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Abstract. The proliferation of attacks to cloud computing, coupled with the vast amounts of data
outsourced to online services, continues to raise major concerns about the privacy for end users. Tra-
ditional cryptography can help secure data transmission and storage on cloud servers, but falls short
when the already encrypted data needs to be processed by the cloud provider. An emerging solution
to this challenge is fully homomorphic encryption (FHE), which enables computations directly on en-
crypted data, and recent works have focused on developing new processor designs tailored for native
processing of FHE data. In this work, we introduce PulpFHE, an optimized instruction set extension
tailored for the next generation of FHE processors. Our proposed FHE instructions offer native support
for non-linear operations on encrypted data, and enable significantly faster homomorphic computations
for a broad range of realistic applications.

Keywords: Homomorphic Encryption, Privacy-Preserving Computation, Encrypted Processor, Cloud Com-
puting.

1 Introduction

The recent advancements in cloud technologies and the convenience of on-demand computing resources for
data storage and processing have motivated organizations and individuals to opt for outsourced computations
in place of in-house resources. This shift helps avoid the complexities of managing a network of servers,
including the maintenance, and administration costs of owning the hardware. At the same time, cloud
servers have become attractive targets for cyber criminals; a recent survey reports 26 distinct attacks, each
threatening the sensitive data stored in the cloud, as well as the availability of these services [21]. Likewise,
a 2021 study on cloud security [1] reports that one of the most challenging aspects of cloud computing is
gaining the trust of cloud users, as consumers remain reluctant to accept the privacy guarantees offered
by cloud providers. Indeed, even with robust hardening techniques for protecting the network and server
infrastructure against cyberattacks, user privacy can still be compromised by insider threats that attempt
to access users’ sensitive data.

One potential solution is to leverage traditional cryptography, which offers privacy protections for sensitive
data during storage or transit. Nevertheless, processing encrypted data remains incompatible with traditional
cryptosystems; as a result, a cloud server would need to retain a copy of the user’s secret key to decrypt and
process the data, which is yet another target for cyberattacks. Effectively, to support data processing, users’
sensitive data must be exposed to the cloud provider, and a semi-honest cloud may leverage this data for
profit (e.g., to monitor user behavior or offer targeted advertisement).

An emerging solution to this challenge is to use Fully Homomorphic Encryption (FHE) [10]. This spe-
cial form of cryptography represents a significant advancement over traditional cryptosystems, as it allows
arbitrary computations to be performed directly on encrypted data without the need for any decryption. In
effect, this allows sensitive data to remain encrypted at all times, both during transmission and storage, as
well as during processing by cloud servers.

While FHE is powerful and versatile, harnessing its benefits comes with several challenges. First, an
inherent property of each FHE ciphertext is its noise level [10], which ensures the ciphertext remains secure.
During processing, however, this noise increases and requires careful management to remain under a critical



threshold (beyond which the ciphertext is destroyed). As a result, programmers need to carefully tune FHE
encryption parameters and manually apply noise reduction methods to implement meaningful algorithms
on encrypted data. Thus, while several FHE libraries have been developed, such as Microsoft Seal [20] and
OpenFHE [2], configuring the right parameter set, and managing FHE noise growth during computation still
requires significant effort from programmers.

A second challenge is the computational cost of FHE itself, which is mostly attributed to the native
encoding of FHE ciphertexts as very large polynomials of high degree. As a result, a typical ciphertext can
be several kilobytes in size, and homomorphic operations over FHE data can be significantly slower compared
to their plaintext counterparts [12]. Notably, since modern computer architectures, such as x86 and ARM,
do not offer native support for FHE operations, programmers have to abstract the algebraic operations to
an underlying software library.

Another challenge is the fact that writing programs over encrypted data is significantly harder compared
to writing the equivalent programs for regular (plaintext) data. FHE supports a functionally complete set
of operations, namely addition and multiplication, so expressing arbitrary algorithms takes the form of
arithmetic or Boolean circuits [13], where input and intermediate ciphertexts are “wires”, and FHE operations
are “gates” of the conceptual circuit. Therefore, basic programming primitives, such as assignments and
control flow decisions, should be expressed using a dataflow model, rather than an imperative paradigm that
regular software programmers are familiar with.

To address these usability and performance challenges of FHE, the research community has proposed
native FHE processor architectures. One of the most recent works, the open-source Juliet processor [11],
allows non-crypto savvy programmers to express arbitrary programs over encrypted data as a sequence of
high-level instructions. In this case, each instruction is implemented as a circuit of FHE Boolean gates using
the state-of-the-art TFHE [6] and cuFHE [7] libraries.

The Instruction Set Architecture (ISA) of recent FHE processors offers native support for basic bitwise
and arithmetic operations to manipulate encrypted data, yet it lacks more complex instructions that are
frequently used in realistic applications on FHE data. For example, the Juliet processor does not natively
support ReLU or SQRT instructions that are inherent to machine learning or data analytics applications.
Instead, programmers have to write lengthy functions using the provided domain-specific language that
comes with the FHE processor to simulate such operations using the more primitive operations of the ISA.

Motivated by the limitations of current state-of-the-art FHE processors, in this work, we introduce
PulpFHE: a general-purpose ISA extension that brings new complex instructions to encrypted processor
architectures. The PulpFHE instructions are implemented directly as FHE circuits that are judiciously
optimized for performance. Notably, PulpFHE is designed for high parallelism that is tailored for multi-core
hardware targets. Overall, our contributions are summarized as follows:

– We design the PulpFHE ISA extensions, enabling a more concise and usable programming model for
end-users.

– We pair PulpFHE with a new set of complex functional units for homomorphic evaluation, bringing
high-performance non-linear operations to modern FHE processors.

– We introduce low-level performance optimizations and runtime parallelism, while abstracting the com-
plexities of evaluating homomorphic circuits from the user.

2 Preliminaries

2.1 Homomorphic Encryption Schemes

There are several homomorphic encryption schemes, and each one offers different capabilities and encoding
for the underlying computation. At a high level, HE schemes are classified into three classes: partially
homomorphic schemes, leveled homomorphic schemes, and fully homomorphic schemes.

Partial HE (PHE) supports only one operation, either multiplication or addition, to be applied an unlim-
ited number of times between ciphertexts. Examples of PHE include the Paillier, RSA, and ElGamal systems.
Conversely, a leveled homomorphic encryption (LHE) scheme allows both addition and multiplication to be
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performed between ciphertexts. Nevertheless, a downside of LHE is that it does not support evaluating very
deep arithmetic circuits because of ciphertext noise growth. The most prominent LHE schemes are CKKS [4],
BFV [9], and BGV [3], which are supported by SEAL [20] and OpenFHE [2] homomorphic encryption li-
braries.

The most powerful form of HE is Fully Homomorphic Encryption (FHE) that supports evaluating arith-
metic circuits of any size with both addition and multiplication operations. In particular, FHE employs a
special noise reduction technique called bootstrapping, which allows an unbounded number of operations on
ciphertexts by preventing the noise from corrupting the underlying values. At the same time, since boot-
strapping is the most intensive operation when evaluating an FHE circuit, the cost of FHE is higher than
LHE. The current state of the art in FHE is the CGGI [5] cryptosystem that is implemented by both the
TFHE [6] and OpenFHE [2] libraries.

2.2 Related Work

The authors of [19] have proposed a hardware accelerator for FHE operations. This design implements a
scheduler and hardware units for expensive FHE primitives such as number-theoretic transforms (NTTs)
and modular arithmetic operations. Their approach focused on minimizing the data movements within FHE
programs.

Likewise, the authors of [14] have proposed runtime optimizations for FHE operations by introducing
parallelism on both the ciphertext level and the operation level. Their approach focused on accelerating
bootstrapping, as well as the key and modulus switching operations of FHE. Similarly, the authors of [18]
focused on developing architectures for accelerating the underlying NTTs, given the high cost of these
operations.

A parallel research direction aims to make FHE more usable by developing custom compilers for expressing
FHE programs in a high-level language before translating them to the target FHE scheme. For instance,
the authors of [8] present a bespoke compiler for neural network inference on the FHE domain. Likewise,
HECATE [15] is a compiler framework that aims to reduce ciphertext sizes to improve runtime performance.

3 Our PulpFHE Extensions

Existing FHE processors support only basic instructions, which renders them less usable for real-life appli-
cations, such as machine learning. While the end user could simulate the missing functionality using more
primitive instructions, this goes against one of the claimed goals of such frameworks, which is enhancing
usability. For instance, the encrypted division operation is not natively supported by modern FHE proces-
sors; even if this basic operation could be implemented using existing instructions, the outcome will be less
efficient compared to an atomic division instruction.

To address this challenge, we propose the PulpFHE processor-agnostic ISA extensions that complement
FHE processor designs and enable new functionalities, such as non-linear operations. Moreover, a key ob-
jective in our approach is to further optimize the performance of native FHE instructions, which are the
building blocks for more complex constructions. Towards that end, we investigate how the basic instructions,
such as addition, can be decomposed to independent primitives that can be parallelized for significantly
faster runtime evaluation.

We summarize our complex ISA extensions in Table 1. Notably, implementing these new FHE instructions
in a parallel fashion is a challenging process that requires judicious scheduling of the gates comprising the
target homomorphic circuit. For example, consider a Blake3 instruction that involves additions and other
bitwise operations of an encrypted value. A naive implementation would yield a large sequential circuit;
however, PulpFHE identifies independent parts of the circuit that can be evaluated in parallel, such as
XORing and rotating, thereby reducing the overall circuit depth.

In the next paragraphs, we discuss six families of new instructions in PulpFHE. We also detail the
algorithms for the division and square root instructions, as their implementation in the encrypted domain
is a major challenge due to noise management. For the sake of succinctness, we have abstracted subtle
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implementation details (such as data movements between registers), as well as algorithms for instructions
where the underlying function is well-known.

Table 1. Twelve new complex instruction implemented in PulpFHE

Instruction Description Instruction Description

div(A,B) Returns A / B mod(A,B) Returns A % B

max(A) The maximum value in the list A min(A) The minimum in the list A

mean(A) The average of the values in the list A sqrt(A) The square root of A

std(A) The standard deviation of the values in A var(A) The variance of the values in the list A

relu(A) Returns the rectified linear unit of A blake3(M0,M1) A quarter-round of the Blake3 hash

rotr(A) Right-rotate the bits of A rotl(A) Left-rotate the bits of A

3.1 Encrypted Division and Modulus

To the best of our knowledge, no existing FHE library implements an encrypted division operation. While
prior works in [16, 17] support division, these approaches assume that the divisor is public. Conversely,
PulpFHE implements a fast integer division instruction where both the dividend and the divisor are encrypted
values. As a result, using this operation, PulpFHE can further support an encrypted modulus operation over
FHE. We remark that implementing division as an atomic instruction is a challenge, as it requires iterative
algorithms and comparisons which introduce large amount of FHE noise.

The division instruction in PulpFHE inputs two encrypted values that are encoded in a two’s comple-
ment binary representation. This allows us to evaluate the division algorithm using additions and bit-wise
operations, yielding the parallelizable instruction of Algorithm 1.

Algorithm 1: Encrypted Division in PulpFHE

Data: N1, N2, nbits
1 Q← N1

2 A← 0
3 M ← N2

4 for i← 0 to nbits by 1 do
5 Q,msb← shift left(Q, 0)
6 Atmp, ← shift left(A,msb)
7 A← Atmp −M
8 Amsb ← A[nbits− 1]
9 not Amsb ← NOT (Amsb)

10 Q[0]← not Amsb

11 A← Amsb ? A+M : A

12 end
13 return Q, A

In more details, the division instruction operates on arrays of encrypted bits of size nbits. Index 0 of
each array holds the least significant bit (LSB), while the last index, nbits− 1, holds the most significant bit
(MSB). Line 11 is a ternary statement that selects between either the value A +M or A based on the bit
value of Amsb. Notably, changing the runtime control flow of an encrypted program is not possible since the
value that is used a condition is encrypted, and thus the outcome of the selection not known at runtime. In
our approach, we employ an encrypted multiplexer gate, which works as follows:

A← Amsb × (A+M) + (1−Amsb) ∗A (1)
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Therefore, if Amsb is 0 (false), then A does not change (A ← A); otherwise, if Amsb is 1 (true), then A
becomes equal to A+M .

3.2 Max, Min, and ReLU

PulpFHE offers three complex comparison instructions: maximum, minimum, and a Rectified Linear Unit
(ReLU). Here, the max and min instructions operate on a vector of encrypted values, while relu operates
on a single encrypted value. Computing the maximum and the minimum value of list values is a common
operation in many applications that involve sorting, searching, or data analysis. Likewise, ReLU is a widely
used activation function in machine learning applications, which adds non-linearity in neural networks. If
the encrypted input is positive, ReLU returns it directly; otherwise, it outputs an encrypted zero.

Like division, implementing these comparison instructions entails iterating over the encrypted bits of the
input values, comparing the corresponding bits, and handling the carry bit from the lower bits comparisons.
As discussed earlier, these instructions aim to maximize independent code sequence to allow for parallel
execution.

3.3 Rotations

There are numerous privacy-preserving applications that require manipulating bits of data, such as data
compression algorithms, hashes, and error detection algorithms. PulpFHE introduces the new rotr and
rotl instructions that enable right and left rotations by manipulating the encoding of the encrypted integer
values. These rotations are critical for implementing more complex instructions, such as the Blake3 quarter-
round.

3.4 Square Root

The square root (sqrt) is another key operation that is not natively supported by existing FHE schemes. The
non-linear nature of the square root makes it very challenging for end users to implement accurately due
to excessive noise growth. PulpFHE implements an efficient and accurate integer square root instruction, as
presented in Algorithm 2. Here, n iters is a constant corresponding to the number of iterations required to
achieve the required accuracy. According to our experiments, 5 iterations are sufficient for 8-bit numbers, 10
iterations work well for 16-bit numbers, and 20 iterations are required for 32-bit numbers.

Algorithm 2: Square Root

Data: N
1 X ← N
2 Y ← 0
3 for i← 0 to n iters by 1 do
4 tmp← X + Y
5 X ← tmp/2
6 Y ← N/X

7 end
8 return X

3.5 Mean, Variance, and Standard Deviation

In real-life applications where users outsource a computation, they typically have large inputs to be analyzed.
In this case, a common requirement is to compute statistical metrics over the input data. The most common
operations in this case are the mean, the variance, and the standard deviation. Notably, these statistical
measures are non-linear functions since they use the division and square root operations, which make their
FHE implementation a challenge. Like min and max discussed earlier, PulpFHE supports std, var and mean

over a list of encrypted values an a native instruction, which offers better usability and performance.
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3.6 Blake3 Quarter Round

Hash functions are cryptographic primitives that consume an input of arbitrary length and produce a fixed-
length digest that looks random. One such function is Blake31 which is released in 2020. The motivation
behind supporting Blake3 in PulpFHE is to enable homomorphically hashing encrypted data, which offers
integrity protections. Using our new atomic instruction, a user implements the Blake3 hash and authenticate
her sensitive data without ever decrypting. In PulpFHE, the blake3 instruction takes four initial vectors
and two 32-bit messages to execute a quarter round.

One challenge in implementing the Blake3 algorithm is the large inputs it consumes. Our design takes
this into consideration and minimizes the data movement between the registers of the FHE processor.
Furthermore, our implementation allows each quarter round to be executed in parallel with other quarter
rounds, thus each instruction can operate on independent parts of the original data.

3.7 PulpFHE in Action

The PulpFHE ISA extensions are agnostic to the underlying encrypted processor design. Without loss of
generality, we deploy PulpFHE over the Juliet processor [11]. Notably, the original design of Juliet is limited
by only 15 basic instructions, while our PulpFHE extensions brings the total to 27 instructions. As Juliet
employs the eJava programming language to express programmer’s intent, we defined new built-in functions
in eJava to realize our new instruction set. One of the limitations of Juliet is that its basic instruction set is
inherently sequential; conversely, PulpFHE parallelizes the implementation of new and existing instructions
for the target hardware to improve performance.

In more detail, we have scrutinized all encrypted instructions for independent code segments that can
be executed in parallel. For instance, PulpFHE comes with its optimized adder circuit instead of using the
original Juliet circuit (that uses a basic adder comprising two XOR gates, two AND gates and an OR gate).
Although a basic circuit has a small number of gates, it is not parallelizable. Instead, PulpFHE employs the
Kogge-Stone adder circuit in FHE, which has more logic gates, but offers faster performance when executed
in parallel.

4 Experimental Results

To evaluate the efficiency of PulpFHE extensions, we incorporate our extended ISA to the open-source Juliet
processor. Then, to assess the performance optimizations attributed to PulpFHE, we run the same set of
benchmarks both on the original Juliet, as well as on Juliet with our optimized PulpFHE extensions. To
maintain a comprehensive and fair comparison, we use the same exact configurations and the same exact
code of the benchmarks as used in [11], except for varying the problem size to offer a more comprehensive
comparison between the two architectures.

Table 2 presents two sets of experiments. On the left side we compare Juliet against PulpFHE using eight
benchmarks from [11]. In addition, on the right side of the Table we compare the individual instructions
in PulpFHE against the same operations implemented in Juliet; we remark that since our new instructions
were not available in Juliet, we implemented them in the eJava using existing operations (e.g., shifting
and additions), as any user would. In all cases, the target benchmarks were compiled into FHE circuits and
evaluated on both processors using FHE data. We also note that our experiments table excludes the evaluation
of our rotation instructions, as their execution time on both architectures was negligible (less than 1 second),
although PulpFHE demonstrated faster performance. Overall, PulpFHE offers a performance improvement
of up to 5.4× for the Simon cipher, and up to 28× for the min/max instruction.

All our experiments were conducted on a Linux machine featuring an Intel i9-12900K CPU with 24 cores
and 128 GB of RAM. From our experiments, we report that our PulpFHE extensions greatly outperform the
original processor design of Juliet, both for benchmark programs and for individual instructions. Likewise,
our eJava upgrades, which adapt the new instructions, enable apples-to-apples comparisons and further

1 https://github.com/BLAKE3-team/BLAKE3/
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improve the usability of the whole system. As a result, PulpFHE enables shorter, more readable, and easier-
to-maintain codebases.

Table 2. The performance comparison across different program benchmarks and individual instructions between the
original Juliet architecture vs. Juliet with PulpFHE extensions. All running times are in seconds. Cells marked with
∅ indicate that the corresponding instruction did not finish within 60 minutes.

Prog. Size PulpFHE Juliet Speedup Inst. Size PulpFHE Juliet Speedup

8 bits 4.44 13.39 301% 32 bits - 1 round 3.69 9.47 257%
16 bits 7.36 33.48 455% 32 bits - 4 rounds 13.66 38.17 279%Simon Cipher
32 bits 12.02 65.57 545%

Blake3
32 bits - 8 rounds 60.12 157.49 262%

8 bits 9.69 11.06 114% 8 bits 4.55 46.02 1012%
16 bits 18.98 29.15 154% 16 bits 18.60 138.35 744%Speck Cipher
32 bits 37.10 58.77 158%

Division/
modulus

32 bits 71.18 464.79 653%

8 bits 32.41 35.65 110% 8 bits - 8 values 2.04 32.00 1572%
16 bits 112.43 129.39 115% 16 bits - 16 values 7.91 224.04 2831%

Logistic Regr.
Inference

32 bits 413.80 491.50 119%
Max/Min

32 bits - 32 values 29.90 800.62 2678%

8 bits - 8 values 51.34 58.81 115% 8 bits - 8 values 5.79 46.42 802%
16 bits - 16 values 150.98 173.47 115% 16 bits - 16 values 23.84 287.03 1204%Fibonacci
32 bits - 32 values 487.18 577.64 119%

Mean
32 bits - 32 values 90.20 1892.60 2098%

8 bits - 8 values 18.01 22.41 124% 8 bits 1.59 2.34 147%
16 bits - 16 values 36.14 44.81 124% 16 bits 5.39 7.58 141%

Fibonacci
(mux)

32 bits - 32 values 69.88 89.50 128%
ReLU

32 bits 28.01 38.06 136%

8 bits - up to 5 80.88 103.42 128% 8 bits 41.26 440.11 1067%
16 bits - up to 8 301.83 327.73 109% 16 bits 359.45 ∅ -Factorial
32 bits - up to 12 948.11 1118.49 118%

SQRT
32 bits 2767.04 ∅ -

8 bits - up to 20 28.65 31.26 109% 8 bits - 8 values 239.05 1061.69 444%
16 bits - up to 40 212.03 240.66 114% 16 bits - 16 values 484.90 ∅ -

Sieve Of
Eratosthenes

32 bits - up to 60 1234.38 1408.62 114%

Standard
deviation

32 bits - 32 values 3590.05 ∅ -

8 bits - 8 values 37.08 44.42 120% 8 bits - 8 values 24.19 108.72 449%
16 bits - 16 values 72.49 89.76 124% 16 bits - 16 values 135.30 707.98 523%

Private Info.
Retrieval

32 bits - 32 values 143.10 177.04 124%
Variance

32 bits - 32 values 840.62 ∅ -

5 Conclusion

In this work, we present the PulpFHE ISA extensions for modern FHE processors. PulpFHE not only intro-
duces new encrypted instructions that improve runtime performance, but also enables non-linear operations,
such as division for the first time. PulpFHE is designed to pair with modern encrypted processors and bring
new parallelizable instructions for real-life applications. Furthermore, our new instruction set can easily be
adopted by high-level languages, enabling a seamless and effortless coding experience for users. In terms of
performance, PulpFHE has demonstrated notable improvements, compared to the original Juliet processor.
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