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Abstract. Identity-based threshold signature (IDTS) enables the generation of
valid signatures without revealing cryptographic keys in the signing process. While
current protocols have achieved much progress in their efficiency, many schemes
easily suffer from denial-of-service attacks in which misbehaving parties could keep
from generating signatures without being caught. The identifiable abort property
is designed to withstand such an attack in some recent IDTS protocols. However,
all these schemes require many rounds of interaction for the resulting signature or
utilize cryptographic techniques, which have a high complexity. In this study, we put
forward a novel IDTS protocol that can achieve identifiable abort and resist arbitrary
collusion attacks. Precisely, this ensures that corrupted parties are responsible in
case of failure and cannot jointly obtain the input of honest parties. Moreover, we
present the ideal IDTS functionality and provide the provable security of the proposed
protocol with the global random oracle model. Our scheme has non-interactive signing,
compatibility with the offline/online settings, and practical efficiency for the online
phase. Finally, we give theoretical analyses and experimental results of our solution,
showing that the signing time is less than two milliseconds and that the scheme is
suitable for resource-constrained settings.
Keywords: Threshold signatures · Identity-based signatures · Non-interacting
online signing · Identifiable aborts

1 Introduction
Recent advances in blockchain technology and the 5G network have led to the growth
of resource-constrained but extremely capable Internet of Things (IoT) devices [ZCS23],
including sensors, smartphones, and intelligent appliances. According to a prediction
by International Data Corporation (IDC), the number of IoT devices will reach 55.7
billion, and these devices are expected to produce nearly 80 zettabytes (ZBs) of data
in 2025 [IDC21]. However, these devices are vulnerable to various attacks over wireless
communication, such as hijacking attacks, message tampering, and user impersonation.
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Providing secure and efficient authentication before utilizing the data is the primary task
that IoT technologies must solve.

Digital signatures are a promising approach that offers data authenticity and integrity.
Unfortunately, an inherent limitation is that certificate management and issue in a

typical public-key infrastructure are costly. To address this problem, the definition of
identity-based cryptography introduced by Shamir [Sha84] can simply treat email addresses
or phone numbers as personal public keys, and later the work of Boneh and Franklin
[BF01] realized the concept in bilinear groups. Since then, identity-based signature (IBS)
has been studied [CHC03, Hes02, BLMQ05, PS06] and standardized [ISO18, IEE13]. The
identity-based cryptographic techniques using pairings [BLMQ05] (denoted as BLMQ) are
provided in the IEEE P1363 standard.

In traditional BLMQ schemes, the storage of the keys in one location represents single
points of failure [TANBDV20]. The reason is that the theft or loss of the keys can be
disastrous, and the attacker can obtain the signing key in use by users to access services or
spend one’s money in cryptocurrencies [Lin17]. Therefore, the main challenge is to store
these keys in a way that is both easy to use and resistant to theft and loss.

Threshold cryptography [Des94] has gained a way to address this problem. The master
key and signing key are distributed among multiply servers/devices, so that if the sets
of parties are greater than or equal to security thresholds, one can obtain the resulting
productions without revealing secret about them. A threshold BLMQ scheme has been
presented by Zhang et al.[ZHZ+18] via integrating the BLMQ algorithm within a two-
party secure computation and later improved in [HZWC18, FHL+20]. Such protocols allow
parties holding one’s share of the signing key to generate jointly the BLMQ signature,
while escaping reconstruction of the key. However, these protocols easily suffer from
denial-of-service attacks in the setting with dishonest majority. In this case, the swindlers
could prevent honest parties from generating signatures without being caught.

More importantly, BLMQ is slightly “threshold-unfriendly" since threshold protocols
for BLMQ require parties to cooperate in computing the inversion operation without
knowing the entire master key. A generic way to invert a secret value is to design a secure
multiplicative-to-additive conversion protocol, and then locally compute own shares of the
secret value. There exist two common approaches for constructing these protocols, namely
the Paillier cryptosystem [GG18] and oblivious transfer protocols [DKLS19]. However,
both schemes have high computational and communication overhead, respectively.

One technique for designing efficient multiplication protocols relies on authenticated
Beaver triples [DPSZ12] for doing the work, which is precomputed in the offline phase and
then used to efficiently obtain the multiplication of two random values during the online
phase. Unfortunately, these triples must still be enough to guarantee that the corrupted
parties are detected after faults occur. This results in the valid reconstruction of prescribed
values.

In this study, we present a threshold version of the IEEE P1363 standard via using
authenticated multiplication triples. In particular, these triples are generated by multiple
servers in a distributed manner, and are used as materials for online multiplication. The
computation of the proposed protocol needs to be detectable and then resists denial of
service attacks.

In brief, a summary of the contributions in this paper is provided below:

• We propose a threshold protocol for BLMQ with identifiable abort and collusion
resistance, which not only collaboratively generates the resulting signatures but also
provides efficient and non-interacting online signing.

• We propose a commitment-based identifiable mechanism that allows reliable players
to identify misbehaving players after faults occur. Specifically, the parties commit
to input shares and check corrupted parties due to the verification of commitment
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schemes. Further, to resist collusion attacks between the parties, we have designed
two distributed protocols with different security thresholds.

• We realize an ideal identity-based threshold signature functionality in the framework
of universal composability (UC) and formally prove the security of the proposed
solution with the global random oracle model. And that the presented protocol
withstands adaptive corruptions of parties by relying on the "single inconsistent
party" technique and reliable erasure assumption.

The remainder of this paper is as follows. In Section 2, we propose a relevant description
of identity-based threshold signature schemes, and we provide background information in
Section 3. In Section 4, we give several ideal functionalities and security models, and we
design a secure multiplication protocol required by our work in Section 5. We give specific
construction and correctness, formally provide the provable secure analysis, and discuss
experimental findings in Section 6. We summarize this paper in Section 7.

2 Related work
We briefly show previous works on IDTS protocols, identifiable aborts and the preprocessing
model. Comparison with the related schemes is shown in table 1.

Table 1: Comparison with the related schemes
Scheme F1 F2 F3 F4 F5 F6 F7

Baek and Zheng [BZ04] % % % % ! % −
Chen et al.[CZKK04] % ! % % ! % −
Xiong et al.[XQL10] % % % % ! % −
He et al.[HZWC18] % % % % ! % −
Feng et al.[FHL+20] % % % % % % −
Jiang et al.[JZWL23] ! ! % % ! % 2

Gennaro and Goldfeder [GG20] ! ! % % ! ! 2
Canetti et al.[CGG+20] ! ! ! ! ! ! 2
Liang and Chen [LC24] ! ! ! ! ! ! 2

Castagnos et al.[CCL+23] ! ! ! % ! ! 2
Abram et al.[ANO+22] ! ! % % % ! −

This work ! ! ! ! ! ! 1

!: Satisfy the requirement; %: Not satisfy the requirement; −:
Not exist the feature; F1: Fully distributed protocols; F2: Collusion
resistance; F3: Adaptive corruptions; F4: UC; F5: Identifiable aborts;
F6: Non-interacting online signing; F7: Rounds in identification
mechanism.

Identity-based threshold signature (IDTS). The definition of IDTS was firstly
presented by Baek and Zheng [BZ04], which uses the pairing techniques to construct
provably secure scheme. Subsequent works [CZKK04, XQL10] later improved upon the
security of their solutions, and particularly the security assumption, for which the study of
Xiong et al.[XQL10] does not take into consideration in the setting with random oracle
model. These works are viewed as the extensions of IBS [Hes02, CHC03, PS06], which are
“threshold-friendly" in the distributing environment. To obtain the inversion operation of
the private key, it is indeed challenging to construct a threshold version of the BLMQ
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scheme. He et al.[HZWC18] proposed secure distributed signing protocols for the two-party
setting. Later, Feng et al.[FHL+20] extended this scheme [HZWC18] to the multiparty
case, which used the Elliptic curve operations to invert a secret value. Currently, Jiang
et al.[JZWL23] has added identifiability to threshold BLMQ, obtaining new functionality
in a similar setting. However, the resulting protocols neither provide the non-interacting
signing property nor resist the adversary that corrupts the parties during arbitrary time.

Threshold signatures with identifiable abort. The concept of secure computa-
tion with identifiable aborts was proposed in a preprocessing model by [IOZ14], where a
trusted party provides some correlated values. Recently, researchers have paid attention
to threshold signatures with identifiable abort. Gennaro and Goldfeder [GG20] presented
one round threshold ECDSA with the identifiability of corrupted parties, and the same
property supports for the work [CGG+20] to construct more efficient solutions with four
communication rounds. Additionally, Liang and Chen [LC24] gave a threshold protocol
for SM2 signing scheme with a similar technique described in [CGG+20]. Also, Castag-
nos et al.[CCL+23] presented a threshold ECDSA protocol in the precomputing model,
which replaced the Paillier encryption with the class group. These works require heavy
computation for identification mechanism, which involves “complicated" zero-knowledge
proofs.

Threshold signature with the offline/online phase. The crucial idea of Even et
al.[EGM89] can split the signing process into two parts such that expensive computation is
able to execute in the offline setting prior to knowing the given message, and then used by
the online phase where each party locally computes its signature share after the message
is known. The notion of non-interacting signing for threshold ECDSA has been proposed
by [GG20] and [CGG+20]. Their works propose a non-interacting step that signature
generation boils down to a message in the preprocessing model. In subsequent work,
[LC24, CCL+23] independently described how to combine the offline/online technique and
identifiable aborts for threshold signature protocols where either a cheater in the online
phase will be identified in multiple rounds or the last online part of the resulting signature
needs to consider the conversion of decrypting ciphertext. The online step of the signing
process is still burdensome and not ideal, even though it is generally practical. Another,
more efficient approach with silent preprocessing was given in [ANO+22] where the authors
relied on pseudorandom correlation generators of [BCG+19]. In this case, however, the
honest players cannot detect the misbehaving players after faults occur.

3 Preliminaries

3.1 Bilinear Groups

Three circle groups G1, G2 and GT , which are the same order q, have additive operation
for the first two groups and multiplicative operation for the last one group. Moreover, the
generators of the first two groups are P and Q, respectively. The function e : G1×G2 → GT

is computable on the bilinear mapping and provides the properties as follows:

• Bilinear property: e(α · P, β ·Q) = e(P,Q)αβ , where P ∈ G1, Q ∈ G2, α, β ∈ Zq;

• Non-degenerate property: ∃P ∈ G1, ∃Q ∈ G2, e(P,Q) ̸= 1.

• Computable property: e(R,S) is a computable value, where R ∈ G1, S ∈ G2.
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3.2 BLMQ
Barreto et al. [BLMQ05] proposed the BLMQ scheme that was recognized as the IEEE
P1363 standardization. This scheme is constructed on the bilinear groups (see Section 3.1
for a full description). Moreover, two hash functions H1 and H2, which reach the security
level of cryptography, have the mapping relations {0, 1}∗ → Z∗

q and {0, 1}∗ ×GT → Z∗
q .

The BLMQ scheme consists of the four algorithms as seen below:

• Setup(1λ) → (s,Qpub): The private-public key pair is (s,Qpub = s · Q), and the
parameter params is (G1,G2,GT , e, q, P,Q, g,Qpub, H1, H2).

• Extract(params, s, ID)→ dID: The signing key is dID = 1
H1(ID) + s

· P .

• Sign(params, dID,m) → (h, S): Given the message m, compute the signature s in
the following way:

1. Select a random value r and output a temporary variable u = gr.
2. Compute the value of the hash function H2, namely h = H2(m||u).
3. Output the signature S = (r + h) · dID.

• Verify(params,m, ID, (h, S)): Given the message m, the identity ID, and the signa-
ture (h, S), verify whether the signature (h, S) is valid for the message m.

For the correctness and security of the BLMQ scheme, refer to [BLMQ05].

4 Definition of security
4.1 The ideal identity-based threshold signature functionality
The functionality consists of the key generation, extracting, signing, verification, and
corruption. The key generation runs only once, and the remaining functions can operate
arbitrary numbers with appropriate inputs. In ideal execution, the functionality works
as follows. Once all KGCs are activated, a verification algorithm V is supposed to be
from an ideal simulator S. The functionality records only the registered values and does
not require any checks during the registration phase. Then, the functionality returns a
signature σ from S once these devices appeal to the functionality to get a signature σ for
a given message m. Moreover, the functionality stores σ in an entry to represent a valid
signature for m. Finally, the functionality must check a tuple (m, ID, σ) and then outputs
0/1, denoting whether an entry (m, ID, σ) is correct or the resulting value of what V
computes. The functionality is depicted in Fig. 1.

4.2 Security model
Universally composable framework. As shown in [Can01], we define the universally
composable framework using a real and ideal execution. In practice, Z sends generated
input and reads the output of the protocols on behalf of the external environment. A
protocol π is UC-secure if it securely implements the functionality F . This means that for
Z, an interacting of π with A is indistinguishable from that of F and S.

In the real world, Z can interact with an adversary A and a set of parties running
a protocol π. Let REALZ(z)

π,A define the result of Z in a real execution. In the ideal
environment, Z can interact with a set of parties and a simulator S controlling the
corrupted players. Furthermore, these entities can use the functionality F to perform some
operations on a pre-programmed pattern. Let IDEALZ(z)

F,S define the result of Z in an
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Ideal Identity-Based Threshold Signature Functionality FIBT S

Key-generation:
1. When a request (keygen, sid) is obtained from KGC KGCi, parse sid = (. . . ,KGC) and

KGC = (KGC1, . . . ,KGCl).

(a) For KGCi ∈KGC, give S the request and then store the entry (keygen, sid,KGCi).
(b) Else, overlook the request.

2. When all entries (keygen, sid, ℓ) are correctly stored for KGCℓ ∈KGC, give S the message
(pubkey, sid). Then, execute things in the following way:

(a) Once (pubkey, sid,Qpub,V) has been obtained, store the entry (sid,Qpub,V).
(b) When a request (pubkey, sid) is obtained from KGCi ∈KGC:

i. If the entry (sid,Qpub,V) is stored, output (pubkey, sid,Qpub) to KGCi.
ii. Otherwise, the message is ignored.

Extracting:
1. When a request (extract, ssid, ID) is obtained from Di, parse ssid = (. . . ,KGC,D) as

well as D = (D1, . . . ,Dn).

(a) If Di ∈ D, give S the request and then store the entry (extract, ssid, ID,Di, i).
(b) Else ignore the request.

2. Once a request (extract, ssid, ID, j) is obtained, store the entry (extract, ssid, ID,KGCj)
if KGCj is corrupted.
Else overlook the request.

3. When all entries (extract, ssid, ID, j) are correctly stored for Dj ∈ D, give S the message
(extract, ssid, ID). Then, execute things in the following way:

(a) Once (received, sid, ID, ok, C) has been obtained, operate below:
i. If C is malicious, store C to take for the revealed KGC on ID.

ii. Else store the first corrupted KGC as the revealed KGC for this private key on
ID. "Identifiability"

(b) Upon receiving (prikey, sid, ID) from Di ∈ D, output (extracted, sid,Di) to Di.

Signing:
1. When a request (sign, ssid,m, ID) is obtained from Di, give S the request and then store

the entry (sign, ssid,m, ID, i).
2. Once a request (sign, ssid,m, ID, j) is obtained, store the entry (sign, ssid, ID,Dj) if Dj

is malicious.
Else over the request.

3. When all entries (sign, ssid,m, ID, i) are correctly stored for Di ∈ D, execute things in
the following way:

(a) If one of recorded entries (ID,Di) is not stored, then output an error.
(b) Else, if not all KGCs in KGC are malicious, then send (sign, ssid,m, ID) to S:

i. When a request (signature, ssid,m, ID, σ, C) is gained, for C ⊊ D:
A. If an entry (ssid,m, ID, σ, 0) exists, print an error message.
B. Else, for V(m, ID, σ) = 1, store the entry (ssid,m, ID, σ, 1).
C. Else, store C if C is malicious.
D. Else, reveal the identity of the first malicious device. "Identifiability"

ii. When a request (signature, ssid,m, ID) is sent from Di ∈ D:
A. If the entry (ssid,m, ID, σ, 1) exists, give Di the message

(signature, ssid,m, ID, σ).
B. Else return the revealed device and KGC.

Figure 1: The ideal identity-based threshold signature functionality FIBT S
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Verification:
When a request (sig-vrfy, ssid,m, ID, σ,V) is obtained from a party Q, give S the request
and execute things in the following way:

(a) If an entry (m, ID, σ, β′) exists, mark β = β′.
(b) Otherwise, if not all KGCs in KGC and devices in D are corrupted, and that ID

and (m, ID) are never required, mark β = 0. "Unforgeability"
(c) Otherwise, mark β = V(m, ID, σ).

Store (m, ID, σ, β) and then give Q the message (istrue, ssid,m, ID, σ, β).
Corruption/Decorruption:

When the request (corrupt,KGCj) or (corrupt,Dj) is sent from S, record KGCj or Dj is
malicious.
Upon receiving (decorrupt,KGCj) or (decorrupt,Dj) from S:

(a) If not all KGCs or devices are corrupted, and there exists an entry that KGCj or Dj

is corrupted, then erase it.
(b) Else do nothing.

Figure 1: The ideal identity-based threshold signature functionality FIBT S (cont.)

ideal execution. In addition, Z pre-assigns the security parameter λ and random input z
to all entities.

Definition 1. A protocol π is said to be UC-secure if π securely implements the func-
tionality F . This means that for the environment Z, the following distributions are
indistinguishable below:

{REALZ(z)
π,A (1λ)}z∈{0,1}∗ ≈ {IDEALZ(z)

F,S (1λ)}z∈{0,1}∗

Communication model. We rely on a synchronous broadcast channel. Moreover, we
also make use of point-to-point authenticated channels for associating with each party.

Adversarial model. In this work, we consider a malicious adversary who can adaptively
choose a set of corrupted parties during arbitrary time. Further, the security model of the
protocol enables an adversary to control up to l − 1 KGCs and n− 1 devices. Let l and n
be the total membership for servers and devices.

4.3 Ideal functionalities
The security of the proposed protocol is proved by means of some functionalities as defined
in the work [CGG+20], including the global random oracle functionalityHg, zero-knowledge
module functionality Fzk, and resharing triples and keys functionality Frtk. Precisely,
these proofs are instanced by the Fiat-Shamir heuristic [FS86] on the Σ-protocols. Then
all hash values are computed by requesting the random oracle, and the related values are
sent by secure channels. We present the full details of these ideal functionalities below.

The global random oracle functionality Hg. We use the global random oracle
functionality Hg to complete the security proof, formally defined in Fig. 2. For all hash
requests, the answers of the random oracle model are programmed by the length q, and
will output the same answer with identical parameters. All entities have access to the
model in both a real life and an ideal world, including an environment Z.



8 Threshold Signatures with Identifiable Aborts for Identity-Based Signatures

The ideal functionality Hg of a global random oracle

• Upon receiving a request (query, x) from a party X , perform as follows:

1. If an entry (x, a) exists, give X the message (answer, a).
2. Otherwise, choose a← {0, 1}q, and record (x, a).

Return (answer, a).

Figure 2: The ideal functionality Hg of a global random oracle

The zero-knowledge module functionality Fzk. In order to make more efficient
use of the zero-knowledge proofs, the Fiat-Shamir technique is employed to reduce the
round of communication. In addition, the zero-knowledge module also needs to compute a
commitment execution by comparison with the standard zero-knowledge proof. For the
details see Fig. 3.

The zero-knowledge module functionality Fzk

• Upon receiving (com,Π, 1λ), parse the request Π = (P1, . . . ) and do in the following way:
select carefully τ in the specified range, return (A = P1(τ, 1λ); τ).

• Upon receiving (prove,Π, aux, x;w, τ), parse the request Π = (P1,P2, . . . ), compute
A = P1(τ), e = H(aux, x, A) as well as z = P2(x,w, τ, e), and return (A, e, z).

• Upon receiving (vrfy,Π, aux, x, ψ), parse the requests Π = (. . . ,V2) as well as ψ = (A, e′, z).
If V2(x,A, e′, z) = 1 and e′ = H(aux, x, A), output true for a successful verification. Else
if the these equations fail to pass the checks, output false.

Figure 3: The zero-knowledge module functionality Fzk

The resharing triples and keys functionality Frtk. In the proposed protocol, we
will have parties reshare multiplication triples and private keys, and then send these values
to the relevant parties. Following the BLMQ scheme, the interconnection of these entities
uses a secure channel to communicate with each other. Hence, an extra assumption has
yet to be introduced. The full details work in Fig. 4. Note that one can also make use of
verifiable secret sharing scheme with adaptive security to send these values, and we leave
the method in the future direction.

The resharing triples and keys functionality Frtk

Parameter: Output tuples chkj
i .

• Upon receiving (reshare, ssid, ℓ, i,msg,Z∗
q) from Pi, it samples ρ1

i,k, . . . , ρ
n−1
i,k ← Z∗

q ,
set ρn

i,k = y −
∑n−1

j=1 ρ
j
i,k, chkj

i = (ρj
i,k)j for j ∈ [n], where y ∈ msg =

{d′
IDi

, (αi, ai, bi, ci, δi, ζi, χi)}.

• It sends (ssid, i, chkj
i ) to the relevant Pj via a secure channel.

Figure 4: The resharing triples and keys functionality Frtk
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5 Secure multiplication - Fmult
5.1 Functionality definition
A multiplication functionality can compute the product of additive shares held by each
party Pi. Intuitively, given ai and bi s.t. a = a1 + · · ·+ an and b = b1 + · · ·+ bn, it can
compute c =

∑n
ℓ=1 cℓ = (

∑n
ℓ=1 aℓ) · (

∑n
ℓ=1 bℓ), where ci is the output values.

Beaver triples [Bea91] are a common approach that if secret sharings of the values
a, b and c computed in the offline phase are such that ab = c then this enables a
multiplication to be efficiently computed in the online phase. In our work, we need to
provide multiplication with identifiable abort. This is done by having a commitment before
calculating a multiplication, and then enabling detection for causing the protocol to fail.
The multiplication functionality is depicted in Fig. 5.

The Multiplication functionality Fmult

Functionality Fmult works with P1, . . . ,Pk as follows (k = {l, n}):
• Upon receiving (init,G1,G2,GT , e, q, P,Q, g,KGC, D) from all parties, Fmult stores

(G1,G2,GT , e, q, P,Q, g,KGC,D). If the entry is stored, overlook the request.
• When a request (trigen, ssid, ℓ, i, αi, ai, bi) is sent from a party Pi, if Pi ∈ KGC, then
Fmult records (ssid, ℓ, i, αi, ai, bi). Else, overlook the request.

• When all entries (trigen, ssid, ℓ, j) are correctly stored for Pj ∈ KGC, Fmult computes
α =

∑n

s=1 αi, a =
∑n

s=1 ai, b =
∑n

s=1 bi, and sets δ = aα, χ = bα, c = ba. Then, Fmult

stores (ssid, ℓ, δ, χ, c) and sends (trigen, ssid) to all parties KGC.
• Upon receiving (mult, ssid, ℓ, i, ei, di) from a party Pi, if Pi ∈ KGC (or D), Fmult checks

that some (ssid, ℓ, δ, χ, c) has been recorded. If yes, Fmult sets ξ = e · d for e =
∑

s=1 es,
d =

∑
s=1 ds and sends (mult, ssid, ξ) to all parties KGC (or D).

• Upon receiving (input, ssid, i, ri, ρi) from a party Pi, if Pi ∈ D, then Fmult records
(ssid, i, ri, ρi). Else, overlook the request.

• When all entries (input, ssid, ℓ, j) are correctly stored for Pj ∈ D, then Fmult computes
r =

∑n

s=1 ri, u = gr, stores (ssid, u) and sends (ssid, input) to all parties D.

Figure 5: The Multiplication functionality Fmult

5.2 Securely computing Fmult

The functionality Fmult includes four subprotocols; one subprotocol to output the key
pair, one subprotocol to obtain the correlated random values when the message is not
known, one subprotocol to generate the multiplication triple which is applied to efficiently
compute in the online phase, and finally, one for computing the product of the related
values once user identity or the message is given.

Init. In order to obtain the BLMQ public key Qpub as well as Paillier key pairs
(Ni, pi, qi)i∈[l], each party Pi invokes the init procedure and outputs (si, pi, qi). More-
over,

∑l
ℓ=1 sℓ = s and Qpub = s ·Q. Additionally, the parties also collaborate with each

other on a random value X, which can be used for a public generator in the Pedersen
commitment. Let (A, e, z) denote three messages of the Σ-protocols. Here, we require the
parties to commit to Qi = si ·Q and A such that the simulator can extract the witness in
security proof. The subprotocol works as depicted in Fig. 6.

Input. The Input procedure is to generate a BLMQ nonce u, where each party holds
shares r1, . . . , rn of r so that

∑n
ℓ=1 rℓ = r and u = gr. In addition, every party also
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Initialization subprotocol of Fmult

Once obtaining a request (init, sid,G1,G2,GT , e, q, P,Q, g,KGC,D, l), every player Pi executes
below:

Round 1:

(a) Pi samples si ← Z∗
q and set Qi = si ·Q. Then, it samples (Ai, τ)← Fzk(com,Πsch).

(b) Pi samples xi ← Z∗
q and sets Xi = xi ·P . Then, it samples (Bi, τ̂)← Fzk(com,Πsch).

(c) Pi samples two 2λ-bit primes p′
i, q′

i and satisfies 1 + 2p′
i = pi and 1 + 2q′

i = qi. Then,
it sets Ni = piqi.

(d) Pi samples ridi, ui and computes a hash value Vi =
H(sid, i, ridi, Qi, Xi, Ai, Bi, Ni, ui).

(e) Pi broadcasts the message (sid, i, Vi).

Round 2:

Once all requests (sid, j, Vj) are obtained, Pi sends (sid, i, ridi, Qi, Xi, Ai, Bi, Ni, ui)
to each party.

Round 3:

(a) When a request (sid, j, ridj , Qj , Xj , Aj , Bj , Nj , uj) is notified, Pi verifies:
i. Nj ≥ 28λ.

ii. H(sid, j, ridj , Qj , Xj , Aj , Bj , Nj , uj) = Vj .
(b) Pi sets rid = ⊕jridj , and computes:

i. ψi = Fzk(prove,Πsch, (sid, i, rid), Qi; si, τ).
ii. ψ̂i = Fzk(prove,Πgen, (sid, i, rid), Ni; (pi, qi))

iii. ψ̃i = Fzk(prove,Πsch, (sid, i, rid), Xi;xi, τ̂).
(c) Pi returns (sid, i, ψi, ψ̂i, ψ̃i).

Output:

(a) When a request (sid, j, ψj , ψ̂j , ψ̃j) is obtained, Pi interprets ψj = (Aj , . . . ), ψ̃i =
(Bj , . . . ), and verifies:

i. If Aj is equal to Aj , Fzk(vrfy,Πsch, (sid, j, rid), Qj , ψj) outputs true.
ii. Fzk(vrfy,Πgen, (sid, j, rid), Nj , ϕj) = 1.

iii. Bj = Bj , Fzk(vrfy,Πsch, (sid, j, rid), Xj , ψ̃j) = 1.
(b) Pi outputs Qpub =

∏
j
Qj , X =

∏
j
Xj and N = (Nj)j .

Error. When one of these verification fails, report the cheater and abort.
Stored State. Store the following: rid, N = (N1, . . . , Nl), X, and si, xi, pi, qi.

Figure 6: Initialization subprotocol of Fmult

computes and stores their ephemeral nonce ρi, and all auxiliary values ρ1 · P, . . . , ρn · P ,
which will be used to detect cheaters during signing generation. The details are provided
in Fig. 7.

TriGen. The TriGen procedure is to generate multiplication triples with the help of a
multiplication-to-addition (MTA) conversion and Paillier encryption[GGI19]. Such a triple
consists of random values (ai, bi, ci) such that ab = c. The values are authenticated using
a linear MAC scheme from [DPSZ12] to prevent cheating. Moreover, these MACs are
verified without reconstructing the MAC key. In order to see the reason for causing the
subprotocol to fail, the players are required to reveal the plaintext of the related encryptions.
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Input subprotocol of Fmult

Once getting a request (input, ssid, i, ri, ρi) for Pi ∈ D, each party Pi implements below:
Round 1:

(a) Pi samples ri ← Z∗
q and set Ri = gri . Then, it samples (Ai, τ)← Fzk(com,Πsch).

(b) Pi samples a random value ρi ← Z∗
q to set Yi = ρi · P . Then, it samples (Bi, τ̂)←

Fzk(com,Πsch).
(c) Pi samples rid′

i, ςi, and set a hash value Vi = H(ssid, i, rid′
i, Ri, Yi, Ai, Bi, ςi).

(d) Pi broadcasts the message (ssid, i, Vi).

Round 2:

Once all requests (ssid, j, Vj) are notified, Pi sends (ssid, i, rid′
i, Ri, Yi, Ai, Bi, ςi) to

every party.

Round 3:

(a) When a request (ssid, j, rid′
j , Rj , Yj , Aj , Bj , ςj) is obtained from Pj , Pi verifies:

i. H(ssid, j, rid′
j , Rj , Yj , Aj , Bj , ςj) = Vj .

(b) Pi sets rid′ = ⊕jrid
′
j , and computes:

i. ψi = Fzk(prove,Πsch, (ssid, i, rid′), Ri; ri, τ).
ii. ψ̂i = Fzk(prove,Πsch, (ssid, i, rid′), Yi; ρi, τ̂).

(c) Pi sends the message (ssid, i, ψi, ψ̂i).

Output:

(a) When a request (ssid, j, ψj , ψ̂j) is notified, Pi interprets (ψj = (Aj , . . . ), ψ̂i =
(Bj , . . . ), and verifies:

i. If Aj is equal to Aj , Fzk(vrfy,Πsch, (ssid, j, rid′), Rj , ψj) outputs true.
ii. If Bj is equal to Bj , Fzk(vrfy,Πsch, (ssid, j, rid′), Yj , ψ̂j) outputs true.

(b) Pi outputs u =
∏

j
Rj = gr and Y = (Y1, . . . , Yn).

Error. When one of these verification fails, report the cheater and abort.
Stored State. Store the following: rid′, Y = (Y1, . . . , Yn), and u, ri, ρi.

Figure 7: Input subprotocol of Fmult

Then, they verify whether the prescribed equations are correct on the plaintext and the
proven public values. In addition, the BLMQ scheme and Paillier encryption work on
different groups, and thus each party is required to prove their inputs in a certain range
via a zero-knowledge proof. Here, we get around the proofs of the complex statements
by switching to prove the discrete logarithm problem of these inputs which is efficiently
computable. The global view of the subprotocol is presented in Fig. 8.

Mult The multiplication procedure is the core content to realize the functionality Fmult.
After the completion of TriGen phase, each party Pi obtains triples (ai, bi, ci) as well as
shares of the MACs on these values. Thus, Pi can use the triples on random values ei,
di to generate an additive share of e · d. In addition, each party verifies the correctness
of e · d that will rely on whether the sum of the prescribed MACs is 0. Unfortunately,
the parties cannot detect which party is to be blamed if the verification fails. We address
this by having every party compute a Pedersen commitment on the additive share; the
parties then involve calls to hash function and publish the decommitment values. The
computation of these commitments is straightforward according to these decommitment



12 Threshold Signatures with Identifiable Aborts for Identity-Based Signatures

TriGen subprotocol of Fmult

Upon input (TriGen, ssid, ℓ, i, αi, ai, bi) to Pi, where ssid = (. . . , sid, rid, rid′,N , X,Y ), each
party Pi executes below:

Round 1:

(a) Pi samples ρi, ϱi, ki ← Z∗
Ni

, and sets Ki = enci(αi; ρi), K̂i = enci(ai; ϱi), K̃i =
enci(bi; ki).

(b) Pi selects ηi ← {0, 1}λ, and sets Γi = αi · P , Γ̂i = ai · P , Γ̃i = bi · P , Gi =
H(ssid, i,Γi, Γ̂i, Γ̃i, ηi).

(c) Pi broadcasts (ssid, i,Ki, K̂i, K̃i, Gi).

Round 2:

(a) When receiving (ssid, j,Kj , K̂j , K̃j , Gj) from Pj , and Pi computes:
i. If j is not equal to i, then set ψ′

i = Fzk(prove,Πsch∗
, (ssid, i),

(Gi,Γi, Γ̂i, Γ̃i, P ); (αi, ai, bi, ηi)).
(b) Pi sends (ssid, i,Γi, Γ̂i, Γ̃i, ψ

′
i) to all.

Round 3:

(a) When the request (ssid, j,Γj , Γ̂j , Γ̃j , ψ
′
j) is obtained from Pj , Pi verifies

Fzk(vrfy,Πsch∗
, (ssid, j), (Gj ,Γj , Γ̂j , Γ̃j , P );ψ′

j) = 1.

(b) For each j ̸= i, Pi samples ri,j , θi,j , r̂i,j , θ̂i,j , r̃i,j , θ̃i,j , ν
′
i,j , ν̂

′
i,j , ν̃

′
i,j ← Z∗

Nj
and

computes:
i. Dj,i = (Kj)ai · encj(−ν′

i,j , θi,j), Fj,i = enci(ν′
i,j , ri,j) and Ij,i = νi,j · P , where

νi,j = ν′
i,j mod q.

ii. D̂j,i = (Kj)bi · encj(−ν̂′
i,j , θ̂i,j), F̂j,i = enci(ν̂′

i,j , r̂i,j) and Îj,i = ν̂i,j · P , where
ν̂i,j = ν̂′

i,j mod q.
iii. D̃j,i = (K̂j)bi · encj(−ν̃′

i,j , θ̃i,j), F̃j,i = enci(ν̃′
i,j , r̃i,j) and Ĩj,i = ν̃i,j · P , where

ν̃i,j = ν̃′
i,j mod q.

iv. ψj,i = Fzk(prove,Πsch∗
, (ssid, i), (Ij,i, Îj,i, Ĩj,i, P ); (νi,j , ν̂i,j , ν̃i,j))

(c) Pi sends (ssid, i,Dj,i, Fj,i, Ij,i, D̂j,i, F̂j,i, Îj,i, D̃j,i, F̃j,i, Ĩj,i, ψj,i) to every Pj .

Round 4:

(a) When the request (ssid, j,Di,j , Fi,j , Ii,j , D̂i,j , F̂i,j , Îi,j , D̃i,j , F̃i,j , Ĩi,j , ψi,j) is notified,
Pi checks Fzk(vrfy,Πsch∗

i , ssid, j, Ii,j , Îi,j , Ĩi,j , P ;
ψi,j) = 1.

(b) For j ̸= i, Pi sets µi,j = deci(Di,j) mod q, µ̂i,j = deci(D̂i,j) mod q, µ̃i,j =
deci(D̃i,j) mod q, and checks µi,j · P + Ii,j = αi · Γ̂j , µ̂i,j · P + Îi,j = αi · Γ̃j ,
µ̃i,j · P + Ĩi,j = ai · Γ̃j .

(c) Pi sets Γ̂ =
∏

ℓ
Γ̂ℓ, Γ̃ =

∏
ℓ

Γ̃ℓ and computes in the following way:

i. δi = aiαi +
∑

j ̸=i
(µi,j + νi,j) mod q,Σi = δi · P − αi · Γ̂, Jj,i = µi,j · P (j ̸= i).

ii. ζi = biαi +
∑

j ̸=i
(µ̂i,j + ν̂i,j) mod q, Σ̂i = ζi · P − αi · Γ̃, Ĵj,i = µ̂i,j · P (j ̸= i).

iii. ci = biai +
∑

j ̸=i
(µ̃i,j + ν̃i,j) mod q, Σ̃i = ci · P − ai · Γ̃, J̃j,i = µ̃i,j · P (j ̸= i).

(d) Pi samples ϵi, ιi ← {0, 1}λ, and sets Φi = ci · P , Ui = H(ssid, i,Φi, ϵi), Wi =
H(ssid, i,Σi, Σ̂i, Σ̃i, ιi).

(e) Pi broadcasts (ssid, i, Ui,Wi) and sends (ssid, i, Jj,i, Ĵj,i, J̃j,i) to Pj .

Round 5:

(a) When a request (ssid, j, Uj ,Wj , Ji,j , Ĵi,j , J̃i,j) is obtained from all Pj , Pi checks:
i. For j ̸= i, Ji,j + Ij,i = ai · Γj , Ĵi,j + Îj,i = bi · Γj and J̃i,j + Ĩj,i = bi · Γ̂j .

(b) Pi computes ψ̂i = Fzk(prove,Πsch, (ssid, i), (Ui,Φi, P ); ci, ϵi).
(c) Pi sends (ssid, i,Σi, Σ̂i, Σ̃i, ιi,Φi, ψ̂i) to each Pj .

Figure 8: TriGen subprotocol of Fmult
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Round 6:

(a) Upon receiving (ssid, j,Σj , Σ̂j , Σ̃j , ιj ,Φj , ψ̂j) from all Pj , Pi verifies:
i. Wj = H(ssid, j,Σj , Σ̂j , Σ̃j , ιj).

ii. Fzk(vrfy,Πsch, (ssid, j), (Uj ,Φj , P ); ψ̂j) = 1
(b) Pi verifies

∑
k

Σk = 0,
∑

k
Σ̂k = 0 and

∑
k

Σ̃k = 0. (If the first equation fails, then
report the cheaters by sending αi, ai, δi to all and checking Γj = αj · P , Γ̂j = aj · P
as well as δj · P = αjaj · P +

∑
ℓ ̸=j

(Jℓ,j + Iℓ,j). The similar method is also used to
check for the latter two equations.)

(c) For every j ̸= i, Pi samples ri,j , θi,j , ν
′
i,j ← Z∗

Nj
and computes:

i. Dj,i = (Kj)ci · encj(−ν′
i,j , θi,j), F j,i = enci(ν′

i,j , ri,j) and Ij,i = νi,j · P , where
νi,j = ν′

i,j mod q.
ii. ψj,i = Fzk(prove,Πsch, (ssid, i), (Ij,i, P ); νi,j).

(d) Pi sends (ssid, i,Dj,i, F j,i, Ij,i, ψj,i) to Pj .

Round 7:

(a) When the request (ssid, j,Di,j , F i,j , Ii,j , ψi,j) is notified, Pi verifies
Fzk(vrfy,Πsch

i , (ssid, j), (Di,j ,Ki, F i,j ,Φj , Ii,j ;ψi,j) = 1

(b) If j is not equal to i, Pi sets µi,j = deci(Di,j) and then checks µi,j ·P +Ii,j = αi ·Φj .

(c) Pi computes Φ =
∏

ℓ
Φℓ, χi = ciαi +

∑
j ̸=i

(µi,j + νi,j), Σi = χi · P − αi · Φ,
Jj,i = µi,j · P (j ̸= i).

(d) Pi selects randomly ϖi and computes the hash value Vi = H(ssid, i,Σi, ϖi).
(e) Pi broadcasts (ssid, i, Vi) and sends (ssid, i, Jj,i).

Round 8:

(a) Once all requests (ssid, j, Vj , Jj,i) are accepted, Pi checks J i,j + Ij,i = ci · Γj for j
is not equal to i.

(b) Pi sends (ssid, i,Σi, ϖi) to all.

Output:

(a) Upon receiving (ssid, j,Σj , ϖj) from Pj , Pi verifies Vj = H(ssid, j,Σj , ϖj).
(b) Pi verifies

∑
k

Σk = 0 (As used in Round 6, check and then report the corrupted
parties if the equation fails).

(c) Pi outputs (ℓ, αi, ai, bi, ci, δi, ζi, χi).

Error. When one of these verification fails, report the cheater and abort.
Stored State. Store the modulus N and the private keys (pi, qi).

Figure 8: TriGen subprotocol of Fmult (cont.)

values and random point X in G1. The view of the subprotocol is provided in Fig. 9.

6 Our Protocol
We present here our scheme for universally composable and non-interactive BLMQ with
identifiable aborts. The scheme includes the key generation, pre-extracting, extracting,
pre-signing, and signing. Let Pi be the party who executes these phases. Moreover, we
use l and n as the number of KGCs and devices, respectively.
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Mult subprotocol of Fmult

Upon input (mult, ssid, ℓ, i, ei, di) to Pi, if an entry (ℓ, αi, ai, bi, ci, δi, ζi, χi) is stored, and then
it proceeds as follows:

Round 1:

(a) Pi sets µi = ei − ai, and νi = di − bi.
(b) Pi sends the message (ssid, i, µi, νi) to other players.

Round 2:

(a) Once a request (ssid, j, µj , νj) is notified from Pj , Pi sets µ =
∑

µj and ν =
∑

νj .
(b) Pi sets ξi = ci + µbi + νai + µν/k mod q and κi = χi + µζi + νδi + µναi mod q,

where k ∈ {l, n}.
(c) Pi sets ri ← Z∗

q and Γi = ξi · P + ri ·X.
(d) Pi sends (ssid, i, ξi · P ) to all.

Round 3:

(a) When a request (ssid, j, ξj · P ) is obtained from Pj , Pi sets ξ · P =
∑

ξj · P and
Λi = κi · P − αiξ · P .

(b) Pi samples ςi ← {0, 1}λ and sets Mi = H(ssid, i,Λi, ςi, ri,Γi).
(c) Pi broadcasts the message (ssid, i,Mi) to all other players.

Round 4:

Once all requests (ssid, j,Mj) are notified, Pi sends (ssid, i,Λi, ςi, ri,Γi) to other
players.

Output:

When all requests (ssid, j,Λj , ςj , rj ,Γj) are obtained, Pi verifies:
i. Mj = H(ssid, j,Λj , ςj , rj ,Γj).

ii.
∑

Λj = 0.
A. If the verification fails, check Γj = ξj · P + rj ·X, for j ̸= i, and report the

cheater.
B. Else output ξi.

Error. When one of these verification fails, report the cheater and abort.

Erase (τ, αi, ai, bi, ci, δi, ζi, χi).

Stored State. Store ξi, {rj ,Γj}j .

Figure 9: Mult subprotocol of Fmult

6.1 The protocol for FIBT S

Given Fmult, it is simple to generate Beaver triples for securely computing FIBT S. Par-
ticularly, such a triple allows one to multiply two given values without carrying out the
(inefficient) multiplication protocol. Thus, parties are able to select random values di, and
use Fmult to get (ai, bi, ci) such that c = a·b, to reveal µi = (si +H(ID)/l)−ai, νi = di−bi,
and finally open δi = ci +µbi +νai +µν to obtain δ =

∑
δi = (s+H(ID)) ·d. By bringing

this value out in the open, every party locally computes δ−1 = d−1 · (s+H(ID))−1 and
then multiplies this value with di to obtain di · δ−1. The resulting value diδ

−1 · P is an
additive share of the private key dID = (s+H(ID))−1 · P .

To achieve non-interacting signing, BLMQ signing requires computing (h = H(m||gr),
S = (r+ h) · dID) with one round message. Thus, it is necessary for parties to precompute
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some tuples (u = gr, ρi, ξ
′
i, ξ

′′
i , ξ

′′′
i ) where ξ′, ξ′′ and ξ′′′ are respectively additive shares of

r · ρ, (r+ k) · ρ and d′
ID · (r+ k) for randomly choosing values ri, ki and ρi. Upon receiving

a request to sign a message m, each party locally sets vi = ξ′
i + h · ρi for h = H(m||u)

and broadcasts. Observe that all parties can compute v =
∑
vi = ξ′ + hρ = (r + h)ρ,

τ = v/(
∑
ξ′′

i ) = (r + h)/(r + k) and then obtain (h, S = τ(
∑
ξ′′′

i ) · P = d′
ID(r + h) · P )

which is the signature needed. The details are presented in Fig. 10.

Parameter: (G1,G2,GT , e, q, P,Q, g).
Key generation: When the request keygen(sid) is notified, each player Pi works below
(Pi ∈KGC):

1. Pi sends (init, sid) to Fmult, and receives back (init, sid, (si, xi, pi, qi), (Qpub, X,N)).
2. Output: Qpub is considered to be a global key.

Pre-Extracting: When a request pre-extract(ssid) is obtained, each player Pi executes in the
following ways (Pi ∈KGC):

1. Pi sends (TriGen, ssid, ℓ, i) to Fmult, and receives back
(TriGen, ssid, (ℓ, αi, ai, bi, ci, δi, ζi, χi)).

2. Output: Pi locally stores the tuples {(ℓ, αi,ℓ, ai,ℓ, bi,ℓ, ci,ℓ, δi,ℓ, ζi,ℓ, χi,ℓ)}ℓ∈[L].

Extracting: When a request extract(ssid, ID) is notified, each player Pi implements below
(Pi ∈KGC):

1. Pi sends the ideal functionality Fmult the message (mult, ssid, ℓ, i, ei, di), and gets
(mult, ssid, ℓ, i, ξi, {rj ,Γj}j) (note that ξ = e · d and ei = si +H(ID)/l mod q).

2. Pi broadcasts ξi to all Pj .

3. Pi checks Γj = ξj · P + rj ·X and computes d′
IDi

= (
∑l

j=1 ξj)−1di mod q.

4. Pi sends (reshare, ssid, ℓ, i,Z∗
q) to Frtk.

5. Pj receives (reshare, ssid, i, chkj
i )from Frtk (note that Pj ∈ D).

6. Pj computes yj =
∑l

i=1 ρ
j
i,k mod q (note that k ∈ [8]).

7. Output: Pj locally stores the tuples {(d′
IDj,ℓ′ , αj,ℓ′ , aj,ℓ′ , bj,ℓ′ , cj,ℓ′ , δj,ℓ′ , ζj,ℓ′ , χj,ℓ′ )}ℓ′∈[L′]

Pre-Signing: Upon input pre-signing(ssid), Pi works as follows (Pi ∈ D):
1. Pi sends the ideal functionality Fmult the message (input, ssid||1, ssid||2, i), and obtains

(input, ssid, i, u, ri, ρi,Y ) (note that u = gr and r =
∑

j
rj).

2. Pi sends (mult, ssid||1, ssid||2, ssid||3) to Fmult ((ri, ρi), (ri + ki, ρi) and (d′
IDi

, ri + ki)
are the input values of the command, respectively).

3. Pi receives (mult, (ssid||1, ξ′
i, {r′

j ,Γ
′
j}j), (ssid||2, ξ′′

i , {r′′
j ,Γ

′′
j }j), (ssid||3, ξ′′′

i , {r′′′
j ,Γ

′′′
j }j))

from Fmult (note that ξ′ = r · ρ, ξ′′ = (r + k) · ρ and ξ′′′ = d′
ID · (r + k)).

4. Output: Pi locally stores (u, ρi, {r′
j ,Γ

′
j , r

′′
j ,Γ

′′
j , r

′′′
j ,Γ

′′′
j , Yj}j , ξ

′
i, ξ

′′
i , ξ

′′′
i ).

Signing: Upon input sign(ssid,m), Pi works as follows (Pi ∈ D):
1. Pi computes h = H(m||u) and vi = ξ′

i + h · ρi, and broadcasts (ssid, i, vi, ξ
′′
i , ξ

′′′
i ).

2. Pi computes v =
∑

vi = ξ′ + hρ, ξ′′ =
∑

ξ′′
i , ξ′′′ =

∑
ξ′′′

i and S′ = vξ′′′/ξ′′, and check
that (h, S′ · P ) is a correct signature.

(a) If the above fails, check vj · P = (Γ′
j − r′

j ·X) + h · Yj , Γ′′
j = ξ′′

i · P + r′′
j ·X and

Γ′′′
j = ξ′′′

i · P + r′′′
j ·X, for j ̸= i.

(b) Else, output (signature, ssid, i,m, h, S′ · P ).

Figure 10: Securely computing FIBT S
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Correctness. Observe that ξ is the product of e =
∑l

ℓ=1(sℓ +H(ID)/l) and d =
∑l

ℓ=1 dℓ,
and so d′

ID ·P =
∑l

ℓ=1 dℓ · ξ−1 ·P = d · (d · (s+H(ID)))−1 ·P = (s+H(ID))−1 ·P is the
private key as required.

Furthermore, observe that h = (H(m||u)), vi = ξ′
i +h ·ρi,

∑
ξ′

i = r ·ρ,
∑
ξ′′

i = (r+k) ·ρ,
and

∑
ξ′′′

i = d′
ID · (r + k). We have S′ =

∑n

ℓ=1
vℓ

ξ′′ ξ′′′ = ξ′+hρ
(r+k)ρd

′
ID · (r + k) = d′

ID(r + h).
Thus, the signature (h, S′ · P ) is valid for a given message m.

6.2 Proof of security of protocol IBTS
Next, we give an overview of the provable security for the protocol πIBT S. The proof
follows by contradiction that if πIBT S does not implement FIBT S, then a PPT algorithm
could see the distribution between the Paillier ciphertexts or a PPT faker could break
the existential unforgeability of the BLMQ signature scheme. Furthermore, the protocol
πIBT S can resist collusion attacks between different KGCs and devices. Informally, this
means that an attacker cannot output valid signatures on unrequested messages, even if
the attacker can corrupt any parties with less than the security threshold.

Theorem 1. Assuming that the Paillier scheme is semantic security and the BLMQ
signature is existential unforgeability, then the protocol shown in Fig. 10 is able to securely
implement the functionality FIBT S described in Fig. 1.

Corollary 1. If the protocol shown in Fig. 10 can securely implement the functionality
FIBT S, then the protocol described in Fig. 10 is secure against a static and malicious
adversary who controls up to both l − 1 KGCs and n− 1 devices.

Proof. An ideal simulator S shown in Fig. 1 denotes the number of corrupted KGCs and
devices, namely that ideal functionality FIBT S operates under many collusive attackers.
Further, two different security thresholds guarantee that an attacker needs to break all
KGCs/devices to get the entire keys, and thus the proposed protocol can resist the collusion
attack between multiple KGCs and devices.

6.2.1 Proof of theorem 1

Here, we give a description of formally proving the theorem 1 in the following lemmas.

Lemma 1. If FIBT S is not securely implemented by πIBT S with the ideal functionality Hg

of a global random oracle, then an environment Z can fake a valid signature for unasked
messages with the functionality Hg.

Proof. The simulations described in Appendix A are well-founded, so the claim is straight-
forward.

Lemma 2. If Z is able to forge valid signatures in a real execution of πIBT S, then there
exist two algorithms R1 and R2 such that given oracle access to Z, those algorithms can
win the events below.

1. R1 outputs “success" in the indistinguishable security experiment for Paillier with
probability at least ≥ 1/2.

2. R2 outputs “success" in the existential unforgeability experiment for BLMQ with
non-negligible probability.

Proof. Let Z be an environment. Moreover, Z is able to fake valid signatures in the
real execution of πIBT S. T ∈ poly(λ) denotes the maximum number of executing the
pre-extracting phase prior to occurring the forgery. In addition, N1, . . . , NT stand for the
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corresponding Paillier public keys during the simulation settings. Analogously, (Qpub, s)
represents the BLMQ key pair. For the processes R1 and R2, take the experiments into
consideration below:

Experiment A. Given a set of inputs (Qpub, s) and
(
Nk, Ck = encNk (1)

)
k=1,...,T

,
R1 interacts with Z and then returns the output.

Experiment B. Given a set of inputs (Qpub, s) and
(
Nk, Ck = encNk (0)

)
k=1,...,T

,
R1 interacts with Z and then returns the output.

Experiment C. Given the BLMQ public key Qpub, R2 interacts with Z and then
returns the output.

The process R1 acts on behalf of uncorrupted players in experiment A. In the meantime,
R1 also interacts with an environment Z below. R1 starts at the beginning of selecting
the BLMQ private key s and secret keys of uncorrupted players. Next, Qpub = s · Q is
considered to be the BLMQ public key (this is done by rewinding Z). Then, R1 in the
pre-extracting phase (or the pre-signing phase) follows the commands for the uncorrupted
players messages except that a random honest party Pb (or P

b̂
). For the specific party

Pb (or P
b̂
), the reduction will choose the public key from (N1, . . . , NT ), say N t, and

convert the Pb’s (or P
b̂
’s) ciphertexts to a related ciphertext Ct. Further, the security

proofs of all Pb (or P
b̂
) are emulated by making use of the random oracle ability to rewind

the environment Z. For the extracting, pre-signing and signing phase, the same trick is
employed to simulate the behavior of the specific player Pb (or P

b̂
).

If one is encrypted for the ciphertext Ct, the distribution of R1 interacting with Z is
indistinguishable, namely that it is indistinguishable from that of an interaction of real
protocol between honest parties and Z. Otherwise, this distribution is “distinguishable"
since the ciphertexts of the specific party are encryptions of zero.

Claim. If there exists an environment Z which (τ, ϵ)-forges valid signatures in an execution
of Fig. 10, then the output of experiment A is (τ · l log l · n logn, ϵ3 − 1/poly(λ))-successful
with a call to Z.

Remark 1. Note that the executing time increased by l log l · n logn times, and the
probability of a valid forgery is reduced from ϵ to ϵ3. As a result of the rewinding technique,
it is necessary for the security loss in the experiments. Precisely, one need to provide
τ · l log l · n logn in time for rewinding Z (whenever Z conjectures about Pb (or P

b̂
) at any

moment), as well as ϵ3 in probability for rewinding the zero-knowledge proofs.

Claim. Assume that the Paillier encryption is semantic security. If Z is a forger that (τ, ϵ)-
forges valid signatures in experiment A, then the output of experiment B is (τ, ϵ−1/poly(λ))-
successful with a call to Z.

Remark 2. Given oracle access to the functionality Hg and the BLMQ public key, the
process R2 emulates the distribution between Z and the uncorrupted players. The
simulation is similar to the strategy of R1 in the key generation, pre-extracting and
extracting phase, except that the differences are as follows:

• In order to acquire a value u in GT , the pre-signing simulation needs to invoke the
functionality Hg of the oracle.

• The signing simulation carries out a query to the oracle on a message m and u to
get the signature (h, S).

Claim. If Z is a forger that (τ, ϵ)-forges valid signatures in experiment B, then the output
of experiment C is (τ, ϵ)-successful with a call to Z.
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6.3 Efficiency and experimental results
We present the theoretical complexity analysis and running time for our protocol.

6.3.1 Theoretical complexity

The Fmult protocol includes Init, Input, TriGen as well as Mult. In addition, it requires a
call to Frtk. The cost analysis of each subprotocol is provided in Table 2. We also remark
that the computations of Frtk is implemented during the pre-extracting phase, which is
connected via secure channels as would the original BLMQ algorithm. Thus, the cost of
Frtk is not counted here.

Table 2: Theoretical analyses of all overheads in our protocols.
Protocol Rounds Computation Communication

(kilobytes)
Init of Fmult 3 (l + 1) × (2G1 + 2G2 + 11N) 24κ + 12|N | (3.84 KB)

Input of Fmult 3 n × (2GT + 2G1) + 2GT + G1 48κ (1.54 KB)

TriGen of Fmult 8 l × (8N + 38G1) − 5N − 10G1
l × (16|N | + 20κ) + 15κ − 10|N |(

(4.74l − 2.08)KB
)

Mult of Fmult 4 4G1 11κ (0.35 KB)
T otals

KeyGen of FIBT S 3 (l + 1) × (2G1 + 2G2 + 11N) 3.84 KB
Pre-Ext of FIBT S 8 l × (8N + 38G1) − 5N − 10G1 (4.74l − 2.08) KB

Ext of FIBT S 5 4G1 0.38 KB
Pre-Sign of FIBT S 4 n × (2GT + 2G1) + 2GT + 12G1 2.59 KB
Signing of FIBT S 1 Te + GT + G1 3κ (0.10 KB)

• Theoretical analyses of all overheads in our scheme. Te denotes the operation over bilinear pairing.
G1, G2, GT and N denote computing exponentiation in the bilinear groups G1, G2, GT and composite
group ZN . Group members (denoted |Z∗

q |) and values on ZN (denoted |N |) are considered to be the
communication overhead, including things that are sent to every other party. These values are based
on security parameter λ = 128, and thus Paillier modulus is N = 2048 and the size of group elements
is κ = |Z∗

q | = 256. For bilinear groups, |G1|, |G2| and |GT | are respectively 2, 4, 12 factor of the Z∗
q

element bit-length κ.

The FIBT S protocol consists of KeyGen, Pre-Extracting, Extracting, Pre-Signing, and
Signing. The KeyGen and Pre-Extracting phase involve respectively one call to Init and
TriGen of Fmult. The Extracting phase includes a call to Mult of Fmult and Frtk. The
Pre-Signing phase consists of a call to Input of Fmult, and three parallel calls to Mult. This
process needs to run in order and hence the total cost can be summarized. See Table 2 for
a specific description.

6.3.2 Experimental results

We choose the BN254 group for an element with bit length 256 as the finite field for 128-bit
security level, namely log |Z∗

q | = 256. Hence, |G1| = 512, |G2| = 1024, and |GT | = 3072.
256 and 4 bytes correspond to the length of the Paillier modulus and user identity. For
the operations of a server, we make use of Alibaba Cloud to emulate the behaviors, which
are implemented in Ubuntu 20.04.03 LTS. Moreover, the properties of terminal emulation
are an Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.5GHz as well as 32 GB of RAM. The
simulations of users are instanced on Google Pixel 3 XL with Octa-core and 4GB of RAM,
running Android 12.0 (Pie).

We ran experiments with three parties, i.e. l = n = 3; every subprotocol repeated 1000
times and then we took an average. As plotted in Fig. 11, the Pre-Signing and Signing
time are about 19ms and 1.6ms, respectively, and thus are very practical for IoT devices.
In fact, we take advantage of the online/offline technique that the expensive operations
(e.g., exponentiation execution in Paillier cryptosystem) can be computed by servers in the
offline phase, and then the corrected values for multiplicative work are efficiently involved
during the online phase. For the Pre-Extracting phase, the computational overhead is less
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Figure 11: The executing time in milliseconds for each subprotocol in our scheme.

than one second. Particularly, this process can be run many times before knowing the user
identity, and generate a mass of corrected values to output the corresponding private key
and signature. The costs of KeyGen and Extracting are 64ms and 8ms, respectively, and
both subprotocols only need to be done once. Therefore, the total computation is very
efficient for deploying IoT devices in real life.

7 Conclusion
We presented an efficient and non-interacting threshold BLMQ protocol with identifiable
aborts and collusion resistance. The solution started by employing the Beaver triples to
construct a secure multiplicative-to-additive conversion and then converting an inverse
operation to a linear combination while carrying heavy computation into the offline phase.
Furthermore, we proposed a commit-open way to detect the multiplicative shares in case
of faults, which does not introduce additional communication rounds and can locally verify
the relation between the shares and commitments. The security proof is loose since it
incurs a reduction loss of

(
n
t

)
, where n and t denote the number of total parties and signers,

respectively. An interesting point for future work is to utilize a random salt to obtain a
tight security reduction.
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A Simulators
Here, we give an overview of the UC-simulation and two independent reductions. Moreover,
one corresponds to the semantic security of the Paillier encryption (R1) and the other
corresponds to the unforgeability of standard BLMQ (R2) The details of the simulators
are provided as follows.

A.1 UC simulator
In the ideal process, the ideal adversary computes messages for uncorrupted parties as
required, carries out the commands of the protocol for each phase, and works below.

1. The simulator gives the functionality the global parameters as well as the BLMQ
verification algorithm at end of key generation.

2. Upon receiving a signing request, the simulator submits the functionality the valid
pair (h, S).

3. Once Z corrupts a player, the simulator sends the functionality the request.

4. The simulator reports the identity of cheaters as specified by the functionality in
case of aborts.

A.2 Paillier distinguisher R1

Let R1 be an adversary, which can see the distribution of ciphertexts for the Paillier
encryption. T ∈ poly(λ) denotes the maximum number of executing the pre-extracting
phase prior to occurring the forgery. (N1, C1), . . . , (NT , CT ) and (Qpub, s) are respectively
the key-pair for BLMQ signature scheme, as well as the public keys and ciphertexts for
Paillier encryption scheme. ctr is considered to be a counter and the initial value is 0.
L denotes a list that the simulator maintains, storing the queries and answers. The
interaction of R1 with Z is described as follows.

Oracle calls. When a request (query, x) = (query, sid∗, rid∗, . . . ) is notified, execute
below:

1. If (sid∗, rid∗) is equal to (sid, rid), respond the message (answer, a = H(x)).

2. Otherwise, if x = ([sid, j, ψ]) is obtained in a rewinding process, set the random
oracle, derive the private keys p, q, and store the corresponding tuple to L.
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3. Otherwise, if (x, a) belongs to L, respond (answer, a). Then, select a random value
a, respond (answer, a), as well as store the tuple (x, a) to L.

Key generation. Z injects the command (keygen, sid = (. . . ,KGC), i) into Pi, and
controls the set of corrupted parties C ⊊ KGC. Run S1(sid,C,L, Qpub) and get outputs
b, L, rid, {Xk, Nk}k∈KGC , and {(pk, qk), xk, sk}k ̸=b. Output sb = s−

∑
j ̸=b sj .

Pre-Extracting. Z injects the command (pre-extract, ssid = (. . . , sid,D), ℓ, i) into Pi,
and controls the set of corrupted parties C ⊊ KGC. Sample αb, ab, bb ← Z∗

q , and p0, q0
such that N0 = p0q0. Let C0 = (1+N0)ρN0 mod N2

0 in which ρ is randomly chosen from the
group Z∗

N0
. Set pre-ext0 = (αb, ab, bb, N0, C0), ctr = ctr + 1, pre-ext = (αb, ab, bb, N

ctr, Cctr)
and work as follows.

1. If |KGC\C| = 1, invoke S2(ssid,C,L, b, pre-ext0). Once finished, check that no
cheaters are identified. And then, rewind Z to the beginning procedure of S2, reselect
the random value ρb and take (ssid,C,L, pre-ext) as its input, as well as set the
tuple (αj , aj , bj , cj , δj , ζj , χj)j ̸=b.

2. Else, run S2(ssid,C,L, b, pre-ext) for the above cases.

Extracting. The environment Z injects the command (extract, ssid, ℓ, ID, i) into Pi,
and controls C ⊊ KGC. Sample db ← Z∗

q , as well as output e\b = (ej)j ̸=b, x\b = (xj)j ̸=b

and aux = (eb, db), where ek = sk +H(ID)/l for every k ∈ [l].

1. Invoke S3(ssid,C,L, b, e\b,x\b, aux) for the extracting process and obtain ξi, {rj ,Γj}j .
Broadcast ξi to all and set d′

ID
b

= (
∑
ξi)−1db mod q.

2. Hand over {(ssid, i, d′
IDi

, αi, ai, bi, ci, δi, ζi, χi)}i/∈C to Z, and obtain {d′
IDj
}j /∈C .

Pre-Signing. The environment Z injects the command (pre-signing, ssid, i) into Pi,
and controls the set of corrupted parties C ⊊ D. Sample S0 ← G1, h0 ← Z∗

q , and let
u0 = e(S,QID)e(P,Q)−h0 , QID = H(ID) · Q + Qpub. Run S4(ssid,C,L, u0) and get
outputs b̂, L, rid’, {Yk}k∈D and {rk, ρk}k ̸=̂b

. Sample r̂
b
, k̂

b
, ρ̂

b
← Z∗

q , as well as output

r\̂b = (rj)
j ̸=̂b

, ρ\̂b = (ρj)
j ̸=̂b

, and aux = (r̂
b
, k̂

b
, ρ̂

b
). Then, make a call to the simulator

S3(ssid,C,L, b̂, e\̂b,d\̂b,x\b, aux) for the pre-signing.

Signing. The environment Z injects the command (sign, ssid,m, i) into Pi, and controls
the set of corrupted parties C ⊊ D.

1. Retrieve u and {ξ′
i, ξ

′′
i , ξ

′′′
i , ρi}i/∈C , set h = H(m||u).

2. Hand over {(ssid, i, vi = ξ′
i + h · ρi, ξ

′′
i , ξ

′′′
i )}i/∈C .

Dynamic Corruptions.

1. If the environment Z controls a player Pi that belongs to the set H or Ĥ, expose
the secret state of the parties.

2. Else, rewind Z to the (†) step of S1 or S4, and then erase all relevant entries recorded
in L.
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A.3 BLMQ forger R2

Let R2 a forger that can output valid signatures on messages that are not required. In
addition, we denote the BLMQ public key by Qpub. Let ctr be a counter which is initialized
to 0. L stands for a list that the simulator maintains, storing the queries and answers.
The interaction of R2 with Z is described as follows.

Oracle calls. When a request (query, x) = (query, sid∗, rid∗, . . . ) is notified, execute
below:

1. If (sid∗, rid∗) is equal to (sid, rid), respond the message (answer, a = H(x)).

2. Otherwise, if x = ([sid, j, ψ]) is obtained in a rewinding process, set the random
oracle, derive the private keys p, q, and store the corresponding tuple to L.

3. Otherwise, if (x, a) belongs to L, respond (answer, a). Then, select a random value
a, respond (answer, a), as well as store the tuple (x, a) to L.

Key generation. Z injects the command (keygen, sid = (. . . ,KGC), i) into Pi, as well
as controls the set of corrupted parties C ⊊ KGC. Run S1(sid,C,L, Qpub) and get
outputs b, L, rid, {Xk, Nk}k∈KGC , {(pk, qk), xk}k∈KGC and {sk}k ̸=b.

Pre-Extracting. The environment Z injects the command
(
pre-extract, ssid = (. . . , sid,

D), ℓ, i
)

into Pi, and controls the set of corrupted parties C ⊊ KGC. Run S2(ssid,C,L,⊥).
If S2 ends, rewind Z to the beginning procedure of S2, as well as reselect ρb. Set b and
(αj , aj , bj , cj , δj , ζj , χj)j ̸=b.

Extracting. The environment Z injects the command (extract, ssid, ℓ, ID, i) into Pi, and
controls C ⊊ KGC. Sample α, a, b← Z∗

q , as well as output e\b = (ej)j ̸=b, x\b = (xj)j ̸=b,
aux = (α, a, b), where ek = sk +H(ID)/l for every k ̸= b.

1. Invoke S3(ssid,C,L, e\b,x\b, aux), and obtain ξi. Broadcast ξi to all and set d′
ID

b
=

(
∑
ξi)−1db mod q.

2. Hand over {(ssid, i, d′
IDi

, αi, ai, bi, ci, δi, ζi, χi)}i/∈C and obtain {d′
IDj
}j /∈C .

Pre-Signing. The environment Z injects the command (pre-signing, ssid, i) into Pi, and
controls the set of corrupted parties C ⊊ D.

1. Call to the BLMQ oracle to get a point u ∈ GT . Run S4(ssid,C,L, u) and obtain b̂,
L, rid′, {Yk}k∈D and {rk, ρk}k ̸=̂b

.

2. Sample α, a, b← Z∗
q , set aux = (α, a, b) and run S3(ssid,C,L, aux).

Signing. The environment Z injects the command (sign, ssid,m, i) into Pi, and controls
the set of corrupted parties C ⊊ D.

1. Retrieve (ssid, ℓ, η7
1 , η

7
2 , η

7
3) and (ssid, ℓ, u, ξ′, ξ′

i, ξ
′′, ξ′′

i , ξ
′′′, ξ′′′

i , ρi), for i belongs to
Ĥ.

2. In order to obtain signature (h, S), make use of a call to the BLMQ oracle. For Pi be-
longs to Ĥ , vi is considered to be prescribed value, as well as submit (ssid, i, vi, ξ

′′
i , ξ

′′′
i ).

For P
b̂
, set v̂

b
= (ξ′ − η7

1) + hρ̂
b
, ξ′′

b̂
= ξ′′ − η7

2 , ξ′′′
b̂

= ξ′′′ − η7
3 and submit

(ssid, b̂, v̂
b
, ξ′′

b̂
, ξ′′′

b̂
).
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Dynamic Corruptions.

1. If Z controls Pi ∈H or Pi ∈ Ĥ, then expose the secret state of the parties.

2. Else, rewind Z to the (†) step of S1 or S4, and then erase all relevant entries recorded
in L.

B Standalone simulators
In this section, we denote the ZK-simulator of Πprt by Sprt, where prt ∈ {sch, sch∗}.

B.1 Initialization simulator (S1)
The simulator S1(sid,C,L, Qpub) takes something as input, including a session identifier
sid, a query-answer list L, a group of players C ⊊ KGC, the BLMQ public key Qpub,
and works below.

Round 1. Set exp = 0 and select {Vi}i/∈C . Then, give Z the message (sid, i, Vi), where
each Pi does not belong to C.

Round 2. When obtaining (sid, j, Vj) for all Pj ∈ C (†), do as follows and add the
corresponding values to L:

1. If exp is not equal to 0, all values are set according to the protocol, and output
{(sid, i, ridi, Qi, Xi, Ai, Bi, Ni, ui)}i/∈C .

2. Otherwise, select Pb ←KGC\C, as well as set H = KGC\C ∪ {Pb}, and execute
below:

(a) For Pi that belongs to H, compute all entries according to the protocol and
output (sid, i, ridi, Qi, Xi, Ai, Bi, Ni, ui).

(b) For Pb that is carefully selected, output Qb = Qpub −
∑

j ̸=b Qj . Then, run the
simulator of the zero knowledge proof to get ψb = (Ab, . . . )← S

sch(Qb, . . . ), and
sample Xb ← G1 and set ψ̃ = (Bb, . . . )← S

sch(Xb, . . . ). Furthermore, submit
(sid, b, ridb, Qb, Xb, Ab, Bb, Nb, ub).

Round 3. Once all requests (sid, j, ridj , Qj , Xj , Aj , Bj , Nj , uj) are correctly stored, out-
put {ψj , ψ̂j , ψ̃j}j∈C . Moreover, select rid = ⊕jridj , as well as output (sid, i, ψi, ψ̂i, ψ̃i)i/∈C .
In addition, append the corresponding values to L.

Output. If exp is not equal to 0, let exp become 1 and return (†) from round 2
and discard the values stored in the list L from that moment on. Otherwise, extract
{sj , pj , qj , xj}j /∈C , and then set b,L, rid, {sk, pk, qk, xk}k ̸=b.

B.2 Triple-generation simulator (S2)
The simulator S2(ssid,C,L, b, pre-ext) takes something as input, including the session
identifier ssid, a query-answer list L, a group of malicious players C ⊊ KGC, as well as
additional information pre-ext = ⊥ or pre-ext = (αb, ab, bb, N

∗, C).
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Round 1. For Pi that belongs to H, all values are set according to the protocol and
send (ssid, i,Ki, K̂i, K̃i, Gi). For Pb, sample Gb randomly and set as follows:

1. If pre-ext = ⊥, set Nb = N∗, Kb = encb(0), K̂b = encb(0) and K̃b = encb(0). And
then, sample Γb, Γ̂b, Γ̃b ← G1.

2. If pre-ext ̸= ⊥, set Nb = N∗, Kb = Cα
b ·encb(0), K̂b = Ca

b ·encb(0), K̃b = Cb
b ·encb(0),

Γb = αb · P , Γ̂b = ab · P and Γ̃b = bb · P . Next, give (ssid, b,Kb, K̂b, K̃b, Gb), as well
as store the corresponding entries.

Round 2. When a request (ssid, j,Kj , . . . ) is notified, execute below:

1. For Pi that belongs to H, all values are set according to the protocol, as well as
output (ssid, i,Γi, Γ̂i, Γ̃i, ψ

′
i).

2. For Pb, invoke the zero-knowledge simulators ψ′
b
← Ssch∗(Gb,Γb, Γ̂b, Γ̃b, P, . . . ). Then,

hand over (ssid, b,Γb, Γ̂b, Γ̃b, ψ
′
b
), as well as store the related calls.

Round 3. When a request (ssid, j,Γj , Γ̂j , Γ̃j , ψ
′
j) is notified, retrieve (αj , aj , bj) and

work below:

1. For Pi that belongs to H, all values are set according to the protocol, as well as
output (ssid, i,Dj,i, Fj,i, Ij,i, D̂j,i, F̂j,i, Îj,i, D̃j,i, F̃j,i, Ĩj,i, ψj,i).

2. For Pb, choose random tuples {µℓ,b, µ̂ℓ,b, µ̃ℓ,b}ℓ ̸=b, as well as output Dℓ,b = encℓ(µℓ,b),
D̂ℓ,b = encℓ(µ̂ℓ,b), D̃ℓ,b = encℓ(µ̃ℓ,b), and

(a) If pre-ext = ⊥, set Fℓ,b = encb(0), F̂ℓ,b = encb(0), F̃ℓ,b = encb(0), and
Iℓ,b, Îℓ,b, Ĩℓ,b ← G1.

(b) If pre-ext ̸= ⊥, set Fℓ,b = C
αℓa

b
−µ

ℓ,b · encb(0), F̂ℓ,b = C
αℓb

b
−µ̂

ℓ,b · encb(0),
F̃ℓ,b = C

aℓb
b
−µ̃

ℓ,b · encb(0), Iℓ,b = (αℓab − µℓ,b) · P , Iℓ,b = (αℓbb − µ̂ℓ,b) · P and
Ĩℓ,b = (aℓbb − µ̃ℓ,b) · P .

Then, for j ̸= b, invoke the zero-knowledge simulators ψj,b ← S
sch∗(Ij,b, Îj,b, Ĩj,b, P, . . . ).

Next, hand over (ssid, b,Dj,b, Fj,b, Ij,b, D̂j,b, F̂j,b, Îj,b, D̃j,b, F̃j,b, Ĩj,b, ψj,b), as well as
store the corresponding values.

Round 4. When a request (ssid, j,Di,j , Fi,j , Ii,j , . . . ) is notified for j ∈ C, i /∈ C,
retrieve {µj,b, µ̂j,b, µ̃j,b, νj,b, ν̂j,b, ν̃j,b}j ̸=b from {Fb,j , F̂b,j , F̃b,j}j∈C , as well as work below:

1. If pre-ext = ⊥, check that dec(Db,j) = νj,b mod q, dec(D̂b,j) = ν̂j,b mod q and
dec(D̃b,j) = ν̃j,b mod q for j ̸= b, sample α, a, b← Z∗

q , as well as compute:

(a) η0 =
∑

j ̸=b(αj), η1 =
∑

j ̸=b(aj) and η2 =
∑

j ̸=b(bj).

(b) η3 =
∑

j,i ̸=b aiαj +
∑

j ̸=b

(
µj,b + νj,b

)
.

(c) η4 =
∑

j,i ̸=b biαj +
∑

j ̸=b

(
µ̂j,b + ν̂j,b

)
.

(d) η5 =
∑

j,i ̸=b biaj +
∑

j ̸=b

(
µ̃j,b + ν̃j,b

)
.

(e) αb = α− η0, ab = a− η1 and bb = b− η2.
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(f) For ℓ ̸= b, µb,ℓ = αbaℓ−νℓ,b, µ̂b,ℓ = αbbℓ−ν̂ℓ,b and µ̃b,ℓ = abbℓ−ν̃ℓ,b; Jℓ,b = µb,ℓ·P ,
Ĵℓ,b = µ̂b,ℓ · P and J̃ℓ,b = µ̃b,ℓ · P .

(g) δb = aα− η3, ζb = bα− η4, and cb = ba− η5.

(h) Σb = δb · P − αb · (Γ̂b + η1 · P ), Σ̂b = ζb · P − αb · (Γ̃b + η2 · P ) and Σ̃b =
cb · P − ab · (Γ̃b + η2 · P ) (this step requires rewinding Z to item (a) of round 1,
satisfying that αP = Γb + η0P , aP = Γ̂b + η1 P and bP = Γ̃b + η2P , and then
proceeds as prescribed).
Next, sample (Ui,Wi), and send {(ssid, i, Ui, Wi, Jj,i, Ĵj,i, J̃j,i)}i/∈C , submit
(ssid, b, Jj,b, Ĵj,b, J̃j,b).

2. Else, check that dec(Db,j) = αb · dec(K̂j)− νj,b, dec(D̂b,j) = αb · dec(K̃b)− ν̂j,b and
dec(D̃b,j) = ab · dec(K̃b)− ν̃j,b, and compute

(a) δb = αbab +
∑

j ̸=b

(
(αbaj−νj,b)+(αjab−µj,b)

)
, ζb = αbbb +

∑
j ̸=b

(
(αbbj− ν̂j,b)+

(αjbb−µ̂j,b)
)

and cb = abbb+
∑

j ̸=b

(
(abbj−ν̃j,b)+(ajbb−µ̃j,b)

)
; Σb = δb·P−αb·Γ̂,

Σ̂b = ζb · P − αb · Γ̃ and Σ̃ = cb · P − ab · Γ̃.

(b) For ℓ ̸= b, Jℓ,b = (αbaℓ−νℓ,b)·P , Ĵℓ,b = (αbbℓ−ν̂ℓ,b)·P and J̃ℓ,b = (abbℓ−ν̃ℓ,b)·P .

Then, sample (Ui,Wi) and send {(ssid, i, Ui, Wi, Jj,i, Ĵj,i, J̃j,i)}i/∈C,j∈KGC .

Round 5. Once a request (ssid, j, Uj ,Wj , Ji,j , Ĵi,j , J̃i,j) is notified, and execute below:

1. If pre-ext = ⊥, check that Jb,j = µj,b · P , Ĵb,j = µ̂j,b · P and J̃b,j = µ̃j,b · P for j ̸= b.

2. Else, check that Jb,j + Ij,b = ab · Γj , Ĵb,j + Îj,b = bb · Γj and J̃b,j + Ĩj,b = bb · Γ̂j .
Then, set Φi = ci · P for i ∈ H, hand over {(ssid, i,Σi, Σ̂i, Σ̃i, ιi,Φi, ψ̂i)}i∈H and
store the related value, where ιi is generated as required.

Round 6. Once a request (ssid, j,Σj , Σ̂j , Σ̃j) is notified, verify
∑

ℓ Σℓ = 0,
∑

ℓ Σ̂ℓ = 0
and

∑
ℓ Σ̃ℓ = 0. If the first equation fails, open the related values {αi, ai, δi}i∈H .

1. For Pi that belongs to H, all values are set according to the protocol, output
{(ssid, i,Dj,i, F j,i, Ij,i, ψj,i)}j∈KGC,i∈H .

2. For Pb, sample {µℓ,b}ℓ ̸=b, and set Db(µℓ,b), and do

(a) If pre-ext = ⊥, set F ℓ,b = encb(0) and Iℓ,b ← G1.

(b) Else, set F ℓ,b = C
αℓc

b
−µ

ℓ,b · enc(0) and Iℓ,b = (αℓcb − µℓ,b) · P .

Then, for j ̸= b, invoke the zero-knowledge simulators ψj,b ← Ssch(Ij,b, P, . . . ).
Furthermore, hand over (ssid, b,Dj,b, F j,b, Ij,b, ψj,b) for j is not equal to b, and store
the corresponding values.

Round 7. When a request (ssid, j,Di,j , F i,j , Ii,j , ψi,j) is notified from j ∈ C, retrieve
(αj , aj , bj , cj , a, b) as well as {µj,b, νj,b}j ̸=b from {F b}j∈C , and do and add the related
values to L:

1. If pre-ext = ⊥, check that dec(Db,j) = νj,b mod q for j is not equal to b, and compute

(a) η6 =
∑

j,i ̸=b αicj +
∑

j ̸=b

(
µj,b + νj,b

)
, χb = αab− η6; Σb = χb · P − αb · ab · P .
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(b) For ℓ ̸= b, µb,ℓ = cbαℓ − νj,b and Jℓ,b = µb,ℓ · P .

Then, sample Vi and send {(ssid, i, Vi, Jj,i)}i/∈C , Next, output (ssid, b, Jj,b),
for j is equal to b.

2. Else, check that dec(Db,j) = bb ·dec(K̂j)− νj,b, for j is equal to b, as well as compute

(a) χb = αbcb +
∑

j ̸=b

(
(αbcj − νj,b) + (αjcb − µj,b)

)
and Σb = χb · P − αb · Φ.

(b) For ℓ ̸= b, Jℓ,b = (αbcℓ − νℓ,b) · P .

Then, sample Vi and send {(ssid, i, Vi, Jj,i)}i/∈C,j∈KGC .

Round 8. Once a request (ssid, j, Vj , J i,j)j∈C,i/∈C is notified, and execute below:

1. If pre-ext = ⊥, check that Jb,j = µj,b · P .

2. Else, check that Jb,j + Ij,b = cb · Γj . Then, output {(ssid, i,Σi, ϖi)}i∈H .

Output. Once a request (ssid, j,Σj , ϖj) is notified, verify that
∑

ℓ Σℓ = 0. If the
verification fails, open the related values {αi, ci, χi}i∈H .

1. If pre-ext = ⊥, output (ssid, ℓ, η0, . . . , η6) and (ssid, ℓ, αi, ai, bi, ci, δi, ξi, χi)i∈H .

2. Else, output (ssid, ℓ, αi, ai, bi, ci, δi, ξi, χi)i/∈C .

B.3 Multiplication simulator (S3)
The simulator S3(ssid,C,L, rep, e\rep,d\rep,x\rep, aux) takes something as input, including
the session identifier ssid, a query-answer list L, a group of corrupted players C ⊊ KGC
or C ⊊ D, an index rep ∈ {b, b̂} and e\rep = (ej)j ̸=rep, d\rep = (dj)j ̸=rep, x\rep = (xj)j ̸=rep
such that Prep /∈ C and additional information aux = (α, a, b) or aux = (erep, drep). Let exp′

be a symbol, initialized as 0.

Round 1. If exp′ is not equal to 0, all values are set according to the protocol, as
well as output {(ssid, i, µi, νi)}i/∈C to Z. Otherwise, retrieve (ssid, ℓ, η0, . . . , η6) and
{(ssid, ℓ, αi, ai, bi, ci, δi, ξi, χi)}i∈H or Ĥ

, and do:

1. If aux = (α, a, b), set 
erep = a+ u−

∑
ℓ eℓ, arep = a− η1

drep = b+ ν −
∑

ℓ dℓ, brep = b− η2

µrep = erep − arep, νrep = drep − brep

Then, output (ssid, i, µi, νi)i/∈C .

2. Else, set 
e = erep +

∑
ℓ eℓ, arep = e− µ− η1

d = drep +
∑

ℓ dℓ, brep = d− ν − η2

µrep = erep − arep, νrep = drep − brep

Then, output (ssid, i, µi, νi)i/∈C .



Yan Jiang, Youwen Zhu, Jian Wang, Yudi Zhang 29

Round 2. Once a request (ssid, j, µj , νj) is notified, and execute below:
1. If aux = (α, a, b), set η7 = ξC = η5 + µη2 + νη1 and κC = η6 + µη4 + νη3 + µνη0.

(a) If
∑

ℓ µℓ is equal to µ and
∑

ℓ νℓ = ν,
i. Set ξrep = ab − η5 + µ(b − η2) + ν(a − η1) and κrep = αab − η6 + µ(αb −
η4) + ν(αa− η3) + µν(α− η0) mod q.

ii. Submit (ssid, i, ξi · P )i/∈C .
(b) Else, sample ξ ← Z∗

q , and set ξrep = αξ−ξC−µν, κrep = αξ−κC . Then, output
(ssid, i, ξi · P )i/∈C .

2. Otherwise, set ξ = ed and send (ssid, i, ξi · P )i/∈C .

Round 3. Once a request (ssid, j, ξj · P ) is notified, sample {Mi}i/∈C , as well as output
(ssid, i,Mi), for i does not belong to C.

Round 4. Once a request (ssid, j,Mj)j∈C is notified, and execute below:
1. If aux = (α, a, b) and

∑
ℓ µℓ = µ and

∑
ℓ νℓ = ν,

(a) Set ξ = (a+ µ)(b+ ν), Λrep = κrep · P − (α− η0)ξ · P .
(b) Send {(ssid, i,Λi, ςi, ri,Γi)}i/∈C and add the corresponding values to L.

2. Else, send (ssid, i,Λi, ςi, ri,Γi) for i /∈ C.

Output. When receiving (ssid, j,Λj , ςj , rj ,Γj)j∈C , verify
∑

ℓ Λℓ = 0. If the equation
fails, check that Γj = ξj · P + rj ·X for j ̸= i; Else, work below:

1. If aux is equal to (α, a, b), output (ssid, ℓ, η7) and (ssid, ℓ, ξ, ξi) for i ∈H or Ĥ and
{rj ,Γj}j .

2. Else, set ξ = ed and output (ssid, ℓ, ξ, ξi)i/∈C .

B.4 Input simulator (S4)
The simulator S4(ssid,C,L, u) takes something as input, including the session identifier
ssid, a query-answer list L, a group of malicious parties C ⊊ D, the nonce u and works
as follows.

Round 1. Set exp′′ = 0, and then select {Vi}i/∈C , as well as send (ssid, i, Vi), for i does
not belong to C.

Round 2. Once a request (ssid, j, Vj) is notified (†), work below and add the correspond-
ing values to L:

1. If exp′′ is equal to 0, all values are set according to the protocol, as well as output
{(ssid, i, rid′

i, Ri, Yi, ςi)}i/∈C .

2. Otherwise, sample P
b̂
←D\C, set Ĥ = D\C ∪ {P

b̂
}, as well as work below:

(a) For Pi that belongs to Ĥ, all values are set according to the protocol, and
submit (ssid, i, rid′

i, Ri, Yi, ςi).
(b) For special party P

b̂
that is carefully chosen, compute R

b̂
= u/

∏
j ̸=̂b

Rj . Then,
run ZK simulator ψb = (A

b̂
, . . . )← Ssch(R

b̂
, . . . ), sample Ŷ

b
← G1, and set ψ̂ =

(B
b̂
, . . . ) ← Ssch(Ŷ

b
, . . . ). Moreover, hand over (ssid, b̂, rid′

b̂
, R

b̂
, Ŷ

b
, A

b̂
, B

b̂
, ς̂

b
)

to Z.
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Round 3. Once all requests (ssid, j, rid′
j , Rj , Yj , Aj , Bj , ςj) are obtained, store {ψj , ψ̂j}j∈C

into E′′, as well as execute below :

1. Put rid′ = ⊕jrid
′
j , and submit (ssid, i, ψi, ψ̂i)i/∈C .

2. Store the related values.

Output. If exp′′ is equal to = 0, let exp′′ become 1, and return to (†) from round 2 and
discard the values stored into L from that moment on. Otherwise, extract {rj , ρj}j /∈C ,
and then output b̂,L,Y , rid′, {rk, ρk}k ̸=̂b

.
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