
Chosen Ciphertext Security for (Hierarchical)

Identity-Based Matchmaking Encryption

Sohto Chiku 1*, Keisuke Hara 1,2* and Junji Shikata 1*

1*Yokohama National University, Japan.
2*National Institute of Advanced Industrial Science and Technology

(AIST), Japan.

*Corresponding author(s). E-mail(s): chiku-sohto-tw@ynu.jp;
hara-keisuke@aist.go.jp; shikata-junji-rb@ynu.ac.jp;

Abstract

Identity-based matchmaking encryption (IB-ME) is an advanced encryption
scheme that enables a sender and a receiver to specify each of identity. In general,
from the aspect of abilities for adversaries, we have two flavors of security for
encryption schemes chosen plaintext attacks (CPA) security and chosen cipher-
text attacks (CCA) security. Compared to CPA security, CCA security can
capture active adversaries, then it has been recognized as a desirable one.
In this paper, we investigate the CCA security for IB-ME. Concretely, we pro-
vide the following three contributions. (1) A method to obtain a CCA secure
IB-ME scheme in the standard model based on our new primitive called hierar-
chical IB-ME (HIB-ME) along with strong one-time signature (2) A construction
of HIB-ME based on hierarchical identity-based encryption and hierarchical
identity-based signature (3) A variant of the first method to get an IB-ME scheme
satisfying slightly tweaked CCA security solely based solely on a CPA secure IB-
ME scheme (without strong one-time signature). We believe that this new type
of CCA security is a reasonable one for IB-ME.

Keywords: identity-based matchmaking encryption, chosen ciphertext security,
generic construction, pairing based cryptography

1

https://orcid.org/0009-0001-4802-8235
https://orcid.org/0000-0003-3598-0988
https://orcid.org/0000-0003-2861-359X

1 Introduction

1.1 Background and Motivation

Identity-based Matchmaking Encryption.

Identity-based matchmaking encryption (IB-ME) proposed by Ateniese et al. [1] is
a novel extension of ordinary encryption system that both sender and receiver can
specify appropriate identities which the other party should satisfy in order for the
message to be revealed. More specifically, in IB-ME, as setup phase, each sender
(resp., receiver) is provided a secret encryption (resp., decryption) key associated to
its identity σ (resp., ρ) by the authority called key generation center (KGC). Then,
when a sender generates a ciphertext CT using encryption key ekσ, in addition to a
plaintext m, it selects the target identity of receiver ρ. Upon receiving a ciphertext
CT from the sender with his identity σ, a receiver who has a decryption key of ρ and
selects a sender identity σ can decrypt the ciphertext CT. As security requirements,
IB-ME should satisfy two properties: privacy and authenticity. Roughly, if identity
requirements by senders and receivers does not match, privacy guarantees that any
information of a plaintext and an identity does not leak from a ciphertext. Also,
authenticity ensures that only the sender who has an encryption key associated with
his identity σ can generate a ciphertext associated with σ. To show the usefulness
of IB-ME, Ateniese et al. [1] demonstrates that a privacy-preserving bulletin board
system (over a Tor network) can be realized based on IB-ME. In that system, users
(who might belong to different organizations) can communicate secretly through this
bulletin board or collect information from anonymous sources.

Security against Chosen Ciphertext Attacks.

From the aspect of abilities for adversaries, we have two flavors of security for
encryption schemes(e.g., public key encryption and identity-based encryption): chosen
plaintext attacks (CPA) security and chosen ciphertext attacks (CCA) security [2–4].
CCA security is stronger than CPA security in the sense that an adversary is given
an ability of getting decryption results of ciphertexts (except for target ciphertext).
In general, CCA security is more desirable in practice since it takes active adversaries
and implies non-malleability [5]. Actually, CCA security notions for various advanced
encryption primitives [6–10] have been proposed so far.

Motivation.

Following the previous works, in this paper, we focus on how to achieve CCA secu-
rity on IB-ME.1 One might think that we can get an efficient CCA secure IB-ME
scheme (in the random oracle model) easily by extending the Fujisaki-Okamoto (FO)
conversion [12] in a generic manner. However, this approach does not work immedi-
ately. Roughly, this is because a receiver cannot execute the re-encryption check when
decrypting a ciphertext since he does not have a (secret) encryption key of a sender.
Thus, we have to explore another approach to obtain CCA secure IB-ME schemes.

1Note that this paper is the first work to consider CCA security for IB-ME, and we have a follow-up
study [11] on another approach to obtain more efficient CCA secure IB-ME schemes.

2

1.2 Our Contribution

Based on the above motivation, this paper gives the following three technical
contributions.

A New Primitive: Hierarchical Identity-based Matchmaking Encryption.

Toward a CCA secure IB-ME scheme in the standard model, we devise a new exten-
sion of IB-ME called hierarchical identity-based matchmaking encryption (HIB-ME).
Roughly, HIB-ME is an extension of IB-ME in the sense that it enables senders (resp.,
receivers) to generate encryption keys (resp., decryption keys) for their children’s
identities. We show that a CPA secure HIB-ME scheme can be obtained by com-
bining hierarchical identity-based encryption (HIBE) and hierarchical identity-based
signature (HIBS) [13].

CCA Secure (H)IB-ME in the Standard Model.

Depending on the above contribution, we provide the first CCA secure (H)IB-ME
scheme in the standard model. Our construction is obtained by extending the Canetti-
Halevi-Katz (CHK) conversion technique [14] based on CPA secure HIB-ME and
strong one-time signature. Regarding the efficiency, for example, the ciphertext size
is just almost twice of the underlying CPA secure (H)IB-ME scheme. From the pre-
vious works [15–20], we can realize our generic construction over bilinear groups or
lattices. Actually, based on the Blazy-Kiltz-Pan anonymous HIBE scheme [16], we give
a concrete instantiation of our generic construction over bilinear groups.

A Tweaked CCA Security for IB-ME.

As the final contribution, we introduce a slightly weak but reasonable CCA security
notion, called tweaked CCA security, for IB-ME. Roughly, tweaked CCA security is
the same as (standard) CCA security except that the (secret) encryption key used in
generating challenge ciphertexts is not allowed to leaked. As an advantage of tweaked
CCA security, we show that a tweaked CCA secure IB-ME scheme can be constructed
solely based on a CPA secure IB-ME scheme (without strong one-time signature)
by leveraging privacy and authenticity of the underlying IB-ME scheme. (That is,
regarding the ciphertext size, our tweaked CCA secure IB-ME scheme does not have
an overhead occurred by strong one-time signature.)

1.3 Related Work

Identity-based Matchmaking Encryption.

After seminal work [1, 21], research on various flavors is being carried out. Francati
et al. [22] proposed a mismatch-cases privacy and gave a construction from the q-
type assumption in the plain model. Chen et al. [23] dismantle q-type assumption and
proposed first IB-ME construction from the standard assumption in the plain model.
Also, from the viewpoint of matchmaking encryption that is a generalization of IB-
ME, Francati et al. [24] showed that ME for general policies can be constructed from
standard assumptions (LWE) and without iO/FE.

3

Concurrent Works.

This paper is the first paper to consider CCA security for IB-ME, and there exists
a follow-up study [11] another approach to achieve CCA secure IB-ME. Also, there
exists a consideration of CCA security for IB-ME [25] using CHK conversion technique.
This study applies CHK technique to IBE and constructs a pairing-based CCA secure
IB-ME construction.

2 Preliminaries

In this section, we provide some notations and recall definitions of some cryptographic
primitives used in this paper.

2.1 Notations

In this paper, we use the following notations. For n ∈ N, we denote [n] = {1, .., n}.
x ← X denotes the operation of sampling an element x from a finite set X. y ←
A(x; r) denotes that a probabilistic Turing machine A outputs y for an input x using
a randomness r, and we simply denote y ← A(x) when we need not write an internal
randomness explicitly. PPT stands for probabilistic polynomial time. x := y denotes
that x is defined by y. We say a function ε(λ) is negligible in λ, if ε(λ) = o(1/λc) for
every c ∈ Z, and we write negl(λ) to denote a negligible function in λ. ∅ denotes the
empty set. If O is a function or an algorithm and A is an algorithm, AO means A has
oracle access to O. For a bit string x, len(x) denotes the length of x.

2.2 Digital Signature

Let Sig denote a digital signature scheme. Sig consists of the following three algorithms
(KeyGen,Sign,Verify):

KeyGen(1λ)→ (vk, sk): The key generation algorithm takes the security parameter 1λ

as input, and outputs a verification key vk and signing key sk.
Sign(sk,M)→ Σ: The signing algorithm takes a sk and plaintext M ∈ M as input,
and outputs a signature Σ.
Verify(vk,Σ)→ ⊤/⊥: The verifying algorithm takes vk, and Σ as input, and outputs
⊤ (meaning “accept”) or ⊥ (meaning “reject”).

Correctness. The correctness for Sig requires that for all λ ∈ N, (vk, sk) ←
KeyGen(1λ) and M ∈ M, it holds that ⊤ ← Verify(vk,Σ,M) with overwhelming
probability after executing Σ← Sign(sk,M).

Security. Next, we define one-time sEUF-CMA security for a digital signature
scheme.
Definition 1 (One-time sEUF-CMA Security). Let Sig be a digital signature scheme.
We say that Sig satisfies one-time sEUF-CMA security if for all PPT adversaries A,

AdvsEUF-CMA
Sig,A (λ)

4

:= Pr

((Σ∗,M∗) /∈ QOS
) ∧ (Verify(vk∗,Σ∗,M∗) ̸= ⊥)

∣∣∣∣∣∣
QOS

:= ∅;
(vk, sk)← KeyGen(1λ);
(Σ∗,M∗)← AOS (vk);


= negl(λ)

holds, where signature generation oracle OS is implemented by Sig.Sign(sk, ·). Also,
when A makes a signature generation query of (Σ,M), the challenger adds (Σ,M) to
the list QOS

. A is allowed to make only one query to OS.

2.3 Hierarchical Identity-based Encryption

Let l-level HIBE denote a hierarchical identity-based encryption (HIBE) scheme with
a maximum depth l. l-level HIBE with a plaintext space M consists of the following
four algorithms (Setup,KeyDer,Enc,Dec):

Setup(1λ, l)→ (mpk,msk): The setup algorithm takes the security parameter 1λ and
the maximum hierarchical depth l as input, and outputs a master public key mpk and
a master secret key msk.
KeyDer(mpk, skID′ , ID)→ skID: The secret key derivation algorithm takes a mpk, the
secret key of ID′ skID′ , and ID ∈ ID≤l as input, and outputs a secret key HIBE.skID.
The algorithm can take msk as input in place of skID′ .
Enc(mpk, ID,M)→ CT: The encryption algorithm takes a mpk, ID ∈ ID≤l, and
plaintext M ∈M as input, and outputs a ciphertext CT.
Dec(mpk, skID,CT)→ M/⊥: The decryption algorithm takes mpk, skID, and CT as
input, and outputs M or ⊥.

Correctness. We define correctness for HIBE. Firstly, the correctness for KeyDer
requires that for all λ ∈ N, l ∈ N, (mpk,msk) ← Setup(1λ, l), ID, ID′ ∈ ID≤l such
that ID′ ∈ prefix(ID), it holds that KeyDer(mpk,msk, ID) = KeyDer(mpk, skID′ , ID).
Secondly, the correctness for Dec requires that for all λ ∈ N, l ∈ N, (mpk,msk) ←
Setup(1λ, l),M ∈ M, and ID ∈ ID≤l, it holds that Pr[M = M′] = 1 − negl(λ), where
CT← Enc(mpk, ID,M), skID ← KeyDer(mpk,msk, ID), and M′ ← Dec(mpk, skID,CT).

Security. Next, we define IND-hID-CPA security for an HIBE scheme.
Definition 2 (IND-hID-CPA Security). Let HIBE be an l-level HIBE scheme. We say
that HIBE satisfies IND-hID-CPA security if for all PPT adversaries A,

AdvIND-hID-CPA
HIBE,A (λ)

:=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


coin = ĉoin

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

QOK
:= ∅;

(mpk,msk)← Setup(1λ, l);
coin← {0, 1};
(ID∗,M∗)← AOK (mpk);
If (coin = 0) CT∗ ← Enc(mpk, ID∗,M∗);
Else CT∗ ← CTSamp(mpk);

ĉoin← AOK (CT∗);


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= negl(λ),

5

where CTSamp(mpk) is an algorithm that outputs a uniformly random element
from a ciphertext space. Secret key derivation oracle OK is implemented by
KeyDer(mpk,msk, ·). Also, when A makes a secret key derivation query ID, the chal-
lenger adds ID to QOK

. We require that A is not allowed to make a secret key derivation
query ID∗ to OK and ID′ /∈ prefix(ID∗) holds for all ID′ ∈ QOK

.

2.4 Hierarchical Identity-based Signature

Let l-level HIBS denote a hierarchical identity-based signature (HIBS) with a max-
imum depth l. l-level HIBS with a message space M consists of the following four
algorithms (Setup,KeyDer,Sign,Verify):

Setup(1λ, l)→ (mpk,msk): The setup algorithm takes the security parameter 1λ and
the maximum hierarchical depth l as input, and outputs a master public key mpk and
a master secret key msk.
KeyDer(mpk, skID′ , ID)→ skID: The secret key derivation algorithm takes a mpk, the
secret key of ID′ skID′ , and ID ∈ ID≤l as input, and outputs a secret key skID. The
algorithm can take msk as input in place of skID′ .
Sign(mpk, skID,M)→ Σ: The signing algorithm takes a mpk, skID, and a message M ∈
M as input, and outputs a signature Σ.
Verify(mpk, ID,Σ)→ ⊤/⊥: The verifying algorithm takes mpk, ID ∈ ID≤l, and Σ as
input, and outputs ⊤ (meaning “accept”) or ⊥ (meaning “reject”).

Correctness. We define correctness for HIBS. Firstly, the correctness for KeyDer
requires that for all λ ∈ N, l ∈ N, (mpk,msk) ← Setup(1λ, l), ID, ID′ ∈ ID≤l such that
ID′ ∈ prefix(ID), KeyDer(mpk,msk, ID) = KeyDer(mpk, skID′ , ID) holds. Secondly, the
correctness for Verify requires that for all λ ∈ N, l ∈ N, (HIBS.mpk,HIBS.msk) ←
Setup(1λ, l),M ∈ M, and ID ∈ ID≤l, it holds that Pr[Verify(mpk, ID,Σ) = ⊤] =
1− negl(λ), where skID ← KeyDer(mpk,msk, ID) and Σ← Sign(mpk, skID,M).

Security. Next, we define EUF-hID-CMA security for an HIBS scheme.
Definition 3 (EUF-hID-CMA Security). Let HIBS be an l-level HIBS scheme. We say
that HIBS satisfies EUF-hID-CMA security if for all PPT adversaries A,

AdvEUF-hID-CMA
HIBS,A (λ)

:= Pr

 (∀ID′ ∈ QOK
: ID′ /∈ prefix(ID∗))∧

((ID∗,M∗) /∈ QOS
)∧

(Verify(mpk, ID∗,Σ∗) = ⊤)

∣∣∣∣∣∣
QOK

,QOS
:= ∅;

(mpk,msk)← Setup(1λ, l);
(ID∗,Σ∗,M∗)← AOK ,OS (mpk);


= negl(λ)

holds, where signing key derivation oracle OK is implemented by KeyDer(mpk,msk, ·).
Also, when A makes a signing key derivation query ID, the challenger adds ID to
QOK

. Signature generation oracle OS is implemented by Sign(mpk, skID, ·) where skID =
KeyDer(mpk,msk, ·). Also, when A makes a signature generation query (ID,M), the
challenger adds (ID,M) to QOS

.

6

2.5 Affine Message Authentication

Affine message authentication codes (MACs) over Zn
q are group-based MACs with a

specific algebraic structure.
Definition 4 (Affine MACs). Let par be system parameters containing a group G =
(G2, q, g2) of prime-order q and let n ∈ N. We say that MAC = (KeyGen,Tag,Verify)
is affine over Zn

q if the following conditions hold:

• KeyGen(1λ) returns skMAC containing (B,x0, ...,xl,x
′
0, ...,x

′
l′), where B ∈ Zn×n′

q ,
xi ∈ Zn

q , x
′
j ∈ Zq, for some n′, l, l′ ∈ N. We assume B has rank at least one.

• Tag(skMAC,M ∈ B) returns a tag τ = ([t]2, [u]2) ∈ Gn
2 ×G2, computed as

t = Bs ∈ Zn
q for s← Zn′

q

u =

l∑
i=0

fi(M)x⊤
i t+

l′∑
i=0

f ′
i(M)x′

i ∈ Zq (1)

for some public defining functions fi : M→ Zq and f ′
i : M→ Zq. Vector s can be

generated either pseudorandomly or randomly and u is the (deterministic).
• Verify(skMAC,M, τ = ([t]2, [u]2)) verifies if eq. (1) holds.
Next, we recall pseudorandomness against chosen-message attacks (PR-CMA) for

affine MACs.
Definition 5 (PR-CMA). An affine MAC over Zn

q is PR-CMA secure if for all PPT
A,

AdvPR-CMA
A,MAC (λ)

:=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


coin = ĉoin

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

QOM
:= ∅;

skMAC ← KeyGen(1λ);
coin← {0, 1};
M∗ ← AOM (1λ);
If (coin = 0) τ∗ ← Tag(skMAC,M

∗);
Else τ∗ ← Rand(1λ);

ĉoin← AOM (τ∗);


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= negl(λ).

3 Hierarchical Identity-based Matchmaking
Encryption

In this section, we introduce a new cryptographic primitive called hierarchical identity-
based matchmaking encryption (HIB-ME). In Section 3.1, we provide the formalization
of HIB-ME. Then, in Section 3.2, we give a generic construction of HIB-ME based
on HIBE and HIBS. Finally, in Section 3.3, we provide the security proofs for our
HIB-ME scheme.

7

3.1 Formalization of HIB-ME

In this section, we provide the syntax, correctness, and security definitions for HIB-
ME. Informally, HIB-ME is an extension of IB-ME in the sense that it enables
senders (resp., receivers) to generate encryption keys (resp., decryption keys) for their
children’s identities.

Let (k, l)-level HIB-ME denote an HIB-ME scheme with a maximum depth k for
sender keys and depth l for receiver keys. (k, l)-level HIB-ME consists of the following
five algorithms (Setup,SKDer,RKDer,Enc,Dec):

Setup(1λ, k, l)→ (mpk,msk): The setup algorithm takes the security parameter 1λ and
the maximum hierarchical sender depth k and receiver depth l as input, and outputs
a master public key mpk and a master secret key msk.
SKDer(mpk, ekσ′ , σ)→ ekσ: The sender key derivation algorithm takes a master public
key mpk, an encryption key of σ′ ekσ′ , and a sender’s identity σ ∈ ID≤l as input, and
outputs an encryption key ekσ. The algorithm can take msk as input in place of ekσ′ .
RKDer(mpk, dkρ′ , ρ)→ dkρ: The receiver key derivation algorithm takes a master pub-

lic key mpk, a decryption key of ρ′ dkρ′ , and a receiver’s identity ρ ∈ ID≤l as input,
and outputs a decryption key dkρ. The algorithm can take msk as input in place of
dkρ′ .
Enc(mpk, ekσ, rcv,M)→ CT: The encryption algorithm takes a master public key mpk,
an encryption key ekσ, a receiver’s identity rcv ∈ ID≤l, and a plaintext M ∈ M as
input, and outputs a ciphertext CT.
Dec(mpk, dkρ, snd,CT)→ M/⊥: The decryption algorithm takes a master public key

mpk, a decryption key dkID, a sender’s identity snd ∈ ID≤l, and a ciphertext CT as
input, and outputs a plaintext M or ⊥.

Correctness. We define correctness for HIB-ME. Firstly, the correctness for SKDer
requires that for all λ ∈ N, l ∈ N, (mpk,msk) ← Setup(1λ, l), σ, σ′ ∈ ID≤l such that
σ′ ∈ prefix(σ), SKDer(mpk,msk, σ) = SKDer(mpk, ekσ′ , σ) holds. Secondly, the cor-
rectness for RKDer requires that for all λ ∈ N, l ∈ N, (mpk,msk)← Setup(1λ, l), ρ, ρ′ ∈
ID≤l such that ρ′ ∈ prefix(ρ), RKDer(mpk,msk, ρ) = RKDer(mpk, dkρ′ , ρ) holds.
Thirdly, the correctness for Dec requires that for all λ ∈ N, l ∈ N, (mpk,msk) ←
Setup(1λ, l),M ∈ M, and σ, ρ ∈ ID≤l, it holds that Pr[M = M′] = 1− negl(λ) where
ekσ ← SKDer(mpk,msk, σ), dkρ ← RKDer(mpk,msk, ρ), CT ← Enc(mpk, ekσ, rcv =
ρ,M), and M′ ← Dec(mpk, dkρ, snd = σ,CT).

Security. Next, we define security requirements (hib-cca-priv security, hib-cpa-priv
security, and hib-auth security) for HIB-ME.
Definition 6 (Security of HIB-ME). Let HIB-ME be an HIB-ME scheme. We say
that HIB-ME satisfies:

• hib-cca-priv security if for all PPT adversaries A in Exphib-cca-privHIB-ME,A (λ) (which is

defined as in Fig. 1 (left)), Advhib-cca-privHIB-ME,A (λ) := |Pr[coin = ĉoin] − 1/2| = negl(λ)
holds.

• hib-cpa-priv security if for all PPT adversaries A in Exphib-cpa-privHIB-ME,A (λ) (this is a vari-

ant of Exphib-cca-privHIB-ME,A (λ) where there is no decryption oracle), Advhib-cpa-privHIB-ME,A (λ) :=

|Pr[coin = ĉoin]− 1/2| = negl(λ) holds.

8

Exphib-cca-priv
(k,l)-HIB-ME,A

(λ)

QOR
,QOD

:= ∅
(mpk,msk)← Setup(1λ, k, l)

coin← {0, 1}
(σ∗, rcv∗,M∗)← AOS ,OR,OD (mpk)

ekσ∗ ← SKDer(mpk,msk, σ∗)

If (coin = 0)

CT∗ ← Enc(mpk, ekσ∗ , rcv∗,M∗)

Else CT∗ ← CTSamp(mpk)

ĉoin← AOS ,OR,OD (CT∗)

Exphib-auth(k,l)-HIB-ME,A(λ)

QOS
,QOE

:= ∅
(mpk,msk)← Setup(1λ, k, l)

(CT∗, ρ∗, snd∗)← AOS ,OR,OE (mpk)

dkρ∗ ← RKDer(mpk,msk, ρ∗)

M∗ ← Dec(mpk, dkρ∗ , snd∗,CT∗)

If (∀σ ∈ QOS
: σ ̸= snd∗) ∧ (∀σ′ ∈ QOS

: σ′ /∈
prefix(σ∗)) ∧ ((snd∗, ρ∗,M∗) /∈ QE) ∧ (M∗ ̸= ⊥)

Return 1

Else Return 0

Fig. 1 Security experiments for HIB-ME: CCA privacy experiment and authenticity experiment.
Let CTSamp(mpk) be an algorithm that outputs a uniformly random element from a ciphertext
space. Sender key derivation oracle OS is implemented by SKDer(mpk,msk, ·). Also, when the adver-
sary makes a sender key derivation query about σ, the challenger adds σ to QOS

. Receiver key
derivation oracle OR is implemented by RKDer(mpk,msk, ·). Also, when the adversary makes a
receiver key derivation query about ρ, the challenger adds ρ to QOR

. Encryption oracle OE is imple-
mented by HIB-ME.Enc(mpk, ekσ , ·, ·), where ekσ ← SKDer(mpk,msk, ·). Also, when the adversary
makes encryption query about (σ, rcv,M), the challenger adds (σ, rcv,M) to QOE

Decryption oracle
OD is implemented by HIB-ME.Dec(mpk, dkρ, ·, ·), where dkρ ← RKDer(mpk,msk, ·). Also, when the
adversary makes decryption query about (ρ, snd,CT), the challenger adds (ρ, snd,CT) to QOD

. In

Exphib-cca-priv
(k,l)-HIB-ME,A

(λ), we require that A is not allowed to make a receiver key derivation query ρ∗ to

OR, ρ′ /∈ prefix(ρ∗) holds for all ∀ρ′ ∈ QOR
, and (ρ∗, snd∗,CT∗) /∈ QOD

holds.

• hib-auth security if for all PPT adversaries A, Advhib-authHIB-ME,A(λ) :=

Pr[Exphib-authHIB-ME,A(λ) = 1] = negl(λ), where Exphib-authHIB-ME,A(λ) is defined as in Fig. 1
(right).

3.2 Generic Construction of HIB-ME

In this section, we provide a generic construction of HIB-ME. One might see that
this construction is an extension of the construction by Wang et al. [26] Specifically,
we show that by using two l + 1-level HIBE schemes and a k-level HIBS scheme, we
can construct a HIB-ME scheme with k-level sender hierarchies and l-level receiver
hierarchies.

Construction. We give a formal description of our HIB-ME scheme with a
message spaceM and an identity space ID.

• Let HIBS be an k-level HIBS scheme with an identity space ID, a message space
ID|M, and a signature space S.

• Let HIBE1 be an l+1-level HIBE scheme with a message spaceM and an identity
space ID|ID.

• Let HIBE2 be an l+1-level HIBE scheme with a message space S and an identity
space ID|ID.

Based on the above primitives, we construct our (k, l)-level HIB-ME scheme as follows:

Setup(1λ, k, l): On input a security parameter 1λ, a maximum hierarchical
depth k for senders, and a maximum hierarchical depth l for receivers,

9

the setup algorithm runs (HIBE1.mpk,HIBE1.msk) ← HIBE1.Setup(1λ, l + 1),
(HIBE2.mpk,HIBE2.msk) ← HIBE2.Setup(1λ, l + 1), (HIBS.mpk,HIBS.msk) ←
HIBS.Setup(1λ, k), and outputs mpk = (HIBE1.mpk,HIBE2.mpk,HIBS.mpk) and msk =
(HIBE1.msk,HIBE2.msk,HIBS.msk).
SKDer(mpk, ekσ′ , σ): On input a master public key mpk, an encryption key of σ′

ekσ′ , and an identity σ, the sender key derivation algorithm computes a signing key
HIBS.skσ ← HIBS.KeyDer(HIBS.mpk,HIBS.skσ′ , σ) and outputs ekσ = HIBS.skσ
RKDer(mpk, dkρ′ , ρ): On input a master public key mpk, a decryption key
of ρ′ dkρ′ and an identity ρ, the receiver key derivation algorithm com-
putes HIBE1.skρ ← HIBE1.KeyDer(HIBE1.mpk,HIBE1.skρ′ , ρ) and HIBE2.skρ ←
HIBE2.KeyDer(HIBE2.mpk,HIBE2.skρ′ , ρ) and outputs dkρ = (HIBE1.skρ,HIBE

2.skρ).
Enc(mpk, ekσ, rcv,M): On input a master public key mpk, a secret encryption key
ekσ, a target identity rcv, and a message M ∈ M, the encryption algorithm firstly
generates a signature Σ ← HIBS.Sign(HIBS.mpk,HIBS.skσ, rcv|M). It then computes
ciphertexts (for HIBE1 and HIBE2) CT1 ← HIBE1.Enc(HIBE1.mpk, rcv|σ,M) and
CT2 ← HIBE2.Enc(HIBE2.mpk, rcv|σ,Σ) under an identity rcv|σ. Finally, it outputs
ciphertext CT = (CT1,CT2).
Dec(mpk, dkρ, snd,CT): On input a master public keympk, a secret decryption key dkρ,
a selected sender’s identity snd, and a ciphertext CT, the decryption algorithm firstly
delegates a decryption key dk2ρ|snd ← HIBE2.KeyDer(HIBE2.mpk,HIBE2.skρ, ρ|snd)
and recovers Σ ← HIBE2.Dec(HIBE2.mpk, dk2ρ|snd,CT

2). Then, if
HIBS.Verify(HIBS.mpk, snd, ρ|M,Σ) = ⊥ holds, it returns ⊥. Otherwise, it delegates a
decryption key dk1ρ|snd ← HIBE1.KeyDer(HIBE1.mpk,HIBE1.skρ, ρ|snd) and recovers a

message M← HIBE1.Dec(HIBE1.mpk, dk1ρ|snd,CT
1).

Correctness. Here, we show that our HIB-ME scheme in section 3.2 satis-
fies correctness. Firstly, the correctness of SKDer is derived by the correctness of
HIBS.KeyDer Secondly, the correctness of RKDer is derived by the correctness of
HIBE1.KeyDer and HIBE2.KeyDer. Thirdly, the correctness of Dec is follows: Fix a
message M ∈ M, a sender’s identity σ ∈ ID, and a target receiver’s identity
rcv ∈ ID. Moreover, fix a receiver’s identity ρ ∈ ID, and a target sender’s identity
snd ∈ ID. Assumes that (mpk,msk) ← Setup(1λ), ekσ ← SKDer(mpk,msk, σ), dkρ ←
RKDer(mpk,msk, ρ), and CT ← Enc(mpk, ekσ, rcv,M). In this case, we have mpk =
(HIBE1.mpk,HIBE2.mpk,HIBS.mpk), msk = (HIBE1.msk,HIBE2.msk,HIBS.msk), ekσ is
the signing key output by HIBS.KeyDer(HIBS.mpk,HIBS.msk, σ), dkρ is the tuple of the
decryption keys obtained by HIBE1.skρ ← HIBE1.KeyDer(HIBE1.mpk,HIBE1.msk, ρ)

and HIBE2.skρ ← HIBE2.KeyDer(HIBE2.mpk,HIBE2.msk, ρ), and CT = (CT1,CT2)

is the tuple of ciphertexts CT1 ← HIBE1.Enc(HIBE1.mpk, rcv|σ,M) and CT2 ←
HIBE2.Enc(HIBE2.mpk, rcv|σ,Σ), where Σ ← HIBS.Sign(HIBS.mpk,HIBS.skσ, rcv|M).
It is obvious that, when ρ = rcv ∧ σ = snd, rcv|σ = ρ|snd holds. Then, the receiver
with the identity ρ can generate a decryption key for ρ|snd using its key dkρ and
recovers the signature Σ and the message M correctly due to the correctness of HIBE1

and HIBE2. Moreover, since the signature Σ is computed by the sender with an iden-
tity σ for rcv|M, we have ⊤ ← HIBS.Verify(HIBS.mpk, σ,Σ, ρ|M) with overwhelming
probability due to the correctness of HIBS. Thus, the correctness of Dec holds.

10

3.3 Security Proofs

In this section, we show that our scheme satisfies security requirements.
Theorem 1. If l+1-level HIBE1 and l+1-level HIBE2 are IND-hID-CPA secure, then
our HIB-ME scheme HIB-ME satisfies hib-cpa-priv.

Proof. Let ⋆.CTSamp(⋆.mpk) be an algorithm that outputs a random element from
ciphertext space of ⋆ scheme and A a PPT adversary against the hib-cpa-priv security
of HIB-ME.

Game0: This is an original experiment Exphib-cpa-privHIB-ME,A (λ) conditioned on coin =
0. Namely, the challenger responds to the challenge query (σ∗, rcv∗,M∗) with
the ciphertext CT∗ ← Enc(mpk, ekσ∗ , rcv∗,M∗), where ekσ∗ ← SKDer(mpk,
msk, σ∗).
Game1: Same as Game0, except that the challenger generates the challenge ciphertext
as CT∗ ← (CT1,CT⋆), where the first part CT1 is the same as in Game0, but the
second part is generated as CT⋆ ← HIBE2.CTSamp(HIBE2.mpk).
Game2: Same as Game1, except that the challenger also generates the first part as
CT1 ← HIBE1.CTSamp(HIBE1.mpk). Here, the challenge ciphertext generated by the
challenger in Game2 is a tuple of random elements in the ciphertext space. That is,
Game2 is exactly the same as an original experiment Exphib-cpa-privHIB-ME,A (λ) conditioned on
coin = 1.

Let Xi denote an event that coin = ĉoin holds in Gamei for i ∈ {0, 1, 2}. Then, we can

estimate the advantage Advhib-cpa-privHIB-ME,A (λ) = 2·|Pr[coin = ĉoin]− 1
2 | = |Pr[X0]−Pr[X2]| ≤

|Pr[X0]− Pr[X1]|+ |Pr[X1]− Pr[X2]|.

Lemma 1. There exists an adversary B2 against the IND-hID-CPA security of HIBE2

such that |Pr[X0]− Pr[X1]| = AdvIND-hID-CPA
HIBE2,B2 (λ).

Proof. We construct a PPT adversary B2 who attacks the IND-hID-CPA security of
HIBE2 so that |Pr[X0]− Pr[X1]| = AdvIND-hID-CPA

HIBE2,B2 (λ), using the adversary A.

1. At the beginning of the IND-hID-CPA security game of HIBE2, B2 firstly
receives the public parameter HIBE2.mpk from its challenger. Then, B2 picks
coin′ ← {0, 1} and generates (HIBE1.mpk,HIBE1.msk) ← HIBE1.Setup(1λ, l +
1) and (HIBS.mpk,HIBS.msk) ← HIBS.Setup(1λ, k). Then, B2 sets mpk :=
(HIBE1.mpk,HIBE2.mpk,HIBS.mpk) and sends it to A.

2. Whenever A makes a decryption key query ρ, B2 makes a key genera-
tion query ρ to its challenger to obtain a key HIBE2.skρ and generates

HIBE1.skρ ← HIBE1.KeyDer(HIBE1.mpk,HIBE1.msk, ρ) by itself. It then sets
dkρ := (HIBE1.skρ,HIBE

2.skρ) and returns dkρ to A.
3. Whenever A makes an encryption key query σ, B2 generates HIBS.skσ ←

HIBS.KeyDer(HIBS.mpk,HIBS.msk, σ), sets ekσ := HIBS.skσ, and returns ekσ to
A.

4. Whenever A makes a challenge query of (σ∗, rcv∗,M∗), B2 firstly
computes HIBS.skσ∗ ← HIBS.KeyDer(HIBS.mpk,HIBS.msk, σ∗),
Σ ← HIBS.Sign(HIBS.mpk,HIBS.skσ∗ , rcv∗|M∗), and CT1∗ ←
HIBE1.Enc(HIBE1.mpk, rcv∗|σ∗,M∗). Then, B2 makes a challenge query of

11

(rcv∗|M∗,Σ) to its challenger. Upon receiving a challenge ciphertext CT⋆, B2 sets
the challenge ciphertext as CT∗ := (CT1∗,CT⋆) and sends it to A.

5. Finally, when A outputs a guess ĉoin′, B2 checks whether coin′ = ĉoin′ holds. If
this is the case, then B2 outputs ĉoin := 1 to its challenger. Otherwise, B2 outputs
ĉoin := 0 to its challenger.

We firstly argue that B2 is admissible for the IND-hID-CPA security game of HIBE2.
Since A is admissible for the hib-cpa-priv game, this means that, for all decryption
key generation queries ρ ∈ ID made by A, it must satisfy that ρ ̸= rcv∗ holds. Since
the challenge query submitted by B2 forms of (rcv∗|σ∗,Σ) and all key generation
queries it issued are exactly identities ρ queried by A, this means that B2 never asked
a secret key for the challenge identity rcv∗ or its prefix. Thus, B2 is admissible for
the IND-hID-CPA security game of HIBE2. Here, let coin be the challenge bit of the
IND-hID-CPA security game of HIBE2. Due to the above construction, if coin = 0
(that is, CT⋆ ← HIBE2.Enc(HIBE2.mpk, rcv∗|σ∗,Σ)) holds, B2 perfectly simulates ⅁0

for A. Then, Pr[X0] = Pr[ĉoin = 1|coin = 0] holds. If coin = 1 (that is, CT⋆ ←
HIBE2.CTSamp(HIBE2.mpk)) holds, then B2 perfectly simulates Game1 for A. Then,

Pr[X1] = Pr[ĉoin = 1|coin = 1] holds. Now, we have

|Pr[X0]− Pr[X1]| = |Pr[ĉoin = 1|coin = 0]− Pr[ĉoin = 1|coin = 1]|
= AdvIND-hID-CPA

HIBE2,B2 (λ).

Lemma 2. There exists an adversary B1 against the IND-hID-CPA security of HIBE1

such that |Pr[X1]− Pr[X2]| = AdvIND-hID-CPA
HIBE1,B1 (λ).

The proof is similar to one of Lemma 1.

Proof. We use A to construct an adversary B1 for the IND-hID-CPA security of HIBE1.
1. At the beginning of the IND-hID-CPA security game, adversary B1 receives

the public parameters HIBE1.mpk from the IND-hID-CPA security challenger.
Then, B1 picks coin′ ← {0, 1}. In addition, it runs (HIBE2.mpk,HIBE2.msk) ←
HIBE2.Setup(1λ, l+1) and (HIBS.mpk,HIBS.msk) := HIBS.Setup(1λ, k). Then, B1

sets mpk := (HIBE1.mpk,HIBE2.mpk,HIBS.mpk) and sends it to the adversary A.
2. Whenever A makes a decryption key query on an identity ρ, B1 makes a key

generation query to IND-hID-CPA challenger on ρ to obtain a key HIBE1.skρ, and

generates HIBE2.skρ ← HIBE2.KeyDer(HIBE2.mpk,HIBE2.msk, ρ) by itself. It then

sets dkρ := (HIBE1.skρ,HIBE
2.skρ) and returns dkρ to A.

3. Whenever A makes an encryption key query on an identity σ, B1 computes
HIBS.skσ ← HIBS.KeyDer(HIBS.mpk,HIBS.msk, σ). It sets ekσ = HIBS.skσ and
returns ekσ to A.

4. Whenever A makes a challenge query on input (σ∗, rcv∗,M∗), B1 first computes
random CT2∗ ← HIB-ME2.CTSamp(HIBE2.mpk). Then it submits the challenge
query (rcv∗|σ∗,M∗) to the IND-hID-CPA challenger. The challenger replies to
B1 with CT⋆. Then, the algorithm B1 sets the challenge ciphertext as CT :=
(CT⋆,CT2∗) and sends it to A.

12

5. Finally, when A outputs guess ĉoin′, B1 checks coin′ = ĉoin′. If so, B2 outputs
ĉoin := 1. Otherwise, B2 outputs ĉoin := 0.

Similarly to Lemma 1, B1 is admissible for the IND-hID-CPA game. By above
construction, if CT1∗ ← HIBE1.Enc(HIBE1.mpk, rcv∗|σ∗,M∗), B1 perfectly simu-

lated ⅁1 for A, and then Pr[X1] = Pr[ĉoin = 1|coin = 0] holds. If CT1∗ ←
HIBE1.CTSamp(HIBE1.mpk), then B1 perfectly simulated Game2 for A, and then

Pr[X2] = Pr[ĉoin = 1|coin = 1] holds. Now, we have

|Pr[X1]− Pr[X2]| = |Pr[ĉoin = 1|coin = 0]− Pr[ĉoin = 1|coin = 1]|
= AdvIND-hID-CPA

HIBE1,B1 (λ).

Combining everything together, we conclude

Advhib-cpa-privHIB-ME,A (λ) ≤ AdvIND-hID-CPA
HIBE1,B1 (λ) + AdvIND-hID-CPA

HIBE2,B2 (λ).

Now, since both HIBE1 and HIBE2 satisfy IND-hID-CPA security, Advhib-cpa-privHIB-ME,A (λ) =
negl(λ) holds. This concludes that HIB-ME is hib-cpa-priv secure.

Theorem 2. If k-level HIBS scheme HIBS is EUF-hID-CMA secure, then our HIB-ME
scheme HIB-ME satisfies hib-auth security.

Proof. Let A be a PPT adversary which can break hib-auth of our HIB-ME. Then, we
could build an algorithm B that breaks EUF-hID-CMA of HIBS as follows:
1. At the beginning, algorithm B receives HIBS.mpk from the EUF-hID-CMA chal-

lenger. Then, it executes (HIBE1.mpk,HIBE1.msk) ← HIBE1.Setup(1λ, l + 1)
and (HIBE2.mpk,HIBE2.msk) ← HIBE2.Setup(1λ, l + 1), and sends mpk :=
(HIBE1.mpk,HIBE2.mpk,HIBS.mpk) to A.

2. For the queries made by A, B proceeds as follows:
• When A makes encryption key queries for σ, B queries EUF-hID-CMA chal-
lenger for secret signing key on σ. B sets the ekσ := skσ received from the
challenger, and returns ekσ to A.

• When A makes decryption key queries for ρ, B runs HIBE1.skρ ←
HIBE1.KeyDer(HIBE1.mpk,HIBE1.msk, ρ) and HIBE2.skρ ←
HIBE2.KeyDer(HIBE2.mpk,HIBE2.msk, ρ). Then B sets dkρ :=
(HIBE1.skρ,HIBE

2.skρ) and returns dkρ to A.
• When Amakes ciphertext queries for (σ, rcv,M), B first queries EUF-hID-CMA
challenger for signature on input (σ, rcv|M) and receives Σ, then it runs
the encryption algorithm to obtain CT1 and CT2. Finally, it sends CT =
(CT1,CT2) to A.

3. Once B receives the forgery output (CT∗ = (CT1∗,CT2∗), ρ∗, snd∗) from A, B
executes in the following way:

13

(a) Computes sk2ρ∗|snd∗ ← HIBE2.KeyDer(HIBE2.mpk,HIBE2.skρ, ρ
∗|snd∗),

Σ∗ ← HIBE2.Dec(HIBE2.mpk, sk2ρ∗|snd∗ ,CT
∗2), sk1ρ|snd ←

HIBE1.KeyDer(HIBE1.mpk,HIBE1.skρ, ρ|snd) and M ←
HIBE1.Dec(HIBE1.mpk, dk1ρ|snd,CT

∗1).
(b) If M∗ ̸= ⊥, outputs (snd∗, ρ∗|M∗,Σ) to EUF-hID-CMA as forgery. Otherwise,

B halts.
All the oracle queries of A are perfectly simulated by B. It is obvious that Dec outputs
M∗ ̸= ⊥ only if Σ is valid. (i.e. if M∗ ̸= ⊥, HIBS.Verify(·) = 1 holds.) If A never makes
a forbidden query, it is also clear that B never makes a forbidden query. Thus, it holds
that

Advhib-authHIB-ME,A(λ) = AdvEUF-hID-CMA
HIBS,B (λ).

Now, HIBS satisfies EUF-hID-CMA security, Advhib-authHIB-ME,A(λ) = negl(λ). That implies
HIB-ME is hib-auth secure.

3.4 Instantiation

In this section, we give an instantiation over bilinear groups for our generic construc-
tion in Section 3.2. Here, we instantiate our generic construction by combining the
Blazy-Kiltz-Pan anonymous HIBE (BKP-AHIBE) scheme [16] and an HIBS scheme
which is obtained by applying the Naor transformation to the BKP-AHIBE scheme.

Let KDF : GT → G3
2 be a key derivation function. Let MAC :=

(KeyGenMAC,Tag,Verify) be an affine MAC with the message space B≤m for some
finite set B. Then, an instantiation of our HIB-ME scheme (k, l) − HIB-ME =
(Setup,SKDer,RKDer,Enc,Dec) with the message space M = GT is provided as
follows.

Setup(1λ, k, l): The setup algorithm first picks A1,A2,As ← Dk and computes
(Bi,xi,0, . . . ,xi,l+1, x

′
i,0) = skMAC,i ← KeyGenMAC(1

λ) for i ∈ {1, 2, s}. Next, for
i ∈ {1, 2} and j ∈ {0, . . . , l + 1}, it computes

Yi,j ← Zn×m
q , Zi,j ← (Y⊤

i,j |xi,j) ·Ai ∈ Zm×n
q ,

and, for j = {0, . . . , k},

Ys,j ← Zn×m
q , Zs,j ← (Y⊤

s,j |xs,j) ·As ∈ Zm×n
q .

Furthermore, it picks y1,0,y2,0,ys,0 ← Zn
q , and computes

z′i,0 = (y′
i,0|x′

i,0) ·Ai ∈ Z1×n
q (for i = {1, 2, s}).

Then, it sets

mpk

:= (G, [A1]1, [A2]1, [As]1, ([Z1,j]1, [Z2,j]1)0≤j≤l+1, ([Zs,j]1)0≤j≤k, [z
′
1,0]1, [z

′
2,0]1, [z

′
s,0]1),

14

and

msk

:= ((skMAC,i)i∈{1,2,s}, ([Y1,j]1, [Y2,j]1)0≤j≤l+1, ([Ys,j]1)0≤j≤k, [y
′
1,0]1, [y

′
2,0]1, [y

′
s,0]1).

Finally, it returns a master public/secret key pair (mpk,msk).
SKDer(mpk, ekσ′ , σ): The sender key derivation algorithm works as follows:

If ekσ′ = msk, it first computes ([tσ]2, [uσ]2) ← Tag(skMAC,s, σ) and vσ =∑len(σ)
j=0 fj(σ)Ys,jtσ + y′

s,j . Next, it picks Sσ ← Zm′×µ
q and computes T = B · S ∈

Zm′×µ
q . Then, it computes

uσ =

len(σ)∑
j=0

fj(σ)x
⊤
s,jTσ ∈ Z1×µ

q , Vσ =

len(σ)∑
j=0

fj(σ)Ys,jTσ ∈ Zn×µ
q .

For j = len(σ) + 1, . . . , k, it computes

dσ,j = x⊤
s,jt ∈ Zq, Dσ,j = x⊤

s,jT ∈ Z1×µ
q ,

eσ,j = Ys,jt ∈ Zn
q , Eσ,j = Ys,jT ∈ Zn×µ

q .

Then, it sets ek′σ := ([tσ]2, [uσ]2, [vσ]2) ∈ Gm
2 × G1

2 × Gn
2 and ek′′σ :=

([Tσ]2, [uσ]2, [Vσ]2, ([dσ,j]2, [Dσ,j]2, [eσ,j]2, [Eσ,j]2)len(σ)≤j≤k) ∈ Gm×µ
2 × G1×µ

2 ×
Gn×µ

2 × (G2 ×G1×µ
2 ×Gn

2 ×Gn×µ
2)k−len(σ). Finally, it returns ekσ := (ek′σ, ek

′′
σ).

Else, it first parses σ̂ := (σ′, σ) ∈ Bp+1. Next, it computes

ûσ̂ = uσ′ +

len(σ̂)∑
j=len(σ′)+1

fj(σ̂)dj ∈ Zq, v̂σ̂ = vσ′ +

len(σ̂)∑
j=len(σ′)+1

fj(σ̂)ej ∈ Zn
q ,

ûσ̂ = uσ′ +

len(σ̂)∑
j=len(σ′)+1

fj(σ̂)Dj ∈ Z1×µ
q , V̂σ̂ = Vσ′ +

len(σ̂)∑
j=len(σ′)+1

fj(σ̂)Ej ∈ Zn×µ
q .

Then, it picks s′ ← Zµ
q ,S← Zµ×µ

q and computes

t′σ̂ = tσ +Ts′ ∈ Zm
q , T′

σ̂ = T̂Ṡ′ ∈ Zm×µ
q ,

u′
σ̂ = ûσ̂ + ûσ̂ · s′ ∈ Zq, u′

σ̂ = ûσ̂ · S′ ∈ Z1×µ
q ,

v′
σ̂ = v̂σ̂ + V̂σ̂ · s′ ∈ Zn

q , V′
σ̂ = V̂σ̂ · S′ ∈ Zn×µ

q .

For j = len(σ̂), . . . , k :

d′σ̂,j = dσ′,j +Dσ′,js
′ ∈ Zq, D′

σ̂,j = Dσ′,j · S′ ∈ Z1×µ
q ,

e′σ̂,j = eσ′,j +Eσ′,js
′ ∈ Zn

q , E′
σ̂,j = Eσ′,j · S′ ∈ Zn×µ

q .

15

Then, it sets ek′σ̂ = ([t′σ̂]2, [u
′
σ̂]2, [v

′
σ̂]2) and ek′′σ̂ =

([T′
σ̂]2, [u

′
σ̂]2, [V

′
σ̂]2, ([d

′
σ̂,j]2, [D

′
σ̂,j]2, [e

′
σ̂,j]2, [E

′
σ̂,j]2)k(σ̂)<j≤k). Finally, it returns

ekσ̂ := (ek′σ̂, ek
′′
σ̂).

RKDer(mpk, dkρ′ , ρ): The receiver key derivation algorithm works as follows:

If dkρ′ = msk, for i ∈ {1, 2}, it first computes ([ti,ρ]2, [ui,ρ]2)← Tag(skMAC,i, ρ) and

vi,ρ =
∑len(ρ)

j=0 fj(ρ)Yi,jti,ρ + y′
i,j . Next, it picks S1,ρ,S2,ρ ← Zm′×µ

q and computes

T1,ρ = B ·S1,ρ ∈ Zm′×µ
q and T2,ρ = B ·S2,ρ ∈ Zm′×µ

q . Then, for i ∈ {1, 2}, it computes

ui,ρ =

len(ρ)∑
j=0

fj(ρ)x
⊤
i,jTi,ρ ∈ Z1×µ

q , Vi,ρ =

len(ρ)∑
j=0

fj(ρ)Yi,jTi,ρ ∈ Zn×µ
q .

For i = {1, 2}, j = len(ρ) + 1, . . . , l + 1, it computes

dρ,i,j = x⊤
i,jt ∈ Zq, Dρ,i,j = x⊤

i,jT ∈ Z1×µ
q ,

eρ,i,j = Yi,jt ∈ Zn
q , Eρ,i,j = Yi,jT ∈ Zn×µ

q .

Then, it sets dk′ρ := ([ti,ρ]2, [ui,ρ]2, [vi,ρ]2)i={1,2} ∈ (Gm
2 × G1

2 × Gn
2)

2 and dk′′ρ :=
(([Ti,ρ]2, [ui,ρ]2, [Vi,ρ]2, ([dρ,i,j]2, [Dρ,i,j]2, [eρ,i,j]2, [Eρ,i,j]2)len(ρ)≤j≤l+1))i={1,2} ∈
(Gm×µ

2 × G1×µ
2 × Gn×µ

2 × (G2 × G1×µ
2 × Gn

2 × Gn×µ
2)(l+1)−len(ρ))2. Finally, it returns

dkρ := (dk′ρ, dk
′′
ρ).

Else, it first parses ρ̂ := (ρ′, ρ) ∈ Bp+1. Next, for i = {1, 2} it computes

ûi,ρ̂ = ui,ρ′ +

len(ρ̂)∑
j=len(ρ′)+1

fj(ρ̂)dρ′,i,j ∈ Zq, v̂i,ρ̂ = vi,ρ′ +

len(ρ̂)∑
j=len(ρ′)+1

fj(ρ̂)eρ′,i,j ∈ Zn
q ,

ûi,ρ̂ = ui,ρ′ +

len(ρ̂)∑
j=len(ρ′)+1

fj(ρ̂)Dρ,i,j ∈ Z1×µ
q , V̂i,ρ̂ = Vi,ρ′ +

len(ρ̂)∑
j=len(ρ′)+1

fj(ρ̂)Eρ,i,j ∈ Zn×µ
q .

Then, it picks s′1, s
′
2 ← Zµ

q ,S
′
1,S

′
2 ← Zµ×µ

q and for i = {1, 2}, it computes

t′i,ρ̂ = ti,ρ +Ts′i ∈ Zm
q , T′

i,ρ̂ = T̂i,ρṠ
′
i ∈ Zm×µ

q ,

u′
i,ρ̂ = ûi,ρ̂ + ûi,ρ̂ · s′i ∈ Zq, u′

i,ρ̂ = ûi,ρ̂ · S′
i ∈ Z1×µ

q ,

v′
i,ρ̂ = v̂i,ρ̂ + V̂i,ρ̂ · s′i ∈ Zn

q , V′
i,ρ̂ = V̂i,ρ̂ · S′

i ∈ Zn×µ
q .

For i = {1, 2}, j = len(σ̂), . . . , l + 1 :

d′ρ̂,i,j = dρ′,i,j +Dρ′,i,js
′
i ∈ Zq, D′

ρ̂,i,j = Dρ′,i,j · S′
i ∈ Z1×µ

q ,

e′ρ̂,i,j = eρ′,i,j +Eρ′,i,js
′
i ∈ Zn

q , E′
ρ̂,i,j = Eρ′,i,j · S′

i ∈ Zn×µ
q .

16

Then, it sets dk′ρ̂ = ([t′i,ρ̂]2, [u
′
i,ρ̂]2, [v

′
i,ρ̂]2)i={1,2} and dk′′ρ̂ =

([T′
i,ρ̂]2, [u

′
i,ρ̂]2, [V

′
i,ρ̂]2, ([d

′
ρ̂,i,j]2, [D

′
ρ̂,i,j]2, [e

′
ρ̂,i,j]2, [E

′
ρ̂,i,j]2)len(ρ̂)<j≤l+1)i={1,2}. Finally,

it returns dkρ̂ := (dk′ρ̂, dk
′′
ρ̂).

Enc(mpk, ekσ, ρ,M ∈ GT): The encryption algorithm first sets M̂ = rcv|M, runs the

SKDer algorithm with input ekσ and M̂, and retrieves ekM̂ = ([tM̂]2, [uM̂]2, [vM̂]2).
Next, it picks r1, r2 ← Zn

q and computes

c0,1 = A1r1 ∈ Zn+1
q , c0,2 = A2r2 ∈ Zn+1

q ,

c1,1 =

len(rcv|σ)∑
j=0

fj(rcv|σ)Zj

 · r0, c1,2 =

len(rcv|σ)∑
j=0

fj(rcv|σ)Zj

 · r1.
Then, it computes K1 = z′1,0 · r1 ∈ Zq and K2 = z′2,0 · r2 ∈ Zq. Finally, it computes
CT1 = [K1]T ·M, (R1, R2, R3)← KDF([K2]T) and

CT2,1 = R1 · [tM̂]2, CT2,2 = R2 · [uM̂]2, CT2,3 = R3 · [vM̂]2,

and outputs CT = ([c0,1]1, [c0,2]1, [c1,1]1, [c1,2]1, [CT1]T , [CT2,1]2, [CT2,2]2, [CT2,3]2).
Dec(mpk, dkρ, σ,CT): The decryption algorithm first runs the RKDer algorithm with
input dkρ and ρ|snd and retrieves dkρ|snd := ([ti,ρ|snd]2, [ui,ρ|snd]2, [vi,ρ|snd]2)i={1,2}.
Next, it computes

K1 = e

(
[c0,1]1,

[
v1,ρ|snd
u1,ρ|snd

]
2

)
− e([c1,1]1, [t1,ρ|snd]2),

K2 = e

(
[c0,2]1,

[
v2,ρ|snd
u2,ρ|snd

]
2

)
− e([c1,2]1, [t2,ρ|snd]2).

Next, it computes M = CT1/[K1]T ,(R1, R2, R3)← KDF([K2]T) and

[trcv|σ]2 = [CT2,1]2/R1, [urcv|σ]2 = [CT2,2]2/R2, [vrcv|σ]2 = [CT2,3]2/R3.

Then, it picks r← Zn
q and computes

c0 = A2r ∈ Zn+1
q , c1 =

len(rcv|σ)∑
j=0

fj(rcv|σ)Zj

 · r,
and K = z′2,0 · r ∈ Zq. Then, it computes

K ′ = e

(
[c0]1,

[
vρ|snd
uρ|snd

]
2

)
− e([c1]1, [tρ|snd]2).

If K = K ′ holds, then it returns M. If not, it returns ⊥.

17

4 Our CCA Secure (H)IB-ME Scheme

In this section, we provide our CCA secure (H)IB-ME scheme. In Section 4.1, we give
the formal description of our l-level CCA secure (H)IB-ME scheme based on an l+1-
level CPA secure (H)IB-ME scheme and a strong one-time signature scheme. Then,
in Section 4.2, we show that our scheme satisfies hib-cca-priv security and hib-auth
security.

4.1 Description

In this section, we give the formal description of our CCA secure l-level HIB-ME
scheme from an l + 1-level HIB-ME scheme and a strong one-time signature scheme.
Roughly, toward CCA security, we extend the technique by Canetti et al. [14].

Construction. Fix integers k ≥ 0 and l ≥ 1. Let HIB-ME′ =
(Setup′,SKDer′,RKDer′,Enc′,Dec′) be a (k, l + 1)-level HIB-ME scheme with a
sender identity space ID and a receiver identity space ID′ = {0, 1}|ID.
Let Sig = (KeyGen,Sign,Verify) be a strong one-time signature scheme with
a verification key space ID. Then, our (k, l)-level HIB-ME scheme HIB-ME =
(Setup,SKDer,RKDer,Enc,Dec) scheme is described as follows:

Setup(1λ, k, l): On the input a security parameter 1λ, a maximum hierarchical level
of sender k, and a maximum hierarchical level of receiver l, the setup algorithm runs
(mpk,msk)← Setup′(1λ, k, l + 1) and outputs (mpk,msk).
SKDer(mpk, ekσ′ , σ): On the input a master public key mpk, an encryption key ekσ′

associated to σ′, and a sender identity σ, the sender key derivation algorithm runs
ekσ ← SKDer′(mpk, ekσ′ , σ) and outputs an encryption key ekσ.
RKDer(mpk, dkρ′ , ρ): On the input a master public key mpk, a decryption key dkρ′

associated to ρ′, and a receiver identity ρ, the receiver key derivation algorithm runs
dkρ ← RKDer′(mpk, dkρ′ , 0|ρ) and outputs a decryption key dkρ.
Enc(mpk, ekσ, rcv,M): On the input a master public key mpk, an encryption key ekσ,
a target receiver identity rcv, and a plaintext M, the encryption algorithm firstly
runs (sk, vk) ← KeyGen(1λ). Next, it sets r̂cv := 0|rcv.1|vk and computes CT1 ←
Enc′(mpk, ekσ, r̂cv,M) and Σ← Sign(sk,CT1). Finally, it outputs CT := (CT1, vk,Σ).
Dec(mpk, dkρ, snd,CT): On the input a master public key mpk, a decryption key dkρ,
a target sender identity snd, and a ciphertext CT, the decryption algorithm checks
whether ⊥ = Verify(vk,CT1,Σ) holds. If this is the case, then it returns ⊥. Otherwise,
it sets ρ̂ = 0|ρ.1|vk and generates dkρ̂ ← RKDer′(mpk, dkρ, ρ̂). Finally, it runs M ←
Dec′(mpk, dkρ̂, snd,CT1) and outputs the plaintext M.

Correctness. It is obvious that the correctness of HIB-ME holds due to the
correctness of HIB-ME′ and Sig.

4.2 Security Proofs

In this section, we show that our scheme satisfies security requirements.
Theorem 3. If HIB-ME′ is hib-cpa-priv secure and Sig is sEUF-CMA secure, then
HIB-ME is hib-cca-priv secure.

18

Proof. Let A be a PPT adversary against the hib-cca-priv security of HIB-ME. Within
the experiment Exphib-cca-privHIB-ME,A (λ), let (CT∗

1, vk
∗,Σ∗) be a challenge ciphertext. We define

the events Forge and Succ in Exphib-cca-privHIB-ME,A (λ) as follows:

Forge: The adversary A makes at least one decryption query (ρ∗, (CT1, vk
∗,Σ)) sat-

isfying ⊤ = Verify(vk∗,CT1,Σ)), where ρ∗ is the challenge receiver identity of
A.
Succ: The adversary A outputs ĉoin satisfying ĉoin = coin, where coin ∈ {0, 1} is a
challenge bit.

Using Forge and Succ, we can evaluate the advantage of A in Exphib-cca-privHIB-ME,A (λ) as

Advhib-cca-privHIB-ME,A (λ)

= 2 · |Pr[Succ]− 1

2
|

= 2 · |Pr[Succ ∧ Forge] + Pr[Succ ∧ Forge]− 1/2Pr[Forge] + 1/2Pr[Forge]− 1/2|
≤ 2 · (|Pr[Succ ∧ Forge]− 1/2Pr[Forge]|+ |Pr[Succ ∧ Forge] + 1/2Pr[Forge]− 1/2])

≤ Pr[Forge] + |2 · Pr[Succ ∧ Forge] + Pr[Forge]− 1|

= Advhib-cpa-priv
HIB-ME′,Bhib-cpa-priv(λ) + AdvsEUF-CMA

Sig,BsEUF-CMA(λ)

Lemma 3. There exists an adversary BsEUF-CMA against the sEUF-CMA security of
Sig such that Pr[Forge] = AdvsEUF-CMA

Sig,BsEUF-CMA(λ).

Proof. We construct a PPT adversary BsEUF-CMA that attacks the sEUF-CMA security
of Sig so that Pr[Forge] = AdvsEUF-CMA

Sig,BsEUF-CMA(λ), using the adversary A.

1. As the setup, BsEUF-CMA first receives vk∗ from its challenger, runs (mpk,msk)←
Setup′(1λ, k, l + 1), and sends mpk to A. Furthermore, BsEUF-CMA picks coin ←
{0, 1}.

2. When A makes oracle queries, BsEUF-CMA responds as follows:
• When A makes a sender key derivation query σ, BsEUF-CMA runs ekσ ←
SKDer′(mpk,msk, σ) and returns ekσ to A.

• When A makes a receiver key derivation query ρ, BsEUF-CMA runs dkρ ←
RKDer′(mpk,msk, ρ) and return dkρ to A.

• When A makes a decryption query of (snd, ρ,CT = (CT1,Σ, vk)), B
sEUF-CMA

checks whether vk = vk∗ and ⊤ = Verify(vk∗,CT1,Σ) hold. If this is the case,
then it outputs (CT1,Σ) as its forgery and terminates. Otherwise, it checks
whether ⊥ = Verify(vk,CT1,Σ) holds. If this is the case, then it returns ⊥
to A. Otherwise, it sets ρ̂ = 0|ρ.1|vk, runs dkρ ← RKDer′(mpk,msk, ρ̂) and
M← Dec′(mpk, dkρ, snd,CT1), and returns M to A.

• When A makes a challenge query of (σ∗, rcv∗,M∗), if coin = 0
holds, then BsEUF-CMA runs ekσ∗ ← SKDer′(mpk,msk, σ∗) and CT∗

1 ←
Enc′(mpk, ekσ∗ , 0|ρ.1|vk∗,M∗). Otherwise (that is, coin = 1 holds), BsEUF-CMA

runs CT∗
1 ← HIB-ME′.CTSamp(mpk). Then, BsEUF-CMA makes a signing query

CT∗
1 and gets a signature Σ∗. Finally, B returns (vk∗,CT∗

1,Σ
∗) to A.

19

3. When A outputs ĉoin and terminates, BsEUF-CMA halts.
From the above construction, BsEUF-CMA perfectly simulates Exphib-cca-privHIB-ME,A (λ) for A.
Now, we assume that Forge happens, that is, A makes a decryption query CT =
(CT1, vk

∗,Σ) that satisfies Verify(vk∗,CT1,Σ) = ⊤ at least once. Since (CT∗
1,Σ

∗) ̸=
(CT1,Σ) holds from the requirements for decryption queries by A, the tuple of a
message and a signature (CT1,Σ) output by BsEUF-CMA satisfies the winning conditions
of the experiment ExpsEUF-CMA

Sig,BsEUF-CMA(λ). Therefore, Pr[Forge] = AdvsEUF-CMA
Sig,BsEUF-CMA(λ) holds.

Lemma 4. There exists an adversary Bhib-cpa-priv against the hib-cpa-priv security of
HIB-ME′ such that |2 · Pr[Succ ∧ Forge] + Pr[Forge]− 1| = Advhib-cpa-priv

HIB-ME′,Bhib-cpa-priv(λ).

Proof. We construct a PPT adversary Bhib-cpa-priv that attacks the hib-cpa-priv security
of HIB-ME′ so that |2 ·Pr[Succ∧Forge]+Pr[Forge]− 1| = Advhib-cpa-priv

HIB-ME′,Bhib-cpa-priv(λ), using
the adversary A.
1. As a setup, Bhib-cpa-priv receives mpk from its challenger, runs (vk∗, sk∗) ←

KeyGen(1λ), and sends mpk to A.
2. When A makes oracle queries, Bhib-cpa-priv responds as follows:

• When A makes a sender key derivation query σ, Bhib-cpa-priv also makes a
sender key derivation query σ to its challenger to obtain ekσ and returns ekσ
to A.

• When A makes a receiver key derivation query ρ, Bhib-cpa-priv also makes a
receiver key derivation query ρ to its challenger to obtain dkρ and returns
dkρ to A.

• When A makes a decryption query of (snd, ρ,CT), depending on whether
ρ = ρ∗ or vk = vk∗, Bhib-cpa-priv proceeds as follows:

ρ = ρ∗ ∧ vk = vk∗: If ⊤ = Verify(vk∗,CT1,Σ) holds, then Bhib-cpa-priv out-

puts ĉoin ← {0, 1} and terminates. Otherwise, if ⊥ = Verify(vk∗,CT1,Σ),
Bhib-cpa-priv returns ⊥ to A.
(ρ = ρ∗ ∧ vk ̸= vk∗) ∨ ρ ̸= ρ∗: Bhib-cpa-priv makes a decryption key derivation
query on ρ̂ = 0|ρ.1|vk to its challenger to obtain dkρ̂, computes M ←
Dec′(mpk, dkρ̂, snd,CT1), and returnsM to A. (Note that Bhib-cpa-priv is allowed
to make a query 0|ρ.1|vk since it is not a prefix of the target receiver identity
ρ∗).

• When A makes a challenge query of (σ∗, rcv∗,M∗), Bhib-cpa-priv also makes a
challenge query of (σ∗, 0|rcv∗.1|vk∗,M∗) to its challenger and gets CT∗

1. Then,
Bhib-cpa-priv computes Σ∗ ← Sign(sk∗,CT∗

1) and returns a challenge ciphertext
CT∗ := (vk∗,CT∗

1,Σ
∗) to A.

3. Finally, when A outputs ĉoin and terminates, Bhib-cpa-priv outputs the same ĉoin
and terminates.

Since Bhib-cpa-priv does not get the secret key corresponding to the target identity
0|rcv∗.1|vk∗, unless Forge occurs, Exphib-cca-privHIB-ME,A (λ) is perfectly simulated to A and the

challenge bits of Bhib-cpa-priv and A correspond. On the other hand, when Forge occurs,
Bhib-cpa-priv outputs a random bit ĉoin. Here, let SuccB be an event that Bhib-cpa-priv

20

breaks the hib-cpa-priv security of HIB-ME′. Then, we have

Advhib-cpa-priv
HIB-ME′,Bhib-cpa-priv(λ) = |2 · Pr[SuccB]− 1|

= |2 · (Pr[Succ ∧ Forge] + Pr[Forge] · 1
2
)− 1|

= |2 · Pr[Succ ∧ Forge] + Pr[Forge]− 1|.

From Lemma 3 and Lemma 4, it holds that

Advhib-cca-privHIB-ME,A (λ) = |Pr[Succ ∧ Forge] + Pr[Succ ∧ Forge]

− 1/2Pr[Forge] + 1/2Pr[Forge]− 1/2|
≤ |Pr[Succ ∧ Forge]− 1/2Pr[Forge]|
+ |Pr[Succ ∧ Forge] + 1/2Pr[Forge]− 1/2]

≤ Pr[Forge] + |Pr[Succ ∧ Forge] + Pr[Forge]− 1|

≤ Advhib-cpa-priv
HIB-ME′,Bhib-cpa-priv(λ) + AdvsEUF-CMA

Sig,BsEUF-CMA(λ).

Now, since we assume that HIB-ME′ is hib-cpa-priv secure and Sig is sEUF-CMA secure,
we obtain Advhib-cca-privHIB-ME,A (λ) = negl(λ), that is, HIB-ME satisfies hib-cca-priv security.

Theorem 4. If HIB-ME′ is hib-auth secure, then HIB-ME is hib-auth secure.

Proof. Let A be a PPT adversary against the hib-auth security of HIB-ME. Then, using
A, we construct a PPT adversary B against the hib-auth security of HIB-ME′ as follows:
1. At the beginning, when B receives mpk from the challenger, it sends mpk to A.
2. When A makes oracle queries, B answers as follows:

• When A makes an encryption key query σ, B also makes an encryption key
query σ to its challenger. Upon receiving ekσ from the challenger, B returns
it to A.

• When A makes a decryption key query ρ, B also makes an decryption key
query ρ to its challenger. Upon receiving dkρ from the challenger, B returns
it to A.

• When A makes a ciphertext query (σ, rcv,M), B generates (sk, vk) ←
Sig.KeyGen(1λ), makes a ciphertext query (σ, 0|rcv.1|vk,M), and receives CT1

from the challenger. Then, B computes Σ ← Sig.Sign(sk,CT1) and returns
CT = (CT1, vk,Σ) to A.

3. When A outputs a forgery (CT∗, ρ∗, snd∗), B firstly checks whether
Sig.Verify(vk,Σ) = ⊤ holds. If this is not the case, then B halts. Otherwise, B
outputs (CT∗

1, 0|ρ∗.1|vk, snd
∗) and terminates.

From the above construction, we can see that B perfectly simulates the game of hib-auth
security for A. Also, if A never makes a forbidden query, it is also clear that B never
makes a forbidden query. Thus, it holds that

Advhib-authHIB-ME,A(λ) = Advhib-authHIB-ME′,B(λ).

21

Since HIB-ME′ satisfies hib-auth security, Advhib-authHIB-ME,A(λ) = negl(λ). That is, HIB-ME
is hib-auth secure.

5 Tweaked CCA Security for (H)IB-ME

In this section, we introduce a slightly weak but reasonable CCA security notion, called
tweaked CCA security, for (H)IB-ME. Informally, tweaked CCA security is the same
as (standard) CCA security except that the (secret) encryption key used in generating
challenge ciphertexts is not allowed to leaked.

5.1 Formalization of Tweaked CCA Security

In this section, we provide the formal definition of tweaked CCA security for (H)IB-
ME.
Definition 7 (Tweaked CCA Security for HIB-ME). Let (k, l)-HIB-ME be an HIB-ME
scheme. We say that HIB-ME satisfies hib-tcca-priv security if for all PPT adversaries
A,

Advhib-tcca-privHIB-ME,A (λ)

:=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


coin = ĉoin

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

QOS
,QOR

,QOD
:= ∅;

(mpk,msk)← Setup(1λ);
coin← {0, 1};
(σ∗, rcv∗,M∗)← AOS ,OR,OD (mpk);
ekσ∗ ← SKDer(mpk,msk, σ∗);
If (coin = 0) CT∗ ← Enc(mpk, ekσ∗ , rcv∗,M∗);
Else CT∗ ← CTSamp(mpk);

ĉoin← AOS ,OR,OD (CT∗);


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= negl(λ)holds, where

each oracle and list update is the same in Fig.1. We require that A is not allowed
to make a sender key derivation query ∀σ′, σ′ ∈ prefix(σ∗) to OS, a receiver key
derivation query ∀rcv′, rcv′ ∈ prefix(rcv∗) to OR and (σ∗, rcv∗,CT∗) to OD.

5.2 Description

In this section, we provide a construction of tweaked CCA secure (H)IB-ME. Our
tweaked CCA secure (H)IB-ME scheme can be obtained solely based on a CPA secure
(H)IB-ME scheme. Notably, compared to the previous CCA secure (H)IB-ME scheme
in Section 4.1, our tweaked CCA secure (H)IB-ME scheme does not need a strong
one-time signature scheme which incurs a ciphertext overhead (with the length of a
verification key and a signature). Note that, in the (ordinary) IBE setting, the non-
adaptive CCA security (a.k.a. the CCA1 security) can only be achieved with a similar
construction, while in the IB-ME setting, we can achieve more reasonable security
notion (adaptive security but with query limitations).

Construction. Fix integers k ≥ 0 and l ≥ 1. Let HIB-ME′ =
(Setup′,SKDer′,RKDer′,Enc′,Dec′) be a (k, l+1)-level HIB-ME scheme with a sender

22

identity space ID and a receiver identity space ID′ = {0, 1}|ID. Then, we show how
to construct (k, l)-level HIB-ME scheme HIB-ME = (Setup,SKDer,RKDer,Enc,Dec).
Setup algorithm Setup, sender key derivation algorithm SKDer, and receiver key
derivation algorithm RKDer is the same as construction in section 4.1. Now, we show
encryption algorithm Enc and decryption algorithm Dec as follows:

Enc(mpk, ekσ, rcv,M): On the input a master public key mpk, an encryption key ekσ,
a target receiver identity rcv, and a plaintext M, the encryption algorithm sets r̂cv :=
0|rcv.1|σ and computes CT← Enc′(mpk, ekσ, r̂cv,M). Finally, it outputs CT.
Dec(mpk, dkρ, snd,CT): On the input a master public key mpk, a decryption key
dkρ, a target sender identity snd, and a ciphertext CT, the decryption algorithm
sets ρ̂ = 0|ρ.1|snd and generates dkρ̂ ← RKDer′(mpk, dkρ, ρ̂). Finally, it runs M ←
Dec′(mpk, dkρ̂, snd,CT) and outputs the plaintext M.

5.3 Security Proofs

In this section, we show that our (H)IB-ME scheme given in Section 5.2 satisfies
hib-tcca-priv security.
Theorem 5. If HIB-ME′ satisfies hib-cpa-priv security and hib-auth security, then
HIB-ME is hib-tcca-priv secure.

Proof. Let A be a PPT adversary against the hib-tcca-priv security of HIB-ME. We
introduce the following games.

Game0: This is an original game of Exphib-tcca-privHIB-ME,A (λ).

Game1: Same as Game0, except that, when A makes a decryption query (ρ∗, snd∗, ·),
the challenger returns ⊥ to A.

In the following, for i ∈ {0, 1}, let Xi denote an event that coin = ĉoin in Gamei.
Then, we can estimate the advantage

Advhib-tcca-privHIB-ME,A (λ) = 2 · |Pr[coin = ĉoin]− 1

2
|

≤ |Pr[X0]− Pr[X1]|+ |Pr[X1]−
1

2
|.

Lemma 5. There exists an adversary Bhib-auth against the hib-auth security of HIB-ME′

such that |Pr[X0]− Pr[X1]| = Advhib-authHIB-ME′,Bhib-auth(λ).

Proof. First of all, for i ∈ {0, 1}, we define an event Badi that A makes a decryption
query of (ρ∗, snd∗,CT) satisfying ⊥ ≠ Dec(mpk, dkρ∗ , snd∗,CT) in Gamei, where ρ

∗ and
snd∗ are challenge receiver identity and sender identity, respectively. Game0 proceeds
identically to Game1 unless Bad0 occurs. That is, |Pr[X0]−Pr[X1]| ≤ Pr[Bad0] holds. In
the following, we show that one can construct a PPT adversary B against the hib-auth
security of HIB-ME′ so that Pr[Bad] = Advhib-authHIB-ME′,Bhib-auth(λ), using the adversary A.
1. As the setup of the hib-auth game, upon receiving a master public key mpk from

the challenger, Bhib-auth sends mpk to A and picks coin← {0, 1}.
2. When A makes oracle queries, Bhib-auth answers them as follows:

23

• When A makes a sender key derivation query σ, Bhib-auth also makes a sender
key derivation query σ to its challenger and gets ekσ. Then, B

hib-auth returns
ekσ to A and updates QOS

← QOS
∪ {σ}.

• When Amakes a receiver key derivation query ρ, Bhib-auth also makes a receiver
key derivation query ρ to its challenger and gets dkρ. Then, B

hib-auth returns
dkρ to A.

• When A makes a decryption query of (ρ, snd,CT), Bhib-auth makes a receiver
key derivation query ρ to its challenger, gets dkρ, and computes M ←
Dec′(mpk, dkρ, snd,CT). Then, Bhib-auth checks that snd /∈ QOS

∧ M ̸= ⊥
holds. If this is the case, then Bhib-auth outputs (ρ, snd,CT) as its forgery and
terminates. Otherwise, Bhib-auth returns M to A.

• When A makes a challenge query of (σ∗, ρ∗,M∗), if coin = 0 holds, Bhib-auth

make encryption query with (σ∗, ρ∗,M∗) to its challenger, gets CT∗, and
returns CT∗ to A. Otherwise, Bhib-auth samples CT∗ ← CTSamp(mpk) and
returns CT∗ to A.

3. When A outputs ĉoin, B halts.
From the above construction, we can see that Bhib-auth perfectly simulates Game0 for A.
Now, we assume that Bad happens, that is, A makes a decryption query (ρ∗, snd∗,CT)
satisfying Dec′(mpk, dkρ∗ , snd∗,CT) ̸= ⊥ at least once. Since (ρ∗, snd∗,CT∗) ̸=
(ρ, snd,CT) and prefix(snd∗) /∈ QOS

hold from the requirements for A, the forgery
(ρ, snd,CT) output by Bhib-auth satisfies the winning conditions of the hib-auth security
game. Therefore, Pr[Bad] = Advhib-authHIB-ME′,Bhib-auth(λ) holds.

Lemma 6. There exists an adversary Bhib-cpa-priv against the hib-cpa-priv security of
HIB-ME′ such that |Pr[X1]− 1

2 | = Advhib-cpa-priv
HIB-ME′,Bhib-cpa-priv(λ).

Proof. We construct a PPT adversary Bhib-cpa-priv who attacks the hib-cpa-priv security
of HIB-ME′ so that |Pr[X1] − 1

2 | = Advhib-cpa-priv
HIB-ME′,Bhib-cpa-priv(λ), using the adversary A, as

follows:
1. As a setup, upon receiving mpk from the challenger, Bhib-cpa-priv sends mpk to A.
2. When A makes oracle queries, Bhib-cpa-priv answers as follows:

• When A makes a sender key derivation query σ, Bhib-cpa-priv also makes a
sender key derivation query σ to its challenger to obtain ekσ and returns ekσ
to A.

• When A makes a receiver key derivation query ρ, Bhib-cpa-priv also makes a
receiver key derivation query ρ to its challenger to obtain dkρ and returns
dkρ to A.

• When A makes a decryption query of (snd, ρ,CT), depending on whether
ρ = ρ∗ or snd = snd∗, Bhib-cpa-priv proceeds as follows:

ρ = ρ∗ ∧ snd = snd∗: Bhib-cpa-priv just returns ⊥ to A.
(ρ = ρ∗ ∧ snd ̸= snd∗) ∨ ρ ̸= ρ∗: Bhib-cpa-priv makes a decryption key deriva-
tion query ρ̂ = 0|ρ.1|snd to its challenger to obtain dkρ̂, computes M ←
Dec′(mpk, dkρ̂, snd,CT), and returns M to A. (Note that Bhib-cpa-priv is allowed
to make a query 0|ρ.1|snd since it is not a prefix of the target identity ρ∗.)

24

• When A makes a challenge query of (σ∗, rcv∗,M∗), Bhib-cpa-priv also makes a
challenge query of (σ∗, rcv∗,M∗) to its challenger to obtain CT∗ and returns
CT∗ to A.

3. When A outputs ĉoin and terminates, Bhib-cpa-priv outputs the same ĉoin and
terminates.

Since Bhib-cpa-priv does not obtain the secret key corresponding to the target identity
0|ρ∗.1|snd∗, Bhib-cpa-priv, Exphib-tcca-privHIB-ME,A (λ) is perfectly simulated to A and the challenge

bit of Bhib-cpa-priv and A correspond. Thus, it holds that

|Pr[X1]− 1/2| = Advhib-cpa-priv
HIB-ME′,Bhib-cpa-priv(λ).

Putting everything together, it holds that

Advhib-tcca-privHIB-ME,A ≤ Advhib-cpa-priv
HIB-ME′,Bhib-cpa-priv(λ) + Advhib-authHIB-ME′,Bhib-auth(λ).

Now, since HIB-ME′ satisfies hib-cpa-priv security and hib-auth security, we obtain
Advhib-tcca-privHIB-ME,A (λ) = negl(λ). That is, HIB-ME satisfies hib-tcca-priv security.

Theorem 6. If HIB-ME′ satisfies hib-auth security, then HIB-ME is hib-auth secure.

Proof. Let A be a PPT adversary against the hib-auth security of HIB-ME. Then, using
A, we construct a PPT adversary B against the hib-auth security of HIB-ME′ as follows:
1. At the beginning, when B receives mpk from the challenger, it sends mpk to A.
2. When A makes oracle queries, B answers as follows:

• When A makes an encryption key query σ, B also makes an encryption key
query σ to its challenger. Upon receiving ekσ from the challenger, B returns
it to A.

• When Amakes a decryption key query ρ, B also makes a decryption key query
ρ to its challenger. Upon receiving dkρ from the challenger, B returns it to A.

• When Amakes a ciphertext query (σ, rcv,M), B also makes a ciphertext query
(σ, 0|rcv.1|σ,M) to its challenger. Upon receiving a ciphertext CT from the
challenger, B returns it to A.

3. When A outputs a forgery (CT∗, ρ∗, snd∗), B outputs a forgery
(CT∗, 0.ρ∗.1|snd∗, snd∗) and terminates.

From the above construction, we can see that B perfectly simulates the game of hib-auth
security for A. Also, if A never makes a forbidden query, it is also clear that B never
makes a forbidden query. Thus, it holds that

Advhib-authHIB-ME,A(λ) = Advhib-authHIB-ME′,B(λ).

Since HIB-ME′ satisfies hib-auth security, Advhib-authHIB-ME,A(λ) = negl(λ) holds. That is,
HIB-ME is hib-auth secure.

25

Declarations

Conflict of interest The authors declare no conflict of interest.
Ethical approval The authors declare full compliance with ethical standards. This
article does not contain any studies involving humans or animals performed by any of
the authors.
Data availability The used data are publicly available.

Acknowledgement

This research was in part conducted under a contract of ”Research and development
on new generation cryptography for secure wireless communication services” among
”Research and Development for Expansion of Radio Wave Resources (JPJ000254)”,
which was supported by the Ministry of Internal Affairs and Communications,
Japan. This work also was in part supported by JSPS KAKENHI Grant Num-
bers JP22H03590 and JP21H03395, JST-CREST JPMJCR22M1, and JST-AIP
JPMJCR22U5.

References

[1] Ateniese, G., Francati, D., Nuñez, D. & Venturi, D. Boldyreva, A. & Micciancio,
D. (eds) Match me if you can: Matchmaking encryption and its applications.
(eds Boldyreva, A. & Micciancio, D.) Advances in Cryptology – CRYPTO 2019,
Part II, Vol. 11693 of Lecture Notes in Computer Science, 701–731 (Springer,
Heidelberg, Germany, Santa Barbara, CA, USA, 2019).

[2] Attrapadung, N. et al. Relations among notions of security for identity based
encryption schemes. Cryptology ePrint Archive, Report 2005/258 (2005). https:
//eprint.iacr.org/2005/258.

[3] Dolev, D., Dwork, C. & Naor, M. Nonmalleable cryptography. SIAM Journal on
Computing 30, 391–437 (2000).

[4] Galindo, D. & Hasuo, I. Security notions for identity based encryption. Cryp-
tology ePrint Archive, Report 2005/253 (2005). https://eprint.iacr.org/2005/
253.

[5] Bellare, M., Desai, A., Pointcheval, D. & Rogaway, P. Krawczyk, H. (ed.) Rela-
tions among notions of security for public-key encryption schemes. (ed.Krawczyk,
H.) Advances in Cryptology – CRYPTO’98, Vol. 1462 of Lecture Notes in Com-
puter Science, 26–45 (Springer, Heidelberg, Germany, Santa Barbara, CA, USA,
1998).

[6] Boneh, D. & Franklin, M. K. Kilian, J. (ed.) Identity-based encryption from the
Weil pairing. (ed.Kilian, J.) Advances in Cryptology – CRYPTO 2001, Vol. 2139
of Lecture Notes in Computer Science, 213–229 (Springer, Heidelberg, Germany,
Santa Barbara, CA, USA, 2001).

26

https://eprint.iacr.org/2005/258
https://eprint.iacr.org/2005/258
https://eprint.iacr.org/2005/253
https://eprint.iacr.org/2005/253

[7] Canetti, R. & Goldwasser, S. Stern, J. (ed.) An efficient threshold public key
cryptosystem secure against adaptive chosen ciphertext attack. (ed.Stern, J.)
Advances in Cryptology – EUROCRYPT’99, Vol. 1592 of Lecture Notes in Com-
puter Science, 90–106 (Springer, Heidelberg, Germany, Prague, Czech Republic,
1999).

[8] Canetti, R. & Hohenberger, S. Ning, P., De Capitani di Vimercati, S. & Syver-
son, P. F. (eds) Chosen-ciphertext secure proxy re-encryption. (eds Ning, P., De
Capitani di Vimercati, S. & Syverson, P. F.) ACM CCS 2007: 14th Conference
on Computer and Communications Security, 185–194 (ACM Press, Alexandria,
Virginia, USA, 2007).

[9] Koppula, V. & Waters, B. Boldyreva, A. & Micciancio, D. (eds) Realizing
chosen ciphertext security generically in attribute-based encryption and predi-
cate encryption. (eds Boldyreva, A. & Micciancio, D.) Advances in Cryptology
– CRYPTO 2019, Part II, Vol. 11693 of Lecture Notes in Computer Science,
671–700 (Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 2019).

[10] Yamada, S., Attrapadung, N., Hanaoka, G. & Kunihiro, N. Catalano, D., Fazio,
N., Gennaro, R. & Nicolosi, A. (eds) Generic constructions for chosen-ciphertext
secure attribute based encryption. (eds Catalano, D., Fazio, N., Gennaro, R. &
Nicolosi, A.) PKC 2011: 14th International Conference on Theory and Practice
of Public Key Cryptography, Vol. 6571 of Lecture Notes in Computer Science,
71–89 (Springer, Heidelberg, Germany, Taormina, Italy, 2011).

[11] Chiku, S., Hashimoto, K., Hara, K. & Shikata, J. Identity-based matchmaking
encryption, revisited: Strong security and practical constructions from standard
classical and post-quantum assumptions. Cryptology ePrint Archive, Paper
2023/1435 (2023). https://eprint.iacr.org/2023/1435.

[12] Fujisaki, E. & Okamoto, T. Imai, H. & Zheng, Y. (eds) How to enhance the
security of public-key encryption at minimum cost. (eds Imai, H. & Zheng, Y.)
PKC’99: 2nd International Workshop on Theory and Practice in Public Key
Cryptography, Vol. 1560 of Lecture Notes in Computer Science, 53–68 (Springer,
Heidelberg, Germany, Kamakura, Japan, 1999).

[13] Gentry, C. & Silverberg, A. Zheng, Y. (ed.) Hierarchical ID-based cryptogra-
phy. (ed.Zheng, Y.) Advances in Cryptology – ASIACRYPT 2002, Vol. 2501 of
Lecture Notes in Computer Science, 548–566 (Springer, Heidelberg, Germany,
Queenstown, New Zealand, 2002).

[14] Canetti, R., Halevi, S. & Katz, J. Cachin, C. & Camenisch, J. (eds) Chosen-
ciphertext security from identity-based encryption. (eds Cachin, C. & Camenisch,
J.) Advances in Cryptology – EUROCRYPT 2004, Vol. 3027 of Lecture Notes in
Computer Science, 207–222 (Springer, Heidelberg, Germany, Interlaken, Switzer-
land, 2004).

27

https://eprint.iacr.org/2023/1435

[15] Agrawal, S., Boneh, D. & Boyen, X. Gilbert, H. (ed.) Efficient lattice (H)IBE
in the standard model. (ed.Gilbert, H.) Advances in Cryptology – EURO-
CRYPT 2010, Vol. 6110 of Lecture Notes in Computer Science, 553–572 (Springer,
Heidelberg, Germany, French Riviera, 2010).

[16] Blazy, O., Kiltz, E. & Pan, J. Garay, J. A. & Gennaro, R. (eds) (Hierarchical)
identity-based encryption from affine message authentication. (eds Garay, J. A.
& Gennaro, R.) Advances in Cryptology – CRYPTO 2014, Part I, Vol. 8616 of
Lecture Notes in Computer Science, 408–425 (Springer, Heidelberg, Germany,
Santa Barbara, CA, USA, 2014).

[17] Boyen, X. & Waters, B. Dwork, C. (ed.) Anonymous hierarchical identity-based
encryption (without random oracles). (ed.Dwork, C.) Advances in Cryptology
– CRYPTO 2006, Vol. 4117 of Lecture Notes in Computer Science, 290–307
(Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 2006).

[18] Cash, D., Hofheinz, D., Kiltz, E. & Peikert, C. Bonsai trees, or how to delegate
a lattice basis. Journal of Cryptology 25, 601–639 (2012).

[19] Kiltz, E. & Neven, G. Identity-Based Signatures, 31–44. Cryptology and
Information Security Series on Identity-Based Cryptography (I, 2008).

[20] Seo, J. H., Kobayashi, T., Ohkubo, M. & Suzuki, K. Jarecki, S. & Tsudik, G.
(eds) Anonymous hierarchical identity-based encryption with constant size cipher-
texts. (eds Jarecki, S. & Tsudik, G.) PKC 2009: 12th International Conference
on Theory and Practice of Public Key Cryptography, Vol. 5443 of Lecture Notes
in Computer Science, 215–234 (Springer, Heidelberg, Germany, Irvine, CA, USA,
2009).

[21] Ateniese, G., Francati, D., Nuñez, D. & Venturi, D. Match me if you can:
Matchmaking encryption and its applications. Journal of Cryptology 34, 16
(2021).

[22] Francati, D., Guidi, A., Russo, L. & Venturi, D. Adhikari, A., Küsters, R. &
Preneel, B. (eds) Identity-based matchmaking encryption without random oracles.
(eds Adhikari, A., Küsters, R. & Preneel, B.) INDOCRYPT 2021, Vol. 13143 of
LNCS, 415–435 (Springer, Heidelberg, 2021).

[23] Chen, J., Li, Y., Wen, J. & Weng, J. Agrawal, S. & Lin, D. (eds) Identity-based
matchmaking encryption from standard assumptions. (eds Agrawal, S. & Lin,
D.) Advances in Cryptology – ASIACRYPT 2022, Part III, Vol. 13793 of Lecture
Notes in Computer Science, 394–422 (Springer, Heidelberg, Germany, Taipei,
Taiwan, 2022).

[24] Francati, D., Friolo, D., Malavolta, G. & Venturi, D. Hazay, C. & Stam, M. (eds)
Multi-key and multi-input predicate encryption from learning with errors. (eds
Hazay, C. & Stam, M.) Advances in Cryptology – EUROCRYPT 2023, 573–604

28

(Springer Nature Switzerland, Cham, 2023).

[25] Lin, S., Li, Y. & Chen, J. Ge, C. & Yung, M. (eds) Cca-secure identity-
based matchmaking encryption from standard assumptions. (eds Ge, C. & Yung,
M.) Information Security and Cryptology, 253–273 (Springer Nature Singapore,
Singapore, 2024).

[26] Wang, Y., Wang, B., Lai, Q. & Zhan, Y. Identity-based matchmaking encryption
with stronger security and instantiation on lattices. Cryptology ePrint Archive,
Report 2022/1718 (2022). https://eprint.iacr.org/2022/1718.

29

https://eprint.iacr.org/2022/1718

	Introduction
	Background and Motivation
	Identity-based Matchmaking Encryption.
	Security against Chosen Ciphertext Attacks.
	Motivation.

	Our Contribution
	A New Primitive: Hierarchical Identity-based Matchmaking Encryption.
	CCA Secure (H)IB-ME in the Standard Model.
	A Tweaked CCA Security for IB-ME.

	Related Work
	Identity-based Matchmaking Encryption.
	Concurrent Works.

	Preliminaries
	Notations
	Digital Signature
	Hierarchical Identity-based Encryption
	Hierarchical Identity-based Signature
	Affine Message Authentication

	Hierarchical Identity-based Matchmaking Encryption
	Formalization of HIB-ME
	Generic Construction of HIB-ME
	Security Proofs
	Instantiation

	Our CCA Secure (H)IB-ME Scheme
	Description
	Security Proofs

	Tweaked CCA Security for (H)IB-ME
	Formalization of Tweaked CCA Security
	Description
	Security Proofs

