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Abstract

It is well known that the best small private exponent attack against RSA is
that when the private exponent d < N0.292, one can factor the RSA modulus
N = pq. However, the bound N0.292 is very difficult to achieve directly since we
need to deal with some lattice with very high dimension, which seems infeasible
by now. Recently, Li et al. proposed a practical attack that can solve cases when
d approaches N0.292 within a month for 1024 bit N . In this paper, we propose
an improved practical small private exponent attack by enumerating the most
significant bits of p+q. Together with some skills in implementations, we can also
achieve the bound N0.292, but with significantly less time compared to previous
work.
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1 Introduction

In 1978, Rivest et al.[1] proposed the first public key cryptosystem RSA, which is now
widely deployed in modern commercial systems for privacy and authenticity. Even
after forty years, RSA continues to be a vibrant area of research, particularly in the
field of cryptanalysis.

Key recovery attacks on RSA have been discussed in numerous works with various
scenarios. One specific type of attack highlights the dangers of using a small private
exponent and has gained a lot of attention because keeping decryption costs low is very
important for RSA systems. In 1990, Wiener [2] successfully gave a key recovery attack
against RSA for a small private exponent d < 1

3N
1/4 by a continued fraction method,

where N = pq is the RSA modulus. Later, Coppersmith [3] proposed a lattice-based
technique for RSA cryptanalysis. Coppersmith’s methods open up a lot of in-depth
research on lattice-based analysis of RSA. In [4], Boneh and Durfee extended the bound
to d < N0.292 for small private exponent attack via a new lattice-based approach. In
2010, Herrmann and May [5] employed a simpler and more efficient method to achieve
the same bound d < N0.292. Despite several efforts [6, 7], d < N0.292 still remains the
best bound.

However, it has been demonstrated that the bound can be improved under the
relaxed condition of partial knowledge leakage. The concept of partial key exposure
attacks on RSA was introduced by Boneh, Durfee, and Frankel in [8]. It addresses the
scenario where an attacker has obtained some bits of the private exponent d. Ernst et
al. [9] proposed a partial key exposure attack with the knowledge of the most significant
bits(MSBs) of the private key d in the range of N0.284 < d < N . Later, Takayasu and
Kunihiro [10] covered the range to N0.292 < d < N . The partial key exposure attack
can be applied to various scenarios, including the leakage of the prime divisors p or q
of the modulus N , or their sum p+ q, etc [11–13].

1.1 Related work

Note that the bound in Coppersmith’s method is typically an asymptotic theoretical
bound. More precisely, the small private exponent attacks [4, 5] work if

d < N0.292−ϵ for some ϵ > 0.

Due to the existence of ϵ, we need to handle a lattice with a much larger dimension
to approach the theoretical bound, but the corresponding lattice basis reduction algo-
rithms cannot work well in both efficiency and quality for such lattices. Therefore,
the bound that can be achieved in experiments is always inferior compared to the
theoretical bound.

To achieve the theoretical bound in practice, an exhaustive search is usually
applied. By guessing some bits of the prime factors of the RSA modulus, the upper
bound N0.292 on the private exponent can be slightly raised. In 2008, Sarkar et al. [14]
presented their findings on the number of bits required to guess in the instances they
discussed. For example, 33 bits of prime factor need to be guessed in the instances of
1000-bit modulus with private exponents up to N0.3. However, they did not complete
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the full attack, and the estimated running time for the complete attack was a cluster
of 221 CPUs working for 512 days. Therefore, it is important to improve the efficiency
of the attack to complete it in practice.

Recently, Li et al.[15] presented a practical attack on RSA with small private expo-
nent, by detailed calculation for specific values of the dimension in Herrmann-May’s
attack [5] and binary search strategy for the most significant bits (MSBs) of prime
divisor p. Due to a ”multivalued-continuous phenomena”, that is, different approxima-
tions of p lead to the same approximation of p+ q, their attacks work well in practice.
In their experiments, they can handle the case when d ≈ N0.292 for a 1024-bit RSA
modulus and when d ≈ N0.287 for a 2048-bit RSA modulus in about a month. They
also pointed out that when p− q is relatively small, their attack will perform better.
This is also validated by their experiments. All the instances for which their attack
could be completed in a short time have a relatively small difference p − q, while for
the instances with large differences their attacks still needs almost a month.

1.2 Our Contributions

In this paper, we present a new practical attack on small private exponent RSA, which
works well for the case when the private exponents are close to the theoretical bound,
significantly improving the practical effectiveness.

It is folklore that the complexity of the exhaustive search is a bottleneck that
restricts the experimental bound. The key idea of our new attack is introducing a more
efficient exhaustive search. In [15], they did an exhaustive search on the MSBs of p
and for each candidate p, they tried to run Herrmann-May’s attack to factor the RSA
modulus. Notice that Herrmann-May’s attack is launched using the MSBs of p + q,
our attack directly goes to exhaustively search the MSBs of p+ q. Since we know that
pq = N , not any bit string is a possible candidate for the MSB of p+q. Hence, we first
build a list of all the possible MSBs of p+ q by enumerating all the possible MSBs of
p and then computing the corresponding MSBs of q and the sum. Note that we will
delete the repeated items in the list to keep every elements different. Then, for each
candidate in the list, we run the lattice-based attack to factor N . There are many ways
to enumerate the elements in the list, such as in an ascending order, descending order
or a random order. It is obvious that the location of the correct MSB of p+ q decides
that which enumeration order is better. We think that our new exhaustive search will
bring at least two advantages compared to [15].

• The whole enumeration space of the MSBs of p + q is significantly less than the
enumeration space of the MSBs of p. Taking Experiment 6 in [15] as an example,
there are totally 8191 candidates for the 14 MSBs of p while there are only 392
candidates for the 14 MSBs of p+ q.

• Although the multivalued-continuous phenomena narrows the search space on the
MSBs of p and improves the actual performance of the attack in [15], it can be
shown that the smaller |p−q| is, then the smaller p+q is, and the more the number
of candidate MSBs of p’s leading to the same MSBs of p + q is, which means that
if we adopt the ascending order to enumerate the elements in our list, our attack
will perform better than [15]. It is shown in our experiments that our approach
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can significantly reduce the cost of finding the accurate value of the MSBs of p+ q
compared to enumerating the MSBs of p.

From a practical perspective, the effectiveness of Coppersmith-type cryptanalysis
heavily relies on the performance of the lattice basis reduction algorithm, like LLL
algorithm [16], and Gröbner basis method to solve a system of polynomials. In our
experiments, we adopt the faster lattice reduction algorithm flatter [17] to lower the
time reducing a lattice basis.

In addition, we propose a more efficient method for Gröbner basis computation.
More precisely, we choose small finite fields and compute the Gröbner bases over these
small fields. Finally, the desired roots of the system of polynomials can be obtained
using the Chinese Remainder Theorem.

Overall, our strategy has changed the completion time in [15] from being measured
in days to minutes. Besides, we provide more examples of successful attacks to further
demonstrate the effectiveness of our attacks.

Roadmap. The remainder of the paper is organized as follows. In Section 2, we present
some preliminaries and review Coppersmith’s method. In Section 3, we present our
analysis of attacking small private exponents based on enumerating MSBs of p + q.
Besides, we also compare our attacks with Li et al.’s work [15], which focuses on
enumerating MSBs of p. We illustrate our strategies for faster implementations in
Coppersmith’s method in Section 4 and describe the complete experimental results in
Section 5. Finally, we give a short conclusion in Section 6.

2 Notations and Preliminaries

In this section, we state some of the notations and mathematics used in the attacks
discussed in the rest of this work.

2.1 Some Notations

We use Z and R to denote the set of integers and real numbers, respectively. Let
| · | denote the absolute value of a real number. We use the notation Z[x1, · · · , xn]
to denote the ring of polynomials in the n indeterminates x1, · · · , xn with coeffi-
cients from Z. For any vector v ∈ Rn, we use ∥v∥ to denote the Euclidean norm. For
any polynomial h(x1 · · · , xn) ∈ Z[x1, · · · , xn], we use ∥h(x1 · · · , xn)∥ to denote the
Euclidean norm of the coefficient vector of h(x1 · · · , xn). That is, for h(x1 · · · , xn) =∑

hi1,··· ,inx1
i1 · · ·xn

in ,

∥h(x1 · · · , xn)∥ =
√∑

hi1,··· ,in
2.

2.2 Lattices

This work primarily focuses on attacks that utilize lattice basis reduction techniques.
We provide fundamental information about lattices and lattice basis reduction below.
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Given m ≤ n linearly independent vectors b1, · · · , bm ∈ Rn, the set

L = L(b1, · · · , bm) = {
m∑
i=1

zibi|zi ∈ Z}

is a lattice. The integer m is referred to as the dimension of the lattice L, while the
integer n is known as the rank of the lattice L. Usually, we let the basis vectors
b1, · · · , bm be the rows in a matrix B to represent the lattice L. The determinant of a
lattice L, denoted by det(L), is defined as det(L) =

√
det(BBT). When m = n, the

lattice L is a full rank lattice and the determinant of L is |det(B)|.
A lattice is a discrete additive group in Rn, ensuring the existence of the shortest

nonzero vector within the lattice. The search for this vector is a crucial aspect of
lattice-based cryptography. The well-known LLL algorithm [16] efficiently computes
a reduced basis of a lattice, known as an LLL-reduced basis, which satisfies the the
following property:
Lemma 1 (LLL [16]). Given a basis for a lattice L can in polynomial time find an
LLL-reduced basis b1, · · · , bm, satisfying

||b1|| ≤ · · · ≤ ||bi|| ≤ 2
m(m−1)

4(m+1−i) det(L)
1

m+1−i , i = 1, · · · ,m.

This result is valuable as it gives a limit on the smallest basis vector, enabling us
to establish bounds for specific attacks against RSA.

2.3 Coppersmith’s Method

Many cryptanalysis problems can be formulated as finding small roots of a polynomial.
Howgrave-Graham’s following result [18, 19] states that small modular roots of a
polynomial h with small coefficients are indeed integer roots of h.
Lemma 2 (Howgrave-Graham). Let h(x1, · · · , xn) ∈ Z[x1, · · · , xn] be the sum of at
most w monomials and let X1, · · · , Xn > 0. For any (y1, · · · , yn) ∈ Zn that satisfies
the following two conditions:

1. h(y1, · · · , yn) ≡ 0 mod M where |yi| < Xi, for 1 ≤ i ≤ n,
2. ∥h(x1X1, · · · , xnXn)∥ < 1√

w
M ,

then h(y1, · · · , yn) = 0.
In Coppersmith’s method, the first step is to create a lattice, where each row rep-

resents the coefficient vector of a polynomial sharing the same root modulo M . For
finding small roots of a modular polynomial f with n variables, we need n small
polynomials that satisfy Howgrave-Graham’s conditions in Lemma 2. When the deter-
minate of this lattice is small enough, we can find the n relatively short vectors satisfied
Lemma 2 by computing an LLL-reduced basis for this lattice. Suppose these n vec-
tors are corresponding to the coefficient vectors of polynomials h1. . . . , hn, we follow a
Gröbner basis based approach. Assuming the ideal I generated by h1, . . . , hn is zero-
dimensional (which is usually the case in practice), then we can efficiently compute
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the common roots of h1, . . . , hn. However, there is no provable guarantee that I is
zero-dimensional. The following Assumtion 1 is widely used in many works [11, 20–23].
Assumption 1. The ideal generated by the polynomials obtained from Coppersmith’s
method is zero-dimensional.

Therefore, it is necessary to provide experimental results to verify the heuristic
Assumption 1. We verify the correctness of Assumption 1 for our algorithm for Small
Private Exponent RSA in Section 5.

3 Practical Attacks on Small Private Exponent RSA

3.1 Attack on Small Private Exponent RSA with MSBs of p+q

For the Small Private Exponent Attack of RSA, the best theoretical bound is d <
N0.292 [4, 5]. However, it is not easy to achieve this theoretical bound in practice.
Previous works [11, 12, 14, 24] showed the bound of d can be improved with knowledge
of partial information of p. In fact, a more direct method is improving the bound of
d with knowledge of partial information of p + q. For completeness, we present the
following result that factors N with MSBs of p+ q, which is similar to [11].
Theorem 1. Given a n-bit RSA moduli N = pq with d = Nδ. Let S be an approxi-
mation of p + q such that |p + q − S| < Nβ and 1

4 ≤ β ≤ 1
2 . Then one can factor N

in polynomial time under Assumption 1 if

δ < 1−
√

β. (1)

Proof. From the equality ed = 1+ k(N − p− q+1), we obtain the following equation:

f(x, y) = 1 + x(N − S + 1 + y) mod e. (2)

Using unravelled linearization proposed in [5, 25], we denote u = xy + 1 and
A = N − S + 1. Hence Equation (2) can be rewritten as:

f(x, u) = u+Ax mod e. (3)

It is obvious that (x0, y0) = (k,−(p + q − S)) is a solution of Equation (2) and
(x0, u0) = (k,−k(p+ q−S)+1) is a solution of Equation (3). The bound of roots can
be calculated as follows:

|x0| = |k| ≈ Nδ,

|y0| = |p+ q − S| ≈ Nβ ,

|u0| = | − k(p+ q − S) + 1| ≈ Nδ+β .

We use the following polynomials to construct lattice L:

gi,k(x, y, u) = xifk(x, u)em−k, for k = 0, . . . ,m, i = 0, . . . ,m− k;

hi,j(x, y, u) = yjfk(x, u)em−k, for j = 1, . . . , t, k =
⌈m
t
j
⌉
, . . . ,m,
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where each monomial xy is replaced by u− 1.
Using Lemma 1 and Lemma 2 and neglecting the lower terms O(m3), we need that:

det(L) < em dim(L). (4)

Using |x0| ≈ Nδ, |y0| ≈ Nβ , |u0| ≈ Nδ+β , we can rewrite Equation (4) as following:

1

6
δ +

τ2

6
β +

(
1

6
+

τ

3

)
(δ + β) +

(
1

3
+

τ

6

)
<

1

2
+

τ

2
. (5)

Simplifying the above equation, we obtain:

(τ + 1)β +
1

τ + 1
+ 2δ − 2 < 0 (6)

Letting τ = 1√
β
− 1, we have that δ < 1−

√
β, where 1

4 < β ≤ 1
2 .

Then under Assumption 1, we can collect the roots successfully, thus concluding
the proof.

It’s natural to take 2
√
N as an approximation of p + q. Obviously, when 2

√
N is

a good approximation, p− q must be small. Generally, suppose p− q = N
1
2−θ, using

the same notations in Theorem 1, then we directly have p+ q − 2
√
N = (p−q)2

p+q+2
√
N

<

2
7N

1
2−2θ. Using similar proof in Theorem 1, we have the following Corollary.

Corollary 1. Suppose p− q = N
1
2−θ, then we can factor N in polynomial time under

Assumption 1 if

δ < 1−
√

1

2
− 2θ.

It is obvious that larger θ yields a better bound in the Small Private Exponent
Attack. Of course, if we can obtain a better approximation of p+q through additional
information about p and q, we can certainly further improve our bounds.

3.2 How to Enumerate MSBs of p + q

By Theorem 1, the MSBs of p + q can help us factor N . A natural approach to get
MSBs of p+ q is enumeration. We next show how to enumerate the s MSBs of p+ q.

Building the list. We do not enumerate s MSBs of p + q bit by bit, i.e., all 2s

values. With the constraint N = pq, not every value is a candidate value. Note that
when s MSBs of p is known, it yields an approximation p0 of p. A common technique
is to use

q0 =
N

p0
(7)

to obtain an approximation of q, and then obtain MSBs of p+ q [12, 14, 23].
Hence, to build the list of all the possible candidates of p + q, we first enumerate

all the possible MSBs of p and then calculate and record the candidate value for the
MSBs of p+ q as above. Notice that we will not add the repeated MSBs of p+ q into
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Algorithm 1: Building the list of candidate MSBs of p+ q

Input: Given a public key (N, e) and a parameter s.
Output: A set L of candidate approximation of p+ q.

1 L← ∅;
2 W ← 2

log N
2 −s;

3 for i ∈ [max{2s−1, ⌊
√
N

W ⌋},min{2s − 1, ⌊
√
2N
W ⌋}] do

4 p0 ← i ∗W ;

5 q0 ← ⌊Np0
⌋;

6 L← L ∪ {⌊p0+q0
W ⌋ ∗W};

7 end
8 return L;

the list, and since p >
√
N , we just enumerate the MSBs of p that is big enough. We

summarize the whole process as Algorithm 1.
If we enumerate all the possible bit strings that consists of s bits, the complexity

of this step is approximately 2s−1 as the first bit of p is always 1. However, with the
constraint pq = N , the number of candidate p+ q will be significantly reduced.

Enumeration Order. The second step is to enumerate the candidate value of
p + q’s MSBs in L. There are many ways to enumerate the elements of L, including
but not limited to an ascending order, a descending order, a zig-zag enumerating order
starting from the middle value in the list, or a random order. It is obvious that the
location of the correct MSB of p+ q decides that which enumeration order is better.

For any v ∈ L, we can collect a set Pv of p0’s that yields v in Algorithm 1. We
say that such p0 is v-admissible and Pv is an v-admissible set. We have to point out
that for the real v, the size of Pv depends on the size of an v-admissible p0 heavily. A
phenomenon already noticed in [15] is that #Pv becomes larger when p0 gets close to√
N . An intuitive understanding is to consider the function f = x + N

x , as shown in

the Figure 1 below. It can be seen that when x >
√
N , the second derivative of f is

greater than 0, meaning it becomes steeper. Therefore, this indicates that the closer
p0 is to

√
N , the larger the corresponding #Pv. Besides, when |p−

√
N | is small, i.e,

|p− q| is small, we have p+ q is small now, which implies MSB(p+ q) is small. Hence
we adopt the most natural approach of enumerating from smallest to largest.

3.3 Comparison with Enumeration Strategy in [15]

The total number of enumerations in Li et al.’s Algorithm 1 [15] is still 2s−1−1, while
the total number of our enumerations is much less. Taking Experiment 1-6 in [15] as
examples, we list the number of total enumerations for s = 14 MSBs in Table 1.

Although the multivalued-continuous phenomena narrows the search space on the
MSBs of p and improves the actual performance of the attack in [15], it has been
shown that the smaller |p− q| is, then the smaller p+ q is, and the more the number
of candidate MSBs of p’s leading to the same MSBs of p + q is, which means that if
we adopt the ascending order to enumerate the elements in our list, our attack will
perform better than [15].
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Fig. 1: Plot of f = x+ ⌊Nx ⌋ with N = 484.

Table 1: Total Number of Enumerations with s = 14

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

Enumerate MSBs of p 8191 8191 8191 8191 8191 8191
Our method 1007 1274 997 1266 906 392

Furthermore, the performance difference between our attacks and [15] lies in the
different weighting of the candidate values. Taking N = 17 × 19 and s = 4 as an
example, the set of all possible values of p’s MSBs is {8, 9, 10, 11, 12} (We ignore the
possible MSBs that makes p <

√
N although [15] does not rule them out). Then we

can calculate the corresponding MSBs of p + q, which is exactly {17, 18} by using
Equation (7). Among {8, 9, 10, 11, 12}, only 9 can lead to the correct MSBs 18 of p+q.
Therefore, for randomly enumerating p’s MSBs, the correct probability is 1/5. But for
randomly enumerating p+ q’s MSBs, the correct probability is 1/2.

3.4 The Full Attack

Finally, our complete algorithm is presented in Algorithm 2.

Algorithm 2: Factor N with s MSBs Enumeration

Input: Given a public key (N, e) and a parameter s.
Output: Factorization N = pq

1 Run Algorithm 1 and get a list L;
2 for S ∈ L do
3 Run Coppersmith’s method by Theorem 1;
4 end
5 return p and q;
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4 A Faster Implementation of Coppersmith
Algorithm

4.1 Employing Faster Lattice Basis Reduction Algorithm

The LLL lattice reduction was carried out using the recently introduced flatter algo-
rithm [17], which significantly surpasses the performance of SageMath’s native LLL
implementation (which internally utilizes FPLLL).

4.2 A More Efficient Gröbner Basis Computation

The Gröbner basis computation built into SageMath is somewhat slow. Meers et
al. [26] choose to solve the common roots of F = {f1, . . . , fn} over Zpj

in their code
implementation and use the Chinese Remainder Theorem to lift the results to Z.

More precisely, if the upper bound of desired roots is B, we need a set of modulus
M = {pj} such that

∏
pj > B. We denote this set as modulus set. In Meers et al.’s

implementation [26], the modulus set is just chosen as {2, 3, 5, · · · , pk} where pk is the
smallest prime such that the product of the elements in the modulus set is greater
than B. However, this is not an optimal choice, we next show how to select a better
modulus set to cost less time.

Select better modulus set. Suppose F = {f1, . . . , fn} has a common root
(x1, ...xk) and a bound B satisfied |xj | < B, we need a set of modulus M = {pj} such
that

∏
pj > B as above. Suppose the computation time of F over Fpj

is T (pj), then
the total time should be

T =
∑

pj∈M

T (pj), (8)

with ∑
pj∈M

log pj > logB. (9)

If pj is small, the time to compute F on Fpj
will be less, but the module’s number

of pj , i.e., |M | required will be more. If each pj is very large, the time for a single
computation will increase, but |M | will also decrease.

We firstly define
T (pj)
log pj

to determine whether to add pj in the modulus set M . The

larger
T (pj)
log pj

is, the more likely pj will be added to M . The following figures show how
T (p)
log p changes with p.

From Figure 2, we can see that as log p increases, y = T (p)
log p becomes smaller and

smaller. This is because as log p increases, T (p) does not vary much. Therefore, when
selecting the modulus set M , we should choose relatively large p as much as possible.
Hence we choose p with 29 bits, which yields a significant acceleration. See Table 2
for details.

Additionally, if we can choose special p which has less T (p)
log p , then we can further

reduce the time of mod.
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Table 2: Comparision with Trivial Strategy (pj =
2, 3, 5, . . .).

log2 B Time for Trivial Strategy Our Time Improvement

512 16.59 s 5.7 s 2.9x
1024 21.0 s 8.2 s 2.6x

5 Experiments

Our experimental environment is Ubuntu 22.04 (WSL) on a 12th Gen Intel(R)
Core(TM) i7-12700 2.10 GHz 8 GB RAM with Sagemath 10.3.

5.1 Comparision with Time in [15]

Li et al. [15] showed that enumerating 18 MSBs can factor 1024-bit N with d ≈ N0.292

practically. They also run their algorithm over 2048-bit N . We compare our time
consumption with theirs in Table 3.

Table 3: Compared with running time in [15]

log2 N δ log2(|p− q|) Time in [15] Our Step 1 Our Step 2

Exp. 1 1024 0.292 501 2.3 h <0.1 s 107.6 s≈ 1.8 min
Exp. 2 1024 0.292 508 4.1 h <0.1 s 891.5 s ≈ 14.9 min
Exp. 3 1024 0.292 511 21.6 days <0.1 s 22.7 h
Exp. 4 2048 0.287 1021 7.1 days <0.1 s 197.4 s≈ 3.3 min
Exp. 5 2048 0.287 1023 35.8 days <0.1 s 9487.8 s≈ 2.6 h
Exp. 6 2048 0.292 974 11.2 days 335.3 s≈ 5.5 min 141.3 s≈ 2.4 min

Regarding parameter selection, for enumerating the number of bits s, for 1024-bit
N with d ≈ N0.292, we choose s = 14. For 2048-bit N , we choose s = 10 for d ≈ N0.287

and s = 28 for d ≈ N0.292. In Coppersmith’s method, we choose m = 17, which
corresponds to a lattice dimension of approximately 240.
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From Table 3, it can be seen that compared to the running time in [15], our
improvement is very significant and successful, reducing the time counted by days to
the minute level. This greatly enhances the deterrent effect in such actual attacks.

5.2 More Experiments

In addition, we also randomly selected some other RSA modulus. We also conducted
experiments on some larger RSA modulus to demonstrate the effectiveness of our
method.

Table 4: Experimental results on RSA

log2 N δ log2(|p− q|) Our Step 1 Our Step 2 Total Time

1024 0.292
507 <0.1 s 103.9 s 1.7 min
509 <0.1 s 1.8 h 1.8 h
511 <0.1 s 14.1 h 14.1 h

2048 0.287
1022 <0.1 s 599.7 s 10.0 min
1023 <0.1 s 1.4 h 1.4 h

2048 0.288
1022 <0.1 s 5.4 h 5.4 h
1023 <0.1 s 37.2 h 37.2 h

4096 0.285
2041 <0.1 s 433.6 s 7.2 min
2046 <0.1 s 451.3 s 7.5 min

4096 0.286
2047 <0.1 s 11.2 h 11.2 h
2047 <0.1 s 21.8 h 21.8 h

Specifically, for enumerating the number of bits s, for 1024-bit N with d ≈ N0.292,
we choose s = 14. For 2048-bit N , we choose s = 10 for d ≈ N0.287 and s = 14 for
d ≈ N0.288. For 4096-bit N , we choose s = 6 for d ≈ N0.285 and s = 12 for d ≈ N0.286.
In Coppersmith’s method, we choosem = 17, which corresponds to a lattice dimension
of approximately 240.

The algorithm’s efficiency depends on factors such as the size of the enumeration
list and the efficiency of the lattice reduction algorithm. For a larger δ, we can enumer-
ate more MSBs or increase the lattice dimension in Coppersmith’s method. Given the
decent performance of the flatter algorithm [17] in handling high-dimensional lattices,
we believe that choosing a larger lattice dimension will be more efficient, provided
that the RAM is enough to allow for it.

6 Conclusion

We introduce a novel attack to solve the Small Private Exponent Attack practically,
focusing on the enumeration of the MSBs of p+ q. Drawing inspiration from the work
of Meers and Nowakowski, we propose a selection strategy related to Grobner’s basis
in fields with small characteristics, which facilitates a more efficient implementation
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of Coppersmith’s algorithm. Our approach demonstrates considerable improvement in
running time compared to the previous results.
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