
1

RABAEKS: Revocable Attribute-based
Authenticated Encrypted Search over Lattice for

Multi-receiver Cloud Storage
Yibo Cao, Shiyuan Xu, Xiu-Bo Chen, and Siu-Ming Yiu

Abstract—With the widespread development of cloud storage, searching over the encrypted data (without decryption) has become a
crucial issue. Public key authenticated encryption with keyword search (PAEKS) retrieves encrypted data, and resists inside keyword
guessing attacks (IKGAs). Most PAEKS schemes cannot support access control in multi-receiver models. To address this concern,
attribute-based authenticated encryption with keyword search (ABAEKS) has been studied. However, the access privilege for the
ciphertext may change, and the conventional cryptographic primitives are not resistant to quantum computing attacks, which exhibits a
limited applicability and poor security for cloud storage. In this paper, we propose RABAEKS, the first post-quantum revocable attribute-
based authenticated encrypted search scheme for multi-receiver cloud storage. Our design enables cloud server enforces the access
control of data receivers in the search process. For practical consideration, we further introduce a revocation mechanism of data
receivers, which makes the access control more dynamic. We then define and rigorously analyze the security our scheme. Through
the performance evaluations and comparisons, our computational overhead of ciphertext generation, trapdoor generation and search
algorithm are at least 20×, 1.67× and 1897× faster than prior arts, respectively, which is practical for cloud storage.

Index Terms—Cloud storage, authenticated searchable encryption, revocation, access control.

✦

1 INTRODUCTION

C LOUD storage has facilitated the retrieval and sharing
of big data to a greater extent. Data owners can up-

load large amounts of data to cloud servers (e.g., Ama-
zon Web Services, IBM Cloud), effectively reducing local
storage overheads and enhancing service elasticity [1], [2].
Meanwhile, cloud storage also causes serious privacy and
security concerns, i.e., the disclosure of sensitive data [3],
[4], [5], [6], [7], [8]. To protect data privacy, many researchers
adopt encryption-before-outsourcing method, but this cre-
ates a barrier to query data. In order to ensure data privacy
without losing data availability, public key encryption with
authenticated keyword search (PAEKS) scheme has been
formalized. It takes the secret key of data owner as the input
to the encryption algorithm to resist keyword guessing at-
tacks (KGAs) and inside keyword guessing attacks (IKGAs)
[9]. Utilizing PAEKS, data receivers can encrypt their data
before uploading to cloud servers, allowing the cloud server
to search directly over the encrypted data, thereby ensuring
data privacy.

Unfortunately, most PAEKS schemes only support single
data receiver [9], [10], [11], [12], [13], which is not practical
for cloud storage, as the data outsourcing process typically
involves multiple data receivers. A straightforward multi-
receiver PAEKS scheme can be implemented by taking
each data receiver to submit a search trapdoor one by

• Corresponding author: Xiu-Bo Chen
• Y. Cao and X.-B. Chen are with the Information Security Center,

State Key Laboratory of Networking and Switching Technology, Beijing
University of Posts and Telecommunications, Beijing, China. (E-mail:
caoyibo@bupt.edu.cn, flyover100@163.com).

• Y. Cao, S. Xu, and S.-M. Yiu are with the Department of Computer
Science, The University of Hong Kong, Pok Fu Lam, Hong Kong. (E-
mail: syxu2@cs.hku.hk, smyiu@cs.hku.hk).

one, but this would introduce additional computational and
communication overheads. To address this limitation, some
researchers have presented multi-receiver PAEKS schemes
[14], [15], [16], [17], where the specific process of cipher-
text search is presented in Fig. 1. Among these schemes,
the most representative one is a key policy attribute-based
authenticated encryption with keyword search (ABAEKS)
scheme through introducing the attribute-based encryption
(ABE) into PAEKS [17]. It assigns an attribute to keyword
ciphertext, allowing a receiver can access the specific cipher-
text that meets the access policy. Comparing to key policy
ABAEKS, a ciphertext policy ABAEKS scheme can provide
that the data (or keyword) ciphertext can be accessed by the
specific data receivers to realize the access control in cloud
storage practically.

However, designing a ciphertext policy ABAEKS scheme
still faces two significant problems. On the one hand, in real-
world cloud scenarios, the access privilege for the data (or
keyword) ciphertext may change, causing a specific data
receiver to lose access privilege [18]. To bridge the gap,
revocation mechanism serves as a cornerstone to achieve
dynamic access control, which provides the security for the
data in systems [19], [20], [21], [22], [23], [24]. It usually
requires the cloud server maintaining a revocation list, ren-
dering the data (or keyword) ciphertext inaccessible to the
data receivers on that list. When the revocation list changes,
the data (or keyword) ciphertext will also be updated. On
the other hand, quantum computers pose a severe security
threat to the conventional cryptography [25], [26]. For ex-
ample, Shor’s algorithm can solve the discrete logarithmic
(DL) hardness in probabilistic polynomial time (PPT) [27].
To address this, lattice-based cryptography is considered as
a promising approach to resist quantum computing attacks.

2

Specifically, the learning with errors (LWE) hardness is a
common assumption in lattice-based cryptography, which
as hard as worst-case standard lattice assumptions, and has
been widely used in the lattice cryptographic constructions
[28], [29]. Therefore, it is crucial to construct a lattice-based
revocable ABAEKS scheme for cloud storage.

Cloud server

(CS)

Key generation center

(KGC) Multi-receiver

Data sender

 Upload the

keyword ciphertext

 Calculate and send

the search trapdoor

 Return the

search result

 a.Send the public

and secret key

 b.Send the secret

key for each receiver

Receiver 1

Receiver 2

Receiver 3

Fig. 1. The ciphertext search in multi-receiver models.

To get around the above-mentioned issues, in this paper,
we propose RABAEKS, a post-quantum revocable attribute-
based authenticated encrypted search scheme for multi-
receiver cloud storage. We leverage the philosophy of lat-
tice hardness to against quantum computing attacks. We
also construct the attribute set S and access policy (W, t),
and use the Lagrange interpolation algorithm to achieve
access control for data receivers. Accordingly, when a data
receiver submits a search trapdoor, the cloud server initially
determines whether its attribute satisfies the access policy.
With regard to the revocation mechanism, we implement
the construction of revocation list R utilized the binary tree
structure [24] and KUNodes algorithm [30]. While a trivial
method to construct a RABAEKS scheme is to combine
a ABAEKS scheme [17] with the revocation method [24]
directly, this approach emerges two challenges. On the one
hand, in [17], the attribute is embedded in the keyword
ciphertext (aka. key-policy), which cannot provide attributes
to the data receivers. On the other hand, finding a correct
lattice basis for the SampleLeft algorithm is impossible (as
detailed in Sect. 5.1). To address these issues, we introduce
GenSamplePre algorithm to construct a ciphertext-policy
solution by using the secret key (lattice basis) of a data
receiver to sample a vector as part of the search trapdoor. We
hereby summarize our four-fold contributions as follows.

• We propose a post-quantum revocable attribute-based
authenticated encrypted search scheme for multi-
receiver cloud storage, namely RABAEKS, which not
only achieves multi-receiver and dynamic access con-
trol, but also provides resistance to quantum computing
attacks and IKGAs. To the best of our knowledge,
our design is the first lattice-based ciphertext policy
RABAEKS scheme.

• Our RABAEKS design is based on the lattice alge-
braic structure, which adopts several lattice sampling
algorithms. From a higher perspective, the secret key
for the data owner and data receivers are generated

by TrapGen algorithm and SampleBasis algorithm, re-
spectively, and a search trapdoor is calculated by
GenSamplePre algorithm to realize the keyword cipher-
text search.

• We implement the access control structure through the
threshold secret sharing technique based on Lagrange
interpolation. Additionally, we introduce a revocation
list, the binary tree structure and KUNodes algorithm to
achieve the receiver revocation and ciphertext update,
thereby offering the dynamic access control.

• We provide the security model and security analysis in
the random oracle model (ROM), which demonstrates
that our RABAEKS scheme enjoys IND-CKA and IND-
KGA in a quantum setting. Furthermore, comprehen-
sive performance evaluations and comparisons indi-
cate that our RABAEKS is more efficient in terms of
ciphertext generation, trapdoor generation and search
algorithms compared to previous prior arts [31], [32],
[33]. In particular, these three algorithms offer signif-
icant improvements over prior arts, with up to 20×,
1.67×, and 1897× faster performance.

The rest of this paper is organized as follows. Section
2 presents numerous related works to showcase recent
advancements. Following that, Section 3 provides an intro-
duction to the preliminary concepts. The system models,
threat models, formal definitions, and security models for
RABAEKS are then depicted in Section 4. A detailed ex-
planation and its security analysis of RABAEKS scheme is
demonstrated in Section 5, while Section 6 focuses on the
security analysis of our RABAEKS scheme. In Section 7,
we delve into the performance evaluation and comparison.
Finally, we summarize this paper in Section 8.

2 RELATED WORKS

We review the literature in the context of PAEKS, attribute-
based encrypted search and revocation scheme, and lattice-
based solution.

2.1 Public Key Authenticated Encryption with Keyword
Search
Huang et al. [9] formalized the first PAEKS scheme, to resist
IKGAs during ciphertext search, which has been proven
secure in the ROM. In their scheme, a data sender not
only encrypts the keywords but also authenticates them
with its own secret key so that the keyword ciphertext can
only be calculated by itself. Following this, a great deal of
PAEKS schemes have been conducted. For example, He et
al. [10] proposed a certificateless PAEKS scheme, ensuring
the security of the ciphertext search for Industrial Internet
of Things (IIoT). To fight against adaptively-chosen-targets
adversaries, Lu et al. [11] then improved the adversary
model and security definitions of PAEKS by designing a
lightweight PAEKS scheme to avoid the bilinear pairing
operations. However, those schemes still suffer from the
poor utility for cloud storage systems.

In order to improve the practicality, numerous research
contributed to designing the multi-receiver PAEKS schemes
[14], [15], [16]. In 2021, a broadcast authenticated encryption

3

TABLE 1
Comparison with the current state-of-art schemes

Schemes Keyword Search IKGAs-resilience Multi-receiver Data Receiver Revocation Quantum Resistance

Huang et al. [9] ! ! % % %

He et al. [10] ! ! % % %

Lu et al. [11] ! ! % % %

Liu et al. [14] ! ! ! % %

Chenam et al. [15] ! ! ! % %

Sun et al. [16] ! ! ! % %

Miao et al. [31] ! % ! % %

Yang et al. [32] ! % ! % %

Yang et al. [33] ! % ! % %

Han et al. [19] % % ! ! %

Deng et al. [20] % % ! ! %

Ge et al. [21] % % ! ! %

Liu et al. [12] ! ! % % !

Cheng et al. [13] ! ! % % !

Luo et al. [17] ! ! ! % !

Zhao et al. [22] % % ! ! !

Luo et al. [23] % % ! ! !

Guo et al. [24] % % ! ! !

Our RABAEKS ! ! ! ! !

with keyword search (BAEKS) was proposed by introduc-
ing the broadcast encryption to PAKES [14]. Subsequently,
Chenam et al. [15] constructed a designated cloud server-
based multi-receiver certificateless authenticated searchable
encryption scheme with conjunctive keyword. After that,
Sun et al. [16] presented a multi-receiver certificateless
authenticated searchable encryption scheme for concealing
search patterns, without the need of expensive bilinear pair-
ing operations. Nevertheless, none of these aforementioned
schemes can support access control.

2.2 Attribute-based Encrypted Search and Revocation
Schemes

Attribute-based encrypted search schemes can provide a
ciphertext search under multi-receiver scenario to achieve
the privacy-preserving for cloud storage. For instance, Miao
et al. [31] utilized a hidden access policy to propose a
ciphertext policy attribute-based keyword search scheme,
named ABKS-SM. After that, Yang et al. [32] introduced
the attribute-based keyword search to present an efficient
and provably secure data selective sharing and acquisi-
tion (DSA) scheme, which not only ensures the security
for the cloud data, but also achieves the access control
in a fine-grained manner. Moreover, a dual traceable dis-
tributed attribute-based encryption with subset keyword
search scheme (abbr. DT) was constructed by Yang et al. [33]
to realize data source and user trace. Most recently, Luo et al.
[17] presented an attribute-based authenticated encryption
with keyword search (ABAEKS) primitive to realize access
control by leverage the philosophy of ABE. However, when
the data receiver’s status was changed, they cannot offer the
dynamic access control.

Revocation mechanism can dynamically adjust the ac-
cess privilege of data receivers when their status have been
changed, which serves as a cornerstone towards to the ac-
cess control systems [21]. To achieve the revocation, Han et

al. [19] proposed a traceable and revocable ciphertext-policy
attribute-based encryption (CP-ABE) scheme, through intro-
ducing a binary tree to generate revocation information and
embedding it in the ciphertext to support the ciphertext up-
date when revoking. In addition, Deng et al. [20] presented
a revocable attribute-based data storage (RADS) scheme. In
their scheme, revoked users cannot access either the newly
uploaded files or the old ones, thereby protect the data
privacy. Along with this direction, Ge et al. [21] formulated
a formal definition and security model for the revocable
attribute-based encryption with data integrity protection
(RABE-DI) scheme, which further considers the data in-
tegrity. However, most existing schemes are constructed
based on the DL hardness, and are not resilient to quantum
computing attacks.

2.3 Lattice-based PAEKS and Revocation Schemes

With the development of quantum computers, conven-
tional cryptographic primitives have been seriously threat-
ened. Lattice-based cryptography is considered as the most
promising post-quantum solution, which have been widely
utilized in both PAEKS and revocation schemes.

In 2022, Liu et al. [12] proposed a generic construction
of PAEKS and a lattice-based instantiation. Then, Cheng et
al. [13] enhanced the security level of lattice-based PAEKS
scheme to the fully ciphertext indistinguishablity (fully CI)
and fully trapdoor indistinguishability (fully TI). To sup-
port the multi-receiver model, Luo et al. [17] formalized
an attribute-based authenticated encryption with keyword
search scheme over lattice, named ABAEKS, to realize the
IND-CKA and IND-KGA security under quantum comput-
ing attacks.

With regard to the revocation mechanism, a revocable
ABE scheme over lattice was presented by Zhao et al. [22]
for privacy-preserving in the cloud storage system, and
its security was reduced to the Ring-LWE hardness. After

4

that, Luo et al. [23] constructed a revocable key policy
ABE scheme reduced on LWE hardness, which utilizes
the KUNodes algorithm to realize revocation. Nevertheless,
during the revocation process of their scheme, the secret
key of data receiver is necessary, which causes the secret key
leakage concerns. To mitigate this, Guo et al. [24] proposed a
novel lattice-based revocable ciphertext policy ABE scheme
that also introduces the KUNodes algorithm.

Consequently, to our best knowledge, none of the exist-
ing ABAEKS schemes can not only support receiver revoca-
tion, but also resist quantum computing attacks. The prop-
erty comparison with the existing state-of-the-art solutions
is demonstrated in Table 1.

3 PRELIMINARIES

In this section, we introduce the preliminaries toward to our
RABAEKS scheme, i.e., lattice definition, discrete Gaussian
distribution, LWE hardness, and lattice basis sampling algo-
rithms.
Definition 1. [34] Assume that a matrix E =

(e1, e2, · · · , em) is composed of m linearly independent
vectors, we define the lattice Λ as:

Λ = Λ(E) = {x1e1+x2e2+· · ·+xmem|xi ∈ Z, i ∈ [m]}.
We say that E is a lattice basis of Λ.

Definition 2. [35] Given three integers n, m, q, and a matrix
E ∈ Zn×m

q , we define a q-ary integer lattice as:

Λq(E) := {h ∈ Zm|∃s ∈ Zn
q ,E

⊤s = h mod q}.

Λ⊥
q (E) := {h ∈ Zm|Eh = 0 mod q}.

Λu
q (E) := {h ∈ Zm|Eh = u mod q}.

Definition 3. Given a parameter σ ∈ R+, a center c ∈ Zm,
and any vector x ∈ Zm, we define the discrete Gaussian
distribution over Λ as: DΛ,σ,c(x) =

ρσ,c(x)
ρσ,c(Λ) . For ∀x ∈ Λ,

we say that ρσ,c(x) = exp(−π ∥x−c∥2

σ2), and ρσ,c(Λ) =∑
x∈Λ ρσ,c(x).

Definition 4. [36] Given three integers n,m,q, and an error
distribution χ = Ψα, we define the LWEn,m,q,χ hard-
ness as distinguishing (A,A⊤s + e) and (A,x), where
A ← Zn×m

q , s ← Zn
q , e ← χm, and x ← Zm

q . Moreover,
according to [37], the secret vector s can be selected in
χn.

Lemma 1. [38] Given a lattice Λ and its lattice basis TA, we
can say: Pr[∥x∥ > σ

√
m : x ← DΛ,σ] ≤ negl(m), and

σ ≥ ∥T̃A∥ · ω(
√
logm).

Lemma 2. [39] Given three integers n, q ≥ 2, and m ≥
2n log q, the probabilistic polynomial time (PPT) algo-
rithm TrapGen(n,m, q) computes a uniform matrix A ∈
Zn×m
q and its basis TA ∈ Zm×m

q over Λ⊥
q (A). We can

say that A is statistically close to uniform distribution
over Zn×m and ∥T̃A∥ ≤ O(

√
n logm).

Assume that four positive integers n, q ≥ 2, τ , m ≥
2n log q, a matrix E = (E1 | E2 | · · · | Eτ) ∈ Zn×τm

q ,
and a set N = {i1, i2, · · · , ij} ⊂ [τ], we let EN := (Ei1 |

Ei2 | · · · | Eij) ∈ Zn×jm
q . Now, we give the following two

Lemmas 3 and 4.
Lemma 3. [40] Taking a matrix E ∈ Zn×τm

q , a basis TEN
over Λ⊥

q (EN), a set N ⊂ [τ], and a Gaussian parameter
L ≥ ∥T̃EN ∥ ·

√
τm · ω(√log τm) as input, the PPT al-

gorithm SampleBasis(E,TEN ,N , L) computes a matrix
T′

E. We say that T′
E is a lattice basis of Λ⊥

q (E), and
∥T̃′

E∥ ≤ σ with overwhelming probability.

Lemma 4. [40] Taking a matrix E ∈ Zn×τm
q , a lattice basis

TEN over Λ⊥
q (EN), a set N ⊂ [τ], a vector u ∈ Zn

q , and
a Gaussian parameter σ ≥ ∥T̃EN ∥ · ω(

√
log τm) as in-

put, the PPT algorithm GenSamplePre(E,TEN ,N ,u, σ)
returns a vector e ∈ Zτm, which is statistically close to
the distribution overDΛu

q (E),σ , satisfying Ee = u mod q.

Lemma 5. [41] Taking a matrix E ∈ Zn×m
q and its ba-

sis TE ∈ Zm×m
q , a vector t ∈ Zn

q , a matrix H ∈
Zn×k
q , and σ ≤ ∥T̃E∥ · ω(

√
log(m+ k)) as input, the

SampleLeft(E,H,TE, t, σ) algorithm returns a vector
s ∈ Zm+k, which is statistically close over the distri-
bution DΛt

q([E|H]),σ , satisfying [E|H] · s = t mod q.

Lemma 6. [41] Taking two matrices E,M ∈ Zn×m
q and a

basis TM over Λ⊥
q (M), a matrix H ∈ Zm×m

q , a vector
v ∈ Zn

q , and σ > ∥T̃E∥ · s1(H) · ω(√logm) as input,
the SampleRight(E,M,H,TM,v, σ) algorithm returns
a vector t ∈ Z2m, which is statistically close to the
distribution overMΛv

q ([E∥EH+M]),σ .

1 2

3 64 5

7 8 9 10 11 12 13 14

0

B0

B0U1 B0U2

B0U3 B0U4 B0U5 B0U6

B0V7 B0V8 B0V9 B0V10 B0V11 B0V12 B0V13 B0V14

1 2 3 4 5 6 7 8

The set of data receivers

Fig. 2. The binary tree T for revocation.

Definition 5. [24], [30] Assuming that a set of data receivers
is U := {1, · · · , |U|}, a revocation list isR, and a root ma-
trix is B0 ∈ Zn×m

q , we construct a binary tree T structure
as showed in Fig. 2. For the non-leaf nodes i ∈ [1, |U|−2]
and the leaf nodes j ∈ [|U| − 1, 2|U| − 2], we calculate
Bi = B0Ui, and Bj = B0Vj , where Ui ← {0, 1}m×m

is a reversible matrix such that each row and column
has only one unit element and the rest of elements
are zero, Vj ← {−1, 1}m×m is a reversible matrix.
In T , each leaf node corresponds to a data receiver
in U , and ω(ξ) represents the iteration of each node

5

Algorithm 1 KUNodes

Input: A binary tree T , and a revocation list R
Output: A set Y

1 X ← ∅,Y ← ∅.
2 for i ∈ R do
3 X = X ∪ ω(i).
4 end
5 for j ∈ X do
6 if jLeftNode /∈ X then
7 Y = Y ∪ {jLeftNode}.
8 end
9 if jRightNode /∈ X then

10 Y = Y ∪ {jRightNode}.
11 end
12 end
13 if Y = ∅ then
14 Y = Y ∪ {0}.
15 end
16 return Y .

number in the path from root to this leaf. For example,
ω(3) = {0, 1, 4, 9}, and ω(5) = {0, 2, 5, 11}. Then, we
define the KUNodes(T ,R) as Algorithm 1. For instance,
ifR = {2, 3}, the KUNodes(T ,R) = {2, 7, 10} according
to Algorithm 1. If a data receiver (i.e. leaf node) ξ in the
revocation listR, KUNodes(T ,R)∩ω(ξ) = ∅. Otherwise,
KUNodes(T ,R) ∩ ω(ξ) has one and only one element.

Definition 6. Given a hash function family H := {H :
X → Y } where 0 ∈ Y and a (Q + 1)-dimension vector
x = (x0, · · · , xQ) ∈ XQ+1 as input, we define that H
is (Q, pmin, pmax) abort-resistant if p(x) := Pr[H(x0) =
0 ∩ H(x1) ̸= 0 ∩ · · · ∩ H(xQ) ̸= 0] ∈ [pmin, pmax] for
all x ∈ XQ+1 with x0 ̸= {x1, · · · , xQ} and H ∈ H.
Specifically, we define a abort-resistant hash function
H : Zk

q \ {0}k → Zq as H(m) := 1 +
∑k

i=1 θimi,
where q is a prime, θ := (θ1, · · · , θk) ∈ Zk

q , and
m := (m1, · · · ,mk) ∈ Zk

q \ {0}k.

Lemma 7. [42] Assume that q is a prime and 0 ≤ Q ≤ q, the
hash function H : Zk

q \{0}k → Zq defined in Definition 6
is (Q, 1

q (1−
Q
q),

1
q) abort-resistant.

4 FRAMEWORK FORMULATION

In this section, we show the system models, threat models,
formal definitions and security models. The notations uti-
lized in our scheme are defined in Table 2.

4.1 System Models

In our RABAEKS scheme, there are four entities involved,
Key generation center (KGC), Data sender, Data receivers,
and Cloud server(CS), as depicted in Fig. 3.

The KGC is in charge of initializing the system and
generating the key for data sender and receivers. For a data
sender, the KGC calculates its public and secret key accord-
ing to the public parameter. For a data receiver, the KGC
calculates its secret key according to the public parameter,
its attribute, and master secret key.

TABLE 2
Nomenclature

Symbol Description

λ The security parameter
|kw| Then length of keyword
|att| The number of system attribute
l The number of receiver attribute, where l ≤ |att|
AT T The system attribute, where AT T :=

{1, · · · , |att|}
U The set of data receivers
R The revocation list
pp The public parameter
msk The system master secret key
(pkS , skS) The public and secret key of data sender
S The receiver attribute, where S ⊆ AT T
skR The secret key of data receiver
(W, t) The access policy, where W ⊂ AT T , and t ∈

[1, |att|)
ck The ciphertext keyword, where ck ∈ {0, 1}|kw|

CT The keyword ciphertext
tk The trapdoor keyword, where tk ∈ {0, 1}|kw|

TD The search trapdoor

The data sender has a collection of data files, and extracts
the keyword from it. After receiving the public and secret
key from KGC, the data sender encrypts the keyword with
its own secret key and an access policy through invoking
RABAEKS algorithm, to obtain the keyword ciphertext that
can only be accessed by some specific data receivers. Finally,
the data sender uploads the ciphertext to CS.

Each data receiver owns an attribute in our scheme,
which can be utilized to generate its secret key in KGC.
When the data receiver has a search requirement, it calcu-
lates a search trapdoor using Trapdoor algorithm, and sends
it to CS. If the attribute meets the access condition (i.e. meets
the attribute policy (W, t), and is not in the revocation list)
and the trapdoor matches the corresponding ciphertext, the
data receiver obtains the search result from the CS.

The CS provides the data storage and access control
functions. It stores the keyword ciphertext with an access
policy and a revocation list (RL). After received a search
trapdoor from a data receiver, CS checks whether its at-
tribute meets access condition, including its attribute meets
access policy defined by the data sender and it is not in the
RL. If the access condition is matched, CS performs the Test
algorithm, and sends corresponding search result to the data
receiver. Moreover, when the RL is updated, CS invokes the
CTUpdate algorithm to refresh the keyword ciphertext.

4.2 Threat Models
Assuming that the communication channel is secure, we
present the threat assumptions of four entities as follows.

• KGC is designed to be fully trusted. It generates valid
public and secret keys for data sender and data re-
ceivers, and is not interested in the data files and
keywords stored in the cloud server.

• Data Sender is considered to be fully trusted. It protects
the secret key and submits the valid keyword ciphertext
to the cloud server honestly.

• Data Receivers are assumed to be malicious. They gen-
erate valid trapdoors according to the keyword to be
searched, while they are interested in speculating on

6

Access policy

(W, t)

Recovcation

list (RL)

Access Control

Cloud server (CS)

Key generation center

(KGC)
Data sender

E

x
tr

ac
t

th
e
 k

ey
w

o
rd

 a.Invoke RABAEKS algorithm

 a.Upload the trapdoor

 Invoke Test algorithm

 Return the

search result

 Invoke Setup

algorithm

 a.Send public key

and secret key b.Send secret key for each receiver

 Invoke KeyGenS and

KeyGenR algorithmData files

Keyword

ciphertext

Search

trapdoor

Data Storage

Multi-receiver

Keyword

Access

policy

Secret key of

the sender

Receiver 2
Trapdoor

Receiver 1
Trapdoor

 a.Invoke

Trapdoor algorithm

Receiver 3
Trapdoor

Meet (W, t)

Not in RL

 b.Upload the trapdoor

Not meet (W, t)

Not in RL

 c.Upload the trapdoor

Not meet (W, t)

In RL

 b.Extract the

access policy

 b.Invoke

Trapdoor algorithm

 c.Invoke

Trapdoor algorithm

 Invoke CTUpdate

algorithm

Fig. 3. System models of our RABAEKS for cloud storage.

the search context of other receivers by performing an
unauthorised search.

• CS is considered to be honest-but-curious. It strictly
executes the search algorithm and returns the correct
search results to data receivers that satisfy the access
conditions, while it is it is eager to obtain the data files
and keywords.

4.3 Formal Definitions
Our RABAEKS scheme consists of seven algorithms
ΠRABAEKS = (Setup, KeyGenS , KeyGenR, RABAEKS,
Trapdoor, Test, CTUpdate). We describe their formal def-
initions as follows.

• (pp,msk) ← Setup(λ): Given a security parameter λ,
this algorithm returns a public parameter pp and a
master secret key msk.

• (pkS , skS)← KeyGenS(pp): Given a public parameter
pp, this algorithm returns the public and secret keys
(pkS , skS) to the data sender.

• skR ← KeyGenR(pp,S,msk): Given a public parame-
ter pp, a receiver attribute set S ⊆ AT T , and a master
secret key msk, this algorithm returns the secret keys
skR to the data receiver.

• CT ← RABAEKS(pp, pkS , skS , (W, t), ck): Given a
public parameter pp, a data sender’s public and secret
keys pkS and skS , an access policy (W, t), and a cipher-
text keyword ck, this algorithm returns the keyword
ciphertext CT to the cloud server.

• TD← Trapdoor(pp, pkS , skR, (S, ξ), tk): Given a pub-
lic parameter pp, a data sender’s public key pkS , a data
receiver’s secret key skR, an attribute set S correspond-
ing to the data receiver ξ, and a trapdoor keyword tk,
this algorithm returns the trapdoor TD to the cloud
server.

• 1 or 0 ← Test(pp, (S, ξ), (W, t), CT,TD): Given a
public parameter pp, an attribute set S corresponding

to the data receiver ξ, an access policy (W, t), a key-
word ciphertext CT, and a trapdoor TD, this algorithm
returns 1 or 0 to represent the ciphertext and trapdoor
whether correspond to the same keyword.

• CT′ ← CTUpdate(pp,R′,CT): Given a public param-
eter pp, an updated revocation list R′, and a keyword
ciphertext CT, this algorithms returns an updated key-
word ciphertext CT′ to the cloud server.

4.4 Security Models
4.4.1 IND-CKA security
We define the IND-CKA security model ExpIND-CKA

RABAEKS,A(λ)
as below.

1) Setup: Giving a security parameter λ as input, the chal-
lenger C invokes the Setup(λ) algorithm to calculate a
public parameter pp and a master secret key msk.

2) Phase 1: In polynomial times, A perform the following
queries in an adaptive manner.

a) Secret Key Queries ORK : A submits (pp, S,msk)
to C, and then C invokes KeyGenR algorithm to
compute a secret key skR. Ultimately, C returns skR
to A.

b) Ciphertext Queries OCT : A delivers
((W, t), ck) to C, and then C executes
RABAEKS(pp, pkS , skS , (W, t), ck) algorithm
to compute a ciphertext CT associated to ck.
Eventually, C returns CT to A.

c) Trapdoor Queries OTD: A sends
((S, ξ), tk) to C, and then C executes
Trapdoor(pp, pkS , skR, (S, ξ), tk) algorithm to
compute a trapdoor TD associated to tk. Finally, C
returns TD to A.

3) Challenge: A chooses ck∗
0, ck

∗
1 which have not been

queried in Phase 1 as two challenge ciphertext key-
words, and sends them to C. After that, C se-
lects a random bit µ ∈ {0, 1} and invokes the

7

RABAEKS(pp, pkS , skS , (W, t), ck∗
µ) algorithm to ob-

tain a challenge ciphertext CT∗
µ. Ultimately, C returns

CT∗
µ to A.

4) Phase 2: A continues to access ORK , OCT , and OTD

oracles, but subject to the restriction with neither ck∗
0

nor ck∗
1 can be queried.

5) Guess: A guesses a bit µ′ ∈ {0, 1}. If µ′ = µ, we say
that A wins this game.

We hereby define the advantage of A to win the above
game ExpIND-CKA

RABAEKS,A(λ) as:

AdvIND-CKA
RABAEKS,A(λ) = |Pr[µ′ = µ]− 1

2
|.

Definition 7. Our RABAEKS primitive satisfies IND-CKA
security, if any PPT adversary wins the above game
ExpIND-CKA

RABAEKS,A(λ) with a negligible advantage.

4.4.2 IND-KGA security

We define the IND-KGA security model ExpIND-KGA
RABAEKS,A(λ)

as below.

1) Setup: Giving a security parameter λ as input, the chal-
lenger C invokes the Setup(λ) algorithm to calculate a
public parameter pp and a master secret key msk.

2) Phase 1: In polynomial times, A perform the following
queries in an adaptive manner.

a) Secret Key Queries ORK : The query is same as the
corresponding query in ExpIND-CKA

RABAEKS,A(λ).
b) Ciphertext Queries OCT : The query is same as the

corresponding query in ExpIND-CKA
RABAEKS,A(λ).

c) Trapdoor Queries OTD: The query is same as the
corresponding query in ExpIND-CKA

RABAEKS,A(λ).
3) Challenge: A chooses tk∗

0, tk
∗
1 which have not been

queried in Phase 1 as two challenge trapdoor key-
words, and sends them to C. After that, C se-
lects a random bit µ ∈ {0, 1} and invokes the
Trapdoor(pp, pkS , skR, (S, ξ), tk∗

µ) algorithm to obtain
a challenge trapdoor TD∗

µ. Ultimately, C returns TD∗
µ

to A.
4) Phase 2: A continues to access ORK , OCT , and OTD

oracles, but subject to the restriction with neither tk∗
0

nor tk∗
1 can be queried.

5) Guess: A guesses a bit µ′ ∈ {0, 1}. If µ′ = µ, we say
that A wins this game.

We hereby define the advantage of A to win the above
game ExpIND-KGA

RABAEKS,A(λ) as:

AdvIND-KGA
RABAEKS,A(λ) = |Pr[µ′ = µ]− 1

2
|.

Definition 8. Our RABAEKS primitive satisfies IND-KGA
security, if any PPT adversary wins the above game
ExpIND-KGA

RABAEKS,A(λ) with a negligible advantage.

5 OUR PROPOSED RABAEKS SCHEME

In this section, we propose the overview of our design. After
that, we present the concrete construction of RABAEKS
scheme, and analyze its correctness.

5.1 Design Rationale

In traditional PAEKS schemes, keyword ciphertexts are of-
ten stored in cloud servers, and data receivers submit a trap-
door to search for their interested keywords. Unfortunately,
they can only support single-receiver model, which loses
scalability for cloud storage.

In 2023, Luo et al. [17] incorporated the idea of ABE
into PAEKS to construct a lattice-based ABAEKS scheme,
thereby support the multi-receiver model. Nevertheless,
they did not take the revocation function into consideration,
which makes it impractical for the real-world applications.

To bridge the gap, a straightforward method is to com-
bine ABAEKS with a data receiver revocation method [24],
but this approach presents two challenges to be consid-
ered. On the one hand, in [17], the attribute is embedded
in the keyword ciphertext (aka. key-policy), which can-
not provide attributes to the data receivers. On the other
hand, it is necessary to find a correct basis for lattice
Λ⊥
q (A0 | (A +

∑|kw|
i=1 tkiWi) | M′ | Ai | Bwτ

) or
Λ⊥
q ((A +

∑|kw|
i=1 tkiWi) | M′ | Ai | Bwτ

), but we can
only obtain a basis T(A0|M′) for lattice Λ⊥

q (A0 |M′) during
key generation. As a result, there is no suitable lattice basis
available for the lattice basis sampling algorithm.

To solve the aforementioned problems, we initially con-
struct a ciphertext-policy solution by embedding the at-
tribute into the secret key of data receivers and the access
policy into the keyword ciphertext, thereby addressed the
first challenge. In addition, given a short basis for Λ⊥

q (A
′),

we innovatively invoke GenSamplePre algorithm to sample
a vector, where A′ is the horizontal concatenation of any
number of matrices in (A0 | (A+

∑|kw|
i=1 tkiWi) |M′ | Ai |

Bwτ), e.g. (A0 | M′). In this way, we can utilize the secret
key T(A0|M′) to be a suitable basis, thereby addressed the
second and third challenges. Consequently, we can construct
a lattice-based RABAEKS scheme that supports dynamic
access control in a multi-receiver model, offering a more
practical searchable encryption scheme for cloud storage.

5.2 Our Concrete Construction

The design of our RABAEKS includes six phases: System
Initialization, Key Generation, Ciphertext Generation, Trapdoor
Generation, Search Phase, and Ciphertext Update.

5.2.1 System Initialization

The KGC sets up this system by calling the Setup(λ)
algorithm. A security parameter λ is inputted, and this
algorithm outputs the public parameter pp and master key
msk according to these following procedures.

1) Set the system parameters n,m, q, σ, L, |att|, l, |kw|,
AT T ,U ,R.

2) Calculate an attribute set AT T = {1, · · · , |att|}.
3) Invoke (A0,TA0

) ← TrapGen(n,m, q) to obtain an
uniformly matrix A0 ∈ Zn×m

q and a basis TA0
∈ Zm×m

for Λ⊥
q (A0).

4) Select two random matrices A $← Zn×m
q ,A

$← Zn×n
q .

5) For i ∈ AT T , select a random matrix Ai
$← Zn×m

q .

6) For i ∈ [|kw|], select a random matrix Wi
$← Zn×m

q .

8

7) Select a random matrix M := {M1| · · · |M|att|} $←
Zn×m

q , where {Mi}i∈[|att|] ∈ Zn×η
q , and m = η|att|.

8) Construct a binary tree T and many matrices B0 ∈
Zn×m
q , {Ui}i∈[1,|U|−2], {Vi}i∈[|U|−1,2|U|−2] defined in

Definition 5.
9) Return the public parameter pp := (n,m, q, σ, L, |att|,

l, |kw|,A0,A, {Ai}i∈AT T , {Wi}i∈[|kw|],M, AT T , U ,
R, B0, {Ui}i∈[1,|U|−2], {Vi}i∈[|U|−1,2|U|−2], T), and the
master key msk := TA0

.

5.2.2 Key Generation
The KGC calculates the public and secret key of the data
sender and the secret key of data receiver by calling the
KeyGenS(pp) and KeyGenR(pp,msk) algorithms, respec-
tively.

For the KeyGenS(pp) algorithm, a public parameter pp
is inputted, and this algorithm outputs the public key pkS
and secret key skS with the data sender according to these
following procedures.

1) Invoke (AS ,TAS
) ← TrapGen(n,m, q) to obtain an

uniformly matrix AS ∈ Zn×m
q and a basis TAS

∈
Zm×m for Λ⊥

q (AS).
2) Return the public key pkS := AS and the secret key

skS := TAS
for the data sender.

For the KeyGenR(pp, S,msk) algorithm, a public pa-
rameter pp, a receiver attribute set S ⊆ AT T and a master
key msk are inputted, and this algorithm outputs the secret
key skR with the data receiver according to these following
procedures.

1) Parse the matrix M = (M1 | · · · | M|att|). For i ∈
[|att|], if i ∈ S , set M′

i = Mi. Otherwise, set M′
i = 0.

Let a matrix M′ = (M′
1 | · · · |M′

|att|) ∈ Zn×m
q .

2) Invoke T(A0|M′) ← SampleBasis(A0 |M′,TA0
, {1},

L) to obtain a basis T(A0|M′) ∈ Z2m×2m for Λ⊥
q (A0 |

M′).
3) Return the secret key skR := T(A0|M′) to the data

receiver.

5.2.3 Ciphertext Generation
The data sender calculates a keyword ciphertext by calling
the RABAEKS(pp, pkS , skS , (W, t), ck) algorithm. A public
parameter pp, the public and secret keys (pkS , skS) with
the data sender, an access policy (W, t) where W ⊂ AT T ,
and a keyword ck ∈ {0, 1}|kw| are inputted, and this
algorithm outputs a keyword ciphertext CT according to
these following procedures.

1) Parse the keyword ck = (ck1, · · · , ck|kw|) ∈ {0, 1}|kw|.

2) Select a random vector s $← χn, and many noise vectors
x0

$← χm, x1
$← χm, x $← χn, and xM

$← χm.
3) Calculate three vectors c0 = A⊤

0 s+x0 ∈ Zm
q , c1 = (A+

∑|kw|
i=1 ckiWi)

⊤s+ x1 ∈ Zm
q , and c = A

⊤
s+ x ∈ Zn

q .
4) Invoke c2 ← SampleLeft(AS ,A+

∑|kw|
i=1 ckiWi,TAS

,
c, σ) to obtain a vector c2 ∈ Z2m

q statistically dis-
tributed in D2m

Λc
q(AS |A+

∑|kw|
i=1 ckiWi)

, s.t. (AS | A +
∑|kw|

i=1 ckiWi)c2 = c mod q.
5) For i ∈ W , select a noise vector xi

$← χm, and calculate
a vector ci = A⊤

i s+ xi ∈ Zm
q .

6) Calculate a vector cM = M⊤s+ xM ∈ Zm
q .

7) For k ∈ KUNodes(T ,R), select a noise vector xk
$←

χm, and calculate a vector ck = B⊤
k s+ xk ∈ Zm

q .
8) Return the ciphertext CT := (c0, c1, c2, {ci}i∈W , cM,
{ck}k∈KUNodes(T ,R)) corresponding to the keyword ck.

5.2.4 Trapdoor Generation
The data receiver ξ ∈ U calculates a search trapdoor by
calling the Trapdoor(pp, pkS , skR, (S, ξ), tk) algorithm. A
public parameter pp, the public key pkS with the data
sender, the secret keys skR and the attribute set S with the
data receiver ξ, and a keyword tk ∈ {0, 1}|kw| are inputted,
and this algorithm outputs a search trapdoor TD according
to these following procedures.

1) Parse the keyword tk = (tk1, · · · , tk|kw|) ∈ {0, 1}|kw|.

2) Select some random matrices R′ $← {−1, 1}m×m, a ran-
dom vector s′ $← χn, and two noise vectors x′

0
$← χm,

and x′ $← χn.
3) Calculate two vectors t0 = (AS | A +

∑|kw|
i=1 tkiWi)

⊤s′ +
(

x′
0

R′⊤x′
0

)
∈ Z2m

q , and t = As′ +

x′ := (t1, · · · , tn) ∈ Zn
q , where R′ =

∑|kw|
i=1 ckiR

′
i ∈

Zm×m.
4) Calculate a set ω(ξ) = {w0, · · · , wτ}.
5) For j ∈ [n], select many polynomials pj(x) ∈ Zq[x],

such that pj(0) = tj ∈ Zq .
6) For j ∈ S , set the vector t̂j = (p1(j), · · · , pn(j))⊤ ∈

Zn
q , and invoke tj ← GenSamplePre(A0 | (A +∑|kw|
i=1 tkiWi) | M′ | Aj | Bwτ

,T(A0|M′), {1, 3}, t̂j , σ)
to obtain a vector tj ∈ Z5m

q statistically distributed
in D5m

Λ
t̂j
q (A0|(A+

∑|kw|
i=1 tkiWi)|M′|Aj |Bwτ)

, s.t. (A0 | (A +

∑|kw|
i=1 tkiWi) |M′ | Aj | Bwτ)tj = t̂j mod q.

7) Return the trapdoor TD := (t0, {tj}j∈S) corresponding
to the keyword tk.

5.2.5 Search Phase
The cloud server executes the Test(pp, (S, ξ), (W, t),
CT,TD) algorithm to search the matched keyword cipher-
text corresponding to the trapdoor. A public parameter pp,
the attribute set S with data receiver ξ, the access policy
(W, t), the keyword ciphertext CT, and the trapdoor TD
are inputted, and this algorithm outputs 1 or 0 according to
the following judgements.

1) Parse the matrix cM =



cM,1

...
cM,l


. For i ∈ [|att|], if i ∈ S ,

set cM′,i = cM,i. Otherwise, set cM′,i = 0. Let a matrix

cM′ =



cM′,1

...
cM′,l


 ∈ Zm

q .

2) If |S ∩W| < t or KUNodes(T ,R) ∩ ω(ξ) = ∅, return 0.
3) Otherwise, the set |S ∩W| ≥ t.

a) Select a set J ⊂ S ∩W , where |J | = t.
b) Set γ = KUNodes(T ,R) ∩ ω(ξ):

• If γ is a non-leaf node, c′γ = V⊤
ωτ

(U⊤
γ)

−1cγ .
• If γ is a leaf node, c′γ = cωτ

.
c) Calculate a number r = c⊤2 t0 −

∑
j∈J Lj(c

⊤
0 | c⊤1 |

c⊤M′ | c⊤j | c′⊤γ)tj ∈ Zq , where Lj =
∏

i∈J ,i̸=j −i∏
i∈J ,i̸=j(j−i) .

9
1

The correctness analysis of our RABAEKS scheme

To prove the correctness of our RABAEKS scheme, we suppose the public and secret key of data sender (pkS , skS) =
(AS ,TAS

), the secret key of data receiver skR = T(A0|M′), a ciphertext keyword ck and its ciphertext CT :=
(c0, c1, c2, {ci}i∈W , cM,
{ck}k∈KUNodes(T ,R)), the trapdoor keyword tk and corresponding search trapdoor TD := (t0, {ti}i∈S). When |S ∩W| ≥ t
and ck = tk, we set J ⊂ S ∩W and γ = KUNodes(T ,R) ∩ ω(ξ), where |J | = t.

If γ is a non-leaf node, c′γ = V⊤
ωτ

(U⊤
γ)

−1cγ = V⊤
ωτ

(U⊤
γ)

−1(B⊤
γ s + xγ) = V⊤

ωτ
(U⊤

γ)
−1(U⊤

γ B
⊤
0 s + xγ) = V⊤

ωτ
B⊤

0 s +
V⊤

ωτ
(U⊤

γ)
−1xγ = B⊤

ωτ
s+x′

ωτ
, where x′

ωτ
= V⊤

ωτ
(U⊤

γ)
−1xγ . If γ is a leaf node, c′γ = cωτ

= B⊤
ωτ

s+x′
ωτ

, where x′
ωτ

= xωτ
.

Based on the aforementioned conditions, we have:

r = c⊤2 t0 −
∑

j∈J
Lj(c

⊤
0 |c⊤1 |c⊤M′ |c⊤j |c′⊤γ)tj

= c⊤2 (AS |(A+

|kw|∑

i=1

tkiWi))
⊤s′ + c⊤2

(
x′
0

R′⊤x′
0

)

−
∑

j∈J
Lj((s

⊤A0 + x⊤
0)|(s⊤(A+

|kw|∑

i=1

tkiWi) + x⊤
0 R)|(s⊤M′ + x⊤

M′)|(s⊤Aj + x⊤
j)|(s⊤Bωτ

+ x′⊤
ωτ

))tj

= c⊤s′ −
∑

j∈J
Ljs

⊤(A0|(A+

|kw|∑

i=1

tkiWi)|M′|Aj |Bωτ
)tj + c⊤2

(
x′
0

R′⊤x′
0

)
−

∑

j∈J
Lj(x

⊤
0 |x⊤

0 R|x⊤
M′ |x⊤

j |x′⊤
ωτ

)tj

= c⊤s′ −
∑

j∈J
Ljs

⊤t̂j + xL = c⊤s′ − s⊤t+ xL = s⊤As′ + x⊤s′ − s⊤As′ − s⊤x′ + xL

= xL + x⊤s′ − s⊤x′, where xL = c⊤2

(
x′
0

R′⊤x′
0

)
−

∑

j∈J
Lj(x

⊤
0 |x⊤

0 R|x⊤
M′ |x⊤

j |x′⊤
ωτ

)tj .

If |r| = |xL + x⊤s′ − s⊤x′| < q
5 [42], the cloud server will return 1, which represents that the ciphertext and trapdoor

correspond to the same keyword.

Fig. 4. The correctness analysis of our RABAEKS scheme.

d) If |r − ⌊ q2⌋| ≤ ⌊
q
4⌋, return 1; otherwise, return 0.

5.2.6 Ciphertext Update
The cloud server updates the ciphertext with the change
of revocation list by calling the CTUpdate(pp,R′,CT) al-
gorithm. A public parameter pp, the updated revocation
list R′, and the keyword ciphertext CT are inputted, and
this algorithm outputs an updated keyword ciphertext CT′

according to these following procedures.
1) For k′ ∈ KUNodes(T ,R′), set ζ is an arbitrary non-leaf

node in R.
a) If k′ is a non-leaf node, calculate a vector c′k′ =

U⊤
k′(U⊤

ζ)
−1cζ ∈ Zn

q .
b) If k′ is a leaf node, calculate a vector c′k′ =

V⊤
k′(U⊤

ζ)
−1cζ ∈ Zn

q .
2) Return an updated keyword ciphertext CT′ :=

(c0, c1, c2, {ci}i∈W , cM, {c′k′}k′∈KUNodes(T ,R′)).

5.3 Correctness Analysis and Parameter Setting
In Fig. 4, we provide a correctness analysis of our RABAEKS
scheme. Then, to ensure our RABAEKS scheme can execute
successfully, the involved parameters are set as follows.

• |r| = |xL+x⊤s′− s⊤x′| ≤ (5t+1)(qσmαω(
√
logm)+

O(σm 3
2)) + 2n(2q2α2ω(logm) + O(m)) < q

5 for a
correct RABAEKS.

• m ≥ ⌈2n log q⌉ for TrapGen algorithm.
• L ≥ O(m 3

2) · ω(log 2m) for SampleBasis algorithm.

• σ ≥ 5m · ω(log 5m) for GenSamplePre algorithm.
• αq > 2

√
n for LWE hardness.

6 SECURITY ANALYSIS

In this section, we rigorously prove the security of our
scheme, which covers IND-CKA and IND-KGA security.
Theorem 1. Assume that the LWEn,m,q,χ hardness holds,

our proposed lattice-based RABAEKS scheme satisfies
IND-CKA security in the ROM. For any PPT adver-
sary A, if A can compromise our scheme with a non-
negligible advantage ϵ1, then a PPT challenger C can
be constructed to solve the LWEn,m,q,χ hardness with
a non-negligible probability.

Proof Assume that there exists a PPT adversary A that
has ability to break the IND-CKA secure with a non-
negliable advantage ϵ1, we can construct a challenger C that
solves the decisional LWEn,m,q,χ hardness with the same
advantage. In the Initialization phase, A sends a challenge
access structure (W∗, t∗) and a revocation list R∗ to C,
where t∗ ∈ [1, |att|). Let AT T = {1, · · · , |att|}, such that
W∗ ⊂ AT T , the interaction between A and C is showed as
follows.

Setup: The challenger C samples {(Aj ,bj)}j∈[0,|att|+1],
{(Wj ,uj)}j∈[|kw|], {(Bj ,vj)}j∈[1,2|U|−2] and
{(ai, bi)}i∈[m] from O. Then, C selects a random

matrix A
$← Zn×m

q , sets the matrix A = A|att|+1,
{Ai}i∈AT T = {Aj}j∈[1,|att|+1], M = (a1 | · · · |

10

am) ∈ Zn×m
q , and sends the public parameter pp =

(n,m, q, σ, L, |att|, l, |kw|,A0,A, {Ai}i∈AT T , {Wi}i∈[|kw|],
M, AT T , U , R, B0, {Ui}i∈[1,|U|−2], {Vi}i∈[|U|−1,2|U|−2],
T) to A.

Phase 1: The adversary A executes these following
queries adaptively.

• Secret Key Queries ORK : If S meets the access policy
(W∗, t∗), C returns ⊥ to A. Otherwise, C calculates
M′ = (M1 | · · · | M|att|), where M′

i = Mi if i ∈ S
and M′

i = 0 if i /∈ S , for i ∈ [|att|]. Then, C invokes
T(A0|M′) ← SampleBasis(A0 | M′,TA0

, {1}, L) to
obtain a basis T(A0|M′) ∈ Z2m×2m for Λ⊥

q (A0 | M′).
Finally, C returns the secret key with data receiver
skR = T(A|M′) to A.

• Ciphertext Queries OCT : After A inputs ((W, t), ck),
C executes RABAEKS(pp, pkS , skS , (W, t), ck) to gen-
erate the ciphertext CT with the keyword ck, and then
returns it to A.

• Trapdoor Queries OTD: After A inputs ((S, ξ), tk), C
executes the following procedures according to differ-
ent conditions.

1) If S does not meet (W∗, t∗) and ξ ∈ R∗, where
|S ∩W∗| < t∗. C calculates a secret key skR with data
receiver by executingORK , and calculates t0 as same
as the process in Trapdoor(pp, pkS , skR, (S, ξ), tk).
Then, C selects a subset J ⊆ S such that |J | = t.
For i ∈ J , C samples a vector ti

$← DZ5m
q ,σ , and

calculates t̂i = (A0 | (A+
∑|kw|

i=1 tkiWi) |M′ | Ai |
Bwτ

)ti mod q. Consequently, the pairing {t, {t̂i}}
can be obtained. Through the Lagrange interpolation,
the polynomials p1(x), · · · , pn(x) can be recovered.
For j ∈ S , t̂j = (p1(j), · · · , pn(j))⊤, C invokes
tj ← GenSamplePre(A0 | (A +

∑|kw|
i=1 tkiWi) |

M′ | Aj | Bwτ
,T(A0|M′), {1, 3}, t̂i, σ) to obtain a

vector tj ∈ Z5m
q . Finally, C returns the trapdoor

TD = (t0, {ti}i∈S) to A.
2) If S meets (W∗, t∗) and ξ ∈ R∗, C calculates a vector

t0 firstly. Then, C calculates {ti}i∈S as same as 1),
and returns TD = (t0, {ti}i∈S) to A.

3) If S does not meet (W∗, t∗) and ξ /∈ R∗, C cal-
culates a vector t0 firstly, and then invokes ti ←
GenSamplePre(A0 | (A +

∑|kw|
i=1 tkiWi) | M′ |

Ai | Bwτ ,T(A0|M′), {1, 3}, t̂i, σ) to obtain a vec-
tor ti ∈ Z5m

q , where t̂i = (p1(i), · · · , pn(i))⊤ ∈
Zn
q and p1(x), · · · , pn(x) ∈ Zq[x] such that

(p1(0), · · · , pn(0))⊤ = t for i ∈ S . Then, C returns
TD = (t0, {ti}i∈S) to A.

4) If S meets (W∗, t∗) and ξ /∈ R∗, C returns ⊥ to A.
Challenge:A selects two keywords ck∗

0, ck∗
1 which have

not been queried in Phase 1, and sends them to C. Then, C
selects a bit µ ∈ {0, 1} randomly, and encrypts ck∗

µ with
the access policy (W∗, t∗). Specially, C calculates c∗0 = b0,
c∗1 = b|att|+1 +

∑|kw|
i=1 ck∗i ui, and samples a random vector

c∗2
$← DZ2m

q ,σ . For i ∈ W∗, C calculates c∗i = bi. For
k ∈ KUNodes(T ,R∗), c∗k = vj , where j ∈ [1, 2|U|−2]. After
that, C calculates c∗M = (b1, · · · , bm)⊤. Finally, C returns
CT∗

µ = (c∗0, c
∗
1, c

∗
2, {c∗i }i∈W∗ , c∗M, {c∗k}k∈KUNodes(T ,R∗)) to

A.
Phase 2: The adversaryA continues to query fromORK ,

OCT , and OTD as same as in Phase 1 except that the
((S, ξ), tk) could be queried inOTD when S meets (W∗, t∗)
and tk /∈ (ck∗

0, ck
∗
1).

Guess: The adversary A outputs µ′ ∈ {0, 1}. If µ′ = µ,
A wins this game and C outputs O = OLWE . Otherwise, C
outputs O = O′

LWE .
Analysis: If µ′ = µ, C outputs O = OLWE

meaning that {(Aj ,bj)}j∈[0,|att|+1], {(Wj ,uj)}j∈[|kw|],
{(Bj ,vj)}j∈[1,2|U|−2] and {(ai, bi)}i∈[m] are sampled from
OLWE such that bj = A⊤

j s + xj , uj = W⊤
j s + xj ,

vj = B⊤
j s + xj , and bi = a⊤i s + xi, where s ∈ χn is a

secret vector and xj ← χm, xi ← χ are noise vectors. Then,
we can obtain the following equations:

c∗0 = b0 = A⊤
0 s+ x0

c∗1 = b|att|+1 +

|kw|∑

i=1

ck∗i ui

= (A|att|+1 +

|kw|∑

i=1

ck∗iWi)
⊤s+ (x|att|+1 +

|kw|∑

i=1

ck∗i xi)

c∗2 ∈ DZ2m,σ

c∗i = bi = A⊤
i s+ xi, i ∈ W∗

c∗k = vj = B⊤
j s+ xj , k ∈ KUNodes(T ,R∗), j ∈ [1, 2|U| − 2]

c∗M = (b1, · · · , bm)⊤ = M⊤s+ (x⊤
1 | · · · | x⊤

m)⊤

Consequently, CT∗
µ = (c∗0, c

∗
1, c

∗
2, {c∗k}k∈KUNodes(T ,R∗),

{c∗i }i∈W∗ , c∗M) is a valid ciphertext, and assume that
A can compromise our RABAEKS scheme with ad-
vantage ϵ1, thus Pr[µ′ = µ | O = OLWE] =
1
2 + ϵ1. On the other hand, C outputs O = O′

LWE

meaning that {(Aj ,bj)}j∈[0,|att|+1], {(Wj ,uj)}j∈[|kw|],
{(Bj ,vj)}j∈[1,2|U|−2], and {(ai, bi)}i∈[m] are sampled over
Zn×m
q × Zm

q , Zn×m
q × Zm

q , and Zn
q × Zq , respectively, thus

Pr[µ′ = µ | O = O′
LWE] =

1
2 . Considering the successful

execution of this IND-CKA game, the challenger C has
advantage ϵ1

2 to solve the LWEn,m,q,χ hardness. □

Theorem 2. Assume that the LWEn,m,q,χ hardness holds,
our proposed lattice-based RABAEKS scheme satisfies
IND-KGA security in the ROM. For any PPT adver-
sary A, if A can compromise our scheme with a non-
negligible advantage ϵ2, then a PPT challenger C can
be constructed to solve the LWEn,m,q,χ hardness with
a non-negligible probability.

Proof Assume that there exists a PPT adversary A that has
ability to break the IND-KGA secure with a non-negliable
advantage ϵ2, we can construct a challenger C that solves the
decisional LWEn,m,q,χ hardness with the same advantage.
In the Initialization phase, A sends a challenge attribute
(S∗, ξ∗) and a revocation list R∗ to C, where t∗ ∈ [1, |att|).
Let AT T = {1, · · · , |att|}, where W ⊆ AT T , the interac-
tion between A and C is showed as follows.

Setup: The challenger C samples (AS ,b) from O.
Then, C selects many random matrices A0

$← Zn×m
q ,

A
$← Zn×m

q , {Ai}i∈AT T
$← Zn×m

q , A
$← Zn×m

q ,

M
$← Zn×m

q , {Bi}i∈[2|U|−2]
$← Zn×m

q , sets a abort-
resistant hash function H : Z|kw|

q \ {0}|kw| → Zq

defined in Definition 6, many matrices {Wi =

11

ASR
′
i + θiA}i∈[|kw|] where θ = (θ1, · · · , θ|kw|) ∈ Z|kw|

q and
R′

i ∈ {−1, 1}m×m, and sends the public parameter pp =
(n,m, q, σ, L, |att|, l, |kw|,A0,A, {Ai}i∈AT T , {Wi}i∈[|kw|],M,
AT T , U , R, B0, {Ui}i∈[1,|U|−2], {Vi}i∈[|U|−1,2|U|−2], T) to
A.

Phase 1: The adversary A executes these following
queries adaptively.

• Secret Key QueriesORK : The query process is same as
ORK described in Theorem 1.

• Ciphertext Queries OCT : The adversary A will query
the OCT qH times. For the each query, A inputs
((W, t), ck), if H(ck) = 0, this game is aborted, and A
outputs µ′ ∈ {0, 1} randomly. Otherwise, C calculates
c0, c1, c, {ci}i∈W , cM, and {ck}k∈KUNodes(T ,R∗)
as same as in RABAEKS(pp, pkS , skS , (W, t), ck)
algorithm. Then, C invokes c2 ← SampleRight(AS , (1+∑|kw|

i=1 θicki)A,R′,TA, c, σ) to generate a
vector c2 ∈ Z2m

q statistically distributed
in D2m

Λc
q(AS |(A+

∑|kw|
i=1 ckiWi))

, s.t. (AS |
(A +

∑|kw|
i=1 ckiWi))c2 = c mod q, where

R′ =
∑|kw|

i=1 ckiR
′
i. Finally, C returns the ciphertext

CT := (c0, c1, c2, {ci}i∈W , cM,
{ck}k∈KUNodes(T ,R)) to A.

• Trapdoor Queries OTD: After A inputs ((S, ξ), tk), C
executes Trapdoor(pp, pkS , skR, (S, ξ), tk) to generate
the ciphertext TD with the keyword tk, and then re-
turns it to A.

Challenge: A selects two keywords tk∗
0, tk∗

1 which have
not been queried in Phase 1, and sends them to C. Then, C
selects a bit µ ∈ {0, 1} randomly. If H(tk∗

µ) = 0, this game is
aborted, and A outputs µ′ ∈ {0, 1} randomly. Otherwise, C
generates the trapdoor TD∗

µ with the keyword tk∗
µ and the

attribute (S∗, ξ∗). Specially, C calculates t∗0 =

(
b

(R′)⊤b

)
,

and samples a random vector t∗i
$← DZ5m

q ,σ for i ∈ S∗.
Finally, C returns TD∗

µ = (t∗0, {t∗i }i∈S) to A.
Phase 2: The adversaryA continues to query fromORK ,

OCT , and OTD as same as in Phase 1 except that the
((W, t), ck) could be queried inOCT when ck /∈ (tk∗

0, tk
∗
1).

Guess: The adversary A outputs µ′ ∈ {0, 1} as the
answer to LWEn,m,q,χ hardness. Otherwise, A outputs
µ′ ∈ {0, 1} randomly. Then, the challenger C checks whether
H(tk∗

µ) = 0 and H(cki) ̸= 0 for i ∈ [qH]. If not, C over-
writes µ′ ∈ {0, 1} and aborts this game. After that, C selects
a bit ρ ∈ {0, 1}, where Pr[ρ = 1] = γ(tk∗

µ, ck1, · · · , ckqH)
and the function γ() is defined in [43]. If ρ = 1, C overwrites
µ′ ∈ {0, 1} and aborts this game as an artificial abort. If
µ′ = µ, A wins this game and C outputs O = OLWE .
Otherwise, C outputs O = O′

LWE .
Analysis: If µ′ = µ, C outputs O = OLWE meaning that

(AS ,b) is sampled from OLWE such that b = A⊤
S s + x′

0,
where s ∈ χn is a secret vector and x′

0 ← χm is a noise
vector. Then, we can obtain the following equations:

t∗0 =

(
b

(R′)⊤b

)
=

(
A⊤

S s+ x′
0

(ASR
′)⊤s+ (R′)⊤x′

0

)

= (AS | (A+

|kw|∑

i=1

tkiWi))
⊤s+

(
x′
0

(R′)⊤x′
0

)

t∗i ∈ DZ2m,σ, i ∈ S

Consequently, TD∗
µ = (t∗0, {ti}i∈W) is a valid trapdoor.

From the Lemma 7 and qH ≤ q
2 , we can obtain |pmax −

pmin| = 1
q − 1

q (1−
qH
q) = qH

q2 , and pmin = 1
q (1−

qH
q) ≥ 1

2q .
In order to realize |pmax − pmin| is negligible, we need to
make q large enough. After that, according to the Lemma
28 in [42], the advantage to solve the LWEn,m,q,χ hardness
is ϵ′ ≥ pmin

2 ϵ2 ≥ ϵ2
4q , considering the artificial abort of this

IND-KGA game. □

7 PERFORMANCE EVALUATION AND COMPARISON
WITH PRIOR ARTS

In this section, we implement our RABAEKS scheme using
Python language with Numpy library, and the hardware
environment is accomplished on a laptop with 12-th Gen
Intel(R) Core(TM) i7-12800HX CPU with 16 GB RAM under
Windows 10 operating system. According to the parameter
setting described in Section 5.3, we select q = 4096, n = 256
and m = ⌈2n log q⌉ = 6144 to simulate our RABAEKS,
Trapdoor, and Test algorithms, and assume that the number
of S is equal to the number ofW . For other state-of-the-art
schemes, we set |G| = |GT | = 1024bits, |Zp| = 1024bits,
and the bilinear pairing is initialized by Type A elliptic
curves y2 = x3 + x.

7.1 Computational overhead

Fig. 5 depicts the computational overhead comparison be-
tween our RABAEKS and prior arts in the context of ci-
phertext generation, trapdoor generation and search phase,
as the the number of attributes l increases. As for Fig. 5(a),
we set the length of keyword |kw| = 10 in our RABAEKS
scheme, which does not impact the computational overhead
of other schemes. It is evident that the computational over-
head for all schemes is proportional to l when calculating
keyword ciphertexts, with our RABAEKS scheme proving
to be significantly more efficient than all other solutions.
Regarding Fig. 5(b), the computational overhead of our
trapdoor generation algorithm is comparable to the other
three schemes. When the attributes number l ≥ 25, our
RABAEKS scheme exhibits lower computational overhead
than the other three schemes, with a more gradual increase
as l grows. For the search phase, as shown in Fig. 5(c),
the computational overhead remains relatively stable as the
number of attributes l increases. Consequently, when there
are numerous keyword ciphertexts and search requests in
the cloud server, our solution proves to be much more
practical due to its enhanced search efficiency. In Table 3,
we illustrate the specific computational overhead when the
attributes number is l = 50. Specifically, the computational
overhead of ciphertext generation, trapdoor generation and
search phases is 286ms, 2103ms, and 0.30ms, which is at
least 20×, 1.67× and 1897× faster than prior arts, respec-
tively.

As depicted in Fig. 6, we assess the effects of varying
keyword length (i.e., |kw| = 10, 30, 50) on the ciphertext
generation, trapdoor generation, and search phase in our
RABAEKS scheme, as the number of attributes l increases.
As shown in Fig. 6(a), the computational overhead for the
ciphertext generation algorithm at |kw| = 10, 30, 50 are
closely aligned, indicating that increasing keyword length

12

5 10 15 20 25 30 35 40 45 50
Number of attributes

0

875

1750

2625

3500

4375

5250

6125

7000

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(m

s)
Miao et al. ABKS-SM
Yang et al. DSA
Yang et al. DT
Our RABAEKS (|kw|=10)

(a) Ciphertext generation

5 10 15 20 25 30 35 40 45 50
Number of attributes

0

625

1250

1875

2500

3125

3750

4375

5000

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(m

s)

Miao et al. ABKS-SM
Yang et al. DSA
Yang et al. DT
Our RABAEKS (|kw|=10)

(b) Trapdoor generation

5 10 15 20 25 30 35 40 45 50
Number of attributes

0

500

1000

1500

2000

2500

3000

3500

4000

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(m

s)

Miao et al. ABKS-SM
Yang et al. DSA
Yang et al. DT
Our RABAEKS (|kw|=10)

(c) Search phase

Fig. 5. Computational overhead comparison between our RABAEKS and other state-of-the-art schemes.

TABLE 3
Computational overhead evaluation

Schemes Ciphertext generation (ms) Trapdoor generation (ms) Search phase (ms)

Miao et al. ABKS-SM 6720 3544 2913
Yang et al. DSA 6878 4505 3257
Yang et al. DT 5812 3506 569
Our RABAEKS 286 2103 0.30

5 10 15 20 25 30 35 40 45 50
Number of attributes

0

50

100

150

200

250

300

350

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(m

s)

|kw|=10
|kw|=30
|kw|=50

(a) Ciphertext generation

5 10 15 20 25 30 35 40 45 50
Number of attributes

0

750

1500

2250

3000

3750

4500

5250

6000

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(m

s)

|kw|=10
|kw|=30
|kw|=50

(b) Trapdoor generation

5 10 15 20 25 30 35 40 45 50
Number of attributes

0.000

0.375

0.750

1.125

1.500

1.875

2.250

2.625

3.000

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(m

s)

|kw|=10
|kw|=30
|kw|=50

(c) Search phase

Fig. 6. Computational overhead with the attributes number l between the different length of keyword |kw|.

has minimal impact on the efficiency of keyword ciphertext
computation. Furthermore, we compare the computational
overhead of trapdoor generation with the results presented
in Fig. 6(b). It is noted that the increment of keyword
length significantly impacts the efficiency compared to the
attributes number. In detail, when l = 50, the compu-
tational overhead for three keyword lengths are 2103ms,
3275ms, and 4989ms, respectively. Moreover, the search ef-
ficiency are presented in Fig. 6(c) when the keyword length
|kw| = 10, 30, 50. Concretely, the cost of our RABAEKS
scheme is similar for |kw| = 10 and |kw| = 30 (i.e.
0.30ms and 0.31ms), but it becomes higher at |kw| = 50,
reaching 2.38ms. Nevertheless, our solution remains much
more efficient than the other three schemes, which take
2913ms, 3257ms, and 569ms, respectively. This is because
our approach relies solely on number and matrix operations,
such as matrix modulo multiplication, and avoids expensive
pairing operations. As a result, our RABAEKS scheme offers
a superior search experience for entities in cloud storage.

To further demonstrate the efficiency of our scheme in re-
lation to the increasing keyword length, we choose the num-
ber of attributes l = 10 and vary the keyword length values
(i.e., |kw| = 10, 20, 30, 40, 50). Based on aforementioned

TABLE 4
Glossary

Acronym Definition

l the number of attributes
li the number of possible values for each at-

tribute
|Mrow| the row number of access matrix M
ϕ the order of keyword polynomial in DT
|KUNodes(T ,R)| the number of KUNodes(T ,R)
|Zp| (resp. |Zq |) the element length in Zp (resp. Zq)
|G| (resp. |GT |) the element length in G (resp. GT)

parameters setting, in Fig. 7, we show the computational
overhead of our ciphertext generation, trapdoor generation
and search phase, which provides further corroboration of
the result in Fig. 6.

7.2 Communication overhead
For searchable encryption schemes, the communication
overhead relies on the keyword ciphertext and search trap-
door size transmitted between the data sender, data receiver,
and cloud server. Firstly, we analyze the communication

13

10 20 30 40 50
Length of keyword

250

255

260

265

270

275

280

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(m

s)

(a) Ciphertext generation

10 20 30 40 50
Length of keyword

1500

2000

2500

3000

3500

4000

4500

5000

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(m

s)

(b) Trapdoor generation

10 20 30 40 50
Length of keyword

0.00

0.25

0.50

0.75

1.00

1.25

1.50

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(m

s)

(c) Search phase

Fig. 7. Computational overhead with the keyword length |kw|.

TABLE 5
Communication overhead comparison

Schemes Ciphertext generation Trapdoor generation

Miao et al. ABKS-SM. (l + 2)|Zp|+ (
∑l

i=1(li + |Mrow|+ l + 2)|G|+ 3|GT | 2|Zp|+ |G|
Yang et al. DSA (2l + 3)|G| (4l+ 2)|G|
Yang et al. DT (2l + ϕ+ 4)|G|+ (|Mrow|+ 2)|GT | (l + ϕ+ 3)|G|+ l|GT |
Our RABAEKS (l + |KUNodes(T ,R)|+ 5)m|Zq | (5l + 1)m|Zq |

5 10 15 20 25 30 35 40 45 50
Number of attributes

0.0

0.3

0.6

0.9

1.2

1.5

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (M
B

)

n=256
n=512

(a) Ciphertext generation

5 10 15 20 25 30 35 40 45 50
Number of attributes

0

1

2

3

4

5
C

om
m

un
ic

at
io

n
ov

er
he

ad
 (M

B
)

n=256
n=512

(b) Trapdoor generation

Fig. 8. Communication overhead with the number of attributes l between different security parameter n.

overhead of the keyword ciphertext and trapdoor in our
RABAEKS and other prior arts. In Table. 4, we list the
length parameters for the theoretical evaluation, and the
result is showed in Table. 5. Specifically, the ciphertext
and trapdoor size of other three schemes are simply the
linear combinations of element length on group, and grow
linearly with the number of attributes l. For our RABAEKS
scheme, the ciphertext and trapdoor size increases with the
security parameters n, m, the number of attributes l, and the
size of KUNodes(T ,R). Since the ciphertext and trapdoor
are matrices, our communication overhead is higher than
the other three pairing-based schemes, which is a common
problem for lattice-based cryptographic schemes. Although
our RABAEKS scheme introduces additional communica-
tion overhead, it can resist quantum attacks, providing post-
quantum security for keywords in cloud storage scenarios,
which is not available in the other three schemes.

In Fig. 8, we analyze the communication overhead in
calculating the ciphertext and trapdoor with the number
of attributes l between n = 256 and n = 512. As l
growing, the ciphertext and trapdoor size increase lin-
early. Since there are more components related to l in the

trapdoor than the ciphertext, the trapdoor size increases
more significantly. Moreover, the enhancement of security
parameter (m doubles from 256 to 512) leads to the grow-
ing in the communication overhead. For example, we set
l = 50, n = 512, m = 12288, the ciphertext size is
(50+3+5)×12288×12 = 1.02MB, and the trapdoor size is
(5×50+1)×12288×12 = 4.41MB. When n doubles from
256 to 512, the ciphertext and trapdoor size are change from
0.51MB to 1.02MB, and 2.21MB to 4.41MB, respectively.

8 CONCLUSION AND FUTURE WORK

In this paper, we propose RABAEKS, a post-quantum
revocable attribute-based authenticated encrypted search
scheme for multi-receiver cloud storage. Our design embeds
attributes into the data receiver’s secret key and access
policies into the keyword ciphertext, to realize the key-
word ciphertext search and access control simultaneously.
In addition, we introduce revocation of data receivers to
construct a more dynamic access control mechanism. The
rigorous security analysis demonstrates that our RABAEKS
achieves IND-CKA and IND-KGA security in the ROM. The
comprehensive experimental evaluations also indicate that

14

the computational overhead of our ciphertext generation,
trapdoor generation, and search algorithms are at least
20×, 1.67×, and 1897× faster than state-of-the-art schemes.
Although our design reduces the IND-CKA and IND-KGA
security to LWE hardness, it has only been proven in the
ROM. As such, improving security in the standard model
is an interesting direction for future work. Besides, our
scheme is not resistant to the secret key leakage attacks, i.e.,
the security of keywords cannot be guaranteed when the
data owner/receiver’s secret key has been compromised.
Addressing this vulnerability is also a valuable area for
exploration.

REFERENCES

[1] C. Cai, J. Weng, X. Yuan, and C. Wang, “Enabling reliable keyword
search in encrypted decentralized storage with fairness,” IEEE
Transactions on Dependable and Secure Computing, vol. 18, no. 1, pp.
131–144, 2018.

[2] K. He, J. Guo, J. Weng, J. Weng, J. K. Liu, and X. Yi, “Attribute-
based hybrid boolean keyword search over outsourced encrypted
data,” IEEE Transactions on Dependable and Secure Computing,
vol. 17, no. 6, pp. 1207–1217, 2018.

[3] Y. Chen, W. Li, F. Gao, Q. Wen, H. Zhang, and H. Wang, “Practical
attribute-based multi-keyword ranked search scheme in cloud
computing,” IEEE Transactions on Services Computing, vol. 15, no. 2,
pp. 724–735, 2019.

[4] Y. Miao, R. H. Deng, K.-K. R. Choo, X. Liu, J. Ning, and H. Li,
“Optimized verifiable fine-grained keyword search in dynamic
multi-owner settings,” IEEE Transactions on Dependable and Secure
Computing, vol. 18, no. 4, pp. 1804–1820, 2019.

[5] C. Ge, W. Susilo, Z. Liu, J. Xia, P. Szalachowski, and L. Fang,
“Secure keyword search and data sharing mechanism for cloud
computing,” IEEE Transactions on Dependable and Secure Computing,
vol. 18, no. 6, pp. 2787–2800, 2020.

[6] K. Zhang, M. Wen, R. Lu, and K. Chen, “Multi-client sub-linear
boolean keyword searching for encrypted cloud storage with
owner-enforced authorization,” IEEE Transactions on Dependable
and Secure Computing, vol. 18, no. 6, pp. 2875–2887, 2020.

[7] C. Huang, D. Liu, A. Yang, R. Lu, and X. Shen, “Multi-client secure
and efficient dpf-based keyword search for cloud storage,” IEEE
Transactions on Dependable and Secure Computing, vol. 21, no. 1, pp.
353–371, 2023.

[8] S. Xu, X. Chen, and Y. He, “Evchain: An anonymous blockchain-
based system for charging-connected electric vehicles,” Tsinghua
Science and Technology, vol. 26, no. 6, pp. 845–856, 2021.

[9] Q. Huang and H. Li, “An efficient public-key searchable encryp-
tion scheme secure against inside keyword guessing attacks,”
Information Sciences, vol. 403, pp. 1–14, 2017.

[10] D. He, M. Ma, S. Zeadally, N. Kumar, and K. Liang, “Certifi-
cateless public key authenticated encryption with keyword search
for industrial internet of things,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 8, pp. 3618–3627, 2017.

[11] Y. Lu and J. Li, “Lightweight public key authenticated encryption
with keyword search against adaptively-chosen-targets adver-
saries for mobile devices,” IEEE Transactions on Mobile Computing,
vol. 21, no. 12, pp. 4397–4409, 2021.

[12] Z.-Y. Liu, Y.-F. Tseng, R. Tso, M. Mambo, and Y.-C. Chen, “Public-
key authenticated encryption with keyword search: A generic con-
struction and its quantum-resistant instantiation,” The Computer
Journal, vol. 65, no. 10, pp. 2828–2844, 2022.

[13] L. Cheng and F. Meng, “Public key authenticated encryption with
keyword search from lwe,” in European Symposium on Research in
Computer Security. Springer, 2022, pp. 303–324.

[14] X. Liu, K. He, G. Yang, W. Susilo, J. Tonien, and Q. Huang, “Broad-
cast authenticated encryption with keyword search,” in Aus-
tralasian Conference on Information Security and Privacy. Springer,
2021, pp. 193–213.

[15] V. B. Chenam and S. T. Ali, “A designated cloud server-based
multi-user certificateless public key authenticated encryption with
conjunctive keyword search against ikga,” Computer Standards &
Interfaces, vol. 81, p. 103603, 2022.

[16] L. Sun, Z. Cao, X. Dong, J. Shen, M. Wang, and J. Chen, “dm-
claeks: Pairing-free designated-tester multi-recipient certificateless
authenticated encryption with keyword search for concealing
search patterns,” Journal of Systems Architecture, vol. 144, p. 103007,
2023.

[17] F. Luo, H. Wang, C. Lin, and X. Yan, “Abaeks: Attribute-based
authenticated encryption with keyword search over outsourced
encrypted data,” IEEE Transactions on Information Forensics and
Security, 2023.

[18] D. Ghopur, J. Ma, X. Ma, J. Hao, T. Jiang, and X. Wang, “Punc-
turable key-policy attribute-based encryption scheme for efficient
user revocation,” IEEE Transactions on Services Computing, 2023.

[19] D. Han, N. Pan, and K.-C. Li, “A traceable and revocable
ciphertext-policy attribute-based encryption scheme based on pri-
vacy protection,” IEEE Transactions on Dependable and Secure Com-
puting, vol. 19, no. 1, pp. 316–327, 2020.

[20] H. Deng, Z. Qin, Q. Wu, Z. Guan, and H. Yin, “Revocable attribute-
based data storage in mobile clouds,” IEEE Transactions on Services
Computing, vol. 15, no. 2, pp. 1130–1142, 2020.

[21] C. Ge, W. Susilo, J. Baek, Z. Liu, J. Xia, and L. Fang, “Revocable
attribute-based encryption with data integrity in clouds,” IEEE
Transactions on Dependable and Secure Computing, vol. 19, no. 5, pp.
2864–2872, 2021.

[22] S. Zhao, R. Jiang, and B. Bhargava, “Rl-abe: A revocable lattice
attribute based encryption scheme based on r-lwe problem in
cloud storage,” IEEE Transactions on Services Computing, vol. 15,
no. 2, pp. 1026–1035, 2020.

[23] F. Luo, S. Al-Kuwari, H. Wang, F. Wang, and K. Chen, “Revoca-
ble attribute-based encryption from standard lattices,” Computer
Standards & Interfaces, vol. 84, p. 103698, 2023.

[24] L. Guo, L. Wang, X. Ma, and Q. Ma, “A new revocable attribute
based encryption on lattice,” in International Conference on Provable
Security. Springer, 2023, pp. 309–326.

[25] S. Xu, X. Chen, Y. Guo, S.-M. Yiu, S. Gao, and B. Xiao, “Efficient
and secure post-quantum certificateless signcryption for internet
of medical things,” Cryptology ePrint Archive, 2024.

[26] M. Yang, H. Wang, and D. He, “Pm-abe: Puncturable bilateral
fine-grained access control from lattices for secret sharing,” IEEE
Transactions on Dependable and Secure Computing, 2024.

[27] P. W. Shor, “Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer,” SIAM review,
vol. 41, no. 2, pp. 303–332, 1999.

[28] S. Xu, Y. Cao, X. Chen, Y. Guo, Y. Yang, F. Guo, and S.-M. Yiu,
“Lattice-based public key encryption with authorized keyword
search: Construction, implementation, and applications,” Cryptol-
ogy ePrint Archive, 2023.

[29] G. Xu, S. Xu, Y. Cao, F. Yun, Y. Cui, Y. Yu, and K. Xiao, “Ppseb:
A postquantum public-key searchable encryption scheme on
blockchain for e-healthcare scenarios,” Security and Communication
Networks, vol. 2022, no. 1, p. 3368819, 2022.

[30] A. Boldyreva, V. Goyal, and V. Kumar, “Identity-based encryption
with efficient revocation,” in Proceedings of the 15th ACM conference
on Computer and communications security, 2008, pp. 417–426.

[31] Y. Miao, X. Liu, K.-K. R. Choo, R. H. Deng, J. Li, H. Li, and J. Ma,
“Privacy-preserving attribute-based keyword search in shared
multi-owner setting,” IEEE Transactions on Dependable and Secure
Computing, vol. 18, no. 3, pp. 1080–1094, 2019.

[32] K. Yang, J. Shu, and R. Xie, “Efficient and provably secure data
selective sharing and acquisition in cloud-based systems,” IEEE
Transactions on Information Forensics and Security, vol. 18, pp. 71–84,
2022.

[33] Y. Yang, R. H. Deng, W. Guo, H. Cheng, X. Luo, X. Zheng, and
C. Rong, “Dual traceable distributed attribute-based searchable
encryption and ownership transfer,” IEEE Transactions on Cloud
Computing, vol. 11, no. 1, pp. 247–262, 2021.

[34] M. Ajtai, “Generating hard instances of lattice problems,” in
Proceedings of the twenty-eighth annual ACM symposium on Theory
of computing, 1996, pp. 99–108.

[35] C. Peikert, “An efficient and parallel gaussian sampler for lattices,”
in Annual Cryptology Conference. Springer, 2010, pp. 80–97.

[36] O. Regev, “On lattices, learning with errors, random linear codes,
and cryptography,” Journal of the ACM (JACM), vol. 56, no. 6, pp.
1–40, 2009.

[37] B. Applebaum, D. Cash, C. Peikert, and A. Sahai, “Fast crypto-
graphic primitives and circular-secure encryption based on hard
learning problems,” in Advances in Cryptology-CRYPTO 2009: 29th

15

Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2009. Proceedings. Springer, 2009, pp. 595–618.

[38] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard
lattices and new cryptographic constructions,” in Proceedings of the
fortieth annual ACM symposium on Theory of computing, 2008, pp.
197–206.

[39] D. Micciancio and C. Peikert, “Trapdoors for lattices: Simpler,
tighter, faster, smaller.” in Eurocrypt, vol. 7237. Springer, 2012,
pp. 700–718.

[40] D. Cash, D. Hofheinz, and E. Kiltz, “How to delegate a lattice
basis,” Cryptology ePrint Archive, 2009.

[41] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert, “Bonsai trees, or
how to delegate a lattice basis,” Journal of cryptology, vol. 25, pp.
601–639, 2012.

[42] S. Agrawal, D. Boneh, and X. Boyen, “Efficient lattice (h) ibe in the
standard model,” in Advances in Cryptology–EUROCRYPT 2010:
29th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, French Riviera, May 30–June 3, 2010.
Proceedings 29. Springer, 2010, pp. 553–572.

[43] B. Waters, “Efficient identity-based encryption without random
oracles,” in Advances in Cryptology–EUROCRYPT 2005: 24th Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques, Aarhus, Denmark, May 22-26, 2005. Proceedings
24. Springer, 2005, pp. 114–127.

