held by an additional party P0. Moreover, to simplify our analysis, we assume that g(x, y) simply outputs
xy.18 This way, we have f1 = (y0 + x1)y1 and fi = (fi−1 + xi)yi for i > 1. As a result, the depth of fn is
O(n) and the number of multiplication gates is n. If we run GMW among the parties P0, P1, . . . , Pn, then
the number of required OLEs is n(n+1) ·n = n2(n+1). However, since each fi depends only on the parties
P0, P1, . . . , Pi, if using our LGMW, then the number of required OLEs for computing fi is i. Hence the total
number of required OLEs is

∑
i∈[n] i = n(n+1)/2. That is, using our technique, we achieve an improvement

by a factor of 2n.

18We remark that the efficiency improvement mainly comes from the fact that each fi only depends on the parties P0, P1, . . . , Pi,
rather than the choice of g.

35



We consider another special circuit

f(x1, . . . , xn) =
∏

b1,...,bn∈{0,1},
∏

i∈[n](1−bi )̸=1

(b1x1 + · · ·+ bnxn).

We assume that each xi is held by Pi. This circuit has a very large depth O(n log n). Now we show that we
can also improve the efficiency for computing this circuit. We consider n = 4 and now the circuit is

f(x1, x2, x3, x4) =

x1x2x3x4(x1 + x2)(x1 + x3)(x1 + x4)

(x2 + x3)(x2 + x4)(x3 + x4)(x1 + x2 + x3)

(x1 + x2 + x4)(x1 + x3 + x4)(x2 + x3 + x4)(x1 + x2 + x3 + x4).

Using standard GMW, the number of required OLEs will be 4(4 − 1) · 14 = 168. Using our LGMW, the
number of required OLEs will be 1 + 2 + 3 + 6 · 6 + 9 · 4 + 12 = 90. That is, we improve the efficiency by a
factor of about 168/90 ≈ 1.86. In fact, this factor approaches 2 as n increases. To see this, note that if using
standard GMW, then the number of required OLEs will be n(n− 1)(2n − 2). Now we analyze the efficiency
when using our LGMW. If we let X = (x1, . . . , xn), B = (b1, . . . , bn), then we have

f(x1, . . . , xn)

=
∏

b1,...,bn∈{0,1},
∏

i∈[n](1−bi )̸=1

(b1x1 + · · ·+ bnxn)

=
∏
i∈[n]

(
∏

B∈{0,1}n,|B|=i

⟨B,X⟩).

Note that computing y1 =
∏

B∈{0,1}n,|B|=1⟨B,X⟩ requires 1 + 2 + · · · + (n − 1) = n(n − 1)/2 calls to OLE.
Since y1 depends on all the inputs, hence computing y1 · ⟨B,X⟩ for any B subject to |B| = i requires i(n− 1)
calls to OLE and the result still depends on all the inputs. Therefore, we can infer that the total number of
required OLEs for computing f(x1, . . . , xn) is

n(n− 1)/2 +
∑

i∈[n−1]

(i+ 1)(n− 1) ·
(

n
i+1

)
=n(n− 1)/2 +

∑
i∈[n−1]

n(n− 1) ·
(
n−1
i

)
=n(n− 1)(1/2 + 2n−1 − 1) = n(n− 1)(2n−1 − 1/2).

As a result, we reduce the number of required OLEs by a factor of

n(n− 1)(2n − 2)

n(n− 1)(2n−1 − 1/2)
= 2− 2

2n − 1
.

G Efficiency Improvements of LGMW over GMW in MPC Applications
In this section, we show the efficiency improvements of LGMW over GMW in real-world applications.
Concretely, we consider the work of [CHK+12], which studied applications of MPC in online marketplaces,
where customers choose the resources that providers advertise, and it is preferred to protect privacy as much
as possible. The work of [CHK+12] showed that the semi-honest GMW protocol can outperform previous
MPC implementations with n ≥ 3 parties. We show that using our LGMW protocol, we can further reduce
the asymptotic cost.

The formal description of the online marketplace problem can be stated as follows (the details can be
found in [CHK+12, Section 3]). Let R (with |R| = s) be some set of items. There are a customer P0 and n
providers P1, . . . , Pn where each provider Pi has a set Ri ⊆ R of items and P0 wishes to buy an item (e.g., a

36



car) from one of these n providers19. The customer P0 is interested in the items that meet some conditions
(which is described by the private input x of P0). Moreover, each provider Pi independently prices each
item in Ri. The goal is that the customer P0 wants to find an acceptable item at the lowest price and P0

learns the identity of the provider who offers this item. More concretely, the input of each provider Pi is a
collection of values for the items in Ri, i.e., Pi’s input is of the form {Vi,r}r∈Ri

(e.g., the price of r is included
in Vi,r). Let us consider the marketplaces where the computation can be broken into the following two steps.

1. For each provider Pi and each item r in Ri, compute a scoring function yi,r = Score(i, r, Vi,r, x) (with
the size of y(i, r) being L).

2. Next, apply a best-match function BestMatch to {yi,r}i∈[n],r∈Ri
and the output is given to the customer

P0.

The work of [CHK+12] considered three special cases, i.e., P2P content-distribution services, cloud
computing and mobile social network. We focus on the case of P2P content-distribution services, and
the analyses for the other two cases are similar. In the P2P content-distribution services setting, the
scoring function Score contains O(L) multiplication gates, and the best-match function BestMatch contains
O(n(L + log n)) multiplication gates (more details can be found in [CHK+12, Section 4.2])20. Using the
GMW protocol, the asymptotic costs for computing Score and BestMatch are O(n2L) and O(n3(L + log n))
calls to the OT functionality, respectively21. Note that we need to compute

∑
i∈[n] |Ri| = O(n) times of Score

and one time of BestMatch. Therefore, the total cost is

O(n) ·O(n2L) +O(n3(L+ log n)) = O(n3(L+ log n))

calls to the OT functionality. Using our LGMW protocol, we can improve the performance for computing
Score and BestMatch as follows.

1. Using our protocol, the scoring function Score can be computed by two parties (some provider Pi and
the customer P0) instead of n+1 parties because only Pi and P0 provide inputs (Pi takes Vi,r for r ∈ Ri

as input and P0 takes x as input) for each computation of Score. This allows us to reduce the number
of calls to the OT functionality from O(n2L) to O(L), achieving an O(n2) improvement.

2. The best-match function BestMatch takes m =
∑

i∈[n] |Ri| = O(n) values as inputs and outputs the
index of the input with the maximum score. Concretely, the function BestMatch can be written as

BestMatch({yi,r}i∈[n],r∈Ri
) =

⊙
i∈[n],r∈Ri

(r, yi,r)

where the ⊙ gate contains O(L+ log n) multiplication gates and outputs the input with larger score22.
An important observation is that each input yi,r comes from two parties (because it is the output
of the scoring function), i.e., each yi,r is additively shared by two parties. Using a similar method
for computing the product function, the parties need to compute m/2 layer-1 ⊙ gates, m/4 layer-2
⊙ gates, m/8 layer-3 ⊙ gates, etc. Note that a layer-λ ⊙ gate requires O(4λ(L + log n)) calls to the
OT functionality (because at most 2λ+1 parties participate in the computation of a layer-λ ⊙ gate).
Therefore, using our protocol, the cost will be∑

λ∈[logm]

(m/(2λ))O(4λ(L+ log n)) = O(n2(L+ log n))

calls to the OT functionality, which improves the performance by a factor of O(n) compared to using
the GMW protocol (which requires O(n3(L+ log n)) calls to the OT functionality).

19To better show our results, we assume that s = O(n) and
∑

i∈[n] |Ri| = O(n). This is reasonable, as in many applications, the
number of items held by each provider Pi is mainly influenced by its own wealth rather than the number of providers in the market.

20The underlying field of these multiplication gates is F2 and the parties can access the OT functionality. Note that our LGMW
protocol also works in F2 with the OLE functionality being replaced by the OT functionality.

21We ignore other costs because the main cost is in the calls to the OT functionality.
22For example, (r, yi,r)⊙ (r′, yi′,r′ ) equals (r, yi,r) if yi,r ≥ yi′,r′ and (r′, yi′,r′ ) otherwise. We refer to [CHK+12, Section 4.2]) for

more details.
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Overall, using the LGMW protocol, the total cost is

O(n) ·O(L) +O(n2(L+ log n)) = O(n2(L+ log n))

calls to the OT functionality. As a result, we can improve the performance by a factor of O(n).

H (Lazy) Replicated Sharing in the Computational Setting

H.1 Replicated Sharing in the Computational Setting
Replicated secret sharing could be generated with much lower amortized communication cost when we only
require computational security, which is achieved by using pseudorandom secret sharing [CDI05]. Recall
that to generate a (t, n) replicated sharing of a value x, the input owner first samples

(
n
t

)
random values

{XT }T⊆[n],|T |=t subject to their sum is x. Note that any
(
n
t

)
− 1 of these values are uniformly random values

that are independent of x, and each of them will be sent to n− t parties. If we let these n− t parties agree
on a key of a PRF, then they can locally agree on an unlimited number of pseudorandom values, which can
be used to share a large batch of inputs. After obtaining these

(
n
t

)
− 1 pseudorandom values, the left thing

is to compute and distribute the last value. To do this, we let the input owner know all the keys, and then
the input owner can compute and distribute the last value.

We give the detailed description for the general case that the input is held by a set L ⊆ [n] of parties. Let
Prf : {0, 1}κ × {0, 1}κ → F be a PRF. The parties first prepare keys in the following setup phase.

• Setup. The parties choose a set TL ⊆ [n] subject to |TL| = t. Then for each T ⊆ [n]with |T | = t, T ̸= TL,
the parties in L ∪ ([n]\T ) agree on a random key kT 23. Note that the total number of keys is

(
n
t

)
− 1.

Then to share an input x that is held by the parties in L (let l = |L|), the parties perform the following steps.

1. Generating
(
n
t

)
− 1 Pseudorandom Values.

(a) Let id ∈ {0, 1}κ be an identifier that has not been used.
(b) For each T ⊆ [n] with |T | = t, T ̸= TL, the parties in L∪ ([n]\T ) locally compute XT = Prf(kT , id).

2. Computing the Last Value. Every party in L computes the last value.

XTL = x−
∑

T⊆[n],|T |=t,T ̸=TL

XT .

3. Distributing the Last Value. For some j ∈ L, Pj sends XTL to the parties in [n]\(L ∪ TL).

4. Creating the Final Sharing. For each j ∈ [n], the share of Pj is xj = (XT )|T |=t,j ̸∈T .

In the above construction, the communication cost is |[n]\(L ∪ TL)| field elements. Note that the only
requirement for TL is |TL| = t. To minimize |[n]\(L ∪ TL)|, we choose TL such that L ∩ TL = ∅ or
L∪TL = [n]. It is obvious that if l < n− t, the communication cost is n− t− l field elements, and if l ≥ n− t,
the communication cost is zero.

H.2 Lazy Replicated Sharing in the Computational Setting
Now we show how to generate lazy replicated sharing more efficiently. Recall that if an input x is held by
a set L of parties (let l = |L|), then if l ≥ n − t, the parties can generate a (t, n,L) lazy replicated sharing
locally without any setup. Now we show that if l < n− t, we can use pseudorandom secret sharing [CDI05]
to further reduce the communication cost.

Recall that to generate a (t, n,L) lazy replicated sharing of a value x, the input owners first sample
(
n−l
t

)
random values subject to their sum is x. Any

(
n−l
t

)
− 1 of these values are random and could be generated

very efficiently using a PRF. Concretely, in the setup phase, let Prf : {0, 1}κ × {0, 1}κ → F be a PRF, the
parties prepare the required keys.

23Since the parties in L are the input owners, we allow them to know all the keys.
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• Setup. The parties choose a set TL ⊆ [n]\L subject to |TL| = t. Then for each T ⊆ [n]\L with
|T | = t, T ̸= TL, the parties in L ∪ ([n]\T ) agree on a random key kT . Note that the total number of
keys is

(
n−l
t

)
− 1.

To share an input that is known to the parties in L (assume that l = |L| < n − t), the parties perform the
following steps.

1. Generating
(
n−l
t

)
− 1 Pseudorandom Values.

(a) Let id ∈ {0, 1}κ be an identifier that has not been used.
(b) For each T ⊆ [n]\L with |T | = t, T ̸= TL, the parties in L ∪ ([n]\T ) locally compute XT =

Prf(kT , id).

2. Computing the Last Value. Every party in L computes the last value.

XTL = x−
∑

T⊆[n]\L,|T |=t,T ̸=TL

XT .

3. Distributing the Last Value. For some j ∈ L, Pj sends XTL to Pk for each k ∈ [n]\(L ∪ TL).

4. Creating the Final Sharing. For each T ⊆ [n] with |T | = t,L∩T ̸= ∅, all the parties locally set XT = 0.
For each j ∈ [n], the share of Pj is xj = (XT )|T |=t,j ̸∈T .

It is easy to verify that (x1, . . . , xn) is a (pseudorandom) (t, n,L) lazy replicated sharing of x. More-
over, the communication cost is |[n]\(L ∪ TL)| field elements. Note that TL ⊆ [n]\L, |TL| = t, hence the
communication cost is n− t− l field elements.

I Missing Security Proofs

I.1 Security Proof of Theorem 4.1
Proof. The correctness of Protocol 4.1 is easy to verify. Now we proceed to prove the security. Let C be the
set of corrupted parties and H = [n]\C be the set of honest parties. We need to construct a simulator that
simulates the view of the corrupted parties given a trusted party P for computing f . The simulator first
gives the inputs of the corrupted parties to the trusted party P and receives the outputs {yi,1, . . . , yi,Mi

out
}i∈C .

The simulator S simulates the protocol execution as follows.

1. Simulating the Input Sharing Phase. Note that the input sharing phase is executed locally by the
parties, so the simulator just executes the input sharing phase.

2. Simulating the Circuit Evaluation Phase. For each λ ∈ [E] and each gate G in the λ-th layer of the
circuit, the simulation proceeds as follows. Let ⟨u⟩L0

= (u1, . . . , un) and ⟨v⟩L1
= (v1, . . . , vn) be the

two input sharings. Let C0 = C ∩ L0,H0 = L0\C0, C1 = C ∩ L1 and H1 = L1\C1. The simulation
proceeds as follows.

• If G is an addition gate, then S follows the protocol execution to compute the shares of the
corrupted parties.

• If G is a multiplication gate, then the simulation proceeds as follows.
(a) For each i ∈ C0 and j ∈ H1, the simulation is straightforward because the inputs of Pi for the

OLE functionality are already defined and Pi receives no output.
(b) For each i ∈ H0 and j ∈ C1, the simulator S first samples a random value αi,j and then S

simulates Pi invoking the OLE functionality and returns αi,j to Pj .
(c) For each i ∈ C0 and j ∈ C1, S just follows the protocol execution (all inputs are known to the

simulator).
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3. Simulating the Output Recovery Phase. For each output y belonging to Pi, let ⟨y⟩L = (y1, . . . , yn) be
the sharing of y. Note that after simulating the circuit evaluation phase, the simulator has simulated
the shares of the honest parties, i.e., {yj}j∈H∩L. The simulation proceeds as follows.

• If i ∈ H, the simulation is straightforward because the inputs of honest parties for the sum
functionality FL,i

sum are already defined and the corrupted parties receive no output.
• If i ∈ C, then S knows the value y. S simulates the honest parties invoking the sum functionality
FL,i

sum and returns y to Pi.

It remains to show that no environment Z can distinguish between the simulated and the real execution.
We will prove that our simulation is perfect, which means that the view of the corrupted parties in the real
execution and that in the simulated execution are identical.

The difference between the real execution and simulated execution is in the computation of multiplication
gates and the execution of the output recovery phase. For the computation of a multiplication gate, in the
real execution, each new message received by the corrupted parties is of form uv + r where u is a share of
some honest party Pi, r is a uniformly random value sampled by Pi, and v is a share of some corrupted
party. In the simulated execution, each new message received by the corrupted parties is simulated with
a freshly sampled random value r′. It is obvious that the distributions of uv + r and r′ are identical. For
the execution of the output recovery phase, the corrupted parties obtain the same outputs in both the real
execution and simulated execution (which is guaranteed by the correctness of our protocol). Therefore, the
view of the corrupted parties in the real execution and that in the simulated execution are identical, which
implies that no environment Z can distinguish between the simulated and the real executions.

I.2 Security Proof of Theorem 6.1
Proof. The correctness of Protocol 6.1 is easy to verify. Now we proceed to prove the security. Let Pi be the
corrupted party. We need to construct a simulator that simulates the view of Pi given a trusted party P
for computing f . The simulator first gives its inputs to the trusted party P and receives the outputs. The
simulator S simulates the protocol execution as follows.

1. Simulating the Input Sharing Phase. We need to consider the following three cases.

• If Pi is the input owner, S just receives values from Pi.
• If the input is held by a single party Pj (j ̸= i), then the simulator S just simulates Pj sending a

random value to Pi.
• If the input is held by the two parties Pi−1, Pi+1, then the simulator S does nothing because there

is no interaction.

2. Simulating the Circuit Evaluation Phase. If G is an addition gate, then S follows the protocol
execution. If G is a multiplication gate, we consider three cases.

• If some input of the gate is an input held by Pi and another party Pj , then S first simulates Pj

invoking the functionality F i,j
cr two times and returns s, r to Pi. Then S follows the protocol

execution.
• If some input of the gate is an input held by Pi−1 and Pi+1, then S samples two random values
s, r. Then S simulates Pi−1 sending s to Pi and simulates Pi+1 sending r to Pi.

• If both inputs of G are not held by two parties (but may be held by a single party), then S first
simulates the honest parties invoking the functionality Fzero and returns the output r to Pi. Then
S samples a random value r′ and simulates Pi−1 sending r′ to Pi.

3. Simulating the Output Recovery Phase. Let z be the output received from P and (zi−1, zi+1) be the
simulated share of Pi, then S computes zi = z − zi−1 − zi+1 and simulates Pi−1 sending zi to Pi.
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Now we show that no environment Z can distinguish between the simulated and real executions. We
will show that the simulation is perfect, meaning that the simulated execution and the real execution are
perfectly indistinguishable.

In the input sharing phase, only when the input is held by a single partyPj for j ̸= i, Pi receives messages
from the honest parties. Note that in both the real and simulated executions, Pi receives a random value,
hence the simulation for the input sharing phase is perfect.

In the circuit evaluation phase, only when computing a multiplication gate, Pi will receive messages.
For a multiplication gate G, if some input of G is held by Pi and another party Pj , then in both the simulated
and real executions, Pi receives two random values. If some input of G is held by Pi−1 and Pi+1, then Pi

receives two random values in the simulated execution, while in the real execution, Pi receives two values
of form z1 = xy1 − r− s, z2 = xy2 + xy3 + r. Note that s, r are two random values that are not known to Pi,
hence z1, z2 are indeed two random values, which implies the simulation is perfect. The final case is that
both inputs of G are not held by more than one party. In the simulated execution, Pi receives a random
value from the functionality Fzero and a random value from Pi−1, while in the real execution, Pi receives a
random value from the functionality Fzero and a value of form z + r where z is a value known to Pi−1, and
r is a random value that is not known to Pi. It is easy to see that in both the simulated and real executions,
Pi receives two random values, therefore the simulation is perfect.

Finally, we consider the output recovery phase. For the output sharing, let (zi−1, zi+1) be the share of Pi

in the real execution and (z′i−1, z
′
i+1) be the share ofPi in the real execution. Due to that the simulation for the

input sharing and circuit evaluation phases are perfect, the distributions of (zi−1, zi+1) and (z′i−1, z
′
i+1) are

identical. In the output recovery phase, Pi receives zi = z−zi−1−zi+1 from Pi−1 in the real execution, while
in the simulated execution, Pi receives z′i = z − z′i−1 − z′i+1 from Pi−1. Since the distributions of (zi−1, zi+1)
and (z′i−1, z

′
i+1) are identical, the distributions of zi and z′i are identical. Therefore, the simulation for the

output recovery phase is perfect.

I.3 Security Proof of Theorem B.1
Proof. To prove the security, we build a simulator S such that the environment cannot distinguish between
the simulated and the real execution. S works as follows.

1. Simulating Initialization. S just emulates the Fprep because it knows the computed circuit.

2. Simulating Input. If the input owner Pi is honest, S simulates Pi with a dummy input (e.g., 0). If the
input owner is corrupted, S waits for a value σ from Pi and extracts x = σ + r (r is the masked value
for this input). Then S sends x to Fmpc as the input of Pi.

3. Simulating Addition. S simply follows the protocol execution.

4. Simulating Multiplication. Computing a multiplication gate requires the parties to partially open
two sharings. For a sharing JαKL0

, if all parties in L0 are corrupted, S simply execute the partial open
because it knows all the shares. If some party in JαKL0

is honest, then S simulates the honest parties
opening random shares.

5. Simulating Output. In the output phase, S first calls Fmpc to obtain the correct output z. Next, S
simulates the honest parties running Procedure C.5. If some check does not pass, S sends Abort to
Fmpc, otherwise, S modify the shares of the honest parties such that these shares are consistent with
the output z (S can do this because it knows the global key ∆). Then S simulates the honest parties
running Procedure C.5 with the adversary. If the check fails, S sends Abort to Fmpc, otherwise it sends
Success.

Now we show that the environment Z cannot distinguish between the simulated and the real executions.
Firstly, note that the honest parties always send uniformly random values, which is implied by two points.
Firstly, in the input phase, an honest input owner broadcasts a value σ = x − r where r is a uniformly
random value (so σ is uniformly random). Secondly, in the multiplication phase, each opened sharing
JαKL0

is uniform in the sense any |L0| − 1 shares are independent of the shared value α (the reason is that
JαKL0

= JxKL0
− JaKL0

and JaKL0
is uniform). Finally, let us consider the output phase. Note that in both the
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simulated and the real executions, the probability that Procedure C.5 outputs Abort is the same. If all checks
pass, then the environment Z sees the right output z (with the corresponding shares of the honest parties)
in the simulated execution. We only need to show that Z sees the right output z in the real execution with
overwhelming probability. As we mentioned in Section B.1, if the check passes, then the opened value z̄ is
equal to the shared value z with overwhelming probability. This implies that the environment Z sees the
same distribution in both the simulated and the real executions. The proof is completed.

J Missing Mathematical Proofs

J.1 Proof of Claim 4.4
Proof. It is obvious that |Lλ,k| ≤ n. We only need to prove that |Lλ,k| ≤ 2λ holds for any λ ∈ [E], k ∈ [Cλ].
Let L0

λ,k,L1
λ,k be the lazy sets of the two input sharings of Gλ,k. Let us prove the claim using mathematical

induction.
If λ = 1, then for each k ∈ [C1], we have |L0

1,k| = |L1
1,k| = 1 because each value inputs to G1,k is an input

from some party, which follows that |L1,k| = |L0
1,k ∪ L1

1,k| ≤ 2. Assume that |Lλ,k| ≤ 2λ holds for any λ ≤ l

and k ∈ [Cλ], then we only need to prove that for any k ∈ [Cl+1], it holds that |Ll+1,k| ≤ 2l+1. Since Gl+1,k is
a gate in the (l + 1)-th layer of f , there exists a bit b such that Lb

l+1,k is the lazy set of the output sharing of
some gate in the l-th layer of f , and L1−b

l+1,k is the lazy set of the output sharing of some gate in the l′-th layer
of f for some l′ ≤ l, which implies that both |Lb

l+1,k| and |L1−b
l+1,k| are no more than 2l. Therefore, we have

|Ll+1,k| = |Lb
l+1,k ∪ L1−b

l+1,k| ≤ |Lb
l+1,k|+ |L1−b

l+1,k| ≤ 2l+1.

The proof is completed.

J.2 Proof of Claim 4.5
Proof. Note that |L0 ∩ L1|+ |L0 ∪ L1| = |L0|+ |L1|, hence we have

|L0| · |L1| − |L0 ∩ L1| = (|L0| − 1) · (|L1| − 1) + |L0 ∪ L1| − 1.

By Claim 4.4, both |L0| and |L1| are no more than min{2λ−1, n}, which implies that (|L0| − 1) · (|L1| − 1) ≤
min{(2λ−1 − 1)2, (n− 1)2} and |L0 ∪ L1| ≤ min{2λ, n}. Therefore, we have

|L0| · |L1| − |L0 ∩ L1|
≤min{(2λ−1 − 1)2, (n− 1)2}+min{2λ, n} − 1

=min{4λ−1, 4λ−1 + n− 2λ, n2 − n}.

This completes the proof.

J.3 Proof of Corollary 1
Proof. By Claim 4.4, if f has constant MI depth, then for each multiplication gate G in f , the lazy sets of its
input sharings have constant sizes. By Claim 4.5, we know that the communication cost of computing G
is O(1) calls to the OLE functionality. On the other hand, the communication cost of recovering an output
is O(n2) field elements. Note that there are Cmul multiplication gates and Mout outputs, the total cost is
O(Cmul) calls to the OLE functionality and O(Mout · n2) field elements of communication.

Moreover, if f has constant depth (which implies that f has constant MI depth), then by Claim 4.4, the
lazy set of the output sharing of each output gate in the circuit f has constant size, which implies recovering
an output y only requires O(1) field elements communication. Therefore, the total cost is O(Cmul) calls to
the OLE functionality and O(Mout) field elements of communication.
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J.4 Proof of Claim 5.1
Proof. If L0 ∩ L1 = ∅ (which implies that n ≥ 2 and τ = 1), then we have

3n− 2τ + |L0 ∩ L1| = 3n− 2 ≤ 4(n− 1).

And if L0 ∩ L1 ̸= ∅ (which implies that and τ = 2), then we have

3n− 2τ + |L0 ∩ L1| ≤ 3n− 4 + n = 4(n− 1).

This completes the proof.
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