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Abstract. Let N = pq be the product of two balanced prime numbers
p and ¢. In 2002, Elkamchouchi, Elshenawy, and Shaban introduced an
interesting RSA-like cryptosystem that, unlike the classical RSA key
equation ed — k(p — 1)(g — 1) = 1, uses the key equation ed — k(p® —
1)(¢> —1) = 1. The scheme was further extended by Cotan and Teseleanu
to a variant that uses the key equation ed — k(p" — 1)(¢" — 1) = 1,
where n > 1. Furthermore, they provide a continued fractions attack
that recovers the secret key d if d < N%25". In this paper we improve
this bound using a lattice based method. Moreover, our method also leads
to the factorisation of the modulus N, while the continued fractions one
does not (except for n = 1,2,3,4).
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1 Introduction

RSA is one of the most widely adopted cryptosystems and was designed by
Rivest, Shamir and Adleman [22] in 1978. The standard version of RSA has as
an underlying group Zy, where N is the product of two large prime numbers p
and ¢q. To encrypt a message m such that m < N, the process involves computing
¢ = m® mod N, where e satisfies ged(e, o(N)) = 1 and ¢(N) = (p — 1)(¢ —
1) is Euler’s totient function. The inverse operation requires computing m =
¢ mod N, where d = e~! mod p(N). Note that (N, e) are public, while (p, g, d)
are kept secret. The standard RSA, termed balanced RSA, employs primes p and
¢ that have the same bit-size (i.e. ¢ < p < 2q). This paper exclusively focuses
on balanced RSA and its variations.

In parallel with the development of modulus factoring methods, several spe-
cific attacks have been developed in order to extract as much information as
possible from the public key (IV,e). Therefore, Wiener showed in [24] that if
d < N°25/3, then one can retrieve d from the continued fraction expansion of
e/N, and thus factor N. This bound was improved by Boneh and Durfee [4] to
NO-292 The main tools that they used are Coppersmith’s method [7] and lattice
reduction techniques [16]. Later on, Herrmann and May [12] obtain the same
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bound, but using simpler techniques. For more details about RSA attacks we
refer the reader to [3,18,23].

A variant of RSA was proposed by Elkamchouchi, Elshenawy and Shaban
[11] in 2002. The authors extended the traditional RSA scheme to the ring
of Gaussian integers modulo N. A Gaussian integer modulo N assumes the
form a + bi, where a and b belong to Zy and i = —1. We further denote
the set of all Gaussian integers modulo N by Zy/[i]. The equivalent of Euler’s
totient function for Zy/[i] is (V) = (p? —1)(¢*> —1). In this case, the encryption
exponent is chosen such that ged(e, p(N)) = 1, and the corresponding decryption
exponent is computed as d = e~ ! mod ¢(NN). The encryption and decryption
processes are similar to RSA. More precisely, to encrypt a message m € Zy|i],
we simply compute ¢ = m® mod N and to decrypt it m = ¢ mod N. Note that
all exponentiations are conducted within the ring Z 7.

The authors of [11] argue that this extension offers enhanced security com-
pared to the traditional RSA approach. Unfortunately, a continued fraction at-
tack similar to Wiener’s was developed in [5]. As in the case of RSA, using lattice
reduction techniques, the bound was latter improved to d < N85 in [21,26].
For more details about attacks against Elkamchouchi et al.’s scheme we refer the
reader to [10,23].

We note that the rings Z, and Z,[i] can be interpreted as Z, = Z,[t]/(t+1) =
GF(p) and Z,[i] = Z,[t]/(t* + 1) = GF(p?), where GF stands for Galois field.
Therefore, for RSA, we have that Zy = GF(p) x GF(q), while for Elkamchouchi
et al., Zyli] = GF(p?) x GF(¢?). Building upon this observation, the authors
of [10], provide a cryptosystem that extends both the RSA and Elkamchouchi
et al.” schemes to the GF(p") x GF(q"™) group, where n > 1. In this case, the
group order is ¢, (N) = (p" — 1)(¢" — 1) and the encryption/decryption process
is a direct extension of RSA and Elkamchouchi et al. ones.

The purpose of extending both schemes to GF(p™) x GF(q") was to see if
Wiener-type attacks work in the generic setting. The authors of [10] manage to
prove that when d < N%2%7, we can always mount a continued fractions attack,
and thus recover the secret exponent regardless the value of n. The development
of a lattice reduction attack was left as an open problem, as well as a factoring

method for N when ¢, (V) is known?.

Related work. It is worth noting that our current undertaking shares similarities
with the work of [1], where the authors explored a cryptographic system closely
related to our own. Specifically, they studied the effect of using latices against
the generalized Murru-Saettone cryptosystem [9]. Their attack implicitly leads
to factoring N.

Our Contributions. In this paper we develop a lattice type of attack against
Cotan and Tegeleanu’s scheme, thus filling a gap in the literature. More precisely,

3 The only known cases are for n = 1,2, 3, 4.
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we prove that when d < N7, where

3n—1 n? :
v < = — 50, otherwise,

{*ygn(l— 0.5), whenn=1orn=2,
PICESVE

we can always factor N. To establish these bounds, we first had to prove that
©n(IN) can be written as a polynomial in p 4 ¢. Then, we showed how to reduce
the problem of finding p + ¢ to solving an equation of the form xH(y) + 1 =
0 mod e, where H(y) is a monic univariate polynomial. A method for solving
such equations is described in [15]. Finally, we prove that the new bounds are
always better than the ones presented in [10].

Structure of the Paper. Preliminary notions are provided in Section 2. In Sec-
tion 3 we take a new look at the group’s order, while in Section 4 we describe our
attack. An example is given in Section 5 and we conclude our paper in Section 6.

2 Preliminaries

Notations. Throughout the paper, A denotes a security parameter. Also, the
notation |S| denotes the cardinality of a set S. We use ~ to indicate that two
values are approximately equal.

2.1 Quotient Groups

In this section we provide the group theory needed to introduce the RSA-like
family. Therefore, let (F,+,-) be a field and t™ — r an irreducible polynomial in
F[t]. Then

A, =F[t]/(t" —7) ={ao +art + ...+ an_1t" "' | ag,a1,...,a,_1 € F}

is the corresponding quotient field. Let a(t),b(t) € A,. Remark that the quotient
field induces a natural product

a(t) @) b(t) = (nzl aiti> 9] nil bjtj

2n—2 [

= E E ajbi_; |t
=0 7=0
n—1 i 2n—2 %
_ .. i .. i—n
= E ajbi_; |t +r E E ajbi_j |t
=0 \ =0 i=n 7=0
n—2 i+n

7 n—1
= Zajbi,j +r2ajb,-,j+n ti+zajbn,1,jtn—1.
; j=0 j=0 j=0
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2.2 RSA-like Cryptosystems

Let p be a prime number. When we instantiate F = Z,, we have that A, =
GF(p™) is the Galois field of order p™. Moreover, A¥ is a cyclic group of order
©n(Z,) = p™ — 1. Remark that an analogous of Fermat’s little theorem holds

a(t)?%») =1 mod p,

where a(t) € A} and the power is evaluated by o-multiplying a(t) by itself
©n(Z,) — 1 times. Based on these observations, the authors of [10] built an
encryption scheme that is similar to RSA by using the o operation as the product.

Setup(A): Let n > 1 be an integer. Randomly generate two distinct large prime
numbers p, ¢ such that p,q > 2* and compute their product N = pq. Select
r € Zy such that the polynomial ¢t" — r is irreducible in Z[t] and Z,[t]. Let

on(Zn) = pn(N) = (p" —1)-(¢" = 1).

Choose an integer e such that ged(e, ¢, (N)) = 1 and compute d such that
ed = 1 mod ¢, (N). Output the public key pk = (n, N, r, e). The correspond-
ing secret key is sk = (p, q,d).

Encrypt(pk,m): To encrypt a message m = (mg,...,My—1) € Z% we first
construct the polynomial m(t) = mg + ... +m,_1t""* € A¥ and then we
compute c(t) = [m(t)]* mod N. Output the ciphertext c(t).

Decrypt(sk,c(t)): To recover the message, simply compute m(t) = [c(t)]
N and reassemble m = (mg, ..., mpy_1).

4 mod

Remark 1. When n = 1 we get the RSA scheme [22]. Also, when n = 2, we
obtain the Elkamchouchi et al. cryptosystem [11].

2.3 Useful Lemmas

The results provided in this section will be used in Section 4 to bound the
solutions of the equation zH (y) — 1 = 0 mod e, which is derived from the key
equation ed — kg, (V) = 1. We start by providing lower and upper bounds for p
and ¢ (see [19, Lemma 1]).

Lemma 1. Let N = pq be the product of two unknown primes with ¢ < p < 2q.
Then the following property holds

g\/ﬁ<q<\/ﬁ<p<\/§\/ﬁ.

The bounds for ¢, (N) are provided in [10, Corollary 1]. This result implies
that ¢, (NN) can be approximated by N™.

Corollary 1. Let N = pq be the product of two unknown primes with ¢ < p <
2q. Then the following property holds

(VN" - 1)2 > on(N) > N™ (1 - 312%71) 4L
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2.4 Finding Small Roots

In this section, we outline some tools used for solving the problem of finding
small roots, both in the modular and integer cases.

Coppersmith [6-8] provided rigorous techniques for computing small integer
roots of single-variable polynomials modulo an integer, as well as bivariate poly-
nomials over the integers. In the case of modular roots, Coppersmith’s ideas were
reinterpreted by Howgrave-Graham [13]. We further provide Howgrave-Graham
result.

Theorem 1. Let f(21,...,2,) = Y. ai, i, @i ... x% € Z[xy,...,x,] be a poly-
nomial with at most w monomials, a be an integer and let

1@, el = D a2

be its norm. Suppose that

~ Fln,--90) = 0mod o for some | < X1, Jyn] < X
- ||f(le17ayan>|| < O[/\/(;,

then f(y1,...,yn) = 0 holds over integers.

Lenstra, Lenstra and Lovdsz [16] proposed a lattice reduction algorithm
(LLL) that is widely used in cryptanalysis and is typically combined with Howgrave-
Graham’s lemma. We further provide the version presented in [14,17].

Theorem 2. Let L be a lattice of dimension w. In polynomial time, the LLL
algorithm outputs a reduced basis (b, ...,b,,) that satisfies

w(w—1)
ol < - < [lbal] < 27T det(L) ==,
where det(L) is the determinant of lattice L.

Note that the condition

w(w—1)
2Tt det(L) 777 < a/vw

implies that the polynomials corresponding to b; match Howgrave-Graham’s
bound. This leads to

det(L) < et

where ¢ is an error term that is usually ignored.
In order to find a solution (y1,...,yn) we need the following assumption to
be true.

Assumption 3 The LLL reduced basis polynomials are algebraically indepen-
dent*, and the resultant computations for b; yields the common roots of these
polynomials.

4 they do not share a non-trivial gcd
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In [15], a lattice based method for finding small solutions of the equation
xH(y) + ¢ = 0 mod S is provided. This result extensions the Boneh and Durfee
method [4] and uses the LLL algorithm [16] and Howgrave-Graham’s lemma [13]
to derive the solutions. The author shows that the bounds provided in [15] are
optimal under reasonable assumptions.

Theorem 4. Let H(y) € Z[y] be a monic polynomial with degree r > 1 and 8
be an integer. Suppose that

— xoH(yo) +c¢=0mod B for some |zo| < X = 2, |yo| <Y = 37,
— || < XY,

then one can solve the equation H (y) + ¢ =0 mod § if

= 2(r+0)

6 < o2 — Iy when 0 <y <7/(r+1)2%,
0 <1—.,/r7, when r/(r +1)2 <~y < 1/r.

3 A New Look at ¢,

In this section we analyze the group’s order and show that it can be expressed
as a polynomial in p + ¢ with integer coefficients. This polynomial is later used
to derive H(y), and thus we are able to apply Kunihiro’s result. We also provide
a recurrence relation for ¢,.

Proposition 1. Let N be a positive integer. Then for any integers n > 1 the
following property holds

n—1

on(N)=—(p+ 9"+ Y ar(p+ ),
k=0

where ay, € 7.

Proof. Using the roots of unity we can express ™ — 1 as a product of linear
factors

n—1
" — 1 = H(x _ e?irrk/n)’
k=0
where e is Euler’s constant and 42 = —1. Using the fact that

eQ(nfz)ﬂ'k/n 627Tk€7217rk/n 672z7rk/n

we obtain that

o[ @ DTE (o - ™) e, whenn =25 +1,
(22 = 1) [T} (x — e¥™/™) (2 — e~ 27F/™)  when n = 2.
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Let a be an integer. We have the following relation

airk/n | _—aitk/n (aﬂk> . (Oﬂrk) (—aﬁk> . <—mrk>
e + e =cos| — ) +esin| —— ) +cos | —— | + 2sin
n n n n
(cwrk) . (owrk) <o¢7rk:> . (cwrk)
=cos| — ) +etsin| — ) +cos| — )] —isin | ——
n n n n
k
= 2cos (ﬂ> . (1)
n

Let S =p+q. For n =25+ 1 we have

en(N) = (" =1)(¢" = 1)

J
=p-1a-1)][- 2imk/ny( _ g=Rimh/ny g _ G2imhk/ny (o =2imh/ny
k=1

J
— (N _S+1 H 27,1rk/n + e4z7rk/n)(N _ Se*%ﬂrk/n n 574171'19/71)

= (N - S+1)ﬁ(N —28(N + )cos(¥)+2Ncos(¥>+52+1>

— gt ZakSk,
k=0

where for the fourth equality we used Equation (1). Since ¢, (N) € Z, we obtain
that ay € Z for all k.
When n = 2j, using Equation (1) we obtain

j—1
en(N) = (0" = 1)@ — 1) I~ M) (p — e THTH M) (g — 2T M) (g — TR

- 2mk drk
=(N?— 82 +2N +1) || (N — 25 N+1)COS(L)+2NCOS<L>+SQ+1>
Re1 n n
o251
=-8% 4+ 3" apst.

k=0

Again, since ¢, (N) € Z, we obtain that a; € Z for all k. This concludes our
proof. a

Our attack relies on expressing ¢,, as a polynomial in N and S. To ease the
computation of the a; values, we further provide a recurrence relation for ¢,,.

Lemma 2. Let N = pq and S = p + q be two positive integers. Then for any
integers n > 2 the following property holds

en(N) = (N""1 +1)(N = S +1) + Spp_1(N) — Npn_a(N),
where oo(N) =0 and o1 (N) =N — S+ 1.
Proof. For n > 2 we have the following
P =+ @ ") —pa(@" P+ ")
=SSP T = NE"TP 44"
=S(N" 1+ 1—gu1(N)) = N(N"2 41— p,-2(N))
=(S—1)N" 1 +5— NS¢, 1(N)+ N, o(N).
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which leads to

en(N) =N"+1-(p" +¢")
=N"+1—(S=1)N" ' =S+ N+ Sp,_1(N) — Np,_2(N)
= (N""' 4+ 1)(N = S +1) + Spn_1(N) = Ngn_o(N),

just as desired. a

Using Lemma 2, we can compute the first few values for ,, as a polynomial
inp-+gq
0y =N?+2N — 5% +1,
03 =N>+3NS — 8% +1,
oy = N*—2N? + 4ANS? — 5% +1,
w5 = N° —5N2S +5NS3 — 85 41,
06 = NS +2N3 —9N282 4 6NS* — S0 +1,
o7 =NT4+7N3S —14N25% + TNS° — S7 + 1,
wg = N® —2N* + 16 N35% — 20N2S8* + 8N S° — S% + 1,
09 = N? —9N*S + 30N35% — 27TN2S° 4+ 9NS7 — §% 4 1.

4 Application of Lattices

We further provide a method for finding the factorisation of N when d is small
enough.

Theorem 5. Let N = pq be the product of two unknown primes with ¢ < p < 2q.
Also, let e = N° and d < NY. We can factor N in polynomial time if

{'y<n—\/0.5m5, whenggég %,

3n—1 5 +1)2 +1)(3n—1)
v 774 - 2(:+1), when (n2n <0< v )2nn '

Proof. According to Proposition 1 we have that

n—1

on(N)=—=(p+ 9"+ Y ar(p+ ),
k=0

where a € Z. Finding p + ¢ is equivalent to solving the equation
n—1
h(y) = —y" + > ary¥,
k=0

or analogously the monic polynomial H(y) = —h(y).
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By rewriting the key equation ed — k¢, (N) = 1, we obtain the congruence
kpn(N) + 1 =0 mod e, that is equivalent to k(—p,(N)) — 1 = 0 mod e. Conse-
quently, we deduce the equation xH(y) — 1 = 0 mod e, which has k and p+ ¢ as
solutions.

In order to be able to apply Theorem 4 we first need to bound & and p + q.
Since k¢n(N) =ed — 1 < ed and N™ < ¢(N) (see Corollary 1), we obtain that

k< < No+tr=n,

on(N)

Using Lemma 1 we have that p 4+ ¢ < 3v/N. Therefore, we have that k < X =
e(6+7—n)/8 and pt+qg<Y ~ e0-5/9,

According to Theorem 4, we can find the solutions xg = k and yo = p+ ¢ to
equation zH (y) — 1 = 0 mod e if certain conditions are met.

Let consider the first case of Theorem 4. We have

1 n (n+1)?
0< — )
S% Sy T 2 ©
and
d+vy—n n+2 n+1 1 (n+2)0 n+1
_ ) —n < -
5 Soman) 2 TSy g
n+1 n-+ 2
<n-— —116
crsnT +<2(n+1) )
N 3n—1_ no
T T 2y
Since we also want v > 0 we must have
no 3n—1 (n+1)(3n—1)
< — Si<— 7
- Q(n—l—l)+ 4 - 2n

In the second case of Theorem 4 we have

n

(n+1)°
(n+1)2

<
- 2n

& —<6<

S|
|3

1

— <
20 —
and

0+7y—n vn
— <1-—"=Sd+y—n<d—vV0.5nd
d V26 7

< v <n—v0.5nd.

Since we also want v > 0 we must have

0<n—-—v0.5n0 < §<2n.
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Once yq is found, solving the following system of equations

P+a=1%
pg=N

enables us to factorise the modulus N. ad
The following corollary tells us what happens when e is large enough.

Corollary 2. Let N = pq be the product of two unknown primes with q < p <
2q. Also, let e ~ N™ and d < N7. We can factor N in polynomial time if

2 .
v < % — %, otherwise.

{7§n(1—\/0.5), whenn=1 orn =2,
Proof. In the first case we must have n/2 < n < (n+1)?/2n. The first inequality
is always true. Lets check the conditions for the second one

- (n+1)?2

< emP<n’+m+lenm-12<2en<V2+1~241
n

Thus, the second inequality is true only for n =1 or n = 2.
In the second case, according to the previous statements, we automatically
have (n + 1)2/2n < n for n > 3. Therefore, we only need to check if

< (n+1)(3n—1)

< 5 sm? <3’ +2n—-1<2< (n+1)%
n

This inequality is always true for n > 3. This concludes our proof. a

When cases n = 1 and n = 2 are considered, the optimal bounds presented
in [4,12] for RSA and [21,26] for Elkamchouchi et al.’s scheme become special
cases of Corollary 2.

Corollary 3. Let N = pq be the product of two unknown primes with ¢ < p <
2q. Also, letn=1, e~ N and d < NY. We can factor N in polynomial time if
7 <(2-+v2)/2 ~0.292.

Corollary 4. Let N = pq be the product of two unknown primes with ¢ < p <
2q. Also, letn =2, e ~ N? and d < N7. We can factor N in polynomial time
if vy <2—+1/2~0.585.

Remark 2. In [20], the author describes a public key encryption scheme based on
Pell’s equation, choosing key exponents such that ed = 1 mod lem(p — 1,¢ — 1).
Using our attack with n = 1 we recover the factors of NV, thereby we also break
the scheme presented in [20].


https://orcid.org/0000-0003-3953-2744

A Lattice Attack Against a Family of RSA-like Cryptosystems 11

4.1 Lattices versus Continued Fractions

According [10], we can recover the secret exponent d using an attack based on
continued fractions if the following bound holds

log,(d) < 0.5(1.5n — ) logy (N).
The previous bound is equivalent to
v < 0.75n — 0.56,

when e = N° and d < N7.

To compare the continued fractions bound with the lattice based ones, we
need to consider two cases. In the first case, n/2 < § < (n + 1)?/2n, we have
that the difference is

V2nd _3ﬁ+§_ n+ 25 — 2v2nd

2 4 2 4

To see that Dy > 0 we rewrite it as

D():n—

n+26 > 2V2nd & n? +46% + 4nd > 8nd & (n — 20)* > 0,

which is always true. Therefore, in this case the lattice attack is always better
than the continued fraction attack of [10].

In the second case, (n +1)?/2n < § < (n+ 1)(3n — 1)/2n, we have that the
difference is

3n—1_ néd 3n 6 ) 1

I ot 427 %myn 7

D; =

The difference D; is positive once § > (n+1)/2. Since (n+1)2/2n > (n+1)/2,
the condition D; > 0 is met. Hence, we obtain the same result as in the first
case.

5 Experimental Results

To check the validity of our result, we ran the code for our attack [2] on a
workstation using Ubuntu 20.04.1, with the following specifications: Intel(R)
Core(TM) i7-1165G7 CPU 2.80GHz with 8 cores and 16 Gigabytes of RAM.
The programming language we used for implementing our attack was SageMath
10.3. We based our code on the Boneh-Durfee attack implementation found
in [25].
For n = 3 we used the following parameters
N = 3014972633503040336590226508316351022768913323933,
e = 65332192293193751558416527948556164371731169655155
06896619661337651278240438946561557562791800951772

99327928182942709277283882982169138979615253.
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Remark that e ~ N296 and the equation is #H(y) — 1 = 0 mod e, where
H(y) =y® — 3Ny — N® — 1.
Using the notations from [15], we set the bounds

X = 122340436214885406144517373952 ~ N6,
Y = 1736367655049770932633600 ~ N°5,
Z=XY3+|-1]
= 6404645352802741504214236211001940001519012
9395671373426965878351755901829539946543645
5016333311999999 ~ N2-099

and the lattice parameters m = 5 and 7 = 1. The size of the lattice is w = 77.
Let f(z,y,2z) = xH(y) — 1. We define the shift polynomials

g[i,j,k] = ‘lejf(xa Y, Z)kemik'

We construct the lattice £ using the coefficients of the polynomials defined by

{g[ui’j,i] , foru=0,... mi=0,...u;5=0,...,n—1;

910,5,u] , foru=0,... m;j=n,....n+7u—1.

Then we reduce the lattice using LLL, look for independent vectors in £, compute
the resultant and derive the solutions

o = 2916400291365712080420733503,
Yo = 3542083907659073025514626.

We know that p + g = yo. Therefore, we can combine yy with N to find the
prime factors

p = 2119778199036859068707819,
q = 1422305708622213956806807.

Note that our attack takes around 6 seconds to find p and gq.

6 Conclusions

In this paper, we presented a lattice based small private key attack against
a family of RSA-like cryptosystems. To mount our attack we first reduce the
problem to solving the equation zH (y) — 1 = 0 mod e, after which we apply a
result proven by Kunihiro [15]. The resulting bound improves the previous one,
which was based on continued fractions and presented in [10]. In the cases of
RSA and Elkamchouchi et al.’s scheme, our derived bounds reduce to the optimal
bounds found in [4,12] and [21, 26], respectively. Additionally, our attack works
by factorising the modulus, and thus addressing an open problem left in [10].
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Future Work. An interesting research direction, is to find out whether the attacks
presented in [3,10,18,23,23] for the RSA and Elkamchouchi et al.’s schemes are
applicable in the general case.
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