
Horcrux: Synthesize, Split, Shift and Stay Alive
Preventing Channel Depletion via Universal and

Enhanced Multi-hop Payments
Anqi Tian1,2,∗, Peifang Ni1,3,∗, Yingzi Gao1,2 and Jing Xu1,3,†

1Institute of Software, Chinese Academy of Sciences
2School of Computer Science and Technology, University of Chinese Academy of Sciences

3Zhongguancun Laboratory, Beijing, P.R.China
{anqi2021, peifang2020, yingzi2019, xujing}@iscas.ac.cn

Abstract—Payment Channel Networks (PCNs) have been high-
lighted as viable solutions to address the scalability issues
in current permissionless blockchains. They facilitate off-chain
transactions, significantly reducing the load on the blockchain.
However, the extensive reuse of multi-hop routes in the same
direction poses a risk of channel depletion, resulting in in-
volved channels becoming unidirectional or even closing, thereby
compromising the sustainability and scalability of PCNs. Even
more concerning, existing rebalancing protocol solutions heavily
rely on trust assumptions and scripting languages, resulting in
compromised universality and reliability.

In this paper, we present Horcrux, a universal and efficient
multi-party virtual channel protocol without relying on extra
trust assumptions, scripting languages, or the perpetual online
requirement. Horcrux fundamentally addresses the channel de-
pletion problem using a novel approach termed flow neutrality,
which minimizes the impact on channel balance allocations
during multi-hop payments (MHPs). Additionally, we formalize
the security properties of Horcrux by modeling it within the
Global Universal Composability framework and provide a formal
security proof.

We implement Horcrux on a real Lightning Network dataset,
comprising 10,529 nodes and 38,910 channels, and compare
it to the state-of-the-art rebalancing schemes such as Shaduf
[NDSS’22], Thora [CCS’22], and Revive [CCS’17]. The experi-
mental results demonstrate that (1) the entire process of Horcrux
costs less than 1 USD, significantly lower than Shaduf; (2)
Horcrux achieves a 12%-30% increase in payment success ratio
and reduces user deposits required for channels by 70%-91%;
(3) the performance of Horcrux improves by 1.2x-1.5x under
long-term operation; and (4) Horcrux maintains a nearly zero
channel depletion rate, whereas both Revive and Shaduf result
in thousands of depleted channels.

I. INTRODUCTION

Permissionless cryptocurrencies, such as Bitcoin [33], have
been progressively emerging as an alternative payment method
by leveraging blockchain technology. This technology relies on
a decentralized consensus protocol to establish and maintain a
secure, distributed ledger that tracks every transaction. Despite
its numerous benefits, the scalability issue remains a significant
hurdle limiting the widespread adoption and deployment of
blockchain. For instance, in 2017, Bitcoin’s daily transaction

peak exceeded 420,000. However, Bitcoin can only process
about 10 transactions per second due to limitations imposed by
the permissionless nature of blockchain’s consensus algorithm,
whereas centralized solutions like Visa can handle over 50,000
transactions per second.

Payment Channel (PC) [1] has emerged as a promising solu-
tion to the scalability issue. Two users can cooperatively create
a PC by locking coins in a jointly controlled address, allowing
them to conduct several off-chain transactions by updating the
channel state, which can be closed by publishing its latest state
on-chain. While PCs effectively reduce the blockchain load, it
is economically infeasible to establish such channels between
all potential users, as it requires both parties to lock coins for
each channel. To overcome this limitation, Payment Channel
Networks (PCNs) have been proposed, connecting any two
users via paths that utilize existing PCs as intermediaries.
Implementations of PCNs are already widely used in practice,
e.g., the Lightning Network (LN) [36], which is deployed
upon Bitcoin, currently hosts over 150 million USD worth of
bitcoins across more than 14,000 nodes and 64,000 channels.

Nevertheless, PCNs face the challenge of fund depletion in
channels [35, 42]. The reuse of the same payment path leads
to an accumulation of balances in channels along the path,
preventing payments in that direction and potentially resulting
in an imbalanced PCN structure. Moreover, when a channel
depletes, all payments attempting to pass through it will fail,
forcing users to choose more expensive routes. This results in
higher transaction costs and limited throughput of entire PCN.

Current efforts focus on reviving depleted channels. A
trivial approach of closing and then reopening a channel
requires two costly on-chain transactions. Splicing [34] and
LOOP [27] reduce this to one on-chain transaction, but they
only support one-time refunding and require users to have
sufficient on-chain funds. Pioneering works in rebalancing,
represented by Revive [25], HIDE & SEEK [12], Thora
[6] and Wiser [43], offer potential solutions by using coins
from adjacent channels without affecting payments in the
underlying channels. However, their reliance on cycle paths,
extra trust assumptions, and minimal rebalancing amounts
significantly undermine the practical availability of these off-
chain rebalancing approaches. Non-cycle rebalancing, intro-

∗ Anqi Tian & Peifang Ni led efforts with equal contribution.
† Corresponding author.
This paper will appear in NDSS 2025.

duced by Shaduf [21], requires an on-chain setup that costs
one transaction to bind two adjacent channels, allowing free
coin transfers between them. Despite having minimal path
restrictions and the ability to perform multiple rebalancing
operations, Shaduf focuses on single-node rebalancing and
requires smart contracts, limiting its application on scriptless
blockchains like Bitcoin. In summary, let us overview the
remaining hurdles and design challenges.
• Inadequate fund depletion solving. According to the real
topology data of the LN [4], the average number of channels
per user is 8.6, implying a highly connected network among
users. Since a single multi-hop payment (MHP) can skew
the fund allocations of all involved channels, it is critical to
recognize that this balance skewness, introduced by payments,
is the root of fund depletion. However, existing rebalancing
protocols focus solely on addressing already depleted channels
and have not made improvements to address this underlying is-
sue, resulting in poor sustainability. This manifests in channels
repeatedly facing depletion and closure risks, which severely
limits the capacity and throughput of PCNs.
• Reliance on smart contracts. Smart contracts programmed
over rich Turing-complete scripting languages guarantee the
balance security of involved users and the coins shift between
channels with a relatively simplified construction. However,
it is not universally applicable, as the majority of existing
blockchains do not support Turing-complete scripting lan-
guages (i.e., Bitcoin, Monero, Ripple, ZCash).
• Weak reliability. To ensure users’ balance security, it is
essential to atomically update the involved channels in the
rebalancing process, requiring synchronization among the par-
ticipating users in the protocol. For instance, in the case of
Revive [25], a trusted third party acts as a fair leader to collect
users’ rebalancing demands and coordinate the rebalancing
process. As an optimization, existing multi-channel update
schemes employed in rebalancing protocols alternatively rely
on the always-online assumption, utilizing users to supervise
the blockchains and trigger disputes if necessary. However, it
is challenging for users to remain persistently online due to
various factors [11], i.e., hardware failures. Once a user fails
to stay online, these protocols face security vulnerabilities,
compromising their reliability and limiting their practical
applicability.

The current state of affairs naturally leads to the following
question: Is it possible to design a rebalancing protocol that
completely mitigates channel depletion without relying on
extra trust assumptions for the involved users or the underlying
blockchains (e.g., being always online or supporting scripting
languages)?

We affirmatively answer the above question in this work.
We propose a targeted approach called flow neutrality, which
enables users to securely transfer assets between adjacent
channels while processing payments, completely eliminating
the balance skewness introduced by MHPs. This fundamen-
tally resolves the issue of channel depletion. Furthermore, by
introducing time-based fee incentive mechanism, we achieve
a secure Bitcoin-compatible multi-channel update protocol,

while removing extra trust assumptions. Note that our protocol
construction inherently resists domino attack [10], because we
separate the unloading of Virtual Channels (VCs) from the
closure of underlying channels. To further enhance reliability,
we introduce the Time Slicing mechanism, allowing users to
securely perform other payments or go offline, thereby elim-
inating the always-online assumption. Ultimately, we present
Horcrux, a universal and efficient multi-party virtual channel
protocol facilitating effective rebalancing without reliance on
extra trust assumptions, scripting languages, or perpetual on-
line connectivity. A comparison between Horcrux and state-
of-the-art solutions is presented in Table I.

TABLE I: The comparisons among related works1

.

Protocol Revive3 Thora3 Shaduf Our work
On-chain setup2 ✗ ✗ ✓ ✓

Non-cycle construction ✗ ✗ ✓ ✓

Bitcoin-compatible ✗ ✓ ✗ ✓

Sustainability ✗ ✗ ✗ ✓

Reliability ✗ ✗ ✗ ✓

1 Revive [25], Thora [6], Shaduf [21].
2 On-chain setup allows multiple rebalancing with one single
on-chain transaction.
3 Cycle construction provides one-time rebalancing but requires
a leader and directed cyclic paths in PCNs.

Our contributions. In greater detail, the core contributions of
Horcrux can be summarized as follows:
• A comprehensive solution of fund depletion. We analyze how
MHPs contribute to the balance imbalance in channels along
the routes and elucidate its severity, implying the imminent
risk of channel depletion or even closure for involved users
and the corresponding poor sustainability of PCNs. To address
this issue, we introduce a novel approach flow neutrality that
minimizes the impact on channel balance allocations during
MHPs, fundamentally resolving the channel depletion issue
and maintaining balanced and sustainable PCNs.
• Universality enhancement. Horcrux is designed for the
UTXO model without relying on specific scripting features and
only requires the bare minimum ability of digital signature ver-
ification support, ensuring compatibility with the majority of
blockchains. Besides, this optimization of universality does not
bring the complexity of construction. Whether the blockchain
employs ECDSA, Schnorr, or BLS signature schemes, Horcrux
can be implemented practically and efficiently.
• Reliability enhancement. Horcrux only necessitates the par-
ticipation of intermediate users in the establishment and clo-
sure of virtual channels, without being involved in each pay-
ment. By utilizing the Time Slicing mechanism, intermediate
users can securely go offline during designated time intervals,
eliminating potential security vulnerabilities and significantly
enhancing system reliability. Additionally, to mitigate the risk
of domino attacks, Horcrux introduces a multi-channel update
mechanism that separates the offloading process from the
closing of channels, thereby preventing malicious users from
closing channels prematurely.
• Implementation and evaluation. We provide a proof-of-
concept implementation of Horcrux that respectively based

2

on Schnorr/ECDSA signatures and simulation over a real LN
dataset, encompassing 10, 529 nodes and 38, 910 channels
[21], which demonstrates that Horcrux’s on-chain costs several
times lower than Shaduf [21], with the cost of entire proto-
col less than 1 USD. In terms of performance, we include
measurements for network depletion as one of the evaluation
criteria. We also test both the short-term and long-term perfor-
mance of Horcrux by running 20 and 200 batches, respectively,
with each batch containing 50,000 random transactions. Com-
pared to existing works [25][21], Horcrux achieves a 12%-30%
increase in payment success ratio, a reduction of 70%-91%
in user deposits required for channels, and its performance
improves by 1.2x-1.5x under long-term operation. More im-
portantly, Horcrux maintains a nearly zero channel depletion
rate throughout its operation, a noteworthy achievement that
surpasses other protocols.

II. PRELIMINARIES AND BACKGROUND

In this section, we first introduce notations and preliminaries
on UTXO-based blockchains. We then overview the basics of
channel works including PCNs and virtual channels (VCs).
We finally discuss the balance skewness in MHPs.

A. UTXO-based blockchains

We adopt the notation for UTXO-based blockchains(e.g.,
Bitcoin), which we shortly review next. In UTXO-based
blockchains, the units of currency, i.e., the coins, exist in the
outputs of transactions. We define such an output as a tuple
θ := (cash, ϕ). The component θ.cash contains the amount
of coins stored in this output and θ.ϕ defines the condition
under which the coins can be spent. We say that a user U
owns the coins in an output θ if θ.ϕ contains only a signature
verification w.r.t. the public key of U . For this, we use the
notation pkU .

In brief, a transaction in the UTXO model maps one or
more existing outputs to a list of new outputs. The existing
outputs are called transaction inputs. Formally, we use
the public key pk to denote the input/output address and
define a transaction tx as tx[inputs, outputs, witness]
to transfer the coins {v1, · · · , vm} from ad-
dresses {pk1, · · · , pkm} to {p̃k1, · · · , p̃kℓ}, where
inputs := {(pk1, v1), · · · , (pkm, vm)}, outputs :=

{(p̃k1, ṽ1), · · · , (p̃kℓ, ṽℓ)} and witness := {σ1, · · · , σm}
fulfills the spending condition of each input. Additionally,
we focus on the scriptless blockchains, thus the witnesses
σj (j ∈ [1,m]) is the signature w.r.t., the public keys pkj .

Especially, we use a chart to visualize the transaction
flow. As depicted in Fig. 1, we respectively use double-
edge rectangles and single-edge rectangles to represent the
transactions that are already confirmed on the blockchain and
the ones that are not yet. Each transaction contains one or more
boxes to denote its outputs and the corresponding amount of
coins is written inside the output box. In addition, the spending
condition of each output is written below the outputting arrow.

We use Fig. 1 to further illustrate the coin flow between
the addresses controlled by a single user and addresses jointly

controlled by multiple users, which is the basic transaction
framework in the PC (network). Firstly, transactions txA with
output coins α and txB with output coins β are respectively
spent by users A and B who own secret keys skA and skB ;
while address pkA,B is controlled jointly by users A and B,
then transaction tx′

A,B is valid only if it has been multi-signed
by users A and B; finally, the coins α′ and β′ return to the
addresses respectively controlled by users A (i.e., address pkA)
and B (i.e., address pkB), where α+ β = α′ + β′.

𝛼

𝑡𝑥𝐴

𝛽

𝑡𝑥𝐵

𝛼 + 𝛽

𝑡𝑥𝐴,𝐵
𝛼′

𝑡𝑥𝐴,𝐵
′

𝛽′

𝑝𝑘𝐴

𝑝𝑘𝐵

𝑝𝑘𝐴,𝐵

𝑝𝑘𝐴

𝑝𝑘𝐵

Fig. 1: The coins α and β flow respectively from addresses pkA and
pkB to pkA,B (jointly controlled by A and B), then being spent by
transaction tx′

A,B , where its two outputs with value α′ and β′ are
respectively controlled by A and B.

B. Payment channel network

1) Payment channel: A PC enables two users to have
arbitrarily many off-chain transactions when they have locked
coins in a specific address jointly controlled by these two
users, while only requiring two on-chain transactions respec-
tively for opening and closing the channel during its lifespan.
Since these on-chain transactions guarantee several off-chain
transactions being executed securely, the PC technique effi-
ciently improves the throughput of the underlying blockchain.

In this work, we use PCs in a black-box manner and
refer the readers to work [8] for more details. On a high
level (cf. Fig. 1), a PC γA,B with capacity α + β between
users A and B is successfully opened once the funding
transaction txA,B has been confirmed on the blockchain.
From this point, A and B can have off-chain transactions via
updating channel states which assign each of a new balance
as UpdateChannel(γA,B , α+β, balA, balB) (i.e., A and B
jointly sign a new channel state tx′

A,B with outputs α′ = balA
and β′ = balB). Either A or B can close γA,B by posting the
final state tx′

A,B on the blockchain.
2) Payment channel network: However, one user cannot

maintain one PC with each user because of the deposits,
thereby making the PC technique impossible to achieve the
desired effect. PCNs continue to build on PCs to enable any
two users to be connected through a path of intermediate PCs.
For example, if users A and B both have a PC with user
I , then I can be the intermediary to support the payments
between A and B (i.e., A pays coins α to I via γA,I and I
pays coins α to B via γI,B , which is equivalent to user A pays
coins α to B). Therefore, the fundamental security property
atomicity of PCNs guarantees that either the payments happen
in all channels or none at all.

3

The Bitcoin-based LN is the state of the art in both PC
and PCNs, where atomicity is guaranteed mainly based on
the Hashed Timelock Contracts. In the LN, all users on the
path lock some coins via hashed timelocks, which can only be
opened by a unique witness known to the receiver of each PC.
In particular, once a receiver has opened a hashed time-lock
to get the coins, then simultaneously the witness is released
to the receiver of the next hop. Nevertheless, this construction
brings several drawbacks: 1) low robustness: the success of
each payment strongly depends on each intermediary on the
path; 2) high cost: as each payment needs to pass coins through
the intermediate users one by one, it highly costs not only time
but also the fees; 3) weak privacy: the intermediate users know
about every payment between the end users. To mitigate these
issues, VCs have been proposed [18].

3) Virtual channel: The VC, built over the underlying
PCNs, enables any two users to establish a direct channel. To
understand the differences of payments in the PCN and VC, we
use Fig. 2 to show an example. Assume users A and B want
to have payments, while no direct channel between them, i.e.,
there exists PCs γA,I and γI,B . Then the MHPs enables users
A and B to pay each other via the intermediate user I with the
drawbacks we have discussed above, in particular, user I is
involved in each off-chain payment of users A and B. Instead,
the VC γ̂A,B ensures users A and B securely have off-chain
payments directly via the blue arrow, while the intermediate
user I only needs to participate in the setup and close phases.
Thus, the VC can be seen as an important building block for
efficiently implementing PCNs.

𝐴 𝐼 𝐵

(a) PCN construction

𝐴 𝐼 𝐵

(b) VC construction

Fig. 2: Illustration of users A and B having payments through the
intermediary I respectively in the PCN and VC.

Unsurprisingly, it is challenging to implement the VC in
actual designs. Previous works [17, 19, 26] show how to
construct multi-hop VCs with smart contract or extra scripts
as the trusted third party, which is incompatible with most
existing blockchains like [5]. The following work Donner [10]
successfully removes the trusted third party with the trusted
assumption that intermediate users are always online, which
ensures that the users can respond promptly to secure their
coins against malicious activities. Nonetheless, the assumption
of perpetual online connectivity is often impractical, and any
periods of absence could be exploited by malicious actors.

C. Balance skewness in MHPs

Firstly, it is crucial to highlight that the capacity of a MHP is
constrained by the minimum balance along the path. Besides,
we informally define the sustainability of PCNs as follows.
Sustainability. A PCN achieves sustainability if its MHP
protocols not only meet current payment demands but also

do not impair the subsequent payment capabilities in both
directions of the involved channels.

In a typical PC, the flow of coins in both directions is
often imbalanced and gradually accumulates toward one user.
Consequently, the channel depletes in that direction, ultimately
becoming unidirectional or closing altogether, resulting in
subsequent multi-hop payments failing. Worse still, this issue
exacerbates routing difficulties and increases routing costs,
further compromising the availability of networks. Channel
depletion stands as the paramount challenge in efficiently
realizing both payments and PCNs. However, existing MHP
protocols themselves mainly contribute to this phenomenon,
as described in more detail below:

𝐴 𝐵𝐼1 𝐼2 𝐼3
5 5 5 5 5 5 5 5
1 5 5 5 5 5 5 9

4

(a) Ideal multi-hop payment

𝐴 𝐵𝐼1 𝐼21 9 1 9 1 9 1 9
5 5 5 5 5 5 5 5

𝐼3

4 4 4 4

(b) Real multi-hop payment

Fig. 3: Diagrams of balance variation within a multi-hop payment,
where (a) is the ideal case, (b) is the real case.

Ideally, as depicted in Fig. 3(a), after the MHP between
users A and B (i.e., user A pays coins 4 to B), the balances
of the intermediate users I1, I2 and I3 in each channel should
be unchanged (here we do not discuss the fees paid to the
intermediaries). However, in the real MHP protocol (Fig. 3
(b)), the payment of coins 4 occurs in each channel and thus
results in fund depletion for each underlying PC (i.e., each
intermediary I owns balance 1 in the left channel while 9 in
the right channel), thereby restricting the payment capabilities
of these channels. This, in turn, undermines the sustainability
of PCNs. Furthermore, this will weaken the enthusiasm of
users to participate in MHPs, as they not only provide a
service (including locking up part of their assets for a long
period) but also face the risk of fund depletion and even
being forced to close the channel. Notice that, all channels
along the path suffer from the risk of each MHP, leading
to numerous channels being depleted in PCNs. Designing a
rebalancing protocol to address this issue and fundamentally
avoid channel depletion, thereby enhancing the sustainability
of PCNs, remains an open challenge.

III. SOLUTION OVERVIEW

In this work, our ultimate goal is to securely realize the
ideal MHPs by proposing an efficient rebalancing protocol
that avoids balance skewness, ensuring successful payments
as long as each intermediary has sufficient balance in adja-
cent channels (i.e., it can only be rich in one of these two
channels). This section begins with a high-level overview of
our approach, followed by outlining the basic construction
in a three-party scenario. Subsequently, we delve into the
challenges and explore potential solutions, eventually leading

4

to the final protocol. The protocol is formally and thoroughly
described in Section IV-C.

A. Flow neutrality

Considering the major causes of channel depletion, i.e.,
the balance skewness in each channel during the MHPs, we
propose a new approach named flow neutrality, where the flow
implies the directed payments and neutrality implies offsetting
the positive and the negative.
Flow neutrality. Instead of conducting payments within each
channel individually, intermediary users immediately utilize
funds received from one channel for the subsequent payment
in the next channel, thereby offsetting the impact on their
balances. In essence, flow neutrality aims to minimize the
impact on channel balance allocations during MHPs. As a
result, once the flow neutrality is achieved across the current
PCNs, the risk of channel depletion will be significantly
reduced, enhancing the sustainability of PCNs and further
improving their scalability and throughput.

𝐴 𝐼 𝐵
8 10 3 11

4

4 10 3 15

4 4

We first consider achieving flow neutrality in a three-party
structure, where the intermediate user opens two channels with
different users, as illustrated above. User I maintains channel
γA,I with user A and also channel γI,B with user B, where
I owns balance 10 in γA,I but 3 in γI,B . Suppose now A
needs to make a payment of 4 coins to B, which will fail to
go through I .
An intuitive but imperfect construction. A natural idea is
to transfer the 4 coins in γA,I to γI,B and complete the
payment (ignoring fees for simplicity). For user I , the balances
in the two channels will remain unchanged, satisfying flow
neutrality. In other words, regardless of how many transactions
occur between A and B, I will maintain balance equilibrium,
keeping a stable amount of funds in both γA,I and γI,B . For
other users who need to utilize γA,I and γI,B channels as
payment intermediaries, their payment paths will also remain
stable and well-funded.

The aforementioned MHP construction rebalances and mit-
igates the balance skewness introduced by unbalanced pay-
ments in the underlying channels. Besides, it amplifies the pay-
ment capabilities of intermediate users. However, the on-chain
claim required for fund transfers brings additional costs and a
potential privacy concern. For instance, adversaries might gain
extra information by observing the fund transfers caused by
MHPs. Additionally, from a performance perspective, a more
efficient scheme for implementing MHPs is needed. At this
point, our goal is to construct a VC over the PCs between
the two end users, while retaining the design for rebalancing
introduced in the previous section.

B. Three-party VC construction

We still begin by considering VC construction in a three-
party scenario. The basic logic is that the opening operation
implies transferring coins from channels to the VC while
the closing operation implies returning coins from the VC
to underlying channels, as shown in the diagram below. In
slightly more detail, intermediary I first shifts 5 coins of
γA,I to an account jointly controlled by A, I, and B for
supporting the payments between A and B (represented by
the yellow dashed line in the diagram). After the claim has
been confirmed, i.e., the VC γ̂A,B between A and B is
successfully established, A and B can have unlimited bi-
directional off-chain payments privately with upper bound 5,
without involving I . When A and B decide to finish with the
result that A should pay 4 coins to B, then A, B, and I move
to the closing phase, as represented by the green solid line in
the diagram.

𝐴 𝐼 𝐵
8 10 3 11

5

1 4

4 10 3 15

4 4

5 0

In the closing phase, the 5 coins are split into two parts 1
and 4 for γA,I and γI,B respectively. Before withdrawing the 5
coins, γA,I and γI,B are updated according to the allocation of
these 5 coins. Once the 5 coins are returned to the underlying
channels, the VC γ̂A,B is closed, and the balances of user I in
channels γA,I and γB,I remain at 10 and 3, respectively. Thus,
the insufficient balance of I no longer prevents γI,B from
participating in MHPs. In addition, the underlying channels
γA,I and γI,B can still work normally while the VC γ̂A,B

works. The VC γ̂A,B not only brings less cost and better
efficiency of trades for A and B but also amplifies I’s payment
capabilities in both directions without negative changes on the
balances in either channel. Next, we will explain why our VC
construction is resistant to the domino attack.
Resist domino attack. As Donner [10] describes, the domino
attack targets VCs constructed as proposed in work [8] and
the recursive ones, e.g., Elmo [26] and LVPC [24]. The direct
effect of domino attack is to force the closure of all the
underlying PCs on this path and the quantitative experiment
shows that a malicious user would force all existing channels
in LN to close at a very low cost. In work [8], to protect the
balance security of users, it provides the offloading process
to claim their coins on-chain. However, both end users make
their funding transactions off-chain, so the only way to offload
is to close their channels with on-chain transactions. That is
the core reason that domino attack works. In this work, we
separate the offloading process of VCs from closing underlying
channels, since the channel capacity is funded to a public
account controlled by the three parties. When a dispute occurs,
it is only necessary to allocate the funds from the public
account back to the underlying channels to offload the VC.
Therefore, our construction inherently resists domino attack.

5

Intuition on sustainability. In our approach, intermediate
users achieve coin transfers between adjacent channels by
redistributing funds from the three-party account to the two
channels upon closing the VC. This naturally offsets the
balance skewness caused by MHPs, thereby remaining the
payment capabilities of channels. Consequently, our approach
will endow PCNs with robust sustainability and performance.

Actually, when the involved users are more than 3, the above
process is not secure enough to guarantee atomicity that honest
users do not lose coins and further measures are needed (see
next subsection).

C. Multi-party VC construction

Let us further consider a more complex situation where
users U0 and Un trade with each other through the intermedi-
aries Ui(i ∈ [1, n− 1]) on the path (U0 ↔ U1 ↔ · · · ↔ Un−1

↔ Un) via opening a VC γ̂0,n with capacity α and lifespan T .
Based on the three-party construction in the previous section,
we extend it to support MHPs as shown in Fig. 4.

One of the core differences between MHPs and VCs is that
each MHP is publicly available to all participating users, while
each payment within the VC is only known to the end users,
with other users only participating in the final closing phase.
Therefore, there is one multi-channel update needed when the
VC is about to close. Just as we know, one of the most vital
challenges in constructing the VC is to close it safely, which is
decided by the honest completion of the multi-channel update
for the final payment.

For the three-party VC construction, achieving honest and
consistent multi-channel updates is much easier. The interme-
diate user I is able to coordinate channel updates on both
sides, ensuring update consistency under the supervision of
end users A and B. However, when extended to multi-party
construction, two challenges urgently need to be addressed:
1) intermediate users cannot tell if the updates are consistent
with the latest VC state; 2) end users cannot supervise the
intermediate users. To address these two specific issues, it is
necessary to ensure that all users will choose the latest state
to update their channels. We first observe that there is no
mutual trust between the sender and receiver. When one of
them selects an outdated state to close the VC, the other one
must lose money. Thus if the sender and receiver compete
to provide the state for closing the VC, where the state with
larger timestamp will be selected, we are confident that the
rational sender and receiver will agree on the latest VC state
to keep their assets from damaging. Considering the lack of
reliance on trusted third parties and scripts, who would be the
referee? As the intermediate users Ui(i ∈ [1, n−1]) also need
to know how to update in the close phase, we introduce an
incentive time-based fee model that favors the latest state for
the intermediate users and assigns this responsibility to them.
Incentive fee model based on time. We incorporate times-
tamps into VC transactions to establish the sequence of events
during the update phase. When parties opt to close the VC,
each submits a credential reflecting their chosen VC state to
the intermediate users. As mentioned above, there will be one

rational P (P ∈ U0, Un) chooses the latest state st′ with the
α′ to pay and the timestamp T ′. Then the intermediate users
Ui(i ∈ [1, n− 1]) calculate their fees by f ′ = fee(T ′), where
fee(t) = (t

T)
2 · f . Here, f represents the total fee for the

whole lifetime T , and t represents the time at the latest state.
Due to the curvilinear nature of the power function, it can
incentivize intermediate users to perform services for a longer
time and motivate them to choose the state with the most
recent timestamp in the competition for end users.

When a consistent state has been determined, the next step is
to perform updates of all the underlying channels. For security
purposes, previous works such as Shaduf [21], have required
users to stay online to ensure a timely response to malicious
behaviors. Also, for efficiency, users expect the closing phase
to be swift, freeing their locked assets quickly, which neces-
sitates that all users update their channels in a timely manner.
However, the online assumption is unrealistic. To remove this
assumption, we propose a timing mechanism named Time
Slicing to a pseudo-real-time effect without requiring the users
to be online in real-time, while ensuring both efficiency and
safety.
Time Slicing. The timing mechanism splits the entire lifetime
T of the VC to smaller time slices ti(i ∈ [0, n]), during which
the intermediate users are online, awaiting closing requests
from the end users and completing the close phase. The
interval time φ between two adjacent slices is designated as
the safe offline period for users until the next time slice. In the
implementations, the lifetime T is set to a large value (e.g., a
few days) to ensure enough time for completing the payments
between end users U0 and Un, the exact values of t and φ
are based on the network delay and level of congestion on the
blockchain, and φ is substantially longer than t. For instance,
in a real-case scenario, such as Horcrux on Bitcoin with a
VC lifespan T of 48 hours, each time slice t can be set to
10 minutes, with a time interval φ of 7 hours and 50 minutes
between slices for users to securely go offline. This divides the
lifespan T into 6 time slices, requiring the intermediate users
to be online for only 1 hour in total, significantly reducing
their burden compared to being online for the full 48 hours. 1

As previously outlined, the widespread reuse of identical
payment paths results in channels progressively leaning in
one direction or even reaching depletion. Consequently, users
actively involved in MHPs are particularly susceptible, thereby
limiting the extensive utilization of related payment paths. Our
solution plays a crucial role in mitigating the risk of depletion
for these active users, ultimately ensuring the maintenance of
a balanced and sustainable PCN. For two users with multiple
transaction demands but without a directional channel between
them, our solution enables the cost-effective execution of
multiple bidirectional transactions in a single multi-channel
update. Simultaneously, this process rebalances the intermedi-
ary channels while amplifying the payment capacity of each
user to their overall balance in the two adjacent PCs. This

1Clearly, Time Slicing not only weakens the strong real-time online as-
sumption, but also guarantees the timely and secure closure of Horcrux (cf.
Section IV-C for detailed analysis).

6

𝐿𝑜𝑐𝑘⊥,0,1(𝛼0) 𝐿𝑜𝑐𝑘0,1,2(𝛼1) 𝐿𝑜𝑐𝑘𝑛−2,𝑛−1,𝑛(𝛼𝑛−1)

𝑆𝑒𝑡𝑢𝑝𝑈0,𝑛(𝑈0, … , 𝑈𝑛)

𝑈0

෢𝑠𝑘0 ෢𝑠𝑘0
𝑅⊥

𝑈𝑛

෢𝑠𝑘𝑛 ⊥෢𝑠𝑘𝑛
𝐿

𝑈𝑛−1

෢𝑠𝑘𝑛−1 ෢𝑠𝑘𝑛−1
𝑅෢𝑠𝑘𝑛−1

𝐿

𝑈1

෢𝑠𝑘1 ෢𝑠𝑘1
R෢𝑠𝑘1

L

𝐿𝑜𝑐𝑘𝑛−1,𝑛,⊥(𝛼𝑛)

⋯

ො𝛾0,𝑛

𝑈𝑛𝑙𝑜𝑐𝑘⊥,0,1(𝛼0) 𝑈𝑛𝑙𝑜𝑐𝑘0,1,2(𝛼1) 𝑈𝑛𝑙𝑜𝑐𝑘𝑛−2,𝑛−1,𝑛(𝛼𝑛−1) 𝑈𝑛𝑙𝑜𝑐𝑘𝑛−1,𝑛,⊥(𝛼𝑛)

𝐶𝑙𝑜𝑠𝑒𝑈0,𝑛 (𝑠𝑡𝑉𝐶
′ , 𝑠𝑡𝑉𝐶

′′)

𝛾0,1 𝛾1,2 𝛾𝑛−2,𝑛−1 𝛾𝑛−1,𝑛⋯

𝑈0

෢𝑠𝑘0 ෢𝑠𝑘0
𝑅⊥

𝑈𝑛

෢𝑠𝑘𝑛 ⊥෢𝑠𝑘𝑛
𝐿

𝑈𝑛−1

෢𝑠𝑘𝑛−1 ෢𝑠𝑘𝑛−1
𝑅෢𝑠𝑘𝑛−1

𝐿

𝑈1

෢𝑠𝑘1 ෢𝑠𝑘1
R෢𝑠𝑘1

L

⋯

Fig. 4: Two multi-party updates of underlying channels respectively in Setup phase and Close phase

results in a mutually beneficial scenario for both the end users
and intermediary users.
Necessity of on-chain confirmation. While transferring coins
between adjacent channels simultaneously with MHPs can
effectively avoid introducing balance skewness, it also changes
the funds reserved in the two channels. To ensure these
transfers take effect and can be verified by other users, the coin
transfers need to be declared on the blockchain. Otherwise, it
could be vulnerable to the double-shifting attack [21].

Consider a scenario where the intermediate user I maintains
channels γA,I , γI,B , and γI,C with users A, B, and C respec-
tively, with balances of 13, 0, and 1. If transferring coins from
one channel to another is declared off-chain (i.e., without on-
chain confirmation), malicious users A and I can collaborate
to deceive honest users B and C. Specifically, in a concurrent
trade with both users B and C through intermediate user I
who claims to shift 8 coins to γI,B and γI,C respectively. As
a result, in the respective views of users B and C, both fund
transfers are successful. However, user I owns only 14 coins
in total, so it cannot pay 16 coins in the end, resulting in a
loss of 2 coins for either honest user B or C.

𝟖

𝐴 𝐼 𝐵

𝐶

𝟖

0 11

1 11

13

The core reasons that lead to double-shifting attack are:
1) the operations of transferring coins change the capacity
of the corresponding channels; 2) balance allocation within
one channel is private and obscure. Therefore, similar to
other works in this area (such as Shaduf [21]), the on-chain
claim is essential for protecting honest users from information
asymmetry, ensuring that cross-channel coin transfers can be
effectively executed.

IV. FORMAL DEFINITIONS OF HORCRUX

Notations. We denote by λ the security parameter and
A(x; r) → y or y ← A(x; r) the output of algorithm A
with inputs x ∈ {0, 1}λ and randomness r ∈$ {0, 1}λ (r is
only mentioned explicitly when required). The item of VC

is specified with notation ̂ , and the one with superscript
{fud, c, R, L} is respectively involved in the funding, closing,
right side and left side operation, and the one with subscript
1, · · · , ℓ is involved in the users U1, · · · , Uℓ.

A. The security model
We model the security of Virtual Channel in the Universal

Composability (UC) framework [16] and deploy the version
with a global setup (GUC) [15]. We define the model over
the set of participating users U0, · · · , Un, where users U0

and Un have bidirectional payments via the intermediate users
{U1, · · · , Un−1}, and take the underlying blockchain as B as a
global ideal functionality FB with the maximum confirmation
delay ∆. The GUC model specifies two worlds, a real protocol
Π is executed in the real world by the users, interacting with
the adversary A and environment Z; while, in the ideal world,
an ideal functionality F is executed by the users, interacting
with the simulator S and environment Z . Specifically, we
denote the ensemble corresponding to the real-world protocol
execution as EXECFB

Π,Z,A(λ) and the ensemble corresponding
to the ideal world execution as EXECFB

F,Z,S(λ).
The adversary model. Throughout the paper, we consider the
rational adversaryA who seeks to maximize profit. In addition,
the static adversary A chooses any users in {U0, · · · , Un} to
fully control before the protocol starts and only ensures that
at least one of {U0, Un} is honest.
Communication network. We assume the round synchronous
communication network and each user is aware of the current
round number. In slightly more detail, the message is delivered
within one round, i.e., the message m sent at round r will be
received by all the users at the beginning of round r + 1. We
also assume that authenticated communication channels exist
between any two users. Additionally, the adversary A can see
the delivered message but cannot modify or drop it.
The blockchain ideal functionality. Similar to previous
work [21], we consider the underlying blockchain as a
global ledger functionality FB parameterized by a signature
scheme SIG ∈ {Schnorr,ECDSA,BLS} (cf. Fig. 5).
Informally, FB tracks the current balance pk.bal ∈ N of each
account, identified by a public key pk. Balances can be spent
using the corresponding secret key sk, where (sk, pk) ∈
SIG.KGen(λ). Any user can invoke interface Trans-
fer[{(pks1 , vs1), (pks2 , vs2), · · · }, {(pkr1 , vr1), (pkr2 , vr2), · · ·

7

}, {sks1 , sks2 , · · · }] to transfer coins vs1 , vs2 , · · · respectively
from sending accounts pks1 , pks2 , · · · to the receiving
accounts pkr1 , pkr2 , · · · using the corresponding secrets keys
sks1 , sks2 , · · · , where vs1 + vs2 + · · · = vr1 + vr2 + · · · .
The security definition. Protocol Π UC-realizes the ideal
functionality F with respect to the global blockchain function-
ality FB, if for any PPT adversary A there exists a simulator
S such that EXECFB

Π,Z,A ≈ EXECFB
F,Z,S , where ≈ denotes

the computational indistinguishability.
Remark. Throughout the paper, we strictly separate the parties
who are responsible for maintaining the secure execution of
the underlying blockchain and the users who only use the
service provided by the underlying blockchain (i.e., posting
transactions on the blockchain).

The functionality FB interacts with users U0, U1, · · · , Un, the
environment Z , and simulator S. It is parameterized by a
signature scheme SIG := (KGen, Sign, V rf).
Initialization. Upon receiving the account-balance pair (pk, v)
from the environment Z:
01 It sets pk.bal = v.
02 It sets the public ledger as L := {(pk1, v1), (pk2, v2), · · · ,

(pkℓ, vℓ)} ∈ R2ℓ
≥0 and sends L to S.

Transfer. Transfer[{(pks1 , vs1), (pks2 , vs2), · · · }, {(pkr1 , vr1),
(pkr2 , vr2), · · · }, {sks1 , sks2 , · · · }] called by user Ui:
01 If (vs1 > pks1 .bal) ∨ (vs2 > pks2 .bal) ∨ · · · , then aborts.
02 If vr1 + vr2 + · · · > vs1 + vs2 + · · · , then aborts.
03 If (pks1 , sks1) /∈ SIG.KGen(λ) ∨ (pks2 , sks2) /∈

SIG.KGen(λ) ∨ · · · , then aborts.
04 It sets pks1 .bal := pks1 .bal − vs1 , · · · and pkr1 .bal :=

pkr1 .bal + vr1 , · · · .
05 It updates ledger L and sends it to S.

Fig. 5: The Blockchain Ideal Functionality FB

B. Ideal functionality of virtual channel
To model the security of the multi-party VC in our setting,

we require the ideal functionality guarantees atomicity: for
each hop, the honest receiver cannot lose coins. Formally, the
ideal functionality F (see Fig. 6) communicates with the users
Ui (i ∈ [0, n]), the environment Z , the simulator S and the
underlying blockchain FB. Ideal functionality F consists of
three phases and each one is triggered by the message sent by
user Ui (i ∈ [0, n]).
(A) Setup Phase-Freezing Channel Coins. This phase enables
the users U0 and Un to open a VC γ̂0,n with capacity α and
lifetime T . In slightly more details, along the path between
users U0 to Un (denoted by U0 ↔ U1 ↔ · · · ↔ Un−1 ↔ Un),
each user Ui (i ∈ [0, n]) agrees with the opening of γ̂0,n
by sending Open message (Open,αL

i , α
R
i , sk

L
i , sk

R
i) to ideal

functionality F , which specifies the coins αL
i in channel

γi−1,i and coins αR
i in channel γi,i+1 are to be frozen. Ideal

functionality F updates each user Ui’s balance balLi and balRi
in channels γi−1,i and γi,i+1 respectively, and invokes the sub-
routine Freeze [{(pki−1,i, α

L
i), (pki,i+1, α

R
i)}, pkF,i, (sk

R
i−1,

skLi), (sk
R
i , sk

L
i+1)] to transfer coins αL

i and αR
i respectively

from addresses pki−1,i and pki,i+1 to a specific address pkF,i

controlled by F , where αL
i +αR

i ≥ α+Max{i, n−i}·fee(T).

(B) Payment Complete Phase. At time tk < T (k ∈ Z+), user
Ui(i ∈ {0, n}) initiates a payment of value αk to Un−i. The
ideal functionality F computes the overall coins α̂k that user
U0 pays to Un and, if |αk| ≤ α, it updates record (α̂, t) :=
(αk, tk), where (α̂, t) is initiated as ϕ.
(C) Payment Close Phase. The frozen coins are released to the
corresponding PCs. Here we consider two conditions: (1) no
payment occurs between users U0 and Un during time T , then
the frozen coins αL

i and αR
i are unlocked to their original PCs,

(2) user U0 has paid coins α̂ to Un until time t < T , for the
receiver Ui of each hop, if it has frozen enough coins in this PC
(i.e., αL

i ≥ α̂+(n−i)fee(t) for α̂ ≥ 0 and αR
i ≥ −α̂+ifee(t)

for α̂ < 0), then the frozen coins αR
i + α̂+ (n− i)fee(t) for

α̂ ≥ 0 or αL
i − α̂ + ifee(t) for α̂ < 0 are unlocked to the

payment side; otherwise, the all the frozen coins αL
i +αR

i are
unlocked to the payment side.

Now we analyze that the ideal functionality F guarantees
the atomicity:
• Successful Payment: If VC γ̂0,n is opened successfully via
respectively transferring the involved users’ coins from chan-
nels to the accounts controlled by F , then F will record
each payment between users U0 and Un as (α̂, t) during the
Payment Complete Phase; and in the Payment Close Phase,
F securely close the VC γ̂0,n via respectively unfreezing the
coins (controlled by F) to corresponding PCs according to
local record (α̂, t). Especially, before successfully closing VC
γ̂0,n, the underlying PCs are updated accordingly to ensure the
unfrozen coins are indeed returned to their intended receivers.
• Failed Payment: If there exists the adversarial user along
the path failing to initiate its Open operation until timeout T ,
then F will unlock the frozen coins to their original PCs (i.e.,
(α̂, t) = ϕ).

C. Detailed construction

Recall in the setting, users U0 and Un, connected via PCN
U0 ↔ U1 ↔ · · · ↔ Un−1 ↔ Un, wish to have bidirectional
payments with upper bound α > 0. Specifically, user Ui with
its left and right neighbors Ui−1 and Ui+1 jointly control PCs
γi−1,i and γi,i+1 respectively. And user Ui respectively owns
balance balLi and balRi in channel γi−1,i and γi,i+1, where
balLi + balRi ≥ α +Max{i, n − i} · fee(T). In addition, we
set lifespan T as the maximum tolerable duration of locking
coins in the three-party account, and if i = 0 then i− 1 =⊥,
and if i = n then i+ 1 =⊥.
Protocol details. We provide a detailed description of Horcrux
in Fig. 7, and the key ideas of each phase is presented below:
(A) Setup Phase-Freezing channel coins into a three-party
account. This phase allows each user Ui (i ∈ [0, n]) to
transfer coins aLi and aRi respectively from the channels
γi−1,i and γi,i+1 to a three-party account p̂ki−1,i,i+1 via a
funding transaction txfud

i , where balLi + balRi > aLi + aRi >
α + Max{i, n − i} · fee(T), and the three-party account
p̂ki−1,i,i+1 is jointly controlled by users Ui−1, Ui and Ui+1.
Importantly, to guarantee the secure establishment of VC
γ̂0,n, before posting the transaction txfud

i on blockchain,
user Ui updates the underlying PCs γi−1,i and γi,i+1 with

8

(A) Setup Phase-Freezing Channel Coins

01 Upon receiving (Open,γ̂0,n, γ0,1, skR0 , U0, Un, α, T)
r1←↩ U0 and (Open,γ̂0,n, γn−1,n, sk

L
n , Un, U0, α, T)

r1←↩ Un, it sends

(OpeningVirtual Channel,γi−1,i, γi,i+1, α, T)
r1+1
↪→ Ui (i ∈ [1, n − 1]). // Opening VC γ̂0,n with value α and

lifetime T between users U0 and Un.
02 Upon receiving (Open,αL

i , α
R
i , sk

L
i , sk

R
i)

r1+2←↩ Ui (i ∈ [1, n−1]), for each Ui (i ∈ [0, n]), it sends (ChannelUpdate,
balLi := balLi − αL

i , bal
R
i := balRi − αR

i)
r1+3
↪→ Ui. If (ChannelUpdate,ok)

r1+4←↩ Ui, it invokes subroutine
Freeze [{(pki−1,i, α

L
i), (pki,i+1, α

R
i)}, {pkF,i}, {(skRi−1, sk

L
i), (sk

R
i , sk

L
i+1)}] and sends (Opened)

r1+5
↪→ Ui. Other-

wise, aborts. // Transferring coins from PC to account pkF controlled by functionality F .
(B) Payment Complete Phase

01 Upon receiving (Payment,γ̂0,1, αk)
r2>r1+5←↩ Ui ∈ {U0, Un}, it sets α̂k := α̂k−1 +αk for i = 0 and α̂k := α̂k−1−αk

for i = n. If |α̂k| ≤ α, then it sends (VirtualChannelUpdate, Ui → Un−i, αk, tk, α̂k)
r2+1
↪→ Ui ∈ {U0, Un};

otherwise, aborts. // User Ui pays coins αk to Un−i.
02 Upon receiving (VirtualChannelUpdate,ok)

r2+2←↩ Ui (i ∈ {0, n}), it sends (Paid)
r2+3
↪→ Ui (i ∈ {0, n}) and

updates value-time pair as (α̂, t) := (α̂k, tk).
(C) Payment Close Phase

01 At time T , if (α̂, t) = ϕ, // No payment occurs between users U0 and Un.

• For each Ui (i ∈ [0, n]), it sends (ChannelUpdate, balLi := balLi + αL
i , bal

R
i := balRi + αR

i)
r3>T
↪→ Ui. If

(ChannelUpdate,ok)
r3+1←↩ Ui, it invokes subroutine Unfreeze [{pkF,i, α}, {(pki−1,i, α

L
i), (pki,i+1, α

R
i)}, {skF,i}]

and sends (Closed, γ̂0,n)
r3+2
↪→ Ui.

02 Upon receiving (Close,γ̂0,n)
r4>r2+3←↩ Ui (i ∈ {0, n}) at time t < T , it sends (Closing,γ̂0,n)

r4+1
↪→ Un−i. // User U0

paid coins α̂ to Un.
• For each user Ui (i ∈ [0, n]), it respectively updates Ui’s balance in channels γi−1,i and γi,i+1 by invoking subroutine

Update[α̂, γi−1,i, γi,i+1].

• Upon receiving (ChannelUpdate,ok)
r4+3←↩ Ui, it unfreezes the coins in pkF,i to channels γi−1,i and γi,i+1

respectively by invoking subroutine Close[(pkF,i, skF,i), α̂, γi−1,i, γi,i+1].

Fig. 6: The Ideal Functionality F
∗ The above subroutines are in Fig. 10 of Appendix B.

neighbors Ui−1 and Ui+1 respectively, i.e., subtracting coins
αL
i from balance balLi and coins αR

i form balance balRi .
(B) Payment Complete Phase. This phase enables the users U0

and Un to freely have payments without interacting with the
intermediaries. In particular, both users U0 and Un can initiate
a payment and for the k+1-th payment, they first compute the
relative amount of coins that U0 should pay to Un as α̂k+1 ∈ N
and then respectively sign the latest VC state stvc. Meanwhile,
we use monotonically increasing sequence {t1, · · · , tk, · · · } to
denote the specific time of each payment.
(C) Payment Close Phase. From the aspect of the rational
intermediate users, they wish the VC γ̂0,n can be closed at
time T such that they can obtain the maximum transaction fee
fee(T). Thus, we consider the following two conditions: 1. If
no payment occurs until time T , then each user Ui (i ∈ [0, n])
cooperates with its left and right neighbors to return the
coins in three-party account p̂ki−1,i,i+1 to the original PCs
γi−1,i and γi,i+1; 2. Either user U0 or Un can initiate the
close operation via sending the latest VC state stvc to all the
intermediate users before time T . According to the latest VC
state stvc received from U0 or Un (i.e., the one with the bigger

time t and signed correctly by users U0 and Un), each user
Ui (i ∈ [0, n]) cooperates with its left and right neighbors to
update the underlying PCs’ states (i.e., computing the number
of coins in three-party account p̂ki−1,i,i+1 that will return
to γi−1,i and γi,i+1), and generate the corresponding close
transaction txc

i to close the three-party account p̂ki−1,i,i+1.
On the waiting time for closing Horcrux. Before delving
into the security analysis of Horcrux, let us discuss the
timely and secure closure of Horcrux. In a round synchronous
communication network, we can reliably expect to receive the
closing request from the honest end user U0 or Un within
one round, even if he is the payer in the whole bidirectional
payments. Moreover, to maximize profit, rational intermediate
users will actively close VC with the latest state (i.e., the
honest closing request). Therefore, upon receiving a closing
request, each intermediate user only needs to wait for another
round to ensure that they have received the latest VC state
from the honest end user before securely closing VC with
their left and right neighbors. Overall, Horcrux will take at
most φ + t + ∆ time to be finally closed, where t is long
enough for completing the Payment Close Phase.

9

Security intuitions. We brief the security intuitions in the
following and defer the detailed proofs to Appendix C. Es-
sentially, the rational users can only maximize profits if they
honestly follow the protocol specifications. Firstly, VC can
only be updated jointly by the two end users, with at least one
being honest. Furthermore, during the Payment Close Phase,
all intermediate users are ensured to receive the correct and
latest VC state within one round, and our time-based incentive
mechanism guarantees all intermediate users always close VC
with this latest state. More specifically:
• Successful Payment: This directly stems from the security
of the underlying blockchain and the cryptographic building
blocks (i.e., signature schemes), and our incentive mechanism
(i.e., each intermediary prefers to close the VC almost near
timeout T to maximize its fees). For each payment between
users U0 and Un, they respectively sign and exchange the new
VC state stvc to record the time and overall payments that have
occurred between them; otherwise, aborts. Additionally, since
at least one of users U0 and Un is honest, during the Payment
Close Phase, the intermediate users can always receive the
valid and final VC state. Thus, each honest user can always
receive the deserved coins; otherwise, the frozen coins of the
adversary cannot be unlocked formally, which would harm the
interests of rational users.
• Failed Payment: We consider the following possible cases:
− In the Setup Phase, the malicious users fail to post their

funding transactions on the blockchain. Note that correctly
updating the underlying PCs is the prerequisite of posting
funding transactions, then the malicious users cannot hold
these coins even if they are not transferred to the corresponding
three-party account. Thus, the malicious users will actively
participate in the protocol, otherwise, they will lose coins.
− In the Payment Complete Phase, if the VC is not updated

correctly, then each malicious user cannot receive a valid state
stvc. Therefore, the honest user cannot lose coins.
− In the Payment Close Phase, if a malicious user Ui fails

to cooperate to close the VC, then it will lose coins as its coins
are still locked in VC (i.e., the three-party account p̂ki−1,i,i+1).

Therefore, Horcrux runs as expected and satisfies atomicity
that the honest users never lose coins.

Theorem 1. (Atomicity) Assume ΣSIG
DS is a secure digital

signature scheme w.r.t. SIG ∈ {Schnorr,ECDSA,BLS}
and protocol ΓSIG

MultiSign is the UC-secure protocol for jointly
computing signatures. Then protocol Horcrux running in the
{FB,Fsmt}-hybrid world UC-realizes ideal functionality F .

V. EVALUATION AND COMPARISON

In this section, we first provide a proof of concept imple-
mentation that creates the raw UTXO-based transactions nec-
essary for the Horcrux protocol to demonstrate its feasibility.
Additionally, to evaluate how Horcrux performs in the real
PCN, we conduct a performance experiment comparing it with
Revive [25] and Shaduf [21] in a simulation of the LN. The
source code is available on Github [3].

Testbed. Our evaluation consists of a simulation using Python
and the implementation of LN testnet. Specifically, we conduct
experiments on the machine with the following configura-
tion: CPU(Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz
with 4 cores), RAM(16.0 GB) and OS(x64-based Windows).
Based on Shaduf’s evaluation benchmark, we generate channel
connections between nodes from a snapshot of the real LN
topology taken on March 31, 2021 [2]. The transaction values
are generated from a processed LN real-world dataset [21].

A. Implementation

We implement Horcrux with generalized channels [7] as
the underlying PC protocol while Horcrux remains compatible
with Lightning channels. In this experiment, we focus on the
on-chain costs of Horcrux, i.e., fees paid to miners when
publishing transactions on-chain, so we provide additionally
the expected cost in USD. In Bitcoin, the fees depend on the
size of transactions and are always set as 5 sat/B. To avoid
confusion in recent price fluctuations of BTC, we use the Sep
2020 exchange rate of 10602 USD per BTC (the same as
Shaduf [21]). Additionally, we evaluate the time cost for each
procedure in Horcrux to assess its complexity in Table II.

TABLE II: Communication overhead of Horcrux for the whole path
(not per party) for the different operations with ECDSA/Schnorr
based implementation, assuming a VC across n nodes. k is the
number of payments between U0 and Un.

computation time (ms)
txs size (bytes) on-chain costs (USD) ECDSA Schnorr

Setup n 303 · n 0.16 · n 4.986 2.992
Update 0 168 · k 0 0.998 0.997
Close n 303 · n 0.16 · n 1.509 1.995

Cost of Horcrux. To set up a VC, each user needs to
exchange 3 transactions with neighbors: the 303 bytes funding
transaction txf and two off-chain transactions for updating
channels, where the funding process costs 0.16 USD. In the
update procedure, the end users exchange 168 bytes credentials
with each other privately, which has no on-chain costs. When
closing the VC, the end users send the last credential to the
involved users. Subsequently, every user exchanges the 303
bytes closing transaction txc and two off-chain transactions to
update channels, costing 0.16 USD for closing process. From
Table II, the whole procedure for users costs about 0.3 USD.
Cost comparison. Horcrux totally costs 0.32 · n USD for the
whole path. When rebalancing between two adjacent channels,
Shaduf costs 6 USD for binding and unbinding at least,
and approximately 31 USD for deploying smart contracts,
while Horcrux incurs less than 1 USD in total. In addition,
Shaduf requires on-chain gas for invoking contracts for each
rebalancing which is free in Horcrux. Therefore, as the path
grows, the cost gap will increase further. Also, from Table II,
the costliest procedure of Horcrux takes below 5 ms, indicating
that all computations that can be executed in negligible time.

B. Evaluation

Existing rebalancing methods expand the throughput of
PCNs by transferring funds from adjacent channels to depleted

10

(A) Setup Phase-Freezing channel coins into a three-party account

01 User Ui completes Setup via running SIG.KGen(1λ) → {(ŝk
R

i , p̂k
R

i), (ŝki, p̂ki), (ŝk
L

i , p̂k
L

i)} and a 3PC protocol
OpenAccount(Ui−1, Ui, Ui+1) with its right and left neighbors to obtain a three-party account p̂ki−1,i,i+1.

02 User Ui transfers coins from both channels γi,i+1 and γi−1,i to address p̂ki−1,i,i+1.

• It generates funding transaction txfud
i [{(pki−1,i, α

L
i), (pki,i+1, α

R
i)}, {(p̂ki−1,i,i+1, α)}] and sends txfud

i to both
neighbors Ui−1 and Ui+1.

• Upon receiving transactions txfud
i−1 and txfud

i+1 , it checks these two transactions via CheckValid(txfud), and aborts
otherwise.

• It obtains the signature of funding transaction txfud
i by running MultiSign(skRi−1, sk

L
i , tx

fud
i) with Ui−1 to obtain

signature σfud
i−1,i and running MultiSign(skRi , sk

L
i+1, tx

fud
i) with Ui+1 to obtain signature σfud

i,i+1.
• It updates channel γi−1,i’s state as UpdateChannel(γi−1,i, bal

R
i−1+balLi −αR

i−1−αL
i , bal

R
i−1−αR

i−1, bal
L
i −αL

i) and
channel γi,i+1’s state as UpdateChannel(γi,i+1, bal

R
i +balLi+1−αR

i −αL
i+1, bal

R
i −αR

i , bal
L
i+1−αL

i+1) respectively
with neighbors Ui−1 and Ui+1. After the UpdateChannel is successful, it posts (txfud

i , σi−1,i, σi,i+1) on blockchain.
(B) Payment Complete Phase

Assume the latest VC state payment is that user U0 pays αk > 0 to Un at time tk and the overall coins that user U0 has
paid to Un is α̂k ∈ N (denoted as stvc := (U0

αk→ Un, α̂k, tk, σ̂0, σ̂n)).
01 User Ui(i ∈ {0, n} pays coins αk+1 > 0 to Un−i at time tk+1 by doing the following:

• It updates VC state as [stvc] := (Ui
αk+1→ Un−i, α̂k+1, tk+1), where α̂k+1 := α̂k + αk+1 for i = 0 and α̂k+1 :=

α̂k − αk+1 for i = n. Then it generates signature σ̂i ← SIG.Sign(ŝki, [stvc]) and sends ([stvc], σ̂i) to Un−i.
• User Un−i verifies that Ui correctly updates its local VC state and 1 ← SIG.V rf(p̂ki, [stvc], σ̂i), then generates

signature σ̂n−i ← SIG.Sign(ŝkn−i, [stvc]) and sends ([stvc], σ̂n−i) to Ui; otherwise, aborts.
Both users U0 and Un store the latest VC state stvc.

(C) Payment Close Phase

01 If no payment occurs between users U0 and Un before time T , then after time T , for each user Ui:
• It with Ui+1 updates channel γi,i+1’s state as UpdateChannel(γi,i+1, bal

′R
i + bal

′L
i+1 + αR

i + αL
i+1, bal

′R
i +

αR
i , bal

′L
i+1 +αL

i+1), generates close transaction txc
i [{p̂ki−1,i,i+1, α

L
i +αR

i }, {(pki−1,i, α
L
i), (pki,i+1, α

R
i)}] and sends

txc
i to Ui−1 and Ui+1.

02 Otherwise, upon receiving VC state st′vc from user U0 or st′′vc from user Un or both st′vc and st′′vc before time T , for
each user Ui:

• It sets the final VC state as stvc ∈ {st′vc, st′′vc} and stvc := (Ui
αµ→ Un−i, α̂µ, tµ, σ̂0, σ̂n), where the one with the

bigger time tµ and (SIG.V rf(p̂k0, [stvc], σ̂0)→ 1) ∧ (SIG.V rf(p̂kn, [stvc], σ̂n)→ 1).
• According to stvc, if α̂µ ≥ 0 then Ui pays coins α̂R

i := α̂µ + (n− i− 1)fee(tµ) to Ui+1; otherwise, Ui pays coins
α̂L
i := −α̂µ + (i− 1)fee(tµ) to Ui−1. It updates the channel state as Redistribute(α̂µ, stvc).

• It runs MultiSign({ŝk
R

i−1, ŝki, ŝk
L

i+1}, txc
i) with Ui−1 and Ui+1 to obtain signature σ̂i−1,i,i+1. Then it posts

(txc
i , σ̂i−1,i,i+1) on blockchain.

Fig. 7: Pseudo-code of Horcrux

∗ The above subroutines are in Fig. 11 of Appendix B.

channels. In particular, the MHPs are constrained by the
balances of each node along the path. Rebalancing alleviates
this problem by funding coins in depleted hops, thereby
facilitating more payments. However, the balance skewness
in channels caused by MHPs merely exacerbates the channel
depletion issue within PCNs. Horcrux is proposed to achieve
flow neutrality by strategically minimizing the balance skew-
ness in intermediate channels during MHPs, resulting in more
balanced PCNs. To evaluate its performance, particularly in
comparison to LN [36], Revive [25], and Shaduf [21], we
design this experiment with a focus on the following aspects:

(1) How does Horcrux perform in the PCN concerning
enhancements in the network’s success ratio, volume, and
alleviating channel depletion in the network?
(2) How does Horcrux perform in improving the PCN under

long-term operation?
Simulation setup. Our test network is based on the snapshot
of LN, the largest off-chain network, encompassing 10, 529
nodes and 38, 910 channels. Since the initial distribution of
the channel balance is unknown, we assume an equal balance
allocation for each channel between both participating users.
This consistent approach across all experiments ensures that

11

the balance assignment does not introduce bias into our
results. We employ the payment value dataset that is randomly
sampled from the Bitcoin trace from March 1 to March 31,
2021, comprising over 2.65M micro-payment transactions.
Evaluation methodology. We devise experimental method-
ologies specific to Revive [25], Shaduf [21], and Horcrux. For
Revive and Shaduf, we refer to the implementations outlined
in [21], including the optimized Revive (OPT-Revive), and
provide clarification on Shaduf’s binding strategy. Regarding
Horcrux, we opt for an effective fund redistribution strategy.

In Shaduf, the rebalancing demand is resolved in a local
manner, i.e., a user can transfer coins between two bound
channels, cooperating with the two neighbors. To simulate this,
the bindings need to be initiated for each user. The binding
amount is the maximum number of coins that can be shifted
between the bound channels, equally distributed to each bound
channel. As for the binding strategy, we draw inspiration
from the comparative experiments presented in [21]. Taking
into account the costs and benefits of bindings, we opt for
the ’high-to-low’ binding strategy, where each user binds the
channel with the highest balance to the channel with the lowest
balance, the channel with the second-highest balance to the
channel with the second-lowest balance, and so forth.

In Horcrux, rebalancing is also addressed locally. When a
MHP occurs, each user along the path locks a certain amount
of coins from its adjacent channels. Through the reallocation
of these coins, efforts are made to offset the balance skewness
introduced by MHPs, thereby avoiding depletion. To simulate
this, we examine, at each transaction occurrence, whether the
sum of balances in both channels of each intermediate user
along the path meets the transaction amount. We have adopted
the following strategy for fund redistribution:

We assume that for an intermediate user, the side closer to
the sender is considered the left side, and conversely, the side
closer to the receiver is considered the right side, with balances
in the left and right channels denoted as (balL, balR). When
the balance balL in the left channel is sufficient to cover the
transaction amount α, the user transfers α from the left channel
to the right channel. After the transaction is completed, the
balances on the left and right remain unchanged. However,
when balL is insufficient to cover the transaction amount α,
the user transfers the entire balance balL from the left channel
to the right channel. After the transaction is completed, the
new balances in the left and right channels are (α, balL +
balR), which results in a more balanced state compared to the
previous imbalance.
Ways of evaluation and comparison. Following the method-
ology and with the simulation setup mentioned above, we
conduct this evaluation, which includes:

(1) We test Horcrux’s performance over 20 consecutive
batches, with the channel capacity varying proportionally in
each evaluation, to assess whether Horcrux performs better
than other schemes in deposit reduction. Under the same
conditions, we also tested the performance of LN, OPT-
Revive, and Shaduf using the ’high-to-low’ strategy (referred
to as HL-Shaduf) for comparison.

(2) We test Horcrux’s performance over 200 consecutive
batches with a fixed channel capacity 8. For comparison,
the performance of LN, OPT-Revive, and HL-Shaduf is also
evaluated under the same settings.

In our simulation, we process batches of 50,000 payments
each. For each payment in batches, a sender-receiver pair with
the corresponding payment value is chosen at random and
routed via the shortest available path. For simplicity, fees are
omitted. Since randomness is introduced in the simulation, we
execute each evaluation 10 times and calculate the average. As
for performance metrics, we primarily utilize the success ratio
of payments to assess the improvement in network throughput
and the count of channels becoming depleted to evaluate the
impact on network sustainability.
Evaluation result. Based on these metrics, we initialize the
network model with uniformly distributed channels and statis-
tically evaluate the performance of 4 schemes under varying
conditions. The results are graphically presented as Fig. 8.
Comparison of success ratio. We vary the channel capacity
from 1x to 25x and display the success ratios of 4 schemes in
Fig. 8(a). Compared to LN, Revive and Shaduf show enhance-
ments in performance ranging from 4%-8% and 13%-20%
across different channel capacities, while Horcrux enhances
21%-47%. Moreover, at the lower channel capacities, Hor-
crux’s performance can reach 2.6x, 2.0x, and 1.5x compared
to LN, Revive, and Shaduf, respectively.
Comparison of depletion alleviation. We record the number
of depleted channels caused by the 4 schemes under channel
capacity variations from 1x to 25x, depicted in Fig. 8(b).
Both Revive and Shaduf result in over a thousand depleted
channels, while Horcrux’s count is nearly zero. Specifically,
Revive and Shaduf cause 6%-17% and 4%-13% of channel
depletions in the PCN, respectively, at different capacities. The
success of various MHPs enabled by Revive and Shaduf leads
to imbalances in many channels. LN’s notably low payment
success ratio maintains balance in numerous channels through
payment failures, causing its curve to overlap with Horcrux’s
curve in the graph. However, Horcrux shows lower numbers
than LN, attributed to the benefits of fund redistribution
between adjacent channels.
Comparison of deposit. We can observe at which scale each
of the 4 schemes would achieve the same performance from
Fig. 8(a). For example, at a success ratio of 70%, the channel
capacity factors for LN, Revive, Shaduf, and Horcrux are 23,
13, 7, and 2, respectively. This indicates that Revive, Shaduf,
and Horcrux achieve the same performance at 0.56x, 0.3x,
and 0.09x capacity compared to LN. Correspondingly, they
reduce the required deposit in the PCN by 43%, 70%, and
91%, respectively.
Comparison under long-term operation. The results are
shown in Fig. 8(d) and Fig. 8(c). Concretely,
• In Fig. 8(d), as the runtime increases, LN, Revive, and
Shaduf experience a decrease in performance by 1%-6% due
to the PCN trending towards imbalance. In contrast, Horcrux’s
strategy of avoiding introducing skewness into the PCN leads
to an 18% enhancement in performance, stabilizing at around

12

0 5 10 15 20 25
Channel Capacity Factor

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
io

LN
OPT-Revive
HL-Shaduf
Horcrux

(a) Comparing the success ratio of
4 schemes under short-term opera-
tion, with running batches 20 and
channel capacity factor from 1 to
25.

0 5 10 15 20 25
Channel Capacity Factor

0

1000

2000

3000

4000

5000

6000

De
pl

et
ed

 C
ha

nn
el

 N
um

be
r

LN
OPT-Revive
HL-Shaduf
Horcrux

(b) Comparing the depleted chan-
nel number of 4 schemes under
short-term operation, with running
batches 20 and channel capacity
factor from 1 to 25.

0 25 50 75 100 125 150 175 200
Iteration Count

0.5

0.6

0.7

0.8

0.9

Su
cc

es
s R

at
io

LN
OPT-Revive
HL-Shaduf
Horcrux

(c) Comparing the success ratio of
4 schemes under long-term opera-
tion, with channel capacity factor 8
and running batches from 1 to 200.

0 25 50 75 100 125 150 175 200
Iteration Count

0

1000

2000

3000

4000

5000

De
pl

et
ed

 C
ha

nn
el

 N
um

be
r

LN
OPT-Revive
HL-Shaduf
Horcrux

(d) Comparing the depleted chan-
nel number of 4 schemes under
long-term operation, with chan-
nel capacity factor 8 and running
batches from 1 to 200.

Fig. 8: Effect of Horcrux varying running times and channel capacity under uniform payment demands.

94%. Furthermore, Horcrux’s performance under long-term
operation increases by 43%, 33%, and 21% compared to LN,
Revive, and Shaduf, respectively, which achieves 1.2x-1.5x
compared to performance under short-term operation.
• In Fig. 8(c), after prolonged operation, the number of
depleted channels caused by Revive and Shaduf in the PCN
increased by 2% and 8%, respectively. However, the number of
depleted channels caused by Horcrux after long-term operation
still remains close to zero, slightly lower than LN.

In summary, compared to LN [36], Revive [25], and Shaduf
[21], Horcrux exhibits an improvement in success ratio by
12%-30%, reduces user deposits by 70%-91%, and achieves
an almost zero channel depletion ratio. Furthermore, Horcrux’s
long-term performance is 1.2x-1.5x that of the short-term per-
formance, which indicates its continuous operation is expected
to further enhance performance.

VI. OTHER RELATED WORK

As off-chain scalability solutions, PCs and PCNs have
garnered interest from both academics and industry [7, 13,
14, 17, 19, 31, 32, 36, 44, 47]. Moreover, Malavolta et
al. [30] highlight that the HTLC-style solutions (e.g., [36])
suffer from wormhole attack and accordingly propose the
privacy-preserving MHP construction using a new tool called
Anonymous Multi-Hop Locks (AMHL). Other research on
PCNs focuses on more efficient constructions [9, 20]. Un-
fortunately, these works require active participation from
the intermediaries, which can potentially lead to unreliable,
slower, costly payments and privacy concerns. PCHs, such
as Tumblebit [23], A2L [41] and BlindHub [38], rely on
a single intermediary for coin exchange between the sender
and receiver aiming to improve performance metrics includ-
ing communication complexity and bandwidth. Furthermore,
various optimization strategies for routing in PCNs have been
studied [29, 37, 39, 40, 46]. The concept of VC is one
of the most promising techniques to improve efficiency and
reliability of PCNs by enabling the end users to establish direct
off-chain channels over the intermediaries. Notable works in
this area include Perun [18], LVPC [8], Elmo [26], etc. For
a comprehensive understanding of the Layer-Two blockchain
protocols, we refer readers to work [22].

While advancements in PCNs and MHPs have led to serious
balance skewness, causing channel depletion and limiting the
overall performance of PCNs [25]. The concept of rebalancing
is introduced to revive depleted channels by reallocating bal-
ances between the adjacent channels. Solutions such as Revive
[25], HIDE & SEEK [12], Thora [6] and Wiser [43] have made
notable improvements in terms of privacy, atomicity, and effi-
ciency, respectively. However, these cycle-based approaches
suffer from significant practical limitations including path
restrictions and the minimum rebalancing amount. Shaduf [21]
achieves non-cycle based rebalancing by binding two adjacent
channels with one on-chain transaction, allowing for the free
shifting of coins between the bound channels. Unsurprisingly,
these existing works primarily focus on refunding depleted
channels and therefore cannot fundamentally prevent channels
from being depleted.

In addition to Layer-Two optimizations, work [35] intro-
duces a method for measuring network imbalance and a greedy
heuristic algorithm to improve the local balance of each node,
addressing the routing challenge posed by the opaque channel
balance distributions. Merchant [45] proposes an incentive
mechanism that reduces routing fees to recommend favorable
transaction paths, thereby encouraging MHPs that facilitate
rebalancing. Spider [40] presents a balanced multi-path routing
strategy to reduce skewed payment flows, while Splicer [46]
unveils a scalable routing mechanism for PCHs, enhancing
throughput in both compact and expansive PCNs. Furthermore,
work [28] devised a strategy for channel deposits to better
accommodate in-channel payment needs.

VII. CONCLUSION

We present Horcrux, an efficient multi-party virtual chan-
nel protocol that tackles the fundamental issues leading to
fund depletion. It offers high compatibility across various
blockchains and is formally proven to be secure within the
Universal Composability framework. Remarkably, Horcrux
achieves enhanced reliability as it accomplishes all of this
without relying on perpetual online connectivity or complex
scripting support. The experimental results further confirm
Horcrux’s efficiency, highlighting a nearly zero depleted chan-
nel count and showcasing long-term superior performance.
This establishes its cost-effectiveness and rebalancing pro-

13

ficiency relative to contemporary methods such as Shaduf.
Additionally, Horcrux is designed to integrate smoothly with
existing PCNs. Moving forward, our research will continue
to focus on advancing PCN protocols that withstand channel
depletion in the Byzantine adversary model.

ACKNOWLEDGMENT

The authors would like to thank our shepherd and the
anonymous reviewers for their valuable comments. Jing was
supported in part by the National Natural Science Foundation
of China (No. 62172396). Peifang was supported in part by the
Open Topics of Key Laboratory of Blockchain Technology and
Data Security, The Ministry of Industry and Information Tech-
nology of the People’s Republic of China (No. 20241112).

REFERENCES

[1] Bitcoin wiki: Payment channels. Online, 2018.
[2] Real-world ln topology. https://ln.bigsun.xyz/, 2021.
[3] Implementation of horcrux. https://github.com/Anqi333/

implementation-of-horcrux, 2023.
[4] 1ML. Real-time lightning network statistics. https://1ml.

com/statistics, 2023.
[5] Andreas M Antonopoulos. Mastering Bitcoin: unlocking

digital cryptocurrencies. ” O’Reilly Media, Inc.”, 2014.
[6] Lukas Aumayr, Kasra Abbaszadeh, and Matteo Maf-

fei. Thora: Atomic and privacy-preserving multi-channel
updates. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security,
pages 165–178, 2022.

[7] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Se-
bastian Faust, Kristina Hostáková, Matteo Maffei, Pe-
dro Moreno-Sanchez, and Siavash Riahi. Generalized
channels from limited blockchain scripts and adaptor
signatures. In Advances in Cryptology–ASIACRYPT
2021: 27th International Conference on the Theory and
Application of Cryptology and Information Security, Sin-
gapore, December 6–10, 2021, Proceedings, Part II 27,
pages 635–664. Springer, 2021.

[8] Lukas Aumayr, Matteo Maffei, Oğuzhan Ersoy, An-
dreas Erwig, Sebastian Faust, Siavash Riahi, Kristina
Hostáková, and Pedro Moreno-Sanchez. Bitcoin-
compatible virtual channels. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 901–918. IEEE, 2021.

[9] Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate, and
Matteo Maffei. Blitz: Secure {Multi-Hop} payments
without {Two-Phase} commits. In 30th USENIX Security
Symposium (USENIX Security 21), pages 4043–4060,
2021.

[10] Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate,
and Matteo Maffei. Breaking and fixing virtual chan-
nels: Domino attack and donner. In # PLACE-
HOLDER PARENT METADATA VALUE#, 2023.

[11] Lukas Aumayr, Sri AravindaKrishnan Thyagarajan,
Giulio Malavolta, Pedro Moreno-Sanchez, and Matteo
Maffei. Sleepy channels: Bi-directional payment chan-
nels without watchtowers. In Proceedings of the 2022

ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’22, page 179–192, New York, NY,
USA, 2022. Association for Computing Machinery.

[12] Zeta Avarikioti, Krzysztof Pietrzak, Iosif Salem, Stefan
Schmid, Samarth Tiwari, and Michelle Yeo. Hide & seek:
Privacy-preserving rebalancing on payment channel net-
works. In International Conference on Financial Cryp-
tography and Data Security, pages 358–373. Springer,
2022.

[13] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin
to design fair protocols. In Annual Cryptology Confer-
ence, pages 421–439. Springer, 2014.

[14] Conrad Burchert, Christian Decker, and Roger Watten-
hofer. Scalable funding of bitcoin micropayment channel
networks. Royal Society open science, 5(8):180089,
2018.

[15] Ran Canetti. Obtaining universally compoable security:
Towards the bare bones of trust. In International Confer-
ence on the Theory and Application of Cryptology and
Information Security, pages 88–112. Springer, 2007.

[16] Ran Canetti and Marc Fischlin. Universally compos-
able commitments. In Advances in Cryptology-CRYPTO
2001: 21st Annual International Cryptology Conference,
Santa Barbara, California, USA, August 19–23, 2001
Proceedings 21, pages 19–40. Springer, 2001.

[17] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, Julia
Hesse, and Kristina Hostáková. Multi-party virtual state
channels. In Advances in Cryptology–EUROCRYPT
2019: 38th Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19–23, 2019, Proceedings,
Part I 38, pages 625–656. Springer, 2019.

[18] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and
Daniel Malinowski. Perun: Virtual payment hubs over
cryptocurrencies. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 106–123. IEEE, 2019.

[19] Stefan Dziembowski, Sebastian Faust, and Kristina
Hostáková. General state channel networks. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 949–966, 2018.

[20] Christoph Egger, Pedro Moreno-Sanchez, and Matteo
Maffei. Atomic multi-channel updates with constant col-
lateral in bitcoin-compatible payment-channel networks.
In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 801–815,
2019.

[21] Zhonghui Ge, Yi Zhang, Yu Long, and Dawu Gu.
Shaduf: Non-cycle payment channel rebalancing. In
29th Annual Network and Distributed System Security
Symposium, NDSS 2022, San Diego, California, USA,
April 24–28, 2022.

[22] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos,
Patrick McCorry, and Arthur Gervais. Sok: Layer-two
blockchain protocols. In Financial Cryptography and
Data Security: 24th International Conference, FC 2020,
Kota Kinabalu, Malaysia, February 10–14, 2020 Revised

14

https://ln.bigsun.xyz/
https://github.com/Anqi333/implementation-of-horcrux
https://github.com/Anqi333/implementation-of-horcrux
https://1ml.com/statistics
https://1ml.com/statistics

Selected Papers 24, pages 201–226. Springer, 2020.
[23] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi,

Alessandra Scafuro, and Sharon Goldberg. Tumblebit:
An untrusted bitcoin-compatible anonymous payment
hub. In Network and Distributed System Security Sym-
posium, 2017.

[24] Maxim Jourenko, Mario Larangeira, and Keisuke Tanaka.
Lightweight virtual payment channels. In International
Conference on Cryptology and Network Security, pages
365–384. Springer, 2020.

[25] Rami Khalil and Arthur Gervais. Revive: Rebalancing
off-blockchain payment networks. In Proceedings of the
2017 acm sigsac conference on computer and communi-
cations security, pages 439–453, 2017.

[26] Aggelos Kiayias and Orfeas Stefanos Thyfronitis Litos.
Elmo: Recursive virtual payment channels for bitcoin.
Cryptology ePrint Archive, 2021.

[27] Lightning Labs. Loop. https://lightning.engineering/
loop/.

[28] Peng Li, Toshiaki Miyazaki, and Wanlei Zhou. Secure
balance planning of off-blockchain payment channel
networks. In IEEE INFOCOM 2020-IEEE conference
on computer communications, pages 1728–1737. IEEE,
2020.

[29] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate,
and Matteo Maffei. Silentwhispers: Enforcing security
and privacy in decentralized credit networks. Cryptology
ePrint Archive, 2016.

[30] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schnei-
dewind, Aniket Kate, and Matteo Maffei. Anonymous
multi-hop locks for blockchain scalability and interoper-
ability. Cryptology ePrint Archive, 2018.

[31] Andrew Miller, Iddo Bentov, Surya Bakshi, Ranjit Ku-
maresan, and Patrick McCorry. Sprites and state chan-
nels: Payment networks that go faster than lightning. In
International conference on financial cryptography and
data security, pages 508–526. Springer, 2019.

[32] Pedro Moreno-Sanchez, Arthur Blue, Duc V Le, Sarang
Noether, Brandon Goodell, and Aniket Kate. Dlsag: non-
interactive refund transactions for interoperable payment
channels in monero. In Financial Cryptography and
Data Security: 24th International Conference, FC 2020,
Kota Kinabalu, Malaysia, February 10–14, 2020 Revised
Selected Papers 24, pages 325–345. Springer, 2020.

[33] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. Decentralized business review, 2008.

[34] Bitcoin Optech. Splicing. https://bitcoinops.org/en/
topics/splicing/.

[35] Rene Pickhardt and Mariusz Nowostawski. Imbalance
measure and proactive channel rebalancing algorithm
for the lightning network. In 2020 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC),
pages 1–5. IEEE, 2020.

[36] Joseph Poon and Thaddeus Dryja. The bitcoin lightning
network: Scalable off-chain instant payments. 2016.

[37] Pavel Prihodko, Slava Zhigulin, Mykola Sahno, Aleksei

Ostrovskiy, and Olaoluwa Osuntokun. Flare: An ap-
proach to routing in lightning network. White Paper,
144, 2016.

[38] Xianrui Qin, Shimin Pan, Arash Mirzaei, Zhimei Sui,
O?uzhan Ersoy, Amin Sakzad, Muhammed F. Esgin,
Joseph K. Liu, Jiangshan Yu, and Tsz Hon Yuen.
Blindhub: Bitcoin-compatible privacy-preserving pay-
ment channel hubs supporting variable amounts. In 2023
IEEE Symposium on Security and Privacy (SP), pages
2462–2480, 2023.

[39] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and
Ian Goldberg. Settling payments fast and private: Ef-
ficient decentralized routing for path-based transactions.
arXiv preprint arXiv:1709.05748, 2017.

[40] Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrish-
nan, Kathleen Ruan, Parimarjan Negi, Lei Yang, Radhika
Mittal, Giulia Fanti, and Mohammad Alizadeh. High
throughput cryptocurrency routing in payment channel
networks. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
777–796, 2020.

[41] Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei.
A 2 l: Anonymous atomic locks for scalability in pay-
ment channel hubs. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 1834–1851. IEEE, 2021.

[42] Sergei Tikhomirov, Pedro Moreno-Sanchez, and Matteo
Maffei. A quantitative analysis of security, anonymity
and scalability for the lightning network. In 2020
IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), pages 387–396, 2020.

[43] Samarth Tiwari, Michelle Yeo, Zeta Avarikioti,
Iosif Salem, Krzysztof Pietrzak, and Stefan Schmid.
Wiser: Increasing throughput in payment channel
networks with transaction aggregation. arXiv preprint
arXiv:2205.11597, 2022.

[44] Somanath Tripathy and Susil Kumar Mohanty. Mappcn:
Multi-hop anonymous and privacy-preserving payment
channel network. In International Conference on Finan-
cial Cryptography and Data Security, pages 481–495.
Springer, 2020.

[45] Yuup Van Engelshoven and Stefanie Roos. The merchant:
Avoiding payment channel depletion through incentives.
In 2021 IEEE International Conference on Decentralized
Applications and Infrastructures (DAPPS), pages 59–68.
IEEE, 2021.

[46] Lingxiao Yang, Xuewen Dong, Sheng Gao, Qiang Qu,
Xiaodong Zhang, Wensheng Tian, and Yulong Shen.
Optimal hub placement and deadlock-free routing for
payment channel network scalability. 2023.

[47] Yuncong Zhang, Yu Long, Zhen Liu, Zhiqiang Liu, and
Dawu Gu. Z-channel: Scalable and efficient scheme in
zerocash. Computers & Security, 86:112–131, 2019.

15

https://lightning.engineering/loop/
https://lightning.engineering/loop/
https://bitcoinops.org/en/topics/splicing/
https://bitcoinops.org/en/topics/splicing/

1 2 3 4 5 6 7 8
Payment Skewness Factor

0.5

0.6

0.7

0.8

0.9

Su
cc

es
s R

at
io

*

LN
OPT-Revive
HL-Shaduf
Horcrux

(a) Comparing the success ratio*
of 4 schemes under short-term op-
eration, with channel capacity fac-
tor 8 and payment skewness factor
from 1 to 8.

1 2 3 4 5 6 7 8
Payment Skewness Factor

0

1000

2000

3000

4000

5000

De
pl

et
ed

 C
ha

nn
el

 N
um

be
r

LN
OPT-Revive
HL-Shaduf
Horcrux

(b) Comparing the depleted chan-
nel number of 4 schemes under
short-term operation, with chan-
nel capacity factor 8 and payment
skewness factor from 1 to 8.

1 2 3 4 5 6 7 8 9 10
Number of Hops

0

5000

10000

15000

20000

Tr
an

sa
ct

io
n

Nu
m

be
r

(c) Transaction distribution across
different number of hops in MHPs.

1 2 3 4 5 6 7 8 9 10
Number of Hops

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
io

LN
Horcrux

(d) Comparing the success ratio of
LN and Horcrux under short-term
operation, with channel capacity
factor 8 and number of hops from
1 to 10.

Fig. 9: Evaluation of performance under skewed payments and different number of hops.

APPENDIX

A. Extended evaluation

Skewed payments in consumer-merchant network. Based
on the test network from Section V and the LN real-
world dataset, we conduct an extended performance evaluation
of Horcrux in a more adversarial scenario, specifically in
the consumer-merchant network, where payments are more
skewed. Considering that senders only initiate transactions
they can afford, we use success ratio* to measure the perfor-
mance of Horcrux in comparison to LN, Revive, and Shaduf,
where success ratio* is defined as the ratio of successful
payments, conditioned on the senders having sufficient coins
for the payments. However, the intermediate users might be
poor in this payment direction, potentially leading to payment
failures. The experimental results are shown in Fig. 9(a) and
9(b).

When the payment skewness factor is 8, which is extremely
high in real-world scenarios, Fig. 9(a) shows that Horcrux still
maintains a success ratio of over 90%, outperforming Shaduf,
Revive, and LN by 1.29x, 1.63x, and 1.88x, respectively.
Additionally, as illustrated in Fig. 9(b), the number of de-
pleted channels for Horcrux remains close to zero, preserving
network balance.
Impact of hop count in MHPs. We experimentally test
the transaction distribution within LN across different hop
counts in MHPs and evaluate the success ratio of payments
for Horcrux and LN under varying hop counts. The results
are shown in Fig. 9(c) and Fig. 9(d), respectively. As depicted
in Fig. 9(d), Horcrux outperforms LN across all hop counts,
particularly achieving a success ratio more than 14 times that
of LN for hop counts exceeding 7.

B. Pseudo-code for the subroutines

In this section, we give concrete pseudo-code for the sub-
routines of the ideal functionality and protocol.

C. Security analysis of theorem 1

Proof. We now prove that protocol Horcrux (Fig. 7) UC-
realizes the ideal functionality F (Fig. 6). To show the
indistinguishability between the ideal world and the real world,
we construct a simulator S to simulate the protocol Horcrux in
the real world while interacting with the ideal functionality F .

01 Freeze [{(pki−1,i, α
L
i), (pki,i+1, α

R
i)}, {pkF,i}, {(skR

i−1,
skL

i), (sk
R
i , sk

L
i+1)}]

It transfers the coins αL
i of address pki−1,i and coins αR

i of ad-
dress pki,i+1 to address pkF,i (controlled by F) via invoking the
interface Transfer[{(pki−1,i, α

L
i), (pki,i+1, α

R
i)}, {(pkF,i, α

L
i +

αR
i)}, {ski,i−1 = skR

i−1 ⊕ skL
i , ski,i+1 = skR

i ⊕ skL
i+1}] of

functionality FB. If the ledger L is updated successfully, then it
responds (frz, ok).

02 Unfreeze[{(pkF,i, α)}, {(pki−1,i, β̂
L
i), (pki,i+1, β̂

R
i)},

{skF,i}]
It transfers the frozen coins β̂L and β̂R of address pkF,i

respectively to addresses pki−1,i and pki,i+1 (β̂L + β̂R = α)
via invoking the interface Transfer[{(pkF,i, α)}, {(pki−1,i, β̂

L
i)

, (pki,i+1, β̂
R
i)}, {skF,i}] of functionality FB. If the ledger L is

updated successfully, then it responds (unfrz, ok).

03 Update[α̂, γi−1,i, γi,i+1]

• If α̂ ≥ 0, it sends (ChannelUpdate,balLi := balLi +

αL
i , bal

R
i := balRi + αR

i + fee(t))
r4+2
↪→ Ui for α̂L

i ≥ α̂ +
(n−i)fee(t) or (ChannelUpdate,balLi := balLi +α̂+(n−
i)fee(t), balRi := balRi +αL

i +αR
i −α̂−(n−i−1)fee(t))

r4+2
↪→

Ui for α̂L
i < α̂+ (n− i)fee(t).

• If α̂ < 0, it sends (ChannelUpdate,balLi := balLi + αL
i +

fee(t), balRi := balRi +αR
i)

r4+2
↪→ Ui for α̂R

i ≥ −α̂+ ifee(t)
or (ChannelUpdate,balLi := balLi + αL

i + αR
i + α̂− (n−

i)fee(t), balRi := balRi − α̂ + ifee(t))
r4+2
↪→ Ui for α̂R

i <
−α̂+ ifee(t).

04 Close [(pkF,i, skF,i), α̂, γi−1,i, γi,i+1]

• If α̂ ≥ 0, it invokes subroutine Unfreeze [{(pkF,i, α)},
{(pki−1,i, α

L
i − α̂− (n− i)fee(t)), (pki,i+1, α

R
i + α̂+(n−

i)fee(t))}, {skF,i}] for α̂L
i ≥ α̂+(n− i)fee(t) or Unfreeze

[{(pkF,i, α)}, {(pki−1,i, 0), (pki,i+1, α)}, {skF,i}] for α̂L
i <

α̂+ (n− i)fee(t) and sends (Closed,γ̂0,n)
r4+4
↪→ Ui.

• If α̂ < 0, it invokes subroutine Unfreeze [{(pkF,i, α)},
{(pki−1,i, α

L
i − α̂ + ifee(t)), (pki,i+1, α

R
i + α̂ −

ifee(t))}, {skF,i}] for α̂R
i ≥ −α̂ + ifee(t) or Unfreeze

[{(pkF,iα)}, {(pki−1,i, α), (pki,i+1, 0)}, {skF,i}] for α̂R
i <

− α̂+ ifee(t) and sends (Closed,γ̂0,n)
r4+4
↪→ Ui.

Fig. 10: The subroutines of ideal functionality F

At the beginning, S corrupts some users of {Ui (i ∈ [0, n])}
as A does (notice that only one of users U0 and Un can be

16

Assumption: ⊕ := + if SIG ∈ {Schnorr,BLS} and ⊕ := ∗
if SIG = ECDSA
01 OpenAccount(P0, P1, P2)

It takes privet inputs ŝk
R

0 , ŝk1 and ŝk
L

2 held by users P0, P1

and P2 respectively.

• It sets secret key as ŝk0,1,2 := ŝk
R

0 ⊕ ŝk1 ⊕ ŝk
L

2 ;
• It generates a three-party account as p̂k0,1,2 := gŝk0,1,2 .

02 CheckValid(txfud)
It sets funding transaction as txfud

k [{(pkk−1,k, α
L
k), (pkk,k+1,

αR
k)}, {(p̂kk−1,k,k+1, α

L
k + αR

k)}], where k ∈ [0, n].
• It checks that balLk ≥ αL

k and balRk ≥ αR
k ;

• It checks that αL
k + αR

k ≥ α+Max{i, n− i} · fee(T).

03 UpdateChannel(γk,k+1, βk,k+1, β
R
k , βL

k+1)

• It sets the value of PC γk,k+1 between users Uk and Uk+1 as
βk,k+1, and the balance of Uk is balRk := βR

k and the balance
of Uk+1 is balLk+1 := βL

k+1;
• It updates PC state as stk,k+1 := tx[{pkk,k+1, bal

R
k +

balLk+1}, {(pkk, balRk), (pkk+1, bal
L
k+1)}], where accounts

pkk and pkk+1 are owned by users Uk and Uk+1 respectively;
• It invokes MultiSign({skk, skk+1}, stk,k+1) and obtains

signature σk,k+1, where (skk ⊕ skk+1, pkk,k+1) ∈
SIG.KGen(λ).

04 MultiSign({sk1, · · · , skℓ},m)
It takes privet inputs sk1, · · · , skℓ held by users P1, · · · , Pℓ

respectively.
• It sets secret key as sk1,··· ,ℓ := sk1 ⊕ · · · ⊕ skℓ and public

key as pk1,··· ,ℓ := gsk1,··· ,ℓ ;
• It computes signature SIG.Sign(sk1,··· ,ℓ,m) → σ1,··· ,ℓ and

sends it to users P1, · · · , Pℓ;
• Users P1, · · · , Pℓ respectively verify if SIG.V rf(pk1,··· ,ℓ,
m, σ1,··· ,ℓ) → 1, and abort otherwise.

05 Redistribute(α̂µ, stvc)

• If α̂µ ≥ 0, it sets α
′L
i := αL

i − α̂R
i − fee(tµ), and bRi = 1 if

α
′L
i ≤ 0 and otherwise bRi = 0.

- It with Ui+1 updates channel γi,i+1’s state as
UpdateChannel(γi,i+1, bal

′R
i + bal

′L
i+1 + αL

i + αR
i −

bRi α
′L
i + bRi+1α

′L
i+1, bal

′R
i + αL

i + αR
i −

bRi α
′L
i , bal

′L
i+1 + bRi+1α

′L
i+1), generates close transaction

txc
i [{p̂ki−1,i,i+1, α

L
i + αR

i }, {(pki−1,i, b
R
i α

′L
i), (pki,i+1,

αR
i + αL

i − bRi α
′L
i)}] and sends txc

i to Ui−1 and Ui+1.
• If α̂µ < 0, it sets α

′R
i := αR

i − α̂L
i − fee(tµ), and bLi = 1 if

α
′R
i ≤ 0 and otherwise bLi = 0.

- It with Ui−1 updates channel γi−1,i’s state as
UpdateChannel(γi−1,i, bal

′R
i−1 + bal

′L
i + αL

i + αR
i −

bLi α
′R
i + bLi−1α

′R
i−1, bal

′R
i−1+ bLi−1α

′R
i−1, bal

′L
i +αL

i +αR
i −

bLi α
′R
i), generates close transaction txc

i [{p̂ki−1,i,i+1, α
L
i +

αR
i }, {(pki−1,i, α

L
i + αR

i − bLi α
′R
i), (pki,i+1, b

L
i α

′R
i)}]

and sends txc
i to Ui−1 and Ui+1.

Fig. 11: The subroutines of the protocol

corrupted). We begin with the real-world protocol execution,
gradually change the simulation in these hybrids and then
argue about the proximity of neighboring experiments.
Hybrid H0: It is the same as the real world protocol execution

(Fig. 7).
Hybrid H1: It is the same as the above execution except
that the protocol MultiSign in procedures (A) and (C) of
generating signatures jointly by 2 or 3 users is simulated
using the MPC simulator SMPC for the corrupted users
(notice that such a simulator exists for a secure MPC protocol
MultiSign).
Hybrid H2: It is the same as the above execution except that
the adversary corrupts user Ui and obtains a new state of
the underlying PC before the simulator cooperates the update
operation on behalf of user Ui−1 or Ui, the simulator aborts.
Hybrid H3: It is the same as the above execution except
that the adversary corrupts user Ui and posts a valid funding
transaction before the simulator cooperates the multi-sign
operation on behalf of users Ui−1 and Ui+1, the simulator
aborts.
Hybrid H4: It is the same as the above execution except that
the adversary corrupts user Ui (i ∈ {0, n}) and generates
a valid VC state before the simulator initiates its signing
operation on behalf of user Un−i, the simulator aborts.
Hybrid H5: It is the same as the above execution except that
the adversary corrupts user Ui and obtains a valid closing
transaction txc

i before the simulator cooperates the multi-sign
operation on behalf of users Ui−1 and Ui+1, the simulator
aborts.
Hybrid H6: It is the same as the above execution except
that the adversary corrupts user Ui and outputs a valid
closing transaction txc

i . The simulator outputs txc
i−1 or

txc
i+1, where ΣSIG.V f(pki−2,i−1,i, tx

c
i−1, σi−2,i−1,i) ̸= 1 or

ΣSIG.V f(pki,i+1,i+2, tx
c
i+1, σi,i+1,i+2) ̸= 1, the simulator

aborts.
Simulator S. The simulator S is defined as the execution in
H6 while interacting with the ideal functionality F .

Below, we show the indistinguishability between H0 and
H6. In addition, we use ≈c to denote computational indistin-
guishability for a PPT algorithm.
H0 ≈c H1. The indistinguishability directly follows from the
security of protocol MultiSign. The security of protocol
MultiSign for multi-party signature generation guarantees
the existence of SMPC .
H1 ≈c H2. The only difference between the two hybrids is
that in H2 the simulator aborts, if the corrupted user Ui can
generate a valid multi-party signature of a PC state itself.
H2 ≈c H3. The only difference between the two hybrids is
that in H3 the simulator aborts, if the corrupted user Ui can
generate a valid multi-party signature of a funding transaction
itself.
H3 ≈c H4. The only difference between the two hybrids
is that in H4 the simulator aborts, if the corrupted user
Ui (i ∈ [0, n]) can generate a valid multi-party signature of a
VC state itself.
H4 ≈c H5. The only difference between the two hybrids is
that in H5 the simulator aborts, if the corrupted user Ui can
generate a valid multi-party signature of closing transaction
itself.
H5 ≈c H6. The only difference between the two hybrids is

17

that in H6 the simulator aborts, if the adversary posts a valid
closing transaction, the simulator cannot post its valid closing
transaction. With the security the underlying blockchain and
PC, and the rational adversarial model, the probability of the
event triggered in H6 is negligible, otherwise, the malicious
Ui will lose coins for the closing transaction txc

i−1 or txc
i+1

is not finally confirmed on chain, which results in that the its
PC γi−1,i or γi,i+1 cannot be updated correctly.

18

	Introduction
	Preliminaries and background
	UTXO-based blockchains
	Payment channel network
	Payment channel
	Payment channel network
	Virtual channel

	Balance skewness in MHPs

	Solution overview
	Flow neutrality
	Three-party VC construction
	Multi-party VC construction

	Formal definitions of Horcrux
	The security model
	Ideal functionality of virtual channel
	Detailed construction

	Evaluation and comparison
	Implementation
	Evaluation

	Other related work
	Conclusion
	Appendix
	Extended evaluation
	Pseudo-code for the subroutines
	Security analysis of theorem 1

