
Scloud+: An Efficient LWE-based KEM
Without Ring/Module Structure

Anyu Wang1,6,7†, Zhongxiang Zheng2†, Chunhuan Zhao3,
Zhiyuan Qiu4, Guang Zeng3, Ye Yuan3, Changchun Mu5, and

Xiaoyun Wang1,4,5,7,8(B)

1 Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China
{anyuwang,xiaoyunwang}@tsinghua.edu.cn

2 School of Computer and Cyber Sciences, Communication University of China,
Beijing, China

zhengzx@cuc.edu.cn
3 Shield Lab, Huawei Technologies, Beijing, China
{zhaochunhuan,zengguang13,yuanye44}@huawei.com

4 Shandong Institute of Blockchain, Jinan, China
qiuzhiyuan@sdibc.cn

5 Digital Currency Institute, the People’s Bank of China
mchangchun@pbc.gov.cn

6 Zhongguancun Laboratory, Beijing, China
7 National Financial Cryptography Research Center, Beijing, China

8 Key Laboratory of Cryptologic Technology and Information Security, School of
Cyber Science and Technology, Shandong University, Qingdao, China

Abstract. We present Scloud+, an LWE-based key encapsulation mech-
anism (KEM). The key feature of Scloud+ is its use of the unstructured-
LWE problem (i.e., without algebraic structures such as rings or mod-
ules) and its incorporation of ternary secrets and lattice coding to en-
hance performance. A notable advantage of the unstructured-LWE prob-
lem is its resistance to potential attacks exploiting algebraic structures,
making it a conservative choice for constructing high-security schemes.
However, a key disadvantage of such schemes is their limited compu-
tational and communication efficiency. Scloud+ utilizes ternary secrets
and BW32 lattice codes to enhance noise control and ensure robust error
correction during decryption, enabling smaller parameters while main-
taining low decryption failure probabilities. Equipped with these tech-
niques, Scloud+ exhibits a significant improvement in efficiency. When
compared with FrodoKEM for parameter sets targeting 128, 192, and
256 bits of security respectively, Scloud+ achieves practical performance
with a public key size approximately 0.71 ∼ 0.87x and a ciphertext size
approximately 0.56 ∼ 0.78x that of FrodoKEM. The encapsulation plus
decapsulation time is approximately 0.74 ∼ 0.77x that of FrodoKEM.

Keywords: post-quantum cryptography · key encapsulation mechanism
· learning with errors · lattice code · Barnes-Wall lattice

† These authors contributed equally to this work.
B Corresponding author.

2 A. Wang, Z. Zheng, C. Zhao, Z. Qiu, G. Zeng, Y. Yuan, C. Mu and X. Wang

1 Introduction

Shor’s quantum algorithm [1] makes the migration to post-quantum public key
cryptography inevitable. Among the post-quantum public key schemes, those
based on the learning with errors (LWE) problem have gained particularly preva-
lent. The LWE problem was first introduced by Regev in 2005 [2], which roughly
requires to solve a noisy linear equations modulo a known positive integer. Con-
cretely, the goal of LWE is to find the secret vector s ∈ Zn

q , given the instance
(A,b = As + e) where A ∈ Zm×n

q is an uniformly-random matrix and e is an
error vector with small components sampled from some probability distributions
over Z. It has been proven that the LWE problem is at least as hard as the ap-
proximate shortest vector problem (SVP) and the shortest independent vectors
problem (SIVP) on lattices, which remain difficult even in the sense of quantum
computing. This reduction also establishes the average-case hardness of LWE,
making it a strong candidate for cryptographic constructions.

Since Regev proposed the first LWE-based public key encryption algorithm [2],
various schemes have been developed based on the hardness of LWE. These
schemes can be broadly divided into two categories, depending on whether they
introduce algebraic structure into the LWE problem. The first category includes
schemes that base their security purely on the hardness of the LWE problem
without any additional algebraic structure (referred to as unstructured-LWE),
such as FrodoKEM [3]. The second category includes schemes built on variants of
the LWE problem that incorporate algebraic structures (referred to as structured-
LWE), such as the Ring-LWE problem [4,5] and the Module-LWE problem [6].
Examples of schemes in this category include CRYSTALS-Kyber [7], Saber [8],
LAC [9], Aigis [10], and etc.

The primary benefit of introducing algebraic structure is that it enables the
construction of LWE-based schemes that are more ‘compact’, i.e., more efficient
in terms of computation and communication complexity. However, the algebraic
structure also complicates the ability to reduce the hardness of the structured-
LWE problems to the hardness of random lattice problems (which lack such
structure), such as the approximate SVP and SIVP. Instead, it is known that
these LWE variants can be reduced to hard problems on algebraically struc-
tured lattices. Specifically, the Ring-LWE problem has been shown to be at
least as hard as the approximate Ideal-SVP [4], and the Module-LWE problem
is known to be at least as hard as the approximate Module-SVP [6]. Unlike
the approximate SVP and SIVP, the hardness of the approximate Ideal-SVP
and approximate Module-SVP under quantum computation remains a topic of
debate. In fact, several efficient quantum algorithms for the approximate Ideal-
SVP have been discovered in recent years. In 2016, Cramer et al. demonstrated
that the approximate Ideal-SVP for specific cyclotomic fields with an approxi-

mation factor of 2Õ(
√
n) can be solved in quantum polynomial time [11], whereas

the best-known algorithm for the approximate SVP with the same approxima-
tion factor is still sub-exponential [12]. This result has been extended to general
cyclotomic fields [13,14,15,16], and arbitrary number fields [17,18]. Although it
seems unlikely that these approaches can be directly extended to address the ap-

Scloud+: An Efficient LWE-based KEM 3

proximate Module-SVP or the Ring-LWE/Module-LWE problems, the impact
of algebraic structure on security remains unclear.

As a result, schemes based on the unstructured LWE problem, such as
FrodoKEM, are often regarded as conservative choices for high-security applica-
tions [19], and are considered suitable for ensuring long-term confidentiality [20].
However, a key disadvantage of such schemes is that their computation and com-
munication efficiency is much worse than that of structured-LWE-based schemes,
posing a major obstacle to their deployment in practical systems. Thus, a nat-
ural question arises regarding how the performance of unstructured-LWE-based
schemes can be improved.

Two primary approaches have been explored for improving the performance
of LWE-based schemes. The first approach focuses on modifying the distribution
of the secret in LWE for easier sampling. In the original LWE problem, the secret
is uniformly distributed over Zn

q . Applebaum et al. [21] demonstrated that the
LWE problem remains hard if both s and e follow a Gaussian distribution, and
this idea was refined in Kyber and Aigis, where s and e are set to follow a bino-
mial distribution. LAC [9] showed that using a ternary secret, where each entry
is in {0,±1}, can significantly reduce parameter sizes and improve the scheme’s
efficiency. It is worth noting that ternary secrets are also widely adopted in homo-
morphic encryption schemes such as BGV [22], BFV [23], and CKKS [24]. The
second approach leverages error-correction methods for improved communica-
tion efficiency. One line of such work involves using linear error-correcting codes,
such as BCH codes [9,25], LDPC codes [26], and others [27,28,29]. Another line
of work involves lattice coding, such as the D4 lattice [30], the E8 lattice [31,32],
the Leech lattice [33], and others [34]. Although these methods have proven ef-
fective in boosting the efficiency of LWE-based schemes, the challenge of how to
achieve performance approaching optimal for unstructured LWE-based schemes
persists as a significant and unresolved problem.

1.1 Our Contributions

We present Scloud+, a key encapsulation mechanism (KEM) based on the unstru-
ctured-LWE problem. In a nutshell, Scloud+ leverages ternary secrets and lat-
tice coding to significantly enhance both computational and communication ef-
ficiency. Our detailed contributions are as follows.

Ternary Secret. For all parameters, Scloud+ employs a ternary secret with a
Hamming weight equal to half its length. We observe that in unstructured-LWE-
based schemes, two of the most time-consuming operations are the generation
of the matrix A and the matrix-vector multiplication, i.e., the computation of
As. Employing a ternary secret in Scloud+ improves noise control during de-
cryption, enabling the use of a smaller ciphertext modulus to ensure correct
decryption. This provides an opportunity to reduce matrix sizes while maintain-
ing the same security level, thereby facilitating faster matrix sampling and more
efficient matrix-vector multiplication for implementation. Furthermore, fixing

4 A. Wang, Z. Zheng, C. Zhao, Z. Qiu, G. Zeng, Y. Yuan, C. Mu and X. Wang

the Hamming weight of the secret to half its length prevents it from becoming
overly sparse, addressing potential security concerns for sparse-secret LWE.

Lattice Coding. Scloud+ designs a robust error correction method based on
BW32 lattice codes, ensuring a smaller choice of parameters while maintaining
the appropriate decryption failure probability. While the use of lattice coding
is common in LWE-based constructions, previous schemes often involve lattice
codes with dimensions 4 to 16. Although larger-dimensional lattice codes gen-
erally offer better signal-to-noise ratios and thus stronger error correction ca-
pabilities, they require specially designed labeling and delabeling processes to
efficiently map the message to the lattice code or vice versa, which poses a chal-
lenge for high-dimensional lattice codes. For example, the 24-dimensional Leech
lattice-based PKE proposed in [33] suffers from a lack of a labeling technique,
making it impractical [34]. Scloud+ overcomes this by designing efficient labeling
and delabeling for Barnes-Wall lattice codes, enabling the use of 32-dimensional
lattice codes for error correction without compromising the scheme’s perfor-
mance.

Security and Parameters. Scloud+ provides three sets of parameters, tar-
geting 128, 192, and 256 bits of security. Benefiting from the aforementioned
techniques, we can achieve a very flexible parameter selection for Scloud+, mak-
ing it possible to maintain a moderate security margin (about 8 bits) for all sets
of parameters while ensuring the conformed decryption failure probability. The
security is comprehensively analyzed using potentially the most effective attacks
for LWE, including primal attack, dual attack, and hybrid attack.

Combining the above, Scloud+ achieves a remarkable improvement in its
performance. Compared with FrodoKEM, Scloud+ achieves a public key size
approximately 0.71 ∼ 0.87x, and a ciphertext size approximately 0.56 ∼ 0.78x
that of FrodoKEM, and achieves an encapsulation + decapsulation time approx-
imately 0.74 ∼ 0.77x that of FrodoKEM.

1.2 Related Works

FrodoKEM. FrodoKEM is the first Key Encapsulation Mechanism (KEM)
based on the unstructured-LWE problem. One of its distinguishing features is
that both the secret and error terms follow a rounded Gaussian distribution,
closely resembling the discrete Gaussian distribution from the original LWE for-
mulation. A key modification in Scloud+ is the adoption of ternary secrets. We
note that ternary secrets are commonly used in homomorphic encryption and
NTRU schemes, and they are generally not believed to significantly weaken the
hardness of the underlying problem. To ensure the security of our parameter
choices, we perform a thorough security analysis of Scloud+, incorporating po-
tentially effective LWE attacks.

Scloud+: An Efficient LWE-based KEM 5

Table 1. Summary of the performance of Scloud+.KEM.

Scheme Scloud+-128 Scloud+-192 Scloud+-256

Classical Security (bits) 136.07 200.42 263.11

Decryption Failure Rates 2−134.21 2−200.64 2−265.74

Public Key Size (bytes) 7200 11136 18744

Cipertext Size (bytes) 5456 10832 16916

Shared Secret Size (bytes) 16 24 32

KeyGen (103cycles) 1052 2034 3564

Encaps (103cycles) 1115 2226 3738

Decaps (103cycles) 1109 2262 3884

Lattice Coding for Unstructured-LWE-based Schemes. Several efforts
have been made to leverage lattice coding to reduce the communication cost of
unstructured-LWE-based schemes. As previously mentioned, a theoretical analy-
sis of applying the Leech lattice to unstructured-LWE-based schemes is provided
in [33], but it suffers from a lack of a labeling technique. In [32], it is demonstrated
that using the E8 lattice can reduce the communication cost of FrodoKEM by
7%. Similarly, in [34], the authors analyze the impact of applying various lat-
tice codes up to dimension 64 on FrodoKEM, achieving a communication cost
reduction of approximately 7%. However, both [32] and [34] lack computational
performance evaluations, leaving it uncertain whether these improvements can
be practically implemented in real-world schemes.

1.3 Outline

Section 2 lays out the preliminaries. Section 3 delves into lattice coding and our
tailored approach for Scloud+. The PKE and KEM are detailed in Section 4 and
Section 5, respectively. Section 6 discusses the parameters and security analysis.
Finally, Section 7 assesses the performance of Scloud+.

2 Preliminaries

2.1 Notations

– Vectors are denoted by bold lower-case letters, such as v, while matrices are
represented by bold upper-case letters, such as A.

– The Hamming weight of a vector v is denoted as wH(v). For any integer
0 ≤ n < 2k, we define Bit(n, k) = (b0, . . . , bk−1) ∈ {0, 1}k as the base-2

expansion of n, where n =
∑k−1

i=0 bi · 2i. The Hamming weight of the vector
Bit(n, k) is denoted by wH(n).

6 A. Wang, Z. Zheng, C. Zhao, Z. Qiu, G. Zeng, Y. Yuan, C. Mu and X. Wang

– The inner product of vectors u,v ∈ Rn is expressed as ⟨u,v⟩, and the Eu-
clidean norm of a vector v is expressed as ∥v∥ = ⟨v,v⟩. The distance between
a vector v and a set S ⊆ Rn is defined by dist(v,S) := mint∈S ∥t− v∥.

– For any real number x ∈ R, we use ⌊x⌋ to denote the greatest integer less
than or equal to x, and ⌊x⌉ = ⌊x + 1/2⌋ to denote the integer closest to x.
Additionally, ⌊x⌉odd denotes the nearest integer to x, where any half-integer
n + 1/2 is rounded to the closest odd integer. For integers n and q > 0, we
denote by [n]q the integer such that q | (n − [n]q) and 0 ≤ [n]q < q. These
notations extend to vectors by applying the operations component-wise.

– Sampling from a distribution χ is denoted by x ← χ. The uniform discrete
distribution over a finite set S is denoted by U(S).

2.2 Lattices and Related Problems

A lattice L of rank m and dimension n (with m ≤ n) is a discrete subset of Rn

defined as

L = {c1b1 + · · ·+ cmbm | ci ∈ Z for 1 ≤ i ≤ m}, (1)

where b1, . . . ,bm are linearly independent vectors in Rn. The matrix B =
(b1, . . . ,bm) is called a basis for L, and we denote the lattice generated by
B as L(B). A lattice L is said to be of full rank if m = n. We use λ1(L) to
denote the norm of shortest non-zero lattice vector in L.

The fundamental parallelepiped of a basis B is defined as

P(B) = {a1b1 + · · ·+ ambm | ai ∈ [0, 1) for 1 ≤ i ≤ m} .

The Voronoi cell V(L) of a lattice L is the set of all points in Rn for which the
closest lattice point is the origin 0.

Definition 1 (CVP). Given a lattice L and a target vector t ∈ Rn, the Closest
Vector Problem (CVP) asks to find a lattice point v ∈ L that is closest to t, i.e.,
∥v − t∥ ≤ ∥v′ − t∥ for all v′ ∈ L.

Definition 2 (BDD). Given a lattice L and a target vector t ∈ Rn such that
dist(t,L) ≤ r for some radius r, the Bounded Distance Decoding (BDD) problem
asks to find a lattice point v ∈ L that is closest to t, i.e., ∥v − t∥ ≤ ∥v′ −
t∥ for all v′ ∈ L.

Algorithms solve the above two problems are typically referred as Maximum
Likelihood Decoding (MLD) algorithm and BDD algorithm (with decoding ra-
dius r) respectively.

2.3 Cryptographic Definitions

Definition 3 (PKE). A public-key encryption (PKE) scheme is a tuple of al-
gorithms (KeyGen, Enc, Dec) along with a message spaceM.

Scloud+: An Efficient LWE-based KEM 7

– The probabilistic key generation algorithm KeyGen outputs a pair of public
key and secret key (pk, sk).

– The probabilistic encryption algorithm Enc takes as input pk and a message
m ∈M, and outputs a ciphertext c.

– The deterministic decryption algorithm Dec takes as input sk and c, and
outputs either a message m′ ∈M or a special error symbol ⊥ /∈M.

A PKE scheme is δ-correct if E [maxm∈M Pr[Dec(sk,Enc(pk,m)) ̸= m]] ≤ δ,
where the expectation is taken over (pk, sk)← KeyGen(), and the probability is
taken over the randomness of Enc. The PKE scheme in our construction is con-
sidered to satisfy IND-CPA security (indistinguishability under chosen plaintext
attack). Specifically, the advantage of an adversary A is defined as

AdvCPA
PKE(A) =

∣∣∣∣Pr [b = b′ | (pk, sk)← KeyGen(), (m0,m1, s)← A(pk)
b← {0, 1}, c∗ ← Enc(pk,mb), b

′ ← A(pk, c∗, s)

]
− 1

2

∣∣∣∣ .
Definition 4 (KEM). A key encapsulation mechanism (KEM) is a tuple of
algorithms (KeyGen, Encaps, Decaps) along with a key space K.

– The probabilistic key generation algorithm KeyGen outputs a pair of public
key and secret key (pk, sk).

– The probabilistic encapsulation algorithm Encaps takes as input pk and out-
puts an ciphertext c and a shared secret ss ∈ K.

– The deterministic decapsulation algorithm Decaps takes as input sk and c,
and outputs a shared secret ss′ ∈ K.

A KEM is δ-correct if Pr[Decaps(sk, c) ̸= ss | (c, ss) ← Encaps(pk)] ≤ δ,
where the probability is taken over (pk, sk)← KeyGen() and the randomness of
Encaps. The KEM in our construction is considered to satisfy IND-CCA security
(indistinguishability under chosen ciphertext attack, or IND-CCA2). Specifically,
the advantage of an adversary A is defined as

AdvCCA
KEM(A) =

∣∣∣∣∣∣Pr
b = b′ |

(pk, sk)← KeyGen(), b← {0, 1}
(c∗, ss0)← Encaps(), ss1 ← U(K)

b′ ← ADECAPS(·)(pk, ssb, c
∗)

− 1

2

∣∣∣∣∣∣ ,
where the DECAPS oracle is defined as DECAPS(·) := Decaps(sk, ·), and the ad-
versary A is not allowed to make queries with input c∗.

3 Lattice Coding and Barnes-Wall Lattices

In this section, we first introduce fundamental concepts related to lattice codes
and Barnes-Wall lattices. We then present the specific lattice codes used in
Scloud+, along with our proposed efficient labeling and delabeling methods.

8 A. Wang, Z. Zheng, C. Zhao, Z. Qiu, G. Zeng, Y. Yuan, C. Mu and X. Wang

3.1 Lattice Codes

Definition 5 (Lattice Code). Let Ls,Lc ⊆ Rn be two full-rank lattices such
that Ls ⊆ Lc. A lattice code C (based on the nested lattices Ls ⊆ Lc) is defined
as a subset of Lc that forms a complete set of representatives for the quotient
group Lc/Ls.

Given a basis Bs for Ls, the set C is typically chosen to lie within the fun-
damental parallelepiped P(Bs). The lattices Ls and Lc are commonly referred
to as the shaping lattice and coding lattice, respectively.1

When a lattice code C is employed for message transmission over a noisy
channel, the following steps are typically involved:

– Labeling : Each message m ∈ M is mapped to a lattice vector x ∈ C, where
M is the message space.

– Lattice Decoding : Given a noisy received vector y = x + e ∈ Rn, where e
represents noise, this step employs an MLD or BDD algorithm. The algo-
rithm takes y as the target vector and Lc as the lattice, producing a lattice
vector x′ ∈ C.

– Delabeling : The decoded lattice vector x′ ∈ Lc is mapped back to a message
m′ ∈M, essentially reversing the labeling step.

Note that in the lattice decoding step, the output x′ of the MLD or BDD
algorithm may not initially fall within the lattice code C. In such cases, an
additional operation is required to reduce x′ modulo Ls to ensure it belongs to C.
If C is chosen to lie within the fundamental parallelepiped P(Bs), this reduction
can be achieved by expressing x′ in terms of the basis Bs and reducing it to lie
within P(Bs).

A sufficient condition for correct decoding (i.e., m = m′) is that the labeling
function is injective, and the noise vector e lies either within the Voronoi cell
of Lc (if an MLD algorithm is employed) or within a decoding radius r (if
a BDD algorithm with radius r is employed). To guarantee injectivity of the

labeling map, we require that |M| ≤ |C| = det(Ls)
det(Lc)

. In this work, we focus on the

message spaceM consisting of all bit strings of length µ, which necessitates µ =

log2(|M|) ≤ log2

(
det(Ls)
det(Lc)

)
. The quantity 1

n log2

(
det(Ls)
det(Lc)

)
is referred to as the

code rate of C, representing the average number of encoded bits per dimension.

3.2 Barnes-Wall Lattices

The Barnes-Wall lattices form a sequence of lattices defined for dimensions n
that are powers of 2. In addition to their lattice structure, it is known that
Barnes-Wall lattices can be viewed as Z[i]-submodules of Z[i]n/2, i.e., lattices
over the Gaussian integers Z[i] [35]. In this paper, we adopt this construction of
Barnes-Wall lattices, which simplifies the labeling and delabeling processes we

1 In some literature, these are also called the coarse lattice and fine lattice.

Scloud+: An Efficient LWE-based KEM 9

propose later. These lattices can be easily converted to lattices over the integers
via a mapping from Cn/2 to Rn, as follows:

(a1 + b1i, a2 + b2i, . . . , an/2 + bn/2i) 7→ (a1, . . . , an/2, b1, . . . , bn/2), (2)

where ai, bi ∈ R for 1 ≤ i ≤ n/2. Under this mapping, we naturally extend the
norm and distance notations, defined in Section 2 for real vectors, to complex
vectors.

Throughout the remainder of this section, we denote ϕ = 1 + i, so that
ϕ−1 = 1

2 (1 − i) = 1
2 ϕ̄. The Barnes-Wall lattices can be defined recursively as

follows.

Definition 6 (Barnes-Wall lattice). For any positive integer n = 2k ≥ 4, the
n-dimensional Barnes-Wall lattice BWn is defined as

BWn = {[u,u+ ϕv] | u,v ∈ BWn/2}, (3)

with the initial case BW2 = Z[i].

Alternatively, it can be deduced that the Barnes-Wall lattices can also be
expressed as

BWn = {Wn · v | v ∈ Z[i]
n
2 }, where Wn =

(
1 0
1 ϕ

)⊗(k−1)

∈ C
n
2 ×n

2 (4)

is the Kronecker product of (k − 1) matrices

(
1 0
1 ϕ

)
.

For n = 2, 4, 8, the Barnes-Wall lattices correspond, under the mapping de-
fined in (2), to Z2, D4, and E8, respectively. These are known to be the densest
packings in their respective dimensions.

Lemma 1 ([36]). For the Barnes-Wall lattice BWn, where n = 2k ≥ 2, the
following properties hold:

(1) The minimum distance λ1 =
√

n
2 , and the packing radius ρ = 1

2λ1 =
√

n
8 .

(2) The determinant det(BWn) = 2
n
4 (k−1).

(3) 2⌊
k
2 ⌋ · Z[i]n2 ⊆ BWn.

Decoding Algorithms for Barnes-Wall Lattices. Several algorithms have
been proposed to decode Barnes-Wall lattices, which can be broadly categorized
into three main types. The first category focuses on MLD. Efficient MLD al-
gorithms are known for Barnes-Wall lattices of specific low dimensions, such as
BW4 and BW8 [37,38]. The only known MLD algorithm for arbitrary Barnes-
Wall lattices was proposed by Forney in 1988, utilizing the trellis representation
of BWn [36]. However, the computational complexity of this algorithm is expo-
nential in n, making it impractical for dimensions n ≥ 32, particularly in the

10 A. Wang, Z. Zheng, C. Zhao, Z. Qiu, G. Zeng, Y. Yuan, C. Mu and X. Wang

Algorithm 1: BDD Algorithm for Barnes-Wall lattices

Input: A target vector t ∈ Cn/2 and the lattice BWn

Output: A lattice vector y ∈ BWn

1: if n = 2 then
2: return ⌊t⌉
3: else
4: Write t = (t1, t2) such that t1, t2 ∈ Cn/4

5: Compute y1 = BDD(t1,BWn/2), y2 = BDD(t2,BWn/2)
6: Compute z1 = BDD(ϕ−1(y1 − t2),BWn/2), z2 = BDD(ϕ−1(y2 − t1),BWn/2)
7: if ∥y1 − t1∥2 + 2∥z1∥2 < ∥y2 − t2∥2 + 2∥z2∥2 then
8: return (y1, ϕz1 + t2)
9: else
10: return (ϕz2 + t1,y2)
11: end if
12: end if

context of constructing efficient cryptographic schemes. The second category ad-
dresses BDD for Barnes-Wall lattices. Micciancio and Nicolosi first demonstrated
that BDD can be performed in polynomial time for Barnes-Wall lattices [35]. Fur-
ther improvements to this approach have been made in subsequent works [39,40].
The third category focuses on list decoding for Barnes-Wall lattices, which seeks
to output all lattice vectors within a ball of radius r around a given target vector
t. A comprehensive analysis of this approach has been provided by Grigorescu
and Peikert [41].

In this paper, we focus on BDD for Barnes-Wall lattices, specifically using
a variant of the BDD algorithm proposed in [39]. The decoding procedure is
recursive, and its details are presented in Algorithm 1. Given an input target
vector t such that dist(t,BWn) ≤ r =

√
n
8 , Algorithm 1 guarantees to return a

lattice vector y satisfying ∥t− y∥ ≤ r.

3.3 Lattice Coding Based on Barnes-Wall Lattices

In this subsection, we focus on the message space M = {0, 1}µ, and present
lattice codes using Barnes-Wall Lattices.

For dimension n = 2k ≥ 4, let the coding lattice Lc = BWn and the shaping
lattice Ls = 2τ ·Z[i]n/2, where τ ≥ ⌊k2 ⌋ is a positive integer. Then by Lemma 1,

it has Ls ⊆ 2⌊
k
2 ⌋ ·Z[i]n/2 ⊆ Lc. Denote C to be the lattice code defined based on

the nested lattices Ls ⊆ Lc, where each vector of C is required to be within the
region P = {(a1 + b1i, a2 + b2i, . . . , an/2 + bn/2i) | 0 ≤ aj , bj < 2τ for all 1 ≤
j ≤ n/2}, i.e., the fundamental parallelepiped with respect to the standard basis
of Ls = 2τ · Z[i]n/2. By Lemma 1 it has

|C| = det(Ls)

det(Lc)
=

2τn

2
n
4 (k−1)

= 2τn−
n
4 (k−1). (5)

Scloud+: An Efficient LWE-based KEM 11

Next we assume that µ ≤ τn− n
4 (k−1) and present the explicit labeling and

delabeling methods betweenM and C.

Algorithm 2: The Labeling Method

Input: A message vector m ∈ {0, 1}µ
Input: Positive integers n, τ such that n = 2k ≥ 4, ⌊ k

2
⌋ ≤ τ , and µ ≤ τn− n

4
(k − 1)

Output: A lattice vector x ∈ C, where C is the lattice code defined based on the
nested lattices 2τ · Z[i]n/2 ⊆ BWn

1: Pad m with 0’s to obtain a vector m′ of length τn− n
4
(k − 1)

2: Write m′ = (u0,u1, . . . ,un
2
−1) such that uj ∈ {0, 1}2τ−wH (j)

3: Compute v = (v0, . . . , vn
2
−1), where vj = f2τ−wH (j)(uj) for 0 ≤ j < n/2

4: for l from 1 to k − 1 do
5: Write v = (w1,w2, . . . ,w n

2l
), where wj ∈ Z[i]2

l−1

6: Update v← (w1,w1 + ϕw2,w3,w3 + ϕw4, . . . ,w n
2l

−1,w n
2l

−1 + ϕw n
2l
)

7: end for
8: Compute w = [v]2τ

9: return w

Labeling. Firstly, we pad the message m by appending 0’s to obtain a vector

m′ ∈ {0, 1}τn−n
4 (k−1). (6)

Next, we consider the mapping of m′ to a vector in the lattice C, which is a two-
step process. The first step maps m′ to a vector v ∈ Z[i]n/2, while the second
step maps v to a lattice vector x ∈ C. The detailed algorithm for this labeling
method is outlined in Algorithm 2.

Step 1. Define a map fl : {0, 1}l → Z[i] such that fl(u) = a + bi, where

0 ≤ a < 2⌈
l
2 ⌉, 0 ≤ b < 2⌊

l
2 ⌋. The first ⌈ l2⌉ bits of u encode a, while the remaining

⌊ l2⌋ bits encode b. Specifically, a =
∑⌈ l

2 ⌉−1
j=0 uj · 2j and b =

∑l−1
j=⌈ l

2 ⌉
uj · 2j , where

u = (u0, . . . , ul−1).

Next, divide m′ into n
2 sub-vectors, m′ = (u0,u1, . . . ,un

2 −1), where uj ∈
{0, 1}2τ−wH(j). It can be verified that the sum of the lengths of uj is∑

0≤j<n/2

(2τ − wH(j)) = τn− n

4
(k − 1). (7)

Finally, we map m′ to v = (v0, . . . , vn
2 −1) ∈ Z[i]n/2, where vj = f2τ−wH(j)(uj).

Step 2. This step computes x′ = Wn ·v, where Wn is defined in (4). Due to
the tensor product structure of Wn, this computation is performed iteratively
as shown in Algorithm 2 (line 4 to line 7). Finally, we compute x = [x′]2τ ,
producing a lattice vector in C.

12 A. Wang, Z. Zheng, C. Zhao, Z. Qiu, G. Zeng, Y. Yuan, C. Mu and X. Wang

Algorithm 3: The Delabeling Method

Input: Positive integers n, τ, µ such that n = 2k ≥ 4, ⌊ k
2
⌋ ≤ τ , µ ≤ τn− n

4
(k − 1)

Input: A lattice vector w ∈ C, where C is the lattice code defined based on the
nested lattices 2τ · Z[i]n/2 ⊆ BWn

Output: A message vector m ∈ {0, 1}µ
1: for l from k − 1 to 1 do
2: Write w = (w1,w2, . . . ,wn/2l), where wj ∈ Z[i]2

l−1

for 1 ≤ j ≤ n/2l

3: Update w← (w1, ϕ
−1(w2 −w1),w3, ϕ

−1(w4 −w3), . . .)
4: end for
5: Write w = (v0, . . . , vn

2
−1)

6: for j from 0 to n
2
− 1 do

7: Write vj = a+ bi
8: Compute b′ = [b]2τ−⌈wH (j)/2⌉ , a′ = [a− (b− b′)]2τ−⌊wH (j)/2⌋

9: Set v′j = a′ + b′i
10: end for
11: Compute uj = f−1

2τ−wH (j)(v
′
j) for 0 ≤ j < n/2

12: Set m′ = (u0,u1, . . . ,un
2
−1) and define m as the first µ bits of m′

13: return m

Lemma 2. The labeling in Algorithm 2 defines an injective map from the mes-
sage spaceM to the lattice code C.

Proof. Let Sl denote the image space of the map fl, i.e., Sl = {a + bi | a, b ∈
Z, 0 ≤ a < 2⌈

l
2 ⌉, 0 ≤ b < 2⌊

l
2 ⌋}. It is evident that the first three lines of

Algorithm 2 define an injective map from the message spaceM to the product
space

∏
0≤j<n/2 S2τ−wH(j).

Next, we show that, for v ∈
∏

0≤j<n/2 S2τ−wH(j), the map v 7→ [Wn · v]2τ
is injective. Suppose there exist vectors v,v′ ∈

∏
0≤j<n/2 S2τ−wH(j) such that

Wn · v = Wn · v′ mod 2τ , i.e., Wn · (v − v′) = 0 mod 2τ . Let v − v′ =
(w0, w1, . . . , wn

2 −1). We will prove by induction that wj = 0 for all 0 ≤ j < n
2 .

Note that Wn is a lower triangular matrix, with the j-th diagonal entry
given by ϕwH(j). For j = 0, the condition Wn · (v − v′) = 0 mod 2τ implies
w0 = 0 mod 2τ . Writing w0 = a + bi, with −2τ < a, b < 2τ (since v,v′ ∈∏

0≤j<n/2 S2τ−wH(j)), it follows that a = b = 0. Now, assume that w0 = · · · =
wj−1 = 0. We will show that wj = 0. Since Wn is lower triangular, the condition
Wn · (v − v′) = 0 mod 2τ implies wj · ϕwH(j) = 0 mod 2τ . If wH(j) is even, we
have ϕwH(j) = (ϕ2)wH(j)/2 = (−2i)wH(j)/2, so wj · ϕwH(j) = 0 mod 2τ implies
wj · 2wH(j)/2 = 0 mod 2τ . Writing wj = a + bi, with −2τ−wH(j)/2 < a, b <
2τ−wH(j)/2, it follows that a = b = 0 mod 2τ−wH(j)/2, and hence a = b = 0. If
wH(j) is odd, a similar argument shows that wj · ϕ · 2(wH(j)−1)/2 = 0 mod 2τ .
Writing wj = a + bi, where |a| < 2τ−(wH(j)−1)/2 and |b| < 2τ−(wH(j)+1)/2, we
get a − b = a + b = 0 mod 2τ−(wH(j)−1)/2. From b = 1

2 ((a + b) − (a − b)), it

follows that b = 0 mod 2τ−(wH(j)−1)/2−1, and thus b = 0. Consequently, a =
0 mod 2τ−(wH(j)−1)/2, implying a = 0.

Scloud+: An Efficient LWE-based KEM 13

Putting all these deductions together, we conclude that the labeling is injec-
tive, completing the proof. ⊓⊔

Delabeling. The delabeling is the reverse of the labeling, as described in Algo-
rithm 3. It is important to note that the computation in line 8 of Algorithm 2
cannot be completely reversed due to the modulo operation. To address this, in
the delabeling, we adjust the entries of the vector w = (v0, . . . , vn

2 −1) so that
each vj belongs to S2τ−wH(j) (lines 6 to 10), where S2τ−wH(j) is defined in the

proof of Lemma 2. In fact, this ensures that ϕ2τ−wH(j) divides (vj−v′j) and thus
leads the following lemma.

Lemma 3. The delabeling in Algorithm 3 is the inverse of the labeling in Algo-
rithm 2.

Proof. First, we show that the computation in lines 6 to 10 ensures that ϕ2τ−wH(j)

divides (vj − v′j). Observe that vj − v′j = (a + bi) − (a′ + b′i) = (a − a′ − (b −
b′)) + (b − b′)ϕ. Then by ϕ2 | 2 and the definitions of a′ and b′ we can deduce
that ϕ2τ−wH(j) | (vj − v′j).

For any v ∈
∏

0≤j<n/2 S2τ−wH(j), let w = [Wn ·v]2τ (corresponding to lines

4 to 8 in Algorithm 2). Let W−1
n ·w = (v0, . . . , vn

2 −1) and v′ = (v′0, . . . , v
′
n
2 −1)

such that v′ ∈
∏

0≤j<n/2 S2τ−wH(j) and ϕ2τ−wH(j) | (vj − v′j) (corresponding to

lines 1 to 10 in Algorithm 3). It suffices to show that v = v′ to complete the
proof.

Let δ = (δ0, . . . , δn
2 −1) = W−1

n w − v′. Then ϕ2τ−wH(j) | δj and

Wn · (δ + v′) = Wn · v mod 2τ . (8)

Since each entry of the j-th column of Wn is divisible by ϕwH(j), it follows that
each entry of Wn · δ is divisible by ϕ2τ . Therefore, Wn · δ = 0 mod 2τ , and (8)
implies that Wn ·v′ = Wn ·v mod 2τ . By the same reasoning used in Lemma 2,
we conclude that v = v′, which completes the proof. ⊓⊔

4 The IND-CPA-Secure PKE

Scloud+.PKE consists of three algorithms: key generation, encryption, and de-
cryption, which are outlined in Algorithm 4 to Algorithm 6. The algorithms
utilize the following parameters:

– Moduli: powers of 2 integers q > q1, q2;
– Matrix size parameters: positive integers m,n, m̄, n̄;
– Secret weight parameters: h1, h2;
– Error parameters: η1, η2;
– Message length: lm ∈ {128, 192, 256}.

14 A. Wang, Z. Zheng, C. Zhao, Z. Qiu, G. Zeng, Y. Yuan, C. Mu and X. Wang

Algorithm 4: Scloud+.PKE.KeyGen()

Output: Public key pk ∈ Zm×n̄
q × {0, 1}128

Output: Secret key sk ∈ Zn×n̄
q

1: α← {0, 1}256
2: (seedA, r1, r2) = F(α) ∈ {0, 1}128 × {0, 1}256 × {0, 1}256
3: A = gen(seedA) ∈ Zm×n

q

4: S = Ψ(r1, (n, n̄), h1) ∈ Zn×n̄, E = CenBinom(r2, (m, n̄), η1) ∈ Zm×n̄

5: B = A · S+E ∈ Zm×n̄
q

6: return pk = (B, seedA), sk = S

Algorithm 5: Scloud+.PKE.Enc(pk, m, r)

Input: Public key pk = (B, seedA) ∈ Zm×n̄
q × {0, 1}128

Input: Message m ∈ {0, 1}l
Input: Random coins r ∈ {0, 1}256
Output: Ciphertext C ∈ Zm̄×n

q1 × Zm̄×n̄
q2

1: A = gen(seedA)
2: (r′1, r

′
2) = F(r) ∈ {0, 1}256×2

3: S′ = Φ(r′1, (m̄,m), h2) ∈ Zm̄×m

4: E′ = (E1,E2) = CenBinom(r′2, (m̄, n+ n̄), η2), where E1 ∈ Zm̄×n, E2 ∈ Zm̄×n̄

5: M = MsgEnc(m) ∈ Zm̄×n̄
q

6: C1 = S′ ·A+E1, C2 = S′ ·B+E2 +M
7: C̄1 = ⌊ q1

q
·C1⌉, C̄2 = ⌊ q2

q
·C2⌉odd

8: return C = (C̄1, C̄2)

Algorithm 6: Scloud+.PKE.Dec(sk, C)

Input: Secret key sk = S ∈ Zn×n̄
q

Input: Ciphertext C ∈ Zm̄×n
q1 × Zm̄×n̄

q2

Output: Message m ∈ {0, 1}l
1: C′

1 = q
q1
· C̄1, C

′
2 = q

q2
· C̄2

2: D = C′
2 −C′

1S ∈ Zm̄×n̄
q

3: return m = MsgDec(D) ∈ {0, 1}l

Scloud+: An Efficient LWE-based KEM 15

Distributions and Sub-functions. Scloud+.PKE involves the use of the cen-
tral binomial distribution and the constant Hamming distribution.

Central Binomial Distribution. Let ρ(η) denote the central binomial distribu-
tion with parameter η. For a random variable X ← ρ(η), it can be expressed as
X =

∑η
i=1(xi−yi), where xi, yi ← U({0, 1}). In this scheme, we are interested in

sampling a matrix E← ρ(η)m×n, generated by the sampling function CenBinom.
This function takes random bits r ∈ {0, 1}256 and parameters (m,n) and η as
input, and outputs a matrix E drawn from ρ(η)m×n. Details of CenBinom are
provided in Section 7.

Constant Hamming Distribution. Let H(m,n,h) be the set of m× n matrices
where each row contains exactly (n − 2h) zeros, h ones, and h negative ones.
Similarly, let L(m,n,h) be the set of m× n matrices where each column contains
exactly (m − 2h) zeros, h ones, and h negative ones. In this scheme, we are
interested in sampling matrices S′ ← U(H(m,n,h)) and S ← U(L(m,n,h)). We
define Φ and Ψ as two sampling functions that take random bits r ∈ {0, 1}∗
and parameters (m,n), h as input, and output matrices uniformly drawn from
H(m,n,h) and L(m,n,h), respectively. Details of Φ and Ψ are provided in Section 7.

Sub-functions. Scloud+.PKE employs a hash function F : {0, 1}256 → {0, 1}∗,
and a function gen which generates a random m× n matrix A over Zq using a
seed seedA as input. Additionally, the encoding and decoding functions MsgEnc
and MsgDec are described below.

The MsgEnc and MsgDec Functions. The functions MsgEnc and MsgDec are
constructed using the labeling, BDD, and delabeling algorithms outlined in Sec-
tion 3. Specifically, we set the coding lattice to BW32 (i.e., 2

k = 32). The labeling
and delabeling parameters, µ and τ , are chosen as µ = 64, 96, 64 and τ = 3, 4, 3
for message lengths lm = 128, 192, 256, respectively. Note that for these choices

of µ and τ , the relation µ = τ · 2k− 2k

4 (k− 1) holds, implying that no padding is
required during the labeling process. The detailed constructions of MsgEnc and
MsgDec are provided in Algorithm 7 and Algorithm 8.

Correctness of the PKE Scheme. The theorem below gives an estimate of
the decryption failure rate of Scloud+.PKE.

Theorem 1. Scloud+.PKE is δ-correct, where

δ ≈ lm
µ
· Γ

(
16, q2/(22τ−1σ2

total)
)
/Γ (16, 0) , (9)

where σ2
total = η1h2 + η2(h1 + 1

2) +
1
12 ((

q2

q22
+ 2) + 2h1(

q2

q21
− 1)), and Γ (z, a) =∫∞

a
tz−1e−tdt is the incomplete Gamma function.

Proof. Let F1 := C′
1−C1 and F2 := C′

2−C2. Then during decryption, we have

D = C′
2 −C′

1S = (C2 + F2)− (C1 + F1)S

= S′E+ (E2 + F2)− (E1 + F1)S+ MsgEnc(m).

16 A. Wang, Z. Zheng, C. Zhao, Z. Qiu, G. Zeng, Y. Yuan, C. Mu and X. Wang

Algorithm 7: The MsgEnc Function

Input: Message m ∈ {0, 1}lm
Input: Parameters µ, τ and q, m̄, n̄ such that 32 · lm

µ
≤ m̄ · n̄

Output: Matrix M ∈ Zm̄×n̄
q

1: Divide the message m into lm
µ

sub-vectors, mj ∈ {0, 1}µ, where 1 ≤ j ≤ lm
µ

2: for j = 1 to lm
µ

do

3: Invoke Algorithm 2 (labeling) with input mj and parameters (2k = 32, τ) to
obtain a vector wj ∈ C

4: Decompose wj into wj = uj + vji, where uj ,vj ∈ Z16

5: end for
6: Construct the vector x = (u1,v1,u2,v2, . . .) ∈ Z32· lm

µ

7: Pad x with zeros to extend its length to m̄n̄
8: Compute the scaled vector y = (y1, . . . , ym̄n̄) =

q
2τ
· x

9: Construct matrix M by setting the (i, j)-th element as yn̄(i−1)+j for 1 ≤ i ≤ m̄
10: return M

Algorithm 8: The MsgDec Function

Input: Matrix M ∈ Zm̄×n̄
q

Input: Parameters µ, τ , q, and lm, such that 32 · lm
µ
≤ m̄ · n̄

Output: Message m ∈ {0, 1}lm
1: Construct vector y = (y1, . . . , ym̄n̄) where yn̄(i−1)+j is the (i, j)-th element of M

2: Truncate y to form vector x ∈ Z32· lm
µ

3: Update x← 2τ

q
· x

4: Partition x as x = (u1,v1,u2,v2, . . .) such that uj ,vj ∈ Z32

5: for j = 1 to lm
µ

do

6: Compute w′
j = uj + vji

7: Invoke Algorithm 1 (BDD) on input w′
j to obtain lattice vector wj ∈ BW32

8: Invoke Algorithm 3 (delabeling) with input [wj]2τ and parameters
(2k = 32, τ, µ) to obtain mj ∈ {0, 1}µ

9: end for
10: return m = (m1, . . . ,mlm/µ)

Scloud+: An Efficient LWE-based KEM 17

Define Etotal := S′E + (E2 + F2) − (E1 + F1)S, then decryption is correct if
MsgDec(MsgEnc(m) +Etotal) = m.

According to Algorithm 8, MsgEnc(m) + Etotal can be truncated and parti-
tioned into vectors ωj + ϵj , where 1 ≤ j ≤ lm

µ . The real and imaginary parts of

ϵj ∈ Z[i]16 correspond to components ofEtotal, while those of ωj ∈ q
2τ ·BW32 cor-

respond to components of MsgEnc(m). Thus, MsgDec(MsgEnc(m) +Etotal) = m

holds if
∥∥∥ 2τ

q · ϵj
∥∥∥ ≤ r for all j, where r =

√
32
8 = 2 is the decoding radius. It

follows that

Pr [MsgDec(MsgEnc(m) +Etotal) = m] = Pr

[
∥ϵj∥ ≤

2q

2τ
for all j

]
. (10)

Next, we analyze the distribution of the error matrix Etotal to approxi-

mate (10). Since F1 = q
q1
·
⌊
q1
q ·C1

⌉
− C1 and C1 is pseudo-random based

on the hardness of LWE, we assume that each component of F1 follows the

distribution ΩF1
:= U

({
− q

2q1
+ 1, · · · , q

2q1

})
. Similarly, we assume that each

component of F2 follows the distribution ΩF2 , which equals ± q
2q2

with prob-

ability q2
2q , and equals each j ∈

{
− q

2q2
+ 1, · · · , q

2q2
− 1

}
with probability q2

q .

The variance of ΩF1 is 1
12

(
q2

q21
− 1

)
, and the variance of ΩF2 is 1

12

(
q2

q22
+ 2

)
.

Considering that S ← U(H(m,n,h1)),S′ ← U(L(m,n,h2)), E ← ρ(η1)
m×n̄, and

(E1,E2) ← ρ(η2)
m̄×(n+n̄), we deduce that each component of Etotal follows a

distribution χtotal with mean 0 and variance

σ2
total = 2h2 ·

η1
2

+

(
η2
2

+
1

12

(
q2

q22
+ 2

))
+ 2h1 ·

(
η2
2

+
1

12

(
q2

q21
− 1

))
. (11)

Since χtotal can be viewed as the sum of independent random variables, we
can approximate χtotal as the discrete Gaussian distribution DZ,σtotal

. Assuming
each component of Etotal is independent, it follows that, for each j,

Pr

[
∥ϵj∥ ≤

2q

2τ

]
≈

∑
z∈Z32, 2

τ

q ·∥z∥≤2

32∏
j=1

gσtotal
(zi)

gσtotal
(Z)

≈
∫
x∈R32,∥x∥≤ 2q

2τ

1

(2πσ2
total)

16
· e−∥x∥2/(2σ2

total) dx

=1− Γ

(
16,

(
2q/(2τ

√
2σtotal)

)2
)
/Γ (16, 0),

where gσ(z) = 1√
2πσ

e−z2/(2σ2) is the Gaussian function. The second approxi-

mation comes from treating the discrete Gaussian distribution as continuous.
Thus, the theorem follows directly from δ = 1 − Pr

[
∥ϵj∥ ≤ 2q

2τ for all j
]
≈

lm
µ ·

(
1− Pr

[
∥ϵj∥ ≤ 2q

2τ

])
. ⊓⊔

18 A. Wang, Z. Zheng, C. Zhao, Z. Qiu, G. Zeng, Y. Yuan, C. Mu and X. Wang

In Section 6, we select parameters such that the right-hand side of (9) is
less than 2−128, 2−192, 2−256 for security levels targeting 128, 192, 256 bits re-
spectively. Note that in Theorem 1, we assume χtotal is approximately discrete
Gaussian, which is a consequence of the law of large numbers. We verify this as-
sumption for concrete parameters, showing that the difference between χtotal and
the discrete Gaussian is negligible (approximately 2−300). Another assumption is
the independence of each component of Etotal, which is commonly adopted in the
analysis of decryption failure rates of PKE schemes, such as [7,9]. Although the
components of Etotal are indeed dependent due to they are different linear com-
binations of the same variables, no method currently exploits this dependence to
reduce the decryption failure rate or launch attacks. Therefore, we believe our
approach sufficiently makes the decryption failure rate δ negligible.

Security of the PKE Scheme. The security of the proposed scheme relies on
the LWE problem, which is defined as follows.

Definition 7 (LWE Distribution). Let n, q be positive integers, and let χe

be a distribution over Z. Given s ∈ Zn
q , the LWE distribution As,χe outputs

(a, ⟨a, s⟩+ e mod q) ∈ Zn
q × Zq, where a← U(Zn

q) and e← χe.

Definition 8 (LWE Problem). Let n,m, q be positive integers, and let χe, χs

be distributions over Z and Zn respectively. The LWE problem is to distinguish
between m samples (ai, bi) ← U(Zn

q × Zq) and m samples (ai, bi) ← As,χe
,

where the secret vector s← χs is common to all samples. More formally, for an
adversary A, we define

AdvLWE
n,m, q, χe, χs

(A) =

∣∣∣∣Pr [A(A,b) = 1 | A← U(Zm×n
q), e← χm

e

s← χs,b = As+ e

]
− Pr[A(A,b) = 1 | A← U(Zm×n

q),b← U(Zm
q)]

∣∣ .
In our scheme we choose χe to be the binomial distribution ρ(η), and χs to be

the constant Hamming distribution, i.e., s is uniformly sampled from the set of
vectors in Zn with exactly (n−2h) zeros, h ones, and h negative ones. We denote
the corresponding LWE problem to be AdvLWE

n,m, q, η, h(A). It is important to note
that while the original LWE problem was established using the discrete Gaussian
distribution [42,5], the hardness of the LWE problem does not seem to be affected
by the exact shape of the error distribution. Moreover, an analysis based on Rényi
divergence demonstrates that ρ(η) can be substituted with a discrete Gaussian
distribution of variance η/2 without compromising security [43]. The following
theorem establishes the security of Scloud+.PKE.

Theorem 2. Scloud+.PKE is IND-CPA secure, assuming that the LWE prob-
lem is hard and that the matrix A generated by gen is uniformly distributed
over Zm×n

q . Specifically, for any adversary C against the IND-CPA security of

Scloud+.PKE, there exist adversaries B1,B2 with running times approximately
equal to that of C, such that

AdvCPA
Scloud+.PKE

(C) ≤ n̄ ·AdvLWE
n,m, q, η1, h1

(B1) + m̄ ·AdvLWE
m + m̄, n, q, η2, h2

(B2).

Scloud+: An Efficient LWE-based KEM 19

Proof. We begin by considering the matrix-LWE problem where the secret and
errors are also matrices (as in our PKE scheme). For an adversary A, we define

Advmatrix-LWE
n,m, n̄, q, η, h(A) =

∣∣∣∣Pr [A(A,B) = 1 | A← U(Zm×n
q),E← ρ(η)m×n̄

S← U(L(n,n̄,h)),B = AS+E

]
− Pr[A(A,B) = 1 | A← U(Zm×n

q),B← U(Zm×n̄
q)]

∣∣ .
Using a standard hybrid argument [44], it can be shown that there exists an
adversary A′ with approximately the same running time as A, such that:

AdvLWE
n,m, q, η, h(A

′) ≥ 1

n̄
Advmatrix-LWE

n,m, n̄, q, η, h(A). (12)

Now, let C be executed in the IND-CPA security game G0, where

AdvCPA
Scloud+.PKE(C) = |Pr[b = b′ in game G0]− 1/2|.

Define G1 as the game where the matrix B in key generation is drawn from
U(Zm×n̄

q) rather than generated via B = A · S + E. Then, there exists an

adversary B′
1 with a running time comparable to that of C such that |Pr[b =

b′ in game G0] − Pr[b = b′ in game G1]| ≤ Advmatrix-LWE
n,m, n̄, q, η1, h1

(B′
1). Define game

G2 where the matrix (C1 = S′ · A + E1,C
′
2 = S′ · B + E2) used to generate

the challenge ciphertext is drawn from U(Zm̄×n
q ×Zm̄×n̄

q). Similarly, there exists

an adversary B′
2 with a running time similar to that of C such that |Pr[b =

b′ in game G1] − Pr[b = b′ in game G2]| ≤ Advmatrix-LWE
m + m̄, n, m̄, q, η2, h2

(B′
2). In game

G2, the ciphertext C2 = C′
2 + M is uniformly distributed over Zm̄×n̄

q and is
independent of the message m, implying that Pr[b = b′ in game G2] = 1/2.
Thus, from the above analysis, we obtain

AdvCPA
Scloud+.PKE(C) ≤ Advmatrix-LWE

n,m, n̄, q, η1, h1
(B′

1) +Advmatrix-LWE
m + m̄, n, m̄, q, η2, h2

(B′
2).

The theorem follows directly by combining this result with (12). ⊓⊔

5 The IND-CCA-Secure KEM

Scloud+.KEM is derived from Scloud+.PKE by applying the Fujisaki-Okamoto
transformation with implicit rejection [45,46]. Scloud+.KEM consists of three al-
gorithms: key generation, encapsulation, and decapsulation, which are described
in Algorithm 9 to Algorithm 11. These algorithms utilize three hash functions:
H : {0, 1}∗ → {0, 1}256, G : {0, 1}∗ → {0, 1}256×2, and K : {0, 1}∗ → {0, 1}lss ,
where lss is the length of the shared secret ss, which we set to be equal to lm.

Correctness and Security of the KEM. It is evident that the failure prob-
ability δ of Scloud+.KEM is equal to the failure probability of Scloud+.PKE
computed in Section 4. Following the approach in [45], when the hash func-
tions H, G, and K are modeled as independent random oracles, we can derive the
following security bounds, for which the proof is omitted in this work.

20 A. Wang, Z. Zheng, C. Zhao, Z. Qiu, G. Zeng, Y. Yuan, C. Mu and X. Wang

Algorithm 9: Scloud+.KEM.KeyGen()

Output: Public key pk ∈ Zm×n̄
q × {0, 1}128

Output: Secret key sk ∈ Zn×n̄
q × Zm×n̄

q × {0, 1}128+256×2

1: (pk, sk′) = Scloud+.PKE.KeyGen()
2: hpk = H(pk) ∈ {0, 1}256
3: z← U({0, 1}256)
4: sk = (sk′, pk,hpk, z)
5: return (pk, sk)

Algorithm 10: Scloud+.KEM.Encaps(pk)

Input: Public key pk ∈ Zm×n̄
q × {0, 1}128

Output: Ciphertext C ∈ Zm̄×n
q1 × Zm̄×n̄

q2

Output: Shared session key ss ∈ {0, 1}lss
1: m← U({0, 1}lm)
2: (r,k) = G(m||H(pk)) ∈ {0, 1}256×2

3: C = Scloud+.PKE.Enc(pk,m, r)
4: ss = K(k||C)
5: return (C, ss)

Algorithm 11: Scloud+.KEM.Decaps()

Input: Ciphertext C ∈ Zm̄×n
q1 × Zm̄×n̄

q2

Input: Secret key sk = (sk′, pk,hpk, z) ∈ Zn×n̄
q × Zm×n̄

q × {0, 1}128+256×2

Output: Shared session key ss ∈ {0, 1}lss
1: m′ = Scloud+.PKE.Dec(sk′,C)
2: (r′,k′) = G(m′||hpk)
3: C′ = Scloud+.PKE.Enc(pk,m′, r′)
4: if C = C′ then
5: return ss = K(k′,C)
6: else
7: return ss = K(z,C)
8: end if

Scloud+: An Efficient LWE-based KEM 21

Theorem 3. Suppose that Scloud+.PKE is a δ-correct PKE with message space
M. Then for any classical adversary A against Scloud+.KEM that makes at
most qRO random oracle queries, there exists a classical adversary B against
Scloud+.PKE, whose running time is approximately the same as that of A, such
that

AdvCCA
Scloud+.KEM

(A) ≤ 3 ·AdvCPA
Scloud+.PKE

(B) +
3qRO

|M| + qRO · δ.

For security in the quantum random oracle model, the approach proposed in
[47,48] can be applied to obtain the following bound.

Theorem 4. Suppose that Scloud+.PKE is a δ-correct PKE with message space
M. Then for any quantum adversary A against Scloud+.KEM, making at most
qF quantum oracle queries to K and at most qG quantum oracle queries to G,
there exists a quantum adversary B against Scloud+.PKE, whose running time
is approximately the same as that of A, such that

AdvCCA
Scloud+.KEM

(A) ≤ 2

√
qRO ·AdvCPA

Scloud+.PKE
(B) +

2(qRO + 1)2

|M| +
2qF√
|M|

+4qG·
√
δ,

where qRO = qF + qG.

6 Parameters and Security Analysis

We provide three parameter sets for Scloud+, targeting classical security levels
of 128, 192, and 256 bits respectively. The parameter sets are listed in Table 2,
where the modulus q is fixed to be 212 for all sets of parameters, and h1, h2

are fixed to be 1
4m, 1

4n respectively. Additionally, the parameters for MsgEnc

and MsgDec are provided in Table 3. We note that Scloud+-256 selects (m̄, n̄) =
(12, 11) to accommodate 256 message bits. In this case, the encoded message has
a length of 128, which is smaller than m̄× n̄ = 132. This implies that there are
4 positions in the message matrix M ∈ Zm̄×n̄ that are filled with 0.

Table 2. Parameters for Scloud+.PKE and Scloud+.KEM.

lss = lm (q, q1, q2) (m,n) (m̄, n̄) (h1, h2) (η1, η2)

Scloud+-128 128 (212, 29, 27) (600, 600) (8, 8) (150, 150) (7, 7)

Scloud+-192 192 (212, 212, 210) (928, 896) (8, 8) (224, 232) (2, 1)

Scloud+-256 256 (212, 210, 27) (1136, 1120) (12, 11) (280, 284) (3, 2)

According to the reductions established in Section 4 and Section 5, it suf-
fices to consider the LWE instances with parameters (n,m, q, η1, h1) and (m +
m̄, n, q, η2, h2) to evaluate the security of the scheme.

22 A. Wang, Z. Zheng, C. Zhao, Z. Qiu, G. Zeng, Y. Yuan, C. Mu and X. Wang

Table 3. Parameters for MsgEnc and MsgDec.

µ τ Coding lattice Shaping lattice

Scloud+-128 64 3 BW32 8 · Z[i]16
Scloud+-192 96 4 BW32 16 · Z[i]16
Scloud+-256 64 3 BW32 8 · Z[i]16

Core-SVP Hardness. For most known attacks on LWE problems, algorithms
designed for solving approximate SVP are inevitably invoked as subroutines.
Among these, the BKZ lattice reduction algorithm has the best known compu-
tational complexity [49]. The overall complexity of the BKZ algorithm is primar-
ily determined by its crucial component, which involves solving SVP in lower-
dimensional lattices. Specifically, the BKZ algorithm with block size b invokes
a b-dimensional SVP algorithm polynomially many times, and its cost can be
described as poly(b) · 2cb+o(b), where the factor 2cb+o(b) represents the complex-
ity of solving the b-dimensional SVP. The core-SVP model is typically used to
obtain a conservative estimate of the BKZ algorithm’s complexity, where o(b)
and poly(b) factors are ignored, and only the core 2cb complexity is considered.
The best known constant c for classical algorithms is c = log2(

√
3/2) ≈ 0.292, as

derived from the sieve algorithm [50]. For quantum algorithms, the constant c is
usually taken to be c = log2(

√
13/9) ≈ 0.265 [51,30]. Although a quantum ran-

dom walk approach has been shown to provide an improved quantum algorithm
for solving SVP with c ≈ 0.257 [52], this method has not been widely adopted
in the analysis of LWE-based schemes. Therefore, in the analysis of quantum
security, we adhere to the common choice of c ≈ 0.265.

Primal Attack. For a given LWE instance (A ∈ Zm×n
q ,b = As+e ∈ Zm

q), the
primal attack first constructs a lattice Λ = {x ∈ Zm+n+1 | (A | Im | −b)x =
0 mod q}, and then attempts to find the unique shortest vector x = (s, e, 1) ∈ Λ
using the BKZ algorithm. We refer to [30,53] for a detailed analysis of the primal
attack.

Dual Attack. For a given LWE instance (A ∈ Zm×n
q ,b = As + e ∈ Zm

q), the
dual attack first finds short vectors {xj ,yj}1≤j≤N in the lattice Λ′ = {(x,y) ∈
Zn+m | x⊤A = y⊤ mod q}, and then tries to distinguish the samples {x⊤

j b}1≤j≤N

from samples drawn from Zq. We refer to [53] for a detailed analysis of the dual
attack. Although some recent works report improvements to the dual attack
using a Fast Fourier Transform (FFT) method [54,55], Ducas and Pulles have
shown that the underlying statistical assumptions are not solid [56]. Therefore,
we still adopt the commonly used dual attack as in [53].

Hybrid Dual Attack. Our scheme adopts a ternary secret for LWE, for which
the hybrid attack approach is typically effective. A hybrid attack guesses part of

Scloud+: An Efficient LWE-based KEM 23

the secret key and then seeks a trade-off between the cost of guessing and the cost
of the dual attack. The guessing techniques mainly include enumeration [53,57]
and meet-in-the-middle (MITM) [58]. Recently, [59] proposes a combinatorial
MITM attack technique, which is further explored in [60] for hybrid dual attacks,
demonstrating better performance for extremely sparse instances.

Estimator. We provide a concrete security analysis of our scheme using a script
that combines the primal, dual, and hybrid attacks. The results are summarized
in Table 4.

Table 4. The estimated bits of security of Scloud+ under the primal, dual and hybrid
attacks. The decryption failure rates (DFRs) are calculated based on Theorem 1.

Model Classical Quantum DFR

Scloud+-128

Primal 136.07 123.49

2−134.21Dual 142.20 129.06

Hybrid 136.07 125.55

Scloud+-192

Primal 202.36 183.65

2−200.64Dual 209.66 190.27

Hybrid 200.42 184.76

Scloud+-256

Primal 266.89 242.21

2−265.74Dual 275.94 250.43

Hybrid 263.11 242.71

7 Implementation

In this section, we provide the remaining implementation details for Scloud+

and present the performance results of Scloud+.KEM. The experimental results
are summarized in Table 5. All experiments are conducted on a machine run-
ning Fedora 33 (Workstation Edition), equipped with an Intel Core-i9 10980XE
@3.00GHz, with hyperthreading and TurboBoost disabled. For compilation, we
used GNU GCC version 7.2.0 with the command ‘gcc -O3 -march=native -lm’.

Cryptographic Primitives. Scloud+ makes use of four hash functions F :
{0, 1}256 → {0, 1}∗, H : {0, 1}∗ → {0, 1}256, G : {0, 1}∗ → {0, 1}2×256, and
K : {0, 1}∗ → {0, 1}lss . In our implementation, F and K are instantiated using
SHAKE-256, H is instantiated using SHA3-256, and G is instantiated using SHA3-
512.

24 A. Wang, Z. Zheng, C. Zhao, Z. Qiu, G. Zeng, Y. Yuan, C. Mu and X. Wang

Table 5. The performance of Scloud+.KEM measured in 103 cycles, with each data
representing the median count over 1000 measurements.

Scheme KeyGen Encaps Decaps Encaps + Decaps

Scloud+.KEM-128 1052 1115 1109 2224

Scloud+.KEM-192 2034 2226 2262 4488

Scloud+.KEM-256 3564 3738 3884 7622

Matrix Generation and Multiplication. Matrix E is generated by first
extending the random coin r2 to a sequence of random bits

(x1, x2, . . . , xη1mn, y1, y2, . . . , yη1mn)

using SHAKE-256. Then E is constructed by setting its (i, j)-th element as
ei,j =

∑η1

k=1(xη1l+k − yη1l+k), where l = n(i− 1)+ j− 1. Matrix E′ is generated
in a similar manner.

Matrix S is generated by first extending the random coin r2 into a sequence of
random bits using SHAKE-256. These bits are then used to generate a constant
weight distribution column by column. For each column of S, we randomly select
2h1 indices from the n coordinates, setting h1 of them to 1 and the other h1 to
−1. For Scloud+-128, where n = 600, the simplest method to generate a random
index is to use 10 bits of randomness to generate a random integer in [0, 210−1],
then reject any values outside [0, n−1]. A well-known optimization is to generate
multiple indices at once to reduce random bit consumption. Specifically, since
n3 is slightly less than 228, we can sample a random integer x ∈ [0, 228 − 1] and
apply rejecting to obtain a random integer y ∈ [0, n3−1], and then output three
indices i1 = [y]n, i2 = [y−i1

n]n, i3 = [y−i1−i2n
n2]n. A similar approach applies to

Scloud+-256, where n = 1120, and 51 bits are used to generate 5 indices at once.
Matrix S′ is generated in a similar manner.

Matrix A is generated by extending the 128-bit random seed seedA using
AES-128 in CTR mode. Specifically, for any 0 ≤ i < m, 0 ≤ j < n such that
8 | i, we generate 8 elements ai,j , ai+1,j , . . . , ai+8,j from the 128-bit ciphertext
AES-128seedA

(Bit(i, 16)||Bit(j, 16)||096), using seedA as the key, and then set
the corresponding element of A to ai,j .

In our implementation, matrix-vector multiplications are performed in a con-
ventional manner, similar to FrodoKEM. Specifically, we use the ‘-O3‘ optimiza-
tion in GCC, which automatically leverages SIMD (Single Instruction Multiple
Data) capabilities on our platform, significantly accelerating matrix multipli-
cation. An alternative approach for matrix multiplication in Scloud+ involves
storing only the nonzero indices of each column of S (or each row of S′) and
replacing the matrix-vector multiplications in AS with direct summation (or
subtraction) of the columns corresponding to these nonzero indices. However,
given the efficiency of SIMD, this alternative method offers no practical advan-
tage so far.

Scloud+: An Efficient LWE-based KEM 25

Table 6. The size of the public key, ciphertext, and shared secret in Scloud+.KEM
(measured in bytes), with packing and unpacking functions applied.

Scheme
Public key

pk

Ciphertext

C

Shared secret

ss

Scloud+.KEM-128 7200 5456 16

Scloud+.KEM-192 11136 10832 24

Scloud+.KEM-256 18744 16916 32

Packing and Unpacking. We note that the public key pk and ciphertext
C should be packed for transmission. For instance, given the ciphertext C =

(C̄1, C̄2) ∈ Zm̄×n
q1 ×Zm̄×n̄

q2 , we denote the elements of C̄1 and C̄2 as c
(1)
i,j and c

(2)
i,j ,

respectively. Then, Pack(C) returns the bit string(
Bit(c

(1)
i,j , log2(q1))

)
0≤i<m̄
0≤j<n

||
(
Bit(c

(2)
i,j , log2(q2))

)
0≤i<m̄
0≤j<n̄

|| 0,

where 0’s are padded to the end of the string to ensure the length is a multiple
of 8. The function Unpack is the inverse of Pack. In Table 6, we present the sizes
of the public key, and ciphertext for Scloud+.KEM with the packing method
applied.

Comparison of Scloud+.KEM and FrodoKEM. We compare Scloud+.KEM
with FrodoKEM in terms of performance, as well as the sizes of the public key
and ciphertext. For FrodoKEM, the performance data is based on the optimized
implementation developed by the FrodoKEM team and Microsoft Research [61],
tested on the same platform used to evaluate Scloud+.KEM. The performance
metrics, along with the public key and ciphertext sizes for FrodoKEM, are pro-
vided in Table 7 and Table 8 in Appendix A.

Note that FrodoKEM-640, FrodoKEM-976, and FrodoKEM-1344 target se-
curity levels of 128-bit, 192-bit, and 256-bit, respectively. Their concrete bits of
security are comparable to those of Scloud+.KEM-128, Scloud+.KEM-192, and
Scloud+.KEM-256, allowing for meaningful comparisons between them. In terms
of public key and ciphertext sizes, Scloud+.KEM achieves a public key size ap-
proximately 0.71 ∼ 0.87x, and a ciphertext size approximately 0.56 ∼ 0.78x that
of FrodoKEM. Regarding performance, Scloud+.KEM demonstrates a key gen-
eration time approximately 0.91 ∼ 0.95x, and an encapsulation + decapsulation
time approximately 0.74 ∼ 0.77x that of FrodoKEM.

Acknowledgments

We thank Matt Henricksen for valuable discussions. This work is supported by
the National Key R&D Program of China (2020YFA0309705, 2018YFA0704701),
the Major Program of Guangdong Basic and Applied Research (2019B030302008),

26 A. Wang, Z. Zheng, C. Zhao, Z. Qiu, G. Zeng, Y. Yuan, C. Mu and X. Wang

Shandong Key Research and Development Program (2020ZLYS09), and Ts-
inghua University Dushi Program.

Appednices

A Performance of FrodoKEM on the Same Platform

Table 7. The performance of FrodoKEM measured in 103 cycles, with each data
representing the median count over 1000 measurements.

Scheme KeyGen Encaps Decaps Encaps + Decaps

FrodoKEM-640 1375 1541 1474 3015

FrodoKEM-976 2786 2993 2814 5807

FrodoKEM-1344 4906 5183 4992 10174

Table 8. The size of the public key, ciphertext, and shared secret in FrodoKEM (mea-
sured in bytes).

Scheme
Public key

pk

Ciphertext

C

Shared secret

ss

FrodoKEM-640 9616 9720 16

FrodoKEM-976 15632 15744 24

FrodoKEM-1344 21520 21632 32

References

1. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. pages 124–134, 1994.

2. Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. pages 84–93, 2005.

3. Michael Naehrig et al. FrodoKEM. Technical report, National Institute of Stan-
dards and Technology, 2020.

4. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learn-
ing with errors over rings. pages 1–23, 2010.

5. Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness of
ring-LWE for any ring and modulus. pages 461–473, 2017.

Scloud+: An Efficient LWE-based KEM 27

6. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for
module lattices. Des. Codes Cryptogr., 75(3):565–599, 2015.

7. Peter Schwabe et al. CRYSTALS-KYBER. Technical report, National Institute of
Standards and Technology, 2022.

8. Jan-Pieter D’Anvers et al. SABER. Technical report, National Institute of Stan-
dards and Technology, 2020.

9. Xianhui Lu et al. LAC. Technical report, National Institute of Standards and
Technology, 2019.

10. Jiang Zhang, Yu Yu, Shuqin Fan, Zhenfeng Zhang, and Kang Yang. Tweaking the
asymmetry of asymmetric-key cryptography on lattices: KEMs and signatures of
smaller sizes. pages 37–65, 2020.

11. Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short
generators of principal ideals in cyclotomic rings. pages 559–585, 2016.

12. Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algo-
rithms. Theor. Comput. Sci., 53:201–224, 1987.

13. Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short stickelberger class
relations and application to ideal-SVP. pages 324–348, 2017.

14. Léo Ducas, Maxime Plançon, and Benjamin Wesolowski. On the shortness of
vectors to be found by the ideal-SVP quantum algorithm. pages 322–351, 2019.

15. Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Mildly short vectors in
cyclotomic ideal lattices in quantum polynomial time. J. ACM, 68(2):8:1–8:26,
2021.

16. Yanbin Pan, Jun Xu, Nick Wadleigh, and Qi Cheng. On the ideal shortest vector
problem over random rational primes. In Advances in Cryptology - EUROCRYPT
2021, volume 12696, pages 559–583. Springer, 2021.

17. Alice Pellet-Mary, Guillaume Hanrot, and Damien Stehlé. Approx-SVP in ideal
lattices with pre-processing. pages 685–716, 2019.

18. Olivier Bernard and Adeline Roux-Langlois. Twisted-PHS: Using the product
formula to solve approx-SVP in ideal lattices. pages 349–380, 2020.

19. ANSSI. https://cyber.gouv.fr/en/publications/anssi-views-post-quantum-
cryptography-transition, 2022.

20. BSI–Technical Guideline. Cryptographic mechanisms: Recommendations and key
lengths, 2024.

21. Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In
Advances in Cryptology - CRYPTO 2009, volume 5677, pages 595–618, 2009.

22. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homo-
morphic encryption without bootstrapping. pages 309–325, 2012.

23. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. Cryptology ePrint Archive, Report 2012/144, 2012.

24. Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic
encryption for arithmetic of approximate numbers. pages 409–437, 2017.

25. Zhongxiang Zheng et al. SCloud: Public key encryption and key encapsulation
mechanism based on learning with errors. Cryptology ePrint Archive, Report
2020/095, 2020.

26. Tim Fritzmann, Thomas Pöppelmann, and Johanna Sepúlveda. Analysis of error-
correcting codes for lattice-based key exchange. pages 369–390, 2019.

27. Markku-Juhani O. Saarinen. HILA5: On reliability, reconciliation, and error cor-
rection for ring-LWE encryption. pages 192–212, 2017.

28 A. Wang, Z. Zheng, C. Zhao, Z. Qiu, G. Zeng, Y. Yuan, C. Mu and X. Wang

28. Yunlei Zhao, Zhengzhong Jin, Boru Gong, and Guangye Sui. KCL (pka OKC-
N/AKCN/CNKE). Technical report, National Institute of Standards and Tech-
nology, 2017.

29. Mike Hamburg. Three Bears. Technical report, National Institute of Standards
and Technology, 2017.

30. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key {Exchange—A} new hope. In 25th USENIX Security Symposium
(USENIX Security 16), pages 327–343, 2016.

31. Zhengzhong JIn and Yunlei Zhao. AKCN-E8: Compact and flexible KEM from
ideal lattice. Cryptology ePrint Archive, Report 2020/056, 2020.

32. Charbel Saliba, Laura Luzzi, and Cong Ling. Error correction for frodokem using
the gosset lattice. CoRR, abs/2110.01740, 2021.

33. Alex van Poppelen. Cryptographic decoding of the leech lattice. Cryptology ePrint
Archive, Report 2016/1050, 2016. https://eprint.iacr.org/2016/1050.

34. Shanxiang Lyu, Ling Liu, Junzuo Lai, Cong Ling, and Hao Chen. Lattice codes
for lattice-based PKE. Cryptology ePrint Archive, Report 2022/874, 2022.

35. Daniele Micciancio and Antonio Nicolosi. Efficient bounded distance decoders for
barnes-wall lattices. In ISIT 2008, Toronto, ON, Canada, July 6-11, 2008, pages
2484–2488. IEEE, 2008.

36. G. David Forney Jr. Coset codes-ii: Binary lattices and related codes. IEEE Trans.
Inf. Theory, 34(5):1152–1187, 1988.

37. Moshe Ran and Jakov Snyders. Efficient decoding of the gosset, coxeter-todd and
the barnes-wall lattices. In Proceedings. 1998 IEEE International Symposium on
Information Theory (Cat. No. 98CH36252), page 92. IEEE, 1998.

38. Chun Wang, B Shen, and KK Tzeng. Generalised minimum distance decoding of
reed-muller codes and barnes-wall lattices. In Proceedings of 1995 IEEE Interna-
tional Symposium on Information Theory, page 186. IEEE, 1995.

39. Vincent Corlay, Joseph J Boutros, Philippe Ciblat, and Löıc Brunel. On the decod-
ing of barnes-wall lattices. In 2020 IEEE International Symposium on Information
Theory (ISIT), pages 519–524. IEEE, 2020.

40. Vincent Corlay. Decoding Algorithms for Lattices. (Algorithmes de décodage pour
les réseaux de points). PhD thesis, Polytechnic Institute of Paris, France, 2020.

41. Elena Grigorescu and Chris Peikert. List decoding barnes-wall lattices. In 2012
IEEE 27th Conference on Computational Complexity, pages 316–325. IEEE, 2012.

42. Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. Journal of the ACM (JACM), 56(6):1–40, 2009.

43. Shi Bai, Adeline Langlois, Tancrède Lepoint, Damien Stehlé, and Ron Steinfeld.
Improved security proofs in lattice-based cryptography: Using the Rényi divergence
rather than the statistical distance. pages 3–24, 2015.

44. Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria
Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring!
Practical, quantum-secure key exchange from LWE. pages 1006–1018, 2016.

45. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the
Fujisaki-Okamoto transformation. pages 341–371, 2017.

46. Zhongxiang Zheng, Anyu Wang, Haining Fan, Chunhuan Zhao, Chao Liu, and Xue
Zhang. Scloud: Public key encryption and key encapsulation mechanism based on
learning with errors. IACR Cryptol. ePrint Arch., page 95, 2020.

47. Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma. IND-
CCA-secure key encapsulation mechanism in the quantum random oracle model,
revisited. pages 96–125, 2018.

https://eprint.iacr.org/2016/1050

Scloud+: An Efficient LWE-based KEM 29

48. Haodong Jiang, Zhenfeng Zhang, and Zhi Ma. Tighter security proofs for generic
key encapsulation mechanism in the quantum random oracle model. pages 227–248,
2019.

49. Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates.
pages 1–20, 2011.

50. Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in
nearest neighbor searching with applications to lattice sieving. pages 10–24, 2016.

51. Thijs Laarhoven. Search problems in cryptography: from fingerprinting to lattice
sieving, 2016.

52. André Chailloux and Johanna Loyer. Lattice sieving via quantum random walks.
pages 63–91, 2021.

53. Martin R Albrecht. On dual lattice attacks against small-secret lwe and parameter
choices in helib and seal. In Advances in Cryptology – EUROCRYPT 2017, pages
103–129. Springer, 2017.

54. Qian Guo and Thomas Johansson. Faster dual lattice attacks for solving LWE
with applications to CRYSTALS. pages 33–62, 2021.

55. MATZOV. Report on the security of lwe: Improved dual lattice attack, 2022.
56. Léo Ducas and Ludo N Pulles. Does the dual-sieve attack on learning with errors

even work? In Annual International Cryptology Conference, pages 37–69. Springer,
2023.

57. Lei Bi, Xianhui Lu, Junjie Luo, Kunpeng Wang, and Zhenfei Zhang. Hybrid dual
attack on lwe with arbitrary secrets. Cybersecurity, 5(1):15, 2022.

58. Jung Hee Cheon, Minki Hhan, Seungwan Hong, and Yongha Son. A hybrid of dual
and meet-in-the-middle attack on sparse and ternary secret lwe. IEEE Access,
7:89497–89506, 2019.

59. Alexander May. How to meet ternary lwe keys. In Advances in Cryptology–
CRYPTO 2021, pages 701–731. Springer, 2021.

60. Lei Bi, Xianhui Lu, Junjie Luo, and Kunpeng Wang. Hybrid dual and meet-lwe
attack. In Australasian Conference on Information Security and Privacy, pages
168–188. Springer, 2022.

61. Optimized Implementation of FrodoKEM. https://github.com/microsoft/pqcrypto-
lweke, 2023.

	Scloud+: An Efficient LWE-based KEM Without Ring/Module Structure
	Introduction
	Our Contributions
	Ternary Secret.
	Lattice Coding.
	Security and Parameters.

	Related Works
	FrodoKEM.
	Lattice Coding for Unstructured-LWE-based Schemes.

	Outline

	Preliminaries
	Notations
	Lattices and Related Problems
	Cryptographic Definitions

	Lattice Coding and Barnes-Wall Lattices
	Lattice Codes
	Barnes-Wall Lattices
	Decoding Algorithms for Barnes-Wall Lattices.

	Lattice Coding Based on Barnes-Wall Lattices
	Labeling.
	Delabeling.

	The IND-CPA-Secure PKE
	Distributions and Sub-functions.
	The MsgEnc and MsgDec Functions.
	Correctness of the PKE Scheme.
	Security of the PKE Scheme.

	The IND-CCA-Secure KEM
	Correctness and Security of the KEM.

	Parameters and Security Analysis
	Core-SVP Hardness.
	Primal Attack.
	Dual Attack.
	Hybrid Dual Attack.
	Estimator.

	Implementation
	Cryptographic Primitives.
	Matrix Generation and Multiplication.
	Packing and Unpacking.
	Comparison of Scloud+.KEM and FrodoKEM.

	Performance of FrodoKEM on the Same Platform

