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Abstract. SNOVA is a multivariate signature scheme submitted to the
NIST project for additional signature schemes by Cho, Ding, Kuan, Li,
Tseng, Tseng, and Wang. With small key and signature sizes and good
performance, SNOVA is one of the more efficient schemes in the compe-
tition, which makes SNOVA an important target for cryptanalysis.

In this paper, we observe that SNOVA implicitly uses a structured ver-
sion of the “whipping” technique developed for the MAYO signature
scheme. We show that the extra structure makes the construction vul-
nerable to new forgery attacks. Concretely, we formulate new attacks
that reduce the security margin of the proposed SNOVA parameter sets
by a factor between 28 and 239. Furthermore, we show that large frac-
tions of public keys are vulnerable to more efficient versions of our attack.
For example, for SNOVA-37-17-2, a parameter set targeting NIST’s first
security level, we show that roughly one out of every 500 public keys
is vulnerable to a universal forgery attack with bit complexity 297, and
roughly one out of every 143000 public keys is even breakable in practice
within a few minutes.

1 Introduction

Cryptographic signature schemes are crucial for ensuring the authenticity and in-
tegrity of digital communications. Due to the rise of quantum computing, which
threatens the security of cryptographic systems based on the hardness of fac-
toring and solving discrete logarithms, the search for efficient quantum-safe sig-
nature schemes has become increasingly important. The U.S. National Institute
for Standards and Technology (NIST) has standardized quantum-safe digital
signature schemes based on the hardness of computational problems involving
lattices, and based on the security of cryptographic hash functions. However,
in 2022, NIST initiated a new project to standardize additional post-quantum
signature schemes, to diversify the set of digital signature schemes further. Many
of the signature schemes submitted to the new standardization project are based
on the hardness of finding solutions to a system of multivariate quadratic equa-
tions. Most of these signature schemes are variants of the Oil and Vinegar signa-
ture scheme, introduced in 1997 by Patarin [10]. Oil and Vinegar is a signature
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scheme whose security is relatively well understood. It has small signature sizes
and good signing and verification performance. The main drawback is that it
has relatively large public keys, for example, 43 KB public keys for NIST se-
curity level I parameters [2]. To solve this problem, structured variants of the
Oil and Vinegar signature scheme have been proposed that significantly reduce
the public key size, at the cost of new security assumptions. One of these digital
signature schemes is called SNOVA.

SNOVA has small key and signature sizes coupled with good performance, mak-
ing it a seemingly promising candidate for standardization. However, the scheme
uses a new, ad-hoc design without a security proof that reduces some well-
established computational problem to breaking the security of SNOVA. There-
fore, more cryptanalysis is needed to increase the confidence in the security of
SNOVA.

Related Work. The security analysis in the original SNOVA paper was quite
limited and widely overestimated the security of SNOVA against key recovery
attacks. Two papers with an improved analysis of key-recovery attacks against
SNOVA appeared on ePrint in January 2024. The first paper, authored by Ike-
matsu and Akiyama [7], observes that a SNOVA public key with parameters
(q, n,m, l) contains the structure of an Oil and Vinegar public key with pa-
rameters (q, ln, lm). They show that known attacks against Oil and Vinegar
therefore apply to SNOVA, and some attacks can be made even more efficient
because (unlike in the case of Oil and Vinegar) the bilinear forms in a SNOVA
public key are not symmetric. This shows that some of the parameter sets in the
SNOVA submission do not meet the claimed NIST security levels. The second
paper, authored by Li and Ding [8], appeared on ePrint three days later and
has very similar observations and results. In response to this new cryptanalysis,
the SNOVA team updated some of their parameter sets, so that the proposed
parameter sets meet the required security levels again.

Contributions. In this work, we observe that SNOVA has some similarities
with the “whipping” technique of MAYO. The idea behind this is to “whip up”
a public Oil-and-Vinegar multivariate quadratic map P : Fn

q → Fm
q into a map

P∗ : Fkn
q → Fm

q with a factor k more variables. The base map vanishes on a
secret vector space O of dimension o, and the whipped map P∗ is constructed
in such a way that it vanishes on Ok = {(o1, . . . ,ok) | o1, . . . ,ok ∈ O} which is
a vector space of dimension ko. In MAYO, the map P∗ is defined as

P∗(x1, . . . ,xk) :=

k∑
i=1

EiP(xi) +

k∑
i=1

k∑
i=1

Ei,jP ′(xi,xj) ,

where, for security-related reasons, the “emulsifier” matrices Ei,Ei,j ∈ Fm×m
q

are chosen in such a way that all non-trivial linear combinations of them have
full rank. We observe that a SNOVA public map has the same structure, except
that in this case the matrices Ei,Ei,j ∈ Fm×m

q can have linear combinations
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with rank deficiencies, which leads to more efficient forgery attacks. Moreover, it
turns out that in SNOVA the Ei,Ei,j matrices are block diagonal matrices with
ℓ identical blocks on the diagonal. Compared to random matrices, matrices of
this form are much more likely to have large rank deficiencies, which makes the
forgery attack even more efficient.

We develop this attack against SNOVA, and we estimate its cost, showing that it
significantly reduces the security margin of SNOVA (see Table 3). Moreover, we
show that large fractions of public keys are vulnerable to more efficient versions
of our attack, which further reduces the security of SNOVA in a setting where
an attacker is interested in forging messages for one out of a sufficiently large set
of public keys. We implement the most efficient version of our weak-key attack,
which is the case of the SNOVA-37-17-2 parameter set. For this parameter set
we demonstrate that for roughly one out of every 143000 honestly generated
public keys, it is possible to forge signatures for arbitrary messages within only
a few minutes using modest computational resources.1 The source code for our
experiments is publicly available at the following link.

https://github.com/WardBeullens/BreakingSNOVA

2 Preliminaries

2.1 Notation.

Let Fq be the finite field of order q. We denote vectors over Fq by bold lowercase
letters, e.g., x, and matrices over Fq by bold uppercase letters, e.g., M. For
a matrix M ∈ Fℓ×ℓ

q and a positive integer n, we denote by M⊗n ∈ Fnℓ×nℓ
q the

Kronecker product of the identity matrix of order n with M, i.e., M⊗n = 1n⊗M
is the block diagonal matrix with n copies of M on the block diagonal.

2.2 Multivariate quadratic maps and their polar forms.

We say a sequence of m multivariate quadratic polynomials in n variables P =
(p1, . . . , pm) is a multivariate quadratic map, and we identify it with the function
P : Fn

q → Fm
q : P(x) := (p1(x), . . . , pm(x)) given by evaluation of the component

polynomials.

For any multivariate quadratic polynomial p(x) we define the corresponding
polar form as p′(x,y) := p(x + y) − p(x) − p(y) + p(0), which is a symmetric

1 The author’s laptop.

https://github.com/WardBeullens/BreakingSNOVA
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bilinear form. We denote by P ′(x,y) : Fn
q ×Fn

q → Fm
q the function of evaluating

the polar forms associated to P, which clearly satisfies P ′(x,y) = P(x + y) −
P(x)− P(y) + P(0).

2.3 Oil and Vinegar trapdoors.

The Oil and Vinegar digital signature scheme relies on a simple but powerful
procedure for sampling preimages for a multivariate quadratic map P : Fn

q →
Fm
q , given knowledge of a linear subspace O ⊂ Fn

q of dimension at least m on
which P evaluates to zero. Given a target t ∈ Fm

q , the procedure first samples
a vector v ∈ Fn

q uniformly at random, and then solves for o ∈ O such that
P(v + o) = t. The latter can be done efficiently because it reduces to solving a
system of linear equations in o by using the polar form:

P(v + o) = P ′(o,v)︸ ︷︷ ︸
linear in o

+P(o)︸ ︷︷ ︸
= 0

+ P(v)− P(0)︸ ︷︷ ︸
fixed by choice of v

= t . (1)

For properly chosen parameters (m sufficiently large, and n sufficiently larger
than 2m), it is assumed hard to sample preimages for P without knowledge of
O, so this gives a cryptographic trapdoor function.

2.4 The MAYO trapdoor.

The Oil and Vinegar signature scheme uses an almost uniformly random sub-
space O 2, and a map P which is chosen uniformly at random among the maps
vanishing on O. Representing such maps requires O(m3) coefficients, which un-
fortunately means that the Oil and Vinegar signature scheme has large public key
sizes. To solve this problem, more structured families of multivariate quadratic
maps have been proposed, which still vanish on large hidden subspaces, but
which require fewer than O(m3) coefficients to represent, reducing the public
key size dramatically. Examples from the NIST standardization project for ad-
ditional signatures include MAYO, QR-UOV, and SNOVA [1,4,14].

We briefly explain the MAYO trapdoor, since it will be relevant for the analysis of
SNOVA. MAYO starts from a “base” multivariate quadratic map P : Fn

q → Fm
q

that vanishes on a subspace O. The only difference with an Oil and Vinegar
public key is that in the Oil and Vinegar signature scheme we have dim(O) = m,

2 In typical implementations, the subspace O is the row span of a matrix (1m O),

where the submatrix O ∈ Fm×(n−m)
q is chosen uniformly at random.
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whereas in the case of MAYO the dimension of O is smaller. This means that
the procedure from section 2.3 no longer works, since the linear system (1) has
more equations than variables, and is thus unlikely to have solutions. To increase
the size of the subspace, MAYO “whips up” the base map P into a larger map
P∗ : Fkn

q → Fm
q that has a factor k more variables, where k is a parameter of

the scheme. This is done by letting the polynomials of P∗(x1, . . . ,xk) be linear
combinations of P(xi) and P ′(xi,xj) for i, j ∈ {1, . . . , k}, where each xi is a
sequence of n variables. More concretely, this means we have

P∗(x1, . . . ,xk) :=

k∑
i=1

EiP(xi) +

k∑
i=1

k∑
j=i+1

Ei,jP ′(xi,xj) ,

where Ei and Ei,j are fixed m-by-m matrices whose rows determine what linear
combination of P(xi) and P ′(xi,xj) each polynomial of P∗ consists of.

Since P vanishes on the subspace O, it follows that P∗ vanishes on Ok =
{ (o1, . . . ,ok) |o1, . . . ,ok ∈ O}, which is a subspace of Fnk

q of dimension k dim(O).
The parameters are chosen such that k dim(O) ≥ m, so that the Oil and Vinegar
procedure from section 2.3 can be used to efficiently sample preimages for P∗.

The matrices Ei,Ei,j are chosen in such a way that all non-trivial linear combi-
nations of them have full rank 3, since linear combinations with low rank would
lead to more efficient forgery attacks [1]. We will see that SNOVA can be inter-
preted as a variant of MAYO, where the matrices Ei,Ei,j and the base quadratic
map P have additional structure. It is an open question if the additional struc-
ture of P can lead to more efficient key-recovery attacks, but it is clear that
linear combinations of the Ei and Ei,j matrices can have low rank, which leads
to forgery attacks.

3 SNOVA

SNOVA is a multivariate digital signature scheme based on Oil and Vinegar
submitted to the NIST standardization process of additional post-quantum sig-
natures by Wang, Chou, Ding, Kuan, Li, Tseng, Tseng, and Wang [14]. The de-
scription of the SNOVA cryptosystem is rather complicated. To keep this paper
understandable, we describe SNOVA only to the level of detail that is necessary
to describe our attack. For more details on SNOVA, we refer to the submission
document [13].

3 To ensure that non-trivial linear combinations have full rank these matrices are cho-
sen to represent multiplication by Fq-linearly independent elements of an extension
field Fqm .
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3.1 SNOVA public keys

A public key for the SNOVA cryptosystem is the description of a structured
multivariate quadratic map P. The structure of the map is described in terms of
the ringR = Matℓ×ℓ(Fq) of ℓ by ℓmatrices. The SNOVA scheme is parameterized
by the following parameters:

– q the size of the finite field,

– ℓ the size of the matrix ring R = Matℓ×ℓ(Fq) used by the scheme,

– m the number of matrix equations in a public map,

– n the number of matrix variables in a public map,

– S a symmetric ℓ by ℓ matrix with an irreducible characteristic polynomial.

The latest parameter sets proposed by the SNOVA designers are given in table 1.
Note that some of the parameter sets are different from the parameters in the
NIST submission in response to the attacks of [7,8].

Security level (q, ℓ,m, n) Signature size Public key size best attack

(16,2,17,54) 124 B 9.6 KB 151
I (16,3,8,33) 164.5 B 2.3 KB 159

(16,4,5,29) 248 B 1.0 KB 175

(16,2,25,81) 178 B 31 KB 215
III (16,3,11,60) 286 B 5.8 KB 213

(16,4,8,45) 376 B 4.0 KB 271

(16,2,33,108) 232 B 70 KB 279
V (16,3,15,81) 380.5 B 15 KB 285

(16,4,10,70) 576 B 7.8 KB 335

Table 1. The parameter sets proposed by the SNOVA designers in [14]. The last
column gives an estimate of the bit-cost (log2 of the number of bit operations) of the
most efficient attack against the parameter set.

A SNOVA public key contains the following information:

– Two sequences of ℓ2 invertible matrices A1, . . . ,Aℓ2 ,B1, . . . ,Bℓ2 of size ℓ×ℓ,
chosen uniformly at random during key generation.
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– Two sequences of ℓ2 invertible matrices Q1,1, . . . ,Qℓ2,1,Q1,2, . . . ,Qℓ2,2 of
size ℓ×ℓ, chosen uniformly from Fq[S]\{0}, where Fq[S] is the ring generated
by S. 4 5

– A set of m matrices P1, · · · ,Pm ∈ Fnℓ×nℓ
q , generated in some way which is

not relevant for us.

Together, these matrices describe a multivariate quadratic map P : Fnℓ2

q → Fmℓ2

q .
The nℓ2 variables are grouped in a matrix U of height nℓ and width ℓ, each entry
being a separate variable for nℓ2 variables in total. The polynomials of P are
then the entries of

pi(U) :=

ℓ2∑
α=1

Aα ·UT ·Q⊗n
α,1 ·Pi ·Q⊗n

α,2 ·U ·Bα (2)

for i ∈ {1, . . . ,m}, where Q⊗n
α,b denotes the nℓ by nℓ block matrix with n copies

of Qα,b on the block diagonal and zeros elsewhere. Each of the ℓ2 entries of pi(U)
is a homogeneous quadratic polynomial in the entries of U, for a total of mℓ2

quadratic polynomials in total.

3.2 SNOVA signing and signature verification

A SNOVA signature consists of a vector s ∈ Fnℓ2

q and a random bit string
salt. The signature σ = (s, salt) is valid for a message M ∈ {0, 1}∗ if P(s) =

H(M ||salt), where P : Fnℓ2

q → Fmℓ2

q is the map described by the SNOVA public

key as explained in the previous section, and where H : {0, 1}∗ → Fmℓ2

q is a

cryptographic hash function that outputs elements of Fmℓ2

q . It turns out that
P vanishes on a subspace of dimension mℓ2, known only to the entity that
generated the public key. Therefore, the signer can generate signatures for P
efficiently, using the Oil and Vinegar procedure explained in section 2.3.

Clearly, if an attacker can efficiently find s such that P(s) = t for arbitrary

t ∈ Fmℓ2

q , then SNOVA would be vulnerable to a universal forgery attack. This
is because the attacker can sample a random bit string salt, compute s such that
P(s) = H(M ||salt), and output the forgery σ = (s, salt).

4 Note that, since the characteristic polynomial of S is irreducible, the ring Fq[S]
is a finite field. We have Fq[x]/(pS(x)) ≃ Fq[S], where pS(x) is the characteristic
polynomial of S.

5 Since the matrices Ai,Bi,Qib are sampled at random, they can be generated from
a short seed, so they can be represented very compactly. The public key size is
therefore dominated by the representation of the Pi matrices.



8 Ward Beullens

4 SNOVA has the whipping structure of MAYO.

Given the symmetric matrix S, we can associate to each of the matricesP1, . . . ,Pm

in a SNOVA public key ℓ2 bilinear forms

B
(a,b)
i : Fnℓ

q × Fnℓ
q → Fq : B

(a,b)
i (x,y) := xt(Sa)⊗nPi(S

b)⊗ny ,

for (a, b) ∈ {0, . . . , ℓ− 1}2. In other words, B
(a,b)
i (x,y) is the usual bilinear form

associated to Pi, after multiplying each ℓ-block of the inputs x and y by Sa and
Sb respectively. Let u0, . . . ,uℓ−1 be the columns of the matrix of variables U.

The reason for introducing the bilinear forms B
(a,b)
i is the following observation:

Lemma 1. The entries of pi(U) are linear combinations of B
(a,b)
i (uj ,uk) for

a, b, j, k ∈ {0, . . . , ℓ − 1}. More precicely, there is a linear map T : Fℓ4

q → Fℓ2

q ,
determined by {Aα,Bα,Qα,1,Qα,2}α∈{1,...,ℓ2}, such that for all 1 ≤ i ≤ m

pi(U) = T
(
{B(a,b)

i (uj ,uk)}a,b,j,k∈{0,...,ℓ−1}

)
.

Proof. The Qα,1 and Qα,2 matrices are drawn from Fq[S], so by construction
they are linear combinations of powers of S, meaning that the (j, k)-th entry

of UtQ⊗n
α,1 · Pi · Q⊗n

α,2U is a linear combination of the B
(a,b)
i (uj ,uk) for j, k ∈

{0, . . . , ℓ − 1}. Multiplying this matrix from the left by Aα and from the right
by Bα and summing over all α from 1 to ℓ2 is a linear operation, so it follows

that the entries of pi(U) are indeed linear combinations of B
(a,b)
i (uj ,uk), as

claimed. ⊓⊔

It follows that P has a structure very similar to that of a MAYO public map.

Corollary 1. Let B : Fnℓ
q ×Fnℓ

q → Fmℓ2

q be the bilinear map defined as Bi,a,b(x,y) :=

B
(a,b)
i (x,y). There exist matrices Ej,k ∈ Fmℓ2×mℓ2

q for j, k from 0 to ℓ−1, whose
entries only depend on the matrices {Aα,Bα,Qα,1,Qα,2}α∈{1,...,ℓ2} in the public
key, such that the SNOVA public map can be written as

P(U) =

ℓ−1∑
j=0

ℓ−1∑
k=0

Ej,k · B(uj ,uk) . (3)

Moreover, the matrices Ej,k have a block diagonal structure, with m idential

blocks on the diagonal, i.e., Ej,k = Ẽ⊗m
j,k for some matrix Ẽj,k ∈ Fℓ2×ℓ2

q .
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Proof. Lemma 1 says that each coefficient of pi(U) is a linear combination of

B
(a,b)
i (uj ,uk), and the coefficients of the linear combination are the same for all

i ∈ {1, . . . ,m}. By collecting the coefficients of the linear combinations in the
rows of the matrices Ẽj,k we obtain equation (3) with Ej,k = Ẽ⊗m

j,k . ⊓⊔

This is very similar to the “whipping” structure of a MAYO public map, with
the difference that in the case of MAYO the role of the base map is symmetric, so
the terms involving B(ui,uj) and B(uj ,ui) can be combined, whereas in SNOVA
they need to be kept separate because the Pi matrices in the SNOVA public key
are not symmetric. Recall that, to prevent forgery attacks, in MAYO the Ei,j

matrices were chosen so that non-trivial linear combinations of them have full
rank. This is not the case in SNOVA, so we expect this to cause problems. The
fact that Ei,j = Ẽ⊗m

i,j even amplifies the problem, because if there is a linear

combination of the Ẽi,j matrices with a rank defect d, then the corresponding
linear combination of the Ei,j has rank defect dm. In the next subsections, we
will see that this allows for practical forgery attacks in some cases.

5 Our forgery attack against SNOVA

The basic idea behind the attack was already introduced by Beullens [1, Sec-
tion 5], who realized that it is possible to more efficiently sample preimages
for MAYO-like maps (i.e. multivariate quadratic maps of the form (3)) if one
can find certain linear combinations of the Ej,k matrices with low rank. This
was taken into account in the design of MAYO, which ensures that such linear
combinations do not exist.

Basic attack. The idea is for the attacker to first choose random vectors
v1, . . . ,vℓ−1 ∈ Fnℓ

q and then solve for a solution U = (u0, . . . ,uℓ−1) satisfy-
ing ui = αiu0 + vi for all i ∈ {1, . . . , ℓ − 1}, for some scalars α1, . . . αℓ−1 ∈ Fq.
The motivation for doing this is that we have

P(U) =

ℓ−1∑
j=0

ℓ−1∑
k=0

Ej,k · B(uj ,uk) =

ℓ−1∑
j=0

ℓ−1∑
k=0

Ej,k · B(αju0 + vj , αku0 + vk)

=

ℓ−1∑
j=0

ℓ−1∑
k=0

Ej,k ·

B(αju0, αku0)︸ ︷︷ ︸
quadratic in u0

+B(vj , αku0) + B(αju0,vk)︸ ︷︷ ︸
linear in u0

+B(vj ,vk)︸ ︷︷ ︸
constant

 .

We see that the quadratic part of P(U) is just Eα · B(u0,u0), where

Eα =

ℓ−1∑
j=0

ℓ−1∑
k=0

αjαkEj,k .
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Given a target t ∈ Fmℓ2

q , one can find U ∈ Fnℓ2

q such that P(U) = t with the
following two-step prodecure:

1. Find α1, . . . , αℓ−1 ∈ Fq, such that Eα has small rank mr, i.e., Eα = Ẽ⊗m
α

with Ẽα of rank r. Finding these αi is a generalization of the MinRank prob-
lem, where given an ℓ2 by ℓ2 matrix whose entries are quadratic polynomials
in αi, the problem is to find an assignment to the αi such that the evalua-
tion of the matrix at those αi has rank ≤ r. This can be done with algebraic
methods, as explained by Faugère, Safey El Din, and Spaenlehauer [3], or in
practice one can just do a brute force search over all α ∈ Fℓ−1

q , since ℓ and
q are very small in the proposed parameter sets.

2. Pick v1, . . . ,vℓ−1 ∈ Fnℓ
q uniformly at random. Use a generic system solving

algorithm, to solve for u0 such that P(U) = t = H(M ||salt), where ui =
αiu0+vi for all i ∈ {1, . . . , ℓ−1}. Since Eα has rank mr, this is equivalent to
solving a system of mr quadratic equations and m(ℓ2−r) linear equations in
nℓ variables. Or, after using the linear equations to eliminate some variables
this becomes a system of mr quadratic equations in nℓ−m(ℓ2−r) variables.

Exploiting the Fq[S]-structure. In the case of SNOVA, we can do slightly
better than the strategy outlined above. Instead of setting ui = αiu0 + vi with
scalar αi we can set ui = R⊗n

i u0 + vi for Ri ∈ Fq[S]. Indeed, let R,R′ ∈ Fq[S],

then we have B
(a,b)
i (R⊗nx,R′⊗ny) = B

(0,0)
i ((SaR)⊗nx, (SbR′)⊗ny), which is

a linear combination of B
(a,b)
i (x,y) for a, b ∈ {0, ℓ − 1}. It follows that with

ui = R⊗n
i u0+vi for i ∈ {1, . . . , ℓ− 1} the quadratic part of P(U) is of the form

P(U) = ER · B(u0,u0) ,

where ER = Ẽ⊗n
R is a block diagonal matrix whose entries are quadratic func-

tions of the coefficients of R1, . . . ,Rℓ−1. The advantage of taking this approach
is that now we are solving a generalized MinRank problem with ℓ(ℓ − 1) vari-
ables (the coefficients of R1, . . . ,Rℓ−1), instead of just ℓ − 1 variables (the
α1, . . . , αℓ−1). This extra freedom allows us to find matrices with lower rank
in step 1, which means that solving the system in step 2 becomes more efficient.

5.1 The minimal rank r.

The attack is parameterized by r, the rank of the matrix ẼR used in the attack.
This attack gives a trade-off between the cost of steps 1 and 2 of the attack.
For smaller values of r, the cost of step 1 is higher, since finding linear combi-
nations with smaller ranks is computationally more difficult, or even impossible.
However, the system of quadratic equations that needs to be solved in step 2
has mr equations, so decreasing the value of r can decrease the cost of step 2
significantly.
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Recall that ẼR is a ℓ2-by-ℓ2 matrix whose entries are quadratic polynomials in
ℓ(ℓ− 1) variables. Therefore we are looking for a matrix with rank r in a family
of qℓ(ℓ−1) matrices. A random ℓ2-by-ℓ2 matrix has rank ≤ ℓ2−d with probability
roughly q−d2

, so if we model the matrices in the family as independent random
matrices, then heuristically we expect the average number of matrices of rank d
to be roughly qℓ(ℓ−1)−d2

, and we expect that for most public keys the minimal
achievable rank of ẼR is ℓ2−d, where d is the largest integer such that ℓ(ℓ−1)−d2

is non-negative, i.e. we expect the minimal achievable rank to typically be

ℓ2 − ⌊
√

ℓ(ℓ− 1)⌋ = ℓ2 − ℓ+ 1 .

We expect that lower ranks are achievable for a small fraction of public keys.
According to the heuristic, we expect the probability that a matrix of rank ℓ2−d
or lower exists to be roughly

1−
(
1− q−d2

)qℓ(ℓ−1)

≈ 1− exp(−qℓ(ℓ−1)−d2

) ≤ qℓ(ℓ−1)−d2

.

However, the matrices ẼR are neither uniformly random nor independent, so
the heuristic might not be very accurate. Our limited experiments of table 2
show that for a typical public key, the lowest rank is indeed ℓ2 − ℓ+1. However,
for ℓ = 2 the heuristic significantly underestimates the probability that minimal
rank is lower. For ℓ = 3 the probability of having ranks lower than ℓ2− ℓ+1 = 7
is in agreement with our heuristic.

Parameter set minimal rank fraction of keys heuristic

q = 16, ℓ = 2

r ≤ 1 0.000699% 3.7 · 10−9

r ≤ 2 2.093200% 0.389863%
r ≤ 3 99.999999% 99.999988%
r ≤ 4 100% 100%

q = 16, ℓ = 3

r ≤ 5 0% 9 · 10−13

r ≤ 6 0.00024% 0.0002441%
r ≤ 7 100% 100%
r ≤ 8 100% 100%

Table 2. Experiments of minimal rank of ẼR over all Ri ∈ Fq[S] for i ∈ {1, ℓ− 1} for
randomly generated public keys. We generated 100 million public keys for q = 16, ℓ = 2
and 100 thousand public keys for q = 16, ℓ = 3 and exhaustively compute the minimum
of the rank of ẼR over allRi ∈ Fq[S]. We see that for ℓ = 2 the heuristic underestimates
the fraction of weak keys, for ℓ = 3 the heuristic is much better. For ℓ = 4 there
are q12 = 248 possible Ri ∈ Fq[S], so it is not efficient to exhaustively compute the
minimum rank. (In comparison, for the ℓ = 3 experiment we computed the rank of
240.6 matrices and this took 17 hours on a single machine.)
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5.2 Solving the quadratic system.

In the second step of the attack, the attacker can forge a signature sig = (U, salt)
for an arbitrary message M ∈ {0, 1}∗. The attacker picks a random salt and
computes the target t = H(M ||salt). Finding a signature for the message is
then equivalent to finding U ∈ Fnℓ×ℓ

q such that P(U) = t. The attacker picks

v1, . . . ,vℓ−1 ∈ Fnℓ
q uniformly at random and substitutes ui = R⊗n

i u0 + vi in
P(U) = t for i ∈ {1, . . . , ℓ − 1} to get a new system of quadratic equations in
u0:

P∗(u0) = ER · B(u0,u0) + Affine function of u0 = t∗ .

We ensured in step 1 that the rank of ER is at most mr, so the span of the
equations in P∗(u0) = t∗ contains at least m(ℓ2 − r) linearly independent linear
equations. The linear equations can be separated efficiently from the quadratic
equations, e.g., by doing Gaussian elimination on the Macaulay matrix represent-
ing P∗(u0) = t∗ with respect to a graded monomial order. The linear equations
can then be used to eliminate at least m(ℓ2−r) variables to end up with a system

P∗∗(y) = t∗∗ ,

with at mostmr quadratic equations in at most nℓ−m(ℓ2−r) remaining variables
y. The attacker now computes a solution y to this system of equations using
standard techniques such as FXL or F4/F5. Then, he extends the solution to an
assignment to u0 such that P∗(u0) = t∗ using the m(ℓ2 − r) linear equations.
Finally the attacker computes ui = R⊗n

i u0 + vi for i ∈ {1, . . . , ℓ− 1} to obtain
the forgery (U, salt) for the message M . The computational bottleneck is finding
the solution to P∗∗(y) = t∗∗, the other steps can be done in polynomial time
and are very efficient in practice.

Remark 1. For the proposed parameter sets in the SNOVA submission docu-
ment, the system P∗∗(y) = t∗∗ can be very underdetermined e.g. 17 equations
in 57 variables for the first SNOVA parameter set with r = 1. To find a solution
to this system the attacker should use one of the solving algorithms that exploit
the underdeterminedness of the system [12,5,6]. These algorithms reduce the
problem of finding a solution to an underdetermined system to that of finding a
solution to some smaller overdetermined systems. E.g., finding a solution to 17
quadratic equations in 57 variables can be reduced to solving on average q = 16
systems of 14 equations in 13 variables, which is more efficient than trying to
solve the larger system directly.

5.3 Cost Estimates and experimental results.

Table 3 shows the estimated cost of our attack applied to the various SNOVA pa-
rameter sets and with various values for the target rank r. The cost of the attack
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is always dominated by the cost of finding a solution to the system P∗∗(y) = t∗∗

in step 2 of the attack. We estimate the cost of this attack with the standard
methodology, applied to Hashimoto’s method for solving underdetermined sys-
tems. For details, we refer to Appendix A.

We see in Table 3 that if we choose the parameter r = ℓ2 − ℓ+ 1, such that the
attack applies to all public keys, then the estimated cost of our attack is lower
that the estimated cost of the previously known attacks by a factor between 28

and 239. We also see that our attack works better for lower values of ℓ. This
is because these parameter sets have higher values of m, so the rank defects of
ẼR get amplified more strongly, leading to a larger reduction in the number
of quadratic equations in the system P∗∗(y) = t∗∗ in step 2 of the attack. For
some of the parameter sets the number of bit operations required for our attack
is lower than 2143, 2207, or 2271, the number of bit operations required for a key
search on AES-128, AES-196 or AES-256 which correspond to NIST security
levels I, III, and V respectively. However, counting the number of bit operations
is a very crude cost model, and in more realistic cost models the attacks might
be more costly than the cost of an AES key search.

If we pick smaller values of r, then we get more efficient attacks but they only
apply to a subset of weak public keys. Note that in all cases the cost of finding
and recognizing a weak key is much lower than the cost of running the weak-key
attack. So, our weak key attacks further reduce security in a scenario where an
attacker wants to forge a signature for one out of a sufficiently large set of public
keys. A particularly dramatic reduction in security for the ℓ = 2 parameter
sets comes from r = 1. In these cases roughly one out of every 143000 keys is
vulnerable to the attack and the estimated cost of the attack is only 245, 268, and
288 bit operations for the security level I, III, and V parameters respectively.

Experiments. To produce Table 2, we implemented a simple C program that
repeatedly calls the key generation functionality of the reference implementation
of SNOVA and computes the rank of ẼR for all R = (R1, . . . ,Rℓ−1) ∈ Fq[S]

ℓ−1

and report the results. With ℓ = 2 checking how weak a key is comes down to
computing the rank of only qℓ(ℓ−1) = 28 matrices of size 4 by 4, which is much
faster than running the key generation algorithm itself. For ℓ = 3, we compute
the rank of 224 matrices of size 9 by 9, which takes roughly 4 seconds. We did
not implement the search for ℓ = 4, since an exhaustive search would require
computing the rank of 248 matrices of size 16 by 16.

We implemented our attack for the (q, ℓ,m, n) = (16, 2, 17, 54) parameter set
with r = 1 using SageMath [11] and the implementation of the M4GB Gröbner
basis algorithm by Makarim and Stevens [9]. First, the script reads a public
key from a text file and computes R1 ∈ Fq[S] such that ẼR has rank 1. Then
it computes the system P∗∗(y) = t∗∗, which is an underdetermined system of
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Security parameters fraction of
bit cost of

Level (q, ℓ,m, n)
Attack bit cost

weak keys
finding
a weak key

I (16,2,17,54)

previous best 151 100% -
ours, r = 3 137 100% 14
ours, r = 2 97 2−8.9 26
ours, r = 1 45 2−17.1 35

I (16,3,8,33)

previous best 159 100% -
ours, r = 7 150 100% 29
ours, r = 6 130 2−12.0 49
ours, r = 5 112 2−40.0 ∗ 77∗

I (16,4,5,29)

previous best 175 100% -
ours, r = 13 167 100% ∗ 52∗

ours, r = 12 156 2−16 ∗ 80∗

ours, r = 11 145 2−52 ∗ 116∗

III (16,2,25,81)

previous best 215 100% -
ours, r = 3 189 100% 14
ours, r = 2 132 2−8.9 26
ours, r = 1 68 2−17.1 35

III (16,3,11,60)

previous best 213 100% -
ours, r = 7 194 100% 29
ours, r = 6 169 2−12.0 49
ours, r = 5 143 2−40.0 ∗ 77∗

III (16,4,8,45)

previous best 271 100% -
ours, r = 13 253 100% ∗ 52∗

ours, r = 12 235 2−16 ∗ 80∗

ours, r = 11 218 2−52 ∗ 116∗

V (16,2,33,108)

previous best 279 100% -
ours, r = 3 240 100% 14
ours, r = 2 167 2−8.9 26
ours, r = 1 88 2−17.1 35

V (16,3,15,81)

previous best 285 100% -
ours, r = 7 253 100% 29
ours, r = 6 221 2−12.0 49
ours, r = 5 187 2−40.0 ∗ 77∗

V (16,4,10,70)

previous best 335 100% -
ours, r = 13 307 100% ∗ 52∗

ours, r = 12 285 2−16 ∗ 80∗

ours, r = 11 264 2−52 ∗ 116∗

Table 3. The estimated bit cost of our attack against the various SNOVA parameter
sets. The entries marked by ‘∗’ depend on the heuristic from section 5.1 for the fraction
of public keys that have a minimal rank r. The weak-key fractions without ‘∗’ were
determined empirically.
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17 quadratic equations in 57 variables. This process takes roughly 20 seconds.
Then, the script runs our implementation of Hashimoto’s algorithm for finding
a solution to an underdetermined system of equations. We use the parameters
a = 3 and k = 1, which means that the bottleneck is repeatedly trying to solve
systems of 17−a = 14 quadratic equations in 17−a−k = 13 variables until one
of the systems has a solution, which happens on average after roughly q = 16
attempts. However, there is a lot of variance in the number of attempts, since it
follows a geometric distribution. Each attempt takes approximately 12 seconds
for M4GB to solve it, in addition to a few seconds to generate the system and
write it to a file in the M4GB format. Finally, when a solution is found for one
of the systems, it takes less than a second to extend it to a valid forgery. The
overall process takes usually between one and ten minutes, depending on how
lucky we are with the number of systems that need to be solved.

6 Countermeasures and Conclusions

We have shown that the SNOVA signature scheme uses a weak variant of the
“whipping” technique used by the MAYO signature scheme [1]. This leads to
new attacks that significantly reduce the security margin of SNOVA. Moreover,
there are weak-key attacks that are even more efficient but only apply to a subset
of public keys. For one of the proposed parameter sets, we can even perform a
forgery attack in practice within a few minutes for roughly a 1/143000 fraction
of all public keys. The problem that enabled the attack is that SNOVA has the
“whipping” structure as used by MAYO, but where linear combinations of the
matricesEj,k can have a low rank. Therefore, to block the attack it would be good
to fully adopt the MAYO construction, i.e., one can use the formula (3) to define
the public map, where instead of letting the Ej,k matrices be implicitly defined
by the ad-hoc construction of (2), one fixes their values as in the MAYO signature
scheme to make sure that non-trivial linear combinations of the matrices have
full rank. This would be a significant change, but it would not have an impact on
the signature size, and even reduce the public key size, since the seed to generate
the Aα,Bα,Q1,α, and Q2,α matrices does no longer need to be included in the
public key. Note that SNOVA uses a single parameter ℓ to determine both the
size of the matrices used in the base map and the whipping factor, even though
there is no reason why these should be the same. Decoupling these parameters
would give more flexibility to choose parameters.

MAYO uses the whipping technique on the plain Oil and Vinegar trapdoor,
while SNOVA uses the whipping technique on a new and structured variant of
the Oil and Vinegar trapdoor. Therefore, any attack on MAYO will likely directly
apply to SNOVA as well. As an alternative countermeasure, one could drop the
whipping technique altogether, and directly use the public map P(x) := B(x,x)
as trapdoor. This would require using larger parameters, but it would reduce the
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attack surface. We believe “SNOVA minus whipping” could be an interesting
signature scheme, similar to, but not the same as QR-UOV [4]. We leave the
specification, performance analysis, and security analysis of this signature scheme
as an open problem.

NIST Round 2 version of SNOVA. For the second round of the NIST
PQC process for additional signatures, the SNOVA authors have taken counter-
measures against the attack in this paper. Contrary to the countermeasures we
suggested above, the SNOVA authors persist in their ad-hoc version of the whip-
ping technique. They propose a more complicated version of the SNOVA public
map to break the block-diagonal structure of the Ej,k matrices. This makes the
rank deficiencies of (linear combinations of) Ej,k less severe, which makes the
attack less effective. Nonetheless, linear combinations of the Ej,k matrices with
rank deficiencies still occur. For ℓ = 2 and ℓ = 3, to avoid weak keys, an ad-
ditional change is that the A,B,Q matrices are now fixed, rather than chosen
randomly during key generation, which means the Ej,k matrices are the same for
all public keys. Hence all the public keys are equally strong against our attack.
It is feasible to do an exhaustive search to find low-rank linear combinations of
the Ej,k matrices, which allows to determine the cost of our attack. However,
for larger ℓ this exhaustive search is not possible, so the A,B,Q matrices are
sampled at random during key generation, and the SNOVA designers rely on the
heuristic from Section 5.1 to lower-bound the cost of our attack, and to lower-
bound the probability that weak keys are generated. Since the exhaustive search
is too expensive to perform it does not seem possible to assess how accurate the
heuristic is for the proposed parameters.
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A Methodology for table 3

Cost of Wiedemann FXL Under a genericity assumption, we can estimate
the cost of solving a determined system of m equations in n variables using the
Wiedemann FXL method [15] as

CFXL(n,m) := min
k′

qk
′
· 3

(
n− k′ +D

D

)2(
n− k′ + 2

2

)(
log(q)2 + log(q)

)
bit operations, where D is the operating degree of XL, which is chosen to be
the smallest integer such that the coefficient of the tD term in the power series
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expansion of
(1− t2)m

(1− t)n−k′+1

is non-positive.

Cost of Hashimoto’s method Hashimoto’s method [6] reduces the problem
of solving an underdetermined system of m equations in n variables to finding a
solution (if a solution exists) of on average

– m− 1− k + 1 systems of a quadratic equations in a variables,
– qk systems of a− 1 quadratic equations in a− 1 variables, and
– qk systems of m− a quadratic equations in m− a− k variables.

Where a, k are parameters of the algorithm chosen to minimize the overall cost
of the attack, subject to the constraints

n ≥ (a+ 1)(m− k − a+ 1) , and

n ≥ a(m− k)− (a− 1)2 + k .
(4)

Therefore the cost of Hashimoto’s method measured as the number of bit oper-
ations is estimated as the minimum of

(m− a− k + 1) · CFXL(a, a) + qk (CFXL(a− 1, a− 1) + CFXL(m− a− k,m− a))

over the values of (a, k) satisfying (4). We computed these values and reported
them in Table 3.

Weak key fraction. For some combinations of ℓ and r we determined the
probability that R1, . . . ,Rℓ−1 exist such that ẼR has rank ≤ r empirically.
For those combinations, we have put the empirically determined probability in
Table 3. For the remaining entries of the table, we instead rely on the heuristic
from Section 5.1. This might underestimate the fraction of weak keys.

Cost of finding weak keys. Table 3 reports on the estimated cost of finding a
weak key. For this estimate, we assume the attacker uses a very naive approach,
where he enumerates all the possible R1, . . . ,Rℓ−1 ∈ Fq[S], and computes the

rank of the corresponding ẼR matrices. We believe it is likely that better ap-
proaches are possible, but since finding a weak key is already much cheaper than
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attacking the keys, we do not feel the need to optimize this. For the sake of
concreteness, we say the cost of computing the rank of each ẼR matrix is

ℓ6/3 ·
(
log(q)2 + log(q)

)
bit operations, since ℓ6/3 is the number of required field multiplications and
additions, and we say log(q)2 + log(q) is the cost of a field multiplication and a
field addition. We multiply this by the expected number of ranks that need to
be computed, which is either determined empirically, or otherwise we take it to
be q(ℓ

2−r)2 according to the heuristic from Section 5.1. The cost of computing
the ẼR matrices can be amortized away, so we do not take it into account in the
estimate.
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