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Abstract

We describe a new class of Boolean functions which provide the presently best known trade-off
between low computational complexity, nonlinearity and (fast) algebraic immunity. In particular, for
n ≤ 20, we show that there are functions in the family achieving a combination of nonlinearity and
(fast) algebraic immunity which is superior to what is achieved by any other efficiently implementable
function. The main novelty of our approach is to apply a judicious combination of simple integer
and binary field arithmetic to Boolean function construction.
Keywords: Boolean function, nonlinearity, algebraic immunity, efficient implementation.

1 Introduction

The nonlinear filter model is a several decades old model for stream ciphers. This model consists of two
components, namely a linear feedback shift register (LFSR) and a Boolean function which is applied
to a subset of the bits of the LFSR. The sequence of outputs of the Boolean function on the successive
states of the LFSR constitutes the keystream produced by the stream cipher.

The mathematical challenge for a Boolean function to be used in the filter model of stream ciphers
is the following. Construct a large family (if possible an infinite one) of Boolean functions all of which
are balanced and achieve a good combination of high nonlinearity and high algebraic resistance and
further are efficient to implement. In [7], this design challenge was referred to as “the big single-output
Boolean problem” (similar, in the domain of Boolean functions for stream ciphers, to the “big APN
problem” in the domain of vectorial functions). In more concrete terms, Section 3.1.5 of [6] suggests
that to resist algebraic attacks the number of variables should be at least 13, and further goes on to
recommend that in practice “the number of variables will have to be near 20” which then creates a
“problem of efficiency of the stream cipher.”

There are several known constructions of families of Boolean functions which achieve some, but
not all of the above properties. We discuss these families in details in Section 3. For the present, we
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briefly mention some of these families. The Carlet-Feng (CF) functions [8] are balanced, achieve optimal
algebraic immunity (and also almost optimal fast algebraic immunity) and high nonlinearity, but are not
efficient to implement (see [5] for a gate count estimate of CF functions). The hidden weight bit (HWB)
function [4] is very efficient to implement and in [27] it was shown that the HWB function has good
algebraic immunity, but the nonlinearity is too low. Subsequently, a sequence of works [28, 7, 22, 23]
have generalised the HWB function to improve the nonlinearity while retaining the properties of good
algebraic immunity and being efficient to implement. The trade-offs achieved by these works are not
completely satisfactory.

In this paper, we revisit the above mentioned mathematical challenge for Boolean functions. We
describe a family of functions as a solution to the problem. The functions are based on the HWB
function. To improve the nonlinearity, we introduce post-processing and pre-processing steps. For the
post-processing step, we first extend the HWB function to a vectorial function by extracting a few bits
and then apply a highly nonlinear function to these bits. The number of extracted bits is small (in fact,
a constant) and so it is feasible to apply a highly nonlinear function to these bits without affecting the
efficiency of implementation. For the pre-processing step, we design a novel bijection from n-bit strings
to n-bit strings. The bijection is constructed by a judicious combination of simple integer and binary
field arithmetic. To the best of our knowledge, no previous work reported construction of Boolean
functions based on a combination of integer and binary field arithmetic. Since all operations that we
use are simple and efficient, the overall construction is also quite efficient.

The net effect of applying both the pre and post processing steps is a significant improvement of
both nonlinearity and algebraic resistance over HWB without compromising on the issue of efficient
implementation. Our experimental results show that for all n ≤ 20, both nonlinearity and algebraic
resistance of suitably chosen n-variable functions from the new family are substantially better than the
corresponding values of n-variable functions from all previously known families [28, 7, 22, 23] that are
efficient to implement. So our construction provides good solutions to the concrete problem highlighted
in Section 3.1.5 of [6].

The paper is organised as follows. In Section 2 we describe the preliminaries. The relevant previous
constructions are discussed in Section 3. The family of functions is described in Section 4. Section 5
concludes the paper.

2 Preliminaries

In this section, we introduce the notation and provide the definitions of the properties of Boolean
functions that we consider in this work. For further details and more elaborate discussion on these
issues we refer to [6].

The cardinality of a finite set S will be denoted by #S. For a prime power q, Fq denotes the finite
field of order q consisting of q elements. In particular, F2 denotes the finite field of two elements. For a
positive integer n, Fn2 is the vector space of dimension n over F2. The addition operation over both F2

and Fn2 will be denoted by ⊕. Elements of Fn2 are considered to be n-bit binary strings.
For an n-bit binary string x = (x1, . . . , xn), wt(x) = #{i : xi = 1}. Given two strings x and y

of the same length, the distance between them, denoted d(x,y), is defined to be the number of places
where x and y are unequal. Given x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Fn2 , their inner product 〈x,y〉 is
defined to be 〈x,y〉 = x1y1 ⊕ · · · ⊕ xnyn. For an n-bit string x, by int(x) we denote the unique integer
i ∈ {0, . . . , 2n− 1} whose n-bit binary representation is x. Conversely, for 0 ≤ i ≤ 2n− 1, by binn(i) we
denote the binary string given by the n-bit binary representation of i. The n-bit all-zero and all-one
strings will be denoted as 0n and 1n respectively. For x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Fn2 , we say
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x ≤ y if xi ≤ yi for i = 1, . . . , n.
An n-variable Boolean function f is a map f : Fn2 → F2. By supp(f) we denote the set {x ∈ Fn2 :

f(x) = 1}. The weight of f , denoted wt(f), is the size of supp(f), i.e. wt(f) = #supp(f). An n-variable
function f is said to be balanced if wt(f) = 2n−1. An n-variable function f is uniquely represented by
a binary string f0 · · · f2n−1, where for i ∈ {0, . . . , 2n − 1}, fi = f(binn(i)). Such a string representation
of f is also called the truth table representation of f .

Algebraic normal form. An n-variable function f can be written as a multivariate polynomial in
F2[X1, . . . , Xn]/(X2

1 ⊕ X1, . . . , X
2
n ⊕ Xn) as follows. Let X = (X1, . . . , Xn). Then f(X1, . . . , Xn) =⊕

α∈Fn2
aαXα, where aα ∈ F2, and for α = (α1, . . . , αn), Xα = Xα1

1 · · ·Xαn
n . This representation is

called the algebraic normal form (ANF) representation of f . The algebraic degree (or simply the degree)
of f is defined to be deg(f) = max{wt(α) : aα = 1}. Functions of degree at most 1 are said to be
affine functions. Affine functions having a0n = 0 are said to be linear functions. It is known that if f
is balanced, then deg(f) ≤ n − 1. A balanced function f with deg(f) = n − 1 is said to have optimal
degree.

The following equations relate the coefficients aα in the ANF of f to the truth table representation
of f (see for example Pages 49 and 50 of [6]). For x,α ∈ Fn2 ,

f(x) =
⊕
β≤x

aβ and aα =
⊕
z≤α

f(z). (1)

Nonlinearity and Walsh transform. For two n-variable functions f and g, the distance between
them is denoted by d(f, g) and is defined to be the distance between their truth table representations.
The nonlinearity of an n-variable function f is denoted by nl(f) and is defined to be nl(f) = min d(f, g),
where the minimum is over all n-variable affine functions g.

The Walsh transform of an n-variable function f is a map Wf : Fn2 → Z, where for α ∈ Fn2 ,
Wf (α) =

∑
x∈Fn2

(−1)f(x)⊕〈α,x〉. The function f is balanced if and only if Wf (0n) = 0. The nonlinearity

of a function f is given by its Walsh transform as follows: nl(f) = 2n−1 − 1
2 maxα∈Fn2 |Wf (α)|.

A function f such that Wf (α) = ±2n/2 for all α ∈ Fn2 is said to be a bent function [26]. Clearly such
functions can exist only if n is even. The nonlinearity of an n-variable bent function is 2n−1 − 2n/2−1

and this is the maximum nonlinearity that can be attained by n-variable functions. By LLB(f) we will
denote the logarithm (to base two) of the linear bias of the function f which is defined in the following
manner: LLB(f) = log2 (1/2− nl(f)/2n).

For a positive integer n, the covering radius bound CRBn is defined to be CRBn = 2n−1 − b2n/2−1c.
For an n-variable function f , we have nl(f) ≤ CRBn, where equality holds for bent functions. Let
LCRBn = log2 (1/2− CRBn/2

n).

Algebraic resistance. The algebraic immunity of a function f , denoted by AI(f), is defined in the
following manner [11, 24]: AI(f) = ming 6=0{deg(g) : either gf = 0, or g(f ⊕ 1) = 0}. For an n-variable
function f , it is known [11] that AI(f) ≤ dn/2e. So a function f has optimal AI if AI(f) = dn/2e. It
was proved in [12] that a random n-variable function almost surely has AI at least bn/2− log nc.

Algebraic immunity quantifies the resistance of a function to algebraic attacks. In practice, it is also
required to provide resistance to fast algebraic attack (FAA) [10]. Given an n-variable function f , let g
be an n-variable function of degree e such that gf has degree d. If for small e, d is not too high then
the function f is susceptible to an FAA. It is known [10] that for e + d ≥ n, there exists functions g
and h with deg(g) = e and deg(h) ≤ d such that gf = h. Based on this observation, we provide the
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following definition. For each e ∈ {1, . . . ,AI(f) − 1}, let d ≤ n − 1 − e be the maximum integer such
that there do not exist n-variable functions g and h with deg(g) = e, deg(h) = d and gf = h. We call
the list of all such pairs (e, d) as the FAA-profile of f .

A combined measure of resistance offered by a function f to both algebraic and fast algebraic attacks
is defined to be fast algebraic immunity (FAI):

FAI(f) = min

(
2AI(f),min

g 6=0
{deg(g) + deg(fg) : 1 ≤ deg(g) < AI(f)}

)
.

We have FAI(f) = min(2AI(f),min{e+ d+ 1}), where the second minimum is taken over all pairs (e, d)
in the FAA-profile of f . Further, it is clear that for any function f , 1 + AI(f) ≤ FAI(f) ≤ 2AI(f).

If AI(f) = dn/2e and for each pair (e, d) in the FAA-profile of f , e + d = n − 1, then f is said to
have perfect algebraic immunity (PAI) [21]. We introduce a relaxed version of the notion of optimal AI
and PAI. We say that a function f has almost optimal AI if AI(f) ≥ bn/2c and f is said to have almost
perfect FAA-profile if for each pair (e, d) in the FAA-profile of f , e+ d ≥ n− 2.

Remark 1 There are known algorithms [1, 14, 13] for computing AI and FAI. The complexities of
these algorithms are very high. For computing algebraic immunities we used the Boolean function
library1 of the SageMath software. On the computer resources available to us, it was not possible to do
any computation related to algebraic resistance for functions on more than 20 variables.

Implementation efficiency. The complexity of implementing a Boolean function is measured with
respect to space and time. For example, a truth table representation of an n-variable Boolean function
requires 2n bits and can be computed at a single point in O(1) time (assuming that a look-up into
the truth table requires constant time which need not be true if n is large). More generally, we say
that a Boolean function has an (S, T )-implementation if it can be implemented using S bits/gates and
can be computed using T bit operations. In an asymptotic sense, we say that an infinite family of
Boolean functions has an efficient implementation if any n-variable function in the family has an (S, T )-
implementation where both S and T are bounded above by polynomials in n. From a concrete point
of view, on the other hand, we will be interested in the concrete details of the implementation in terms
of the actual number bits required to represent the function and the actual number of basic operations
required to compute it.

Vectorial functions. For positive integers n and m, an (n,m)-vectorial Boolean function (also called
an S-box) F is a map F : Fn2 → Fm2 . If m = 1, then we get back a Boolean function. An (n,m)-vectorial
Boolean function F can be written as F = (f1, . . . , fm), where each fi, i = 1, . . . ,m, is an n-variable
Boolean function. The fi’s are said to be the coordinate functions of F . For α = (α1, . . . , αm) ∈ Fm2 ,
let Fα = 〈α, (f1, . . . , fm)〉 = α1f1 ⊕ · · · ⊕ αmfm. Then Fα is an n-variable Boolean function, and the
Fα’s are called the component functions of F . For n ≥ m, an (n,m)-vectorial function F is said to
be balanced if for each β ∈ Fm2 , #F−1(β) = 2n−m. Equivalently, it is known that (see e.g. [6]) F is
balanced if and only if all non-zero component functions of F are balanced.

Let F be an (n,m)-vectorial Boolean function and g be an m-variable Boolean function. The
composition g ◦F is an n-variable Boolean function given by (g ◦F )(X1, . . . , Xn) = g(F (X1, . . . , Xn)) =
g(f1, . . . , fm). The Walsh transform of f ◦ F is the following [17]. For β ∈ Fn2 ,

Wf◦F (β) =
1

2m

∑
α∈Fm2

Wf (α)WFα(β). (2)

1https://doc.sagemath.org/html/en/reference/cryptography/sage/crypto/boolean_function.html#sage.

crypto.boolean_function.BooleanFunction.annihilator
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The following simple result follows from (2).

Proposition 1 Let n and m be positive integers with n ≥ m, and let F be a balanced (n,m)-vectorial
function. Let f be an m-variable Boolean function. Then f ◦ F is balanced if and only if f is balanced.

3 Relevant Previous Constructions

In this section, we briefly outline some previous relevant constructions.

Carlet-Feng (CF) functions. Any polynomial a(x) = a0⊕ a1x⊕ · · ·+ an−1x
n−1 ∈ F2[x] is uniquely

determined by the coefficient vector a = (an−1, . . . , a0) ∈ Fn2 . So the elements of Fn2 can be considered
to be polynomials in F2[x] of degree at most n − 1. Let τ(x) be a primitive polynomial of degree n
over F2. An n-variable CF-function is defined by its support which is the following set of polynomials
of degrees at most n− 1:

{0, 1, x mod τ(x), x2 mod τ(x), . . . , x2
n−1−2 mod τ(x)}.

It was shown in [8] that such a Boolean function is balanced, has degree n − 1 and AI dn/2e. (This
class of functions was earlier considered in [15] for showing the tightness of bounds on the algebraic
immunity of vectorial functions and the nonlinearity was earlier studied in [3].) Further, it was shown
in [21] that when n is one more than a power of two, such functions possess PAI. A lower bound on the
nonlinearity of such functions was proved in [8]. For concrete values of n, the actual nonlinearities are
much higher than the lower bound. Further, the nonlinearity depends on the choice of the primitive
polynomial τ(x). We computed the nonlinearities of CF functions for certain values of n. The primitive
polynomials that we used are given in Appendix A.

A drawback of the CF functions is that these are not very efficient to implement. Evaluating the
value of a CF function on a particular input a(x) amounts to computing i such that a(x) ≡ xi mod p(x).
This is the discrete logarithm problem in F2n . A truth table implementation of CF-functions requires
O(2n) bits. Using polynomial space the discrete logarithm problem can be solved in asymptotically sub-
exponential time. As a result, CF functions are unsuitable for fast and light weight implementations.

Hidden weight bit (HWB) functions. For n ≥ 1, let HWBn : {0, 1}n → {0, 1} be the hidden
weight bit function [4] defined as follows. For x = (x1, . . . , xn) ∈ Fn2 ,

HWBn(x) = xwt(x), (3)

where we assume that x0 = 0. The HWB functions are clearly efficiently implementable. Cryptographic
properties of HWB functions were studied in [27]. It was shown that the AI of HWBn is at least bn/3c+1
and for n in the set {6, . . . , 13}, the actual AI is either the lower bound or one more than the lower
bound. For n in the set {6, . . . , 13}, the FAA-profiles were reported in [27] and turned out to be
significantly away from the profile of a PAI function.

The nonlinearity of HWBn was shown to be 2n−1 − 2
(

n−2
d(n−2)/2e

)
. This value is quite low. So even

though HWB functions are efficiently implementable, they do not possess sufficiently high nonlinearity
for cryptographic applications. Concatenations of HWB functions have been studied in [28] producing
functions with higher nonlinearities than the HWB functions, but still not high enough for use in
practical systems.

Binary decision diagrams (BDD) have been used to propose attacks on stream ciphers [19, 20]. A
positive feature of HWB functions is that these functions have high BDD complexity [4, 2, 18].

5



Generalised HWB (GHWB) functions. A generalisation of HWB functions was introduced in [7]
with the goal of improving their nonlinearity and algebraic immunity while retaining the efficiency of
implementation. The concrete results for n = 13, 14, 15 and 16 presented in [7] show that the AI of
GHWB is almost optimal and is greater than the AI of HWB. There is also improvement in nonlinearity.
This improvement, however, is not substantial and the obtained nonlinearities of GHWB functions are
still not good enough for practical applications.

Cyclic weightwise functions. Another generalisation of the HWB function was made in [22]. Let
g0, . . . , gn be n-variable functions. Using these n + 1 functions, an n-variable weightwise function f is
constructed as follows: for x ∈ Fn2 , f(x) = gw(x), where w = wt(x). The function f is uniquely defined
by the sequence of functions (g0, . . . , gn). Note that the function gw is applied only to strings of weight
w. In particular g0 is applied only to the string 0n.

Since implementing n + 1 functions may be difficult in practice, the notion of cyclic weightwise
functions was introduced in [22], where the functions gi’s are defined from a single n-variable function
g as follows: g0 = g1 = g, and for i ∈ {2, . . . , n}, gi is defined to be gi(x) = g(x �> (i − 1)),
where �> is the cyclic right shift operator. The resulting function f is called a cyclic weightwise
function, which we denote as f = CWn(g). Lower bounds on the nonlinearities of CWn(g) was obtained
in [22] for the case when g is linear and for a particular quadratic function g. For the choice of

g(x1, . . . , xn) = x1 ⊕
(⊕b(n−1)/2c

i=1 x2ix2i+1

)
, actual nonlinearities, degrees and algebraic immunities of

CWn(g) were provided in [22]. These functions achieve both the highest nonlinearities and the highest
algebraic immunities among all the functions presented in [22]. Cyclic weightwise Boolean functions
possessing properties which improve upon the functions reported in [22] were described in [23].

Inverse map. Let ρ(x) ∈ F2[x] be an irreducible polynomial of degree n. Then for any nonzero
polynomial a(x) ∈ F2[x] of degree at most n− 1, there is a polynomial b(x) also of degree at most n− 1
such that a(x)b(x) ≡ 1 mod ρ(x), i.e. b(x) = a(x)−1 mod ρ(x). As in the case of the CF functions, we
identify polynomials in F2[x] of degrees at most n− 1 with the elements of Fn2 . We can then define an
(n, n)-vectorial function inv : Fn2 → Fn2 as follows: inv(0n) = 0n and for any a(x) ∈ F2[x] of degree at
most n − 1, inv(a(x)) = a(x)−1 mod ρ(x). This is the well known inverse map which was introduced
to cryptography in [25]. A nonzero component function of inv is an n-variable Boolean function. Such
functions are balanced and have degrees equal to n−1. Further, it is known [25, 9] that the nonlinearity
of any non-zero component function is at least 2n−1 − 2n/2. The AI of such a function, however, is not
good. It was shown in [16], that the AI is equal to d2

√
ne − 2. From an implementation point of view,

computing a(x)−1 mod ρ(x) requires about O(n3) bit operations. For values of n which are relevant
to the nonlinear filter model, it is not possible to make a lightweight and fast implementation of the
inverse function.

4 Construction of Interval λ-HWB Functions

The HWB function is efficient to implement. Its major drawback, however, is its low nonlinearity. We
provide two methods to improve the nonlinearity. The first using a post-processing and the second using
a pre-processing.
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4.1 Post-processing

One possible way to improve the cryptographic properties of the HWB function is to perform some
post-processing of its output. Note that the HWB function produces a single bit of output. It is not
meaningful to perform any post-processing on a single bit. So as a first step, we consider a vectorial
version of the HWB function which produces more than one bit of output. Let r be the number of
bits that are to be produced. The question then is how should these r bits be extracted. On an input
x = (x1, . . . , xn), the HWB function produces as output xi, where i is the weight of (x1, . . . , xn). To
extract r bits, we extract a window of r bits of x centered at xi. This creates a difficulty if indices
of the window fall outside the range {1, . . . , n}. There are two ways to tackle this situation, namely
the null and the cyclic boundary conditions. Let x = (x1, . . . , xn) and suppose i is an integer which
is not in {1, . . . , n}. Under the null boundary condition, we define xi to be 0, while under the cyclic
boundary condition, we define xi to be equal to xj , where j is the unique integer in {1, . . . , n} such
that i ≡ j mod n. From experimental results we find that the nonlinearities of the functions obtained
using the cyclic boundary condition are more than the nonlinearities of the functions obtained using
the null boundary condition. In view of this, we do not formally introduce the construction using the
null boundary condition.

Given positive integers n and r with r ≤ n, we define an (n, r)-vectorial function HWBn,r as follows.
For x ∈ Fn2 , let w = wt(x). Let ` = w − br/2c if r is odd and let ` = w − r/2 + 1 if r is even. Then

HWBn,r = (x`, x`+1, . . . , x`+r−1) with cyclic boundary condition. (4)

Note that HWBn,1 = HWBn. We have the following result regarding the balancedness of HWBn,r.

Proposition 2 Let n and r be positive integers with 1 ≤ r ≤ n. Then HWBn,r is balanced.

Proof: Let β ∈ Fr2. We count the number of preimages of β under HWBn,r. For x ∈ Fn2 with
w = wt(x), suppose HWBn,r(x) = β. Then (x`, x`+1, . . . , x`+r−1) = β, where ` = w − br/2c if r is odd
and let ` = w − r/2 + 1 if r is even. Let k = wt(β). Then #{i ∈ {1, . . . , n} \ {`, . . . , ` + r − 1} : xi =
1} = w−k. So the number of x’s such that wt(x) = w and (x`, x`+1, . . . , x`+r−1) = β is equal to

(
n−r
w−k

)
.

Consequently, the number of preimages of β under HWBn,r is
∑n

w=0

(
n−r
w−k

)
= 2n−r, since n− k ≥ n− r.

�
Let λ be an r-variable Boolean function. We define an n-variable Boolean function λ-HWBn,r in the

following manner.

λ-HWBn,r = λ ◦ HWBn,r. (5)

So for x ∈ Fn2 , λ-HWBn,r(x) = λ(HWBn,r(x)).

Proposition 3 Let λ be an r-variable Boolean function. Then λ-HWBn,r is balanced if and only if λ
is balanced.

Proof: Proposition 2 shows that HWBn,r is a balanced (n, r)-vectorial function. From Proposition 1
we have that the composition of a balanced (n, r)-vectorial function and an r-variable Boolean function
λ is balanced if and only if λ is balanced. �

Let π1, . . . , πn be permutations of {1, . . . , n} and for i = 1, . . . , n, let Pi : Fn2 → Fn2 be defined as
Pi(x1, . . . , xn) = (xπ(1), . . . , xπ(n)). Let g be an n-variable Boolean function and f be another n-variable
Boolean function defined using g and P1, . . . , Pn in the following manner: f(x) = g(Pw(x)), where
w = wt(x). Proposition 4 of [22] shows that f is balanced if and only if g is balanced. Proposition 3
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can be seen as a corollary of Proposition 4 of [22]. On the other hand, Proposition 4 of [22] itself can
be seen as a corollary of Proposition 1 in the following manner. Given P1, . . . , Pn, define a bijection
S : Fn2 → Fn2 by S(x) = Pw(x), where w = wt(x). Then f = g ◦ S, and by Proposition 1, f is balanced
if and only if g is balanced.

Proposition 4 For any r-variable function λ, (1 ⊕ λ)-HWBn,r = 1 ⊕ λ-HWBn,r. More generally, for
any invertible affine transformation A : Fr2 → Fr2, nl(λ ◦A ◦ HWBn,r) = nl(λ ◦ HWBn,r).

The nonlinearity of λ-HWBn,r is determined by the Walsh transform of λ-HWBn,r. In principle,
using (2), the Walsh transform of λ-HWBn,r can be determined from the Walsh transforms of λ and
HWBn,r. So in principle, using (2), the nonlinearity of λ-HWBn,r can be determined from the Walsh
transforms of λ and HWBn,r. The form of (2), however, does not provide any easy method to identify
conditions on the Walsh transform of λ such that the nonlinearity of λ-HWBn,r is high. Faced with this
scenario, we decided to search for choices of λ to determine the set of λ’s having the highest possible
nonlinearity. Since we are interested in balanced functions, using Proposition 3, we focused only on
balanced λ’s. Algorithm 1 describes our search strategy. It takes as input n, r and a list S of r-variable
balanced functions and produces as output a set of functions λ such that the corresponding λ-HWBn,r
function has algebraic degree n− 1 and as such, has maximal nonlinearity among all visited functions.

Algorithm 1: The search procedure for λ-HWBn,r.

Input: n, r and S, where S is a subset of the set of all balanced r-variable functions
Output: A list L of r-variable functions such that for any λ ∈ L, λ-HWBn,r is balanced, has

degree n− 1 and λ ∈ argmaxµ∈S nl(µ-HWBn,r)

1 maxnl← 0; L ← ∅
2 for λ ∈ S do
3 let f = λ-HWBn,r
4 compute nl(f) and deg(f)
5 if deg(f) = n− 1 and maxnl < nl(f) then
6 maxnl← nl(f); L ← {λ}
7 else
8 if deg(f) = n− 1 and maxnl = nl(f) then
9 L ← L ∪ {λ}

10 return L

Proposition 5 For positive integers n and r with 1 ≤ r ≤ n and S a subset of balanced r-variable
functions, let L be returned by Algorithm 1 on input n, r and S. Then for any λ ∈ L, λ-HWBn,r is a
balanced n-variable function having degree n− 1. The time taken by Algorithm 1 is O(#S n2n).

Proof: Suppose L is the output of Algorithm 1. From Proposition 3 it follows that any λ ∈ L is
balanced. From the algorithm, it directly follows that the degree is n− 1.

For each λ in S, the algorithm constructs the n-variable function λ-HWBn,r and computes its
nonlinearity and degree. So the time for each λ is O(n2n), and the total time is O(#S n2n). �

If S is the set of all balanced r-variable functions, then the time required by Algorithm 1 is
O(
(

2r

2r−1

)
n2n). For r = 2, 3 and 4, and for n = 13, . . . , 20, we have run Algorithm 1 with S to be

the set of all r-variable balanced Boolean functions. (Note that for r = 2 the only balanced functions
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are the non-constant affine functions.) A summary of our observations of these executions of Algorithm 1
are as follows.

1. For n = 13, . . . , 20 and r = 2, for the λ’s produced by Algorithm 1, the nonlinearities of λ-HWBn,2
are equal to the nonlinearities of the corresponding HWBn. This though is not true in general.
For example, for n = 8, taking λ(X1, X2) = X1 ⊕X2, the nonlinearity of λ-HWB8,2 is 92, while
the nonlinearity of HWB8 is 88.

2. For a fixed value of n, the nonlinearity of λ-HWBn,r with λ produced by Algorithm 1 increases
with the value of r.

For r = 5, the number of balanced r-variable functions is equal to
(
32
16

)
≈ 229.163. So if in Algorithm 1

we put S to be the set of all 5-variable balanced functions, then the time taken will be proportional to
n2n+29.163. On the computing resources available to use, for n = 13 this computation is barely feasible
while it is out of our reach for n = 20. Accordingly, we decided to take S to be a proper subset of
5-variable balanced functions. The first condition that we imposed is to consider only functions having
degree 4. This, however, does not significantly reduce the size of S. Next we imposed the condition
that along with degree 4, the functions should have nonlinearity 12, which is the maximum possible
nonlinearity among all 5-variable balanced functions. This condition is motivated by our finding that
for r = 3 and r = 4, the λ’s which are returned by Algorithm 1 have the maximum possible nonlinearity
among all balanced r-variable functions. The number of 5-variable functions having degree 4 and
nonlinearity 12 is 1666560 ≈ 220.668. With #S = 1666560, it becomes feasible to run Algorithm 1 for
n = 13, . . . , 20 on our computers. The nonlinearities that are obtained are higher than the nonlinearities
obtained for r = 2, 3 and 4. The following proposition states the results that we obtained.

Proposition 6 Let r = 5. For n = 13, . . . , 20, the maximum nonlinearities, along with the correspond-
ing λ’s and 1 ⊕ λ’s, achieved by balanced λ-HWBn,r functions having degree n − 1, where λ runs over
all 5-variable balanced functions having degree 4 and nonlinearity 12, are as follows.

• n = 13, nl(λ-HWBn,r) = 3780, where λ, 1⊕ λ ∈ {λ5,1, λ5,2}.

• n = 14, nl(λ-HWBn,r) = 7572, where λ, 1⊕ λ ∈ {λ5,3, λ5,4}.

• n = 15, nl(λ-HWBn,r) = 15236, where λ, 1⊕ λ ∈ {λ5,1, λ5,2}.

• n = 16, nl(λ-HWBn,r) = 30526, where λ, 1⊕ λ ∈ {λ5,5, λ5,6}.

• n = 17, nl(λ-HWBn,r) = 61284, where λ, 1⊕ λ ∈ {λ5,1, λ5,2}.

• n = 18, nl(λ-HWBn,r) = 122758, where λ, 1⊕ λ ∈ {λ5,7, λ5,8}.

• n = 19, nl(λ-HWBn,r) = 246368, where λ, 1⊕ λ ∈ {λ5,9, λ5,10}.

• n = 20, nl(λ-HWBn,r) = 493476, where λ, 1⊕ λ ∈ {λ5,11, λ5,12}.

In the above, λ5,i, i = 1, . . . , 12, given by their 32-bit string representations are the following. (The
ANFs of these functions are given in Appendix B.)

λ5,1 = 10111111010100010001101000001110, λ5,2 = 10101000011010110100111001001110

λ5,3 = 10010011011000111011010111010000, λ5,4 = 10000100110100111010100111110100

λ5,5 = 10101011011010110001101100011000, λ5,6 = 10000101111110111000101000001110

λ5,7 = 11100001010111110000101001001110, λ5,8 = 10101011001100100001111000011110

λ5,9 = 10001001010111110010110011101000, λ5,10 = 10101011100100111011010100000110

λ5,11 = 01100010101011111110000111000100, λ5,12 = 01100000110010110101011101001110

9



Efficiency of computing λ-HWBn,5. The requirement is to compute the weight of one n-bit string
and to compute the output of a 5-variable function. For n ≤ 20, this is very efficient to do in both
hardware and software.

Relation to Cyclic Weightwise Functions. Let `1 = 1 − br/2c if r is odd and let `1 = 1 −
r/2 + 1 if r is even. Define an n-variable function g, where for (x1, . . . , xn) ∈ Fn2 , g(x1, . . . , xn) =
λ(x`, x`+1, . . . , x`+r−1) with cyclic boundary condition. Let g0, g1, . . . , gn be n-variable functions where
g0 = g1 = g and for i ∈ {2, . . . , n}, gi(x1, . . . , xn) = g((x1, . . . , xn) <� (i − 1)), where <� is the cyclic
left shift operator. Then λ-HWBn,r is a weightwise function defined by the sequence of functions (g0, g1,
. . . , gn). Note that the notion of cyclic weightwise functions is defined using right cyclic shifts, whereas
λ-HWBn,r is obtained from g using left cyclic shifts2.

4.2 Pre-processing

The function λ-HWBn,r improves the properties of the HWB function by first extending the HWB
function to a vectorial function and then applying λ to the output of the vectorial function. This
constitutes a post-processing of the output of the HWB vectorial function.

To further improve the nonlinearity, we consider a pre-processing of the input to λ-HWBn,r. In more
details, we construct a nonlinear bijection φ : Fn2 → Fn2 , so that before applying λ-HWBn,r to an input
x ∈ Fn2 , we first apply φ to x to obtain y and then apply λ-HWBn,r to y.

The bijection φ combines integer and binary field arithmetic. Given x ∈ Fn2 , φ does the following:
changes the representation of x to an element of Z2n and applies a bijection B; changes back the
representation to Fn2 and reverses the string (which is a linear operation over Fn2 ); again changes the
representation to Z2n and applies B; changes back representation to Fn2 and produces the output. Note
that changing representations from Fn2 to Z2n and vice versa is simply a matter of considering the input
to be either a binary string or a non-negative integer, and has no cost. The bijection B considers Z2n to
be partitioned into intervals; determines the interval to which the integer representation i of x belongs,
applies a simple permutation of the interval to i to obtain j which is then returned.

The above strategy for constructing φ was determined after a great deal of experimentation with
combining simple integer and binary field arithmetic. For example, the bijection B is applied twice; our
experiments show that applying B twice rather than once leads to noticeable increase in nonlinearity,
but futher application of B does not provide significant gain in nonlinearity. We also considered various
other approaches, but the nonlinearities achieved by such constructions were not found to be sufficiently
high. The approach that we describe achieves good nonlinearity as well as good algebraic resistance as
we report below.

Let Z2n be the set of integers modulo 2n. We construct φ by mixing simple and fast operations over
Z2n and F2n (conversions between the representations F2n and Z2n are done using the functions int(x)
and binn(i), as described in Section 2.) The fact that each of the structures Z2n and F2n is complex
with respect to the other is used in the so-called ARX cryptosystems.

The core of our construction of φ is based on the idea of partitioning Z2n into intervals. We first
describe this partitioning strategy.

Partition of Z2n : Let n ≥ 2 and s < n be a positive integer. Let 0 ≤ w0, . . . , w2s−1 ≤ 2n− 1
be integers such that wk+1 = wk + 2n−s mod 2n. For 0 ≤ k ≤ 2s − 1, let Ik = {wk, wk +
1, . . . , wk + 2n−s − 1} where the elements of the set Ik are computed modulo 2n.

2We were unaware of the paper [22] when we obtained the function λ-HWBn,r. It is only later that we realised that
λ-HWBn,r is a special case of (left) cyclic weightwise functions.
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Proposition 7 The collection of sets {Ik} with k = 0, . . . , 2s − 1 forms a partition of Z2n.

Proof: Note that the number of Ik’s is 2s, and each Ik is a subset of Z2n containing 2n−s elements.
So to show the result it is sufficient to show that for 0 ≤ k < ` ≤ 2s−1, Ik and I` are disjoint. From the
definition of the wk’s, we have w` = wk + (`−k)2n−s mod 2n. Suppose that Ik and I` have a non-empty
intersection. Then there are integers a and b with 0 ≤ a, b ≤ 2n−s−1 such that wk +a ≡ w`+ b mod 2n,
i.e. (`−k)2n−s+(b−a) ≡ 0 mod 2n. Note that 1 ≤ `−k ≤ 2s−1 and so 2n−s ≤ (`−k)2n−s ≤ 2n−2n−s.
Further, −2n−s + 1 ≤ b − a ≤ 2n−s − 1. So 1 ≤ (` − k)2n−s + (b − a) ≤ 2n − 1. Consequently,
(`− k)2n−s + (b− a) 6≡ 0 mod 2n, which is a contradiction. �

Proposition 8 For n ≥ 2, w0 ∈ Z2n and positive integer s < n, define In,w0,s : Z2n → Z2s as follows.

In,w0,s(i) =


⌊
i−w0
2n−s

⌋
if i ≥ w0,⌊

i+2n−w0
2n−s

⌋
if i < w0.

(6)

Let k = In,w0,s(i). Then wk = w0 + k2n−s mod 2n and k is the unique integer such that i is in
Ik = {wk, wk + 1, . . . , wk + 2n−s − 1}.

Using the collection of intervals {Ik}, we define a bijection B of Z2n . The idea is the following. Let
i ∈ Z2n . Then i is in one of the intervals Ik, and from i, the value of k can be found using Proposition 8.
Suppose then that i = wk + a, for some a ∈ Z2n−s . Let b = (2k + 1)a mod 2n−s. Since 2k + 1 is odd,
the map a 7→ (2k + 1)a mod 2n−s is a bijection of Z2n−s . So b ∈ Z2n−s . Let j = wk + b. We set B(i) to
be equal to j. In the following result we provide a more formal description of the bijection B.

Proposition 9 For n ≥ 2, positive integer s < n and w0 ∈ Z2n, define Bn,w0,s : Z2n → Z2n as follows.
For i ∈ Z2n, the value of Bn,w0,s(i) is determined by the following sequence of steps.

1. k ← In,w0,s(i);
2. wk ← w0 + k2n−s mod 2n;
3. a← (i− wk) mod 2n;
4. b← a(2k + 1) mod 2n−s;
5. j ← b+ wk mod 2n;
6. set Bn,w0,s(i) to be equal to j.

The map Bn,w0,s defined above is a bijection.

Proof: From Proposition 8, k is the unique integer such that i is in Ik. Since w0 is given, wk is
uniquely determined by k and hence wk is uniquely determined by i. So a = i−wk mod 2n is an element
of Z2n−s , which is uniquely determined by i. Since 2k+ 1 is odd, the map a 7→ a(2k+ 1) mod 2n−s is a
bijection from Z2n−s to itself. So b is in Z2n−s and is uniquely determined by a. Since j = b+wk mod 2n,
b is uniquely determined by a, a itself is uniquely determined by i, and wk is uniquely determined by
i, it follows that j is also uniquely determined by i. This shows that Bn,w0,s is an injection and hence a
bijection. �

Given x = (x1, x2, . . . , xn−1, xn) ∈ Fn2 , let reverse(x) denote the string (xn, xn−1, . . . , x2, x1), i.e.
reverse(x) reverses the string x. Using B and reverse, we define a bijection φ from Fn2 to itself. The
idea is the following. Given x ∈ Fn2 , change the representation to i ∈ Z2n . Let j = B(i). Change the
representation of j from Z2n to F2n , use reverse, and then change the representation back to Z2n . Apply
B once again and change the representation to F2n and produce as the output of φ. The description is
made precise in the following result.
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Proposition 10 Given n ≥ 2, positive integer s < n and w0 ∈ Z2n, define a map φn,w0,s : Fn2 → Fn2 as
follows. For x ∈ Fn2 , the following defines φn,w0,s(x).

i← int(x); j ← Bn,w0,s(i); y← binn(j);
w← reverse(y);
i← int(w); j ← Bn,w0,s(i); z← binn(j);
set φn,w0,s(x) to be equal to z.

The map φn,w0,s described above is a bijection.

Using φn,w0,s and λ-HWBn,r we define a Boolean function IntHWBn,w0,s,λ : Fn2 → Fn2 as follows.

IntHWBn,w0,s,λ = λ-HWBn,r ◦ φn,w0,s = λ ◦ HWBn,r ◦ φn,w0,s. (7)

So for x ∈ Fn2 ,

IntHWBn,w0,s,λ(x) = λ(HWBn,r(φn,w0,s(x))). (8)

One may note that the application of φn,w0,s to x corresponds to a pre-processing of the input to
λ-HWBn,r.

Efficiency. The parameters to the map IntHWBn,w0,s,λ are the integers w0 ∈ Z2n , s < n and the
r-variable function λ. The number of bits required to store w0 is n and the number of bits required to
store s is dlog2 ne. Assuming that λ is stored in its truth table representation, IntHWBn,w0,s,λ requires
n + dlog2 ne + 2r bits to be stored. Note that we consider r = 5 and so IntHWBn,w0,s,λ has a very
efficient space representation. Computing φn,w0,s requires computing Bn,w0,s twice and the reversal
of an n-bit string. The computation of Bn,w0,s requires the computation of In,w0,s (which requires
an integer subtraction, optionally an integer addition and a right shift operation to implement the
quotient), four truncations to implement the modulo operations, one left shift operation to implement
the multiplication by 2n−s, two integer additions, a left shift and an increment to compute 2k + 1, one
integer subtraction, and a single integer multiplication. In a hardware implementation, w0 and s will
be hardcoded into the circuit and λ will be implemented as a small combinational circuit. The other
operations are simple arithmetic operations on n-bit quantities. In particular, for n around 20, we do
not expect the size of the circuit implementing IntHWBn,w0,s,λ to be too large; a rough estimate is about
a few hundred gates. So IntHWBn,w0,s,λ is a very efficiently implementable function.

Proposition 11 Let n ≥ 2, w0 ∈ Z2n, s, r < n be positive integers, and λ be an r-variable function.
Then IntHWBn,w0,s,λ is balanced if and only if λ is balanced.

Proof: Since φn,w0,s is a bijection, φn,w0,s◦λ-HWBn,r is balanced if and only if λ-HWBn,r is balanced
if and only if λ is balanced. �

The requirement is to choose w0, s and λ in a manner so that IntHWBn,w0,s,λ has high nonlinearity.
Since IntHWBn,w0,s,λ is constructed using the composition operator, using (2) the Walsh transform of
IntHWBn,w0,s,λ can be expressed in terms of the Walsh transforms of φn,w0,s, HWBn,r and λ. The result-
ing expression, however, does not provide guidance on how to choose the parameters of IntHWBn,w0,s,λ

to ensure high nonlinearity. Further, we are also not aware of any other analytical method for ensuring
that IntHWBn,w0,s,λ has high nonlinearity. In view of this, we decided to search for appropriate param-
eters so that IntHWBn,w0,s,λ has high nonlinearity. Letting w0 ∈ Z2n , s ≤ bn/2c and λ to be a balanced

r-variable function make the size of the parameter space O(n2n
(

2r

2r−1

)
). For each selection of parameters
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in this space, it is required to construct the function IntHWBn,w0,s,λ and compute its nonlinearity. This

requires O(n2n) time. So the total time for the search becomes O(n222n
(

2r

2r−1

)
). This is computationally

infeasible. So we decided to fix r = 5 and consider the functions λ5,i corresponding to the values of n
given by Proposition 6. This reduces the search time to O(n222n). For n = 13, . . . , 20 we were able to
carry out this search. The search algorithm is given in Algorithm 2.

Algorithm 2: The search procedure for IntHWBn,w0,s,λ.

Input: n, L, where L is the list of λ5,i corresponding to n as given in Proposition 6
Output: A list P of triplets (λ, s, w0).

1 maxnl← 0; P ← ∅
2 for λ ∈ L do
3 for s in {1, . . . , bn/2c do
4 for w0 in Z2n do
5 let f = IntHWBn,w0,s,λ

6 compute nl(f) and deg(f)
7 if deg(f) = n− 1 and maxnl < nl(f) then
8 maxnl← nl(f); P ← {(λ, s, w0)}
9 else

10 if deg(f) = n− 1 and maxnl = nl(f) then
11 P ← P ∪ {(λ, s, w0)}

12 return P

The results of running Algorithm 2 for n = 13, . . . , 20 are stated in the following proposition.

Proposition 12 For n = 13, . . . , 20 and λ is one of λ5,i given by Proposition 6, the maximum nonlin-
earities achieved by IntHWBn,w0,s,λ are as follows.

1. n = 13: for s = 4, w0 = 254, nl(IntHWBn,w0,s,λ5,2) = 3952.
2. n = 14: for s = 5, w0 = 13090, nl(IntHWBn,w0,s,λ5,4) = 7974.
3. n = 15: for s = 7, w0 = 21272, nl(IntHWBn,w0,s,λ5,2) = 16062.
4. n = 16:

for s = 4, w0 = 16699, nl(IntHWBn,w0,s,λ5,5) = 32290;
for s = 4, w0 = 27429, nl(IntHWBn,w0,s,λ5,5) = 32290.

5. n = 17: for s = 4, w0 = 105883, nl(IntHWBn,w0,s,λ5,1) = 64834.
6. n = 18: for s = 5, w0 = 118924, nl(IntHWBn,w0,s,λ5,7) = 130042.
7. n = 19: for s = 5, w0 = 200085, nl(IntHWBn,w0,s,λ5,9) = 260606.
8. n = 20: for s = 5, w0 = 353518, nl(IntHWBn,w0,s,λ5,12) = 522046.

For n = 13, . . . , 19, the algebraic immunities of the functions given in Proposition 12 could be
computed on our servers, but for n = 20, the process exited abnormally and did not return the value of
AI. The values of AI for n = 13, . . . , 19 are stated in the following proposition.

Proposition 13 The algebraic immunities of the functions in Proposition 12 are as follows.
1. n = 13: for s = 4, w0 = 254, AI(IntHWBn,w0,s,λ5,2) = 6.
2. n = 14: for s = 5, w0 = 13090, AI(IntHWBn,w0,s,λ5,4) = 7.
3. n = 15: for s = 7, w0 = 21272, AI(IntHWBn,w0,s,λ5,2) = 7.
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4. n = 16:
for s = 4, w0 = 16699, AI(IntHWBn,w0,s,λ5,5) = 8;
for s = 4, w0 = 27429, AI(IntHWBn,w0,s,λ5,5) = 8.

5. n = 17: for s = 4, w0 = 105883, AI(IntHWBn,w0,s,λ5,1) = 9.
6. n = 18: for s = 5, w0 = 118924, AI(IntHWBn,w0,s,λ5,7) = 9.
7. n = 19: for s = 5, w0 = 200085, nl(IntHWBn,w0,s,λ5,9) = 9.

Note that except for n = 13, 15 and 19, in all other cases the algebraic immunities are optimal, and for
n = 13, 15 and 19, the algebraic immunities are one less than the optimal. We conjecture that the value
of AI for the function in Proposition 12 for n = 20 is 10. This is based on our further study of algebraic
immunities as discussed below.

To further understand the algebraic immunities of the functions in the class IntHWBn,w0,s,λ, we con-
ducted some more experiments. For n = 13, . . . , 19, we fixed λ and s as in Proposition 13 and for 100
randomly chosen values of w0, we constructed the function IntHWBn,w0,s,λ and computed its nonlinearity
and algebraic immunity. For n = 14, 16 and 18, in all the 100 cases the algebraic immunities came out
to be n/2, i.e. optimal. For n = 13, 15, 17 and 19, in all the 100 cases the algebraic immunities came out
to be either bn/2c or dn/2e. Letting a1 and a2 to be the number of cases where the algebraic immunities
came out to be bn/2c and dn/2e respectively, we obtained (a1, a2) = (70, 30), (65, 35), (73, 27), (62, 38)
for n = 13, 15, 17 and 19 respectively. So the experiments provide evidence that for even n func-
tions in the class IntHWBn,w0,s,λ have optimal algebraic immunity, while for odd n, functions in the
class IntHWBn,w0,s,λ have either optimal or almost optimal algebraic immunity, with optimal algebraic
immunity occuring for about 30% or more of the cases.

For n = 17, the function in Proposition 12 has optimal algebraic immunity. For n = 13, 15 and 19,
the functions in Proposition 12 have algebraic immunity one less than the optimal. From the results of
our above mentioned experiments with 100 random values of w0, we provide examples of functions for
n = 13, 15 and 19 with optimal algebraic immunity.

Example 1

• n = 13: for s = 3, w0 = 3204,
nl(IntHWBn,w0,s,λ5,7) = 3950, AI(IntHWBn,w0,s,λ5,7) = 7.

• n = 15: for s = 4, w0 = 51,
nl(IntHWBn,w0,s,λ5,7) = 16036, AI(IntHWBn,w0,s,λ5,7) = 8.

• n = 19: for s = 5, w0 = 471438,
nl(IntHWBn,w0,s,λ5,9) = 260502, AI(IntHWBn,w0,s,λ5,7) = 10.

Note that for n = 13, the nonlinearity of the above example is 3950, while the maximum nonlinearity
reported in Proposition 12 is 3952. For n = 15, the nonlinearity of the above example is 16036, while
the maximum nonlinearity reported in Proposition 12 is 16062. For n = 19, the nonlinearity of the
above example is 260502, while the maximum nonlinearity reported in Proposition 12 is 260606. So for
n = 13, 15 and 19, optimal AI can be obtained with a small decrease in nonlinearity.

To assess the resistance of the class of functions to fast algebraic attacks, we computed the FAA-
profile for the functions given in Proposition 12 for n = 13, 14, 15 and 16 and also for the functions in
Example 1. These are given below.

• FAA-profile for IntHWBn,w0,s,λ5,2 with n = 13, s = 4, w0 = 254:
(1, 11), (2, 9), (3, 9), (4, 7), (5, 7).
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• FAA-profile for IntHWBn,w0,s,λ5,7 with n = 13, s = 3, w0 = 3204:
(1, 10), (2, 9), (3, 9), (4, 7), (5, 7), (6, 6).

• FAA-profile for IntHWBn,w0,s,λ5,4 with n = 14, s = 5, w0 = 13090:
(1, 11), (2, 11), (3, 10), (4, 8), (5, 7), (6, 7).

• FAA-profile for IntHWBn,w0,s,λ5,2) with n = 15, s = 7, w0 = 21272:
(1, 13), (2, 11), (3, 11), (4, 9), (5, 9), (6, 7).

• FAA-profile for IntHWBn,w0,s,λ5,7 with n = 15, s = 4, w0 = 51:
(1, 13), (2, 11), (3, 10), (4, 9), (5, 8), (6, 7), (7, 7).

• FAA-profile for IntHWBn,w0,s,λ5,5 with n = 16, s = 4, w0 = 16699:
(1, 13), (2, 12), (3, 11), (4, 10), (5, 9), (6, 8), (7, 7).

• FAA-profile for IntHWBn,w0,s,λ5,5 with n = 16, s = 4, w0 = 27429:
(1, 13), (2, 12), (3, 11), (4, 10), (5, 9), (6, 8), (7, 7).

We find that almost perfect FAA-profile is achieved in all cases. Consequently, for all such functions f ,
FAI(f) ≥ n− 1. This indicates good resistance of these functions to fast algebraic attacks.

For n = 17, . . . , 20, due to high memory requirement, it was not possible to compute the complete
FAA-profiles for the functions in Proposition 12 and Example 1. Below we provide the partial FAA-
profiles that could be computed.

• partial FAA-profile for IntHWBn,w0,s,λ5,1 with n = 17, s = 4, w0 = 105883:
(1, 14), (2, 14), (3, 13), (4, 12), (5, 11).

• partial FAA-profile for IntHWBn,w0,s,λ5,7 with n = 18, s = 5, w0 = 118924:
(1, 15), (2, 15), (3, 13), (4, 12).

• partial FAA-profile for IntHWBn,w0,s,λ5,9 with n = 19, s = 5, w0 = 200085:
(1, 16), (2, 15), (3, 14).

• partial FAA-profile for IntHWBn,w0,s,λ5,9 with n = 19, s = 5, w0 = 471438:
(1, 17), (2, 15), (3, 15).

• partial FAA-profile for IntHWBn,w0,s,λ5,12 with n = 20, s = 5, w0 = 353518:
(1, 17), (2, 16), (3, 15).

We observe that in all cases for (e, d) in the above partial FAA-profiles, the relation e+ d ≥ n− 2 holds
and we conjecture that for any of these functions f , the relation FAI(f) ≥ n− 1 hold.

Remark 2 From the experimental results we observe that for all the n-variable functions f of the type
IntHWB, for which we were able to compute the algebraic immunities and the FAA-profiles, we have
AI(f) ≥ bn/2c, and FAI(f) ≥ n− 1. Further, AI(f) = dn/2e in several of the cases. This suggests that
functions of the type IntHWB provide good resistance to algebraic and fast algebraic attacks.
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Table 7 of [22] Table 5 of [23] Proposition 12 CF [8] cov rad bnd
n nl LLB nl LLB nl LLB nl LLB CRBn LCRBn

13 3862 −5.13 – – 3952 −5.83 3988 −6.25 4051 −7.51
14 7816 −5.45 7842 −5.55 7974 −6.23 8072 −7.09 8128 −8.00
15 15748 −5.69 – – 16062 −6.67 16212 −7.57 16294 −8.51
16 31616 −5.83 31680 −5.91 32290 −7.10 32530 −8.11 32640 −9.00
17 – – – – 64834 −7.54 65210 −8.65 65355 −9.50
18 – – – – 130042 −7.99 130594 −9.10 130816 −10.00
19 – – – – 260606 −8.41 261294 −9.27 261782 −10.50
20 – – – – 522046 −8.87 523234 −9.96 523776 −11.00

Table 1: Comparison of nonlinearities achieved by IntHWBn,w0,s,λ with Table 7 of [22], Table 5 of [23],
the CF functions and the covering radius bound.

n Table 7 of [22] Tables 6 and 7 of [23] Proposition 13 CF [8]
13 (12,6) – (12,6) (12,7)
14 (12,6) (13,6) (13,7) (13,7)
15 (14,6) – (14,7) (14,8)
16 (14,7) (15,7) (15,8) (15,8)
17 – – (16,9) (16,9)
18 – – (17,9) (17,9)
19 – – (18,9) (18,10)

Table 2: Comparison of degrees and algebraic immunities of IntHWBn,w0,s,λ functions with Table 7
of [22], Tables 6 and 7 of [23] and the CF functions.

4.3 Comparison

Among the previously known efficiently implementable functions HWB, GHWB [7] and the cyclic
weightwise function [22, 23], the nonlinearities reported in Table 7 of [22] and Table 5 of [23] are
the highest. So we compare the nonlinearities reported in Table 7 of [22] and Table 5 of [23] with
those of IntHWBn,w0,s,λ. To provide context, we also compare to the nonlinearites of the CF functions
(even though the CF functions are not efficiently implementable) as well as to the values of the covering
radius bound. We constructed the CF functions using the primitive polynomials in Appendix A and
then computed their nonlinearities. For n = 13, the nonlinearity of the CF function that we obtained
is higher than the nonlinearity reported in [7]. This is not surprising since the actual function and
hence the value of the nonlinearity depends upon the actual primitive polynomial that is used. The
comparison of nonlinearities is shown in Table 1. The comparison of degrees and algebraic immunities
are shown in Table 2. Each entry of Table 2 is of the form (d, a), where d is the degree and a is the
algebraic immunity. We note that the nonlinearities of the IntHWB functions reported in Proposition 12
are higher than the nonlinearities reported in Table 7 of [22] and Table 5 of [23]. For n = 13, the alge-
braic immunity of the IntHWB function given by Proposition 13 is equal to the algebraic immunity of
the function reported in Table 7 of [22].

The LLB’s of IntHWB functions are about 1.5 bits more than the LLB’s of CF functions. While this
may seem like a disadvantage, it is not actually so. Suppose a target value of LLB is fixed and the value
is achieved by CF functions for a particular value of n. By choosing a higher value of n, the same value
of LLB can be also be achieved by IntHWB functions. For example, choosing n = 19 we obtain a value
of LLB which is lower than the value of the CF function for n = 16. Since IntHWB for n = 19 is very
efficiently implementable, whereas the CF function with n = 16 is not, there is no loss in increasing the
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number of variables.

4.4 Examples of IntHWBn,w0,s,λ for n = 21 to 30

It becomes very time consuming to run Algorithm 2 for n greater than 20. To obtain an idea of the
nonlinearity achieved by IntHWBn,w0,s,λ for higher values of n we conducted some experiments. We
fixed s = 5 and λ = λ5,7 and constructed IntHWBn,w0,s,λ for a number of random choices of w0. For
n = 21, . . . , 24, we chose 10000 values for w0, while for n = 25, . . . , 30, we chose 1000 values for w0. For
each n = 21, . . . , 30, in the following example, we report the maximum nonlinearity that was achieved.

Example 2

• n = 21, s = 5, w0 = 1948971: nl(IntHWBn,w0,s,λ5,7) = 1045280.

• n = 22, s = 5, w0 = 223972: nl(IntHWBn,w0,s,λ5,7) = 2092280.

• n = 23, s = 5, w0 = 2179192: nl(IntHWBn,w0,s,λ5,7) = 4187200.

• n = 24, s = 5, w0 = 11878200: nl(IntHWBn,w0,s,λ5,7) = 8378102.

• n = 25, s = 5, w0 = 17211712: nl(IntHWBn,w0,s,λ5,7) = 16761306.

• n = 26, s = 5, w0 = 45478445: nl(IntHWBn,w0,s,λ5,7) = 33530292.

• n = 27, s = 5, w0 = 67070690: nl(IntHWBn,w0,s,λ5,7) = 67070690.

• n = 28, s = 5, w0 = 95163654: nl(IntHWBn,w0,s,λ5,7) = 134157910.

• n = 29, s = 5, w0 = 224553125: nl(IntHWBn,w0,s,λ5,7) = 268332760.

• n = 30, s = 5, w0 = 378168951: nl(IntHWBn,w0,s,λ5,7) = 536691884.

In Table 3, we compare the nonlinearities in Example 2 with those of the CF-function. Note that for
n = 21, . . . , 30, even though we were able to explore a very limited portion of the parameter space of
IntHWB functions, the nonlinearities and the values of LLB that are achieved compare quite well to the
corresponding values of the CF functions. In particular, the values of LLB for the IntHWB functions is
at most about 2 more than those of the CF functions. As explained in Section 4.3, the main advantage
of IntHWB functions is their very efficient implementation. So a target value of LLB can be cheaply
achieved by increasing the value of n. While a CF function would achieve the same value of LLB for
a smaller value of n, it would be much more efficient to implement an IntHWB function with a higher
value of n. Further, based on our experiments for n = 13 to n = 20 we conjecture that even for n > 20,
the IntHWB functions provide good resistance to algebraic attacks (see Remark 2).

5 Conclusion

We provided constructions of Boolean functions which are good solutions to the “the big single-output
Boolean problem” proposed in [7]. The functions are built using simple arithmetic operations leading
to these functions being efficient to implement.

For the functions that we propose we provide experimental results on the nonlinearity and algebraic
resistance. A theoretical direction of work would be to prove results on nonlinearity and algebraic
resistance for these functions. One major problem with doing this is that there are no good mathematical
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Example 2 CF [8] cov rad bnd
n nl LLB nl LLB CRBn LCRBn

21 1045280 −9.31 1046846 −10.24 1047852 −11.50
22 2092280 −9.75 2094936 −10.89 2096128 −12.00
23 4187200 −10.21 4190834 −11.24 4192856 −12.50
24 8378102 −10.64 8383446 −11.67 8386560 −13.00
25 16761306 −11.04 16769938 −12.17 16774320 −13.50
26 33530292 −11.44 33545384 −12.86 33550336 −14.00
27 67070690 −11.78 67097318 −13.50 67103072 −14.50
28 134157910 −12.13 134201202 −13.99 134209536 −15.00
29 268332760 −12.35 268409892 −14.36 268423871 −15.50
30 536691884 −12.55 536833704 −14.82 536854528 −16.00

Table 3: Comparison of nonlinearities achieved by the functions in Example 2 with those of CF functions
and the covering radius bound.

techniques for analysing nonlinearity and algebraic resistance of functions built using a combination of
integer arithmetic and arithmetic over F2. We hope that there will be future research focus on developing
such techniques.

Another possible direction of work would be to extend our approach to vectorial functions. The
ability to simultaneously produce several bits (instead of one) will lead to higher speed of keystream
generation. On the other hand, producing more bits also provides the adversary with more information.
For a vectorial function, it will be required to consider the nonlinearity and algebraic resistance of all
non-zero component functions (i.e., linear combinations of the coordinate functions). The mathematical
challenge is to ensure that each non-zero component function provides sufficient resistance to attacks.
This makes the problem more difficult than the construction of Boolean functions. Again, we hope this
problem will be addressed in the future.
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A Primitive Polynomials Used to Construct CF Functions

For n = 13 to 30, the following primitive polynomials were used in the construction of the CF functions.

x13 ⊕ x4 ⊕ x3 ⊕ x⊕ 1
x14 ⊕ x12x11 ⊕ x⊕ 1
x15 ⊕ x⊕ 1
x16 ⊕ x5 ⊕ x3 ⊕ x2 ⊕ 1
x17 ⊕ x3 ⊕ 1
x18 ⊕ x7 ⊕ 1
x19 ⊕ x6 ⊕ x5 ⊕ x⊕ 1
x20 ⊕ x3 ⊕ 1
x21 ⊕ x2 ⊕ 1
x22 ⊕ x⊕ 1
x23 ⊕ x5 ⊕ 1
x24 ⊕ x4 ⊕ x3 ⊕ x⊕ 1
x25 ⊕ x3 ⊕ 1
x26 ⊕ x6 ⊕ x2 ⊕ x1 ⊕ 1
x27 ⊕ x5 ⊕ x2 ⊕ x1 ⊕ 1
x28 ⊕ x3 ⊕ 1
x29 ⊕ x2 ⊕ 1
x30 ⊕ x23 ⊕ x2 ⊕ x1 ⊕ 1

B ANFs of λ5,i, i = 1, . . . , 12

λ5,1(X1, X2, X3, X4, X5)

= X1X2X3 ⊕X1X2X4 ⊕X1X2 ⊕X1X3X4X5 ⊕X1X3 ⊕X1X5 ⊕X1 ⊕X3X5

⊕X4X5 ⊕X4 ⊕X5 ⊕ 1

λ5,2(X1, X2, X3, X4, X5)

= X1X2X3X5 ⊕X1X2X3 ⊕X1X2X5 ⊕X1X3X5 ⊕X1 ⊕X2X3X5 ⊕X2X3 ⊕X2X4X5

⊕X2X4 ⊕X3X4X5 ⊕X3X4 ⊕X3X5 ⊕X4X5 ⊕X4 ⊕X5 ⊕ 1

λ5,3(X1, X2, X3, X4, X5)

= X1X2X3X5 ⊕X1X2X5 ⊕X1X3X5 ⊕X1X3 ⊕X1X4X5 ⊕X1 ⊕X2X3X4X5 ⊕X2X4X5

⊕X2X5 ⊕X2 ⊕X3X4X5 ⊕X3X4 ⊕X3 ⊕X4X5 ⊕X4 ⊕ 1

λ5,4(X1, X2, X3, X4, X5)

= X1X2X3X4 ⊕X1X2X5 ⊕X1X2 ⊕X1X3X4X5 ⊕X1X4 ⊕X1 ⊕X2X3X4 ⊕X2X3

⊕X2X5 ⊕X2 ⊕X3X4X5 ⊕X3X5 ⊕X3 ⊕ 1

λ5,5(X1, X2, X3, X4, X5)

= X1X2X3X5 ⊕X1X2X3 ⊕X1X2X5 ⊕X1X3X5 ⊕X1X5 ⊕X1 ⊕X2X3X4 ⊕X2X4X5

⊕X2X4 ⊕X3X4X5 ⊕X3X4 ⊕X3X5 ⊕X4X5 ⊕X4 ⊕X5 ⊕ 1

λ5,6(X1, X2, X3, X4, X5)

= X1X2X3 ⊕X1X2X4 ⊕X1X2 ⊕X1X3X4X5 ⊕X1X3X4 ⊕X1X4 ⊕X1 ⊕X2X3X4

⊕X2X3 ⊕X2X4 ⊕X2 ⊕X3X4 ⊕X3X5 ⊕X3 ⊕X4X5 ⊕ 1

λ5,7(X1, X2, X3, X4, X5)

= X1X2X4 ⊕X1X2X5 ⊕X1X2 ⊕X1X3X4X5 ⊕X1X3X4 ⊕X1X3X5 ⊕X1X4 ⊕X3

⊕X4X5 ⊕X4 ⊕X5 ⊕ 1

λ5,8(X1, X2, X3, X4, X5)

= X1X2X3X5 ⊕X1X2X3 ⊕X1X2X5 ⊕X1X4X5 ⊕X1X4 ⊕X1X5 ⊕X1 ⊕X2X4X5

⊕X2X4 ⊕X3X5 ⊕X4X5 ⊕X4 ⊕X5 ⊕ 1

λ5,9(X1, X2, X3, X4, X5)

= X1X2X3X4 ⊕X1X2X3 ⊕X1X2X4X5 ⊕X1X2X4 ⊕X1X2 ⊕X1X3X4 ⊕X1X5 ⊕X1

⊕X2X3X4X5 ⊕X2X4 ⊕X2 ⊕X3X4 ⊕X3X5 ⊕X4 ⊕X5 ⊕ 1

λ5,10(X1, X2, X3, X4, X5)

= X1X2X3X4 ⊕X1X2X3 ⊕X1X2X4X5 ⊕X1X2X5 ⊕X1X3X4 ⊕X1X4X5 ⊕X1 ⊕X2X3X4X5
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⊕X2X4X5 ⊕X2X4 ⊕X3X4 ⊕X3X5 ⊕X4X5 ⊕ 1

λ5,11(X1, X2, X3, X4, X5)

= X1X2X3X4 ⊕X1X2X3X5 ⊕X1X2X3 ⊕X1X2X4X5 ⊕X1X2X5 ⊕X1X3X4X5 ⊕X1X3X5 ⊕X1X3

⊕X1X5 ⊕X1 ⊕X2X3X4X5 ⊕X2X4 ⊕X2X5 ⊕X2 ⊕X3X5 ⊕X4X5 ⊕X4 ⊕X5

λ5,12(X1, X2, X3, X4, X5)

= X1X2X3X4 ⊕X1X2X3X5 ⊕X1X2X4X5 ⊕X1X3X4X5 ⊕X1X3X5 ⊕X1X3 ⊕X1X4X5 ⊕X1X4

⊕X1 ⊕X2X3X4X5 ⊕X2X3 ⊕X2X5 ⊕X2 ⊕X3X4X5 ⊕X4X5 ⊕X4
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