
Unbalanced Private Set Union with Reduced Computation
and Communication

Cong Zhang1, Yu Chen2,3(B), Weiran Liu4, Liqiang Peng4, Meng Hao5, Anyu Wang1,6,7, and
Xiaoyun Wang1,2,3,6,7,8

1 Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China
{zhangcong,anyuwang,xiaoyunwang}@tsinghua.edu.cn,

2 School of Cyber Science and Technology, Shandong University, Qingdao, China
yuchen@sdu.edu.cn

3 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong
University, Qingdao, China

4 Alibaba Group
{weiran.lwr,plq270998}@alibaba-inc.com,

5 Singapore Management University
menghao303@gmail.com

6 Zhongguancun Laboratory, Beijing, China
7 National Financial Cryptography Research Center, Beijing, China

8 Shandong Institute of Blockchain, Jinan, China

Abstract. Private set union (PSU) is a cryptographic protocol that allows two parties to
compute the union of their sets without revealing anything else. Despite some efficient PSU
protocols that have been proposed, they mainly focus on the balanced setting, where the sets held
by the parties are of similar size. Recently, Tu et al. (CCS 2023) proposed the first unbalanced
PSU protocol which achieves sublinear communication complexity in the size of the larger set.
In this paper, we are interested in improving the efficiency of the unbalanced PSU protocol. We
find that oblivious key-value store (OKVS) data structure plays an essential role in the most
recently proposed PSU constructions and formalize unbalanced PSU as an OKVS decoding
process with sublinear communication. Our key insight lies in when OKVS satisfies sparsity
property, obtaining the necessary decoding information precisely aligns with the batch private
information retrieval (BatchPIR) problem. We give two concrete constructions of unbalanced
PSU protocols based on different OKVS encoding strategies. The first is based on oblivious PRF
(OPRF) and a newly introduced cryptographic protocol called permuted private equality test,
while the second is based on re-randomizable public key encryption. Both our two constructions
achieve sublinear communication complexity in the size of the larger set.
We implement our two unbalanced PSU protocols and compare them with the state-of-the-art
unbalanced PSU of Tu et al. Experiments show that our protocols achieve a 1.3− 5.6× speedup
in running time and 2.1 − 11.8× shrinking in communication cost, depending on set sizes and
network environments.

1 Introduction

Private set union (PSU) enables two parties to learn the union of their private sets without revealing
anything else about the individual sets. PSU serves as a key tool for multiple applications, includ-
ing aggregation of network events [BSMD10], improving blacklist accuracy [RMY20], security risk
assessments [HLS+16] and universal identifier generation [GMR+21, ZLDL23] etc. The first scalable
PSU construction was proposed by Kolesnikov et al. [KRTW19]. Over the last few years, a line of
works [GMR+21, JSZ+22, ZCL+23, CZZ+24] have greatly improved the efficiency of PSU. Recent
advancements in PSU protocols [ZCL+23, CZZ+24] have demonstrated their computational efficiency
and achieved linear communication complexity proportional to the size of the parties’ sets.

Classical PSU protocols are typically designed for balanced settings, that is, the sets held by the
parties are of similar size. However, in many scenarios, the size of one party’s input is much larger than
the other party’s. A relevant example is blacklist aggregation [KRTW19, JSZ+22, ZCL+23], where two
organizations aim to merge individual IP blacklists to mitigate vulnerabilities in their infrastructure.
This necessitates privately computing the union of the IP blacklists, as revealing IP addresses in the
intersection may leak the detection strategy of certain party. Ramanathan et al. [RMY20] showed that

the sets involved in this process are highly unbalanced, e.g., some blacklists include upwards of 500,000
IP addresses, while others contain fewer than 1,000 IP addresses. Leveraging existing PSU protocols
in such settings imposes substantial overhead because their communication complexity scales at least
linearly with the size of the larger set. This motivates the study of unbalanced PSU, where one set is
much larger than the other. The design goal is to achieve sublinear communication complexity in the
size of the larger set.

Only two existing works have considered PSU in the unbalanced setting. Jia et al. [JSZ+22] pro-
posed an unbalanced PSU protocol based on the shuffle technique. Unfortunately, their protocol fails
to achieve the standard security of PSU, which leaks the intersection size to the sender. Furthermore,
the communication complexity of their protocol still scales linearly with the size of the larger set.
Recently, Tu et al. [TCLZ23] designed the first unbalanced PSU protocol with sublinear communica-
tion in the size of the larger set from fully homomorphic encryption (FHE). However, their concrete
construction had a large constant term in asymptotic complexity due to the use of bin partition tech-
niques, incurring a significant overhead in implementations. The constant term becomes prominent
when the size of the sender’s set is relatively small, e.g., the set only contains several hundred ele-
ments. In this work, we focus on unbalanced PSU with sublinear communication complexity, aiming
to achieve concrete improvements both in communication and computational costs.

1.1 Our Contribution

This paper contributes new unbalanced PSU protocols with reduced computation and communication
costs. Our contributions can be summarized as follows.

OKVS decoding with sublinear communication complexity.We observe that nearly all existing
PSU protocols [KRTW19, GMR+21, ZCL+23, TCLZ23] explicitly or implicitly employ oblivious key-
value store (OKVS) data structure [GPR+21]. OKVS is primarily deployed in multi-query reverse
private membership test (mq-RPMT), which is the core sub-protocol of PSU [ZCL+23]. In mq-RPMT,
the receiver encodes n key-value pairs (e.g., its set elements and set indicators) using OKVS, which
are then decoded by the sender. Subsequently, the receiver tests the set membership relationship
by matching the sender’s decoding values with the set indicators. Our core observation lies in that
the recently proposed efficient OKVS schemes all satisfy sparsity [HLP+24]. The decoding process of
sparse OKVS could always be improved by using BatchPIR instead of sending the OKVS directly,
which achieves sublinear communication complexity with the OKVS size.
Two concrete unbalanced PSU constructions. Adopting different OKVS encoding strategies,
we propose two concrete constructions of unbalanced PSU protocols. Our first construction follows
the strategy of using oblivious PRF (OPRF) to generate n one-time pads for encrypting the set
indicator. To perform value matching, we propose a new protocol called permuted private equality
test (p-PEQT), which can be viewed as a generalization of permuted matrix PEQT [TCLZ23]. We
provide two constructions of p-PEQT, one based on the Decisional Diffie-Hellman (DDH) assumption,
while the other relies on the Permute+Share functionality. Our second construction employs a re-
randomizable public key encryption (ReRand-PKE) scheme to encrypt the set indicator, which allows
the receiver to match values itself. Both the two concrete protocols achieve sublinear communication
in the size of the larger set.
Evaluations.We implement our two unbalanced PSU constructions and compare them with the state-
of-the-art unbalanced PSU [TCLZ23]. Our experiments show that our protocols achieve a 1.3− 5.6×
speedup in running time and 2.1−11.8× shrinking in communication cost, depending on set sizes and
network environments. In Figure 1 we display a comparison of running time and communication cost
to the state-of-the-art unbalanced PSU [TCLZ23] for small set size m = 24, large set size n = 220 in
low bandwidth setting.

1.2 Overview of Our Techniques

We provide the high-level technical overview of our new unbalanced PSU protocols. For convenience,
we denote the parties involved in PSU as the sender S and the receiver R, and their respective input
sets as X and Y with |X| = m, |Y | = n,m≪ n.

2

101 101.1 101.2 101.3 101.4 101.5

10−0.2

100

100.2

100.4

100.6

our PSUddh
op

our PSUps
op

our PSUpk

TCLZ-pub

TCLZ-sym

Running Time (s)

C
o
m
m
u
n
ic
a
ti
o
n
(M

B
)

Fig. 1: Running time and communication of our unbalanced PSU protocols (PSUddh
op ,PSUps

op and PSUpk) vs. the
state of the art [TCLZ23] (TCLZ-pub and TCLZ-sym), for small set size m = 24, large set size n = 220 in low
bandwidth setting (1 Mbps). Both axes are in log-scale.

Communication-efficient OKVS decoding from BatchPIR.An oblivious key-value store (OKVS)
scheme [GPR+21] consists of two algorithms, namely, (Encode,Decode). The Encode algorithm takes
a set of key-value pairs {(ki, vi)}i∈[n] as input, and outputs an abstract data structure D. The Decode
algorithm takes D and a key k as input, and outputs a value v. Decode can be called on any key, but if
it is called on some ki that was used to generate D, then the output is the corresponding vi. The obliv-
iousness stands for that the data structure D reveals nothing about the key set K = {ki}i∈[n], given
that all the values vi are randomly selected. A typical choice of OKVS is polynomial, where encoding
involves interpolating all points (ki, vi). The encoding complexity of the polynomial is O(n log2 n).
Recently, several works [GPR+21, RR22, ZCL+23, BPSY23] have made great progress on improving
the efficiency and security of OKVS, achieving a linear O(n) encoding complexity.

OKVS plays a crucial role in both balanced and unbalanced PSU constructions [KRTW19, GMR+21,
ZCL+23, TCLZ23]. The key step is to have the sender S compute some decoding values of OKVS
D which hold by the receiver R. Due to the obliviousness property of OKVS, D does not leak any
information about R’s set. Therefore, a straightforward approach is to have the receiver R directly
send D to the sender S, and let the sender compute the decoding itself. All known PSU protocols
in the balanced setting [KRTW19, GMR+21, ZCL+23] follow this simple method, resulting in O(n)
communication. However, in the unbalanced setting, where n ≫ m, the O(n) communication may
significantly reduce the efficiency. Only Tu et al.’s protocol [TCLZ23] has achieved sublinear commu-
nication complexity. Roughly speaking, their protocol uses polynomials as OKVS instantiation. To
decode without directly communicating D, the sender S encrypts its elements with FHE and sends
them to the receiver R. R utilizes these ciphertexts to homomorphically evaluate the polynomial and
returns the ciphertexts to the sender. The compactness of FHE guarantees that the communication
in this process is sublinear with n.

Given the fact that polynomial is just an instantiation of OKVS (the encoding complexity is
O(n log2 n)), replacing it with the recently proposed OKVS [GPR+21, BPSY23] directly enhances
the encoding efficiency to O(n). However, things are not quite that simple. The decoding process of
these efficient OKVS schemes is different from polynomials. Therefore, developing a novel approach
to achieve decoding with sublinear communication becomes imperative.

We give our solution as follows. We consider using the OKVS scheme satisfying sparsity [HLP+24]
as our instantiation, which is satisfied by all recent proposed efficient OKVS schemes [GPR+21, RR22,
BPSY23]. In sparse OKVS, the data structure D can be divided into two parts, i.e., D = D0||D1,
where |D1| = o(|D0|). We refer to D0 as the sparse part, and D1 as the dense part. The decoding
process involves summing a constant number (e.g., 2−3) of positions within the sparse part and an ar-
bitrary number of positions within the dense parts. Directly sending the entire OKVS would introduce
significant communication costs in the unbalanced setting due to the O(n) length of the sparse part.
Our key observation is that the sender does not actually need to know all the information of sparse
part D0. Instead, it is sufficient to retrieve specific positions in D0 that correspond to the decoding
of its set items. This exactly matches the batch private information retrieval (BatchPIR) [CKGS98]
scenario. Leveraging this observation, we can achieve decoding with sublinear communication using
the non-trivial BatchPIR scheme [MR23] to retrieve the constant positions in the sparse part. For the

3

dense part D1, R can send it to S directly because its length is already O(log n). For clarity, we call
the above decoding process as communication-efficient decoding.
PSU framework. Before describing our construction, we first review the design ideas of existing PSU
protocols. We observe that all the recent PSU constructions [JSZ+22, ZCL+23, TCLZ23, CZZ+24] can
be divided into two steps. The first step is multi-query reverse private membership test (mq-RPMT)
[ZCL+23]. In mq-RPMT, S inputs its set X and has no output. R inputs its set Y and receives a

vector of indication bits b⃗ = (b1, . . . , bm), where bi = 1 if and only if xi ∈ Y . Subsequently, the parties
engage in a batch of oblivious transfer (OT) protocols. In the i-th OT instance, S inputs (xi,⊥),
where ⊥ denotes a dummy item. R inputs bi and learns xi if and only if xi /∈ Y . As a result, R learns
X \ Y and defines set union as X ∪ Y := (X \ Y) ∪ Y .

Since the bottleneck of PSU lies in mq-RPMT, existing PSU protocols primarily focus on using
different underlying cryptographic tools to design mq-RPMT. Notably, OKVS (with different instan-
tiations) plays a crucial role in almost all of these constructions. Achieving sublinear communication
in OKVS decoding will lead to more efficient PSU constructions in the unbalanced setting. Hereafter,
we show two concrete constructions of mq-RPMT utilizing different OKVS encoding strategies, both
achieving sublinear communication complexity in n.
mq-RPMT from OPRF and p-PEQT. Our first construction uses oblivious PRF (OPRF) func-
tionality to generate n one-time pads, which are employed to encrypt the set indicator in OKVS
values. Additionally, we introduce a new cryptographic protocol named permuted private equality
test (p-PEQT) to test whether the sender’s decoding results match the receiver’s set indicator. We
note that our p-PEQT can be viewed as a generalization of permuted matrix PEQT (pm-PEQT)
[TCLZ23]. The details of our construction are as follows.

We start with a special case that the sender S has only one item x in its set X, i.e., X = {x}.
A natural idea is to let the receiver R pick some random strings ri and compute the OKVS as D :=
Encode({(yi, ri)}i∈[n]). Then, as we described before, we use the communication-efficient decoding
process to render S to learn the decode result r′ := Decode(D,x) in sublinear communication. After
that, the parties test whether r′ = rj for each j ∈ [n]. If ∃t ∈ [n], s.t. r′ = rt, R knows x ∈ Y .
However, this idea encounters two key issues. Firstly, the parties need to perform n equality test,
which is inefficient. Secondly, if the receiver R knows r′ = rt, it directly implies x = yt instead of
merely the fact that x ∈ Y , thereby leaking additional information to R. To address these challenges,
we consider using the same indicator string to indicate the set membership, that is,R picks one random
string r and computes the OKVS as D := Encode({(yi, r)}i∈[n]). Then, S learns r′ := Decode(D,x)
and the parties perform a single instance of the equality test. Though this idea works, it ignores an
important security issue. The obliviousness property of OKVS mandates that all encoded values must
be randomly selected to prevent potential leakage of information about Y . To mitigate this risk, we
incorporate an OPRF protocol. Specifically, in OPRF, the sender inputs x and retrieves the PRF
value q = Fk(x), while the receiver, without any inputs, obtains a PRF key k. The PRF values could
be regarded as one-time pads used to encrypt set indicator r. Subsequently, R computes the OKVS as
D := Encode({(yi, r + Fk(yi))}i∈[n]). The parties then engage in a communication-efficient decoding
process, allowing S to learn r̄ = Decode(D,x). Finally, S computes the decryption r′ := r̄ − q and
tests whether r′ = r with R.

Expanding on the previous idea to accommodate the general case of |X| > 1, we encounter a
challenge with reusing the same OKVS. Consider the scenario where S has two items x1, x2, both
belonging to Y . If the same D is utilized for testing both x1 and x2, S will obtain identical decoding
results, i.e., r′1 = r′2 = r, potentially leaking the information that both x1 and x2 belong to the
intersection. To ensure security, one must execute the aforementioned process for each xi ∈ X using a
fresh OKVS, resulting in substantial overhead. To overcome this limitation, we propose employing the
standard hash-to-bin technique. Specifically, let S use hash functions {h1, h2, h3} to assign its items to
mc bins via cuckoo hashing [PR04], so that each bin has at most one item. R assigns each of its items
y to all of the bins h1(y), h2(y), h3(y). Then, the parties perform the above single-point test on each
bin. Though it looks great, the hash-to-bin technique introduces a new security concern. R may gain
additional information about the sender’s items, specifically whether the i-th item belongs to the i-th
bin, which narrows down the range of xi. We note that PSU can only allow R to know if xi belongs to
the entire set Y , rather than the i-th bin. To address this, we introduce a new cryptographic protocol
named permuted private equality test (p-PEQT). In this functionality, the sender inputs the vector

of decryptions r⃗′ := (r′1, . . . , r
′
mc

) and a permutation π over [mc]. The receiver inputs the vector of

4

indicators r⃗ := (r1, . . . , rmc) and receives a bit vector b⃗ = (b1, . . . , bmc), where bi = 1 if and only
if r′π(i) = rπ(i). Since R knows nothing about π, bi = 1 only infers xπ(i) ∈ Y . We propose two p-
PEQT constructions, the first is based on the DDH assumption, while the second is based on the
Permute+Share functionality [CGP20]. See Section 3 for more details.

mq-RPMT from ReRand-PKE. Our second construction leverages ReRand-PKE for encrypting
the set indicator. The idea is inspired by the PSU protocol of Zhang et al. [ZCL+23] in the balanced
setting. Notably, while the communication complexity of their protocol scales linearly with the size of
the larger set, i.e., O(n), our protocol achieves sublinear communication complexity. Therefore, our
protocol can be seen as an extension of their protocol in the unbalanced setting. The details of our
construction are as follows.

Firstly, the receiver R selects a fixed string s as the set indicator and encrypts it with ReRand-
PKE for n times, that is, it computes sj := Enc(pk, s) for j ∈ [n]. Then, R computes the OKVS D :=
Encode({(yj , sj)}j∈[n]). Following this, the sender S executes the communication-efficient decoding to
learn the decoding results, i.e., s′i := Decode(D,xi), i ∈ [m]. Now, the goal is to let R know whether
Dec(sk, s′i) = s, which signifies whether xi ∈ Y . However, S cannot send these s′i directly to R, since
R can record the relationship between the randomness used for encrypting sj and yj . For example, if
R observes s′i = st for some t ∈ [n], then it deduces xi = yt rather than merely xi ∈ Y . To address
this concern, S re-randomizes each ciphertext s′i before sending it to R, i.e., s̄i := ReRand(pk, s′i).

Subsequently, by testing Dec(sk, s̄i)
?
= s, the receiver R learns whether xi ∈ Y .

We highlight a subtle distinction between our two constructions in OKVS encoding. Specifically,
the values encoded in this construction consist of ciphertexts generated by the ReRand-PKE scheme,
e.g., comprising two elements in a group G (when instantiated by ElGamal encryption [Gam85]),
whereas the values in our first construction are bit strings. Notably, the bit string XOR operation is
significantly more efficient than the group operation. Therefore, the encoding efficiency of OKVS in
our first construction is much better than that in our second construction. To improve the encoding
efficiency, we consider computing the OKVS over Zp instead of G, where |G| = p and p is a prime. This
choice is motivated by the fact that addition over Zp is considerably more efficient than operations in
G. We employ a ”pull-down-then-lift” methodology, wherein we initially compute the OKVS over Zp

and subsequently lift it to the exponent. See Section 4 for more details about this optimization.

1.3 Related Work

In this section, we review previous PSU protocols that are relevant to our work. Most works of PSU
protocol only consider balanced settings. Among them, the construction can be divided into two
categories based on the underlying cryptographic techniques used. The first category predominantly
relies on public-key techniques [KS05, Fri07, HN10, DC17]. The second category mainly relies on
symmetric-key techniques in combination with OT [KRTW19, GMR+21, JSZ+22], which is several
orders of magnitude faster than the public-key based constructions. Recently, Zhang et al. [ZCL+23]
made a breakthrough by proposing the first PSU with linear complexity. Then, Chen et al. [CZZ+24]
proposed an improved linear PSU protocol from the DDH assumption. However, when considering the
unbalanced setting, all the aforementioned protocols require communication overhead that is at least
linearly with the size of large set, resulting in notable performance degradation. For the first time,
Jia et al. [JSZ+22] considered the PSU protocol in the unbalanced setting. However, their protocol
suffers from two primary drawbacks. Firstly, their protocol still requires communication complexity
linear in the larger set size. Secondly, their protocol did not achieve standard security and may leak
the intersection size to the sender. Tu et al. [TCLZ23] proposed the first unbalanced PSU protocol
with standard security, which also achieved sublinear communication complexity in the size of the
larger set. Their main idea is to transform the FHE-based unbalanced private set intersection (PSI)
protocol [CLR17, CHLR18, CMdG+21] to the PSU scenarios. They introduced a different polynomial
randomization method, and used a newly introduced protocol called permuted matrix private equality
test (pm-PEQT) to address potential leakage issues. However, due to the use of partition techniques,
their concrete unbalanced PSU protocol had a large constant term in asymptotic complexity.

5

2 Preliminaries

2.1 Notation

We use κ and λ to denote the computational and statistical security parameters, respectively. We use
[m,n] to denote the set {m,m+ 1, . . . , n} and [n] is shorthand for the case m = 1. For a bit string v
we let vi denote the ith bit. We use the abbreviation PPT to denote probabilistic polynomial-time.
We say that a function f is negligible in κ if it vanishes faster than the inverse of any polynomial in
κ, and write it as f(κ) = negl(κ). By a ← A, we denote that a is randomly selected from the set A,
a← A(x) denotes that a is the output of the randomized algorithm A on input x, and a := b denotes
that a is assigned by b. We denote the concatenation of string x with string y by x||y.

2.2 Security Model

We use the standard security definition for two-party computation [Gol04, Lin17] in this work. Similar
to most previous protocols for PSU, our work operates in the semi-honest model.

Let F be a functionality between a sender S with input X and a receiver R with input Y . Let Π
be a two-party protocol for computing F .
Semi-honest Security. Let viewΠ

P (X,Y) be the views of party P (P ∈ {S,R}) in the protocol, which
consists of P’s input, randomness tape, and received messages during the protocol. Let output(X,Y)
be the output of both parties in the protocol.

Definition 1. A protocol Π is said to securely compute functionality F against semi-honest P if for
every PPT adversary A that corrupting P, there exists a PPT simulator SimP such that for all inputs
X and Y ,

{viewΠ
P (X,Y), output(X,Y)} ≈c {SimP(In(P),F(X,Y)),F(X,Y)}

where In(P) denotes the input of P.

2.3 Oblivious Transfer

Oblivious transfer (OT) [Rab05] is an important cryptographic primitive used in various multiparty
computation protocols. The most commonly used variant is the 1-out-of-2 OT. It allows a sender with
two inputs (x0, x1) and a receiver with a bit b ∈ {0, 1} to engage in a protocol where the receiver learns
xb, and neither party learns any additional information. We give the formal definition of 1-out-of-2
OT functionality in Figure 2.

Parameters: Sender S, Receiver R, message length κ
Functionality:

– Wait for input b ∈ {0, 1} from the receiver R.
– Wait for input (x0, x1) from the sender S.
– Give xb to the receiver R.

Fig. 2: 1-out-of-2 Oblivious Transfer Functionality Fot

2.4 Oblivious PRF

An oblivious PRF (OPRF) [FIPR05] is a 2-party protocol in which the sender learns (or chooses) a
random PRF key k and the receiver learns the PRF output Fk(q1), . . . , Fk(qn) on its inputs q1, . . . , qn.
We describe the ideal functionality for an OPRF in Figure 3.

6

Parameters: Sender S, Receiver R, a PRF F .
Functionality:

– Wait for input {q1, . . . , qn} from the receiver R.
– Sample a random PRF key k and give it to the sender S.
– Give {Fk(q1), . . . , Fk(qn)} to the receiver R.

Fig. 3: Oblivious PRF Functionality Foprf

Parameters: Sender S, Receiver R, vector length n.
Functionality:

– Wait for input π from the receiver R.
– Wait for input x⃗ = (x1, . . . , xn) ∈ ({0, 1}l)n from the sender S.
– Pick random ai ← {0, 1}l and compute bi = ai ⊕ xπ(i) for i ∈ [n].

– Give a⃗ = (a1, . . . , an) to the sender S and give b⃗ = (b1, . . . , bn) to the receiver R.

Fig. 4: Permute + Share Functionality Fps

2.5 Permute + Share

The Permute + Share [MS13, CGP20] functionality works as follows. The sender inputs a vector
x⃗ = (x1, . . . , xn) and the receiver inputs a permutation π over [n]. As a result, the parties obtain
the additive shares of π(x⃗) = (xπ(1), . . . , xπ(n)), that is, the sender receives a⃗ = (a1, . . . , an) and the

receiver receives b⃗ = (b1, . . . , bn), where ai⊕ bi = xπ(i) for i ∈ [n]. The formal definition of Permute +
Share functionality is given in Figure 4.

2.6 Oblivious Key-Value Stores

The Oblivious Key-Value Store (OKVS) [PRTY20, GPR+21, ZCL+23] is a data structure that maps
a set of keys to corresponding values. The obliviousness means that when the values are randomly
selected, the distribution of the data structure is independent from the key set. The formal definition
is as follows:

Definition 2 (Oblivious Key-Value Store). An OKVS is parameterized by a set K of keys, a set
V of values, and consists of two algorithms:

– Encode({(x1, y1), . . . , (xn, yn)}): on input key-value pairs {(xi, yi)}i∈[n] ⊆ K×V, outputs an object
D (or, with statistically small probability, an error ⊥).

– Decode(D,x) : on input D and a key x, outputs a value y ∈ V.

Correctness. For all A ⊆ K × V with distinct keys:

(x, y) ∈ A and ⊥≠ D ← Encode(A) =⇒ Decode(D,x) = y

Obliviousness. For all distinct {x0
1, . . . , x

0
n} and {x1

1, . . . , x
1
n}, if Encode does not output ⊥ for

{x0
1, . . . , x

0
n} or {x1

1, . . . , x
1
n}, then the following distributions are computationally indistinguishable:

{D|yi ← V, i ∈ [n],Encode((x0
1, y1), . . . , (x

0
n, yn))}

{D|yi ← V, i ∈ [n],Encode((x1
1, y1), . . . , (x

1
n, yn))}

In addition, our protocols also require OKVS to meet the Randomness[ZCL+23], Linearity [GPR+21]
and Sparsity [HLP+24].
Randomness. For any A = {(x1, y1), . . . , (xn, yn)} and for any x∗ /∈ {x1, . . . , xn}, the output of
Decode(D,x∗) is statistically indistinguishable to that of uniform distribution over V, where D ←
Encode(A).

7

Linearity. An OKVS is linear (over a field F) if V = F (i.e., “values” are elements of F), the output
of Encode is a vector D in Fm, and the Decode function is defined as: Decode(D,x) = ⟨row(x), D⟩ :=∑m

j=1 row(x)jDj for some function row : K → Fm. Hence Decode is a linear map from Fm to F.
Sparsity. An OKVS is sparse if the output D of Encode can be structured as D = D0∥D1 with
|D1| = o(|D0|), and for any x ∈ K, Decode(D,x) := ⟨spa(x)∥den(x), D0∥D1⟩, where two mappings
spa : K → {0, 1}|D0| outputs a sparse binary vector with a constant weight w and den : K → {0, 1}|D1|

outputs a dense binary vector. For convenience, let |D0| = s, |D1| = d, and define posj : K → [s] be the
function such that posj(x) denotes the j-th position of 1 in spa(x). Note that row(x) = spa(x)||den(x)
for any x ∈ K.

Due to the extensive use of OKVS in the private set operation (PSO) protocols, many recent works
have made significant improvements to the construction of OKVS [GPR+21, RS21, RR22, BPSY23].
And all these efficient OKVS schemes satisfy randomness, linearity and sparsity we defined above.

2.7 Cuckoo Hashing

Cuckoo hashing was introduced by Pagh and Rodler in [PR04]. In this hashing scheme, there are α
hash functions h1, . . . , hα used to map n items into ρ = (1 + ϵ)n bins and a stash, where ϵ > 0 is
a constant. We denote the i-th bin as Bi. The Cuckoo hashing can guarantee that there is only one
item in each bin, and the approach to avoid collisions is as follows: An element x is inserted into a
bin Bh1(x). Any prior items z of Bh1(x) are evicted to a new bin Bhi(z), using hi to determine the new
bin location, where hi(z) ̸= h1(x) for i ∈ [α]. The procedure is repeated until no more evictions are
necessary, or until a threshold number of relocations has been performed. In the latter case, the last
element is put in a special stash. According to the empirical analysis in [PSZ18], we can adjust the
values of α and ϵ to reduce the stash size to 0 while achieving a hashing failure probability of 2−λ.

2.8 Re-randomizable Public-Key Encryption

A re-randomizable Public-Key Encryption (ReRand-PKE) scheme is a tuple of five algorithms:

– Setup(1κ): on input the security parameter κ, outputs public parameters pp, which include the
description of the plaintext and ciphertext space M,C.

– KeyGen(pp): on input public parameter pp, outputs a keypair (pk, sk).

– Enc(pk,m): on input a public key pk and a plaintext m ∈M , outputs a ciphertext c ∈ C.

– Dec(sk, c): on input a secret key sk and a ciphertext c ∈ C, outputs a plaintext m ∈ M or an
error symbol ⊥.

– ReRand(pk, c): on input a public key pk and a ciphertext c ∈ C, outputs another ciphertext c′ ∈ C.

Correctness. For any pp← Setup(1κ), any (pk, sk)← KeyGen(pp), any m ∈M , any c← Enc(pk,m),
and any c′ ← ReRand(pk, c), it holds that Dec(sk, c) = Dec(sk, c′) = m.

Indistinguishability. For any pp ← Setup(1κ), any (pk, sk) ← KeyGen(pp), and any m ∈ M , the
distribution c0 ← Enc(pk,m) and the distribution c1 ← ReRand(pk, c0) are identical.

Security. We require the PKE scheme satisfying single-message multi-ciphertext pseudorandomness
[ZCL+23]. Formally, a PKE scheme is single-message multi-ciphertext pseudorandom if for any PPT
A = (A1,A2): ∣∣∣∣∣∣∣∣∣∣∣∣

Pr

β = β′ :

pp← Setup(1κ);
(pk, sk)← KeyGen(pp);
(m, state)← A1(pp, pk);

β
R←− {0, 1};

for i ∈ [n] : c∗i,0 ← Enc(pk,m), c∗i,1
R←− C;

β′ ← A2(pp, state, {c∗i,β}i∈[n])

−
1

2

∣∣∣∣∣∣∣∣∣∣∣∣
is negligible in κ.

8

2.9 Batch Private Information Retrieval

In a Batch Private Information Retrieval (BatchPIR) scheme [CGN98, IKOS04, ACLS18, MR23,
LLWR24], the client wants to privately retrieve a batch of b entries from the server’s dataset D of size
n. A BatchPIR scheme consists of three algorithms, all taking the computational security parameter
κ as an implicit input:

– Query(I) → (qu, st): on input a set of distinct indexes I = {i1, . . . , ib} ∈ ([n])b, outputs a query
qu and a private state st including the index set.

– Answer(D, qu)→ ans: on input the database D and the query qu, outputs an answer ans.
– Recover(st, ans)→ {D1, . . . , Db}: given the state st and the answer ans, outputs a batch of entries
{D1, . . . , Db}.

Correctness. A BatchPIR is correct if for any dataset D and all distinct inputs I = {i1, . . . , ib}, it
holds that

Recover(st,Answer(D, qu)) = {D[i1], . . . , D[ib]},

where (st, qu)← Query(I).
Query privacy. The client’s query qu reveals no information about the query indexes. Formally, a
BatchPIR scheme satisfies Query privacy if, for all PPT adversaries A and all distinct batch query
sets I1, I2 with |I1| = |I2|,

Pr[A(qu) = 1 | (st, qu)← Query(I1)]

−Pr[A(qu) = 1 | (st, qu)← Query(I2)] ≤ negl(κ).

2.10 Private Set Union

PSU is a special case of secure two-party computation. The ideal functionality for PSU is given in
Figure 5.

Parameters: Sender S, Receiver R, set sizes m and n.
Functionality:

– Wait for input X = {x1, . . . , xm} ⊂ {0, 1}∗ from the sender S.
– Wait for input Y = {y1, . . . , yn} ⊂ {0, 1}∗ from the receiver R.
– Give output X ∪ Y to the receiver R.

Fig. 5: Private Set Union Functionality Fpsu

3 Unbalanced Private Set Union from OPRF and Permuted PEQT

In this section, we give our first construction of unbalanced PSU protocol based on OPRF and Per-
muted Private EQuality Test (p-PEQT).

3.1 Permuted Private Equality Test

We give the formal definition of p-PEQT functionality in Figure 6. In this functionality, the sender
inputs a vector r⃗′ = (r′1, . . . , r

′
n) and a permutation π over [n], while the receiver inputs a vector

r⃗ = (r1, . . . , rn). The functionality returns b⃗ = (b1, . . . , bn) to the receiver, where bi = 1 if and only
if rπ(i) = r′π(i). In other words, the receiver obtains the permuted result indicating whether its inputs
match those of the sender.

The p-PEQT could be viewed as a natural generalization of permuted matrix PEQT (pm-PEQT)
[TCLZ23]. In pm-PEQT, the inputs to be compared by both parties are matrices, and the sender’s

9

other input is a matrix permutation (the row-column relationship of any two elements remains un-
changed before and after the permutation), while p-PEQT only requires the inputs of both parties
to be vectors (note that any m × n matrix can be represented as a length-mn vector), and there is
no limitation for the sender’s input permutation. Therefore, the pm-PEQT [TCLZ23] is actually a
special case of p-PEQT.

Parameters: Sender S, Receiver R, vector length n
Functionality:

– Wait for input r⃗′ = {r′1, . . . , r′n} ∈ ({0, 1}l)n and π from the sender S.
– Wait for input r⃗ = {r1, . . . , rn} ∈ ({0, 1}l)n from the receiver R.
– For i ∈ [n], set bi = 1 if and only if rπ(i) = r′π(i), otherwise, set bi = 0.

– Give b⃗ = (b1, . . . , bn) to the receiver R.

Fig. 6: Permuted Private Equality Test Functionality Fp-peqt

Following a similar idea of pm-PEQT [TCLZ23], we propose two p-PEQT constructions. The first is
based on the DDH assumption and the second is based on the Permute+Share functionality. The main
difference between our p-PEQT constructions and pm-PEQT lies in the efficiency gained by performing
only a single permutation, eliminating the need for sequential row and column permutations. The
formal descriptions of our two p-PEQT protocols are given in Figure 7 and Figure 8, respectively.

Theorem 1. Assuming the DDH problem is hard in group G, the protocol in Figure 7 securely com-
putes Fp-peqt against semi-honest adversaries in the random oracle model.

Theorem 2. The protocol in Figure 8 securely computes Fp-peqt against semi-honest adversaries in
the (Fps,Foprf)-hybrid model.

Since our two p-PEQT protocols borrow similar ideas from pm-PEQT [TCLZ23], we do not provide
security proof here. For completeness, we give formal proofs of Theorem 1 and 2 in Appendix A.

3.2 Protocol Details

The formal description of our unbalanced PSU protocol from OPRF and permuted PEQT is given in
Figure 9.

Correctness. For all i ∈ [mc], we consider the following three cases: (1) if X∗[i] ∈ Y , there is
an Y ∗[i][α] ∈ Y, α ∈ [|Y ∗[i]|] s.t. X∗[i] = Y ∗[i][α]. We have r′i = Decode(D0||D1, X

∗[i]) − qi =
Decode(D0||D1, Y

∗[i][α]) − Fk(Y
∗[i][α]) = ri, according to the correctness of OPRF, OKVS and

BatchPIR. Therefore, we have bπ−1(i) = 1 and the receiver learns ⊥ in the final OT, according to the
correctness of p-PEQT and OT. (2) if X∗[i] /∈ Y and X∗[i] ̸= d, we have r′i = Decode(D0||D1, X

∗[i])−
qi, where qi = Fk(X

∗[i]) is pseudorandom. By setting l = λ + log |Y ∗[i]|, a union bound shows
probability of r′i = ri is negligible 2−λ. As a result, the receiver learns bπ−1(i) = 0 with overwhelming
probability and receives X∗[i] in OT. (3) if X∗[i] /∈ Y and X∗[i] = d, we have r′i is randomly selected
by the sender, which equals ri with negligible probability. As a result, the receiver learns bπ−1(i) = 0
with overwhelming probability and receives d in OT. Note that the receiver throws dummy item
d away from the output. Overall, the receiver learns exactly the item in Y \ X, and the set union
X ∪ Y = (Y \X) ∪ Y .

Theorem 3. Given a BatchPIR with query privacy and a sparse OKVS scheme, the protocol in Figure
9 securely computes Fpsu against semi-honest adversaries in the (Foprf ,Fp-peqt,Fot)-hybrid model.

Proof. Due to space limitation, we only sketch here the simulators for the two cases of corrupt S and
corrupt R, and the full proof (via hybrid arguments) is deferred to Appendix B.

10

Parameters:

– Two parties: sender S and receiver R, vector length n.
– A group G with generator g and order p, and the DDH problem is hard in G.
– Random oracle H : {0, 1}l → G.

Input of S: r⃗′ = (r′1, . . . , r
′
n) ∈ ({0, 1}l)n, π

Input of R: r⃗ = (r1, . . . , rn) ∈ ({0, 1}l)n
Protocol:

1. The receiver R selects a random a ← Zp and computes vi := H(ri)
a for i ∈ [n]. Then, R sends

{vi}i∈[n] to the sender S.
2. S selects a random b ← Zp and computes v′i := H(r′π(i))

b, v̄i = (vπ(i))
b for i ∈ [n]. Then, S sends

{v′i, v̄i}i∈[n] to the receiver R.
3. For i ∈ [n], the receiver R defines bi := 1 if and only if v′ai = v̄i, otherwise, bi := 0. Then, R outputs

b⃗ := (b1, . . . , bn).

Fig. 7: Permuted Private Equality Test Protocol Πp-peqt from DDH Assumption

Parameters:

– Two parties: sender S and receiver R, vector length n
– Ideal Foprf and Fps primitives specified in Figure 3 and Figure 4 respectively.

Input of S: r⃗′ = (r′1, . . . , r
′
n) ∈ ({0, 1}l)n, π

Input of R: r⃗ = (r1, . . . , rn) ∈ ({0, 1}l)n
Protocol:

1. S and R invoke the Permute + Share functionality Fps. The receiver R acts as the sender in Permute
+ Share with input r⃗, and learns α⃗. The sender S acts as the receiver in Permute + Share with input
π and receives β⃗, where αi ⊕ βi = rπ(i), i ∈ [n].

2. S and R invoke the OPRF functionality Foprf . The receiver R acts as the receiver in OPRF with
input {αi}i∈[n], and learns {Fk(αi)}i∈[n]. The sender S acts as the sender in OPRF with no input,
and receives a PRF key k.

3. The sender S computes fi := Fk(r
′
π(i) ⊕ βi) for i ∈ [n] and sends {fi}i∈[n] to the receiver R.

4. For i ∈ [n], the receiver R defines bi := 1 if and only if fi = Fk(αi), otherwise, bi := 0. Then, R
outputs b⃗ := (b1, . . . , bn).

Fig. 8: Permuted Private Equality Test Protocol Πp-peqt from Permute + Share

Corrupt Sender: The simulator invokes the OPRF receiver’s simulator with random values to simulate
the sender’s view in the OPRF protocol. Then, the simulator picks a random sparse OKVS D =
D0||D1, and executes as an honest receiver with D to simulate the steps that involve OKVS, i.e., the
steps 5-8. Finally, the simulator invokes the simulators of p-PEQT and OT to obtain the sender’s view
in p-PEQT and OT protocols.

Briefly, this simulation is indistinguishable for the following reasons: the one-time pads generated
by OPRF are computationally indistinguishable from random values, and then by the obliviousness
of OKVS, D is distributed uniformly. The security of underlying OPRF, p-PEQT, and OT protocols
also guarantees that the output of the simulator is indistinguishable from the real view.

Corrupt Receiver: The simulator defines the set Z := X∪Y \Y , i.e., the set of elements that X “brings
to the union”, and uses dummy items to pad Z to m elements. The simulator uses Z as the sender’s
input to execute protocol honestly. For steps involving BatchPIR, the simulator selects some random
indexes to simulate the sender’s query. This simulation is indistinguishable from the real view by the
security of underlying OPRF, p-PEQT, and OT protocols and the query privacy of the BatchPIR
scheme.

11

Parameters:

– Two parties: sender S and receiver R, set size m and n, where m≪ n.
– Ideal Fot, Foprf and Fp-peqt primitives specified in Figure 2, Figure 3, and Figure 6 respectively.
– A sparse OKVS scheme (Encode,Decode) with key space K = {0, 1}∗ and value space V = F. Let

spa : K → {0, 1}s and den : K → {0, 1}d be the random function used in Encode, and posj : K → [s]
be the function such that posj(y) denotes the j-th position of 1 in spa(y). Let w denote the Hamming
weight of the sparse part.

Input of S: X = {x1, . . . , xm} ⊂ {0, 1}∗
Input of R: Y = {y1, . . . , yn} ⊂ {0, 1}∗
Protocol:

1. The sender S inserts set X into the Cuckoo hash table, and fills empty bins with the dummy item
d. Let mc = (1 + ϵ)m denote the length of the Cuckoo hash table. S denotes the filled Cuckoo hash
table as X∗ and the item in i-th bin as X∗[i] for i ∈ [mc]. Let σ : [m] → [mc] denote the injective
function such that σ(1), . . . , σ(m) are the non-dummy item bins of X∗.

2. The receiver R inserts set Y into the simple hash table. Then R denotes the simple hash table as Y ∗,
the set of items in i-th bin as Y ∗[i] and the α-th item in Y ∗[i] as Y ∗[i][α] for i ∈ [mc], α ∈ [|Y ∗[i]|].

3. The receiver R selects random ri ∈ F for each bin i ∈ [mc]. Let r⃗ := (r1, . . . , rmc).
4. S and R invoke the OPRF functionality Foprf . The receiver R acts as the sender in OPRF with no

input, and learns a PRF key k. The sender S acts as the receiver in OPRF with input {X∗[σ(j)]}j∈[m]

and receives Q := {q1, . . . , qm}, where qj = Fk(X
∗[σ(j)]), j ∈ [m].

5. The receiver R defines P := {(Y ∗[i][α], ri + Fk(Y
∗[i][α]))}i∈[mc],α∈[|Y ∗[i]|] and computes the sparse

OKVS D0||D1 := Encode(P) ∈ Fs × Fd.
6. The sender S defines I := {post(X∗[σ(j)])}t∈[w],j∈[m]. Then, S computes (st, qu) ← Query(I) and

sends qu to the receiver R.
7. The receiver R computes ans← Answer(D0, qu) and sends (ans, D1) to the sender S.
8. The sender S computes {Dt,j}t∈[w],j∈[m] := Recover(st, ans), where Dt,j = D0[post(X

∗[σ(j)])]. For
j ∈ [m], S computes r′j :=

∑
t∈[w] Dt,j + ⟨D1, den(X

∗[σ(j)])⟩ − qj . S also picks random r′i ← F for

i ∈ [mc] \ {σ(j)}j∈[m]. Let r⃗
′ := (r′1, . . . , r

′
mc

).
9. The sender S selects a random permutation π over [mc]. Then, S and R invoke the permuted PEQT

functionality Fp-peqt. The receiver R acts as the receiver with input r⃗ and receives b⃗ = (b1, . . . , bmc).
The sender S acts as the sender with input (r⃗′, π) and receives nothing. Note that bi = 1 if and only
if rπ(i) = r′π(i).

10. The receiver R initialize set Z := {}. Then, for i ∈ [mc], S and R invoke the OT functionality Fot:
S acts as sender with input (X∗[π(i)],⊥) and receives nothing. R acts as receiver with input bi and
receives zi. R sets Z := Z ∪ {zi} if zi ̸= d.

11. The receiver R outputs Y ∪ Z.

Fig. 9: Unbalanced PSU Protocol Πpsu from OPRF and p-PEQT

4 Unbanlanced Private Set Union from Re-randomizable PKE

In this section, we give our second construction of unbalanced PSU protocol based on ReRand-PKE.
The formal description is given in Figure 9.

Correctness. For all j ∈ [m], we consider the following two cases: (1) if xj ∈ Y , there is an yi ∈
Y, i ∈ [n] s.t. xj = yi. According to the correctness of ReRand-PKE, OKVS and BatchPIR, we have
s′j = Decode(D0||D1, xj) = Decode(D0||D1, yi) = si. Since si = Enc(pk, 0), we have Dec(sk, si) = 0,
which means bj = 1. So the receiver learns ⊥ in the final OT. (2) if xj /∈ Y , from the random
decoding property of OKVS, s′j = Decode(D0||D1, xj) is a random ciphertext, resulting in s′j is
not the encryption of 0 with overwhelming probability. Since the size ciphertext space is at least
2κ ≥ 2λ+logm, the union bound guarantees that for all xj /∈ Y , the probability that there exists an s′j
s.t. Dec(sk, s′j) = 0 is negligible. As a result, the receiver learns bj = 0 with overwhelming probability
and receives xj in OT. Overall, the receiver learns exactly the item in Y \ X, and the set union
X ∪ Y = (Y \X) ∪ Y .

12

Parameters:

– Two parties: sender S and receiver R, set size m and n, where m≪ n.
– Ideal Fot primitive specified in Figure 2.
– A sparse OKVS scheme (Encode,Decode) with key space K = {0, 1}∗ and value space V = F. Let

spa : K → {0, 1}s and den : K → {0, 1}d be the random function used in Encode, and posj : K → [s]
be the function such that posj(y) denotes the j-th position of 1 in spa(y). Let w denote the Hamming
weight of the sparse part.

– A ReRand-PKE scheme (Setup,KeyGen,Enc,Dec,ReRand) that satisfies single-message multi-
ciphertext pseudorandomness.

Input of S: X = {x1, . . . , xm} ⊂ {0, 1}∗
Input of R: Y = {y1, . . . , yn} ⊂ {0, 1}∗
Protocol:

1. The receiver R generates a random key pair pp ← Setup, (pk, sk) ← KeyGen(pp), a randomness set
R = {r1, . . . , rn} and computes si := Enc(pk, 0; ri) for i ∈ [n].

2. The receiver R computes the sparse OKVS D0||D1 := Encode((y1, s1), . . . , (yn, sn)) ∈ Fs × Fd.
3. The sender S defines I := {post(xj)}t∈[w],j∈[m]. Then, S computes (st, qu)← Query(I) and sends qu

to the receiver R.
4. The receiver R computes ans← Answer(D0, qu) and sends (ans, pk,D1) to the sender S.
5. The sender S computes {Dt,j}t∈[w],j∈[m] := Recover(st, ans), where Dt,j = D0[post(xj)]. For j ∈ [m],
S computes s′j :=

∑
t∈[w] Dt,j + ⟨D1, den(xj)⟩.

6. The sender S selects random r′1, . . . , r
′
m and computes s̄j := ReRand(pk, s′j ; r

′
j) for j ∈ [m].

7. The sender S sends s̄1, . . . , s̄m to R.
8. The receiver R sets bj = 1 if and only if Dec(sk, s̄j) = 0 for j ∈ [m].
9. The receiver R initialize set Z := {}. Then, for j ∈ [m], S and R invoke the OT functionality Fot: S

acts as sender with input (xj ,⊥) and receives nothing. R acts as receiver with input bj . R receives
zj from OT and sets Z = Z ∪ {zj}.

10. The receiver R outputs Y ∪ Z.

Fig. 10: Unbalanced PSU Protocol Πpsu from ReRand-PKE

Theorem 4. Given a BatchPIR scheme with query privacy, a ReRand-PKE scheme with single-
message multi-ciphertext pseudorandomness property and a sparse OKVS scheme, the protocol in
Figure 10 securely computes Fpsu against semi-honest adversaries in the Fot-hybrid model.

Proof. Due to space limitation, we only sketch here the simulators for the two cases of corrupt S and
corrupt R, and the full proof (via hybrid arguments) is deferred to Appendix C.

Corrupt Sender: The simulator picks a random sparse OKVS D = D0||D1, and executes as an honest
receiver with D to simulate the steps that involve OKVS, i.e., the steps 1-5. Then, the simulator
invokes the simulator of OT to obtain the sender’s view in OT protocol.

Briefly, this simulation is indistinguishable for the following reasons: the single-message multi-
ciphertext pseudorandomness of the ReRand-PKE scheme ensures that value (ciphertext) is indis-
tinguishable from random, and then by the obliviousness of OKVS, D is distributed uniformly. The
security of underlying OT protocol also guarantees that the output of the simulator is indistinguishable
from the real view.
Corrupt Receiver: Similar to theorem 3, the simulator defines the set Z := X ∪ Y \ Y , and pads Z
to m elements. The simulator uses Z as the sender’s input to execute protocol honestly. For steps
involving BatchPIR, the simulator selects some random indexes to simulate the sender’s query. This
simulation is indistinguishable from the real view by the security of the underlying OT protocol and
the query privacy of the BatchPIR scheme.

4.1 Optimization

The encoding algorithm of OKVS actually involves solving a system of linear equations in the value
space. In the protocol description in Figure 10, the value space is the ciphertext space of the ReRand-
PKE scheme, typically corresponding to a certain group G. In our implementation, we use the ElGamal

13

encryption scheme [Gam85] as the ReRand-PKE instantiation. The ciphertext space of the ElGamal
encryption scheme is G2, where DDH assumption holds in G and the order of G is a prime p. Solv-
ing a linear system in G incurs a high cost. Therefore, we propose a “pull-down-then-lift” method.
Specifically, we first compute the OKVS over Zp, where Zp denotes the finite field of integers modulo
p. Subsequently, we lift the computed OKVS from Zp to the exponent. This method allows us to mit-
igate the computational overhead associated with solving linear systems in G, resulting in improved
efficiency. Further details are provided below.

The structure of ElGamal ciphertext c = (gr,m · pkr), where g ∈ G is the generator of group
G, pk = gsk, and r is a random value in Zp. Since m is the set indicator and could be set to an
arbitrary value, we have c = (c1, c2) = (gr, gsk·r) by setting m = 1. Our encoding process first com-
putes d = (d1, . . . , dN) := Encode(xi, ri||sk · ri), and then outputs the OKVS D = (D1, . . . , DN) :=
(gd1 , . . . , gdN). However, this approach may raise security concerns. One may want to know if the
OKVS generated as above still satisfies obliviousness. The condition for obliviousness is that all val-
ues are randomly selected, and in our construction, values are not completely random due to the
correlation between ri and sk · ri. We argue that this construction actually satisfies obliviousness.
The key observation is that the lift step is crucial as it can prevent a PPT adversary from “detect-
ing” the correlation in exponential. Specifically, we split di in two parts, namely, (d1i , d

2
i), where d1i

corresponds to the encoding of {(xi, ri)} and d2i corresponds to the encoding of {(xi, sk · ri)}. We
have d2i = sk · d1i from the linearity of the encoding algorithm. After lifting, the adversary only sees

pk = gsk, {gdi
1 , gd

i
2 = gsk·d

i
1}, which exactly corresponds to a DDH tuple. Therefore, the DDH assump-

tion guarantees generating the OKVS in a “pull-down-then-lift” manner still satisfies obliviousness.
We provide a formal proof in Appendix D.

5 Implementation and Performance

We experimentally evaluate our PSU protocols and compare them with the state-of-the-art counter-
parts [TCLZ23]. For ease of description, we refer to each scheme as follows.

– PSUddh
op : our OPRF + p-PEQT based construction presented in Figure 9, and the p-PEQT is built

from DDH assumption, as shown in Figure 7.
– PSUps

op: our OPRF + p-PEQT based construction presented in Figure 9, and the p-PEQT is built
from Permute + Share functionality, as shown in Figure 8.

– PSUpk: our ReRand-PKE based construction presented in Figure 10.

5.1 Implementation Details

We implement our protocols and fully re-implement [TCLZ23] based on mpc4j [mpc] . In this way, we
can conduct a comprehensive and fair comparison in a unified platform. The complete implementation
is merged into mpc4j and freely available now.

The reasons for re-implementing the protocol proposed by Tu et al. [TCLZ23] instead of directly
running their implementation on our platform are as follows. Firstly, their implementation did not
explore the potential benefits of using preprocessing techniques. The preprocessing technique is to
divide protocol execution into two phases, namely the setup phase and the online phase. The setup
phase, which typically includes key distribution, base OT, and input-independent pre-computation,
only needs to be executed once. After the setup phase, the parties can then enjoy a faster online phase
with their inputs. Preprocessing is a standard technique in secure multiparty computation, especially
in PSO protocols [KLS+17, RS21, ZCL+23, KBM23]. We note that in the unbalanced setting, existing
works additionally assume that the party with large set can ahead of time knows its input and further
perform necessary pre-computations with this knowledge [CHLR18, CMdG+21, HLP+24]. In our re-
implementations, we enabled [TCLZ23] to benefit from preprocessing techniques, resulting in a more
efficient online phase.

Moreover, the protocols in [TCLZ23] avoid the expensive noise flooding operations by leverag-
ing OPRF to randomize elements in each party’s input set. This technique was first introduced in
[CHLR18] and has been widely used in unbalanced PSO protocols. However, Tu et al. [TCLZ23] use
the OT-based OPRF [KKRT16] in their implementation. As mentioned in [CHLR18], such OPRF has
two main limitations: (1) it requires both parties to perform a hash-to-bin operation before OPRF

14

evaluation, hindering the potential for integrating OPRF preprocessing into the setup phase; (2) it
requires the sender to pad its simple hash bin with dummy items to prevent the receiver from inferring
partial information, which makes the actual number of OPRFs executed by both parties slightly higher
than the set size, causing additional overhead. We follow the recommendation of [CMdG+21] and use
DH-based OPRF in our re-implementation [JL10]. The sender in such OPRF can select the key and
perform arbitrary computations without the knowledge of the input from the receiver, allowing OPRF
preprocessing in the setup phase. Additionally, no hash-to-bin operation is required in this OPRF,
circumventing unnecessary OPRF evaluations.

Aside from the above improvement, our re-implementation of [TCLZ23] fully complies with their
open-source code [APS23] . That is, the underlying components we use are exactly the same as them,
with the sole difference being the adoption of DH-OPRF [JL10] for OPRF preprocessing.

The details of the underlying components in our protocol implementations are as follows.

OPRF. Two OPRFs are used in our protocols. The first is the OPRF used in our PSUddh
op and PSUps

op to
generate one-time pads (i.e., the step 4 in Figure 9). We opt for the DH-based OPRF [JL10], allowing
the receiver to compute the PRF values of its inputs during the setup phase. For better efficiency, we
use the FourQ [CL15] to speed up the scalar multiplication of elliptic curve points. The second is the
OPRF used in our PSUps

op to conduct the equality test (i.e., the step 2 in Figure 8). Here, we employ
BaRK-OPRF [KKRT16], which facilitates a faster running time during the online phase.

OKVS. We implement the blazing-fast OKVS [RR22] with clustering as our sparse OKVS instan-
tiation, and employ 3 hashing functions to create the sparse OKVS storage. Although the recently
proposed RB-OKVS [BPSY23] also satisfies sparsity, its sparse part exhibits a large Hamming weight
(typically ≥ 196), which significantly diminishes efficiency. Therefore, we opted not to use RB-OKVS
as our instantiation. In PSUpk, the underlying field of OKVS is instantiated as Fp, while in PSUps

op and

PSUddh
op , the underlying field of OKVS is instantiated as F2l .

ReRand-PKE. We use ElGamal encryption [Gam85] as the ReRand-PKE instantiation. We choose
the secp256r1 implementation in OpenSSL [Ope] as the underlying elliptic curve since it provides the
most efficient assembly language implementation. We pre-compute lookup tables for the generator g
and the public key y in the setup phase to accelerate fixed-point multiplication in the online phase.

BatchPIR. We employ the state-of-the-art vectorized BatchPIR [MR23] as our BatchPIR instantiation.
We adopt the Java Native Interface (JNI) technique to invoke the BFV homomorphic encryption
[FV12] provided by Microsoft SEAL library v4.0 [SEA22] . We follow the same parameters used in the
open-source codes of the vectorized BatchPIR [Vec23] . Specifically, the receiver uses stash-less cuckoo
Hashing with 3 hash functions to insert the n entries into 1.2n bins. The receiver encodes entries in
each bin in three dimensions, places them at suitable slots, and transfers the plaintext polynomial into
NTT form. Vectorized BatchPIR also requires both Galois keys and relinearization keys for rotation
and multiplication operations. All the above operations are done in the setup phase.

ECC. In addition to DH-based OPRF and ReRand-PKE, our DDH-based p-PEQT also requires ECC
(i.e., the p-PEQT construction in Figure 7). Given that addition operations are not needed in this
construction, we follow the recommendation by [CZZ+24] and introduce X25519 in Sodium [Sod] for
efficient scalar multiplications.

Permute + Share. Similar to the TCLZ protocol [TCLZ23], we implement the Permute + Share
functionality based on [MS13].

OT. We follow the default setting in mpc4j by choosing the base OT proposed in [NP01] and the OT
extension proposed in [ALSZ13].

5.2 Experimental Setup

We conducted our experiments on a single Intel Core i9-9900K with 3.6GHz and 128GB RAM. All
experiments are executed with 8 threads. We set the computational security parameter κ = 128
and the statistical security parameter λ = 40. We simulate the network connection using the Linux
command tc. To evaluate the efficiency of the protocols in different network settings, we use two
simulated network settings, including LAN (10Gbps bandwidth and 0.05ms RTT latency) and WAN
(100Mbps, 10Mbps and 1Mbps bandwidth with 80ms RTT latency).

15

5.3 Performance Evaluation

We compare our protocols with the state-of-the-art unbalanced PSU protocols [TCLZ23], which com-
prises two protocols: TCLZ-pub and TCLZ-sym. A detailed benchmark for small set sizes |X| = m ∈
{24, 26, 28, 210} and large set sizes |Y | = n ∈ {218, 220, 222} is presented in Table 1. Additionally,
Figure 11 illustrates the variation of communication/running time with small set size/bandwidth.

24 26 28 210

100

100.5

The size of small set |X| ∈ {24, 26, 28, 210}

C
o
m
m
u
n
ic
a
ti
o
n
(i
n
M
B
),
|Y
|=

2
1
8 TCLZ-pub

TCLZ-sym

PSUpk

PSUddh
op

PSUps
op

1Mbps 10Mbps 100Mbps 10Gbps

100

101

The network bandwidth (Mbps)

R
u
n
n
in
g
ti
m
e
(s
),
|X
|=

2
6
,
|Y
|=

2
1
8

TCLZ-pub

TCLZ-sym

PSUpk

PSUddh
op

PSUps
op

24 26 28 210

100

100.5

The size of small set |X| ∈ {24, 26, 28, 210}

R
u
n
n
in
g
ti
m
e
(s
),
|Y
|=

2
1
8
,
1
0
G
b
p
s

TCLZ-pub

TCLZ-sym

PSUpk

PSUddh
op

PSUps
op

24 26 28 210

101

101.2

101.4

101.6

101.8

The size of small set |X| ∈ {24, 26, 28, 210}

R
u
n
n
in
g
ti
m
e
(s
),
|Y
|=

2
1
8
,
1
M
b
p
s

TCLZ-pub

TCLZ-sym

PSUpk

PSUddh
op

PSUps
op

Fig. 11: Communication cost (in MB) and running time (in seconds) comparing our protocols to TCLZ-pub
and TCLZ-sym [TCLZ23]. Both x and y-axis are in log scale. The top left figure shows the communication cost
increases as the small set size increases. The top right figure shows the runtime decreases as the bandwidth
increases. The bottom two figures show the runtime increases as the small set size increases in different
bandwidths (i.e., 10 Gbps and 1 Mbps).

Communication comparison. As indicated in Table 1 and the top left figure in Figure 11, our
protocols achieve the lowest online communication cost when the small set size is less than 28. Com-
pared to the TCLZ protocols, the communication of our constructions is 2.1 ∼ 11.8× better. Notably,
the communication costs of our protocols increase linearly with the size of small sets, while the com-
munication of TCLZ protocols remains almost unchanged when the small set size is less than 210.
The reason is that the TCLZ protocols use Single Instruction Multiple Data (SIMD) operations to
package multiple plaintexts into one ciphertext for concurrent processing. Specifically, the TCLZ pro-
tocols employ ciphertexts containing 1638 plaintext slots. Therefore, as long as the number of bins of
the sender is less than 1638 (corresponding to a set size of approximately 210), their communication
remains unchanged. As a result, our protocols perform better in the extremely unbalanced setting,
showcasing increasing communication efficiency ratios as the gap between the sizes of the two sets
widens.
Running time comparison. The experimental results in Table 1 and Figure 11 indicate that our
OPRF + p-PEQT based unbalanced PSU protocols PSUps

op,PSU
ddh
op perform better in most settings,

and outperform TCLZ protocols. Specifically, the running time of our PSUps
op and PSUddh

op protocols sur-
passes TCLZ protocols by 1.3 ∼ 5.6× in different bandwidth setting. For example, for m = 26, n = 218

in 1 Mbps bandwidth, our PSUddh
op requires 7.98 seconds, while TCLZ-pub requires 14.5 seconds, achiev-

ing a 1.8× improvement, and TCLZ-sym requires 21.93 seconds, achieving a 2.7× improvement. Our

16

Comm. (MB) Running time (s)
Param.

LAN 100Mbps 10Mbps 1Mbps
n m

Protocol
Setup Online

Setup Online Setup Online Setup Online Setup Online

TCLZ-pub [TCLZ23] 0.76 1.52 2.98 1.15 3.67 1.99 3.93 3.11 9.71 14.46
TCLZ-sym [TCLZ23] 0.77 2.27 2.98 1.18 4.02 2.48 4.50 4.04 10.25 20.90

Our PSUddh
op 19.08 0.71 11.72 1.13 15.55 2.44 29.60 2.89 174.53 8.30

Our PSUps
op 19.09 0.73 12.05 1.14 15.02 2.71 28.79 3.27 173.45 9.29

24

Our PSUpk 19.08 0.74 38.01 7.52 40.16 8.11 52.31 8.32 197.53 13.92
TCLZ-pub [TCLZ23] 0.76 1.52 2.84 1.12 3.38 2.01 3.90 3.03 9.59 14.50
TCLZ-sym [TCLZ23] 0.77 2.27 2.83 1.11 3.72 2.88 4.15 4.44 10.13 21.93

Our PSUddh
op 19.08 0.72 14.99 0.86 17.19 1.72 31.25 2.18 175.06 8.04

Our PSUps
op 19.09 0.75 14.00 0.88 17.72 2.00 30.94 2.36 175.34 7.98

26

Our PSUpk 19.08 0.74 34.88 2.32 37.57 2.92 52.14 3.62 196.42 9.13
TCLZ-pub [TCLZ23] 0.76 1.53 2.85 1.15 3.48 1.91 3.92 3.08 9.55 14.66
TCLZ-sym [TCLZ23] 0.77 2.28 2.87 1.13 3.89 2.25 4.11 3.77 9.95 20.98

Our PSUddh
op 19.08 1.44 21.78 0.94 24.58 1.88 38.30 3.42 183.08 14.15

Our PSUps
op 19.09 1.52 21.43 0.95 24.41 2.13 38.66 3.13 182.88 14.53

28

Our PSUpk 19.08 1.70 59.15 2.24 61.30 3.07 76.01 4.35 219.35 17.46
TCLZ-pub [TCLZ23] 0.76 1.58 2.80 1.17 3.43 1.94 3.69 3.17 9.70 14.97
TCLZ-sym [TCLZ23] 0.77 2.33 2.95 1.11 3.70 2.31 4.33 3.88 9.99 21.36

Our PSUddh
op 19.08 5.71 22.67 1.28 25.34 3.37 39.50 6.99 184.55 49.83

Our PSUps
op 19.09 6.07 22.17 1.16 25.39 3.17 39.45 7.43 184.40 54.09

218

210

Our PSUpk 19.08 3.90 124.79 2.96 128.02 4.21 141.98 7.05 286.85 36.41

TCLZ-pub [TCLZ23] 0.76 1.86 14.47 1.68 15.27 2.55 15.62 3.90 20.76 18.51
TCLZ-sym [TCLZ23] 0.77 3.52 14.61 1.63 15.26 3.04 15.81 5.40 21.92 31.90

Our PSUddh
op 19.08 0.76 42.34 3.07 45.15 4.17 58.63 4.76 205.86 10.83

Our PSUps
op 19.09 0.77 42.09 3.10 45.77 4.59 59.81 5.26 203.93 11.92

24

Our PSUpk 19.08 0.88 89.39 8.84 94.72 9.40 108.37 10.71 252.10 16.82
TCLZ-pub [TCLZ23] 0.76 1.87 14.20 1.61 14.48 2.44 15.16 3.78 21.33 17.95
TCLZ-sym [TCLZ23] 0.77 3.52 15.23 1.55 15.42 3.63 15.64 6.19 21.37 32.77

Our PSUddh
op 19.08 1.45 42.53 1.39 46.21 2.24 58.51 3.34 203.39 15.14

Our PSUps
op 19.09 1.48 42.63 1.34 58.96 2.74 73.43 4.77 216.41 27.73

26

Our PSUpk 19.08 0.89 135.13 8.08 135.17 8.27 146.61 8.94 293.32 15.65
TCLZ-pub [TCLZ23] 0.76 1.88 14.66 1.59 15.14 2.41 15.05 3.81 20.70 18.00
TCLZ-sym [TCLZ23] 0.77 3.53 14.13 1.54 15.13 2.90 15.38 5.41 21.61 32.00

Our PSUddh
op 19.08 2.86 54.80 1.29 58.14 2.59 73.32 4.56 216.79 26.45

Our PSUps
op 19.09 2.94 55.18 1.35 58.96 2.74 73.43 4.77 216.41 27.73

28

Our PSUpk 19.08 2.97 138.53 3.19 136.75 3.93 151.06 6.16 299.52 29.09
TCLZ-pub [TCLZ23] 0.76 1.92 14.42 1.60 15.22 2.45 15.15 3.86 21.41 18.43
TCLZ-sym [TCLZ23] 0.77 3.58 14.26 1.55 15.21 2.97 16.02 5.48 21.48 32.55

Our PSUddh
op 19.08 5.76 85.49 1.93 89.58 3.71 102.54 7.90 245.92 50.95

Our PSUps
op 19.09 6.15 85.76 1.92 91.20 3.82 101.64 7.96 247.21 54.96

220

210

Our PSUpk 19.08 6.80 232.43 3.65 234.26 5.37 247.47 10.14 431.10 61.93

TCLZ-pub [TCLZ23] 0.76 3.59 60.60 3.21 60.69 4.51 60.64 6.89 67.03 34.86
TCLZ-sym [TCLZ23] 0.77 11.13 61.39 3.02 61.74 5.28 63.20 13.31 67.48 97.47

Our PSUddh
op 19.08 0.94 182.08 7.40 187.18 9.94 202.34 10.08 345.77 17.38

Our PSUps
op 19.09 0.96 185.43 7.55 190.21 9.34 203.74 10.60 349.34 18.19

24

Our PSUpk 19.08 1.46 302.23 13.27 305.25 14.03 319.06 15.46 465.35 26.58
TCLZ-pub [TCLZ23] 0.76 3.59 62.04 3.05 62.10 4.24 61.96 6.75 67.95 34.47
TCLZ-sym [TCLZ23] 0.77 11.13 61.90 2.98 61.98 5.96 60.80 14.35 67.73 98.07

Our PSUddh
op 19.08 1.64 221.34 6.03 223.13 7.01 229.80 9.05 373.27 20.91

Our PSUps
op 19.09 1.66 216.53 6.61 217.72 7.32 235.72 8.51 380.17 21.50

26

Our PSUpk 19.08 2.16 424.83 11.25 417.94 11.98 442.52 13.69 584.50 29.81
TCLZ-pub [TCLZ23] 0.76 3.60 60.62 3.26 61.03 4.39 61.71 6.89 66.99 34.31
TCLZ-sym [TCLZ23] 0.77 11.15 62.10 3.11 61.25 5.24 62.72 13.42 68.35 98.23

Our PSUddh
op 19.08 5.80 181.34 4.07 181.20 5.79 193.74 9.17 342.64 52.94

Our PSUps
op 19.09 5.88 184.88 3.93 188.85 6.20 196.29 9.55 340.90 54.68

28

Our PSUpk 19.08 3.55 539.48 10.01 548.18 11.53 556.73 13.76 716.74 40.50
TCLZ-pub [TCLZ23] 0.76 3.65 60.36 3.07 61.46 4.82 63.69 7.13 67.58 34.65
TCLZ-sym [TCLZ23] 0.77 11.19 59.93 3.08 63.29 5.36 63.01 13.36 66.54 97.89

Our PSUddh
op 19.08 10.76 234.33 4.55 238.26 6.51 261.40 14.22 405.45 96.39

Our PSUps
op 19.09 11.15 236.02 4.56 239.26 6.89 254.70 14.93 409.62 99.66

222

210

Our PSUpk 19.08 11.19 551.38 9.28 554.46 13.23 567.37 18.95 706.52 103.62

Table 1: Communication cost (in MB) and running time (in seconds) comparing our protocols to TCLZ-pub
and TCLZ-sym [TCLZ23]. The LAN network has 10 Gbps bandwidth and 0.05 ms RTT latency. The best
result is marked in green, and the second best result is marked in blue.

17

ReRand-PKE based construction PSUpk exhibits less satisfactory performance due to the relatively
long value length of OKVS encoding. In the PSUpk protocol, the OKVS values are the ciphertexts
of ReRand-PKE, which has a length of 256 bits in our instantiation (i.e., ElGamal encryption). The
values of OKVS for protocols PSUps

op and PSUddh
op are bit strings, with a length of λ+log n, and 64 bits

are sufficient in practice.
A counterintuitive phenomenon is that the running time for small set size of 24 is actually longer

than that of 26, as shown in the bottom two figures of Figure 11. This is due to the property of our
BatchPIR instantiation, i.e., vectorized BatchPIR [MR23]. The vectorized BatchPIR scheme repre-
sents the database as a three-dimensional matrix. During the server-side response process, the second
dimension plays a crucial role, involving rotations and ciphertext-ciphertext multiplications. The over-
all running time is heavily influenced by the size of this dimension. When the sender’s set size is 24,
the number of bins is fewer than that of 26. This causes there are more elements in each bin, which
leads to a larger matrix size generated by the server and consequently longer running time9.

Acknowledgements

We are grateful for the helpful comments from the anonymous reviewers. This work is supported by the
National Key R&D Program of China (2018YFA0704701, 2020YFA0309705), Shandong Key Research
and Development Program (2020ZLYS09), the Major Scientific and Technological Innovation Project
of Shandong, China (2019JZZY010133), the Major Program of Guangdong Basic and Applied Research
(2019B030302008), Tsinghua University Dushi Program, the National Natural Science Foundation of
China (Grant No. 62272269), Taishan Scholar Program of Shandong Province, the National Key
Research and Development Program of China (Grant No. 2021YFA1000600), the Major Programs of
the National Social Science Foundation of China (Grant No. 22&ZD147), and the National Natural
Science Foundation of China (Grant No. 62402272).

References

[ACLS18] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. PIR with compressed queries
and amortized query processing. In 2018 IEEE Symposium on Security and Privacy, SP 2018,
Proceedings, 21-23 May 2018, San Francisco, California, USA, pages 962–979. IEEE Computer
Society, 2018.

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivious
transfer and extensions for faster secure computation. In CCS 2013, 2013.

[APS23] https://github.com/real-world-cryprography/APSU, 2023.

[BPSY23] Alexander Bienstock, Sarvar Patel, Joon Young Seo, and Kevin Yeo. Near-optimal oblivious
key-value stores for efficient psi, PSU and volume-hiding multi-maps. In Joseph A. Calandrino
and Carmela Troncoso, editors, 32nd USENIX Security Symposium, USENIX Security 2023,
Anaheim, CA, USA, August 9-11, 2023, pages 301–318. USENIX Association, 2023.

[BSMD10] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas A. Dimitropoulos. SEPIA: privacy-
preserving aggregation of multi-domain network events and statistics. In 19th USENIX Security
Symposium, Washington, DC, USA, August 11-13, 2010, Proceedings, pages 223–240. USENIX
Association, 2010.

[CGN98] Benny Chor, Niv Gilboa, and Moni Naor. Private information retrieval by keywords. IACR
Cryptol. ePrint Arch., page 3, 1998.

[CGP20] Melissa Chase, Esha Ghosh, and Oxana Poburinnaya. Secret-shared shuffle. In Shiho Moriai
and Huaxiong Wang, editors, Advances in Cryptology - ASIACRYPT 2020 - 26th International
Conference on the Theory and Application of Cryptology and Information Security, Daejeon,
South Korea, December 7-11, 2020, Proceedings, Part III, volume 12493 of Lecture Notes in
Computer Science, pages 342–372. Springer, 2020.

[CHLR18] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled PSI from fully homomorphic
encryption with malicious security. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 1223–
1237. ACM, 2018.

9 A similar trend can also be found in the table III of original vectorized BatchPIR paper [MR23].

18

https://github.com/real-world-cryprography/APSU

[CKGS98] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information retrieval.
J. ACM, 45(6):965–981, 1998.

[CL15] Craig Costello and Patrick Longa. Fourq: Four-dimensional decompositions on a q-curve over
the mersenne prime. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology -
ASIACRYPT 2015 - 21st International Conference on the Theory and Application of Cryptology
and Information Security, Auckland, New Zealand, November 29 - December 3, 2015, Proceedings,
Part I, volume 9452 of Lecture Notes in Computer Science, pages 214–235. Springer, 2015.

[CLR17] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from homomorphic en-
cryption. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors,
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017,, pages 1243–1255. ACM, 2017.

[CMdG+21] Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai, Ilia Iliashenko, Kim
Laine, and Michael Rosenberg. Labeled PSI from homomorphic encryption with reduced compu-
tation and communication. In Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi, editors,
CCS ’21: 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual
Event, Republic of Korea, November 15 - 19, 2021, pages 1135–1150. ACM, 2021.

[CZZ+24] Yu Chen, Min Zhang, Cong Zhang, Minglang Dong, and Weiran Liu. Private set operations from
multi-query reverse private membership test. In Public-Key Cryptography - PKC 2024 - 27th
IACR International Conference on Practice and Theory of Public-Key Cryptography,, Lecture
Notes in Computer Science, 2024.

[DC17] Alex Davidson and Carlos Cid. An efficient toolkit for computing private set operations. In
ACISP 2017, 2017.

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and obliv-
ious pseudorandom functions. In Joe Kilian, editor, Theory of Cryptography, Second Theory of
Cryptography Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005, Proceedings,
volume 3378 of Lecture Notes in Computer Science, pages 303–324. Springer, 2005.

[Fri07] Keith B. Frikken. Privacy-preserving set union. In ACNS 2007, 2007.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch., page 144, 2012.

[Gam85] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Trans. Inf. Theory, 31(4):469–472, 1985.

[GMR+21] Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian, and Jaspal Singh. Pri-
vate set operations from oblivious switching. In PKC 2021, 2021.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2: Basic Applications. Cambridge
University Press, 2004.

[GPR+21] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Oblivious key-
value stores and amplification for private set intersection. In CRYPTO 2021, 2021.

[HLP+24] Meng Hao, Weiran Liu, Liqiang Peng, Hongwei Li, Cong Zhang, Hanxiao Chen, and Tianwei
Zhang. Unbalanced circuit-psi from oblivious key-value retrieval. In 33rd USENIX Security
Symposium (To appear), 2024.

[HLS+16] Kyle Hogan, Noah Luther, Nabil Schear, Emily Shen, David Stott, Sophia Yakoubov, and Arkady
Yerukhimovich. Secure multiparty computation for cooperative cyber risk assessment. In SecDev
2016, 2016.

[HN10] Carmit Hazay and Kobbi Nissim. Efficient set operations in the presence of malicious adversaries.
In PKC 2010, 2010.

[IKOS04] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Batch codes and their appli-
cations. In László Babai, editor, Proceedings of the 36th Annual ACM Symposium on Theory of
Computing, Chicago, IL, USA, June 13-16, 2004, pages 262–271. ACM, 2004.

[JL10] Stanislaw Jarecki and Xiaomin Liu. Fast secure computation of set intersection. In Juan A.
Garay and Roberto De Prisco, editors, Security and Cryptography for Networks, 7th International
Conference, SCN 2010, Amalfi, Italy, September 13-15, 2010. Proceedings, volume 6280 of Lecture
Notes in Computer Science, pages 418–435. Springer, 2010.

[JSZ+22] Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, Jiajun Du, and Dawu Gu. Shuffle-based private
set union: Faster and more secure. In USENIX Security 22, 2022.

[KBM23] Florian Kerschbaum, Erik-Oliver Blass, and Rasoul Akhavan Mahdavi. Faster secure comparisons
with offline phase for efficient private set intersection. In 30th Annual Network and Distributed
System Security Symposium, NDSS 2023, San Diego, California, USA, February 27 - March 3,

19

2023. The Internet Society, 2023.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched oblivious
PRF with applications to private set intersection. In CCS 2016, 2016.

[KLS+17] Ágnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, and Benny Pinkas. Private set intersection
for unequal set sizes with mobile applications. Proc. Priv. Enhancing Technol., 2017(4):177–197,
2017.

[KRTW19] Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao Wang. Scalable private set union from
symmetric-key techniques. In ASIACRYPT, 2019.

[KS05] Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In CRYPTO 2005,
2005.

[Lin17] Yehuda Lindell. How to simulate it - A tutorial on the simulation proof technique. In Yehuda Lin-
dell, editor, Tutorials on the Foundations of Cryptography, pages 277–346. Springer International
Publishing, 2017.

[LLWR24] J. Liu, J. Li, D. Wu, and K. Ren. Pirana: Faster multi-query pir via constant-weight codes. In
2024 IEEE Symposium on Security and Privacy (SP), pages 39–39, Los Alamitos, CA, USA, may
2024. IEEE Computer Society.

[mpc] https://github.com/alibaba-edu/mpc4j.

[MR23] Muhammad Haris Mughees and Ling Ren. Vectorized batch private information retrieval. In
44th IEEE Symposium on Security and Privacy, SP 2023, San Francisco, CA, USA, May 21-25,
2023, pages 437–452. IEEE, 2023.

[MS13] Payman Mohassel and Seyed Saeed Sadeghian. How to hide circuits in MPC an efficient frame-
work for private function evaluation. In EUROCRYPT 2013, 2013.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In Proceedings of the Twelfth
Annual Symposium on Discrete Algorithms, 2001.

[Ope] https://github.com/openssl/openssl.

[PR04] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144, 2004.

[PRTY20] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from paxos: Fast, malicious
private set intersection. In EUROCRYPT 2020, 2020.

[PSZ18] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersection based
on OT extension. ACM Trans. Priv. Secur., 21(2):7:1–7:35, 2018.

[Rab05] Michael O. Rabin. How to exchange secrets with oblivious transfer. IACR Cryptol. ePrint Arch.,
2005:187, 2005.

[RMY20] Sivaramakrishnan Ramanathan, Jelena Mirkovic, and Minlan Yu. BLAG: improving the accuracy
of blacklists. In NDSS, 2020.

[RR22] Srinivasan Raghuraman and Peter Rindal. Blazing fast PSI from improved OKVS and subfield
VOLE. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security, CCS 2022, Los
Angeles, CA, USA, November 7-11, 2022, pages 2505–2517. ACM, 2022.

[RS21] Peter Rindal and Phillipp Schoppmann. VOLE-PSI: fast OPRF and circuit-psi from vector-ole.
In EUROCRYPT 2021, 2021.

[SEA22] Microsoft SEAL (release 4.0). https://github.com/Microsoft/SEAL, March 2022. Microsoft
Research, Redmond, WA.

[Sod] https://github.com/jedisct1/libsodium.

[TCLZ23] Binbin Tu, Yu Chen, Qi Liu, and Cong Zhang. Fast unbalanced private set union from fully ho-
momorphic encryption. In Weizhi Meng, Christian Damsgaard Jensen, Cas Cremers, and Engin
Kirda, editors, Proceedings of the 2023 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2023, Copenhagen, Denmark, November 26-30, 2023, pages 2959–2973.
ACM, 2023.

[Vec23] https://github.com/mhmughees/vectorized_batchpir, 2023.

[ZCL+23] Cong Zhang, Yu Chen, Weiran Liu, Min Zhang, and Dongdai Lin. Linear private set union from
Multi-Query reverse private membership test. In 32nd USENIX Security Symposium (USENIX
Security 23), pages 337–354, Anaheim, CA, August 2023. USENIX Association.

[ZLDL23] Cong Zhang, Weiran Liu, Bolin Ding, and Dongdai Lin. Efficient private multiset ID protocols. In
Ding Wang, Moti Yung, Zheli Liu, and Xiaofeng Chen, editors, Information and Communications
Security - 25th International Conference, ICICS 2023, Tianjin, China, November 18-20, 2023,
Proceedings, volume 14252 of Lecture Notes in Computer Science, pages 351–369. Springer, 2023.

20

https://github.com/alibaba-edu/mpc4j
https://github.com/openssl/openssl
https://github.com/Microsoft/SEAL
https://github.com/jedisct1/libsodium
https://github.com/mhmughees/vectorized_batchpir

A Security Proofs of Permuted-PEQT

A.1 Proof of Theorem 1

Below we give the details of the proof of Theorem 1.

Proof. We exhibit simulators SimS and SimR for simulating corrupt S and R respectively, and argue
the indistinguishability of the produced transcript from the real execution.

Corrupt Sender: SimS(r⃗
′ = (r′1, . . . , r

′
n), π) simulates the view of corrupt semi-honest sender. Note

that the simulator only needs to simulate {vi}i∈[n] in step 1, it chooses random group elements
vi ← G, i ∈ [n] to simulate the view.

Now we argue that the view output by SimS is computationally indistinguishable from the real
one based on DDH assumption.

Specifically, if there is a distinguisher D can distinguish the view output by SimS and real view with
non-negligible probability, then we can construct a PPT adversary A to break the DDH assumption.
A works as follows: when A receives DDH challenge gx, gyi , gzi , where x, yi ← Zp, A is asked to
distinguish if zi = x · yi or random values. A implicitly sets a = x, and simulates the view as below.
For queries ri, if ri is not a component of vector r⃗, it picks a random group element to assign H(ri),
otherwise, it assigns H(ri) = gyi . Now A invokes D with input gzi , i ∈ [n] and outputs D’s output. If
zi = x · yi, A simulates real view, else, the view corresponds to the simulator’s outputs. Therefore, A
can break the DDH assumption with the same advantages as D.
Corrupt Receiver: SimR(r⃗ = (r1, . . . , rn)) simulates the view of corrupt semi-honest R. It executes as
follows:

1. In step 1, SimR chooses a← Zp randomly and computes vi like an honest receiver.

2. In step 2, SimR chooses random group elements v′i for i ∈ [n]. SimR also chooses random group
elements v̄i if bi = 0 and sets v̄i := v′ai if bi = 1. Then, it appends the {v′i, v̄i}i∈[n] to the view.

Now we argue that the view output by SimR is indistinguishable from the real one. We formally
prove this by a standard hybrid argument method. We define three hybrid transcripts T0, T1, T2 where
T0 is the real view of R, and T2 is the output of SimR.

– Hybrid0. The first hybrid is the real interaction described in Figure 7. Here, an honest S uses
input r⃗′, π, and honestly interacts with the corrupt R. Let T0 denote the real view of R.

– Hybrid1. Let T1 be the same as T0, except that for bi = 0, v′i and v̄i are replaced by randomly
selected group elements. We argue that the view in T0 and T1 are computationally indistinguishable
based on the DDH assumption. Specifically, if there is a distinguisher D who can distinguish the
T0 and T1 with non-negligible probability, then we can construct a PPT adversary A to break the
DDH assumption. A works as follows: when A receives DDH challenge gx, gyi , gy

′
i , gzi , gz

′
i , where

x, yi, y
′
i ← Zp, A is asked to distinguish if zi = x · yi, z′i = x · y′i or random values. A implicitly

sets b = x, and simulates the view as below. For queries ri and r′i, it assigns H(ri) = ga
−1yi ,

H(r′i) = gy
′
i (note that A is a non-uniform adversary for DDH assumption, both r⃗ and r⃗′ could

be its auxiliary inputs). Now A invokes D with input gzi , gz
′
i , i ∈ [n] and outputs D’s output. If

zi = x · yi, z′i = x · y′i, A simulates T0, else, it simulates T1. Therefore, A can break the DDH
assumption with the same advantages as D.

– Hybrid2. Let T2 be the same as T1, except that for bi = 1, v′i is replaced by randomly selected group
elements and v̄i := v′ai . We argue that the view in T1 and T2 are computationally indistinguishable
based on the DDH assumption. Specifically, if there is a distinguisher D who can distinguish the
T1 and T2 with non-negligible probability, then we can construct a PPT adversary A to break the
DDH assumption.A works as follows: whenA receives DDH challenge gx, gyi , gzi where x, yi ← Zp,
A is asked to distinguish if zi = x · yi or random values. A implicitly sets b = x, and simulates
the view as below. For queries ri = r′i it assigns H(ri) = H(r′i) = gyi . Now A invokes D with
input ga·zi , gzi , i ∈ [n] and outputs D’s output. If zi = x · yi, A simulates T1, else, it simulates
T2. Therefore, A can break the DDH assumption with the same advantages as D. The hybrid is
exactly the view output by the simulator.

21

A.2 Proof of Theorem 2

Below we give the details of the proof of Theorem 2.

Proof. We exhibit simulators SimS and SimR for simulating corrupt S and R respectively, and argue
the indistinguishability of the produced transcript from the real execution.

Corrupt Sender: SimS(r⃗
′ = (r′1, . . . , r

′
n), π) simulates the view of corrupt semi-honest sender. It exe-

cutes as follows:

1. In step 1, SimS selects random values βi ← {0, 1}l for i ∈ [n]. Then, it invokes Permute + Share

receiver’s simulator SimR
ps(π, β⃗ = (β1, . . . , βn)) and appends the output to the view.

2. In step 2, SimS generates a random PRF key k. Then, it invokes OPRF sender’s simulator
SimS

oprf(k) and appends the output to the view.

Now we argue that the view output by SimS is indistinguishable from the real one. Since S’s view
only involves underlying Permute + Share and OPRF protocols, the correctness of this simulator
directly follows the security of underlying protocols.
Corrupt Receiver: SimR(r⃗ = (r1, . . . , rn), b⃗ = (b1, . . . , bn)) simulates the view of corrupt semi-honest
receiver. It executes as follows:

1. In step 1, SimR selects random values αi ← {0, 1}l, i ∈ [n] and invokes Permute + Share sender’s
simulator SimS

ps(r⃗, α⃗ = (α1, . . . , αn)) and appends the output to the view.

2. In step 2, SimR selects random values qi ← {0, 1}l, i ∈ [n]. Then, the simulator SimR invokes
OPRF receiver’s simulator SimR

oprf({αi}i∈[n], {qi}i∈[n]) and appends the output to the view.

3. In step 3, for i ∈ [n], SimR picks random fi ← {0, 1}l if bi = 0 and sets fi = qi if bi = 1. Then, it
appends (f1, . . . , fn) to the view.

Now we argue that the view output by SimR is indistinguishable from the real one. We formally
prove this by a standard hybrid argument method. We define three hybrid transcripts T0, T1, T2 where
T0 is real view of R, and T2 is the output of SimR.

– Hybrid0. The first hybrid is the real interaction described in Figure 8. Here, an honest S uses
input r⃗′, π, and honestly interacts with the corrupt R. Let T0 denote the real view of R.

– Hybrid1. Let T1 be the same as T0, except that all PRF values Fk(·) are replaced by randomly
selected values. This hybrid is computationally indistinguishable from T0 by the pseudorandomness
of the PRF.

– Hybrid2. Let T2 be the same as T1, except that the Permute + Share and OPRF execution are
replaced by simulator SimS

ps, Sim
R
oprf . The security of Permute + Share and OPRF functionality

guarantee this view is indistinguishable from T1. This hybrid is exactly the view output by the
simulator.

B Proofs of Theorem 3

Below we give the details of the proof of Theorem 3.

Proof. We exhibit simulators SimS and SimR for simulating corrupt S and R respectively, and argue
the indistinguishability of the produced transcript from the real execution.

Corrupt Sender: SimS(X = {x1, . . . , xm}) simulates the view of corrupt semi-honest sender. It executes
as follows:

1. In step 1, SimS inserts X into the Cuckoo hash table X∗ like an honest sender, and learns the
injective function σ.

2. In step 4, SimS selects random values qj ← F, j ∈ [m]. Let Q = {qj}j∈[m]. Then, it invokes OPRF

receiver’s simulator SimR
oprf({X∗[σ(j)]}j∈[m], Q) and appends the output to the view.

3. In step 5-7, SimS samples random D0∥D1 ← Fs × Fd and executes as an honest sender to obtain
(I, st, qu). Finally, SimS computes ans := Answer(D0, qu) and appends (ans, D1) to the view.

22

4. In step 8, SimS computes r′j := Decode(D0∥D1, X
∗[σ(j)]) for j ∈ [m] and picks random r′i ← F

for i ∈ [mc] \ {σ(j)}j∈[m]. Let r⃗
′ = (r′1, . . . , r

′
mc

)
5. In step 9, SimS selects a random permutation π over [mc]. Then, the simulator SimS invokes

permuted PEQT sender’s simulator SimS
p-peqt(r⃗

′, π) and appends the output to the view.

6. In step 10, for i ∈ [mc], the simulator SimS invokes OT sender’s simulator SimS
ot(X

∗[π(i)],⊥) and
appends the output to the view.

Now we argue that the view output by SimS is indistinguishable from the real one. We formally prove
this by a standard hybrid argument method. We define four hybrid transcripts T0, T1, T2, T3 where T0

is real view of S, and T3 is the output of SimS .

– Hybrid0. The first hybrid is the real interaction described in Figure 9. Here, an honest R uses
input Y , honestly interacts with the corrupt S. Let T0 denote the real view of S.

– Hybrid1. Let T1 be the same as T0, except that all PRF values Fk(·) are replaced by randomly
selected values. This hybrid is computationally indistinguishable from T0 by the pseudorandomness
of the PRF.

– Hybrid2. Let T2 be the same as T1, except that D0∥D1 is sampled uniformly from Fs × Fd.
Note that in the previous hybrid, the values used to compute sparse OKVS are forms of {ri +
fi,α}i∈[mc],α∈[|Y ∗[i]|], where fi,α’s are truly random values. For each bin i ∈ [mc], the sender learns
one random value fi from OPRF10 or selected it by itself. If X∗[σ(j)] /∈ Y ∗[j], the values ri + fi,α
are all random due to fi,α’s are random. If X∗[σ(j)] ∈ Y ∗[j], w.l.o.g, assume fi = fi,t for some
t ∈ [|Y ∗[i]|], the value ri + fi,t is random from the view of sender because ri is randomly selected
by the receiver, and the values ri + fi,α for αin[|Y ∗[i]|] \ {t} are also ramdom because of the
randomness of fi,α. As a result, all values {ri + fi,α}i∈[mc],α∈[|Y ∗[i]|] are random from the view of
the sender. By the obliviousness property of OKVS, T1 and T2 are statistically indistinguishable.

– Hybrid3. Let T3 be the same as T2, except that the OPRF, permuted PEQT and OT execution
are replaced by simulator SimR

oprf ,Sim
S
p-peqt,Sim

S
ot. The security of OPRF, permuted PEQT and

OT functionality guarantee this view is indistinguishable from T2. This hybrid is exactly the view
output by the simulator.

Corrupt Receiver: SimR(Y = {y1, . . . , yn}, X ∪ Y) simulates the view of corrupt semi-honest receiver.
It executes as follows:

1. In step 1-3, SimR inserts Y into the simple hash table Y ∗ and picks a random ri ← {0, 1}l for
each bin i ∈ [mc] like an honest receiver. Let r⃗ := (r1, . . . , rmc

).
2. In step 4, SimR generates a random PRF key k. Then, it invokes OPRF sender’s simulator

SimS
oprf(k) and appends the output to the view.

3. In step 5, SimR computes sparse OKVS D0||D1 as the honest receiver.
4. In step 6, SimR samples random I := {i1, · · · , imw} ← [s]wm. Then, SimR computes (st, qu) ←

Query(I) and appends qu to the view.
5. In step 9 and 10, SimR defines the set Z := X ∪ Y \ Y , i.e. the set of elements that X “brings to

the union”. Now, it uses ⊥ to pad Z to m elements, then it uses dummy item d to pad Z to mc

elements and permutes these elements randomly. Let Z = {z1, . . . , zmc}. SimR sets bi = 1 if and

only if zi =⊥ and bi = 0 otherwise for i ∈ [mc]. Let b⃗ := (b1, . . . , bmc
). Then, it invokes permuted

PEQT receiver’s simulator SimR
p-peqt(r⃗, b⃗), OT receiver’s simulator SimR

ot(bi, zi) and appends these
outputs to the view.

Now we argue that the view output by SimR is indistinguishable from the real one. We formally
prove this by a standard hybrid argument method. We define four hybrid transcripts T0, T1, T2 where
T0 is real view of R, and T2 is the output of SimR.

– Hybrid0. The first hybrid is the real interaction described in Figure 9. Here, an honest S uses
input X, honestly interacts with the corrupt R. Let T0 denote the real view of R.

– Hybrid1. Let T1 be the same as T0, except that the query index set I is replaced by uniformly
random i1, · · · , iwm ∈ [s]wm. This hybrid is computationally indistinguishable from T0 by the
query privacy of the BatchPIR scheme.

10 Note that here the outputs of OPRF have been replaced with truly random values.

23

– Hybrid2. Let T2 be the same as T1, except that the OPRF, permuted PEQT and OT execution
are replaced by simulator SimS

oprf ,Sim
R
p-peqt,Sim

R
ot. The security of OPRF, permuted PEQT and

OT functionality guarantee this view is indistinguishable from T1. This hybrid is exactly the view
output by the simulator.

C Proofs of Theorem 4

Below we give the details of the proof of Theorem 4.

Proof. We exhibit simulators SimS and SimR for simulating corrupt S and R respectively, and argue
the indistinguishability of the produced transcript from the real execution.

Corrupt Sender: SimS(X = {x1, . . . , xm}) simulates the view of corrupt semi-honest sender. It executes
as follows:

1. In step 1-4, SimS generates key pairs pp← Setup(1κ), (pk, sk)← KeyGen(pp) and samples random
D0∥D1 ← Fs × Fd. Then, it executes as an honest sender to obtain (I, st, qu). Finally, SimS
computes ans := Answer(D0, qu), and appends (ans, pk,D1) to the view.

2. In step 9, SimS invokes OT sender’s simulator SimS
ot(xj ,⊥) for j ∈ [m] and appends the output to

the view.

Now we argue that the view output by SimS is indistinguishable from the real one. We formally prove
this by a standard hybrid argument method. We define four hybrid transcripts T0, T1, T2, T3 where T0

is real view of S, and T3 is the output of SimS .

– Hybrid0. The first hybrid is the real interaction described in Figure 9. Here, an honest R uses
input Y , and honestly interacts with the corrupt S. Let T0 denote the real view of S.

– Hybrid1. Let T1 be the same as T0, except that the ciphertexts {si}i∈[n] are replaced by randomly
sampled ciphertexts in the ciphertext space. This hybrid is computationally indistinguishable from
T0 by the single-message multi-ciphertext pseudorandomness of the ReRand-PKE scheme.

– Hybrid2. Let T2 be the same as T1, except that D0∥D1 is sampled uniformly from Fs × Fd. Since
the ciphertexts have been replaced with the random ones, the obliviousness property of OKVS
guarantees T1 and T2 are statistically indistinguishable.

– Hybrid3. Let T3 be the same as T2, except that the OT execution is replaced by simulator SimS
ot.

The security of OT functionality guarantees this view is indistinguishable from T2. This hybrid is
exactly the view output by the simulator.

Corrupt Receiver: SimR(Y = {y1, . . . , yn}, X ∪ Y) simulates the view of corrupt semi-honest receiver.
It executes as follows:

1. In step 1-2, SimR generates (pk, sk) and computes {si}i∈[n], D0||D1 as the honest receiver.
2. In step 3, SimR samples random I := {i1, · · · , imw} ← [s]wm. Then, SimR computes (st, qu) ←

Query(I) and appends qu to the view.
3. In step 5-8, SimR define the set Z := X ∪ Y \ Y , i.e. the set of elements that X “brings to the

union”. Next, it uses ⊥ to pads Z to m elements and permutes these elements randomly. Let
Z = {z1, . . . , zm}. For j ∈ [m], if zj =⊥, SimR sets bj = 1 and s̄j := Enc(pk, 0), if zj ̸=⊥, SimR
sets bj = 0 and s̄j := Enc(pk,Decode(D0||D1, zj)). Then, it appends {s̄j}j∈[m] to the view.

4. In step 9 and 10, for j ∈ [m], SimR invokes OT receiver’s simulator SimR
ot(bj , zj) and appends

these outputs to the view.

Now we argue that the view output by SimR is indistinguishable from the real one. We formally
prove this by a standard hybrid argument method. We define four hybrid transcripts T0, T1, T2, T3

where T0 is real view of R, and T3 is the output of SimR.

– Hybrid0. The first hybrid is the real interaction described in Figure 10. Here, an honest S uses
input X, and honestly interacts with the corrupt R. Let T0 denote the real view of R.

– Hybrid1. Let T1 be the same as T0, except that the query index set I is replaced by uniformly
random i1, · · · , iwm ∈ [s]wm. This hybrid is computationally indistinguishable from T0 by the
query privacy of the BatchPIR scheme.

24

– Hybrid2. Let T2 be the same as T1, except that ciphertexts {s̄j} are computed as the simulator
instead of the real protocol. This hybrid is identical to T1 by the indistinguishability of the ReRand-
PKE scheme.

– Hybrid3. Let T3 be the same as T2, except that the OT execution is replaced by simulator SimR
ot.

The security of OT functionality guarantees this view is indistinguishable from T2. This hybrid is
exactly the view output by the simulator.

D Formal Proof of “Pull-down-then-lift” Encoding

As we mentioned in Section 1.2, we use the “pull-down-then-lift” encoding technique in our ReRand-
PKE based PSU construction to optimize encoding efficiency. We note that this optimization is deeply
bound to the ElGamal encryption scheme. In this section, we formally prove that the OKVS generated
in this way still satisfies (a tweaked definition of) obliviousness.

Let (Encode,Decode) be a standard OKVS scheme, where the value space is Zp. We describe our

new encoding and decoding algorithms (Encodeptl,Decodeptl) as follows.

– Encodeptl({xi}i∈[n], (pk, sk)):
1. For i ∈ [n], pick random ri ← Zp.
2. Compute d1 = (d11, . . . , d

1
N) := Encode({(xi, ri)}i∈[n]) and d2 = (d21, . . . , d

2
N) := Encode({(xi, sk·

ri)}i∈[n]), where the random tapes used in two encoding algorithms are the same.

3. Output D = ((gd
1
1 , gd

2
1), . . . , (gd

1
N , gd

2
N))

– Decodeptl(D,x):

Output c = (c1, c2) := (
∏

row(x)j=1 g
d1
j ,
∏

row(x)j=1 g
d2
j)

Note that our new Encodeptl algorithm takes (pk, sk) instead of group elements as inputs be-
cause it requires to know the algebraic structure of group elements, i.e., the discrete logarithm ri for
gri . Therefore, we prove our new Encodeptl algorithm satisfying the following tweaked obliviousness
property.

Theorem 5. Assume the DDH assumption hold in group G, where order of G is p and g is a genera-
tor. For all distinct {x0

1, . . . , x
0
n} and all distinct {x1

1, . . . , x
1
n}, if the Encode algorithm does not output

⊥ for {x0
1, . . . , x

0
n} or {x1

1, . . . , x
1
n}, for any ElGamal key pair (pk, sk), then the following distributions

are computationally indistinguishable:

{D|D ← Encodeptl({x0
i }i∈[n], (pk, sk))}

{D|D ← Encodeptl({x1
i }i∈[n], (pk, sk))}

Proof. For any distinct {x1, . . . , xn}, consider the computation process of Encodeptl({xi}i∈[n], (pk, sk))}:
Firstly, it picks random ri ← Zp, i ∈ [n]. Then, it computes the OKVS d1 = (d11, . . . , d

1
N) :=

Encode({(xi, ri)}i∈[n]) and d2 = (d21, . . . , d
2
N) := Encode({(xi, sk · ri)}i∈[n]). Since the random tapes

used in two encoding algorithms are the same, we have d2j = sk · d1j for j ∈ [N]. Furthermore,
since ri’s are randomly selected, the obliviousness of underlining OKVS (Encode,Decode) guarantees

d1 is indistinguishable to the uniform distribution over ZN
p . Let D = ((gd

1
1 , gd

2
1), . . . , (gd

1
N , gd

2
N)) =

Encodeptl({x0
i }i∈[n], (pk, sk))}. For j ∈ [N], we have (gd

1
j , gd

2
j) = (gd

1
j , gsk·d

1
j) = (gd

1
j , pkd

1
j), which

exactly corresponds to a fresh ElGamal ciphertext of 1. Therefore, the distribution of D can also be
written as:

Dis({xi}i∈[n], (pk, sk)):

1. For j ∈ [N], computes Dj ← Enc(pk, 1), where Enc is the encryption algorithm of the ElGamal
encryption scheme.

2. Output D = (D1, . . . , DN)

By the single-message multi-ciphertext pseudorandomness of ElGamal encryption scheme, we have
the above distribution is indistinguishable to the uniform distribution over ciphertext space, i.e., G2.
Note that the above new description of D is independent from {xi}i∈[n]. As a result, two distributions
are computationally indistinguishable.

25

	Unbalanced Private Set Union with Reduced Computation and Communication
	Security Proofs of Permuted-PEQT
	Proof of Theorem 1
	Proof of Theorem 2

	Proofs of Theorem 3
	Proofs of Theorem 4
	Formal Proof of ``Pull-down-then-lift'' Encoding

