LAMA: Leakage Abuse Attacks Against Microsoft Always Encrypted

Ryan Seah', Daren Khu?, Alexander Hoover ©° and Ruth Ng?
Y McGill University, Montréal, Canada
2DSO National Laboratories, Singapore
3 University of Chicago, Chicago, USA
ryan.seah@mail.mcgill.ca, kboontat@dso.org.sg, alexhoover @uchicago.edu, niiyung @dso.org.sg

Keywords:

Abstract:

Microsoft SQL, Leakage abuse attack, database management, encrypted search, attack, cryptography

Always Encrypted (AE) is a Microsoft SQL Server feature that allows clients to encrypt sensitive data inside

client applications and ensures that the sensitive data is hidden from untrusted servers and database adminis-
trators. AE offers two column-encryption options: deterministic encryption (DET) and randomized encryption
(RND). In this paper, we explore the security implications of using AE with both DET and RND encryption
modes by running Leakage Abuse Attacks (LAAs) against the system. We demonstrate how an adversary
could extract the necessary data to run a frequency analysis LAA against DET-encrypted columns and an
LAA for Order-Revealing Encryption against RND-encrypted columns. We run our attacks using real-world
datasets encrypted in a full-scale AE instancer and demonstrate that a snooping server can recover over 95%
of the rows in 8 out of 15 DET-encrypted columns, and 10 out of 15 RND-encrypted columns.

1 INTRODUCTION

When outsourcing databases to an untrusted server,
users face a utility-security trade-off. Minimizing
bandwidth and processing time while querying could
compromise data security and privacy.

Previous research has explored using weakened
cryptographic techniques, such as deterministic en-
cryption for equality queries (Popa et al., 2011)) and
order-preserving/order-revealing encryption for range
queries (Agrawal et al., 2004). These methods,
known as property preserving encryption (PPE) prim-
itives, enable servers to handle queries without de-
crypting data or involving clients. However, weak-
ening encryption raises security concerns.

Studies (Cash et al., 2015; [Naveed et al., 2015}
Bindschaedler et al., 2017; |Grubbs et al., 2017) have
identified vulnerabilities in such systems and con-
ducted simulations demonstrating the reconstruction
of significant portions of the underlying database.
These attacks, known as leakage abuse attacks
(LAAs), exploit prior knowledge of the value distri-
bution in the database to infer plaintext values in the
encrypted database.

This study, along with other similar LAAs, (Islam
et al., 2012; |Zhang et al., 2016} [Pouliot and Wright,
2016; Bost and Fouque, 2017; |Anzala-Yamajako
et al., 2019; |[Ning et al., 2021) showcases how an

adversary, such as a database administrator, can re-
construct databases encrypted with PPE. While many
LAAs have been proposed and simulated, there is a
lack of prior work testing these attacks on operational
systems, the notable exception being recent work at-
tacking MongoDB Queryable Encryption(Gui et al.,
2023). This paper further fills that gap by demonstrat-
ing these attacks on Microsoft’s Always Encrypted
(AE) (Antonopoulos et al., 2020) system, examining
the cryptographic schemes (DET and RND) for po-
tential leakage and exploiting them using LAAs. [j)

While the algorithms for LAAs have been previ-
ously discussed, our study is the first to:

* Identify leakage specific to AE implementation,
particularly in its use of the indexing data struc-
ture for the RND scheme. This enables the appli-
cation of an LAA that would not be feasible on
RND in general, such as in CryptDB.

* Conduct a full-scale demonstration of two LAAs
against an instance of AE, illustrating their appli-
cability in real-world scenarios, particularly when
accessed by the server (database administrator).

This analysis presents the first examination of AE
using LAAs that we are aware of, highlighting its

IPrior to submission, the authors informed Microsoft
about these vulnerabilities.
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cryptographic shortcomings within practical environ-
ments.

1.1 Threat Model

Our study adopts a “smash-and-grab” setting, where
an adversary gains full system access at a single point,
retrieving an information snapshot. This adversary is
weaker than both the “honest-but-curious” observer
and the “malicious server” capable of protocol devi-
ations. Despite this, we achieve significant attacks
on AE. Additionally, we provide the adversary with
auxiliary information about server data distribution,
like a plaintext column assumed similar to the en-
crypted one. This aligns with prior research assump-
tions (Cash et al., 2015 Naveed et al., 2015} |[Bind-
schaedler et al., 2017; /Grubbs et al., 2017 Hoover
et al., 2024)), capturing the adversary’s ability to ex-
ploit publicly available or previously leaked data.

2 PRELIMINARIES

2.1 Database Console Commands
(DBCO)

Microsoft SQL Server Database Console Commands
(DBCC) are utilized to manage the SQL Server
database, performing maintenance, informational,
validation, and miscellaneous tasks. These com-
mands are stored in plaintext, making them visible to
the untrusted SQL Server Database administrator.

2.2 Always Encrypted

AE, a feature of Microsoft SQL Server, enables en-
cryption of sensitive data columns on the client side
before storage on an untrusted server. AE allows
querying without server-side decryption or down-
loading the entire encrypted column to the client.
Antonopoulos et al. (Antonopoulos et al., 2020) de-
scribe AE supporting two encryption types: deter-
ministic (DET) and randomized (RND). For simplic-
ity, we will assume a single encrypted column with
r rows in AE, expressed as (pi,..., p,) unencrypted
and (cy,...,c,) encrypted.

2.2.1 DET

Columns encrypted with DET facilitate point-selects,
enabling users to search for rows with specific plain-
text values. This encryption method employs de-
terministic AES-CBC with a value-dependent SHA

hash as the initialization vector (IV), ensuring that
if p; = pj, then ¢; = cj. Consequently, a server
can identify rows matching p; when provided with
c¢;. This DET encryption resembles that of CryptDB
(Popa et al., 2011) but lacks “onion encryption”, mak-
ing it susceptible to the Frequency Analysis LAA
demonstrated against CryptDB by Naveed, Kamara,
& Wright (Naveed et al., 2015)).

2.22 RND

Similar to CryptDB, AE allows columns to employ
the randomized encryption scheme RND, which re-
moves all identifying information about p;, such as
equality patterns. This prevents LAAs from exploit-
ing ciphertext properties but hampers server-assisted
query processing. However, Antonopoulos et al.
detail the construction of a range index enabling
enclave-assisted equality, range, and pattern matching
queries on RND columns (Antonopoulos et al., 2020).

This index facilitates server determination of col-
umn values falling within specified ranges by main-
taining a B+-tree on the server with pointers to ¢; val-
ues ordered according to their corresponding p; val-
ues, i.e. if p; < p;, then ¢; would appear ahead of ¢;
. Consequently, although no leakage can be extracted
from ciphertexts, a linear ordering of plaintexts can
be inferred from the B+-tree, similar to the leakage
of Order-Revealing Encryption (ORE) (Grubbs et al.,
2017).

It’s noteworthy that Antonopoulos et al. discuss
a variant of AE on SQL Server 2016, predating the
addition of secure enclaves in 2019 (Antonopoulos
et al., 2020), while our LAAs were conducted on the
current version of AE with secure enclaves.

2.3 Leakage Abuse Attacks (LAAs)

The (unencrypted) column values are assumed to
originate from the domain V =vy,..., vy, with an as-
sumed ordering such that vi < --- < vy. We presume
the adversary possesses knowledge of the rough dis-
tribution of plaintexts across the domain, represented
as a probability distribution (ay,...,ay), where a; =
Prjsi,..r[pj = viJ. This auxiliary data could be
sourced from online repositories, public datasets, or
data breaches. Our LAAs could be extended to
multiple AE columns, attacking each effectively, po-
tentially yielding higher success rates due to cross-
column correlations (Bindschaedler et al., 2018)). AE
offers two column encryption forms, each catering to
specific SQL query classes. We will now delineate the
LAAs applicable to each encryption type.
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Figure 1: The system diagram shows how a Transact-SQL statement from a client is parsed by a SQL database. If the
statement involves encrypted data, client drivers send column encryption keys to secure enclaves. These enclaves process the
statement, protecting the keys from exposure. Index and Table data organize database files, accessible outside the enclaves.

Untrusted MSSQL Database

N N OxDEE  0x123 0xABC
+ N N N
R R —
a) a a)
U] U] U]

B+ Tree Index Data  Table Data Ordered Ciphertext

Figure 2: Using the Database Console Command (DBCC),
an untrusted database administrator can retrieve ciphered
columns ordered by plaintext values for RND encryption..

2.3.1 Frequency Analysis LAA

This attack targets DET-encrypted columns, where
the adversary utilizes observed frequencies of de-
terministically encrypted ciphertexts to infer corre-
sponding plaintexts using auxiliary data. Specifi-
cally, (c1,...,¢,) adopts at most N distinct cipher-
text values, ordered lexicographically and frequency-
counted. Subsequently, the adversary guesses that the
i most frequent ciphertext decrypts to the i’ highest
a; probability. Patterson and Lacharité demonstrated
this as the optimal strategy for the adversary in our
context (Lacharité and Paterson, 2015)).

2.3.2 Order-Revealing Encryption LAA

This attack can be applied to RND-encrypted
columns. The intuition behind the attack is the fol-
lowing. Firstly, we estimate the number of ¢; which
decrypt to each plaintext value using the auxiliary
data (i.e. assume that v; occurs r-g; times among
(c1,...,¢r)). Then, we assign plaintexts values to the
ciphertexts in the proportions matching our estimates,
in accordance to the leaked ordering (e.g. assign the
[r-a; | lowest-valued ciphertexts, as leaked in the B+
tree, to vy, the smallest valued plaintext). We note
that even though these queries are performed with en-
claves enabled, the attack is still possible as long as
the the B+-tree index is constructed on the server.

3 ATTACK SETUP

3.1 Experimental Setup

We deploy a server on Azure Windows Server 2019
Datacenter edition with SQL Server 2019 (MSSQL),
while the client runs on a separate computer. Figure
[T)illustrates the system diagram, and Table [T| summa-
rizes the conducted experiments. Each experiment is
duplicated, with plaintext data encrypted using DET
in the first iteration and RND in the second. In
the RND experiment, columns are indexed to enable
database computation queries like JOIN and GROUP.

3.2 Datasets used

The experiments utilize datasets from Ohio voters,
Florida voters, and the Healthcare Cost and Uti-
lization Project’s (HCUP) National Inpatient Sample
(NIS) from 2018 and 2019. The Ohio and Florida
datasets are sourced from publicly available voter
registries EL while the HCUP data is a selection of
columns from HCUP-NIS El The methods employed
in this study comply with the Data Use Agreement
provided by HCUP and do not enable individual re-
identification in the HCUP data.

In Table the first three columns detail the
columns used in the 15 experiments. For each experi-
ment, ciphertext and auxiliary data are derived from a
million randomly selected rows of the full dataset. In
the Florida - HCUP-2019 attacks, HCUP rows with

zhttps://www6.ohiosos.qov/ords/f?p:
VOTERFTP:STWD: : : #stwdVtrFiles and http:
//69.64.83.144/~f1/download/20220331/

3For more information about HCUP data and how to
obtain data, see http://www.hcup-us.ahrq.gov.
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Experiment Datasets Domain Size DET RND
Column Attribute Auxiliary Ciphertext # distinct values in v-score r-score r-score
Data Data in ciphertext col. (%) (%) (%)

First Name Florida Ohio 54,477 0 9 5
Last Name Florida Ohio 143,012 0 2 0
Indicator of Sex Florida HCUP-19 5 100 100 98
Race Florida HCUP-19 8 33 66 92
Indicator of Sex (HCUP) HCUP-18 HCUP-19 5 60 929 929
Race (HCUP) HCUP-18 HCUP-19 8 100 100 929
Age HCUP-18 HCUP-19 93 34 32 74
Neonatal age ind. HCUP-18 HCUP-19 3 100 100 98
Admission month HCUP-18 HCUP-19 13 77 76 98
Adm. on weekend HCUP-18 HCUP-19 3 100 100 99
Died during hosp. HCUP-18 HCUP-19 4 100 100 929
DRG on discharge HCUP-18 HCUP-19 763 4 26 52
MDC on discharge HCUP-18 HCUP-19 26 77 98 98
IDC-10-CM Diag. HCUP-18 HCUP-19 13,189 0 22 35
Days to I10_PR1 HCUP-18 HCUP-19 135 21 99 98

Table 1: Summary of experiments conducted. Fifteen experiment setups were used, with 1 million rows each of auxiliary
and ciphertext data columns. For reference, we indicate the domain size (# of distinct values) in each ciphertext column. The
success of the frequency analysis LAA against DET-encryption and ORE attack against RND-encryption is reported in terms
of v-scores and r-scores (see Section 4) for each experiment setup.

undocumented values are excluded to ensure the at-
tack’s success can be accurately determined. Nega-
tive values are treated as “NULL” values, except in
HCUP-HCUP experiments where they are retained
uniquely for comparison purposes.

3.3 Ciphertext Data Extraction and
Attack

We demonstrate that the attacks can be run by an ad-

versary (e.g. the database administrator) whose ac-

cess is limited to the encrypted data on the server.
The data is extracted as follows,

* DET: The entire encrypted database is down-
loaded for the attack

* RND: To determine the ciphertext order, the Ta-
ble data is first used to identify all the Index Data
(i.e. when PageType is 2). Next, we determine
the ordering of the Index Data using columns
PrevPagePID or NextPagePID. Finally, the or-
dered ciphertexts are obtained by querying the
PagePID in order. This process is illustrated in
Figure[2] Note that this is possible as an untrusted
database administrator on the server can inspect
Table data and Index data through the Database
Console Command (DBCC).

LAAs is then applied, frequency analysis on DET and
the ORE attack on RND.

4 RESULTS

The success of our attacks is meausured with two met-
rics, the row-score (r-score) and the value-score (v-
score).

The r-score captures how much of the SQL data
the adversary was able to accurately reconstruct. It is
the percentage of rows in the AE-encrypted column
which the LAA correctly inferred. For both RND and
DET-encrypted columns, let (p], ..., p}) be the plain-
text values output by the respective LAA (i.e. the ad-
versary guesses that ¢; decrypts to p’ for each i). Then
the r-score is given by

Pr [pi=pi. (1)

In DET-encrypted columns, assessing the success of
frequency analysis may involve comparing the num-
ber of distinct values that were correctly decrypted.
This comparison is quantified using the v-score, de-
fined as the fraction of distinct values correctly in-
ferred by frequency analysis relative to the column’s
domain. Formally, let V represent the domain of the
column, then the v-score is given by:
/

vesv,igsr{l,...,r}[p’ = pilpi =V] @
The v-score and r-score are generally correlated but
can differ significantly in some cases, especially when
real-world data follows a Zipfian distribution. This



distribution tends to prioritize accuracy for higher fre-
quency ciphertexts, skewing the r-score but not the v-
score. Depending on the attack scenario, either metric
may provide a more accurate representation of the ad-
versary’s success. It’s worth noting that the v-score is
irrelevant for the ORE attack since ciphertexts cannot
be grouped by equality pattern.

The experiment results, detailed in Table in-
dicate that frequency analysis successfully recovers
over 95% of rows in 8§ out of 15 cases when determin-
istic encryption is employed. Additionally, the ORE
attack retrieves more than 95% of rows in 10 out of 15
cases when randomized encryption is utilized. These
findings underscore the inadequacy of Microsoft AE’s
encryption in our attacker model, particularly when
encrypting small-domain column data.

Interestingly, the ORE attack outperforms fre-
quency analysis in most cases, contrary to expecta-
tions given the traditional strength of randomized en-
cryption (e.g., in CryptDB (Popa et al., 2011)). This
highlights the significance of minimizing leakage in
indexing data structures to preserve the integrity of
high-security column encryption.

4.1 Impact and Mitigation

Our attack highlights the limited security provided
by AE’s encrypted column feature, especially for
small-domain columns adhering to known distribu-
tions, against persistent eavesdropping adversaries.
This vulnerability poses significant concerns, partic-
ularly in the context of outsourcing sensitive health-
care data, where any curious eavesdropper (e.g., an
employee at the Cloud service provider) could re-
construct sensitive patient information using publicly
available data.

To mitigate this threat, several approaches can be
considered. As an immediate measure, AE could re-
strict range searches on RND columns and eliminate
the B+-tree indices supporting them. This would re-
store RND columns to a level of security similar to
that of CryptDB (Popa et al., 201 1)), which aligns with
the intended security level for RND in AE’s scheme.
Without these indices, the ORE attack described ear-
lier would be infeasible, encouraging users to store
sensitive data using RND columns. Similar recom-
mendations were proposed by the CryptDB authors
(Popa et al., 2015)).

However, we do not recommend this as a long-
term solution. Not only does it reduce client function-
ality and fail to resolve the issue with the DET attack,
recent research has shown that similar LAAs may still
be possible on RND columns using cross-column cor-
relations (Bindschaedler et al., 2018)).

A more reliable long-term solution would be to in-
tegrate Structured Encryption (StE) into the AE cryp-
tosystem (Chase and Kamara, 2010). StE, a general-
ization of Searchable Encryption (Song et al., 2000),
offers a broad range of cryptographic schemes target-
ing the precise problem of minimizing leakage when
searching encrypted data. Simple StE implementa-
tions for point-selects or range searches, with signifi-
cantly lower leakage than DET or RND, have been de-
ployed at scale, e.g. MongoDB’s Queryable Encryp-
tiorﬂ and Stealth’s SSE scheme (Ishai et al., 2016).
We do note however, that these solutions, especially
Queryable Encryption (Gui et al., 2023), have been
vulnerable to other attacks not covered in this paper.
In an StE system, the frequency of some plaintext p; is
revealed only when queried by the client, and cipher-
texts are not linearly ordered. Thus, the RND attack
does not apply, and the DET attack only succeeds af-
ter the client exhaustively queries the column, which
may be an unrealistic assumption for large-domain
columns.

This solution is substantially stronger than AE,
where both attacks can be executed without a sin-
gle query being made by the client (Chase and Ka-
mara, 2010). Additionally, in a system with multiple
columns, the attacks as presented become impossible
since the StE system does not differentiate between
queries to different columns. Therefore, StE is an at-
tractive and commercially viable alternative for de-
fending against these attacks.

For use-cases requiring even higher levels of
security, heavier cryptographic techniques such as
Volume-Hiding multimaps (Kamara and Moataz,
20109; [Patel et al., 2019) or Oblivious RAM (Goldre-
ich, 1987) may be employed to completely suppress
leakage.

S CONCLUSION

In this paper, we explore the possibility of running
known LAAs against leakage from Microsoft AE. We
demonstrate that an untrusted database administrator
at the server can extract sufficient leakage from the
encryption scheme to be able to reconstruct signif-
icant proportions of encrypted columns. These re-
sults indicate that AE’s security guarantees on DET
and RND might not be as robust as expected by the
average user. Additionally, these findings raise con-
cerns about the trade-off between utility and security
in AE when using these encryption modes. Future
real-world systems should be careful to understand

4https://www.monqodb.com/products/
queryable-encryption
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and make clear the security offered by their services,
and to be aware that certain tools may be unfit for
storing sensitive data.
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