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Abstract. Time-Lock Puzzles (TLPs) have been developed to securely transmit sensitive information
into the future without relying on a trusted third party. Multi-instance TLP is a scalable variant of
TLP that enables a server to efficiently find solutions to different puzzles provided by a client at once.
Nevertheless, existing multi-instance TLPs lack support for (verifiable) homomorphic computation. To
address this limitation, we introduce the “Multi-Instance partially Homomorphic TLP” (MH-TLP), a
multi-instance TLP supporting efficient verifiable homomorphic linear combinations of puzzles belong-
ing to a client. It ensures anyone can verify the correctness of computations and solutions. Building
on MH-TLP, we further propose the “Multi-instance Multi-client verifiable partially Homomorphic
TLP” (MMH-TLP). It not only supports all the features of MH-TLP but also allows for verifiable
homomorphic linear combinations of puzzles from different clients. Our schemes refrain from using
asymmetric-key cryptography for verification and, unlike most homomorphic TLPs, do not require a
trusted third party. A comprehensive cost analysis demonstrates that our schemes scale linearly with
the number of clients and puzzles.

1 Introduction

Time-Lock Puzzles (TLPs) are interesting cryptographic primitives that enable the transmission of infor-
mation to the future. They enable a party to encrypt a message in a way that no one else can decrypt it
until a certain time has elapsed.1 TLPs have a wide range of applications, including scheduled payments in
cryptocurrencies [38], timed-commitments [23], zero-knowledge proofs [17], e-voting [13], timed secret sharing
[24], sealed-bid auctions [34], verifiable delay functions [11], and secure aggregation in federated learning [1].

Since Rivest et al . [34] introduced TLPs, they have evolved, leading to the development of two vital variants:
multi-instance TLPs and homomorphic TLPs. Our work advances both of these variants. Multi-instance
TLPs were introduced in [3]. The multi-instance TLP setting entails a single client generating n puzzles and
simultaneously transmitting them to a server. This concept serves as a natural extension of the initial single-
puzzle paradigm established in [34]. In the multi-instance TLP, each puzzle’s solution is found by the server
at a different time. Multi-instance TLPs allow the server to deal with each puzzle sequentially rather than
simultaneously handling them. Such an approach leads to notable reductions in computational overhead for

the server. Specifically, for a fixed time parameter ∆ and z puzzles, it saves 1
z ·

z∑
j=1

j times modular squaring.

For instance, when z = 100, this approach yields 50 times reduction in modular squaring.

Multi-instance TLPs have applications across various domains. For example, journalists or whistleblowers in
hostile environments can use multi-instance TLPs to schedule the gradual release of sensitive information
at the most impactful moments or after ensuring their safety. This method eliminates the need to be online
at the time of release and removes the need to trust a third party with sensitive data. In online education,
multi-instance TLPs can benefit students with unreliable internet connections by allowing them to download
multiple exam content in advance, ensuring access when their connection is stable. In this scenario, the exam
materials become accessible only at the designated start time. Multi-instance TLPs can also be utilized for
the continuous verification of cloud service availabilities [3].
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1 Certain TLPs rely on third-party assistance to manage the timed release of a secret. However, this category of

protocols is not the focus of this paper.



In a separate line of research, Malavolta et al . [28] introduced (fully) homomorphic TLP notion, enabling the
execution of arbitrary functions over puzzles before their resolution is found. In general, fully homomorphic
TLPs consider scenarios where there exist n clients, each generating and transmitting a puzzle encoding
its solution to a server. Upon receiving the puzzles, the server executes a homomorphic function across
these puzzles, generating a unified puzzle. The solution to this puzzle represents the output of the function
evaluated across all individual solutions. To enhance efficiency, partially homomorphic TLPs have also been
introduced, including variants that enable homomorphic linear combinations or the multiplication of puzzles
[28]. More recently, Abadi [1] proposed a partially homomorphic TLP that also enables efficient verification
of the correctness of homomorphic operations performed on the puzzles. Homomorphic TLPs have found
applications in numerous areas, including atomic swaps [39], payment channels [40], as well as verifiable
e-voting, and secure aggregation in federated learning [1].

1.1 Limitations of State-of-the-Art TLPs

Current TLPs exhibit notable limitations that constrain their practical use. Existing multi-instance TLPs’
functionalities are confined to a few basic operations: (i) solution revelation, where the server can access
the solution to each puzzle only after a designated time period has elapsed, and (ii) solution verification,
allowing a verifier to confirm the correctness of the solution obtained by the server. A key drawback of these
multi-instance TLPs is their lack of support for (verifiable) homomorphic operations.

Conversely, the state-of-the-art homomorphic TLPs lack the essential feature of multi-instance TLPs. Specif-
ically, when a client employs a homomorphic TLP to generate multiple puzzle instances intended to be solved
at different times and submits all these puzzles to a server simultaneously, the server must handle each puzzle
instance separately and in parallel. This naive approach is highly resource-intensive and inefficient.

1.2 Our Contributions

Multi-Instance Partially Homomorphic TLP. To address the aforementioned limitations of multi-
instance TLPs, we introduce Multi-instance verifiable partially Homomorphic TLP (MH-TLP), the first
multi-instance TLP that supports efficient verifiable homomorphic linear combinations on puzzles. It enables
a client to generate many puzzles and transmit them to the server at once. In this setting, the server does
not need to simultaneously handle them; instead, it can solve them sequentially.

MH-TLP enables the client to come back online at a later point to grant computation on its puzzles. The
server will learn the linear combination of puzzles’ solutions after a certain time. MH-TLP also supports
public verification for (1) a single puzzle’s solution, and (2) the computation’s result.

Inspired by previous multi-instance TLPs, we also rely on the idea of chaining puzzles, such that when the
server solves one puzzle it will obtain enough information to work on the next puzzle. However, we introduce
a new technique for chaining puzzles that also facilitates homomorphic linear combinations. This method
enables the client to derive the base for the next puzzle from the current puzzle’s master key, without altering
the structure of the underlying solution.

We formally define our scheme and, for the first time, present the formal definition of multi-instance TLP (in
Definition 7). Although the multi-instance TLP idea has been used previously, its core property, efficiently
supporting multiple puzzle instances, has not been formally defined until now.

Multi-Instance Multi-Client Partially Homomorphic TLP. To address the limitation of the existing
(partially) homomorphic TLPs that do not support multi-instance, we upgrade MH-TLP to a new variant of
TLP called Multi-instance Multi-client verifiable partially Homomorphic TLP (MMH-TLP). This new variant
offers the features of both partially homomorphic TLP and multi-instance TLP. Specifically, it supports
verifiable partially homomorphic operations on the puzzles belonging to single or multiple clients while
maintaining the multi-instance feature. MMH-TLP allows each client to independently generate different
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puzzles and send them at once to the server. In this case, the server does not have to deal with each
client’s puzzles simultaneously (offering the multi-instance feature). It enables single or multiple clients to
ask the server to perform homomorphic linear combinations of their puzzles (each belonging to a different
client in the multi-client setting). This scheme allows anyone to verify whether the server has performed
the computation correctly and provided a correct solution. Thus, MMH-TLP bridges the gap between (a)
(partially) homomorphic TLPs that support multiple clients (but not multi-instance) and (b) multi-instance
(homomorphic) TLPs that support only a single client.

Table 1: Asymptotic costs of existing (partially) homomorphic TLPs. In the figure, n is the number of clients,
ẗ is the number of leaders, ∆̄j,u is the period between the discovery of two consecutive solutions of client Cu,
maxss is the maximum number of squaring that the strongest server S can perform per second, z is the total
number of puzzles given by a client to S, ∆j,u is the period when the puzzle of Cu must remain concealed
after the related puzzle is given to S, and Y = maxss ·∆ is the period between granting the computation
and when a linear combination of solutions is learned by S.

Schemes Parties Computation Cost Communication Cost

Client O(z) O(z)

Verifier O(z) −MH-TLP

Server O(z + Y +maxss ·
z∑
j=1

∆̄j,u) O(z)

Client O(ẗ · (z + n)) O((ẗ+ n) · z)
Verifier O(ẗ2 + ẗ+ z) −MMH-TLP

Server O(ẗ · (z + n+ Y + ẗ) +maxss ·
z∑
j=1

∆̄j,u) O(ẗ · n+ z)

Client O(ẗ · n) O(ẗ · n)

Verifier O(ẗ2 + ẗ+ z) −[1]

Server O(ẗ · (n+ Y + ẗ) +maxss ·
z∑
j=1

∆j,u) O(ẗ · n)

Client O(1) O(1)

Verifier − −[28]

Server O(n+maxss ·
z∑
j=1

∆j,u) O(1)

Client O(1) O(1)

Verifier − −[27]

Server O(n+maxss · ( ∆
log(maxss·∆)

+
z∑
j=1

∆j,u)) O(1)

Client O(1) O(1)

Verifier − −[16]

Server O(n2 +maxss · (∆+
z∑
j=1

∆j,u)) O(1)

Table 2: Comparing features of different (partially) homomorphic TLPs.
Without Supporting Verification Flexible

Schemes Multi-Instance Multi-Client Trusted-Setup
Client’s Solution Linear Combination

Time Paramters Batch Solving

MH-TLP X × X X X X ×
MMH-TLP X X X X X X ×

[1] × X X X X X ×
[28] × X × × × × ×
[27] × X × X × × ×
[16] × X × × × × X

We compare the computational and communication complexities, as well as the features, of our protocols
with those of previous work. Tables 1 and 2 provide a summary of this comparison. The complexities of our
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protocols are linear with the number of participating clients n and the number of puzzle z that each client
possesses. Our schemes support efficient verification of solutions without relying on asymmetric key-based
primitives. Moreover, MMH-TLP provides a distinctive set of features that are not simultaneously available
in any existing TLP.

1.3 Applications

Scalable, Private, and Compliant Scheduled Payments in Online Banking. Outsider and insider
attacks pose an immediate risk to various organizations and their clients, particularly financial institutions
and their customers. There have been numerous incidents where customers’ names, addresses, credit scores,
credit limits, and balances have been stolen and in some cases revealed to the public, e.g., see [26,15,30].
Investment strategies devised by individuals or companies and managed through financial institutions are
especially vulnerable, as they contain critical and valuable information that attackers could exploit.

Our schemes enable individuals and businesses to schedule payments and investments privately through their
banks, without disclosing the transaction amounts prior to the scheduled transfer time. Leveraging the multi-
instance feature, these schemes efficiently manage a high volume of scheduled transactions without placing
significant strain on server resources. By utilizing a homomorphic linear combination, our schemes allow
banks to precalculate the combined transfer amounts, such as the average or total. This functionality not
only ensures compliance with regulatory standards but also enhances risk management. By verifying transfer
amounts ahead of time, banks can confirm that all transactions meet regulatory requirements. Additionally,
the ability to precalculate transfer amounts helps banks identify and address potential risks before they
materialize, preventing issues like overdrafts or breaches of internal limits.

Asynchronous Multi-Model Training in Secure Aggregation as a Service (SAaaS). Federated
Learning (FL) is a machine learning framework that allows multiple parties to collaboratively build models
without exposing their sensitive data to one another [31]. Unlike traditional centralized methods, where data
is collected and processed on a central server, FL enables model training on individual devices or clients,
each holding private data. This approach preserves data privacy by ensuring that raw data never leaves the
clients. Instead, only model updates are transmitted to a central server.

To securely compute the sum of model updates from clients, Bonawitz et al . [10] developed a secure aggrega-
tion mechanism. This mechanism uses a trusted setup and a public-key-based verification system to detect
any misbehavior by the server. In response to this, the author of verifiable partially homomorphic TLP in [1]
proposed an alternative that does not require a trusted setup and supports efficient verification. Our solu-
tion, MMH-TLP, can also substitute the TLP in [1] (and the secure aggregation in [10]) offering additional
features that are particularly well-suited for more generic, multi-model settings, as explained below.

As the adoption of FL continues to grow, it is anticipated that cloud-based servers offering Secure Aggrega-
tion as a Service (SAaaS) will become common. In such scenarios, clients may want to train multiple models
over time, in collaboration with the server and various sets of clients. Our MMH-TLP can replace the afore-
mentioned secure aggregation mechanisms while enabling asynchronous multi-model training. Specifically,
in this setting, each client can submit to the server its (initial) parameters for different models in a single
step, well before the start of each model training round.

MMH-TLP supports (a) asynchronous client participation, allowing clients to create their puzzles and join
the computation of linear combinations at different times without waiting for others, and (b) a dynamic client
base, enabling new clients to independently join the system, prepare, and submit their puzzles. Consequently,
in the context of SAaaS, MMH-TLP facilitates asynchronous and dynamic parameter submissions, ensuring
that the server can efficiently and securely aggregate parameters for each model at the appropriate time.

Including the notion of time-lock can also enhance the privacy of FL. By requiring the server to learn the
aggregated result after a certain time, the system can allow a sufficient number of clients to submit their
model parameters to the server. This is important when there is a possibility of collusion between the clients
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and the server. Given the result of the secure aggregation of model parameters: agr =
n∑
i=1

ai, corrupt parties

that collude with each other can always deduce the linear combination of honest parties’ inputs from agr.
Thus, by defining a time window and assuming enough honest clients submit their updates in this period,
we can reduce the chance of colluding adversaries to link input to an honest party.

Sequential Verifiable E-Voting and Sealed-Bid Auction Systems. E-voting and sealed-bid auction
systems are critical applications where maintaining data integrity, confidentiality, and system scalability
is essential. Researchers have suggested utilizing homomorphic TLPs in these systems, to facilitate secure
computations while preserving the privacy of each individual vote or bid [28].

MMH-TLP can be applied more broadly to e-voting and sealed-bid auction systems, where clients participate
in multiple instances of voting or bidding managed sequentially by a server. This method minimizes the
server’s workload by avoiding the need to simultaneously handle each voter’s or bidder’s puzzle created for a
different instance. Additionally, it allows for public verification of the computations, therefore ensuring the
result’s correctness in the process, in the case where a malicious server may attempt to alter the result.

2 Related Work

Initially, the idea of sending information into the future, i.e., time-lock puzzle/encryption was proposed by
Timothy C. May [29]. A basic property of a time-lock scheme is that generating a puzzle takes less time than
solving it. May’s scheme relies on a trusted agent to release a secret at the appropriate time for a puzzle to
be solved, which can be a significant assumption. To address this, Rivest et al. [34] proposed an RSA-based
TLP that eliminates the need for a trusted agent. This scheme relies on sequential modular squaring and
remains secure even against a receiver with extensive computational resources running in parallel.

Following the development of the RSA-based TLP, several new variations have emerged. For instance, Boneh
et al . [12] and Garay et al . [19] introduced TLPs tailored for situations where a potentially malicious client
must provide zero-knowledge proofs to assure the server that the correct solution will be revealed after
a predetermined time. Additionally, Baum et al . [7] devised a composable TLP that can be defined and
validated within the universal composability framework. To ensure security against adversaries equipped
with quantum computers Agrawal et al . [4] proposed a TLP based on lattices, believed to be post-quantum
secure. In the remainder of this section, we will discuss two variants that are most closely related to our
schemes.

2.1 Multi-instance Time Lock Puzzle

To enhance the scalability of TLPs, researchers have examined scenarios where a server receives multiple
puzzles or instances from a client simultaneously and needs to solve all of them. The TLPs proposed in
[14,3] address this setting. The scheme in [14] relies on an asymmetric-key encryption method, unlike the
symmetric-key approach used in traditional TLPs, and it lacks verification capabilities. To overcome these
limitations, a TLP is introduced in [3]. This TLP employs an efficient hash-based verification, enabling the
server to prove the correctness of the solutions. However, this scheme is effective only for time intervals of
identical size. Later, a multi-instance TLP in [33] addressed this limitation. Nevertheless, none of these multi-
instance TLPs support (verifiable) homomorphic computations on puzzles. Their functionality is limited to
solving and verifying puzzles.

2.2 Homomorphic Time-lock Puzzles

The notion of homomorphic TLPs was introduced by Malavolta and Thyagarajan et al . [28]. It allows arbi-
trary functions to be applied to puzzles before they are solved. This scheme incorporates the RSA-based TLP
and fully homomorphic encryption. To enhance efficiency, partially homomorphic TLPs have been developed,
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including those that support homomorphic linear combinations or multiplications of puzzles [28,27]. Unlike
fully homomorphic TLPs, partially homomorphic TLPs do not depend on fully homomorphic encryption,
leading to more efficient implementations. In contrast to the partially homomorphic TLP described in [28],
the TLPs presented in [27] offer additional features. Firstly, they enable a verifier to confirm that puzzles
have been correctly generated. Secondly, they allow verification of the server’s solution for a single client’s
puzzle, though they do not support the verification of solutions related to homomorphic computations.

Later, Srinivasan et al . [37] noted that existing homomorphic TLPs are limited in their ability to handle a
high number of puzzles in a batch, as solving one puzzle leads to discovering all solutions in the batch. To
address this limitation, they proposed a scheme based on indistinguishability obfuscation and puncturable
pseudorandom functions. To improve the efficiency of this scheme, Dujmovic et al . [16] introduced a new
method that does not rely on indistinguishability obfuscation but instead uses pairings and learning with
errors. Both schemes assume that all initial puzzles’ solutions will be discovered simultaneously.

All the homomorphic TLPs discussed, except the scheme proposed in [37], require a fully trusted setup and
assume the server will act honestly during computation. Incorporating a trusted third party undermines the
core objective of RSA-based TLPs, which is to eliminate the need for such a party. Otherwise, this third party
could simply hold the secret and release it to the recipient at the designated time, thereby compromising the
design’s intent. Recently, Abadi [1] introduced a partially homomorphic TLP that enables anyone to verify
the correctness of the server’s solution, whether for a single client’s puzzle or the computation itself. This
scheme operates without relying on a trusted third party. However, all of the above schemes assume each
client has only a single puzzle. They lack support for the multi-instance setting. If they are used directly in
this setting, they would impose a high computation cost on the server.

3 Preliminaries

3.1 Notations and Assumptions

We consider the case where a server S is given multiple instances of a puzzle (or multiple puzzles) by a single
client at once, to solve them. We consider a generic case where client C has a vector of messages: ~m = [m1, . . . ,
mz]. It wants S to learn each message mi at time timei ∈ ~time, where ~time = [time1, . . . , timez] and
timej−1 < timej. We define a time interval between two consecutive points in time as ∆̄j = timej − timej−1.

We define a vector of time intervals as ~∆ = [∆̄1, . . . , ∆̄z].

The standard parameter maxss denotes the maximum number of squaring that a solver (with the highest
level of computation resources) can perform per second. We define a time parameter Tj = maxss · ∆̄j and
1 ≤ j ≤ z. Time points time0 and time′0 refer to the only times when C is available and online, where
time0, time

′
0 < time1. We define ∆j the time period where the j-th message remains hidden; therefore, ∆j

can be written as ∆j =
j∑
i=1

∆̄i. Server S must learn the computation result (i.e., a linear combination of

messages) after a certain time ∆, where ∆ < ∆̄1.

We define U as the universe of a solution mj. We denote by λ ∈ N the security parameter. For certain system
parameters, we use polynomial poly(λ) to state the parameter is a polynomial function of λ. We define a
public vector ~x as ~x = [x1, · · · , xm], where xi 6= xj, xi 6= 0, and xi /∈ U .

We define a hash function G : {0, 1}∗ → {0, 1}poly(λ), that maps arbitrary-length message to a message of
length poly(λ). We denote a null value or set by ⊥. By ||v|| we mean the bit-size of v and by ||~v|| we mean the
total bit-size of elements of ~v. We denote by p a large prime number, where log2(p) is the security parameter,
e.g., log2(p) = 128. A set of leaders are involved in MMH-TLP, we denote the total number of leaders with
ẗ. We set t̄ = ẗ + 2. For a value v defined over a finite field Fp (of prime order p), by v−1 we mean the
multiplicative inverse of v, i.e., v · v−1 ≡ 1 mod p.

To ensure generality, we adopt notations from zero-knowledge proof systems [9,18]. Let Rcmd be an efficient
binary relation that consists of pairs of the form (stmcmd, witcmd), where stmcmd is a statement and witcmd
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is a witness. Let Lcmd be the language (in NP) associated with Rcmd, i.e., Lcmd = {stmcmd| ∃witcmd s.t.
R(stmcmd, witcmd) = 1}. A (zero-knowledge) proof for Lcmd allows a prover to convince a verifier that
stmcmd ∈ Lcmd for a common input stmcmd (without revealing witcmd). In this paper, two main types of
verification occur (1) verification of a single client’s puzzle solution, in this case, cmd = clientPzl, and (2)
verification of a linear combination, in this case, cmd = evalPzl. In this work, we assume parties interact
through a secure channel. Moreover, we consider a malicious (or active) adversary that will corrupt the
server.

3.2 Pseudorandom Function

Informally, a pseudorandom function is a deterministic function that takes a key of length λ and an input; and
outputs a value. Informally, the security of PRF states that the output of PRF is indistinguishable from that
of a truly random function. In this paper, we use pseudorandom functions: PRF : {0, 1}∗ × {0, 1}poly(λ) → Fp.
In practice, a pseudorandom function can be obtained from an efficient block cipher [22]. In this work, we
use PRF to derive pseudorandom values to blind (or encrypt) secret messages.

3.3 Oblivious Linear Function Evaluation

Oblivious Linear function Evaluation (OLE) is a two-party protocol that involves a sender and receiver. In
this setting, the sender has two inputs a, b ∈ Fp and the receiver has a single input, c ∈ Fp. The protocol
enables the receiver to learn only s = a ·c+b ∈ Fp, while the sender learns nothing. Ghosh et al. [20] proposed
an efficient OLE that has O(1) overhead and mainly uses symmetric-key operations.2

Later, in [21] an enhanced OLE, denoted as OLE+, was introduced. OLE+ ensures that the receiver cannot learn
anything about the sender’s inputs, even if it sets its input to 0. OLE+ is also accompanied by an efficient
symmetric-key-based verification mechanism that enables a party to detect its counterpart’s misbehavior
during the protocol’s execution. In this paper, we use OLE+ to securely switch the blinding factors of se-
cret messages (encoded in the form of puzzles) held by a server. We refer readers to Appendix A, for the
construction of OLE+.

3.4 Polynomial Representation of a Message

Encoding a message m as a polynomial π(x) allows imposing a certain structure on the message. Polynomial
representation has previously been used in different contexts, for example in secret sharing [36], private set
intersection [25], or error-correcting codes [32]. To encode a message m in a polynomial π(x), we can use one

of the following approaches, (1) setting m as the constant terms of π(x), e.g., m+
n∑
j=1

xj · aj mod p and (2)

setting m as the root of π(x), e.g., π(x) = (x−m)·τ (x) mod p. In this paper, we utilize both approaches. The
former approach allows us to perform a linear combination of the constant terms of different polynomials.
Furthermore, we use the latter approach to insert a secret random root (or a trap) into the polynomials
encoding the messages. Hence, the resulting polynomial representing the linear combination maintains this
root, allowing the verification of the correctness of the computation.

In general, polynomials can be represented in the point-value form, in the following way. A polynomial π(x)
of degree n can be represented as a set of l (l > n) point-value pairs {(x1, π1), . . . , (xl, πl)} such that all xi
are distinct non-zero points and πi = π(xi) for all i, 1 ≤ i ≤ l. A polynomial in this form can be converted
into coefficient form via polynomial interpolation, e.g., via Lagrange interpolation [5].

2 The scheme uses an Oblivious Transfer (OT) extension as a subroutine. However, the OT extension requires only a
constant number of public-key-based OT invocations. The rest of the OT invocations are based on symmetric-key
operations. The exchanged messages in the OT extension are defined over a small-sized field, e.g., a field of size
128-bit [6].
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Arithmetic of polynomials in point-value representation can be done by adding or multiplying the corre-
sponding y-coordinates of polynomials. Let a be a scalar and {(x1, π1), . . . , (xl, πl)} be (y, x)-coordinates of
a polynomial π(x). Then, the polynomial θ interpolated from {(x1, a · π1), . . . , (xl, a · πl)} is the product of
a and polynomial π(x), i.e., θ(x) = a · π(x).

3.5 Unforgeable Encrypted Polynomial with a Hidden Root

The idea of the “unforgeable encrypted polynomial with a hidden root” was introduced in [2]. Informally,
it can be explained as follows. Let us consider a polynomial π(x) ∈ Fp[x] with a random secret root β. We
can represent π(x) in the point-value form and then encrypt its y-coordinates. We give all the x-coordinates
and encrypted y-coordinates to an adversary and we locally delete all the y-coordinates. The adversary may
modify any subset of the encrypted y-coordinates and send back to us the encrypted y-coordinates. If we
decrypt all the y-coordinates sent by the adversary and then interpolate a polynomial π′(x), the probability
that π′(x) has β has a root is negligible in the security parameter λ = log2(p). Below, it is formally stated.

Theorem 1 (Unforgeable Encrypted Polynomial with a Hidden Root). Let π(x) be a polynomial
of degree n with a random root β, and {(x1, π1), . . . , (xl, πl)} be point-value representation of π(x), where

l > n, p denotes a large prime number, log2(p) = λ′ is the security parameter, π(x) ∈ Fp[x], and β
$← Fp.

Let oi = wi · (πi + zi) mod p be the encryption of each y-coordinate πi of π(x), using values wi and ri
chosen uniformly at random from Fp. Given {(x1, o1), . . . , (xl, ol)}, the probability that an adversary (which

does not know (w1, r1), . . . , (wl, rl), β) can forge [o1, . . . , ol] to arbitrary ~̈o = [ö1, . . . , öl], such that: (i) ∃öi ∈
~̈o, öi 6= oi, and (ii) the polynomial π′(x) interpolated from unencrypted y-coordinates {

(
x1, (w1 · ö1)− zl

)
, . . . ,

(xl,
(
wl · öl)− zl

)
} will have root β is negligible in λ′, i.e., Pr[π′(β) mod p = 0] ≤ µ(λ′).

We refer readers to [2] for the proof of Theorem 1. This paper uses the unforgeable encrypted polynomial
with a hidden root concept to detect a server’s misbehaviors, a technique also used in [1].

3.6 Commitment Scheme

A commitment scheme involves a sender and a receiver, and it includes two phases: commitment and opening.
During the commitment phase, the sender commits to a message, using algorithm Com(m, r) = com, where
m is the message and r is a secret value randomly chosen from {0, 1}poly(λ). Once the commitment phase
concludes, the sender forwards the commitment, com, to the receiver. During the opening phase, the sender
transmits the pair m̂ := (m, r) to the receiver. The receiver verifies the correctness of the pair using the
algorithm Ver(com, m̂). It accepts the pair if the output of the verification algorithm is 1.

A commitment scheme offers two main properties hiding and binding. Hiding ensures that it is computa-
tionally infeasible for an adversary, i.e., the receiver, to gain any knowledge about the committed message m
before com is opened. Binding ensures that it is computationally infeasible for an adversary, i.e., the sender,
to open com to different values m̂′ := (m′, r′) than the ones originally used during the commit phase. Thus,
it should be infeasible to find an alternative pair m̂′ such that Ver(com, m̂) = Ver(com, m̂′) = 1, where
m̂ 6= m̂′.

There is a standard efficient hash-based commitment scheme that involves computing Q(m||r) = com during

the commitment. The verification step requires checking Q(m||r) ?
= com. Note that Q : {0, 1}∗ → {0, 1}poly(λ)

is a collision-resistant hash function, where the probability of finding two distinct values m and m′ such that
Q(m) = Q(m′) is negligible with regard to the security parameter λ. In this paper, we use this hash-based
commitment scheme to identify a server’s misbehaviors.
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3.7 Time-Lock Puzzle

In this section, we restate the TLP’s formal definition.

Definition 1. A TLP consists of three algorithms: (SetupTLP, GenPuzzleTLP ,SolveTLP). It meets completeness
and efficiency properties. TLP involves a client C and a server S.

– Algorithms:

• SetupTLP(1
λ, ∆,maxss) → (pk, sk). A probabilistic algorithm run by C. It takes as input a security

parameter, 1λ, time parameter ∆ (in seconds) that specifies how long a message must remain hidden,
and time parameter maxss which is the maximum number of squaring that a solver (with the highest
level of computation resources) can perform per second. It outputs pair (pk, sk) that contains public
and private keys.

• GenPuzzleTLP(m, pk, sk) → o. A probabilistic algorithm executed by C. It takes as input a solution m
and (pk, sk). It outputs a puzzle o.

• SolveTLP(pk, o) → s. A deterministic algorithm run by S. It takes as input pk and o. It outputs a
solution s.

– Completeness. For any honest C and S, it always holds that SolveTLP(pk, o) = m.

– Efficiency. The run-time of SolveTLP(pk, o) is upper-bounded by ¯poly(∆,λ), with a fixed polynomial ¯poly.

The security of a TLP requires that the puzzle’s solution remains confidential from all adversaries running
in parallel within the time period, ∆. It also requires that an adversary cannot extract a solution in time
δ(∆) < ∆, using a polynomial number of processors poly(∆) that run in parallel and after a large amount
of pre-computation.

Definition 2. A TLP is secure if for all λ and ∆, all probabilistic polynomial time (PPT) adversaries
A := (A1,A2) where A1 runs in total time O(poly(∆,λ)) and A2 runs in time δ(∆) < ∆ using at most
poly(∆) parallel processors, there is a negligible function µ(), such that:

Pr


SetupTLP(1

λ, ∆,maxss)→ (pk, sk)
A1(1

λ, pk,∆)→ (m0,m1, state)

b
$← {0, 1}

GenPuzzleTLP(mb, pk, sk)→ o
A2(pk, o, state)→ b

 ≤ 1

2
+ µ(λ)

where δ(∆) = (1− ε)∆ and ε < 1, according to [11].

Note that, in the literature, the TLP definition includes two adversaries A1 and A2 because their run-times
are different. We refer readers to Appendix C for the description of the original RSA-based TLP, which is
the core of the majority of TLPs. By definition, TLPs are sequential functions. Their construction requires
that a sequential function, such as modular squaring, is invoked iteratively a fixed number of times. The
sequential function and iterated sequential functions notions, in the presence of an adversary possessing a
polynomial number of processors, are formally defined in [11]. We restate the definitions in Appendix D.

3.8 Tempora-Fusion: A TLP with Efficient Verifiable Homomorphic Linear Combination

Recently, Abadi [1] proposed a TLP, called Tempora-Fusion, that supports an efficient verifiable homomor-
phic linear combination of puzzles, where which belongs to a different client. Since our schemes are built on
top of Tempora-Fusion, we briefly describe it in the remainder of this section. Tempora-Fusion mainly relies
on (1) a polynomial representation of a message, (2) an unforgeable encrypted polynomial, (3) oblivious
linear function evaluation, and (4) the original RSA-based TLP initially introduced by Rivest et al . [34].
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They consider a malicious server and semi-honest clients. In their scheme, the malicious server is considered
strong in the sense that it can act arbitrarily and access the secret keys and parameters of a subset of clients.
The scheme designates at random a subset of clients as leaders. Let I be this subset, containing ẗ leaders.
The scheme allows the malicious server to gain access to the secret keys and parameters of some of these
leaders. Specifically, for a set P = {S,C1, . . . , Cn} containing all the parties involved, the scheme allows the
adversary adaptively corrupt a subset W of P . It will fully corrupt S and act arbitrarily on its behalf. It
can retrieve the secret keys of a subset of clients in P . They define a threshold t and require the number of
non-corrupted leaders (i.e., the parties in I) to be at least t. This setting allows a high number of clients to
be corrupted by the adversary, under a constraint. For instance, when |P | = 500, and the total number of
leaders is 10 (i.e., ẗ = 10), and t = 2, then the adversary may corrupt 498 parties in P (i.e., |W| = 98), as
long as at most 8 parties from I are in W, i.e., |W ∩ I| ≤ t.

Outline of Tempora-Fusion. Initially, each client creates a puzzle that encodes a secret solution and
sends it to a server S. Upon receiving each puzzle, S processes it to determine the solution within a specified
timeframe. The time at which each client’s solution is found can be distinct from others. Upon finding a
solution, S generates a proof that asserts the solution’s correctness. Later, possibly after a certain amount
of time has passed since sending their puzzles to S, some clients whose puzzles remain undiscovered may
collaborate and request S to homomorphically combine their puzzles. The combined puzzles will encode a
linear combination of their solutions. The plaintext result of this computation will be determined by S after
a specific timeframe, potentially before any of their puzzles are solved.

To enable S to impose a specific structure (that can be considered as a hidden “trap”) on its outsourced
puzzles and homomorphically combine them, each client interacts with S and also communicates a message
to other clients. After a certain period, S can find the solution to the puzzle encoding the computational
result. It generates proof asserting the correctness of the solution, which anyone can efficiently verify to
ensure that the result maintains the intended structure. Eventually, S discovers the solution to each client’s
puzzle as well. It then publishes both the solution and a proof that enables anyone to verify the validity of
the solution too. Appendix B presents a detailed description of Tempora-Fusion.

4 Definition of Multi-Instance Verifiable Partially Homomorphic TLP

4.1 Private Linear Combination

The basic functionality FPLC that any z-input Private Linear Combination (PLC) computes takes as input
a pair of coefficient qj and plaintext value mj (for every j, 1 ≤ j ≤ n), and returns their linear combination
n∑
j=1

qj ·mj, as stated in [1]. More formally, FPLC is defined as:

FPLC
(
(q1,m1), . . . , (qz,mz)

)
→

z∑
j=1

qj ·mj (1)

We proceed to present a formal definition of Muti-Instance Verifiable Homomorphic Linear Combination
TLP (T LPMH), by presenting the syntax followed by the security and correctness definitions.

4.2 Syntax of T LPMH

Definition 3 (Syntax). A Multi-Instance Verifiable Homomorphic Linear Combination TLP (T LPMH)
scheme consists of six algorithms: T LPMH = (S.Setup,C.Setup,GenPuzzle,Evaluate,Solve,Verify), defined
below.

• S.Setup(1λ)→ KS. It is an algorithm run by the server S. It takes a security parameter 1λ. It generates
a pair KS := (skS, pkS), that includes a set of secret parameters skS and a set of public parameters pkS.
It returns KS. Server S publishes pkS.
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• C.Setup(1λ)→ K. It is a probabilistic algorithm run by a client C. It takes security parameter 1λ as
input. It returns a pair K := (sk, pk) of secret key sk and public key pk. Client C publishes pk.

• GenPuzzle(~m,K, pkS, ~∆,maxss)→ (~o, prm). It is an algorithm run by C. It takes as input a vector ~m =

[m1, . . . ,mz] of plaintext solutions, key pair K, server’s public parameters set pkS, a vector ~∆ = [∆1, . . . ,
∆z] of time parameters, where each ∆j determines the period in which mj should remain private, and the
maximum number maxss of sequential steps (e.g., modular squaring) per second that the strongest solver
can perform. It returns (i) a vector ~o = [~o1, . . . , ~oz], where each ~oj represents a single puzzle corresponding
to mj, and (ii) a pair prm := (sp, pp) of secret parameter sp and public parameter pp of the puzzles.
Client C publishes (~o, pp).

• Evaluate(〈S(~o,∆, maxss, pp, pk, pkS), C(∆,maxss,K, prm, q1, pkS), . . . , C(∆, maxss, K, prm, qz, pkS)〉)→
(~g, ~pp(Evl)). It is an (interactive) algorithm run by S (and client C). When no interaction between S and
C is required, the client’s inputs will be null ⊥. Server S takes as input vector ~o of z puzzles, time param-
eter ∆ within which the evaluation result should remain private (where ∆ < min(∆1, . . . ,∆z)), maxss,
pp, pk, and pkS. For each puzzle ~oj, client C takes as input ∆,maxss,K, prm, coefficient qj, and pkS.
The algorithm returns a puzzle vector ~g, representing a single puzzle and a vector of public parameters
~pp(Evl). Server S publishes ~g and client C publish ~pp(Evl).

• Solve(~o, pp,~g, ~pp(Evl), pk, pkS, cmd)→ (~m, ~ζ). It is a deterministic algorithm run by S. It takes as input
client C’s puzzle vector ~o, the puzzle’s public parameter pp, a vector ~g representing the puzzle that encodes
evaluation of the client’s puzzles, a vector of public parameter ~pp(Evl), pk, pkS, and a command cmd, where
cmd ∈ {clientPzl, evalPzl}. When cmd = clientPzl, it solves each puzzle ~oj in ~o (which is an output of
GenPuzzle()), this yields a solution mj. It appends each mj to ~m. In this case, input ~g can be ⊥. When
cmd = evalPzl, it solves puzzle ~g (which is an output of Evaluate()), which results in a solution m. It
appends m to ~m. In this case, input ~o can be ⊥. Depending on the value of cmd, it generates a proof
vector ~ζ (asserting that m or mj ∈ Lcmd for each solution). It outputs plaintext solution(s) ~m and proof
~ζ. Server S publishes (~m, ~ζ).

• Verify(m, ζ, ~oj, pp,~g, ~pp
(Evl), pkS, cmd)→ v̈ ∈ {0, 1}. It is a deterministic algorithm run by a verifier. It

takes as input a plaintext solution m, proof ζ, puzzle ~oj, public parameters pp of ~oj, a puzzle ~g for a
linear combination of the puzzles, public parameters ~pp(Evl) of ~g, server’s public key pkS, and command
cmd that determines whether the verification corresponds to C’s single puzzle or linear combination of
the puzzles. It returns 1 if it accepts the proof. It returns 0 otherwise.

In the above syntax, the prover is required to generate a witness/proof ζ for the language Lcmd = {stmcmd =
(p̄p,m)|Rcmd(stmcmd, ζ) = 1}, where if cmd = clientPzl, then p̄p = pp and if cmd = evalPzl, then p̄p = ~pp(Evl).

4.3 Security Model of T LPMH

A T LPMH scheme must satisfy security (i.e., privacy and solution-validity), completeness, efficiency, and
compactness properties. Each security property of a T LPMH scheme is formalized through a game between
a challenger E that plays the role of honest parties and an adversary A that controls the corrupted parties.
In this section, initially, we define a set of oracles that will strengthen the capability of A. After that, we
will provide formal definitions of the properties of T LPMH.

Oracles. To allow A to adaptively select plaintext solutions and corrupt parties, inspired by [1], we provide
A with access to oracles: puzzle generation GenPuzzleOracle() and evaluation EvaluateOracle(). Moreover, to enable
A to have access to the messages exchanged between the corrupt and honest parties during the execution of
Evaluate(), we define an oracle called RevealOracle(). Below, we define these oracles.

• GenPuzzleOracle(stE , GeneratePuzzle, ~m, ~∆)→ (~o, pp). It is executed by the challenger E . It receives a query

(GeneratePuzzle, ~m, ~∆), where GeneratePuzzle is a string, ~m = [m1, . . . ,mz] is a vector of plaintext
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solutions, and ~∆ = [∆1, . . . , ∆z] is a vector of time parameters, where each ∆j determines the period
within which mj should remain private. E retrieves (K, pk,maxss) from its state stE and then executes

GenPuzzle(~m,K, pkS, ~∆,maxss)→ (~o, prm), where prm := (sp, pp). It returns (~o, pp) to A.

• EvaluateOracle(stE , evaluate)→ (~g, ~pp(Evl)). It is executed interactively between the challenger E and the ad-
versary to run Evaluate(〈A(inputS), C(∆,maxss,K, prm, q1, pkS), . . . , C(∆,maxss, K, prm, qz, pkS)〉)→
(~g, ~pp(Evl)). The inputs of honest parties are extracted by E from stE . The adversary may provide arbi-
trary inputs inputS or the input of an honest S (in this case inputS is set to (~o,∆,maxss, pp, pk, pkS))
during the execution of Evaluate. E returns (~g, ~pp(Evl)) to A.

• RevealOracle(stE , reveal
(Evl), ~g, ~pp(Evl)) → transcript(Evl). It is run by E which is provided with a corrupt

party S and a state stE . It receives a query (reveal(Evl), ~g, ~pp(Evl)), where Reveal(Evl) is a string, and pair
(~g, ~pp(Evl)) is an output pair (previously) returned by an instance of Evaluate(). If the pair (~g, ~pp(Evl)) was
never generated, then the challenger sets transcript(Evl) to ∅. Otherwise, the challenger retrieves from
stE a set of messages that honest parties sent to the corrupt S while executing the specific instance of
Evaluate(). It appends these messages to transcript(Evl) and returns transcript(Evl) to A.

Properties. We proceed to formally define the main properties of a T LPMH scheme. Initially, we will focus
on the privacy property. Informally, privacy states that the j-th solution mj to the j-th puzzle ~oj must remain
concealed for a predetermined period from any adversaries equipped with a polynomial number of processors.

Specifically, an adversary with a running time of δ(
j∑
i=1

∆̄i) <
j∑
i=1

∆̄i using at most poly(Max(∆̄1 , . . . , ∆̄j))

parallel processors is unable to discover a message significantly earlier than δ(
j∑
i=1

∆̄i). This requirement is

also applicable to the evaluation result. Specifically, an adversary with a running time of δ(∆) < ∆ using
a polynomial number of parallel processors cannot learn the linear combination of messages significantly
earlier than δ(∆).

To capture privacy, we define an experiment ExpAprv(1λ, z), in Figure 1. This experiment involves a challenger
E which plays honest parties’ roles and a pair of adversaries A = (A1,A2). This experiment considers an
adversary that has access to the oracles: (i) puzzle generation GenPuzzleOracle(), (ii) evaluation EvaluateOracle(),
and (iii) transcript revelation RevealOracle(). The adversary initially outputs a key pair and a state (line 1).
Next, E generates a pair of secret and public keys (line 2). Given the E ’s public key, and having access to
GenPuzzleOracle() and EvaluateOracle(), A1 outputs z pairs of messages [(m0,1,m1,1), . . . , (m0,z,m1,z)] (line 4).

After that, E for each pair of messages, provided by A1, selects a random bit bj and generates a puzzle and
related public parameter for the message with index bj (lines 5–8). Given these puzzles and the corresponding
public parameters, and having access to GenPuzzleOracle() and EvaluateOracle(), A1 outputs a state (line 9). Using
this state as input, A2 guesses the value of bit bj for its selected puzzle (line 10). The adversary wins the
game (and accordingly, the experiment outputs 1) if its guess is correct (line 11).

Next, the adversary A1 and E interactively execute Evaluate() (line 12). The experiment enables A1 to learn
about the messages exchanged between the honest parties and the corrupt party, by providing A1 with access
oracle RevealOracle (). Having access to this transcript and the output of Evaluate(), A1 outputs a state (line
13). Given this state and the output of Evaluate(), adversary A2 guesses the value of bit bj for its chosen
puzzle (line 14). The adversary wins the game and the experiment returns 1 if its guess is correct (line 15).

Definition 4 (Privacy). A T LPMH scheme is privacy-preserving if for any security parameter λ, any
plaintext input solution m1, . . . ,mz and coefficient q1, . . . , qz (where each mj and qj belong to the plaintext
universe U), any time interval ∆̄i between two consecutive points in time when two solutions are found, any
difficulty parameter T = ∆

l
· maxss (where ∆

l
∈ {D = {∆1, . . . ,∆z} ∪ {∆}} is the period, polynomial in

λ, within which a message must remain hidden, ∆j ∈ D, ∆j =
j∑
i=1

∆̄i, and maxss is a constant in λ), and

any polynomial-size adversary A := (A1,A2), where A1 runs in time O(poly(T, λ)) and A2 runs in time
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δ(T ) < T using at most ¯poly(T ) parallel processors, there exists a negligible function µ() such that for any
experiment ExpAprv(1λ, z), presented in Figure 1, it holds that: Pr[ExpAprv(1λ, z)→ 1] ≤ 1

2 + µ(λ).

ExpAprv(1λ, z)

1: A1(1
λ)→ (KS := (skS, pkS), state)

2: C.Setup(1λ)→ K := (sk, pk)

3:
~b← 0

4: A1(state, pk,GenPuzzle
Oracle(),EvaluateOracle())→ ~m = [(m0,1,m1,1), . . . , (m0,z,m1,z)]

5: For j = 1, . . . , z do :

6: bj
$← {0, 1}

7:
~b[j]← bj

8: GenPuzzle(~m′ = [mb1
, . . . ,mbz

],K, pkS, ~∆,maxss)→ (~o, prm)
9: A1(state, pk,GenPuzzle

Oracle(),EvaluateOracle(), ~o, pp)→ state
10: A2(~o, pp, state)→ (b′j, j)
11: If b′j = ~b[j], then return 1
12: Evaluate(〈A1(~o,∆,maxss, pp, pk, pkS, state), C(∆,maxss,K, prm, q1, pkS), . . . , C(∆,maxss,
K, prm, qz, pkS)〉)→ (~g, ~pp(Evl))

13: A1(state,Reveal
Oracle(), ~g, ~pp(Evl))→ state

14: A2(~o, pp,~g, ~pp
(Evl), state)→ (b′i, i)

15: If b′i = ~b[i], then return 1, else return 0

Fig. 1: The ExpAprv experiment.

Informally, for a solution to be considered valid, it must be infeasible for a probabilistic polynomial time
(PPT) adversary to generate an invalid solution that can still pass the verification process. This holds
true whether the solution is for an individual puzzle posed by the client or for a puzzle encoding a linear
combination of the client’s messages. To capture solution validity, we define an experiment ExpAval(1

λ, z),
presented in Figure 2. It involves E which plays honest parties’ roles and an adversary A.

The adversary initially outputs a key pair and a state (line 1). Next, E generates a pair of secret and public
keys (line 2). Given the state and the public key, as well as having access to GenPuzzleOracle() and EvaluateOracle(),
A outputs a message vector ~m = [m1, . . . ,mz] (line 3). Next, E generates a puzzle for each message that
A selected (line 4). The experiment allows A and E to interactively execute Evaluate() (line 5). Given the
output of Evaluate() which is itself a puzzle, E solves the puzzle and outputs the solution and associated
proof (line 6).

The experiment lets A learn about the messages exchanged between the corrupt party and E (acting as
honest parties) during the execution of Evaluate(), by providing A with access to RevealOracle (). Given this
transcript, the output of Evaluate(), the plaintext solution, and the proof, A outputs a solution and proof
(line 7). After that, E verifies the solution and proof provided by A. The experiment outputs 1 and A wins if
A convinces E to accept an invalid evaluation result (line 8). E solves every puzzle of the client (line 9). Given
the puzzles and the solutions, and having access to oracles GenPuzzleOracle() and EvaluateOracle(), A provides
a solution and proof for its selected puzzle (line 10). Next, E checks the validity of the solution and proof
provided by A. The experiment outputs 1 (and A wins) if A persuades E to accept an invalid message for a
puzzle of the client (line 11).

Definition 5 (Solution-Validity). A T LPMH scheme preserves a solution validity, if for any security
parameter λ, any plaintext input solution m1, . . . ,mz and coefficient q1, . . . , qz (where each mj and qj belong
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to the plaintext universe U), any time interval ∆̄i between two consecutive points in time when two solutions
are found, any difficulty parameter T = ∆

l
·maxss (where ∆

l
∈ {D = {∆1, . . . ,∆z} ∪ {∆}} is the period,

polynomial in λ, within which a message must remain hidden, ∆j ∈ D, ∆j =
j∑
i=1

∆̄i, and maxss is a constant

in λ), and any polynomial-size adversary A that runs in time O(poly(T, λ)), there is a negligible function µ()
such that for any experiment ExpAval(1

λ, z) (presented in Figure 2), it holds that: Pr[ExpAval(1
λ, z)→ 1] ≤ µ(λ).

ExpAval(1
λ, z)

1: A1(1
λ)→ (KS := (skS, pkS), state)

2: C.Setup(1λ)→ K := (sk, pk)
3: A(state, pk,GenPuzzleOracle(),EvaluateOracle())→ ~m = [m1, . . . ,mz]

4: GenPuzzle(~m,K, pkS, ~∆,maxss)→ (~o, prm)
5: Evaluate(〈A1(~o,∆,maxss, pp, pk, pkS, state), C(∆,maxss,K, prm, q1, pkS), . . . , C(∆,maxss,
K, prm, qz, pkS)〉)→ (~g, ~pp(Evl))

6: Solve(., ., ~g, ~pp(Evl), pk, pkS, evalPzl)→ (~m, ~ζ)

7: A(state, pkS,Reveal
Oracle(), ~m, ~ζ, ~o,~g, pp, ~pp(Evl))→ (m′, ζ ′)

8: If Verify(m′, ζ ′, ., ., ~g, ~pp(Evl), pkS, evalPzl)→ 1, s.t. m′ /∈ LevalPzl, then return 1

9: Solve(~o, pp, ., ., pk, pkS, clientPzl)→ ( ~̂m,
~̂
ζ)

10: A(state, pkS,GenPuzzle
Oracle(),EvaluateOracle(), ~m, ~ζ, ~̂m,

~̂
ζ, ~o, pp, ~pp(Evl))→ (m′j, ζ

′
j, j)

11: If Verify(m′j, ζ
′
j, ~oj, pp, ., ., pkS, clientPzl)→ 1, s.t. m′j /∈ LclientPzl, then return 1; otherwise, return 0

Fig. 2: The ExpAval(1
λ, z) experiment.

Informally, completeness examines the behavior of algorithms when honest parties are involved. It asserts
that Solve() will always retrieve (1) a correct solution for a puzzle related to a linear combination and (2) a
set of correct solutions for z puzzles. It also asserts that Verify() will always return 1 when given an honestly
generated solution. Because algorithm Solve() is used for two cases: (a) to find a solution for a single puzzle
generated by a client and (b) to discover a solution for a puzzle that encodes the linear evaluation of messages,
we will state the correctness of this algorithm separately for each case. Similarly, we will state the correctness
of Verify() for each scenario. In the following definitions, because the experiments’ descriptions are relatively

short, we integrate the experiment Exp into the probability notation. Thus, we use the notation Pr

[
Exp
Cond

]
,

where Exp is an experiment, and Cond represents the set of the conditions under which the property must
hold.

Definition 6 (Completeness). A T LPMH is correct if for any security parameter λ, any plaintext input
message m1, . . . ,mz and coefficient q1, . . . , qz (where each mj and qj belong to the plaintext universe U), any
difficulty parameter T = ∆

l
·maxss (where ∆

l
is the period, polynomial in λ, within which a message must

remain hidden and maxss is a constant in λ), the following conditions are satisfied.

1. Solve(~o, pp, ., ., pk, pkS, cmd), that takes a vector ~o of puzzles each encoding a plaintext solution mj and
its related parameters, always returns a vector ~m = [m1, . . . ,mz] of solutions:

Pr


S.Setup(1λ)→ KS

C.Setup(1λ)→ K

GenPuzzle(~m,K, pkS, ~∆,maxss)→ (~o, prm)

Solve(~o, pp, ., ., pk, pkS, cmd)→ (~m, .)

 = 1
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where pp ∈ prm and cmd = clientPzl.

2. Solve(., ., ~g, ~pp(Evl), pk, pkS, cmd), that takes (i) a puzzle ~g encoding linear combination
z∑
j=1

qj · mj of z

messages, where each m
j

is a plaintext message and qj is a coefficient and (ii) their related parameters,

always returns
z∑
j=1

qj ·mj:

Pr



S.Setup(1λ)→ KS

C.Setup(1λ)→ K

GenPuzzle(~m,K, pkS, ~∆,maxss)→ (~o, prm)
Evaluate

(
〈S(~o,∆,maxss, pp, pk, pkS), C(∆,maxss,K, prm,

q1, pkS), . . . , C(∆,maxss,K, prm, qz, pkS)〉
)
→ (~g, ~pp(Evl))

Solve(., ., ~g, ~pp(Evl), pk, pkS, cmd)→ (
z∑
j=1

qj ·mj , .)


= 1

where ~o = [~o1, . . . , ~oz], pk ∈ K, pkS ∈ KS, and cmd = evalPzl.

3. Verify(m, ζ, ~oj, pp, ., ., pkS, cmd), that takes a solution for a puzzle, related proof, and public parameters,
always returns 1:

Pr


S.Setup(1λ)→ KS

C.Setup(1λ)→ K

GenPuzzle(~m,K, pkS, ~∆,maxss)→ (~o, prm)

Solve(~o, pp, ., ., pk, pkS, cmd)→ (~m, ~ζ)

Verify(m, ζ, ~oj , pp, ., ., pkS, cmd)→ 1

 = 1

where cmd = clientPzl.

4. Verify(m, ζ, ., ., ~g, ~pp(Evl), pkS, cmd), that takes a solution for a puzzle that encodes a linear combination of
z messages, related proof, and public parameters, always returns 1:

Pr



S.Setup(1λ)→ KS

C.Setup(1λ)→ K

GenPuzzle(~m,K, pkS, ~∆,maxss)→ (~o, prm)
Evaluate(〈S(~o,∆,maxss, pp, pk, pkS), c(∆,maxss,K, prm, q1,
pkS), . . . , c(∆,maxss,K, prm, qz, pkS)〉)→ (~g, ~pp(Evl))

Solve(., ., ~g, ~pp(Evl), pk, pkS, cmd)→ (~m, ~ζ)

Verify(m, ζ, ., ., ~g, ~pp(Evl), pkS, cmd)→ 1


= 1

where cmd = evalPzl.

Now, we move on to the efficiency property, and along the way, we formally define the multiple instance
notion for the first time. Intuitively, efficiency states that (1) the running time of dealing with multiple
instances of a puzzle through multi-instance TLP is faster than via traditional TLPs, (2) Solve() returns a
solution in polynomial time, i.e., polynomial in the time parameter T , (3) GenPuzzle() generates a puzzle
faster than solving it, with a running time of at most logarithmic in T , and (4) the running time of Evaluate()
is faster than solving any puzzle involved in the evaluation, that should be at most logarithmic in T [16].

Definition 7 (Efficiency). A T LPMH is efficient if for any security parameter λ, any plaintext input
message m1, . . . ,mz and coefficient q1, . . . , qz (where each mj and qj belong to the plaintext universe U),
any time interval ∆̄i between two consecutive points in time when two solutions are found, any difficulty
parameter T = ∆

l
·maxss (where ∆

l
∈ {D = {∆1, . . . ,∆z} ∪ {∆}} is the period, polynomial in λ, within
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which a message must remain hidden, ∆j ∈ D, ∆j =
j∑
i=1

∆̄i, and maxss is a constant in λ), the following

conditions are satisfied.

1. Multi-instance: Let Ψsingle be the time complexity to solve a single traditional time-lock puzzle, e.g., [34].
It holds that the time complexity of a solving algorithm in traditional time-lock puzzles to deal with
z puzzle is Ψtrad(z) = z · Ψsingle. Let Ψmulti(z) be the time complexity to solve z puzzles using a multi-
instance algorithm. The solving algorithm of a multi-instance scheme is efficient if: Ψtrad(z)−Ψmulti(z) ≥
poly(z,maxss, ∆1, . . . ,∆z), for a fixed polynomial poly.

2. Polynomial-time solving: The running time of Solve(~o, pp,~g, ~pp(Evl), pk, pkS, cmd) is upper bounded by
ˆpoly(z, Tmax, λ), where ˆpoly() is a fixed polynomial and Tmax = Max(∆1, . . . ,∆z, ∆) ·maxss.

3. Faster puzzle generation: The running time of GenPuzzle(~m,K, pkS, ~∆,maxss) is upper bounded by poly′(z,
log(Tmax), λ), where poly′() is a fixed polynomial.

4. Faster puzzles evaluation: The running time of Evaluate(〈S(~o,∆,maxss, pp, pk, pkS), c(∆,maxss,K, prm,

q1, pkS), . . . , c(∆,maxss,K, prm, qz, pkS)〉)→ (~g, ~pp(Evl)) is upper bounded by poly′′
(

log(T ), λ,FPLC
(
(q1,m1),

. . . , (qz,mz)
))

, where poly′′() is a fixed polynomial and FPLC() is the functionality that computes a linear

combination of messages (as stated in Relation 1).

Next, we consider compactness which requires that the size of evaluated ciphertexts is independent of the
complexity of the evaluation function FPLC.

Definition 8 (Compactness). A T LPMH is compact if for any security parameter λ, any difficulty pa-
rameter T = ∆

l
·maxss, any plaintext input solution m1, . . . ,mz and coefficient q1, . . . , qz (where each mj

and qj belong to the plaintext universe U), any time interval ∆̄i between two consecutive points in time when
two solutions are found, any difficulty parameter T = ∆

l
·maxss (where ∆

l
∈ {D = {∆1, . . . ,∆n} ∪ {∆}}

is the period, polynomial in λ, within which a message m must remain hidden, ∆j ∈ D, ∆j =
j∑
i=1

∆̄i, and

maxss is a constant in λ), always Evaluate() outputs a puzzle (representation) whose bit-size is independent
of FPLC’s complexity O(FPLC):

Pr



S.Setup(1λ)→ KS

C.Setup(1λ)→ K

GenPuzzle(~m,K, pk, ~∆,maxss)→ (~o, prm)

Evaluate(〈S(~o,∆,maxss, pp, pk, pkS), c(∆,maxss,K, prm,
q1, pkS), . . . , c(∆,maxss,K, prm, qz, pkS)〉)→ (~g, ~pp(Evl))
s.t.

||~g|| = poly
(
λ, ||FPLC

(
(q1,m1), . . . , (qz,mz)

)
||
)


= 1

Definition 9 (Security). A T LPMH is secure if it satisfies privacy and solution validity as outlined in
Definitions 4 and 5.

5 Construction of T LPMH: Multi-instance Verifiable Partially Homomorphic
TLP (MH-TLP)

5.1 An Overview

We develop MH-TLP on top of Tempora-Fusion, discussed in Section 3.8. Inspired by previous multi-instance
TLPs proposed in [3], we use the chaining technique, to chain different puzzles, such that when S solves
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one puzzle it will obtain enough information to work on the next puzzle. Therefore, it can solve puzzles
sequentially rather than dealing with all of them at once. However, we develop a new technique for chaining
puzzles to support homomorphic linear combinations as well.

In the multi-instance TLPs introduced in [3], during the puzzle generation phase (and chaining process) the
base rj+1 for the (j + 1)-th puzzle is concatenated and concealed with the j-th solution, mj. Consequently,
the j-th puzzle is created on solution mj||rj+1. The issue with this approach is that it cannot support
homomorphic operations on the puzzle’s actual solution mj, because the solution is now mj||rj+1.

To address this issue, we take a different approach. In short, we require the client to derive the next puzzle’s
base from the current puzzle’s master key. We briefly explain how it works. Recall that in Tempora-Fusion,
each j-th puzzle is associated with a master key mkj, found when the puzzle is solved. Using our new
technique, during the puzzle generation, when j = 1, (similar to Tempora-Fusion) client C picks a random
base rj, sets aj = 2Tj mod φ(N), and then sets master key mkj as mkj = r

aj
j mod N , with a difference

being Tj now determines how long a solution mj must remain concealed after the previous solution mj−1 is
discovered. Next, as in Tempora-Fusion, C derives some pseudorandom values from mkj and encrypts the
y-coordinates of a polynomial representing mj.

However, when j > 1, client C derives a fresh base rj from the previous master key as rj = PRF(j||0,mkj−1).
As before, it sets aj = 2Tj mod φ(N) and then sets the current master key mkj as mkj = r

aj
j mod N . It

derives some pseudorandom values from mkj, and encrypts the y-coordinates of a polynomial representing
mj. It repeats this process until it creates a puzzle for the last solution mz. The client hides all bases except
the first one r1 which is made public.

Clearly, this new approach does not require C to modify each solution mj. Thus, we can now use the
techniques developed for Tempora-Fusion in [1] to allow S to perform homomorphic linear combinations on
the puzzles. In this setting, S has to solve puzzles in ascending order, starting from the first puzzle, to find
a solution and a base for the next puzzle. Given this base, it starts repeated modular squaring to find the
next solution and base until it finds the last puzzle’s solution.

We proceed to briefly explain how MH-TLP operates. We highlight that there are overlaps between the design
of MH-TLP and Tempora-Fusion. However, there are major differences as well. We will shortly discuss these
differences.

1. Server-Side Setup. Initially, S generates and publishes a set of public parameters, without requiring it to
generate any secret parameter. The public parameters include a sufficiently large prime number p and a
vector ~x = [x1, x2, x3] of non-zero elements. The elements in ~x can be considered as x-coordinates and
will help each client to represent its message as a polynomial in point-value form.

2. Client-side Key Generation. A client C independently generates a set of public and private keys, which
includes an RSA-public modulus N . The client publishes its public key.

3. Client-side Puzzle Generation. Client C uses its secret key and time parameter Tj that determines how
long a solution mj must remain concealed after the previous solution mj−1 is discovered, to generate a set
of master keys mk1, . . . ,mkz, using the chaining technique described above. C uses each master key mkj,
that is associated with the j-th message, to derive pseudorandom values (zi,j, wi,j) for each element xi of
~x. The client represents its secret solution mj as (a constant term of) a polynomial and then represents the
polynomial in the point-value form. This results in a vector of y-coordinates: [π1,j, π2,j, π3,j]. It encrypts
each y-coordinate using the related pseudorandom values: oi,j = wi,j · (πi,j + zi,j) mod p. Each vector of
encrypted y-coordinates ~oj = [o1,j, o2,j, o3,j] represents a puzzle for j-th solution mj. Note that polynomial
representation is used to allow a homomorphic linear combination of solutions and efficient verification
of the computation. C publishes these puzzles along with a set of public parameters. Given these public
parameters, by solving the related puzzle, anyone can sequentially find each master key mkj and remove
the blinding factors to extract the corresponding solution. To support the public verifiability of a solution
that will be found by S, C commits comj = Com(mj,mkj) to each message mj using the related mkj as
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the commitment’s randomness. It publishes each comj. Anyone who solves a puzzle encoding solution
mj can find mkj and prove (mj,mkj) matches comj.

4. Linear Combination. In this phase, similar to Tempora-Fusion, client C produces certain messages that
allow server S to find a linear combination of its plaintext solutions after a certain time. C, using its
secret key and time parameter Y (which determines how long the result of the computation must remain
private), generates a temporary master key tk and public parameters pp(Evl). Anyone who solves a puzzle
for the computation will be able to find tk, after a certain time. C uses tk to derive new pseudorandom
values (z′i, w

′
i) for each element xi of ~x. It also uses its secret key to regenerate the pseudorandom values

(zi,j, wi,j) used to encrypt each y-coordinate related to its solution mj. The client selects a single random
root: root. It commits to this root, using tk as the randomness: com′ = Com(root, tk). C represents root as
a polynomial in point-value form. This yields a vector of y-coordinates: [γ1, γ2, γ3]. The client will insert
this random root into its outsourced puzzle, to give a certain structure to the result of the homomorphic
linear combination, which will ultimately allow future verification.

For each solution m2, . . . ,mz it possesses, the client selects a fresh key fl. This key is used by the client
to generate zero-sum pseudorandom values for (each y-coordinate related to) each solution. These values
are generated such that if are summed, they will cancel out each other. They are used to ensure that
S learns only the linear combination of all the solutions that belong to C, and S cannot learn the
combination of a subset of these solutions. C for each y-coordinate of each j-th puzzle participates in
an instance of OLE+ with S. At a high level, C’s input includes the y-coordinate γi of the random root,
the new pseudorandom values (z′i, w

′
i), the inverse of the old pseudorandom values (wi,j)

−1, its coefficient
qj, and the pseudorandom values yi,j derived from fj. The input of S is the client’s j-th puzzle. Each
instance of OLE+ returns to S an encrypted y-coordinate. At the end of this process, C publishes its
public parameters pp(Evl).

Consequently, S sums the outputs of OLE+ component-wise, resulting in a vector of encrypted y-coordinates,
~g = [g1, g2, g3]. Then, S publishes ~g. Each gi has a layer of blinding factor, inserted by C during the in-
vocation of OLE+. Anyone who solves the related puzzle can regenerate the temporary master key tk and
remove the blinding factor.

5. Solving a Puzzle. To find the solution encoding the result of the computation, S operates as follows.
Given public parameters previously released by C, S solves the related puzzle to find the temporary
master key tk. Using tk, S removes the blinding factors from each gi, that results in three plaintext
y-coordinates. S uses these y-coordinates and the x-coordinates in ~x to interpolate a polynomial θ(x).
It finds the roots of θ(x). It publishes the root and tk that match the published commitment com′. It
also retrieves from θ(x) and publishes the linear combination of C’s solutions.

To find a solution for a single puzzle of C, S operates as follows. Given public parameters and each
puzzle, S after a certain time retrieves a master key mkj. Using mkj, S removes the blinding factors
from each oi,j, that yields a vector of y-coordinates. It uses them and x-coordinates in ~x to interpolate a
polynomial πj(x) and retrieves message mj from polynomial πj(x). It publishes mj and mkj that match
the published commitment comj. Moreover, solving the j-th puzzle provides S with enough information
to begin working on the next puzzle.

6. Verification. To verify a solution related to the linear combination of solutions, the verifier checks if
the root root and the temporary master key tk provided by S match the commitment com′. It also
removes the blinding factors from [g1, g2, g3], yielding three y-coordinates. It uses these y-coordinates
to interpolate a polynomial. From this polynomial, the verifier retrives its constant term (which is the
computation result). It checks whether root is a root of this polynomial and the computation result
matches the one S published. If all the checks pass, it accepts the result. To verify a solution mj related
to a single puzzle of C, the verifier checks if mj and the temporary master key mkj, provided by S,
match the commitment comj.
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Beyond offering the multi-instance feature, MH-TLP differs from Tempora-Fusion in two main ways. Firstly,
since there is only one client, only one random root is selected and inserted into the outsourced polynomials
(rather than inserting |I| roots in Tempora-Fusion). During the verification, a verifier checks whether the eval-
uation of the resulting polynomial at this root is zero. Secondly, in MH-TLP, using only three x-coordinates
~x = [x1, x2, x3] will suffice, because the outsourced puzzle’s degree is one, and when it is multiplied by a
polynomial representing a random root (while computing the linear combination), the resulting polynomial’s
degree will become two. Thus, three (y, x)-coordinates are sufficient to interpolate a polynomial of degree
two. Figure 3 outlines the MH-TLP workflow.
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2. Server Computing a Linear Combination of a Client’s Puzzles.
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1. Server E�ciently Dealing with a Client’s Puzzles.

Fig. 3: MH-TLP Workflow Outline.

5.2 Detailed Construction

Next, we present a detailed description of MH-TLP.

1. Setup. S.Setup(1λ)→ (., pkS)

Server S only once takes the following steps:

(a) Setting a field’s parameter : generates a sufficiently large prime number p, where log2(p) is the security
parameter.

(b) Generating public x-coordinates: sets ~x = [x1, x2, x3], where xi 6= xj, xi 6= 0, and xi /∈ U .

(c) Publishing public parameters: publishes pkS = (p, ~x). Note that, C itself can generate (p, ~x), too.

2. Key Generation. C.Setup(1λ)→ K

Client C takes the flowing steps.
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(a) Generating RSA public and private keys: computes N = p1 · p2, where pi is a large randomly chosen
prime number, e.g., log2(pi) ≥ 2048. Next, it computes Euler’s totient function of N , as: φ(N) =
(p1 − 1) · (p2 − 1).

(b) Publishing public parameters: locally keeps secret key sk = φ(N) and publishes public key pk = N .

3. Puzzle Generation. GenPuzzle(~m,K, pkS, ~∆,maxss)→ (~o, prm)

Client C takes the following steps to generate z puzzles for messages ~m = [m1, . . . ,mz]. It wants S to
learn each message mj at time timej ∈ ~time, where ~time = [time1, . . . , timez], ∆̄j = timej − timej−1,
~∆ = [∆̄1, . . . , ∆̄z], and 1 ≤ j ≤ z.

(a) Checking public parameters: checks the bit-size of p and elements of ~x in pkS, to ensure log2(p) ≥ 128,
xi 6= xj, xi 6= 0, and xi /∈ U . If it does not accept the parameters, it returns (⊥,⊥) and does not take
further action.

(b) Generating secret keys: generates a vector of master keys ~mk = [mk1, . . . ,mkz] and two secret keys

kj and sj for each mkj in ~mk as follows. It constructs an empty vector ~mk. Then, it

i. sets each exponent aj.

∀j, 1 ≤ j ≤ z : aj = 2Tj mod φ(N)

where Tj = maxss · ∆̄j is the total number of squaring needed to decrypt an encrypted solution
mj after previous solution mj−1 is revealed.

ii. computes each master key mkj as follows. For every j, where 1 ≤ j ≤ z :

• when j = 1 :

A. selects a uniformly random base rj
$← ZN .

B. sets key mkj as mkj = r
aj
j mod N .

C. appends mkj to ~mk.

• when j > 1 :

A. derives a fresh base rj from the previous master key as rj = PRF(j||0,mkj−1).

B. sets key mkj as mkj = r
aj
j mod N .

C. appends mkj to ~mk.

iii. derives two secret keys kj and sj from each mkj.

∀j, 1 ≤ j ≤ z : kj = PRF(1,mkj), sj = PRF(2,mkj)

(c) Generating blinding factors: generates six pseudorandom values, by using kj and sj.

∀j, 1 ≤ j ≤ z and ∀i, 1 ≤ i ≤ 3 : zi,j = PRF(i, kj), wi,j = PRF(i, sj)

(d) Encoding plaintext message:

i. represents each plaintext solution mj as a polynomial, such that the polynomial’s constant term
is the message.

∀j, 1 ≤ j ≤ z : πj(x) = x+mj mod p

20



ii. computes three y-coordinates of each πj(x).

∀j, 1 ≤ j ≤ z and ∀i, 1 ≤ i ≤ 3 : πi,j = πj(xi) mod p

where xi ∈ ~x.

(e) Encrypting the solution: encrypts the y-coordinates using the blinding factors.

∀j, 1 ≤ j ≤ z and ∀i, 1 ≤ i ≤ 3 : oi,j = wi,j · (πi,j + zi,j) mod p

(f) Committing to the solution: commits to each plaintext message:

∀j, 1 ≤ j ≤ z : comj = Com(mj,mkj)

Let ~com = [com1, . . . , comz].

(g) Managing messages: publishes ~o =
[
[o1,1, o2,1, o3,1], . . . , [o1,z, o2,z, o3,z]

]
and pp = ( ~com, r1). It lo-

cally keeps secret parameters sp = ~mk. It sets prm = (sp, pp). It deletes everything else, including
mj,πj(x), π1,j, π2,j, and π3,j for every j, 1 ≤ j ≤ z.

4. Linear Combination. Evaluate(〈S(~o,∆, maxss, pp, pk, pkS), C(∆,maxss,K, prm, q1, pkS), . . . , C(∆, maxss,
K, prm, qz, pkS)〉)→ (~g, pp(Evl))

In this phase, client C produces certain messages that allow S to find a linear combination of its plaintext
solutions after time ∆.

(a) Granting the computation: client C takes the following steps.

i. Generating temporary secret keys: generates a temporary master key tk and two secret keys k′

and s′. Moreover, it generates z − 1 secret key [fj, . . . , fz]. To do that, the following steps are
taken: C computes the exponent:

b = 2Y mod φ(N)

where Y = ∆ ·maxss. It selects a base uniformly at random: h
$← ZN and then sets a temporary

master key tk:
tk = hb mod N

It derives two keys from tk:

k′ = PRF(1, tk), s′ = PRF(2, tk)

It picks fresh z − 1 random keys ~f = [f2, . . . , fz], where fj
$← {0, 1}poly(λ).

ii. Generating blinding factors: regenerates its original blinding factors, for each j-th puzzle. Specif-
ically, for every j, derives two secret keys kj and sj from mkj as follow.

∀j, 1 ≤ j ≤ z : kj = PRF(1,mkj), sj = PRF(2,mkj)

Then, it regenerates pseudorandom values, by using kj and sj.

∀j, 1 ≤ j ≤ z and ∀i, 1 ≤ i ≤ 3 : zi,j = PRF(i, kj), wi,j = PRF(i, sj)

It also generates new pseudorandom values using keys (k′, s′):

∀i, 1 ≤ i ≤ 3 : z′i = PRF(i, k′), w′i = PRF(i, s′)

It computes new sets of (zero-sum) blinding factors, using the keys in ~f , as follows. ∀j, 1 ≤ j ≤ z :
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• if j = 1:

∀i, 1 ≤ i ≤ 3 : yi,j = −
z∑
j=2

PRF(i, fj) mod p

• if j > 1:
∀i, 1 ≤ i ≤ 3 : yi,j = PRF(i, fj) mod p

where fj ∈ ~f .

iii. Generating y-coordinates of a random root : picks a random root, root
$← Fp. It represents root

as a polynomial, such that the polynomial’s root is root. Specifically, it computes polynomial
γ(x) as:

γ(x) = x− root mod p

Then, it computes three y-coordinates of γ(x):

∀i, 1 ≤ i ≤ 3 : γi = γ(xi) mod p

iv. Committing to the root : computes com′ = Com(root, tk).

v. Re-encoding outsourced puzzle: participates in an instance of OLE+ with S, for every j-th puzzle
and every i, where 1 ≤ j ≤ z and 1 ≤ i ≤ 3. The inputs of client C to the i-th instance of OLE+

are:
ei,j = γi · qj · w′i · (wi,j)−1 mod p, e′i,j = −(γi · qj · w′i · zi,j) + z′i + yi,j mod p

The input of S to the (i, j)-th instance of OLE+ is corresponding encrypted y-coordinate: e′′i,j = oi,j.
Accordingly, the (i, j)-th instance of OLE+ returns to S:

di,j = ei,j · e′′i,j + e′i,j
= γi · qj · w′i · πi,j + z′i + yi,j mod p

where qj is a coefficient for j-th solution mj.

vi. Publishing public parameters: publishes pp(Evl) = (h, com′).

(b) Computing encrypted linear combination: Server S sums all of the outputs of OLE+ instances that it
has invoked as follows. ∀i, 1 ≤ i ≤ 3 :

gi =

z∑
j=1

di,j mod p

= (w′i · γi ·
z∑
j=1

qj · πi,j) + z′i mod p

Note that in gi,j there is no yi,j, because yi,j in different di,j have canceled out each other.

(c) Disseminating encrypted result : server S publishes ~g = [g1, g2, g3].

5. Solving a Puzzle. Solve(~o, pp,~g, ~pp(Evl), pk, pkS, cmd)→ (~m, ~ζ)

Server S takes the following steps.

Case 1. when solving a puzzle related to the linear combination.
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(a) Finding secret keys:

i. finds temporary key tk, where tk = h2Y mod N , via repeated squaring of h modulo N .

ii. derives two keys from tk:

k′ = PRF(1, tk), s′ = PRF(2, tk)

(b) Removing blinding factors: removes the blinding factors from [g1, g2, g3] ∈ ~g.

∀i, 1 ≤ i ≤ 3 :

θi =
(
PRF(i, s′)

)−1︸ ︷︷ ︸
(w′i)

−1

·
(
gi −

z′i︷ ︸︸ ︷
PRF(i, k′)

)
mod p

= γi ·
z∑
j=1

qj · πi,j mod p

(c) Extracting a polynomial : interpolates a polynomial θ, given pairs (x1, θ1), (x2, θ2), (x3, θ3).
Note that θ will have the form:

θ(x) = (x− root) ·
z∑
j=1

qj · (x+mj) mod p

We can rewrite θ(x) as:

θ(x) = ψ(x)− root ·
z∑
j=1

qj ·mj mod p

where ψ(x) is a polynomial of degree two with constant term being 0.

(d) Extracting the linear combination: retrieves the result (i.e., the linear combination ofm1, . . . ,mz)

from polynomial θ(x)’s constant term: cons = −root ·
z∑
j=1

qj ·mj as follows:

m = cons · (−root)−1 mod p

=

z∑
j=1

qj ·mj

(e) Extracting valid roots: extracts the root(s) of θ. Let set R contain the extracted roots. It
identifies the valid root, by finding a root root in R, such that Ver(com′, (root, tk)) = 1.

(f) Publishing the result : initiates vectors ~m and ~ζ. It appends m to ~m and (root, tk) to ~ζ. It

publishes ~m and ~ζ.

Case 2. when solving each j-th puzzle ~oj,u of client Cu (i.e., when cmd = clientPzl), server S takes the
following steps. ∀j, 1 ≤ j ≤ z :

(a) Finding secret bases and keys: sets base rj and mkj as follows.

• if j = 1 : sets the base to r1, where r1 ∈ pp. Then, it finds mk1 where mk1 = r2T1

1 mod N

through repeated squaring of r1 modulo N . It also initiates vectors ~m and ~ζ.
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• if j > 1 : computes base rj as rj = PRF(j||0,mkj−1). Next, it finds mkj where mkj =

r2
Tj

j mod N through repeated squaring of rj modulo N .

It derive two keys from mkj:

kj = PRF(1,mkj), sj = PRF(2,mkj)

(b) Removing blinding factors: re-generates six pseudorandom values using kj and sj:

∀i, 1 ≤ i ≤ 3 : zi,j = PRF(i, kj), wi,j = PRF(i, sj)

Next, it uses the blinding factors to unblind ~oj = [o1,j, o2,j, o3,j]:

∀i, 1 ≤ i ≤ 3 : πi,j =
(
(wi,j)

−1 · oi,j
)
− zi,j mod p

(c) Extracting a polynomial : interpolates a polynomial πj, given pairs (x1, π1,j), (x2, π2,j), (x3, π3,j).

(d) Publishing the solution: considers the constant term of πj as the plaintext message, mj. It

appends (mj, j) to ~m and mkj to ~ζ. If j = z, then it publishes ~m and ~ζ.

6. Verification. Verify(m, ζ, ., pp,~g, ~pp(Evl), pkS, cmd)→ v̈ ∈ {0, 1}

A verifier (that can be anyone) takes the following steps.

Case 1. when verifying a solution related to the linear combination, i.e., when cmd = evalPzl:

(a) Checking the commitment’s opening : verify the validity of (root, tk) ∈ ζ, provided by S in
step 5f of Case 1:

Ver
(
com′, (root, tk)

) ?
= 1

If the verification passes, it proceeds to the next step. Otherwise, it returns v̈ = 0 and takes
no further action.

(b) Checking the resulting polynomial’s valid roots: checks if the resulting polynomial contains
the root root in ζ, by taking the following steps.

i. derives two keys from tk:

k′ = PRF(1, tk), s′ = PRF(2, tk)

ii. removes the blinding factors from ~g = [g1, g2, g3] that were provided by server S in step
4c. Specifically, for every i, 1 ≤ i ≤ 3 :

θi =
(
PRF(i, s′)

)−1︸ ︷︷ ︸
(w′i)

−1

·
(
gi −

z′i︷ ︸︸ ︷
PRF(i, k′)

)
mod p

= γi ·
z∑
j=1

qj · πi,j mod p

iii. interpolates a polynomial θ, given (x1, θ1), (x2, θ2), (x3, θ3). Note that θ will have the
form:

θ(x) = (x− root) ·
z∑
j=1

qj · (x+mj) mod p

= ψ(x)− root ·
z∑
j=1

qj ·mj mod p
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where ψ(x) is a polynomial of degree 2 whose constant term is 0.

iv. checks if root is a root of θ(x), by evaluating θ(x) at root and checking if the result is

0, i.e., θ(root)
?
= 0. It proceeds to the next step if the check passes. It returns v̈ = 0

and takes no further action, otherwise.

(c) Checking the final result : retrieves the result (which is the linear combination ofm1, . . . ,mz)

from polynomial θ(x)’s constant term: t = −root ·
z∑
j=1

qj ·mj as follows:

res′ = −t · root−1 mod p

=

z∑
j=1

qj ·mj

It checks res′
?
= m, where m is the result that S sent to it, in step 5f of Case 1.

(d) Accepting or rejecting the result : If all the checks pass, it accepts m and returns v̈ = 1.
Otherwise, it returns v̈ = 0.

Case 2. when verifying the j-th solution of a single puzzle belonging to client C:

(a) Checking the commitment’ opening : checks whether opening mj ∈ m and mkj ∈ ζ, given
by S in step 5d of Case 2, matches the commitment:

Ver
(
comj, (mj,mkj)

) ?
= 1

(b) Accepting or rejecting the solution: accepts the solution mj and returns v̈ = 1, if the above
check passes. It rejects the solution, and it returns v̈ = 0 otherwise.

Remark 1. In step 3(b)iiA, index j is concatenated with 0 to avoid any collision (i.e., generating the same
pseudorandom value more than once), because j, as input of PRF, will be used as input in other steps.

Theorem 2. If the sequential modular squaring assumption holds, factoring N is a hard problem, PRF, OLE+,
and the commitment schemes are secure, then MH-TLP presented above is secure, regarding Definition 9.

Theorem 3. The MH-TLP protocol presented above meets completeness, efficiency, and compactness, re-
garding Definitions 6, 7, and 8 respectively.

The remainder of this section provides proof for Thereoms 2 and 3.

5.3 Proof of Theorem 2

Proof (sketch). There will be a significant overlap between the proofs of Theorems 2 and Tempora-Fusion
(i.e., Theorem 5 in Appendix B). The proof of Theorem 2 differs from that of Theorem 5 from a key
perspective. Namely, the former requires an additional discussion on the privacy of each base rj′ before the
(j′ − 1)-th puzzle is solved, for every j′, where 2 ≤ j′ ≤ z.

Briefly, the additional discussion will rely on the security of standard RSA-based TLP, the hiding property
of the commitment, and the security of PRF.

Specifically, before the j-th puzzle is solved the related master key mkj cannot be extracted except for a
probability negligible in the security parameter, µ(λ), if the sequential modular squaring assumption holds,
factoring N is a hard problem, and the commitment scheme satisfies the hiding property. This argument
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holds for any j, where 1 ≤ j ≤ z. Therefore, with a probably at most µ(λ) an adversary can find a key
mkj′−1 of PRF to compute the base rj′ , which has been set as rj′ = PRF(j′||0,mkj′−1), for any j′, where
2 ≤ j′ ≤ z. Furthermore, since rj′ is the output of PRF, due to the security of PRF (that its output is
indistinguishable from the output of a random function), the probability of correctly computing it is µ(λ),
without the knowledge of mkj′−1. �

5.4 Proof of Theorem 3

Proof. We begin with proving the completeness of MH-TLP.

Lemma 1. MH-TLP satisfies completeness, regarding Definition 6.

We start by addressing Case 1, which involves solving a single puzzle. Due to the correctness and deterministic
nature of the original TLP [34], particularly through repeated squaring, a server can consistently derive the
master key mkj through a fixed number of repeated squaring. Furthermore, the correctness and deterministic
property of PRF ensures that the server can extract rj and subsequently compute keys kj, sj and blinding
factors zi,j and wi,j. Given these blinding factors, the server can remove them from each oi,j, resulting in a set
of y-coordinates. Due to the correctness (especially deterministic nature) of interpolation algorithms, such as
Lagrange interpolation, the server can recover the identical polynomial that the client initially constructed,
i.e., polynomial πj(x) = x + mj mod p. Given, each polynomial πj(x), the server can easily recover its
constant term mj, which is the solution to the related puzzle.

Case 2 focuses on the correctness of solving a puzzle related to the linear combination. Similar to the above
case, due to the correctness and deterministic nature of repeated squaring and PRF, the server can find
the temporary key tk and accordingly discover keys k′ and s′. These keys allow the server to remove the
blinding factors from each masked y-coordinate gi, yielding three y-coordinates θ1, θ2, and θ3. Because the
interpolation algorithm is deterministic, the server will recover a polynomial of the form θ(x) = (x− root) ·
z∑
j=1

qj · (x + mj) mod p. The main reasons that polynomial θ(x) maintains this form are (1) the correctness

of OLE+, (2) the properties of polynomial arithmetic, as explained in Section 3.4, and (3) the product of
multiple polynomials preserves each individual polynomial’s roots. Given θ(x), one can easily retrieve its

constant term and multiply it by (−root)−1 which yields the linear combination of solutions:
z∑
j=1

qj ·mj.

We proceed to Case 3, which pertains to the correctness of verification for a single puzzle. Building on the
argument presented in Case 1, the server can always retrieve the master key mkj and the related solution
mj. Assuming the commitment verification algorithm is correct, an honest server’s proof (mkj,mj) is always
accepted by an honest verifier.

Case 4 considers the correctness of verification for the linear combination. As discussed in Case 2, an honest
server can always find the temporary key tk and the keys derived from it k′ and s′. Given these keys, it
can find the root root. Due to the correctness of the commitment’s verification algorithm, proof (root, tk)
is always accepted by an honest verifier. Moreover, due to the correctness and deterministic nature of PRF,
a verifier can derive from tk the same keys (k′, s′) as the client used to blind its y-coordinates. These keys
allow the verifier to unblind the y-coordinates to obtain θ1, θ2, and θ3. Because the interpolation algorithm

is deterministic, the verifier will recover a polynomial of the form θ(x) = (x− root) ·
z∑
j=1

qj · (x+mj) mod p.

Also, evaluating polynomial θ(x) at root will always result in 0, because root is a root of θ(x). Given
root and the constant term t of θ(x), the verifier can always extract the linear combination of messages

−t · root−1 mod p =
z∑
j=1

qj ·mj, which will be equal to the result
z∑
j=1

qj ·mj that the prover sends. �

Lemma 2. MH-TLP satisfies efficiency, regarding Definition 7.
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We will initially focus on Condition 1: multi-instance. The time complexity of (traditional and multi-instance)
TLPs is dominated by the number of modular squaring. When a traditional TLP encounters z instances of
a puzzle at once, it must deal with each puzzle individually. Therefore, in this setting, its time complexity

is Ψtrad(z) = maxss ·
z∑
j=1

∆j. However, in MH-TLP, the puzzles are solved sequentially, resulting in the time

complexity of Ψmulti(z) = maxss ·
(
∆1+

z∑
j=2

(∆j−∆j−1)
)
. Therefore, the difference between the time complexity

of the TLPs in these two settings is:

Ψtrad(z)− Ψmulti(z) = maxss ·
(
(

z∑
j=1

∆j)− (∆1 +

z∑
j=2

(∆j −∆j−1)
)

= maxss ·
z−1∑
j=1

∆j

Thus, Ψtrad(z)− Ψmulti(z) = poly(z,maxss, ∆1, . . . ,∆z), for a fixed polynomial poly, meeting the criteria set
out in Condition 1.

We proceed to Condition 2: polynomial-time solving. The core primitive upon which MH-TLP and in par-
ticular the algorithm Solve() relies to solve a puzzle is the standard sequential squaring. The complexity of

Solve() is maxss ·
(
∆1 +

z∑
j=2

(∆j −∆j−1)
)
, which itself can be represented as ˆpoly(z, Tmax, log(N)), where ˆpoly

is a fixed polynomial and Tmax = maxss ·∆z.

We move on to Condition 3: faster puzzle generation property. The main operation in the algorithm
GenPuzzle() that generates puzzles is generating each value mkj = r

aj
j mod N , where aj = 2Tj mod φ(N).

The complexity of generating each aj is O(log2(T ) · log2

2(φ(N))) ≈ O(log2(T ) · log2

2(N)), while the complex-
ity of generating each mkj is O(log2(aj) · log2

2(N)) ≈ O(log2(N) · log2
2(N)). Thus, the total complexity is

O((log2(T ) + log2(N)) · z · log2

2(N)), which can be represented as poly′(z, log(T ), log(N)), where poly′ is a
fixed polynomial and T is the maximum time paramter.

Next, we turn our attention to Condition 4: faster puzzle evaluation. The Evaluate() algorithm involves gener-
ating a temporary key tk = hb mod (N), where b = 2Y mod φ(N). Based on the above analysis, these opera-
tions’ total complexity is O((log2(T )+log2(N))·log2

2(N)), where T = ∆·maxss. The Evaluate() algorithm also
involves operations to compute a linear combination of solutions m1, . . . ,mz using the coefficients q1, . . . , qz to
realize the functionality FPLC. The operation to complete the linear combination is linear with the total num-
ber of puzzles. Hence, the complexity of Evaluate() can be represented as poly′′(log(T ), log(N),FPLC

(
(q1,m1),

. . . , (qz,mz)), for a fixed polynomial poly′′. �

Lemma 3. MH-TLP satisfies compactness, regarding Definition 8.

The algorithm Evaluate() outputs a vector of three elements as a puzzle ~g = [g1, g2, g3] along with a small set
of public parameters ~pp(Evl). The bit size of each element gi of the puzzle vector ~g is log2(p). Thus, the bit

size of ~g can be represented as ||~g|| = poly
(

log(p), ||FPLC
(
(q1,m1), . . . , (qz,mz)

)
||
)

, for a fixed polynomial

poly. �

This concludes the proof of Theorem 3 as we have proved the completeness (Lemma 1), efficiency (Lemma
2), and compactness (Lemma 3). �

6 Multi-Instance Multi-Client Partially Homomorphic TLP

In this section, we present Multi-Instance Multi-Client Partially Homomorphic TLP (MMH-TLP), a protocol
that can be considered as a generalization of MH-TLP, presented in Section 5. MMH-TLP is built upon
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MH-TLP and the Tempora-Fusion introduced in [1]. It offers the features of both schemes within one unified
protocol. MMH-TLP will (i) allow a client to generate multi-puzzles such that the server can solve them
sequentially, (ii) enable the server to homomorphically compute a linear combination of puzzles of a single
client, (iii) allow the server to homomorphically compute a linear combination of puzzles of different clients,
and (iv) enable anyone to verify the correctness of each puzzle’s solution and computations’ outputs.

6.1 An Overview

At a high level, the protocol works as follows. Initially, S generates and publishes a set of public parameters,
including vector ~x and a sufficiently large prime number p. Each client independently generates its secret
and public keys. It publishes the public key. In the puzzle generation phase, each client, possessing a set of
solutions, creates puzzles for these solutions using the chaining technique described in Section 5. Each client
then publishes the puzzles along with some public parameters.

To enable S to learn a homomorphic linear combination of messages (encoded into the published puzzles)
belonging to a single client, the client engages with S through the interactive algorithm Evaluatesc(). Following
the execution of this algorithm, the client publishes a set of public parameters, and S releases a puzzle
encoding the computation result.

To facilitate S learning a homomorphic linear combination of messages, where each message (encoded into a
published puzzle) originates from a different client, the clients interact with S using algorithm Evaluatemc().
Upon completing this algorithm, the clients publish a set of public parameters, and S publishes a puzzle
encoding the computation result. After a certain period, S solves a puzzle, related to (i) the linear combination
of a single client’s solutions, (ii) the linear combination of multiple clients’ solutions, or (iii) a single client’s
solution. S then publishes the solution and the corresponding proof. Given the public parameters and the
solution, anyone can verify the proof. Figure 4 illustrates the MMH-TLP workflow.

Regarding system design, MMH-TLP differs from MH-TLP (and Tempora-Fusion) in several ways. We briefly
outline the differences.

1. In MMH-TLP, the server needs to generate t̄ x-coordinates (instead of generating only 3 x-coordinates
in MH-TLP) and each client should use these t̄ x-coordinates, for the following reason. In MMH-TLP,
each client’s outsourced polynomial (that represents its puzzle) is of degree 1. During Phase 5 (Linear
Combination for Multiple Clients), this polynomial is multiplied by ẗ polynomials each representing a
random root and is of degree 1. The resulting polynomial will have degree ẗ + 1. Therefore, at least
t̄ = ẗ+ 2 (y, x)-coordinate pairs are needed to interpolate a polynomial encoding a linear combination of
the solutions.

2. There will be two different algorithms for the linear combination, one algorithm, called Evaluatesc, to
perform a linear combination of a single client’s puzzles, and another one, called Evaluatemc, to perform
a linear combination of n different clients’ puzzles.

3. During the linear combination of different clients’ puzzles, Evaluatemc() takes a new input idu for each
client Cu. This approach allows each Cu to specify which one of its outsourced puzzles must be used as
an input to the computation.

4. Algorithms Solve() and Verify() take a new input string ˆcmd ∈ {SingleClient,MultiClient} that specifies
whether the encrypted linear combination ~g is the result of a homomorphic linear combination of messages
belonging to a single client or multiple clients. Moreover, now, these two algorithms consider three
different cases (rather than two); namely, (i) when solving or verifying a puzzle related to the linear
combination of messages where all messages belong to the same client, (ii) when solving or verifying a
puzzle related to the linear combination of messages, where each message belong to a different client,
and (iii) when solving or verifying each client’s single puzzle.

MMH-TLP and Tempora-Fusion differ from aspects 2–4 as well.
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<latexit sha1_base64="2N87FzSxzmasWRfIhEouAspq4aw="></latexit>
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<latexit sha1_base64="r0GpLGQ8AUtv02FudhdBjsXOYxA="></latexit>

Client1
<latexit sha1_base64="zgYqxtx+XFzaFgGdTgvKZBf/21o=">AAACUHicdVHBThsxEJ1NW0iXloZy7MVqQOJQRZulJOGG4MKRSg0gJavI60yCFa93Zc8iRav9JT4GceHQ/kNvvbXekJVa1I5k++m9eWP5Oc6UtBQEj17jxctXG5vN1/7Wm7fb71o77y9tmhuBQ5Gq1FzH3KKSGockSeF1ZpAnscKreHFW6Ve3aKxM9VdaZhglfK7lTApOjpq0zovxasjIzOOoCDrHg154FH4KOkHQDw97FQj7n8PDcu9MSdQ0KcZWGJnReqelQhaWe+Wk1a7drHaz2s26jqmqDeu6mLR+jKepyBM3VChu7agbZBQV3JAUCkt//5mcGnmLIiqU0sKW/ji3mHGx4HMcOah5gjYqVm8p2b5jpmyWGrc0sRX7p6PgibXLJHadCacb+1yryH9po5xmg6iQOssJtXi6aJYrRimr0mVTaVCQWjrAXUDuKUzccMMFuT/wXUZ1EOz/4DLsdHud3pewfXK6TqsJH+AjHEAX+nAC53ABQxBwBw/wDb57995P71fDe2qtT9iFv6rh/wY35bJT</latexit>

Client2 .
.
.

<latexit sha1_base64="zLGLcpXijOZAUSDD2A5BdmTYhVg=">AAACUHicdVHBThsxEJ0NlMLSQlqOvVgEJA5VtBspIblF5cKRSgSQklXkdSbBwutd2bNI0Wp/iY9BvfRA/6E3buCErNQiGMn203vzxvJznClpKQh+e7W19Q8bHze3/O1Pn3d261++Xtg0NwIHIlWpuYq5RSU1DkiSwqvMIE9ihZfxzclCv7xFY2Wqz2meYZTwmZZTKTg5alw/LUbLIUMzi6MiaLaDsNc5/h40gyBstzsO9HrddhiWBydKoqZxMbLCyIxWO80Vsrw8KMf1RuVmlZtVbhY6ZlENWNXZuP53NElFnrihQnFrh2GQUVRwQ1IoLP3DV3Jq5C2KqFBKC1v6o9xixsUNn+HQQc0TtFGxfEvJDh0zYdPUuKWJLdl/HQVPrJ0nsetMOF3b19qCfEsb5jTtRoXUWU6oxctF01wxStkiXTaRBgWpuQPcBeSewsQ1N1yQ+wPfZVQFwd4HF61m2Gl2frYa/R+rtDbhG+zDEYRwDH04hTMYgIA7+AUP8Me79x69p5r30lqdsAf/Vc1/Bsa3sqo=</latexit>

Clientu

<latexit sha1_base64="zgYqxtx+XFzaFgGdTgvKZBf/21o="></latexit> C
li
en

t 2
<latexit sha1_base64="r0GpLGQ8AUtv02FudhdBjsXOYxA="></latexit> C

li
en

t 1

<latexit sha1_base64="rK9wgUkuAYw8SyR9MCZ4hqRxD9A="></latexit>

Clientn

<latexit sha1_base64="rK9wgUkuAYw8SyR9MCZ4hqRxD9A=">AAACUHicbVHBThsxEJ1NSxu20KblyMVqQOoBRd4g0uSG4MKRSg0gJavI60yChde7smeRotX+Uj+m6qUH+Adu3FpvSKU2dCTbT+89jzXPSa6VI85/Bo0XLzdevW5uhm+2tt++a73/cOGywkocykxn9ioRDrUyOCRFGq9yiyJNNF4mN6e1fnmL1qnMfKVFjnEq5kbNlBTkqUnrrBwvm4zsPIlL3uG9owEfHPDOEY/6S8B5r989rPZOtUJDk3LspFU5rXZaaGSm2qsmrXbtrYs9B9EKtGFV55PWw3iaySL1TaUWzo0inlNcCktKaqzC/TU5s+oWZVxqbaSrwnHhMBfyRsxx5KERKbq4XM5SsX3PTNkss34ZYkv27xulSJ1bpIl3poKu3bpWk//TRgXN+nGpTF4QGvn00KzQjDJWp8umyqIkvfBA+ID8KExeCysk+T8IfUbReiLPwUW3E/U6vS/d9vHJKq0m7MJH+AQRfIZjOINzGIKEb/AD7uA++B48Br8awZP1zwk78E81wt80ybJO</latexit> C
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<latexit sha1_base64="JINvhvD8+VQ2cVxEWFnGQUhhQtI="></latexit>

�u

<latexit sha1_base64="4bXi6bVVBLvAP6e8KtFBwtefdbs="></latexit>

tz,1

<latexit sha1_base64="8pJAjUkeheeufwNH3K5yub8ohQc="></latexit>

tz�1,1

<latexit sha1_base64="u3XZOly4jesrTdZtTsQKfnYTBEE="></latexit>

t3,1

<latexit sha1_base64="oNDxMyCjL8HsuTjUDo+crbrg/Ko=">AAAC6HicbZJNa9swGMdldy+d95Z1x13EksAOIUgedu1bWcfYsYOlLSQmyIqSqpVlI8mBYPwddhu77lvttq+wbzDF9mFz84DEn+flJz2PlBaCa4PQL8c9evDw0ePjJ97TZ89fvBy8OrnUeakom9Fc5Oo6JZoJLtnMcCPYdaEYyVLBrtK78338asuU5rn8anYFSzKykXzNKTHWtRz89jyvWjScudqkSYWmyFoYTvYCRwhbEceR78f1yCyrhaaKF6bbzU4w6E8grke1BY17pADhODxtSUEQtqQA2+zFRyYMOYgrG1YfhcIgRvGkYUaNsJeM/Pf16FxwJg/fTFrUcjBsW0II3he4E0PQ2cVy8GexymmZWSgVROs5RoVJKqIMp4LV3rgXzhXfMppUQkiqa29RalYQekc2bG6lJBnTSdX0UsOx9azgOld2SQMb778VFcm03mWpzcyIudH92N55KDYvzTpKKi6L0jBJ24PWpYAmh/tXhyuuGDViZwWxA7KtQHpDFKHG/g3Pzgj3J3JfXPpTHE7DL/7w7EM3rWPwBrwF7wAGp+AMfAYXYAao88kRTuls3Vv3m/vd/dGmuk5X8xr8Z+7Pv+G735Q=</latexit>

t2,1

<latexit sha1_base64="0m6JsqdZdhM9SBBGUHlAtSpuK34="></latexit>

t1,1

<latexit sha1_base64="VThn/YOeUYQY1JIMOiI3++m+vJQ="></latexit>

�̄2,1

<latexit sha1_base64="08QS2rQS0d8mp0n+6IbxINPPia8="></latexit>

�̄3,1

<latexit sha1_base64="VJCT5z7Epbhx7zZZZes8MkE/FW0="></latexit>

�̄z,1

<latexit sha1_base64="PX+qXExmV7HVzbMLngaRANwLEWw="></latexit>

�z,1

<latexit sha1_base64="wMtkAFhPI0JNHlIxPiHkJbfqitY="></latexit>

�1,1
<latexit sha1_base64="5s+MuyxbAbzh+kswFBDO+18dths="></latexit>

�2,1
<latexit sha1_base64="I80MK7fXRUZG2SDzmxFLYgqTuCI="></latexit>

�3,1

<latexit sha1_base64="1UkDabpEgNb8PsEr2erZY15hMsc="></latexit>

t1,2
<latexit sha1_base64="EbhsZ7CV1d/G+PjYhFgL80yDJec="></latexit>

t2,2
<latexit sha1_base64="WzxfbKXokOPozyev5Fbjjkt8Frw="></latexit>

t3,2

<latexit sha1_base64="IP7AA/V1yWEtxXkX5oi0uJKfSsI="></latexit>

tz,2

<latexit sha1_base64="j+3kgLjMPXj9BG/X9UxIErgVp/k="></latexit>

t1,3
<latexit sha1_base64="Lgn0CZPqLPnWfiRTUCFmL0x1eaw="></latexit>

t2,3
<latexit sha1_base64="5Gnhm2av0QgCFKPQ+vZn9eZFHLo="></latexit>

t3,3
<latexit sha1_base64="5g70F5JjscJANTt0Iz7h+A6lJgM="></latexit>

tz,3

<latexit sha1_base64="f98hMlMp9DuG/M5zNH4XK9mqc/A="></latexit>

t00,u

<latexit sha1_base64="xaDG2ev7J5eBckQ8Lgipt97jwck="></latexit>

t0u
<latexit sha1_base64="EBwrZEQCcQCzIXPUUZG1UePCfUg="></latexit>

t0,1

<latexit sha1_base64="neuSI9/pZsWxvk1pczJ5LAOaFNA=">AAACfXicbVFdS8MwFE3rd/2a+uhLcBv6IKPdw9zeRF98VHAqbGWk2d0MpmlJboVR+kPFX+Ev0KxW0M0LCYdzzr3hnkSpFAZ9/81xV1bX1jc2t7ztnd29/drB4YNJMs2hzxOZ6KeIGZBCQR8FSnhKNbA4kvAYvVzP9cdX0EYk6h5nKYQxmyoxEZyhpUa1zMuH5ZSBnkZh7rf8ss6XQNHA00bhec1//J1OaQu6fmBBr9dtt3tz/ygfGq5FitWNMwk0KBrFqFb/mUuXQVCBOqnqdlT7GI4TnsWgkEtmzCDwUwxzplFwCYXXXJATLV6Bh7mUipvCG2YGUsZf2BQGFioWgwnzco+CNi0zppNE26OQluzvjpzFxsziyDpjhs9mUZuT/2mDDCfdMBcqzRAU/35okkmKCZ1/BR0LDRzlzAJmA7KrUP7MNONoP8yzGQWLiSyDh3Yr6LQ6d+365VWV1iY5JifkjATkglySG3JL+oSTd8dxPGfb+XSb7rnb+ra6TtVzRP6Ue/EFJXG5YA==</latexit>

t0
<latexit sha1_base64="MI1+D1G+dDWrQOtLECpDKEbKJxc=">AAAClHicdVFRSxtBEN47rbXX1kaFIviyNQ36IOEuDzEBH0KD0CdRMCokR9jbTOLi3t6xOyeE4/6Bf9Cf0f6Cbs4TbKIDu3x838w3zEyUSmHQ958cd239w8bHzU/e5y9ft77VtneuTZJpDgOeyETfRsyAFAoGKFDCbaqBxZGEm+i+v9BvHkAbkagrnKcQxmymxFRwhpYa1x69fFS6DPUsCnO/6ZdxvAKKn3g4zkeGa5Fi9eNcArVK4XmNN2za7bI66PiBBd1up9XqvmsTWJtxrf7Sjq6CoAJ1UsXFuPZnNEl4FoNCLpkxw8BPMcyZRsElFF5jSU60eAAe5lIqbgpvlBlIGb9nMxhaqFgMJszLOQrasMyEThNtn0Jasq8rchYbM48jmxkzvDPL2oJ8SxtmOO2EuVBphqD4c6NpJikmdHEhOhEaOMq5BcwuyI5C+R3TjKO9o2d3FCxvZBVct5pBu9m+bNV7v6ptbZJ9ckCOSEBOSI/8JhdkQDj56+w5P5wD97t76vbds+dU16lqdsl/4Z7/A+AdwqU=</latexit>

t00

<latexit sha1_base64="RN0ZyOWMONZvAuY/YnynRB7cGUw="></latexit>

: client delegating computation to the server

<latexit sha1_base64="T8jZRe++hIRuEDlprJwjI5t4ds8="></latexit>

: a solution to the puzzle encoding the linear combination of the solutions

<latexit sha1_base64="o0WLh4G/yGDEZRJjrhuyes45V+A="></latexit>

: a client’s single puzzle
<latexit sha1_base64="/ggCr/Bomar9umxn3/nBxUNSRtE="></latexit>

: a solution to a client’s single puzzle

<latexit sha1_base64="qjrbH4SGBJRNwgjdFvjZ5Ytfiso="></latexit>

: a puzzle encoding the linear combination of the solutions

<latexit sha1_base64="rrlDDRc1gqyEwkijaINkX/CZ2gQ="></latexit>

: a client’s re-encoded single puzzle

<latexit sha1_base64="sisg6o1HxbFI0CMHWyITMShi5t4="></latexit>

: computation allocated to specifically solve the puzzle

<latexit sha1_base64="YrWx1cRROHtpGImyElhi/O1nEcM="></latexit>

3. Server Computing a Linear Combination of Multiple Clients’ Puzzles.

<latexit sha1_base64="Vk3dh1g5IBkU6RiBtKCumdIring="></latexit>

2. Server Computing a Linear Combination of a Client’s Puzzles.

<latexit sha1_base64="W94poGmLFdzoLpV75WlZos++bCw=">AAADm3iclVLbattAEF1bvaTqzWkeS+lSxziFREguOPZbWrcQig0ujZOALcxqvbKXrC7srlJsoZ/o3/Uz+ti3jiS3Te28ZEBiODPn7JzZ9WLBlbbtH5Wqce/+g4c7j8zHT54+e17bfXGuokRSNqKRiOSlRxQTPGQjzbVgl7FkJPAEu/Cuenn94ppJxaPwTC9j5gZkHnKfU6IBmu5WvjsW/sok9OBPPuCchVos8UdGQHKOv3G9wD2Ro6qJh8lqJZiyTGw2Wn95vSiIE513E9yHOUgBeTwszsCRD3gp0VT/JBrv7iAwSITmsWDbo8Ak4OA9VqUUu+FhBh5U6YD+ocUlDfMQDwanR2f9oWWaZiOdFKscy7nnprZlQ7Tbh3nidGwHkm6302p1s309TSeKSh7r9V8vYarVIU6y/exOQs1blRyQmdbqJdO28XbirJM6WsdwWvs5mUU0CcAiFUSpsWPH2k2J1JwKlpmNjXIk+TWjbipESFVmThLFYkKvyJyNIQ1JwJSbFj4y3ABkhv1IwhdqXKA3GSkJlFoGHnQGRC/UZi0Hb6uNE+133JSHcPMspOVBfiKwjnD+UPGMS0aLa+QEFgRWMF0QSaiG52zCjpzNjWwn5y3LaVvtL636yYf1tnbQS/QGHSAHHaMTdIqGaIRo5Vf1dfWg+tZ4ZfSMz0a/bK1W1pw99F8Yo99Zqx0R</latexit>

1. Server E�ciently Dealing with Clients’ Puzzles.

.


.


.

Fig. 4: MMH-TLP Workflow Overview.

6.2 Detailed Construction

In this section, we present a detailed description of MMH-TLP.

1. Setup. S.Setup(1λ, ẗ, t)→ (., pkS)

The server S (or any party) only once takes the following steps:

(a) Setting a field’s parameter : generates a sufficiently large prime number p, where log2(p) is a security
parameter, e.g., log2(p) ≥ 128.

(b) Generating public x-coordinates: let ẗ be the total number of leader clients. It sets t̄ = ẗ + 2 and
~x = [x1, . . . , xt̄], where xi 6= xj, xi 6= 0, and xi /∈ U .

(c) Publishing public parameters: publishes pkS = (p, ~x, t).

2. Key Generation. C.Setup(1λ)→ Ku

Each party Cu in C = {C1, . . . , Cn} takes the following steps:

(a) Generating RSA public and private keys: computes Nu = p1 ·p2, where pi is a large randomly chosen
prime number, where log2(pi) is a security parameter, e.g., log2(pi) ≥ 2048. Next, it computes Euler’s
totient function of Nu, as: φ(Nu) = (p1 − 1) · (p2 − 1).

(b) Publishing public parameters: locally keeps secret key sku = φ(Nu) and publishes public key pku =
Nu.

3. Puzzle Generation. GenPuzzle(~mu,Ku, pkS, ~∆u,maxss)→ (~ou, prmu)
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Each client Cu takes the following steps to generate z puzzles for messages ~mu = [m1,u, . . . ,mz,u] and
wants S to learn each message mj,u at time timej,u ∈ ~timeu, where ~timeu = [time1,u, . . . , timez,u],

∆̄j,u = timej,u − timej−1,u, ~∆u = [∆̄1,u, . . . , ∆̄z,u], 1 ≤ j ≤ z, and 1 ≤ u ≤ n.

(a) Checking public parameters: checks the bit-size of p and elements of ~x in pkS, to ensure log2(p) ≥ 128,
xi 6= xj, xi 6= 0, and xi /∈ U . If it does not accept the parameters, it returns (⊥,⊥) and does not take
further action.

(b) Generating secret keys: generates a vector of master keys ~mku = [mku,1, . . . ,mku,z] and two secret

keys ku,j and su,j for each master key mku,j in ~mku as follows. It constructs an empty vector ~mku.
Then, it

i. sets each exponent aj,u.
∀j, 1 ≤ j ≤ z : aj,u = 2Tj mod φ(Nu)

where Tj = maxss · ∆̄j,u is the total number of squaring needed to decrypt an encrypted solution
mj,u after the previous solution mj−1,u is revealed.

ii. computes each master key mkj,u as follows. For every j, where 1 ≤ j ≤ z :

• when j = 1 :

A. picks a uniformly random base rj
$← ZNu .

B. sets key mkj,u as mkj,u = r
aj
j mod Nu.

C. appends mkj,u to ~mku.

• when j > 1 :

A. derives a fresh base rj from the previous master key as rj = PRF(j||0,mkj−1,u).

B. sets key mkj,u as mkj,u = r
aj
j mod Nu.

C. appends mkj,u to ~mku.

iii. derives two secret keys kj,u and sj,u from each mkj,u.

∀j, 1 ≤ j ≤ z : kj,u = PRF(1,mkj,u), sj,u = PRF(2,mkj,u)

(c) Generating blinding factors: generates 2 · t̄ pseudorandom values for each j, by using kj,u and sj,u.

∀j, 1 ≤ j ≤ z and ∀i, 1 ≤ i ≤ t̄ : zi,j,u = PRF(i, kj,u), wi,j,u = PRF(i, sj,u)

(d) Encoding plaintext messages:

i. represents each plaintext solution mj,u as a polynomial, such that the polynomial’s constant term
is the message.

∀j, 1 ≤ j ≤ z : πj,u(x) = x+mj,u mod p

ii. computes t̄ y-coordinates of each πj,u(x):

∀i, 1 ≤ j ≤ z and ∀i, 1 ≤ i ≤ t̄ : πi,j,u = πj,u(xi) mod p

(e) Encrypting the messages: encrypts the y-coordinates using the blinding factors as follows:

∀j, 1 ≤ j ≤ z and ∀i, 1 ≤ i ≤ t̄ : oi,j,u = wi,j,u · (πi,j,u + zi,j,u) mod p
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(f) Committing to the message: commits to the plaintext messages:

comj,u = Com(mj,u,mkj,u)

Let ~comu = [com1,u, . . . , comz,u].

(g) Managing messages: publishes ~ou =
[
[o1,1,u, . . . , ot̄,1,u], . . . , [o1,z,u, . . . , ot̄,z,u]

]
and ppu = ( ~comu, r1).

It locally keeps secret parameters spu = ~mku. It sets prmu = (spu, ppu). It deletes everything else,
including each mj,u and πj,u(x).

4. Linear Combination for a Single Client. Evaluatesc(〈S(~ou, ∆u,maxss, ppu, pku, pkS), Cu(∆u,maxss,Ku,
prmu, q1,u, pkS), . . . , Cu(∆u, maxss, Ku, prmu, qz,u, pkS)〉)→ (~gu, pp

(Evl)
u )

In this phase, a client Cu produces certain messages that allow S to find a linear combination of its
plaintext solutions after time ∆u.

(a) Granting the computation: client Cu takes the following steps.

i. Generating temporary secret keys: generates a temporary master key tk and two secret keys k′

and s′. It also computes z − 1 secret key [fj, . . . , fz]. To generate them, it takes the following
steps. It computes an exponent:

b = 2Y mod φ(Nu)

where Y = ∆u ·maxss and ∆u is the period after which the solution must be discovered. It selects

a base uniformly at random: h
$← ZNu and then sets a temporary master key tk:

tk = hb mod Nu

It derives two keys from tk:

k′ = PRF(1, tk), s′ = PRF(2, tk)

It picks fresh z − 1 random keys ~f = [f2, . . . , fz], where fj
$← {0, 1}poly(λ).

ii. Generating blinding factors: regenerates its original blinding factors, for each j-th puzzle. Specif-
ically, for every j, derives two secret keys kj,u and sj,u from mkj,u ∈ Ku as follow.

∀j, 1 ≤ j ≤ z : kj,u = PRF(1,mkj,u), sj,u = PRF(2,mkj,u)

It regenerates z · t̄ pseudorandom values, by using kj,u and sj,u.

∀j, 1 ≤ j ≤ z and ∀i, 1 ≤ i ≤ t̄ : zi,j,u = PRF(i, kj,u), wi,j,u = PRF(i, sj,u)

It also generates new 2 · t̄ pseudorandom values using keys (k′, s′).

∀i, 1 ≤ i ≤ t̄ : z′i = PRF(i, k′), w′i = PRF(i, s′)

It computes new sets of (zero-sum) blinding factors, using each key fj ∈ ~f , as follows. ∀j, 1 ≤
j ≤ z :

• if j = 1:

∀i, 1 ≤ i ≤ t̄ : yi,j = −
z∑
j=2

PRF(i, fj) mod p
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• if j > 1:
∀i, 1 ≤ i ≤ t̄ : yi,j = PRF(i, fj) mod p

iii. Generating y-coordinates of a random root : picks a random root, root
$← Fp. It represents root

as a polynomial γ(x), where root is the polynomial’s root, as setting γ(x) = x− root mod p. It
generates t̄ y-coordinates of γ(x):

∀i, 1 ≤ i ≤ t̄ : γi = γ(xi) mod p

iv. Committing to the root : computes com′ = Com(root, tk).

v. Re-encoding outsourced puzzle: participates in an instance of OLE+ with S, for every j-th puzzle
and every i, where 1 ≤ j ≤ z and 1 ≤ i ≤ t̄. The inputs of client Cu to the i-th instance of OLE+

are:

ei,j = γi · qj,u · w′i · (wi,j,u)−1 mod p, e′i,j = −(γi · qj,u · w′i · zi,j,u) + z′i + yi,j mod p

The input of S to the (i, j)-th instance of OLE+ is the corresponding encrypted y-coordinate:
e′′i,j = oi,j,u. Accordingly, the (i, j)-th instance of OLE+ returns to S:

di,j = ei,j · e′′i,j + e′i,j
= γi · qj,u · w′i · πi,j,u + z′i + yi,j mod p

where qj,u is a coefficient for j-th solution mj,u. If client Cu detects misbehavior during the
execution of OLE+, it outputs a special symbol ⊥ and halts.

vi. Publishing public parameters: publishes pp(Evl)
u = (h, com′).

(b) Computing encrypted linear combination: Server S sums all of the outputs of OLE+ instances that it
has invoked. ∀i, 1 ≤ i ≤ t̄ :

gi =

z∑
j=1

di,j mod p

= (w′i · γi ·
z∑
j=1

qj,u · πi,j,u) + z′i mod p

(c) Disseminating encrypted result : server S publishes ~g = [g1, . . . , gt̄].

5. Linear Combination for Multiple Clients. Evaluatemc(〈S(~o,∆, maxss, ~pp, ~pk, pkS), C1(∆,maxss,K1,

prm1, q1, pkS, id1), . . . , Cn(∆, maxss, Kn, prmn, qn, pkS, idn)〉)→ (~g, ~pp(Evl))

In this phase, the clients interact with S to compute certain messages that enable S to find a linear
combination of the clients’ plaintext messages after time ∆.

(a) Randomly selecting leaders: all parties in C = {C1, . . . , Cn} agree on a random key r̂, e.g., through

a coin tossing protocol. Each Cu deterministically identifies indices of ẗ leader clients: ∀j, 1 ≤ j ≤ ẗ :
idxj = G(j||r̂). Let I be a vector containing these ẗ clients.

(b) Granting the computation by each leader client : each leader client Cu in I takes the following steps.

i. Generating temporary secret keys: generates a temporary master key tku and two secret keys k′u
and s′u for itself. Moreover, it generates a secret key fl for each client. To do that, it takes the
following steps. It computes an exponent:

bu = 2Y mod φ(Nu)
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where Y = ∆·maxss, ∆ is the period after which the solution representing the linear combination
of the messages must be discovered, and Nu ∈ ~pk = [N1, . . . , Nn]. It selects a base uniformly at

random: hu
$← ZNu and then sets a temporary master key tku:

tku = hbuu mod Nu

It derives two keys from tku:

k′u = PRF(1, tku), s′u = PRF(2, tku)

It picks a random key fl for each client Cl excluding itself, i.e., fl
$← {0, 1}poly(λ), where Cl ∈ C\Cu.

It sends fl to each Cl.

ii. Generating temporary blinding factors: derives t̄ pseudorandom values from s′u:

∀i, 1 ≤ i ≤ t̄ : w′i,u = PRF(i, s′u)

iii. Generating an encrypted random root : picks a random root: rootu
$← Fp. It represents rootu as a

polynomial γu(x) = x− rootu mod p, such that the polynomial’s root is rootu.

It computes t̄ y-coordinates of γu(x):

∀i, 1 ≤ i ≤ t̄ : γi,u = γu(xi) mod p

It encrypts each y-coordinate γi,u using blinding factor w′i,u:

∀i, 1 ≤ i ≤ t̄ : γ′i,u = γi,u · w′i,u mod p

It sends #»γ ′u = [γ′1,u, . . . , γ
′̄
t,u] to the rest of the clients.

iv. Generating blinding factors: receives (f̄l,
#»γ ′l) from every other client in I.

Let j = idu be the index of one of its own outsourced puzzles, which it wants to use as an input
for the linear combination. It regenerates its original blinding factors for its j-th solution:

kj,u = PRF(1,mkj,u), sj,u = PRF(2,mkj,u)

∀i, 1 ≤ i ≤ t̄ : zi,j,u = PRF(i, kj,u), wi,j,u = PRF(i, sj,u)

where mkj,u ∈ prmu. It also generates new ones:

∀i, 1 ≤ i ≤ t̄ : z′i,u = PRF(i, k′u)

It sets values vi,u and yi,u as follows. ∀i, 1 ≤ i ≤ t̄ :

vi,u = γ′i,u ·
∏

∀C
l
∈I\Cu

γ′i,l mod p

yi,u = −
∑

∀C
l
∈C\Cu

PRF(i, fl) +
∑

∀C
l
∈I\Cu

PRF(i, f̄l)mod

where Cu ∈ I.
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v. Re-encoding outsourced puzzle: obliviously prepares the puzzle (held by S) for the computation.
To do that, it participates in an instance of OLE+ with S, for every i, where 1 ≤ i ≤ t̄. The inputs
of Cu to the i-th instance of OLE+ are:

ei,u = qu · vi,u · (wi,j,u)−1 mod p

e′i,u = −(qu · vi,u · zi,j,u) + z′i,u + yi,u mod p

The input of S to i-th instance of OLE+ is Cu’s encrypted y-coordinate of its j-th puzzle: e′′i,u =
oi,j,u (where oi,j,u ∈ ~o). Accordingly, the i-th instance of OLE+ returns to S:

di,u = ei,u · e′′i,u + e′i,u
= qu · vi,u · πi,j,u + z′i,u + yi,u mod p

= qu · γi,u · w′i,u · (
∏

∀C
l
∈I\Cu

γi,l · w′i,l) · πi,j,u + z′i,u + yi,u mod p

where qu is the party’s coefficient. If Cu detects misbehavior during the execution of OLE+, it
sends a special symbol ⊥ to all parties and halts.

vi. Committing to the root : computes com′u = Com(rootu, tku).

vii. Publishing public parameters: publishes pp(Evl)
u = (hu, com

′
u, Y ). Note that every leader client

Cu ∈ I uses identical Y . Let ~pp(Evl) contain all the triples pp(Evl)
u published by Cu, where Cu ∈ I.

(c) Granting the computation by each non-leader client : each non-leader client Cu takes the following
steps.

i. Generating blinding factors: receives (f̄l,
#»γ ′l) from every other leader client in I.

As before, let j = idu be the index of one of client Cu outsourced puzzles that it wants to use as
an input for the linear combination. It regenerates its original blinding factors:

kj,u = PRF(1,mkj,u), sj,u = PRF(2,mkj,u)

∀i, 1 ≤ i ≤ t̄ : zi,j,u = PRF(i, kj,u), wi,j,u = PRF(i, sj,u)

It set values vi,u and yi,u as follows. ∀i, 1 ≤ i ≤ t̄ :

vi,u =
∏
∀C
l
∈I

γ′i,l mod p

yi,u =
∑
∀C
l
∈I

PRF(i, f̄l) mod p

ii. Re-encoding outsourced puzzle: participates in an instance of OLE+ with the server S, for every i,
where 1 ≤ i ≤ t̄. The inputs of Cu to the i-th instance of OLE+ are:

ei,u = qu · vi,u · (wi,j,u)−1 mod p

e′i,u = −(qu · vi,u · zi,j,u) + yi,u mod p

The input of S to the i-th instance of OLE+ is Cu’s encrypted y-coordinate: e′′i = oi,j,u. Accordingly,
the i-th instance of OLE+ returns to S:

di,u = ei,u · e′′i,u + e′i,u
= qu · vi,u · πi,j,u + yi,u mod p

= qu · (
∏

∀C
l
∈I\Cu

γi,l · w′i,l) · πi,j,u + yi,u mod p
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where qu is the party’s coefficient. If Cu detects misbehavior during the execution of OLE+, it
sends a special symbol ⊥ to all parties and halts.

(d) Computing encrypted linear combination: server S sums all of the outputs of OLE+ instances that it
has invoked, ∀i, 1 ≤ i ≤ t̄ :

gi =
∑
∀Cu∈C

di,u mod p

= (
∏
∀Cu∈I

γi,u · w′i,u︸ ︷︷ ︸
vi,u

·
∑
∀Cu∈C

qu · πi,j,u) +
∑
∀Cu∈I

z′i,u mod p

(e) Disseminating encrypted result : server S publishes ~g = [g1, . . . , gt̄].

6. Solving a Puzzle. Solve(~ou, ppu, ~g, ~pp
(Evl), pp(Evl)

u , ~pk, pkS, cmd, ˆcmd)→ (~m, ~ζ)

Server S takes the following steps.

Case 1. when solving a puzzle corresponding to the linear combination of messages (i.e., when cmd =

evalPzl), where all messages belong to the same client Cu, i.e., when ˆcmd = SingleClient. Note
that in this case, ~ou and ~pp(Evl) can be null.

(a) Finding secret keys:

i. finds temporary key tk, where tk = h2Y mod Nu, via repeated squaring of h modulo
Nu, where h ∈ pp(Evl)

u , Nu ∈ ~pk.

ii. derives two keys from tk:

k′ = PRF(1, tk), s′ = PRF(2, tk)

(b) Removing blinding factors: removes the blinding factors from [g1, . . . , gt̄] ∈ ~g.

∀i, 1 ≤ i ≤ t̄ :

θi =
(
PRF(i, s′)

)−1︸ ︷︷ ︸
(w′i)

−1

·
(
gi −

z′i︷ ︸︸ ︷
PRF(i, k′)

)
mod p

= γi ·
z∑
j=1

qj,u · πi,j,u mod p

(c) Extracting a polynomial : interpolates a polynomial θ(x), given pairs (x1, θ1), . . . , (xt̄, θt̄).
Note that θ(x) will have the form:

θ(x) = (x− root) ·
z∑
j=1

qj,u · (x+mj,u) mod p

We can rewrite θ(x) as:

θ(x) = ψ(x)− root ·
z∑
j=1

qj,u ·mj,u mod p

where ψ(x) is a polynomial of degree two with constant term being 0.
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(d) Extracting the linear combination: retrieves the result (i.e., the linear combination ofm1,u, . . . ,

mz,u) from polynomial θ(x)’s constant term: cons = −root ·
z∑
j=1

qj,u ·mj,u as follows:

m = cons · (−root)−1 mod p

=

z∑
j=1

qj,u ·mj,u

(e) Extracting valid roots: extracts the root(s) of polynomial θ(x). Let set R contain the ex-
tracted roots. It identifies the valid root, by finding a root root in R, where it can pass the
verification of the commitment scheme, i.e., Ver(com′, (root, tk)) = 1.

(f) Publishing the result : initiates vectors ~m and ~ζ. It appends m to ~m and (root, tk) to ~ζ. It

publishes ~m and ~ζ.

Case 2. when solving a puzzle related to the linear combination of messages (i.e., when cmd = evalPzl),

where each message belongs to a different client, i.e., when ˆcmd = MultiClient. In this case, ~ou
and pp(Evl)

u can be null.

(a) Finding secret keys: for each leader client Cu ∈ I:

i. finds tku (where tku = h2Y

u mod Nu) through repeated squaring of hu modulo Nu. Note
that (hu, Y,Nu) ∈ ~pp(Evl).

ii. derives two keys from tku:

k′u = PRF(1, tku), s′u = PRF(2, tku)

(b) Removing blinding factors: removes the blinding factors from [g1, . . . , gt̄] ∈ ~g.

∀i, 1 ≤ i ≤ t̄ :

θi =
( ∏
∀Cu∈I

PRF(i, s′u)︸ ︷︷ ︸
w′i,u

)−1 ·
(
gi −

∑
∀Cu∈I

z′i,u︷ ︸︸ ︷
PRF(i, k′u)

)
mod p

= (
∏
∀Cu∈I

γi,u) ·
∑
∀Cu∈C

qu · πi,j,u mod p

(c) Extracting a polynomial : interpolates a polynomial θ(x), given pairs (x1, θ1), . . . , (xt̄, θt̄).
Polynomial θ(x) will have the following form:

θ(x) =
∏
∀Cu∈I

(x− rootu) ·
∑
∀Cu∈C

qu · (x+mj,u) mod p

Note that j = idu and may have different value for different client Cu. It is possible to
rewrite θ(x) as:

θ(x) = ψ(x) +
∏
∀Cu∈I

(−rootu) ·
∑
∀Cu∈C

qu ·mj,u mod p

with ψ(x) being a polynomial of degree ẗ+ 1 that has constant term 0.
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(d) Extracting the linear combination: retrieves the final result, that is the linear combination
of the messagesmj,1, . . . ,mj,n, from polynomial θ(x)’s constant term: cons =

∏
∀Cu∈I

(−rootu)·∑
∀Cu∈C

qu ·mj,u as follows:

m = cons · (
∏
∀Cu∈I

(−rootu))−1 mod p

=
∑
∀Cu∈C

qu ·mj,u

where each j = idu.

(e) Extracting valid roots: retreives the roots of polynomial θ(x). Let set R contain the ex-
tracted roots. It identifies the valid roots, by finding every rootu in R, such that it passes
the commitment’s verification: Ver(com′u, (rootu, tku)) = 1. This check is performed for
every Cu in I.

(f) Publishing the result : initiates empty vectors ~m and ~ζ. It appends m to ~m. Also, for every

Cu in I, it appends (rootu, tku) to ~ζ. It publishes ~m and ~ζ.

Case 3 when solving each j-th puzzle ~oj in ~o of client C (i.e., when cmd = clientPzl), server S takes
the following steps. Note that in this case, ~pp(Evl) and pp(Evl)

u and can be null. ∀j, 1 ≤ j ≤ z :

(a) Finding secret bases and keys: sets base rj and mkj,u as follows.

• if j = 1 : sets the base to r1, where r1 ∈ ppu. Then, it finds mk1,u where mk1,u =

r2T1

1 mod Nu, through repeated squaring of r1 modulo Nu. It initiates vectors ~m and ~ζ.

• if j > 1 : computes base rj as rj = PRF(j||0,mkj−1,u). Next, it finds mkj,u where

mkj,u = r2
Tj

j mod Nu, via repeated squaring of rj modulo Nu.

It derive two keys from mkj,u:

kj,u = PRF(1,mkj,u), sj,u = PRF(2,mkj,u)

(b) Removing blinding factors: re-generates 2 · t̄ pseudorandom values using kj,u and sj,u:

∀i, 1 ≤ i ≤ t̄ : zi,j,u = PRF(i, kj,u), wi,j,u = PRF(i, sj,u)

Next, it uses the blinding factors to unblind ~oj,u = [o1,j,u, . . . , ot̄,j,u]:

∀i, 1 ≤ i ≤ t̄ : πi,j,u =
(
(wi,j,u)−1 · oi,j,u

)
− zi,j,u mod p

(c) Extracting a polynomial : interpolates a polynomial πj,u(x), given pairs (x1, π1,j,u), . . . , (xt̄,
πt̄,j,u).

(d) Publishing the solution: considers the constant term of πj,u(x) as the plaintext message,

mj,u. It appends (mj,u, j) to ~m and mkj,u to ~ζ. If j = z, then it publishes ~m and ~ζ.

7. Verification. Verify(~m, ~ζ, ., ppu, ~g, ~pp
(Evl), pp(Evl)

u , pkS, cmd, ˆcmd)→ v̈ ∈ {0, 1}

A verifier (that can be anyone, not just Cu ∈ C) takes the following steps.

Case 1. when verifying a solution related to the linear combination of messages (i.e., when cmd =

evalPzl), where all messages belong to the same client Cu, i.e., when ˆcmd = SingleClient.
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(a) Checking the commitment’s opening : verify the validity of (root, tk) ∈ ~ζ with the help of
com′ ∈ pp(Evl)

u .

Ver
(
com′, (root, tk)

) ?
= 1

If the above check passes, it moves on to the next step. Otherwise, it returns v̈ = 0 and
takes no further action.

(b) Checking the resulting polynomial’s valid roots: checks if the resulting polynomial contains

the root root ∈ ~ζ, by taking the following steps.

i. derives two keys from tk:

k′ = PRF(1, tk), s′ = PRF(2, tk)

ii. removes the blinding factors from ~g = [g1, . . . , gt̄] that were provided by server S in
step 4c. Specifically, for every i, 1 ≤ i ≤ t̄ :

θi =
(
PRF(i, s′)

)−1︸ ︷︷ ︸
(w′i)

−1

·
(
gi −

z′i︷ ︸︸ ︷
PRF(i, k′)

)
mod p

= γi ·
z∑
j=1

qj,u · πi,j,u mod p

iii. interpolates a polynomial θ(x), given (x1, θ1), . . . , (xt̄, θt̄). Note that polynomial θ(x)
will have the form:

θ(x) = (x− root) ·
z∑
j=1

qj,u · (x+mj,u) mod p

= ψ(x)− root ·
z∑
j=1

qj,u ·mj,u mod p

where ψ(x) is a polynomial of degree 2 whose constant term is 0.

iv. checks whether root ∈ ~ζ is a root of θ(x), i.e., θ(root)
?
= 0. It proceeds to the next step

if the check passes. It returns v̈ = 0 and takes no further action, otherwise.

(c) Checking the final result : retrieves the result (i.e., the linear combination of m1,u, . . . ,mz,u)

from polynomial θ(x)’s constant term: t = −root ·
z∑
j=1

qj,u ·mj,u as follows:

res′ = −t · root−1 mod p

=

z∑
j=1

qj,u ·mj,u

It checks res′
?
= m, where m ∈ ~m is the result that S sent to it, in step 6f of Case 1.

(d) Accepting or rejecting the result : if all the checks pass, it accepts ~m and returns v̈ = 1.
Otherwise, it returns v̈ = 0.

Case 2. when solving a puzzle related to the linear combination of messages (i.e., when cmd = evalPzl),

where each message belongs to a different client, i.e., when ˆcmd = MultiClient.
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(a) Checking the commitments’ openings: verifies the validity of every (rootu, tku) ∈ ~ζ, pro-
vided by S in Case 2, step 6f:

∀Cu ∈ I : Ver
(
com′u, (rootu, tku)

) ?
= 1

where com′u ∈ ~pp(Evl). If all of the verifications pass, it proceeds to the next step. Otherwise,
it returns v̈ = 0 and takes no further action.

(b) Checking the resulting polynomial’s valid roots: checks if the resulting polynomial contains

all the roots in ~ζ, by taking the following steps.

i. derives two keys from tku:

k′u = PRF(1, tku), s′u = PRF(2, tku)

ii. removes the blinding factors from [g1, . . . , gt̄] ∈ ~g that were provided by S in step 5e.

∀i, 1 ≤ i ≤ t̄ :

θi =
( ∏
∀Cu∈I

PRF(i, s′u)
)−1 ·

(
gi −

∑
∀Cu∈I

PRF(i, k′u)
)

mod p

=
∏
∀Cu∈I

γi,u ·
∑
∀Cu∈C

qu · πi,u mod p

iii. interpolates a polynomial θ(x), using pairs (x1, θ1), . . . , (xt̄, θt̄). This results in a poly-
nomial θ(x) having the form:

θ(x) =
∏
∀Cu∈I

(x− rootu) ·
∑
∀Cu∈C

qu · (x+mu) mod p

= ψ(x) +
∏
∀Cu∈I

(−rootu) ·
∑
∀Cu∈C

qu ·mu mod p

where ψ(x) is a polynomial of degree ẗ+ 1 whose constant term is 0.

iv. if the following checks pass, it will proceed to the next step; it checks if every rootu ∈ ~ζ
is a root of θ(x), i.e., θ(rootu)

?
= 0. Otherwise, it returns v̈ = 0 and takes no further

action.

(c) Checking the final result : retrieves the result (i.e., the linear combination of the messages
m1, . . . ,mn) from polynomial θ(x)’s constant term: cons =

∏
∀Cu∈I

(−rootu) ·
∑
∀Cu∈C

qu ·mu as

follows:

res′ = cons · (
∏
∀Cu∈I

(−rootu))−1 mod p

=
∑
∀Cu∈C

qu ·mu

It checks res′
?
= m, where m ∈ ~m is the result that S sent to it.

(d) Accepting or rejecting the result : If all the checks pass, it accepts ~m and returns v̈ = 1.
Otherwise, it returns v̈ = 0.

Case 3. when verifying a solution of a single puzzle belonging to Cu, i.e., when cmd = clientPzl:
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(a) Checking the commitment’ opening : checks whether opening mj,u ∈ ~m and mkj,u ∈ ~ζ
matches the commitment:

Ver
(
comj,u, (mj,u,mkj,u)

) ?
= 1

where comj,u ∈ ppu.

(b) Accepting or rejecting the solution: accepts the solution #»m and returns v̈ = 1 if the above
check passes. It rejects the solution and returns v̈ = 0, otherwise.

Theorem 4 (informal). If MH-TLP and Tempora-Fusion are secure, then MMH-TLP is secure.

Proof (sketch). From the security perspective, MMH-TLP does not introduce any new security mechanism
and relies on those proposed in MH-TLP and Tempora-Fusion. Thus, its security (i.e., privacy and solution
validity) boils down to the security of MH-TLP and Tempora-Fusion. �

7 Evaluation

In this section, we evaluate the costs and features of our schemes and compare them with those of existing
TLPs that support homomorphic linear combinations, namely, with the TLPs proposed in [1,28,27,16]. We
exclude the TLP in [37], from our analysis, as its authors acknowledge that it is far from practically efficient.
Tables 1 and 2 summarize the results.

7.1 Asymptotic Cost

MH-TLP. We begin by analyzing the computation cost of a client.

Client’s Costs. The computation costs of a client are as follows. In the Puzzle Generation phase, in each step
3(b)i and 3(b)ii, a client performs z modular exponentiation over φ(N) and N respectively. Furthermore, in
steps 3(b)ii, 3(b)iii, and 3c, in total the client invokes 9 · z − 1 instances of PRF. In step 3(d)i, it performs z
modular addition. In step 3(d)ii, it evaluates a polynomial of degree one at three x-coordinates, which will
involve 3 · z modular additions. In step 3e, the client performs 3 · z additions and multiplications to encrypt
the y-coordinates. In step 3f, the client invokes the hash function z times to commit to each message.

In the Linear Combination Phase, in step 4(a)i, it performs two modular exponentiations, one over φ(N)
and the other over N . In the same step, it invokes PRF twice. In step 4(a)ii, it invokes 11 · z + 3 instances of
PRF. In the same step, it performs z − 1 modular addition. In step 4(a)iii, it performs 3 additions. In step
4(a)iv, the client invokes the hash function one. In step 4(a)v, the client performs 6 · z additions and 12 · z
multiplications. In the same step, it invokes 3 · z instances of OLE+. Therefore, the computation complexity
of the client is O(z).

The communication costs of a client are as follows. In the Key Generation phase, step 2b, the client publishes
a single public key of size about 2048 bits. In the Puzzle Generation phase, step 3g, the client publishes 4·z+1
values. In the Linear Combination phase, in step 4(a)v, it invokes 3 · z instances of OLE+ where each instance
imposes O(1) communication cost. In step 4(a)vi, the client publishes two elements. Therefore, the client’s
communication complexity is O(z).

Verifier’s Costs. The computation costs of a verifier include the following operations. In the Verification
phase, the computation cost of a verifier in Case 1 is as follows. In step 6a, it invokes an instance of the hash
function. In step 6b, it invokes 6 instances of PRF. In step 6(b)ii, it performs 3 additions and 1 multiplication.
In step 6(b)iii, it interpolates a polynomial of degree 2. In step 6(b)iv, it evaluates a polynomial of degree
2 at a single point, requiring 2 additions and multiplications. In step 6c, it performs a single multiplication.
Thus, the verifier’s computation complexity in Case 1 is O(1). In the Verification phase, the computation
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cost of a verifier in Case 2 involves only a single invocation of the hash function to check the opening of a
commitment, for each puzzle. Hence, the computation complexity of the verifier O(z).

Server’s Costs. Now, we consider the computation cost of a server. In step 4(a)v, server S engages 3 · z
instances of OLE+ with each client. In step 4b, S performs 3 · z modular addition. During the Solving Puzzles
phase, in Case 1 step 5a, S performs Y repeated modular squaring and invokes two instances of PRF. In step
5b, S performs 3 additions and 3 multiplications. In step 5c, it interpolates a polynomial of degree 2 that
involves O(1) addition and multiplication operations (note that the complexity is constant with regard to
the number of puzzles). In step 5d, it performs a single modular multiplication. In step 5e, it factorizes a
polynomial of degree 2 to find its root, costing O(1). In the same step, it invokes the hash function once to
identify the valid roots. Thus, the computation complexity of S in Case 1 is O(Y + z).

In Case 2, the cost of S for a client Cu involves the following operations. S performs O(maxss ·
z∑
j=1

∆̄j,u)

modular squaring over N to find the master keys. It invokes 9 · z − 1 instances of PRF. It performs 3
addition and 3 multiplication to decrypt y-coordinates. It interpolates a polynomial of degree 2 using 3
coordinates, requiring O(1) addition and multiplication operations. Hence, the complexity of S in Case 2 is

O(maxss ·
z∑
j=1

∆̄j,u).

Next, we analyze the communication costs of S. In the Setup phase, S publishes 4 messages. In the Linear
Combination phase, step 4(a)v, it invokes 3 ·z instances of OLE+ with the client, where each instance imposes
O(1) communication cost. In step 4c, it publishes 3 messages. In the Solving a Puzzle phase, step 5f, it
publishes 3 messages. In Case 2, step 5d, the server publishes two messages. Hence, the communication
complexity of S is O(z).

MMH-TLP. As before, we begin by evaluating the computation cost of a client.

Client’s Costs. The computation costs of a client are as follows. Recall that in MMH-TLP, the number of
x-coordinates is linear with the number of leaders ẗ, whereas in MH-TLP it is 3. However, the client in
MMH-TLP takes the same types of steps as it takes in MH-TLP. Thus, the computation cost complexity of
a client in MMH-TLP is O(ẗ · z).

We proceed to analyze the communication costs of a client. In Phase 2, the client publishes a single public
key of size about 2048 bits. In Phase 3, the client publishes (t̄ + 1) · z + 1 messages. In Phase 4, it invokes
t̄ ·z instances of OLE+ where each instance imposes O(1) communication cost. In the same phase, it publishes
two elements. In Phase 5, we will consider the communication cost of a leader client, as it transmits more
messages than non-leader clients. The leader client transmits to each client a key for PRF. It also sends t̄
encrypted y-coordinates of a random root to the rest of the clients. It invokes t̄ instances of OLE+. The leader
client also publishes three elements (hu, com

′
u, Y ). Therefore, the leader client’s communication complexity

is O(t̄ · n). Hence, the client’s communication complexity is O((ẗ+ n) · z).

Verifer’s Costs. We will analyze only the computation costs of a verifier, as the protocol imposes no commu-
nication overhead on the verifier. In the Verification phase, in Case 1, a verifier performs the same type of
computation it does in Case 1 of MH-TLP, however, in the former the number of x-coordinates is t̄ (instead
of being 3 in MH-TLP). Hence, the verifier’s computation complexity in Case 1 is O(ẗ). In Case 2, the
computation cost of the verifier is as follows. In step 7a, it invokes ẗ instances of the hash function. In step 7b
it invokes 2 · (t̄ · ẗ+ 1) instances of PRF. In step 7(b)ii, it performs t̄ · ẗ+ 1 additions and t̄ · ẗ multiplication. In
step 7(b)iii, it interpolates a polynomial of degree ẗ+ 1. This involves O(ẗ) addition and O(ẗ) multiplication.
In step 7(b)iv, it evaluates a polynomial of degree ẗ + 1 at ẗ points, resulting in ẗ2 + ẗ additions and ẗ2 + ẗ
multiplication. Moreover, in step 7c, it performs ẗ+ 1 multiplication. Therefore, its complexity in Case 2 is
ẗ2 + ẗ. The computation cost of the verifier in Case 3 involves a single invocation of the hash function to check
the opening of a commitment for each puzzle. Thus, its complexity in this case is O(z). We conclude that
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when it verifies z puzzles of a client and a linear combination of n clients’ messages, the total computation
complexity of the verifier is O(ẗ2 + ẗ+ z).

Server’s Costs. Initially, we will focus on the computation costs of S. During Phase 4 (Linear Combination
for a Single Client), in step 4(a)v, S engages t̄ · z instances of OLE+ with a client. In step 4b, S performs
t̄ · z modular addition. Thus, its computation complexity in this phase is O(ẗ · z). Within Phase 5 (Linear
Combination for Multiple Clients), in step 5(b)v, S engages t̄ instances of OLE+ with each client. In step 5d,
S performs t̄ · n modular addition. Therefore, its complexity in this phase is O(ẗ · n).

During Phase 6, Case 1, step 6a, server S performs Y repeated modular squaring and invokes two instances
of PRF. In step 6b, it performs t̄ addition and t̄ multiplication. In step 6c, it interpolates a polynomial
using t̄ data points, which results in O(ẗ) computation complexity. In step 6d, it performs a single modular
multiplication. In step 6e, it factorizes a polynomial of degree 2 to find its root, which will cost O(1). In step
6e, it invokes the hash function once. Therefore, the overall computation complexity of S in Phase 6, Case
1 is O(Y + ẗ · (z + n)).

In Phase 6, Case 2, the cost of S is as follows. In step 6a, S performs Y modular squaring to find master key
mku for each leader client. In the same step, it invokes 2 instances of PRF for each leader client. In step 6b, it
invokes 2 · (t̄+ 1) instances of PRF. In the same step, it performs t̄+ 1 addition and t̄ multiplication. In step
6c, it interpolates a polynomial using t̄ points, involving O(ẗ) addition and O(ẗ) multiplication operations.
In step 6d, it performs ẗ + 1 multiplication. In step 6e, it factorizes a polynomial of degree ẗ + 1 with the
computation complexity of O(ẗ2). Hence, the total computation complexity of S (for n clients) in Phase 6,
Case 2 is O(ẗ · n+ ẗ2 + ẗ · Y ).

In Phase 6, Case 3, the costs of S for a client Cu are as follows. In step 6a, S performs O(maxss ·
z∑
j=1

∆̄j,u)

modular squaring over N to find the master keys mk1,u, . . . ,mkz,u. In steps 6a and 6b, in total, it invokes
z ·(3+ t̄)−1 instances of PRF. In step 6b, it performs t̄ addition and t̄ multiplication. In step 6c, it interpolates
a polynomial using t̄ coordinates, involving O(ẗ) addition and multiplication. Hence, the complexity of S in

Case 3 is O(ẗ+maxss ·
z∑
j=1

∆̄j,u).

Next, we move on to the communication costs of S. In Phase 1, S publishes t̄ messages. In Phase 4, it
invokes t̄ · z instances of OLE+, where each instance imposes O(1) communication cost. In the same phase,
it publishes t̄ encrypted y-coordinates. In Phase 5, it invokes t̄ · n instances of OLE+ and also publishes t̄
encrypted y-coordinates. In Phase 6, Case 1, it publishes 3 messages. In Phase 6, Case 2, S publishes 2 · ẗ+ 1
messages. In Phase Case 3, S publishes 3 · z messages. Thus, the total communication complexity of S is
O(ẗ · n+ z).

The Scheme Proposed in [1]. Initially, we consider a client’s costs in this multi-client scheme.

Client’s Costs. During the Puzzle Generation phase, a client performs two modular exponentiations, one
over φ(N) and another over N . Within the same phase, it invokes PRF and performs modular addition
and multiplication linear with the number of leaders ẗ. During the Linear Combination phase, it performs
modular arithmetics, invocations of PRF, and executions of OLE+ linearly with ẗ. Thus, the client’s overall
computation complexity is O(ẗ). The communication cost of the client is O(ẗ · n) as it transmits to each
client ẗ encrypted y-coordinates of a random root.

Verifier’s Costs. During the verification of the result of the linear combination it (a) invokes O(ẗ) instances

of the hash function, (b) invokes O(ẗ2) instances of PRF, and (c) performs O(ẗ2) addition and multiplication.
Its cost during the verification of a solution related to a client’s single puzzle is O(1) as it involves a single
invocation of a hash function. Hence, when it verifies z puzzles of a client and a linear combination of n
clients’ messages, the verifier’s computation complexity is O(ẗ2 + z).
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Server’s Computation Cost. During computing the linear combination of clients’ puzzles, S invokes O(ẗ)

instances of OLE+ with each client. In the same phase, it performs O(ẗ · n) modular addition. During the
Solving Puzzles phase, when it needs to deal with puzzles related to the linear combination, S performs
O(ẗ · Y ) repeated modular squaring and invokes O(ẗ) instances of PRF. Within the same phase, it performs
O(ẗ2) addition and multiplication. It also factorizes a polynomial, with the cost of O(ẗ2). Therefore, the
computation complexity of S in this case is O(ẗ2 + ẗ · n + ẗ · Y ). During the Solving Puzzles phase, when
it needs to deal with a single puzzle of a client Cu, server S performs maxss ·∆u modular squaring to find
master key mku. It invokes O(ẗ) instances of PRF and performs O(ẗ) addition and multiplication. Therefore,
the complexity of S in this case is O(ẗ + maxss · ∆u). In the multi-instance case, where the client has z
puzzles where each puzzle j-th puzzle needs to be disclosed after period ∆j,u, S needs to deal with each

of the puzzles separately, which leads to the total computation complexity of O(ẗ + maxss ·
z∑
j=1

∆j,u). The

communication cost of S is dominated by OLE+ invocations, which is linear with the total number of leaders
and clients, i.e., O(ẗ · n).

TLP in [28]. The homomorphic linear combination TLP proposed in [28, p.634], requires a trusted setup
involving a trusted party.

Trusted Party’s Costs. In the Setup phase, it computes a set of private and public parameters and publishes
the public ones. In this phase, the trusted party, only once, performs a modular squaring over φ(N). Thus,
this party’s computation cost is O(1). The trusted party’s communication complexity is also O(1), as it only
publishes 4 values.

Client’s Costs. In the Puzzle Generation phase, a client performs 3 modular exponentiations, one over N
and the other two over N 2. Thus, the computation complexity of the client is O(1), with respect to n which
is the total number of clients involved. The client’s communication complexity is O(1).

Server’s Costs. To solve a puzzle (related to a single client’s puzzle or a puzzle encoding a linear combination
of solutions), a server performs maxss · ∆ repeated modular squaring, similar to conventional TLPs. To
compute a homomorphic linear combination of puzzles, the server performs n modular multiplication over
N and n modular multiplication over N 2. Therefore, the computation complexity of the server is O(n). The
server’s communication complexity is O(1). In the multi-instance case, where a client Cu has z puzzles, where
each j-th puzzle must be found after period ∆j,u, the server needs to deal with each puzzle independently,

leading to the additional computation complexity of O(maxss ·
z∑
j=1

∆j,u).

TLP in [27]. The additive TLP proposed in [27] heavily relies on the above additive TLP of Malavolta and
Thyagarajan [28]. As a result, the overall complexities of the client and server in this scheme are similar to
that of the additive TLP in [28] with a main difference. Namely, the server in this TLP needs to perform
O( maxss·∆

log(maxss·∆) ) group operations to generate a proof. To check z puzzles of a client, a verifier’s complexity

is O(z). This scheme also does not provide any mechanism to efficiently handle the multi-instance setting,

imposing additional computation complexity of O(maxss ·
z∑
j=1

∆j,u) on the server, when each client has z

puzzles. The communication complexity for the parties in this TLP is comparable to that described in [28].

TLP in [16]. This TLP is also built upon the additive TLP introduced by Malavolta and Thyagarajan
[28]. Consequently, the computation complexity for a trusted party during the Setup phase and for each
client during the Puzzle Generation phase is comparable to that in the TLP of Malavolta and Thyagarajan.
However, this TLP requires the server to perform O(n2 +maxss ·∆) operations to combine the puzzles and
solve the combined puzzle. Since this scheme cannot efficiently handle the muti-instance setting, the server
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must deal with each puzzle independently, yielding additional computation complexity of O(maxss ·
z∑
j=1

∆j,u).

The parties’ communication complexity in this TLP is similar to that in [28].

7.2 Features

MH-TLP. This scheme can efficiently handle the multiple-instance setting and does not require a trusted
setup. It enables anyone to efficiently check the correctness of a solution for a client’s puzzle and a linear
combination of puzzles. This scheme allows different clients to have different time parameters for their puzzles.

MMH-TLP. This TLP supports multi-client as well as efficiently handling the multiple-instance setting.
This scheme also does not require a trusted setup. It also allows anyone to efficiently verify the correctness of
a solution for a client’s puzzle and a linear combination of puzzles. It allows different clients to have different
time parameters for their puzzles.

TLP in [1]. This scheme supports multi-client and does not require a trusted setup. It also supports efficient
verification of a solution for a client’s puzzle and a linear combination of puzzles. Similar to the above two
schemes, it is flexible regarding the time parameters of different puzzles.

TLP in [28]. The original homomorphic linear combination proposed in [28, p.634] requires all time pa-
rameters to be identical. This constraint limits its applicability, as different clients may prefer their solutions
to be disclosed at different times. To address this, the authors suggested an extension that involves a trusted
third party releasing a set of public parameters, each corresponding to a different time parameter during the
setup phase. However, this solution also restricts clients’ flexibility because they must choose from only the
time parameters initially generated by the trusted third party. The scheme supports multiple clients, how-
ever, it does not support the multi-instance setting. It does not provide any verification mechanism to allow
a verifier to check the solution that the server finds, which contributes to its overall lower cost compared to
those that support verification.

TLP in [27]. One of the TLPs introduced in [27] supports multi-client and homomorphic linear com-
binations. It allows a server to prove the validity of a solution for a single client’s puzzle, by relying on
computationally expensive public-key-based primitives. However, this scheme does not support verifying
the correctness of the linear combinations. This scheme also requires the involvement of a trusted party to
generate a set of public and private parameters. This scheme does not support any efficient solution for
the multi-instance setting. This scheme also lacks flexibility regarding the time parameter, as it assumes all
clients use an identical time parameter.

TLP in [16]. This scheme supports multi-client and allows a server to check whether a puzzle has been
created correctly. However, it does not offer any solution for the verification of a solution related to a single
puzzle or homomorphic linear combinations. This scheme also requires a trusted party and lacks flexibility
with respect to the time parameter, as it presumes that all clients use the same time parameter. It offers
the batch-solving feature, that enables the server to combine n puzzles into a single combined puzzle, such
that after solving this puzzle, the server can find the solution to each puzzle that was integrated into the
combined puzzle.

7.3 Comparison

Cost. The overall computation and communication complexity of all schemes, except the one in [16], is
linear with the number of puzzles z and the number of clients n. However, the computation complexity of
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the TLP in [16] is quadradic regarding n. Note that the complexities of MH-TLP, MMH-TLP, and the TLP
in [1] are quadratic regarding the total number of leader clients ẗ. However, ẗ can be set to a small value, e.g.,
between 3 and 10, depending on the setting and security assumption. Moreover, only MH-TLP, MMH-TLP,
and the TLP in [1] can efficiently deal with the multi-instance setting.

Feature. Among the six schemes, only MMH-TLP provides both multi-client and multi-instance capabilities.
It stands out as the scheme that offers the most features. Additionally, MH-TLP, MMH-TLP, and the TLP
proposed in [1] (a) do not require a trusted setup, (b) support verification of both the solution to a client’s
puzzle and the solution to a linear combination of puzzles, and (c) allow flexible time parameters. Conversely,
only the TLP in [16] supports batch verification.

7.4 An Overview of Concrete Cost

The three main operations that impose non-negligible costs to the participants of our schemes are polynomial
factorization, invocations of PRF, and OLE+ execution. In our schemes, the computation complexity of a verifier
is quadratic with the number of leaders ẗ, which determines the degree of the polynomial to be factorized.
The runtime of polynomial factorization is also influenced by the field size, log2(p). As shown in [1], the total
combined computation cost imposed due to factorization and PRF invocations is about 6 milliseconds when
ẗ = 10 and log2(p) = 256-bit. The running time of OLE+ is low as well, for instance about 1 second for 214

input elements, as shown in [35]. Thus, we estimate our schemes will impose an additional cost of about 10
seconds when the total number of clients is 20. This estimation excludes the standard cost of solving puzzles.

8 Conclusion and Future Work

Time-Lock Puzzles (TLPs) have been developed to securely transmit private information into the future
without relying on a third party. They have applications in various domains, including transparent sched-
uled payments in private banking, e-voting, and secure aggregation in federated learning. To enhance the
scalability of TLPs, multi-instance TLPs have been designed, enabling a server to efficiently handle multi-
ple instances of a client’s puzzles. Separately, homomorphic TLPs have been developed to allow (verifiable)
computation on the puzzles of different clients.

In this work, we proposed two schemes MH-TLP and MMH-TLP to bridge these two research lines. Initially,
we proposed Multi-instance verifiable partially Homomorphic TLP (MH-TLP), the first multi-instance TLP
that supports efficient verifiable homomorphic linear combinations on puzzles. It enables a client to generate
many puzzles and transmit them to the server at once. In this setting, the server does not need to simulta-
neously deal with them; instead, it can solve them one after the other. MH-TLP enables the server to learn
the linear combination of the puzzles’ solutions after a certain time. It allows public verification of a single
puzzle’s solution and the computation’s result.

Next, we introduced Multi-instance Multi-client verifiable partially Homomorphic TLP (MMH-TLP). This
new variant combines the features of both (partially) homomorphic TLP and multi-instance TLP. It supports
verifiable partially homomorphic operations on the puzzles belonging to single or multiple clients while
maintaining the multi-instance feature. It enables single or multiple clients to ask the server to perform
homomorphic linear combinations of their puzzles. This scheme allows anyone to verify whether the server
has performed the computation correctly and provided a correct solution.

We have conducted a thorough analysis of these two schemes. Our analysis indicates that the overall overhead
of our schemes is linear with respect to the total number of clients and the number of puzzles. By comparing
our solutions to the state-of-the-art TLPs, we observed that MMH-TLP offers a set of appealing features
not simultaneously provided by any existing TLP.

Batch solving is an intriguing feature that allows a server to combine multiple puzzles into a single composite
puzzle. By solving this composite puzzle, one can determine the solution to each individual puzzle involved
[16]. It will be interesting to explore how MMH-TLP can be enhanced to offer this property while maintaining
its current features and efficiency.
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A Enhanced OLE’s Ideal Functionality and Protocol

The enhanced OLE ensures that the receiver cannot learn anything about the sender’s inputs, when it sets
its input to 0, i.e., c = 0. The enhanced OLE’s protocol (denoted by OLE+) is presented in Figure 5.

1. Receiver (input c ∈ F): Pick a random value, r
$← F, and send (inputS, (c−1, r)) to

the first FOLE.
2. Sender (input a, b ∈ F): Pick a random value, u

$← F, and send (inputR, u) to the
first FOLE, to learn t = c−1 · u+ r. Send (inputS, (t+ a, b− u)) to the second FOLE.

3. Receiver: Send (inputR, c) to the second FOLE and obtain k = (t+ a) · c+ (b− u) =
a · c+ b+ r · c. Output s = k − r · c = a · c+ b.

Fig. 5: Enhanced Oblivious Linear function Evaluation (OLE+) [21].

B The Tempora-Fusion Protocol

In this section, we present Tempora-Fusion, initially introduced in [1]

1. Setup. S.Setup(1λ, ẗ, t)→ (., pkS)

The server S only once takes the following steps:

(a) generates a sufficiently large prime number p, where log2(p) is a security parameter, e.g., log2(p) ≥
128.

(b) let ẗ be the total number of leader clients. It sets t̄ = ẗ+2 and ~x = [x1, . . . , xt̄], where xi 6= xj, xi 6= 0,
and xi /∈ U .

(c) publishes pkS = (p, ~x, t).

2. Key Generation. C.Setup(1λ)→ Ku

Each party Cu in C = {C1, . . . , Cn} takes the following steps:

(a) computes Nu = p1 ·p2, where pi is a large randomly chosen prime number, where log2(pi) is a security
parameter. It computes Euler’s totient function of Nu, as: φ(Nu) = (p1 − 1) · (p2 − 1).

(b) stores secret key sk
u

= φ(Nu) and publishes public key pku = Nu.
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3. Puzzle Generation. GenPuzzle(mu,Ku, pkS, ∆u,maxss)→ (~ou, prmu)

Each Cu independently takes the following steps to generate a puzzle for a message mu.

(a) checks the bit-size of p and elements of ~x in pkS, to ensure log2(p) ≥ 128, xi 6= xj, xi 6= 0, and xi /∈ U .
If it does not accept the parameters, it returns (⊥,⊥) and does not take further action.

(b) generates a master key mk
u

and two secret keys ku and su as follows:

i. sets exponent au as: au = 2Tu mod φ(Nu).

where Tu = ∆u ·maxss and φ(Nu) ∈ Ku.

ii. selects a base uniformly at random: ru
$← ZNu and then sets a master key mk

u
as follows:

mku = rauu mod Nu

iii. derive two keys from mku as: ku = PRF(1,mku), su = PRF(2,mku).

(c) generates 2 · t̄ pseudorandom blinding factors using ku and su:

∀i, 1 ≤ i ≤ t̄ : zi,u = PRF(i, ku), wi,u = PRF(i, su)

(d) encodes plaintext message as follows:

i. represents plaintext message mu as a polynomial, such that the polynomial’s constant term is
the message. Specifically, it computes polynomial πu(x) as: πu(x) = x+mu mod p.

ii. computes t̄ y-coordinates of πu(x) as: ∀i, 1 ≤ i ≤ t̄ : πi,u = πu(xi) mod p, where xi ∈ ~x and
p ∈ pkS.

(e) encrypts the y-coordinates using the blinding factors as follows:

∀i, 1 ≤ i ≤ t̄ : oi,u = wi,u · (πi,u + zi,u) mod p

(f) commits to the plaintext message: comu = Com(mu,mku).

(g) publishes ~ou = [o1,u, . . . , ot̄,u] and ppu = (comu, Tu, ru, Nu). It locally keeps secret parameters spu =
(ku, su) and deletes everything else, including mu,πu(x), π1,u, . . . , πt̄,u. It sets prmu = (spu, ppu).

4. Linear Combination. Evaluate(〈S(~o,∆, maxss, ~pp, ~pk, pkS), C1(∆,maxss,K1, prm1, q1, pkS), . . . , Cn(∆,
maxss, Kn, prmn, qn, pkS)〉)→ (~g, ~pp(Evl))

In this phase, the parties produce certain messages that allow S to find a linear combination of the
clients’ plaintext messages after time ∆.

(a) all parties in C agree on a random key r̂, e.g., by participating in a coin tossing protocol [8]. Each
Cu deterministically finds index of ẗ leader clients: ∀j, 1 ≤ j ≤ ẗ : idxj = G(j||r̂). Let I be a vector
contain these ẗ clients.

(b) each leader client Cu in I takes the following steps.

i. generates a temporary master key tku and two secret keys k′u and s′u for itself. Also, it generates
a secret key fl for each client. To do that, it takes the following steps. It computes the exponent:
bu = 2Y mod φ(Nu).

where Y = ∆·maxss. It selects a base uniformly at random: hu
$← ZNu and then sets a temporary

master key tku as: tku = hbuu mod Nu.

It derives two keys from tku as: k′u = PRF(1, tku), s′u = PRF(2, tku).
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It picks a random key fl for each client Cl excluding itself, i.e., fl
$← {0, 1}poly(λ), where Cl ∈ C\Cu.

It sends fl to each Cl.

ii. derives t̄ pseudorandom values from s′u:

∀i, 1 ≤ i ≤ t̄ : w′i,u = PRF(i, s′u)

iii. picks a random root: rootu
$← Fp. It represents rootu as a polynomial, such that the polynomial’s

root is rootu. Specifically, it computes polynomial γu(x) as: γu(x) = x− rootu mod p.

Then, it computes t̄ y-coordinates of γu(x) as: ∀i, 1 ≤ i ≤ t̄ : γi,u = γu(xi) mod p.

It encrypts each y-coordinate γi,u using blinding factor w′i,u:

∀i, 1 ≤ i ≤ t̄ : γ′i,u = γi,u · w′i,u mod p

It sends #»γ ′u = [γ′1,u, . . . , γ
′̄
t,u] to the rest of the clients.

iv. receives (f̄l,
#»γ ′l) from every other client which are in I. It regenerates its original blinding factors:

∀i, 1 ≤ i ≤ t̄ : zi,u = PRF(i, ku), wi,u = PRF(i, su)

where ku and su are in ~prmu and were generated in step 3(b)iii. It also generates new ones:

∀i, 1 ≤ i ≤ t̄ : z′i,u = PRF(i, k′u)

It sets values vi,u and yi,u as follows. ∀i, 1 ≤ i ≤ t̄ :

vi,u = γ′i,u ·
∏

∀C
l
∈I\Cu

γ′i,l mod p

yi,u = −
∑

∀C
l
∈C\Cu

PRF(i, fl) +
∑

∀C
l
∈I\Cu

PRF(i, f̄l)mod

where Cu ∈ I.

v. obliviously, without having to access a plaintext solution, prepares the puzzle (held by S) for
the computation. To do that, it participates in an instance of OLE+ with S, for every i, where
1 ≤ i ≤ t̄. The inputs of Cu to i-th instance of OLE+ are:

ei = qu · vi,u · (wi,u)−1 mod p

e′i = −(qu · vi,u · zi,u) + z′i,u + yi,u mod p

The input of S to the i-th instance of OLE+ is Cu’s encrypted y-coordinate: e′′i = oi,u (where
oi,u ∈ ~o). Accordingly, i-th instance of OLE+ returns to S:

di,u = ei · e′′i + e′i
= qu · vi,u · πi,u + z′i,u + yi,u mod p

= qu · γi,u · w′i,u · (
∏

∀C
l
∈I\Cu

γi,l · w′i,l) · πi,u + z′i,u + yi,u mod p

where qu is the party’s coefficient. If Cu detects misbehavior during the execution of OLE+, it
sends a special symbol ⊥ to all parties and halts.
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vi. computes com′u = Com(rootu, tku).

vii. publishes pp(Evl)
u = (hu, com

′
u, Y ). Note that all Cu ∈ I use identical Y . Let ~pp(Evl) contain all the

triples pp(Evl)
u published by Cu, where Cu ∈ I.

(c) each non-leader client Cu takes the following steps.

i. receives (f̄l,
#»γ ′l) from every other client which is in I. It regenerates its original blinding factors:

∀i, 1 ≤ i ≤ t̄ : zi,u = PRF(i, ku), wi,u = PRF(i, su)

It set values vi,u and yi,u as follows. ∀i, 1 ≤ i ≤ t̄ :

vi,u =
∏
∀C
l
∈I

γ′i,l mod p

yi,u =
∑
∀C
l
∈I

PRF(i, f̄l) mod p

ii. participates in an instance of OLE+ with the server S, for every i, where 1 ≤ i ≤ t̄. The inputs of
Cu to i-th instance of OLE+ are:

ei = qu · vi,u · (wi,u)−1 mod p

e′i = −(qu · vi,u · zi,u) + yi,u mod p

The input of S to i-th instance of OLE+ is Cu’s encrypted y-coordinate: e′′i = oi,u. Accordingly,
i-th instance of OLE+ returns to S:

di,u = ei · e′′i + e′i
= qu · vi,u · πi,u + yi,u mod p

= qu · (
∏

∀C
l
∈I\Cu

γi,l · w′i,l) · πi,u + yi,u mod p

where qu is the party’s coefficient. If Cu detects misbehavior during the execution of OLE+, it
sends a special symbol ⊥ to all parties and halts.

(d) server S sums all of the outputs of OLE+ instances that it has invoked, ∀i, 1 ≤ i ≤ t̄ :

gi =
∑
∀Cu∈C

di,u mod p

= (
∏
∀Cu∈I

γi,u · w′i,u ·
∑
∀Cu∈C

qu · πi,u) +
∑
∀Cu∈I

z′i,u mod p

Note that in gi,j does not exist any yi,j, because yi,j in different di,j canceled out each other after
they summed up.

(e) server S publishes ~g = [g1, . . . , gt̄].

5. Solving a Puzzle. Solve(~ou, ppu, ~g, ~pp
(Evl), ~pk, pkS, cmd)→ (m, ζ)

Server S takes the following steps.

Case 1. when solving a puzzle related to the linear combination, i.e., when cmd = evalPzl:

(a) for each Cu ∈ I:
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i. finds tku where tku = h2Y

u mod Nu through repeated squaring of hu modulo Nu, where

(hu, Y ) ∈ ~pp(Evl) and Nu ∈ ~pk.

ii. derives two keys from tku as: k′u = PRF(1, tku), s′u = PRF(2, tku).

(b) removes the blinding factors from [g1, . . . , gt̄] ∈ ~g.

∀i, 1 ≤ i ≤ t̄ :

θi =
( ∏
∀Cu∈I

PRF(i, s′u)
)−1 ·

(
gi −

∑
∀Cu∈I

PRF(i, k′u)
)

mod p

= (
∏
∀Cu∈I

γi,u) ·
∑
∀Cu∈C

qu · πi,u mod p

(c) interpolates a polynomial θ, given pairs (x1, θ1), . . . , (xt̄, θt̄). Note that θ will have the
following form:

θ(x) =
∏
∀Cu∈I

(x− rootu) ·
∑
∀Cu∈C

qu · (x+mu) mod p

We can rewrite θ(x) as follows:

θ(x) = ψ(x) +
∏
∀Cu∈I

(−rootu) ·
∑
∀Cu∈C

qu ·mu mod p

where ψ(x) is a polynomial of degree ẗ+ 1 whose constant term is 0.

(d) retrieves the final result (which is the linear combination of the messages m1, . . . ,mn) from
polynomial θ(x)’s constant term: cons =

∏
∀Cu∈I

(−rootu) ·
∑
∀Cu∈C

qu ·mu as follows:

res = cons · (
∏
∀Cu∈I

(−rootu))−1 mod p

=
∑
∀Cu∈C

qu ·mu

(e) extracts the roots of θ. Let set R contain the extracted roots. It identifies the valid roots,
by finding every rootu in R, such that Ver(com′u, (rootu, tku)) = 1. Note that S performs
the check for every Cu in I.

(f) publishes the solution m = res and the proof ζ =
{

(rootu, tku)
}
∀Cu∈I

.

Case 2. when solving a puzzle of single client Cu, i.e., when cmd = clientPzl:

(a) finds mku where mku = r2
Tu

u mod Nu through repeated squaring of ru modulo Nu, where
(Tu, ru) ∈ ppu. Then, it derives two keys from mku:

ku = PRF(1,mku), su = PRF(2,mku)

(b) re-generates 2 · t̄ pseudorandom values using ku and su:

∀i, 1 ≤ i ≤ t̄ : zi,u = PRF(i, ku), wi,u = PRF(i, su)

Then, it uses the blinding factors to unblind [o1,u, . . . , ot̄,u]:

∀i, 1 ≤ i ≤ t̄ : πi,u =
(
(wi,u)−1 · oi,u

)
− zi,u mod p
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(c) interpolates a polynomial πu, given pairs (x1, π1,u), . . . , (xt̄, πt̄,u).

(d) considers the constant term of πu as the plaintext solution, mu. It publishes the solution
m = mu and the proof ζ = mku.

6. Verification. Verify(m, ζ, ., ppu, ~g, ~pp
(Evl), pkS, cmd)→ v̈ ∈ {0, 1}

A verifier (that can be anyone, not just Cu ∈ C) takes the following steps.

Case 1. when verifying a solution related to the linear combination, i.e., when cmd = evalPzl:

(a) verifies the validity of every (rootu, tku) ∈ ζ, provided by S in Case 1, step 5f: ∀Cu ∈
I : Ver

(
com′u, (rootu, tku)

) ?
= 1, where com′u ∈ ~pp(Evl). If all of the verifications pass, it

proceeds to the next step. Otherwise, it returns v̈ = 0 and takes no further action.

(b) checks if the resulting polynomial contains all the roots in ζ, by taking the following steps.

i. derives two keys from tku as: k′u = PRF(1, tku), s′u = PRF(2, tku).

ii. removes the blinding factors from [g1, . . . , gt̄] ∈ ~g that were provided by S in step 4e.

∀i, 1 ≤ i ≤ t̄ :

θi =
( ∏
∀Cu∈I

PRF(i, s′u)
)−1 ·

(
gi −

∑
∀Cu∈I

PRF(i, k′u)
)

mod p

=
∏
∀Cu∈I

γi,u ·
∑
∀Cu∈C

qu · πi,u mod p

iii. interpolates a polynomial θ, given pairs (x1, θ1), . . . , (xt̄, θt̄), similar to step 5c. This
yields a polynomial θ having the form:

θ(x) =
∏
∀Cu∈I

(x− rootu) ·
∑
∀Cu∈C

qu · (x+mu) mod p

= ψ(x) +
∏
∀Cu∈I

(−rootu) ·
∑
∀Cu∈C

qu ·mu mod p

where ψ(x) is a polynomial of degree ẗ+ 1 whose constant term is 0.

iv. if the following checks pass, it will proceed to the next step. It checks if every rootu is

a root of θ, by evaluating θ at rootu and checking if the result is 0, i.e., θ(rootu)
?
= 0.

Otherwise, it returns v̈ = 0 and takes no further action.

(c) retrieves the linear combination of the messages m1, . . . ,mn from polynomial θ(x)’s con-
stant term: cons =

∏
∀Cu∈I

(−rootu) ·
∑
∀Cu∈C

qu ·mu as follows:

res′ = cons · (
∏
∀Cu∈I

(−rootu))−1 mod p

=
∑
∀Cu∈C

qu ·mu

It checks res′
?
= m, where m = res is the result that S sent to it.

(d) if all the checks pass, it accepts m and returns v̈ = 1. Otherwise, it returns v̈ = 0.

Case 2. when verifying a solution of a single puzzle belonging to Cu, i.e., when cmd = clientPzl:

52



(a) checks whether opening pair m = mu and ζ = mku matches the commitment:

Ver
(
comu, (mu,mku)

) ?
= 1

where comu ∈ ppu.

(b) accepts the solution m and returns v̈ = 1 if the above check passes. It rejects the solution
and returns v̈ = 0, otherwise.

Theorem 5. If the sequential modular squaring assumption holds, factoring N is a hard problem, PRF, OLE+,
and the commitment schemes are secure, then the protocol presented above is secure.

We refer readers to [1] for the proof of Theorem 5.

C The Original RSA-Based TLP

Below, we restate the original RSA-based time-lock puzzle proposed in [34].

1. Setup: SetupTLP(1
λ, ∆,maxss).

(a) pick at random two large prime numbers, q1 and q2. Then, compute N = q1 ·q2. Next, compute Euler’s
totient function of N as follows, φ(N) = (q1 − 1) · (q2 − 1).

(b) set T = maxss · ∆ the total number of squaring needed to decrypt an encrypted message m, where
maxss is the maximum number of squaring modulo N per second that the (strongest) solver can
perform, and ∆ is the period, in seconds, for which the message must remain private.

(c) generate a key for the symmetric-key encryption, i.e., SKE.keyGen(1λ)→ k.

(d) choose a uniformly random value r, i.e., r
$← Z∗N .

(e) set a = 2T mod φ(N).

(f) set pk := (N,T, r) as the public key and sk := (q1, q2, a, k) as the secret key.

2. Generate Puzzle: GenPuzzleTLP(m, pk, sk).

(a) encrypt the message under key k using the symmetric-key encryption, as follows: o1 = SKE.Enc(k,m).

(b) encrypt the symmetric-key encryption key k, as follows: o2 = k + ra mod N .

(c) set o := (o1, o2) as puzzle and output the puzzle.

3. Solve Puzzle: SolveTLP(pk, o).

(a) find b, where b = r2T mod N , through repeated squaring of r modulo N .

(b) decrypt the key’s ciphertext, i.e., k = o2 − b mod N .

(c) decrypt the message’s ciphertext, i.e., m = SKE.Dec(k, o1). Output the solution, m.

The security of the RSA-based TLP relies on the hardness of the factoring problem, the security of the
symmetric key encryption, and the sequential squaring assumption. We restate its formal definition below
and refer readers to [3] for the proof.

Theorem 6. Let N be a strong RSA modulus and ∆ be the period within which the solution stays private. If
the sequential squaring holds, factoring N is a hard problem and the symmetric-key encryption is semantically
secure, then the RSA-based TLP scheme is a secure TLP.
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D Sequential and Iterated Functions

Definition 10 (∆, δ(∆))-Sequential function). For a function: δ(∆), time parameter: ∆ and security
parameter: λ = O(log(|X|)), f : X → Y is a (∆, δ(∆))-sequential function if the following conditions hold:

• There is an algorithm that for all x ∈ Xevaluates f in parallel time ∆, by using poly(log(∆), λ) processors.

• For all adversaries A which execute in parallel time strictly less than δ(∆) with poly(∆,λ) processors:

Pr
[
yA = f(x)

∣∣∣yA $← A(λ, x), x
$← X

]
≤ negl(λ)

where δ(∆) = (1− ε)∆ and ε < 1, as stated in [11].

Definition 11 (Iterated Sequential function). Let β : X → X be a (∆, δ(∆))-sequential function. A

function f : N × X → X defined as f(k, x) = β(k)(x) =

k Times︷ ︸︸ ︷
β ◦ β ◦ ... ◦ β is an iterated sequential function,

with round function β, if for all k = 2o(λ) the function h : X → X defined by h(x) = f(k, x) is (k∆, δ(∆))-
sequential.

The primary property of an iterated sequential function is that the iteration of the round function β is the
quickest way to evaluate the function. Iterated squaring in a finite group of unknown order, is widely believed
to be a suitable candidate for an iterated sequential function. Below, we restate its definition.

Assumption 1 (Iterated Squaring) Let N be a strong RSA modulus, r be a generator of ZN , ∆ be a time
parameter, and T = poly(∆,λ). For any A, defined above, there is a negligible function µ() such that:

Pr


A(N, r, y)→ b

r
$← ZN , b

$← {0, 1}
if b = 0, y

$← ZN
else y = r2T

 ≤ 1

2
+ µ(λ)
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