
KpqClean Ver2: Comprehensive
Benchmarking and Analysis of

KpqC Algorithm Round 2 Submissions

Minjoo Sim1[0000−0001−5242−214X],
Siwoo Eum1[0000−0002−9583−5427],

Gyeongju Song1[0000−0002−4337−1843],
Minwoo Lee2[0000−0002−2356−3055],
Sangwon Kim2[0009−0000−6313−2236],

Minho Song2[0009−0007−6277−0069], and
Hwajeong Seo2[0000−0003−0069−9061]

1Department of Information Computer Engineering,
Hansung University, Seoul (02876), South Korea,

2Department of Convergence Security,
Hansung University, Seoul (02876), South Korea,

{minjoos9797, shuraatum, thdrudwn98, minunejip, kim3875, smino0906,

hwajeong84}@gmail.com

Abstract. From 2022, Korean Post-Quantum Cryptography (KpqC)
Competition has been held. Among the Round 1 algorithms of KpqC,
eight algorithms were selected in December 2023. To evaluate the al-
gorithms, the performance is critical factor. However, the performance
of the algorithms submitted to KpqC was evaluated in different devel-
opment environments. Consequently, it is difficult to compare the per-
formance of each algorithm fairly, because the measurements were not
conducted in the identical development environments. In this paper, we
introduce KpqClean ver2, the successor to the KpqClean project. Kpq-
Clean ver2 provides comprehensive benchmark analysis results for all
KpqC Round 2 algorithms across various environments (Ryzen, Intel,
and aarch64). This framework includes both a “clean” implementation
and an “avx2” implementation of the KpqC Round 2 candidate algo-
rithms. To benchmark the algorithms, we not only removed external
library dependencies from each algorithm but also integrated the same
source code for common algorithms (such as AES, SHA2, SHAKE, and
etc.) to enable more accurate performance comparisons. The framework
automatically recognizes the user’s environment, providing easy bench-
marking for all users without the need for separate settings. This study
also includes memory usage analysis using Valgrind for each algorithm
and function usage proportion analysis during the execution of each cryp-
tographic algorithm using Xcode’s profiling tool. Finally we show that
the practical strength of KpqC algorithms in terms of execution timing
and memory usages. This result can be utilized for the understanding of
KpqC finalist in terms of performance.



2 Sim et al.

Keywords: Post-quantum Cryptography · Benchmark · KpqC Compe-
tition · Cryptography Implementation · Profile Analysis

1 Introduction

With the development of quantum computers, currently used encryption algo-
rithms are facing significant threats. To overcome this challenge, a competition is
being held to select a secure encryption algorithm that can be used as a standard
in the quantum computer era.

The U.S. National Institute of Standards and Technology (NIST) held a com-
petition in 2016 to select a quantum-resistant encryption standard in response
to threats posed by quantum computers to existing encryption algorithms[1].
The first requirement is that the minimum security level should match the secu-
rity of AES-128, AES-192, and AES-256 from the perspective of an exhaustive
key search. Similarly, the algorithm must meet the security level of SHA-256 or
SHA-384 from the perspective of collision resistance. The second requirement is
to provide sufficiently strong security while ensuring practical cost-effectiveness
and performance guarantees. The final requirement is to consider scalability in
the algorithm’s design.

In June 2022, NIST released four algorithms selected as quantum-resistant
cryptography standards. CRYSTALS-KYBER [2] was selected in the public key
category, and CRYSTALS-DILITHIUM [3], FALCON [4], and SPHINCS+ [5]
were selected in the electronic signature category. However, the 4th round is still
in progress to improve the public key algorithm, which lacks a mathematical
foundation. The candidate algorithms for the 4th round are SIKE [6], BIKE [7],
Classic McEliece [8], and HQC [9], with SIKE having been eliminated early due
to security issues [6].

In 2022, the Korean Post-Quantum Cryptography (KpqC) Competition was
held in Korea to select an independent quantum-resistant algorithm standard [10].
This competition aims to foster the development of post-quantum secure crypto-
graphic algorithms within the Korean cryptographic community, addressing the
challenges posed by advancements in quantum computing. The KpqC competi-
tion presented four main evaluation criteria. The first criterion is the security
of the cryptography. All KpqC candidate algorithms must satisfy security re-
quirements, and each algorithm’s whitepaper must provide proof regarding the
defined security properties. The second criterion is efficiency. Since security is
a fundamental requirement for KpqC algorithms, once security is assured, ef-
ficiency becomes a key factor for competition. The third criterion is usability.
Algorithms should not be limited to specific platforms or particular systems, as
this would diminish their usability and result in inconvenience. Therefore, it is
essential to support as many platforms and systems as possible to enhance the
versatility and practicality of the algorithm. The final criterion is originality.
The selected algorithm will become a Korean standard cryptography. In Round
1, 7 PKE/KEM algorithms and 9 digital signature algorithms were introduced,
for a total of 16 candidate algorithms. The Round 1 selection was announced



KpqClean Ver2: Comprehensive Benchmarking and Analysis 3

in December 2023, and Round 2 is underway for the selected algorithms. A
total of 8 algorithms were selected for Round 2, including 4 PKE/KEM algo-
rithms and 4 digital signature algorithms. The selected algorithms are as follows:
PALOMA [11], REDOG [12], NTRU+ [13], and SMAUG-T [14] (SMAUG [15]
+ TiGER [16] merged) were selected for PKE/KEM and HAETAE [17], NCC-
Sign [18], MQ-Sign [19], AIMer [20] were selected for digital signature algorithms.
The final algorithm will be selected as Korean standard cryptography in 2024.
In this paper, we introduce KpqClean ver2, the successor to the KPQClean [21]
project. The new project shows the fair performance comparisons on newly up-
dated KpqC algorithms on various platforms.

The structure of the rest of the paper is as follows: Section 2 provides specific
details of the NIST PQC Competition and the KpqC Competition. Section 3
details the work done to benchmark the KpqC algorithm. Section 4 presents the
benchmark results. Finally, Section 5 concludes the paper by summarizing the
main findings and discussing potential directions for future research.

1.1 Contribution

- Benchmark results of “clean” implementation for various environ-
ments We not only removed external library dependencies but also integrated
them into the source code provided by PQClean for common algorithms (e.g.,
AES, SHA2, SHAKE, and etc.) to enable more accurate performance compar-
isons. During this integration process, direct code modifications were made to
all KPQC Round 2 algorithms.

In particular, it has been implemented so that users can easily use it with-
out any modifications, not only on Ryzen and Intel processors but also in the
aarch64 environment. KpqC ver2 automatically recognizes the user’s environ-
ment, providing easy benchmarking for all users without the need for separate
settings.

- Benchmark results of “avx2” implementation For the KPQC Round 2
algorithm “avx2” implementation, dependencies were removed in the same way
as for the “clean” implementation. The avx2 implementations (e.g., KeccakP-
1600-time4-SIMD256, etc.) provided by PQClean were also integrated. Addi-
tionally, even if the code was not from PQClean, algorithms used by multiple
encryption algorithms were integrated into a single implementation. The process
of replacing with common code was the same as for the “clean” implementation,
with all code modifications performed directly.

- Comprehensive Analysis and Utilization of KpqC We provide com-
prehensive analysis results to support the future utilization and development
of the KpqC algorithm. These include measurements of memory usage during
the execution of each algorithm using Valgrind, as well as the proportion of
function usage during algorithm implementation, measured using Xcode’s Pro-
file tool. These findings can contribute to a better understanding and further
development of KpqC algorithm implementations.



4 Sim et al.

2 KpqClean Ver2

We are a follow-up to the KPQClean project for the KpqC competition, which
was inspired by PQClean project [22]. KpqClean ver2 follows the pqlean project
structure. As with KPQClean project [21] and KPQCLib [23], external library
dependencies for each algorithm have been removed. For more accurate perfor-
mance comparisons, we integrated the same code for common algorithms (e.g.,
AES, SHA2, SHAKE, etc.) provided by PQClean. Unlike previous projects that
only provided a ”clean” implementation, we also offer an ”avx2” implementation.
REDOG is not included because it is still in progress.

2.1 Clean Implementation

Preliminary work was conducted using PQClean’s code to measure the perfor-
mance of KpqC Round 2 algorithms in a consistent environment. Almost all
KpqC Round 2 algorithms use Randombytes code (i.e., number generators) that
rely on OpenSSL [24] to generate KAT files. To remove these dependencies, we
replaced the Randombytes code with the version provided by PQClean, which
has no external dependencies.

All OpenSSL dependencies were removed, and the SHAKE code was replaced
with PQClean’s implementation of fips202. Additionally, the AES, SHA2, and
Randombytes code was replaced with common code from the pqclean project.

The specific replacements for each algorithm are as follows: For the PKE/KEM
algorithms, NTRU+ and SMAUG-T had their Randombytes, AES, and SHA2
code replaced, while PALOMA did not require replacement. For the digital sig-
nature algorithms, AIMer, HAETAE, and NCC-Sign had their Randombytes
and fips202 code replaced, and MQ-Sign had its fips202 and AES code replaced.

2.2 AVX2 Implementation

The following outlines the details of the algorithm modifications to align them
with the clean version. For the PKE/KEM algorithms, NTRU+ and SMAUG-
T (kem 90s) replaced Randombytes, AES, and SHA2, while SMAUG-T (kem)
only replaced Randombytes. For the digital signature algorithms, HAETAE and
NCC-Sign replaced Randombytes, and MQ-Sign replaced fips202.

The AVX2 replacements for each algorithm are as follows. In the PKE/KEM
category, NTRU+ and SMAUG-T (kem 90s) replaced AES-CTR, and SMAUG-
T (kem) replaced KeccakP-1600-time4-SIMD256 from PQClean. For the digital
signature algorithms, HAETAE replaced AES-CTR and PQClean’s KeccakP-
1600-time4-SIMD256.

To ensure consistent performance measurement across the same environment,
we integrated similar operations within encryption algorithms that are not part
of PQClean, so that they all operate under a unified codebase.

The integrated code is as follows: SMAUG-T (kem) and HAETAE were uni-
fied under the same fips202x4. However, since HAETAE uses f1600x4.S, this



KpqClean Ver2: Comprehensive Benchmarking and Analysis 5

part was not integrated. Additionally, KeccakP-1600-AVX2 and KeccakP-1600-
SnP were also integrated using the same code. AIMer, HAETAE, and NCC-Sign
were integrated using fips202 implemented in the same AVX2. Note that this
fips202 implementation differs from the clean version. For NCC-Sign, Keccak-
1600 was originally implemented with AVX512. However, since AVX512 was
not supported in the test environment, it was consolidated into an AVX256 im-
plementation, Keccak-1600-AVX2. For AIMer, KeccakP-1600-times4-SIMD256
and KeccakP-1600-SnP were not integrated, as they were used with some mod-
ifications to the original PQClean versions. PALOMA does not have an AVX2
implementation. Finally, MQ-Sign does not integrate with AES, as it uses its
own AVX2 implementation within Randombytes.

3 Benchmark Result

We benchmarked the algorithms we worked on in Intel, Ryzen, and aarch64
environments, respectively. The benchmarking environment resembled the spec-
ifications outlined in Table 1.

Table 1: Specification of target environments

Testing Environment1 Testing Environment2 Testing Environment3 Testing Environment4

OS Ubuntu 22.04 Ubuntu 23.10.1 MacOS Sonoma 14.4.1 Ubuntu 23.10.1

CPU Ryzen 7 4800H(2.90GHz) Intel i5-8259U(2.30GHz) Apple M2(3.23GHz) Ryzen 7 4800H(2.90GHz)

RAM 16GB 16GB 8GB 16GB

Compiler gcc 11.4.0 gcc 13.2.0 Apple clang 15.0.0 gcc 13.2.0

Optimization Level -O3 -O3 -O3 -O3

To obtain the measurements, each algorithm went through 10,000 iterations,
and the average number of clock cycles required for each round of operation was
calculated. The -O3 optimization level (fastest) was applied.

The source code for performance measurements distinguishes between x86
and aarch64 (Apple Silicon) architectures and works correctly. We used the
RDTSC instruction to calculate time consumption. The RDTSC (Read Time-
Stamp Counter) instruction is a crucial tool for performance analysis on x86 ar-
chitectures. It reads the CPU’s time-stamp counter, a 64-bit register that counts
clock cycles since the last reset, allowing precise measurement of CPU cycles for
specific code segments. In the aarch64 environment, to obtain cycle counts, we
made use of m1cycles.c1 from [25].

1 https://github.com/GMUCERG/PQC NEON/blob/main/neon/kyber/m1cycles.c



6 Sim et al.

Table 2: Testing Environment1(Unit : clock cycle).
PKE/KEM

Scheme Impl. Keygen Encapsulation Decapsulation

NTRU+KEM576 clean 253,031
+1,674,686

85,541
+51,107

110,140
+140,014

-84,309 -3,297 -4,783

NTRU+KEM768 clean 354,704
+662,355

106,690
+58,668

141,220
+88,721

-97,445 -1,014 -3,934

NTRU+KEM864 clean 354,592
+674,995

128,823
+89,257

170,729
+77,540

-99,218 -3,775 -6,328

NTRU+KEM1152 clean 659,905
+3,152,986

164,274
+149,390

219,767
+80,644

-324,346 -4,542 -2,615

NTRU+PKE576 clean 329,712
+2,161,939

83,245
+59,319

107,302
+89,057

-161,860 -1,494 -1,829

NTRU+PKE768 clean 310,102
+552,416

107,632
+55,899

140,803
+76,320

-52,669 -2,014 -4,242

NTRU+PKE864 clean 348,486
+638,703

128,465
+83,177

169,804
+86,643

-89,487 -1,532 -1,807

NTRU+PKE1152 clean 637,652
+2,479,645

164,153
+98,964

230,312
+180,328

-300,933 -3,841 -7,128

PALOMA128 clean 131,189,151
+337,324,670

133,345
+73,976

8,424,379
+3,300,524

-48,388,844 -11,400 -264,417

PALOMA192 clean 650,967,499
+2,007,087,009

176,834
+32,343

41,793,889
+1,177,644

-202,508,541 -3,820 -239,267

PALOMA256 clean 769,657,392
+1,349,832,403

215,487
+99,424

43,735,841
+22,761,855

-228,310,941 -10,573 -510,993

SMAUG-T1 clean 143,625
+305,324

66,403
+56,876

104474
+104,848

-84,117 -9,157 -13,733

SMAUG-T3 clean 193,935
+203,539

243,970
+261,094

421956
+157,232

-92,957 -97,607 -106,755

SMAUG-T5 clean 1,566,958
+702,292

1,663,364
+946,346

1877628
+1,173,955

-50,577 -116,910 -75,887

SMAUG-TiMER clean 69,234
+342,914

76,165
+155,081

112282
+169,192

-21,993 -13,351 -12,957

Digital Signature

Scheme Impl. Keygen Sign Verify

HAETAE2 clean 1,160,435
+10,259,794

5,032,357
+2,519,620

158,529
+73,732

-973,472 -65,788 -7,178

HAETAE3 clean 2,103,397
+20,388,104

2,739,863
+729,030

275,419
+73,277

-1,771,318 -77,779 -3,254

HAETAE5 clean 1,998,427
+13,745,470

3,369,567
+541,953

342,870
+131,280

-1,579,232 -115,071 -15,489

AIMer128f clean 159,134
+191,911

3,742,915
+1,367,987

3,545,576
+319,515

-99,278 -807,883 -133,755

AIMer128s clean 108,704
+368,810

26,541,270
+16,357,937

27,013,406
+3,403,360

-50,095 -359,635 -628,829

AIMer192f clean 201,497
+487,253

8,745,805
+5,257,135

7,800,523
+1,378,615

-59,948 -480,631 -238,193

AIMer192s clean 187,591
+383,071

65,094,493
+14,206,703

62,821,167
+13,650,383

-49,754 -1,773,834 -985,018

AIMer256f clean 413,606
+259,604

16,706,302
+3,299,116

15,776,925
+10,620,789

-70,304 -553,621 -410,898

AIMer256s clean 454,476
+1,137,595

119,340,970
+20,268,336

119,925,648
+33,733,868

-111,870 -107,711,367 -108,221,678

MQ-Sign-MQLR-256-72-46 clean 74,764,874
+36,781,799

463,964
+48,292

733,587
+171,880

-581,337 -3,647 -5,658

MQ-Sign-MQLR-256-112-72 clean 286,180,511
+97,280,167

1,289,973
+91,964

2,016,272
+162,672

-783,333 -8,434 -14,634

MQ-Sign-MQLR-256-148-96 clean 750,300,850
+79,183,656

2,762,744
+95,554

4,307,611
+209,806

-1,667,619 -17,807 -21,585

MQ-Sign-MQRR-256-72-46 clean 100,975,612
+89,136,585

809,523
+55,141

706,565
+77,276

-533,300 -6,455 -2,851

MQ-Sign-MQRR-256-112-72 clean 387,732,599
+44,852,716

2,057,398
+1,481,762

1,986,691
+247,411

-714,839 -27,427 -13,125

MQ-Sign-MQRR-256-148-96 clean 997,169,889
+150,048,622

4,298,168
+390,204

4,272,864
+280,803

-2,407,046 -25,453 -22,595

NCC-Sign1 clean 300,401
+646,449

479,198
+325,929

285,502
+125,834

-107,145 -10,123 -5,971

NCC-Sign3 clean 352,126
+620,273

600,143
+248,629

356,543
+106,500

-101,305 -7,934 -5,092

NCC-Sign5 clean 455,065
+1,455,368

1,585,378
+701,098

591,947
+99,558

-65,624 -26,541 -11,889



KpqClean Ver2: Comprehensive Benchmarking and Analysis 7

Table 3: Testing Environment2(Unit : clock cycle).
PKE/KEM

Scheme Impl. Keygen Encapsulation Decapsulation

NTRU+KEM576 clean 209,949
+703,153

81,678
+144,344

108,342
+242,202

-58,735 -6,588 -14,578

NTRU+KEM768 clean 232,394
+262,510

101,297
+187,479

125,636
+191,836

-5,060 -3,435 -3,046

NTRU+KEM864 clean 228,042
+343,026

109,680
+147,016

145,575
+195,881

-6,330 -3,320 -4,007

NTRU+KEM1152 clean 558,996
+2,733,988

152,931
+162,781

212,747
+271,627

-255,826 -4,815 -6,285

NTRU+PKE576 clean 207,953
+736,779

78,594
+125,638

98,820
+99,366

-57,425 -2,932 -2,758

NTRU+PKE768 clean 234,498
+384,692

102,024
+172,934

129,611
+171,113

-4,278 -2,000 -1,585

NTRU+PKE864 clean 223,966
+243,950

110,043
+180,451

142,710
+196,082

-5,872 -5,633 -2,650

NTRU+PKE1152 clean 558,631
+2,226,137

151,692
+167,950

212,804
+213,218

-254,665 -3,474 -5,604

PALOMA128 clean 147,357,235
+389,328,913

87,441
+230,293

8,033,779
+3,699,969

-58,449,361 -8,077 -152,779

PALOMA192 clean 700,965,299
+2,476,698,857

136,963
+120,833

41,802,948
+6,515,492

-659,158,113 -11,391 -128,528

PALOMA256 clean 819,112,319
+1,820,540,793

200,987
+257,089

45,735,541
+25,319,729

-282,053,355 -54,317 -2,327,449

SMAUG-T1 clean 128,685
+639,815

58,942
+113,882

74,463
+146,055

-78,981 -9,866 -11,087

SMAUG-T3 clean 176,020
+1,181,616

98,497
+180,147

128,148
+185,434

-86,666 -15,075 -22,976

SMAUG-T5 clean 233,829
+2,058,947

165,370
+287,522

184,943
+267,087

-90,455 -23,316 -21,147

SMAUG-TiMER clean 61,064
+80,540

58,115
+114,315

73,249
+159,739

-14,158 -9,279 -12,141

Digital Signature

Scheme Impl. Keygen Sign Verify

HAETAE2 clean 1,067,698
+9,540,834

1,866,070
+1,657,046

170,103
+277,809

-871,740 -157,894 -20,503

HAETAE3 clean 2,155,146
+18,433,878

7,057,356
+2,779,776

285,845
+269,579

-1,796,444 -280,660 -7,909

HAETAE5 clean 2,225,344
+11,563,516

3,389,114
+2,921,706

355,867
+427,329

-1,779,086 -196,536 -24,849

AIMer128f clean 90,968
+ 126,428

3,288,188
+ 3,470,032

2,961,062
+3,117,156

- 26,982 - 438,256 -293,944

AIMer128s clean 146,339
+ 640,573

23,324,902
+ 20,995,074

22,820,605
+8,788,577

- 79,889 - 676,710 -178,851

AIMer192f clean 175,871
+ 275,195

7,292,073
+ 3,175,801

6,832,062
+6,176,570

- 24,493 - 91,083 -80,346

AIMer192s clean 223,472
+ 2,430,944

57,739,339
+35,410,681

56,700,184
+21,375,740

- 71,518 -1,241,911 -406,560

AIMer256f clean 448,151
+ 3,784,489

15,639,023
+13,579,117

14,820,473
+8,329,473

- 79,889 -689,741 -783,335

AIMer256s clean 488,242
+ 545,422

116,361,684
+30,120,644

114,818,217
+19,463,959

- 88,608 -104,888,491 -103,397,158

MQ-Sign MQLR 256 72 46 clean 70,289,113
+11,686,941

423,941
+341,237

656,693
+326,409

-1,296,511 -9,107 -7,989

MQ-Sign MQLR 256 112 72 clean 270,156,039
+166,579,211

1,138,677
+683,619

1,709,939
+477,371

-10,777,551 -15,499 -7,893

MQ-Sign MQLR 256 148 96 clean 682,362,334
+208,552,816

2,370,417
+793,709

3,454,074
+1,304,184

-13,388,824 -21,759 -152,396

MQ-Sign MQRR 256 72 46 clean 101,307,620
+51,567,794

753,662
+451,436

643,609
+447,893

-6,870,156 -19,796 -7,755

MQ-Sign MQRR 256 112 72 clean 372,556,356
+120,261,636

1,812,867
+845,917

1,747,581
+898,999

-13,556,862 -17,393 -61,451

MQ-Sign MQRR 256 148 96 clean 913,690,602
+257,111,756

3,660,222
+1,155,052

3,359,634
+926,552

-11,967,402 -32,918 -47,380

NCC-Sign1 clean 205,450
+216,504

1,161,522
+681,130

288,198
+211,742

-9,328 -12,298 -3,862

NCC-Sign3 clean 280,512
+751,724

884,954
+770,420

391,048
+428,520

-13,686 -16,302 -8,464

NCC-Sign5 clean 416,020
+321,480

1,049,172
+1,536,890

630,294
+400,706

-19,212 -104,722 -25,886



8 Sim et al.

Table 4: Testing Environment3(Unit : clock cycle).
PKE/KEM

Scheme Impl. Keygen Encapsulation Decapsulation

NTRU+KEM576 clean 152,653
+370,504

57,392
+62,146

64,897
+34,112

-37,853 -1,157 -736

NTRU+KEM768 clean 170,987
+141,653

74,605
+54,620

85,814
+23,360

-8,859 -856 -988

NTRU+KEM864 clean 175,592
+146,002

83,862
+33,761

100,583
+11,018

-4,080 -1,153 -733

NTRU+KEM1152 clean 425,625
+1,770,371

108,935
+14,504

137,606
+15,519

-197,047 -832 -1,010

NTRU+PKE576 clean 162,109
+571,361

56,945
+13,285

65,513
+22,680

-47,318 -390 -1,047

NTRU+PKE768 clean 172,444
+143,358

73,866
+53,067

85,777
+25,486

-10,304 -729 -802

NTRU+PKE864 clean 180,081
+133,932

83,385
+19,992

100,620
+15,877

-8,616 -604 -518

NTRU+PKE1152 clean 420,607
+1,647,182

108,907
+11,733

137,555
+19,417

-192,038 -536 -514

PALOMA128 clean 119,572,480
+327,879,744

58,133
+23,738

8,091,350
+1,002,047

-38,892,410 -1,164 -52,993

PALOMA192 clean 561,481,159
+1,137,578,065

83,030
+71,604

39,835,958
+8,317,315

-178,665,050 -2,536 -149,888

PALOMA256 clean 662,511,849
+1,552,324,299

97,140
+21,949

41,789,539
+8,327,562

-209,806,307 -2,166 -139,063

SMAUG-T1 clean 39,278
+17,947

39,889
+20,699

49,270
+28,460

-684 -606 -554

SMAUG-T3 clean 66,770
+23,199

64,752
+47,962

78,442
+18,288

-911 -890 -621

SMAUG-T5 clean 119,675
+92,197

114,363
+14,157

130,111
+43,348

-5,370 -1,318 -736

SMAUG-TiMER clean 40,742
+35,256

39,914
+31,513

48,089
+25,117

-4,301 -689 -646

Digital Signature

Scheme Impl. Keygen Sign Verify

HAETAE2 clean 951,707
+ 4,304,776

1,388,930
+ 93,477

135,534
+ 26,563

- 786,252 - 9,149 - 1,777

HAETAE3 clean 1,686,812
+ 11,883,232

3,429,034
+ 155,754

238,747
+ 49,736

- 1,395,079 - 14,846 - 2,304

HAETAE5 clean 1,993,473
+ 7,778,604

4,227,778
+ 174,834

300,372
+ 95,616

- 1,621,255 - 19,735 - 3,349

AIMer128f clean 62,227
+40,235

2,316,451
+208,839

2,153,628
+43,867

-4,000 -10,695 -6,903

AIMer128s clean 61,326
+36,004

18,327,463
+271,003

18,357,046
+259,231

-3,175 -36,069 -38,087

AIMer192f clean 132,084
+75,762

5,920,018
+1,802,046

5,505,462
+147,506

-6,206 -21,542 -11,000

AIMer192s clean 131,826
+64,183

46,264,704
+7,347,145

45,799,558
+9,473,531

-5,693 -160,832 -63,067

AIMer256f clean 301,561
+156,232

11,632,128
+173,515

10,853,032
+177,752

-6,853 -29,069 -20,509

AIMer256s clean 300,197
+131,455

119,041,270
+29,507,476

88,530,661
+14,031,610

-5,691 -346,796 -159,888

MQ-Sign MQLR 256 72 46 clean 108,328,299
+ 9,438,458

911,214
+ 301,685

1,383,970
+ 169,608

- 374,162 - 3,856 - 3,873

MQ-Sign MQLR 256 112 72 clean 548,057,963
+ 101,662,406

3,301,232
+ 2,177,370

5,294,775
+ 3,394,860

- 493,984,383 - 168,977 - 148,453

MQ-Sign MQLR 256 148 96 clean 1,575,443,966
+ 91,175,611

7,186,177
+ 89,944

11,775,183
+ 713,513

- 6,529,056 - 24,204 - 23,856

MQ-Sign MQRR 256 72 46 clean 137,903,106
+ 32,745,015

1,447,542
+ 951,781

1,449,188
+ 933,045

- 3,558,022 - 64,326 - 91,464

MQ-Sign MQRR 256 112 72 clean 650,807,091
+ 77,310,053

4,843,332
+ 1,871,382

5,069,042
+ 184,745

- 10,391,443 - 26,251 - 25,198

MQ-Sign MQRR 256 148 96 clean 1,822,096,906
+ 139,852,643

11,118,530
+ 894,537

11,929,921
+ 366,263

- 15,531,536 - 30,514 - 164,625

NCC-Sign1 clean 169,791
+ 90,560

776,134
+ 605,924

220,085
+ 186,268

- 9,557 - 38,488 - 4,850

NCC-Sign3 clean 218,513
+ 133,066

718,883
+ 571,758

279,032
+ 191,800

- 6,990 - 10,965 - 1,737

NCC-Sign5 clean 330,636
+ 18,775

746,686
+ 567,287

447,622
+ 367,489

- 6,476 - 24,467 - 9,469



KpqClean Ver2: Comprehensive Benchmarking and Analysis 9

Table 5: Testing Environment2(Unit : clock cycle).
PKE/KEM

Scheme Impl. Keygen Encapsulation Decapsulation

NTRU+KEM576 avx2 74,524
+181,432

43,325
+116,319

12,933
+39,959

-39,838 -20,071 -1,233

NTRU+KEM768 avx2 34,551
+68,949

29,121
+57,847

16,449
+63,935

-13,817 -3,323 -1,627

NTRU+KEM864 avx2 26,132
+62,458

32,559
+75,457

17,272
+52,338

-3,398 -5,829 -1,026

NTRU+KEM1152 avx2 60,927
+422,209

40,212
+143,884

26,813
+99,627

-32,945 -6,074 -5,711

NTRU+PKE576 avx2 28,451
+185,063

21,394
+75,004

11,979
+19,247

-13,931 -2,346 -141

NTRU+PKE768 avx2 29,094
+66,792

29,486
+48,630

18,613
+98,341

-3,492 -4,552 -3,441

NTRU+PKE864 avx2 22,996
+82,442

30,464
+150,116

19,384
+90,366

-3,230 -3,352 -2,718

NTRU+PKE1152 avx2 97,123
+1,208,669

40,233
+114,021

24,370
+122,616

-66,817 -6,451 -2,682

SMAUG-T1 avx2 41,139
+79,395

33,704
+91,644

644,01
+77,957

-2,601 -6,328 -31,009

SMAUG-T3 avx2 64,350
+104,162

55,982
+126,894

63,344
+171,742

-16,956 -10,004 -9,052

SMAUG-T5 avx2 146,222
+322,130

107,760
+233,606

109,709
+160,651

-63,006 -16,474 -15,309

SMAUG-T1 90 avx2 70,489
+223,761

35,396
+77,718

39,227
+101,975

-39,965 -9,278 -8,919

SMAUG-T3 90 avx2 91,033
+286,151

45,414
+112,330

57,594
+114,514

-48,769 -11,298 -12,556

SMAUG-T5 90 avx2 108,447
+428,481

62,174
+103,076

85,226
+155,500

-62,413 -8,870 -16,206

Digital Signature

Scheme Impl. Keygen Sign Verify

HAETAE2 avx2 834,651
+14,765,785

4,946,575
+2,634,687

67,068
+164,044

-704,885 -385,571 -8,002

HAETAE3 avx2 1,423,068
+7,444,214

374,489
+729,547

128,981
+201,363

-1,217,732 -62,213 -36,449

HAETAE5 avx2 1,924,879
+10,273,613

1,077,729
+1,352,227

134,969
+200,435

-1,668,673 -154,947 -24,139

AIMer128f avx2 40,172
+65,462

811,275
+776,393

783,010
+821,260

-4,580 -51,881 -46,757

AIMer128s avx2 93,037
+361,621

5,889,742
+4,730,638

6,494,209
+3,670,069

-45,977 -96,018 -755,539

AIMer192f avx2 99,173
+102,063

2,210,305
+1,851,543

2,131,677
+1,564,933

-29,347 -221,417 -174,807

AIMer192s avx2 97,972
+259,516

15,833,475
+7,631,911

15,289,548
+5,757,682

-28,322 -888,749 -342,116

AIMer256f avx2 236,956
+1,771,332

4,071,768
+2,804,818

3,980,184
+1,617,296

-68,018 -85,904 -54,768

AIMer256s avx2 242,895
+1,707,521

29,154,407
+11,831,895

28,753,363
+8,120,859

-74,005 -249,801 -189,125

MQ-Sign MQLR 256 72 46 avx2 4,947,896
+3,414,784

59,773
+159,945

45,235
+127,409

-563,616 -11,739 -9,479

MQ-Sign MQLR 256 112 72 avx2 23,971,764
+74,850,252

164,022
+297,784

162,990
+307,284

-3,429,550 -30,662 -33,124

MQ-Sign MQLR 256 148 96 avx2 57,884,657
+69,657,957

260,591
+826,927

279,745
+978,227

-5,028,725 -35,381 -52,185

MQ-Sign MQRR 256 72 46 avx2 7,538,634
+44,762,198

76,323
+162,959

44,568
+109,752

-442,702 -11,189 -9,488

MQ-Sign MQRR 256 112 72 avx2 32,740,982
+25,672,572

206,977
+334,305

141,516
+277,264

-1,606,868 -15,719 -13,374

MQ-Sign MQRR 256 148 96 avx2 81,811,186
+56,095,180

409,799
+554,377

290,724
+568,102

-4,311,388 -59,595 -55,886

NCC-Sign1 avx2 137,199
+837,133

207,323
+375,175

131,963
+260,327

-23,725 -24,189 -15,565

NCC-Sign3 avx2 187,859
+1,332,789

374,557
+572,997

188,051
+296,407

-36,395 -22,527 -17,369

NCC-Sign5 avx2 265,387
+1,534,171

422,955
+465,541

299,315
+860,981

-36,517 -27,789 -22,305



10 Sim et al.

Table 6: Testing Environment4 (Unit : clock cycle).
PKE/KEM

Scheme Impl. Keygen Encapsulation Decapsulation

NTRU+KEM576 avx2 73,798
+259,383

55,179
+128,449

19,814
+60,922

-26,731 -9,330 -7,228

NTRU+KEM768 avx2 140,673
+129,781

37,193
+80,431

17,330
+21,124

-33,518 -10,223 -249

NTRU+KEM864 avx2 94,406
+100,677

51,431
+94,062

19,302
+60,992

-24,893 -21,764 -191

NTRU+KEM1152 avx2 158,476
+483,033

38,796
+40,374

24,911
+21,124

-117,992 -371 -377

NTRU+PKE576 avx2 79,520
+227,909

61,034
+88,084

14,639
+47,282

-15,256 -9,704 -1,473

NTRU+PKE768 avx2 141,808
+142,102

26,999
+52,664

17,558
+33,611

-94,045 -493 -187

NTRU+PKE864 avx2 80,727
+160,756

64,812
+139,348

21,408
+48,291

-11,156 -35,261 -1,688

NTRU+PKE1152 avx2 158,938
+554,201

44,797
+114,935

26,357
+26,754

-116,279 -7,039 -1,011

SMAUG-T1 avx2 131,751
+129,800

48,594
+110,094

55682
+25,924

-25,292 -4,137 -524

SMAUG-T3 avx2 162901
+300,867

74,948
+81,739

91347
+61,657

-91,735 -1,665 -1,302

SMAUG-T5 avx2 224491
+312,995

135,314
+39,353

156083
+32,736

-96,775 -2,088 -1,194

SMAUG-T1 90 avx2 72566
+76,639

74,438
+195,581

42832
+39,383

-2,937 -43,872 -811

SMAUG-T3 90 avx2 132416
+91,261

69,773
+198,622

67223
+57,100

-13,561 -18,211 -2,756

SMAUG-T5 90 avx2 153995
+132,032

76,148
+37,909

102099
+75,903

-95,763 -3,851 -3,528

Digital Signature

Scheme Impl. Keygen Sign Verify

HAETAE2 avx2 829,349
+10,808,467

699,815
+216,469

71,242
+92,666

- 696,819 -5,091 -1,381

HAETAE3 avx2 1,463,470
+6,482,066

391,344
+722,575

113,329
+47,679

-1,253,307 -6,688 -1,998

HAETAE5 avx2 1,902,225
+13,926,729

439,008
+320,604

134,080
+71,356

-1,641,428 -5,110 -1,724

AIMer128f avx2 109,474
+220,894

988,392
+2,678,803

990,973
+1,791,113

-19,429 -21,793 -36,148

AIMer128s avx2 126,120
+77,054

7,384,692
+9,217,199

7334755
+529,34,585

-14,963 -52,071 -34,585

AIMer192f avx2 199,741
+211,827

2,693,700
+585,823

2674129
+244,402

-91,861 -17,232 -13,466

AIMer192s avx2 211,196
+246,917

20,005,582
+4,831,700

19914200
+748,532

-103,084 -79,537 -50,940

AIMer256f avx2 359,442
+794,758

5,216,095
+1,065,740

5184187
+1,878,096

-88,640 -24,950 -26,392

AIMer256s avx2 294,201
+1,387,219

42,617,762
+8,401,648

42199394
+522,971

-22,935 -227,331 -70,311

MQ-Sign MQLR 256 72 46 avx2 3,737,246
+10,631,703

46,147
+153,083

35,451
+19,773

-158,356 -762 -738

MQ-Sign MQLR 256 112 72 avx2 16,810,793
+45,102,351

126,525
+115,538

117,008
+139,874

-577,347 -7,277 -7,475

MQ-Sign MQLR 256 148 96 avx2 44,255,025
+92,906,130

211,273
+703,648

219,523
+349,167

-1,345,668 -7,432 -24,469

MQ-Sign MQRR 256 72 46 avx2 5,690,604
+3,830,502

63,070
+65,719

35,065
+50,340

-121,241 -1,242 -787

MQ-Sign MQRR 256 112 72 avx2 24,379,382
+8,860,592

179,025
+696,775

120,588
+758,779

-386,754 -12,652 -10,881

MQ-Sign MQRR 256 148 96 avx2 61,059,896
+101,890,843

300,749
+335,714

237,074
+421,088

-335,404 -14,055 -22,097

NCC-Sign1 avx2 226,966
+463,437

248,743
+202,816

163,753
+54,240

-78,312 -2,156 -1,382

NCC-Sign3 avx2 233,022
+687,931

327,080
+345,299

213,619
+81,050

-36,344 -4,600 -3,398

NCC-Sign5 avx2 398,589
+788,294

509,618
+333,934

341,277
+48,802

-100,730 -4,583 -3,137



KpqClean Ver2: Comprehensive Benchmarking and Analysis 11

3.1 Benchmark Result of Clean

Table 2 presents benchmark results for the Public Key Encryption/Key Encap-
sulation Mechanism (PKE/KEM) algorithms and Digital Signature algorithms
on Ryzen processors. Table 3 presents benchmark results for the PKE/KEM al-
gorithms and Digital Signature algorithms on Intel processors. Table 4 presents
benchmark results for the PKE/KEM algorithms and Digital Signature algo-
rithms on M2 chip.

Benchmark results for all environments showed that among the PKE/KEM
candidates, SMAUG-T performed best in keygen, encapsulation, and decapsula-
tion. On Ryzen processors, among the DSA candidates, AIMer performed best
in keygen, NCC-Sign performed best in sign, and HAETAE performed best in
verify. On Intel and M2 processors, among the DSA candidates, NCC-Sign per-
formed best in keygen and sign, while HAETAE performed best in verify. The
detailed performance comparison of each algorithm can be found in Table 33
through Table 38 in the Appenix.

3.2 Benchmark Result of AVX2

Table 5 presents benchmark results for the PKE/KEM and Digital Signature
algorithms on Intel processors, while Table 6 shows the benchmark results for
the same algorithms on Ryzen processors

Benchmark results for all environments showed that among the PKE/KEM
candidates, SMAUG-T performed best in keygen, while NTRU+ performed best
in both encapsulation and decapsulation. Similarly, among the DSA candidates,
NCC-Sign performed best in keygen, encapsulation, and decapsulation. The
detailed performance comparison for each algorithm is provided in Table 39
through Table 44 in the Appendix.

4 KpqC 2 Round Algorithm Computation Time Profiling
Analysis

In this section, we analyze the usage proportion of functions employed by each
algorithm implemented with KPQClean. For this analysis, we utilized the Time
Profile tool provided by Xcode. The Time Profile tool measures the time and
proportion of each function called during the execution of the project where the
algorithm is implemented. Using this tool, we analyzed the execution of each
algorithm. The results of this analysis help identify the operations that cause
significant overhead in each algorithm, contributing to a better understanding
of the algorithms and setting target operations for optimization efforts.

Table 7 shows the proportion of the key generation, encryption, and decryp-
tion process as a single process(100%). For NTRU+ in the KEM/PKE algorithm,
key generation is the largest part of the total process. SMAUG-T is dominated by
encryption and decryption, but we can see that key generation, encryption, and
decryption are all performed in similar proportions. PALOMA has the largest
proportion of the total process in key generation.



12 Sim et al.

In Tabel 8, DSA algorithms, we can see that the signing process is the largest
part of the overall algorithm. However, in the case of AIMer, the key generation
process is very small part, and the signing and verification processes are similar.

Table 7: The computational proportion of Key Generation, Encapsulation, and
Decapsulation of each KpqC KEM/PKE algorithm.

Scheme KeyGen. Encap. Decap.

NTRU+KEM576 58.43% 16.85% 24.72%

NTRU+KEM768 58.26% 18.26% 23.48%

NTRU+KEM864 52.17% 19.57% 28.26%

NTRU+KEM1152 63.90% 16.60% 19.50%

NTRU+PKE576 59.46% 24.32% 16.22%

NTRU+PKE768 50.00% 23.48% 26.52%

NTRU+PKE864 40.14% 23.24% 36.62%

NTRU+PKE1152 67.10% 12.99% 19.91%

SMAUG-T1 23.19% 40.58% 36.23%

SMAUG-T3 34.45% 17.65% 47.90%

SMAUG-T5 29.22% 39.61% 31.17%

SMAUG-TiMER 31.75% 31.75% 36.51%

PALOMA-128 95.51% 0.04% 4.44%

PALOMA-192 94.74% 0.01% 5.25%

PALOMA-256 95.71% 0.01% 4.28%

Table 8: The computational proportion of Key Generation, Sign, and Verify of
each KpqC DSA algorithm.

Scheme KeyGen. Sign Verify

AIMer128f 0.60% 51.80% 47.40%

AIMer128s 0.10% 50.20% 49.70%

AIMer192f 0.60% 51.70% 47.50%

AIMer192s 0.10% 46.90% 53.00%

AIMer256f 0.60% 51.60% 47.70%

AIMer256s 0.20% 50.20% 49.60%

HAETAE2 22.60% 73.20% 4.10%

HAETAE3 29.70% 65.30% 4.80%

HAETAE5 24.60% 70.50% 4.80%

NCC-Sign1 19.40% 56.50% 24.10%

NCC-Sign3 17.40% 63.60% 18.90%

NCC-Sign5 15.00% 63.10% 21.80%

4.1 Computation Proportion of NTRU+ Algorithm

This is an analysis of the overhead of each operation in NTRU+ based on
NTRU+KEM576. The results of the profiling analysis are shown in Table 9.



KpqClean Ver2: Comprehensive Benchmarking and Analysis 13

The most significant operation in NTRU+’s key generation process is the
Poly baseinv operation. This function is performed 58% of the time in the key
generation process. It computes the inverse of a polynomial over the NTT do-
main. During the NTRU+ key generation process, the f and g polynomials must
be able to have inverses, and this operation is used to verify this. Other oper-
ations such as polynomial multiplication, subtraction, and NTT operations are
performed the rest of the time.

The largest part of the encryption process in NTRU+ is the AES algorithm
operation. AES algorithm operations are performed about 40% of the encryption
process. The Hash h kem(), Hash g(), and Hash f() functions, which use AES,
are performed in the encryption process at 27%, 27%, and 13%, respectively.
Inside each of these functions, the AES algorithm is used, and in the Hash f()
function, a Shake-related function is used. As a result, AES is used 40% of
the time and Shake 26% of the time. Other than AES and Shake, there are
NTT operations and multiplication operations in the NTT domain, which are
performed at 13% and 13% respectively.

The NTT operation is the most important operation in the decryption pro-
cess of NTRU+. The NTT operation is performed 32% of the time in the decryp-
tion process. Other operations are Hash g() 18%, invNTT() 18%, Poly basemul()
18%, and Hash h kem() 14%. As a result, when looking at proportion of NTT
and invNTT, we can see that NTT operations are the most important operations
in the decryption process.

NTRU+PKE shows similar results to NTUR+KEM. As a result, NTT-
related operations can be seen as the most overhead operations in NTRU+,
with the largest share of operations being NTT-related(NTT conversions, INTT
conversions, multiplication over NTT domains, inverse calculations, etc.).

Table 9: Results of NTRU+KEM computational proportion measurement
Key Generation Encapsulation Decapsulation

Function proportion Function proportion Function proportion

Poly baseinv 58% Hash h kem 27% NTT 32%

Poly basemul 12% Hash g 27% Hash g 18%

Poly reduce 8% Poly basemul 20% invNTT 18%

NTT 6% Hash f 13% Poly basemul 18%

AES ctr 6% NTT 13% hash h kem 14%

etc 4% - - - -

4.2 Computation Proportion of SMAUG-T Algorithm

Based on SMAUG-T1, the overhead of the computations performed in each step
of SMAUG-T is analysed. The results of the profiling analysis are shown in
Table 10.



14 Sim et al.

The largest computation in the key generation process of SMAUG-T is
the genPubkey() function. The genPubkey() function is performed at 55% of
the key generation process. Inside the genPubkey() function, the genAx() and
genBx() functions are performed. In addition to the genPubkey() function, the
genSx Vec() function is also performed at 27% of the time, which also uses
shake-related functions. As a result, the largest proportion of the key generation
process is Shake-related operations.

The largest operation in SMAUG-T encryption process is the
Load from string pk() function. Load from string pk() is performed with
a proportion of 50 per cent in the encryption process. Internally, it is imple-
mented as a GenAx() function, which performs Shake-related operations. In
addition, GenRx vec() and Sha3 256 functions also perform shake-related oper-
ations, and shake-related operations are performed 76% of the time throughout
the encryption process. As a result, shake-related operations are the largest
part of the encryption process.

The operation that has the largest proportion in the decryption process of
SMAUG-T is the Indcpa enc() function. Indcpa enc() is performed 81% of the
time in the decryption process. Indcpa enc90 and Indcpa dec() are the encryp-
tion and decryption operations for the CPA-safe Lizard public key scheme. In-
side the two functions, many post-multiplication addition operations such as
vec mult add(), poly mult add(), and Shake-related operations are performed.
Shake-related operations are performed 35% of the time throughout the decryp-
tion process, while Vec mult add() is performed 29% of the time. As a result,
Shake-related operations are the largest part of the decryption process.

As a result, the largest share of computation in SMAUG-T is dominated
by Shake-related functions, regardless of the key generation, encryption, and
decryption processes.

Table 10: Results of SMAUGN-T computational proportion measurement
Key Generation Encapsulation Decapsulation

Function proportion Function proportion Function proportion

genPubkey(GenBx) 38% GenRx vec 46% GenAx 24%

genSx vec 31% load from string pk 29% genRx vec 20%

genPubkey(GenAx) 19% computeC2 11% computeC1 16%

etc 12% sha3 256 7% computeC2 16%

- - computeC1 4% sha3 256 12%

- - etc 3% etc 12%

4.3 Computation Proportion of PALOMA Algorithm

This is the result of analysing the overhead of the operations performed in each
process of PALOMA based on PALOMA-128. The results of the profiling analysis
are shown in Table 11.



KpqClean Ver2: Comprehensive Benchmarking and Analysis 15

The most significant operation in the key generation process of PALOMA
is the Gen scrambled code() function operation. Gen scrambled code() is per-
formed 70% of the time in the key generation process. Gen scrambled code()
performs the process of scrambling the parity check matrix, and the Gaus-
sain row() function has the largest overhead. The reason for the large overhead
is that the Gen scrambled code() function is implemented as a simple logical
operation, but the large overhead is caused by the large number of iterations.
In the implementation code, the iteration statement with the largest number
of iterations is implemented with 9,846,431 iteration operations. As a result,
logical and arithmetic operations are the most dominant operations in the key
generation process due to the large number of iterations.

The largest part of PALOMA’s encryption process is the Permutation oper-
ation. The Permutation operation is performed with a proportion of 44% in the
encryption process. The permutation operation first generates errors through
LSH, and then performs a permutation operation through the random oracle
permutation matrix generated using the generated error vector. In addition, the
process used to generate the error backer and random oracle G is performed with
a proportion of 22%, and the LSH hash function is used internally. As a result,
the permutation operation is the largest part of the encryption process.

The most significant operation in the decryption process of PALOMA is the
reconstruction of the error vector e. The process of reconstructing the error
vector e is performed 99% of the time in the decryption process. This process
consists of Construct key eqn(), find err vec(), and solve key eqn(). The Con-
struct key eqn() step is performed with 47% proportion and is responsible for
generating the key equation. The find err vec() function is 44% of the time and
is responsible for finding the polynomial that connects the generated key equa-
tion with the error locations. This is how the error vector e is reconstructed. As
a result, the largest part of the decryption process is the reconstruction of the
error vector e, which is heavily polynomial arithmetic.

As a result, the key generation process in PALOMA has a large overhead, and
even though simple logical operations are used, the large number of iterations
results in a large overhead.

Table 11: Results of PALOMA computational proportion measurement
Key Generation Encapsulation Decapsulation

Function proportion Function proportion Function proportion

gen Scrambled code 70% Perm 45% Construct key eqn 47%

gen rand goppa code 30% rand oracle g 22% find err vec 44%

- - gen err vec 22% solve key eqn 7%

- - encrypt temp 11% etc 2%



16 Sim et al.

4.4 Computation Proportion of AIMer Algorithm

Based on AIMer-128s, the overhead of the computations performed by each
process in AIMer is analysed. The results of the profiling analysis are shown in
Table 12.

The largest proportion of computations in AIMer’s key generation process
is the AIM2 process. AIM2 is performed 83% of the time in the key generation
process. Inside the AIM2 process, the Generate matrices L and U() function is
used 53% of the time, and multiplication operations on GF are used 37% of the
time. Inside the Generate matrices L and U() function, which is used heavily,
Shake-related operations are used 90% of the time. As a result, Shake-related
operations are the most heavily proportioned part of the key generation process.

The most significant operation in AIMer’s signing process is the
run phase 1() function operation. Inside the run phase 1() function, Expand-
related functions (Expand tree, Expand tape) account for the majority (53%).
Shake-related operations are performed in Expand-related functions, and the
share of shake-related operations in all signature processes other than expand-
related functions is 63%. Other operations include matrix multiplication, addi-
tion, and power on GF. As a result, shake-related operations account for the
largest share of the signing process.

The largest part of AIMer’s verification process is Expand related operations.
Expand operations are performed 53% of the time in the verification process. As
mentioned in the verification process, Expand-related operations are performed
as Shake-related operations. Therefore, the share of shake-related operations in
the verification process is 65%. Similarly, in Aim2 mpc, matrix multiplication,
addition, and power operations on GF are performed. As a result, the largest
share of the verification process is shake-related operations.

As a result, the largest proportion of computation in AIMer is dominated
by Shake-related functions, regardless of the key generation, encryption, and
decryption processes.

Table 12: Results of AIMer computational proportion measurement
Key Generation Sign Verify

Function proportion Function proportion Function proportion

GF exp 41% Aim2 mpc 76% Aim2 mpc 70%

Generate matrices L and U 28% Commit seed and expand tape 11% Commit seed and expand tape 11%

GF transposed matmul 17% Expand seed 6% Reconstruct seed tree 9%

generate 14% expand tree 4% Gf mul add 4%

- - etc 3% etc 6%

4.5 Computation Proportion of HAETAE Algorithm

This is the result of analysing the overhead of the operations performed in each
process of HAETAE based on HAETAE-120. The results of the profiling analysis
are shown in Table 13.



KpqClean Ver2: Comprehensive Benchmarking and Analysis 17

The largest operation in the key generation process of HAETAE is
the Polyvecmk sqsing value() function. The Polyvecmk sqsing value() function
checks whether the generated private key meets certain conditions and is per-
formed 66% of the time in the key generation process. The FFT operation is
87.7% of the time in this process. Other operations are Polyvecmk uniform eta(),
polyvecmk uniform eta(), and Polymatkm expand(), and Shkae-related opera-
tions are mainly used inside the two functions. As a result, the FFT operation
is the largest part of the key generation process.

The most important operation in HAETAE’s signature process is the hyper-
ball sampling process. The hyperball sampling process is performed 82% of the
time in the signature process, and the Sample gauss N function is implemented
internally. Sample gauss N performs operations to sample random numbers from
a Gaussian distribution. Under the hood, Shake-related operations are heavily
used. As a result, the most heavily proportioned operations in the signing process
are shake-related operations.

Shake-related operations are the most important part of HAETAE’s
verification process. Unpack sig(), Polymatkm expand(), Poly unifrom(), and
Poly unifrom() functions are performed in similar proportions in the verifica-
tion process. Within each of these functions, shake-related operations are used,
and when viewed as a whole, shake-related operations are performed 40% of the
time. As a result, shake-related operations are the largest part of the verification
process.

As a result, HAETAE is a signing process with a large overhead, and the
operations with the largest overhead in the signing process are Shake-related
operations.

Table 13: Results of HAETAE computational proportion measurement
Key Generation Sign Verify

Function proportion Function proportion Function proportion

Polyvecmk sqsing value 66% Polyfixveclk smaple hyperball 82% unpack sig 24%

Polyvecmk uniform eta 8% invntt tomont 4% Polymatkm expand 18%

Polymatkm expand 6% ntt 2% Poly uniform 13%

Polyvecm ntt 5% etc 12% Polyveck ntt 10%

etc 12% - - etc 35%

4.6 Computation Proportion of MQ-Sign Algorithm

This is an analysis of the computational overhead of each process of MQ-Sign
based on MQLR-72-46. The results of the profiling analysis are shown in Ta-
ble 14.

The largest computation in the key generation process of MQ-Sign is the
process of generating the public key. In the process of generating the public key,
matrix multiplication and addition operations on GF are performed, and this
process is performed with 67% proportion. In addition, the Generate F function



18 Sim et al.

is performed at 30%, and the AES algorithm operation is performed inside. As
a result, the matrix operations on GF are the most important operations in the
key generation process.

The largest operation in the signing process of MQ-Sign is the
GF256mat prod ref() function. The GF256mat prod ref() function is per-
formed 73% of the time during the signing process. Inside the function, the
GF256v madd u32() function is responsible for most of the operations. The
GF256v madd u32() function, which performs a vector multiplication followed
by an addition operation, is also used heavily in other functions used in the
signature process, and is performed 85% of the time in the signature process
as a whole. As a result, the arithmetic operations between vectors are the most
heavily used operations in the signing process.

The largest computation in the verification process of MQ-Sign is the map-
ping of the public key to the z contained in the signature value. This process
is performed 78% of the time in the verification process. This is the process of
calculating h using the public key and the z contained in the signature value.
The Gf256v madd() function is heavily used inside this process. As a result, the
most heavily proportioned operations in the verification process are arithmetic
operations between vectors.

As a result, the operations with the largest overhead in MQ-Sign are the
arithmetic operations on GF.

Table 14: Results of MQ-sign computational proportion measurement
Key Generation Sign Verify

Function proportion Function proportion Function proportion

Generate keypair mqlr 69% GF256mat prod ref 73% mpkc pub map gf256 76%

generate F 30% solve linear eq ref modify 13% hash 11%

gf256v madd u32 1% gf256mat mul ref 10% mpkc pub map gf256 11%

- - gf256mat gaussian elim ref 4% - -

4.7 Computation Proportion of NCC-Sign Algorithm

This is the result of analysing the overhead of operations performed in each
process of NCC-Sign based on NCC-Sign-1. The results of the profiling analysis
are shown in Table 15.

The operation that has the largest share in the key generation process of
NCC-Sign is the Poly uniform() operation. Poly uniform() is performed 34% of
the time in the key generation process. This is the process of sampling polynomial
coefficients, and Shake-related operations are performed internally 60% of the
time. In addition, NTT and InvNTT operations are also performed at 30%. As
a result, NTT and Shake operations have the largest share of the key generation
process.

The NTT operations are the largest part of the signing process in NCC-Sign.
NTT operations are performed 36% of the time during the signing process, and



KpqClean Ver2: Comprehensive Benchmarking and Analysis 19

59% of the time when InvNTT operations are combined. In addition, several
polynomial operations are performed with a proportion of about 13%. As a
result, NTT operations are the largest part of the signature process.

The InvNTT operation has the largest proportion in the verification pro-
cess of NCC-Sign. The InvNTT operation is performed 31% of the time in the
verification process, and 59% of the time when the NTT operations are com-
bined. In addition, the Poly uniform() function is performed 22% of the time,
and Shake-related operations inside this function are performed 80% of the time.
As a result, InvNTT operations are the most heavily proportioned operations in
the verification process.

As a result, the operations that weigh the most in NCC-Sign are the NTT
and InvNTT operations, which all have a large overhead.

Table 15: Results of NCC-Sign computational proportion measurement
Key Generation Sign Verify

Function proportion Function proportion Function proportion

Poly uniform 34% NTT 36% invNTT tomont 31%

invntt tomnot 17% invNTT tomont 23% NTT 28%

Poly uniform eta 15% Poly uniform 13% Poly uniform 22%

NTT 13% Poly base mul 5% Poly use hint 9%

shake256 7% Poly uniform gamma 1 4% shake256 3%

etc 14% etc 19% etc 7%

5 RAM/ROM Memory Usage Analysis

When running a computer program, memory is consumed, and this is typically
closely related to variable usage. Since the amount of memory available on a com-
puter is limited, it is generally advisable to minimize memory usage in programs.
However, post-quantum cryptography (PQC) tends to be somewhat inefficient in
terms of memory usage due to its overall parameter sizes being larger compared
to modern cryptography algorithms.

This section evaluates the memory usage of KpqC candidate algorithms. The
tool used to assess RAM usage was Valgrind, a type of Dynamic Binary Instru-
mentation (DBI) program [26]. Valgrind measures memory consumption during
program execution and is employed while running the compiled binary file. Val-
grind categorizes the consumed memory into stack (static) and heap (dynamic),
with the heap category including any additional heap usage (extra heap).

ROM usage was measured using the ‘size’ command. The ‘size’ command
provides the code size, data size, and BSS size of the compiled binary file, making
it useful for analyzing the program’s ROM usage. The sum of the ‘text’ and ‘data’
values in the output of the ‘size’ command represents the ROM usage, which
includes all necessary code and initialized data required during the program’s
execution.



20 Sim et al.

The environment for RAM/ROM measurement was as follows: OS: Ubuntu
22.04, CPU: Intel i5-8259U (3.80 GHz), RAM: 16GB, Compiler: gcc 11.3.0.

Table 16: Measured RAM Usage of KEM Algorithms(unit:bytes, w: with openssl,
wo: without openssl)

Algorithm stack+heap+extra heap stack heap extra heap

NTRU+KEM-576 19,632 18,600 1,024 8

NTRU+KEM-768 25,024 23,992 1,024 8

NTRU+KEM-864 27,728 26,696 1,024 8

NTRU+KEM-1152 35,824 34,792 1,024 8

NTRU+PKE-576 19,696 18,664 1,024 8

NTRU+PKE-768 25,120 24,088 1,024 8

NTRU+PKE-864 27,824 26,792 1,024 8

NTRU+PKE-1152 35,904 34,872 1,024 8

PALOMA-w-128 2,201,944 1,943,432 197,377 61,135

PALOMA-w-192 7,900,112 7,641,600 197,377 61,135

PALOMA-w-256 9,282,512 9,024,000 197,377 61,135

PALOMA-wo-128 1,944,464 1,943,432 1,024 8

PALOMA-wo-192 5,309,888 5,308,856 1,024 8

PALOMA-wo-256 9,025,032 9,024,000 1,024 8

SMAUG-T1 12,912 10,824 2,472 72

SMAUG-T3 37,888 35,800 2,472 72

SMAUG-T5 37,888 35,800 2,472 72

The results of RAM usage measurements for KEM algorithms are shown
in Table 16. When ranked by memory usage in ascending order, the order is
SMAUG-T, NTRU+, and PALOMA. Most public-key encryption algorithms
showed relatively low heap usage, indicating minimal dynamic memory allo-
cation. However, the stack usage for some algorithms reached several tens of
kilobytes, which could make them unsuitable for operation in embedded proces-
sor environments. Therefore, optimizing memory usage may be more important
than optimizing computational efficiency in these cases.

The results of RAM usage measurements for DSA algorithms are shown
in Table 17. When ranked by memory usage in ascending order, the order is
NCCSign, HAETAE, AIMer, and MQSign. Similar to public-key encryption al-
gorithms, most digital signature algorithms exhibited relatively low heap usage,
indicating minimal dynamic memory allocation. However, some digital signa-
ture algorithms have memory usage reaching the MB range, indicating a need
for optimization.

The results of ROM usage measurements for KEM algorithms are shown
in Table 18. When ranked by memory usage in ascending order, the order is
SMAUG-T, NTRU+, and PALOMA. Embedded systems like the Cortex-M4
typically have flash memory (ROM) ranging from 256KB to 1MB. Since pro-
gram code and initialized data must operate within this limited memory, large



KpqClean Ver2: Comprehensive Benchmarking and Analysis 21

Table 17: Measured RAM Usage of DSA Algorithms(unit:bytes)

Algorithm stack+heap+extra heap stack heap extra heap

AIMer-128f 142,256 141,008 1,232 16

AIMer-128s 923,936 922,904 1,024 8

AIMer-192f 313,600 312,352 1,232 16

AIMer-192s 2,035,488 2,034,456 1,024 8

AIMer-256f 649,872 648,624 1,232 16

AIMer-256s 4,182,504 4,181,264 1,232 8

HAETAE-2 369,736 111,224 197,377 61,135

HAETAE-3 432,600 174,088 197,377 61,135

HAETAE-5 481,896 223,384 197,377 61,135

MQSign-MQLR-256-72-46 1,318,960 590,048 728,858 54

MQSign-MQLR-256-112-72 4,963,632 2,219,328 2,744,250 54

MQSign-MQLR-256-148-96 11,584,144 5,187,168 6,396,930 46

MQSign-MQRR-256-72-46 1,185,680 579,400 606,226 54

MQSign-MQRR-256-112-72 4,478,288 2,193,960 2,284,282 46

MQSign-MQRR-256-148-96 10,473,984 5,143,080 5,330,866 38

NCCSign-1 60,712 60,712 0 0

NCCSign-3 80,248 80,248 0 0

NCCSign-5 120,440 120,440 0 0

Table 18: Measured ROM Usage of KEM Algorithms(unit:bytes, w: with openssl,
wo: without openssl)

Algorithm ROM text data

NTRU+KEM576 52,906 52,258 648
NTRU+KEM768 51,234 50,586 648
NTRU+KEM864 57,770 57,122 648
NTRU+KEM1152 53,562 52,914 648
NTRU+PKE576 54,763 54,107 656
NTRU+PKE768 54,923 54,267 656
NTRU+PKE864 61,731 61,075 656
NTRU+PKE1152 59,155 58,499 656
PALOMA-w-128 62,030 61,270 760
PALOMA-w-192 61,782 61,022 760
PALOMA-w-256 61,798 61,038 760
PALOMA-wo-128 58,016 57,328 688
PALOMA-wo-192 57,760 57,072 688
PALOMA-wo-256 57,784 57,096 688

SMAUG-T1 47,611 46,867 744
SMAUG-T3 47,395 46,651 744
SMAUG-T5 46,483 45,739 744



22 Sim et al.

Table 19: Measured ROM Usage of DSA Algorithms(unit:bytes)
Algorithm ROM text data

HAETAE2 7,937 7,048 889
HAETAE3 7,976 7,087 889
HAETAE5 7,970 7,081 889
AIMer128f 79,483 78,811 672
AIMer128s 79,579 78,907 672
AIMer192f 87,827 87,155 672
AIMer192s 87,723 89,381 672
AIMer256f 90,059 89,387 672
AIMer256s 90,067 89,395 672

MQ-Sign MQLR 256 72 46 176,061 175,325 736
MQ-Sign MQLR 256 112 72 187,373 186,637 736
MQ-Sign MQLR 256 148 96 187,693 186,957 736
MQ-Sign MQRR 256 72 46 173,976 173,232 744
MQ-Sign MQRR 256 112 72 185,928 185,184 744
MQ-Sign MQRR 256 148 96 186,392 185,648 744

NCCSign-1 153,209 153,209 9,932
NCCSign-3 144,005 139,193 4,812
NCCSign-5 132,805 113,657 19,148

ROM usage can make program execution challenging. While public-key algo-
rithms generally have ROM sizes in the tens of kilobytes, making them seem-
ingly suitable for embedded systems, it is important to note that larger ROM
usage can lead to longer boot times and increased power consumption, requiring
careful consideration.

The results of ROM usage measurements for DSA algorithms are shown
in Table 19. When ranked by memory usage in ascending order, the order is
HAETAE, AIMer, NCCSign, and MQSign. Digital signature algorithms tend to
use slightly more ROM compared to public-key encryption algorithms, with some
algorithms measuring over 100KB of ROM usage. This could pose constraints
when implementing these algorithms in certain embedded systems.

6 Key Size and Performance Analysis: NIST PQC
Algorithms vs. KpqC Algorithms

Evaluating the efficiency of cryptography schemes involves various perspectives,
and algorithm benchmarking is one of the key approaches. For instance, the
size of the key, ciphertext, and signature are critical factors in assessing the
practicality of a cryptography scheme.

In this section, we conduct a comparative analysis of four NIST PQC stan-
dardized algorithms and three NIST PQC Round 4 candidate algorithms (ex-
cluding SIKE) against the KpqC Round 2 candidate algorithms.



KpqClean Ver2: Comprehensive Benchmarking and Analysis 23

Table 20: Key Size Comparison: CRYSTALS-Kyber vs. SMAUG-T &
NTRU+(unit:bytes)

Rank Scheme Public key Rank Scheme Secret key Rank Scheme Ciphertext

1
SMAUG-T1 672 1 SMAUG-TiMER 136 1 SMAUG-TiMER 608

SMAUG-TiMER 672 2 SMAUG-T1 176 2 SMAUG-T1 672

3 KYBER-512 800 3 SMAUG-T5 218 3 KYBER-512 768

4
NTRU+KEM576 864 4 SMAUG-T3 236

4
NTRU+KEM576 864

NTRU+PKE576 864 5 KYBER-512 1,632 NTRU+PKE576 864

6 SMAUG-T3 1088
6

NTRU+KEM576 1,760 6 SMAUG-T3 1,024

7
NTRU+KEM768 1152 NTRU+PKE576 1,760 7 KYBER-768 1,088

NTRU+PKE768 1152
8

NTRU+KEM768 2,336
8

NTRU+KEM768 1,152

9 KYBER-768 1,184 NTRU+PKE768 2,336 NTRU+PKE768 1,152

10
NTRU+KEM864 1296 10 KYBER-768 2,400

10
NTRU+KEM864 1,296

NTRU+PKE864 1296 11 KYBER-1024 2,592 NTRU+PKE864 1,296

12 KYBER-1024 1,568
12

NTRU+KEM864 2,624 12 SMAUG-T5 1,472

13
NTRU+KEM1152 1728 NTRU+PKE864 2,624 13 KYBER-1024 1,568

NTRU+PKE1152 1728
14

NTRU+KEM1152 3,488
14

NTRU+KEM1152 1,728

15 SMAUG-T5 1792 NTRU+PKE1152 3,488 NTRU+PKE1152 1,728

6.1 Key Size Comparison Between NIST PQC Algorithms and
KpqC Algorithms

In the following sections, we conduct a comparative analysis of selected PQC al-
gorithms. To provide a structured and focused comparison, the algorithms have
been grouped into four categories based on their underlying cryptography princi-
ples and intended use cases: CRYSTALS-Kyber vs. SMAUG-T & NTRU+, Clas-
sic McEliece & HQC & BIKE vs. PALOMA & REDOG, CRYSTALS-Dilithium
&, FALCON vs. HAETAE & NCC-Sign, and SPHINCS+ vs. AIMer.

- CRYSTALS-Kyber vs. SMAUG-T & NTRU+ This comparison focuses
on lattice-based Key Encapsulation Mechanisms (KEMs), where CRYSTALS-
Kyber is contrasted with SMAUG-T and NTRU+. The commonality in their
lattice-based foundations allows for a nuanced analysis of their key size. The
comparison results for Key Size Comparison: CRYSTALS-Kyber vs. SMAUG-T
& NTRU+ are presented in Table 20.

The results of the comparison of algorithms with 128-bit security strength are
as follows: SMAUG-T1’s public key is shorter than that of Kyber-512, a NIST
PQC algorithm, while NTRU+576’s public key size is nearly identical to Kyber-
512. In summary, SMAUG-T1 has the shortest public key among the compared
algorithms.

The results of the comparison of secret key sizes for algorithms with NIST
security level 1 (128-bit security strength) are as follows: SMAUG-TiMER has



24 Sim et al.

the shortest secret key, followed by SMAUG-T1, which is shorter than that of
Kyber-512. In summary, SMAUG-T1 has a shorter secret key than Kyber-512,
with SMAUG-TiMER being the shortest overall.

The results of the comparison of ciphertext sizes for algorithms with NIST
security level 1 (128-bit security strength) are as follows: SMAUG-TiMER has
the shortest ciphertext, followed by SMAUG-T1, which is shorter than Kyber-
512, with NTRU+576 having the longest. In summary, SMAUG-T1’s ciphertext
is shorter than Kyber-512’s, with SMAUG-TiMER having the shortest overall.

Table 21: Key Size Comparison: Classic McEliece & HQC & BIKE vs. PALOMA
& REDOG(unit:bytes)

Rank Scheme Public key Rank Scheme Secret key Rank Scheme Ciphertext

1 HQC-128 2,249 1 REDOG-1 666 1 mceliece348864 96

2 REDOG-1 4,270 2 REDOG-2 1,464 2 PALOMA128 136

3 HQC-192 4,522 3 BIKE-1 2,244 3 mceliece460896 156

4 HQC-256 7,245 4 HQC-128 2,289 4 mceliece6688128 194

5 BIKE-1 12,323 5 REDOG-3 2,560
5

mceliece6960119 208

6 REDOG-3 13,987 6 BIKE-3 3,346 mceliece8192128 208

7 BIKE-3 24,659 7 HQC-192 4,562
7

PALOMA192 240

8 REDOG-5 32,634 8 BIKE-5 4,640 PALOMA256 240

9 BIKE-5 40,973 9 mceliece348864 6,492 9 REDOG-1 389

10 mceliece348864 261,120 10 HQC-256 7,285 10 REDOG-2 840

11 PALOMA128 319,488 11 mceliece460896 13,608 11 REDOG-3 1,475

12 mceliece460896 524,160 12 mceliece6688128 13,932 12 HQC-128 4,497

13 PALOMA192 812,032 13 mceliece6960119 13,948 13 HQC-192 9,042

14 PALOMA256 1,025,024 14 mceliece8192128 14,120 14 BIKE-1 12,579

15 mceliece6688128 1,044,992 15 PALOMA128 94,528 15 HQC-256 14,485

16 mceliece6960119 1,047,319 16 PALOMA192 357,568 16 BIKE-3 24,915

17 mceliece8192128 1,357,824 17 PALOMA256 359,616 17 BIKE-5 41,229

- Classic McEliece & HQC & BIKE vs. PALOMA & REDOG This com-
parison focuses on code-based cryptography schemes. Classic McEliece, HQC,
and BIKE, which are code-based algorithms, are analyzed against PALOMA
and REDOG.

The comparison results for Key Size Comparison: Classic McEliece & HQC
& BIKE vs. PALOMA & REDOG are presented in Table 21



KpqClean Ver2: Comprehensive Benchmarking and Analysis 25

The results of the comparison of public key sizes are as follows: HQC-128
has the smallest public key at 2,249 bytes, followed by REDOG-1 at 4,270 bytes.
Among all algorithms, HQC-128 offers the smallest public key size.

The results of the comparison of secret key sizes are as follows: REDOG-1
has the shortest secret key at 666 bytes, followed by REDOG-2 at 1,464 bytes.
Although BIKE-1 at 2,244 bytes and HQC-128 at 2,249 bytes have larger secret
keys than REDOG-2, they are still relatively compact.

The results of the comparison of ciphertext sizes are as follows:
mceliece348864 has the smallest ciphertext at 96 bytes, followed by PALOMA128
at 136 bytes. In summary, mceliece348864 has the shortest ciphertext overall,
with PALOMA128 also being among the more compact options.

- CRYSTALS-Dilithium &. FALCON vs. HAETAE & NCC-Sign This
comparison focuses on lattice-based digital signature schemes. CRYSTALS-
Dilithium and FALCON, two prominent lattice-based signature algorithms, are
compared with HAETAE and NCC-Sign. The comparison sheds light on their
signature sizes. The comparison results for Key Size Comparison: CRYSTALS-
Dilithium &. FALCON vs. HAETAE & NCC-Sign are presented in Table 22

The results of the comparison of public key sizes are as follows: FALCON-512
has the smallest public key at 897 bytes, followed by HAETAE2 at 992 bytes.
In summary, FALCON-512 has the smallest public key overall, with HAETAE2
also being among the more compact options.

The results of the comparison of secret key sizes are as follows: FALCON-
512 has the smallest secret key at 1,281 bytes, followed by HAETAE2 at 1,408
bytes. Although HAETAE3 at 2,112 bytes and FALCON-1024 at 3,305 bytes
have larger secret keys than FALCON-512 and HAETAE2, they remain rela-
tively compact compared to other algorithms. In summary, FALCON-512 has
the smallest secret key overall, with HAETAE2 also being relatively compact.

The results of the comparison of signature sizes are as follows: FALCON-
512 has the smallest signature size at 666 bytes, followed by FALCON-1024 at
1,280 bytes. On the other hand, HAETAE2 and HAETAE3 have slightly larger
signature sizes at 1,474 bytes and 2,349 bytes, respectively, while NCC-Sign1
has a significantly larger signature size of 2,912 bytes. In summary, FALCON-
512 has the smallest signature size overall, with FALCON-1024 and HAETAE2
being among the more compact options.

- SPHINCS+ vs. AIMer Finally, we compare SPHINCS+, a stateless hash-
based signature scheme, with AIMer. The comparison results for key size com-
parison: SPHINCS+ vs. AIMer are presented in Table 23

The results of the comparison of public key sizes are as follows: AIMer128
and SPHINCS+128 all have the smallest public key sizes at 32 bytes. Following
these, AIMer192 and SPHINCS+192 has a slightly larger public key at 48 bytes.

The results of the comparison of secret key sizes are as follows: AIMer128
has the smallest secret keys at 48 bytes, followed by SPHINCS+128 at 64 bytes.



26 Sim et al.

Table 22: Key Size Comparison: CRYSTALS-Dilithium & FALCON vs.
HAETAE & NCC-Sign(unit:bytes)

Rank Scheme Public key Rank Scheme Secret key Rank Scheme Signature

1 FALCON-512 897 1 FALCON-512 1,281 1 FALCON-512 666

2 HAETAE2 992 2 HAETAE2 1,408 2 FALCON-1024 1,280

3 Dilithium-2 1,312 3 HAETAE3 2,112 3 HAETAE2 1,474

4 HAETAE3 1,472 4 FALCON-1024 2,305 4 HAETAE3 2,349

5 NCC-Sign1 1,760 5 Dilithium-2 2,528 5 Dilithium-2 2,420

6 FALCON-1024 1,793 6 NCC-Sign1 2,688 6 NCC-Sign1 2,912

7 Dilithium-3 1,952 7 HAETAE5 2,752 7 HAETAE5 2,948

8 HAETAE5 2,080 8 NCC-Sign3 3,552 8 Dilithium-3 3,293

9 NCC-Sign3 2,336 9 Dilithium-3 4,000 9 NCC-Sign3 3,872

10 Dilithium-5 2,592 10 Dilithium-5 4,864 10 Dilithium-5 4,595

11 NCC-Sign5 3,200 11 NCC-Sign5 5,568 11 NCC-Sign5 6,080

The results of the comparison of signature sizes are as follows: AIMer128s has
the smallest signature size at 4,160 bytes, followed by AIMer128f at 5,888 bytes.
SPHINCS+128s has a signature size of 7,856 bytes. In summary, AIMer128s has
the smallest signature size overall.

6.2 Performance Comparison Between NIST PQC Algorithms and
KpqC Algorithms

We benchmarked the NIST PQC and KpqC algorithms on both Intel and ARM
processors to compare their performance. The benchmarking environment ad-
hered to the specifications described in Table 24.

To obtain the measurements, each algorithm went through 10,000 iterations,
and the average number of clock cycles required for each round of operation was
calculated. The -O3 optimization level (fastest) was applied.

- CRYSTALS-Kyber vs. SMAUG-T & NTRU+ The comparison results
for performance comparison: CRYSTALS-Kyber vs. SMAUG-T & NTRU+ are
presented in Table 25 and Table 26. These tables represent the performance
measurements conducted on Intel and ARM processors, respectively.

In the key generation, encapsulation, and decapsulation processes, SMAUG-
TiMER and SMAUG-T1 consistently demonstrated the best performance on
both Intel and ARM processors. SMAUG-TiMER was the most efficient across
all operations, with SMAUG-T1 closely following.



KpqClean Ver2: Comprehensive Benchmarking and Analysis 27

Table 23: Key Size Comparison: SPHINCS+ vs. AIMer(unit:bytes)

Rank Scheme Public key Rank Scheme Secret key Rank Scheme Signature

1

AIMer128f 32
1

AIMer128f 48 1 AIMer128s 4,160

AIMer128s 32 AIMer128s 48 2 AIMer128f 5,888

SPHINCS+128s 32
3

SPHINCS+128s 64 3 SPHINCS+128s 7,856

SPHINCS+128f 32 SPHINCS+128f 64 4 AIMer192s 9,120

5

AIMer192f 48
5

AIMer192f 72 5 AIMer192f 13,056

AIMer192s 48 AIMer192s 72 6 SPHINCS+192s 16,224

SPHINCS+192f 48

7

AIMer256f 96 7 AIMer256s 17,056

SPHINCS+192s 48 AIMer256s 96 8 SPHINCS+128f 17,088

9
SPHINCS+256f 49 SPHINCS+192f 96 9 AIMer256f 25,120

SPHINCS+256s 49 SPHINCS+192s 96 10 SPHINCS+256s 29,792

11
AIMer256f 64

11
SPHINCS+256f 128 11 SPHINCS+192f 35,664

AIMer256s 64 SPHINCS+256s 128 12 SPHINCS+256f 49,856

Table 24: Specifications of Target Environments for Performance Comparison
Intel processors ARM processors

OS Ubuntu 23.10.1 MacOS Sonoma 14.5
CPU Intel i5-8259U(2.30GHz) Apple M1(3.2GHz)
RAM 16GB 8GB

Compiler gcc 13.2.0 Apple clang 15.0.0
Optimization Level -O3 -O3

In key generation, SMAUG-TiMER required 40,727 cc on Intel and 55,086 cc
on ARM, while SMAUG-T1 needed 42,812 cc on Intel and 57,506 cc on ARM.
Kyber512, though faster than NTRU+576 in key generation, was less efficient
in encapsulation and decapsulation.

For encapsulation, SMAUG-TiMER led with 39,849 cycles on Intel and
39,490 on ARM. SMAUG-T1 showed similar results, followed by NTRU+576,
which outperformed Kyber512.

In decapsulation, SMAUG-TiMER again had the lowest cycle count, with
SMAUG-T1 close behind. NTRU+576 surpassed Kyber512 in both encapsula-
tion and decapsulation efficiency.

Overall, SMAUG-TiMER and SMAUG-T1 were the top performers across
all operations, while Kyber512 excelled only in key generation, with NTRU+576
proving more effective in the remaining processes.

- Classic McEliece & HQC & BIKE vs. PALOMA The comparison results
for performance comparison: Classic McEliece & HQC & BIKE vs. PALOMA



28 Sim et al.

Table 25: Performance Comparison: CRYSTALS-Kyber vs. SMAUG-T &
NTRU+(Intel)(unit:clock cycles)

Rank Scheme Keygen Rank Scheme Encap Rank Scheme Decap

1 SMAUG-TiMER 40,727 1 SMAUG-TiMER 39,849 1 SMAUG-TiMER 48,191

2 SMAUG-T1 42,812 2 SMAUG-T1 39,907 2 SMAUG-T1 48,874

3 SMAUG-T3 69,125 3 NTRU+PKE576 56,945 3 NTRU+KEM576 64,897

4 kyber512 110,653 4 NTRU+KEM576 57,392 4 NTRU+PKE576 65,513

5 SMAUG-T5 119,648 5 SMAUG-T3 64,581 5 SMAUG-T3 78,558

6 NTRU+KEM576 152,653 6 NTRU+PKE768 73,866 6 NTRU+PKE768 85,777

7 NTRU+PKE576 162,109 7 NTRU+KEM768 74,605 7 NTRU+KEM768 85,814

8 NTRU+KEM768 170987 8 NTRU+PKE864 83,385 8 NTRU+KEM864 100,583

9 NTRU+PKE768 172444 9 NTRU+KEM864 83,862 9 NTRU+PKE864 100,620

10 NTRU+KEM864 175,592 10 NTRU+PKE1152 108,907 10 SMAUG-T5 130,231

11 NTRU+PKE864 180,081 11 NTRU+KEM1152 108,935 11 NTRU+PKE1152 137,555

12 kyber768 198651 12 SMAUG-T5 114,105 12 NTRU+KEM1152 137,606

13 kyber1024 266290 13 kyber512 125,375 13 kyber512 143,529

14 NTRU+PKE1152 420607 14 kyber768 174,804 14 kyber768 210,180

15 NTRU+KEM1152 425625 15 kyber1024 244,419 15 kyber1024 290,399

Table 26: Performance Comparison: CRYSTALS-Kyber vs. SMAUG-T &
NTRU+(ARM)(unit:clock cycles)

Rank Scheme Keygen Rank Scheme Encap Rank Scheme Decap

1 SMAUG-TiMER 55,086 1 SMAUG-TiMER 39,490 1 SMAUG-TiMER 49,092

2 SMAUG-T1 57,506 2 SMAUG-T1 39,552 2 SMAUG-T1 50,360

3 kyber512 70,685 3 NTRU+KEM576 56,914 3 NTRU+KEM576 64,959

4 SMAUG-T3 93,432 4 NTRU+PKE576 56,949 4 NTRU+PKE576 65,127

5 kyber768 109,502 5 SMAUG-T3 64,883 5 SMAUG-T3 79,752

6 SMAUG-T5 143,646 6 kyber512 71,735 6 NTRU+KEM768 85,811

7 NTRU+PKE576 153,560 7 NTRU+PKE768 73,727 7 NTRU+PKE768 86,246

8 NTRU+KEM576 154,387 8 NTRU+KEM768 74,319 8 kyber512 87,617

9 NTRU+PKE768 158,368 9 NTRU+PKE864 83,296 9 NTRU+KEM864 100,823

10 NTRU+KEM768 158,560 10 NTRU+KEM864 83,401 10 NTRU+PKE864 101,003

11 NTRU+KEM864 164,433 11 NTRU+PKE1152 108,924 11 SMAUG-T5 134,162

12 kyber1024 165,118 12 NTRU+KEM1152 108,967 12 kyber768 134,352

13 NTRU+PKE864 201,859 13 kyber768 111,051 13 NTRU+KEM1152 137,549

14 NTRU+KEM1152 389,639 14 SMAUG-T5 116,730 14 NTRU+PKE1152 138,082

15 NTRU+PKE1152 474,510 15 kyber1024 163,171 15 kyber1024 195,524



KpqClean Ver2: Comprehensive Benchmarking and Analysis 29

Table 27: Performance Comparison: Classic McEliece & HQC & BIKE vs.
PALOMA(Intel)(unit:clock cycles)

Rank Scheme Keygen Rank Scheme Encap Rank Scheme Decap

1 hqc-128 4,308,666 1 PALOMA128 87,441 1 PALOMA128 8,033,779

2 hqc-192 12,098,383 2 PALOMA192 136,963 2 hqc-128 12,077,461

3 hqc-256 22,078,541 3 mceliece348864f 171,826 3 hqc-192 36,473,745

4 mceliece348864f 115,143,829 4 mceliece348864 178,119 4 mceliece348864f 38,731,109

5 PALOMA128 147,357,235 5 PALOMA256 200,987 5 mceliece348864 38,777,040

6 mceliece348864 257,322,142 6 mceliece460896f 355,743 6 PALOMA192 41,802,948

7 mceliece460896f 353,874,031 7 mceliece460896 357,513 7 PALOMA256 45,735,541

8 mceliece6960119f 568,091,516 8 mceliece8192128f 465,714 8 hqc-256 66,741,738

9 mceliece8192128f 617,997,240 9 mceliece8192128 503,102 9 mceliece460896 93,483,536

10 mceliece6688128f 653,450,392 10 mceliece6688128 563,525 10 mceliece460896f 93,624,278

11 PALOMA192 700,965,299 11 mceliece6688128f 587,370 11 mceliece6960119f 174,013,196

12 mceliece460896 804,708,960 12 mceliece6960119 1,828,378 12 mceliece6960119 174,166,372

13 PALOMA256 819,112,319 13 mceliece6960119f 1,847,889 13 mceliece6688128f 179,210,745

14 mceliece6960119 1,640,855,766 14 hqc-128 8,551,947 14 mceliece6688128f 180,083,946

15 mceliece6688128 1,886,622,666 15 hqc-192 24,193,559 15 mceliece8192128f 219,454,147

16 mceliece8192128 1,951,587,331 16 hqc-256 44,083,667 16 mceliece8192128 219,602,742

are presented in Table 27 and Table 28. These tables represent the performance
measurements conducted on Intel and ARM processors, respectively.

In key generation, HQC128 performs best on both Intel and ARM processors,
requiring 4,308,666 cc on Intel and 1,504,516 cc on ARM, making it the most
efficient algorithm among the compared algorithms.

For encapsulation, PALOMA128 outperformed all others with 87,441 cc on
Intel and 57,476 cc on ARM. PALOMA192 and PALOMA256 also showed com-
petitive results.

In decapsulation, PALOMA128 led on Intel with 8,033,779 cc, while HQC128
was the top performer on ARM with 4,624,790 cc. This indicates that
PALOMA128 is well-suited for Intel, while HQC128 excels on ARM.

PALOMA algorithms consistently outperformed Classic McEliece in both
encapsulation and decapsulation across all platforms. For instance, on Intel,
PALOMA128 significantly outperformed the highest-ranking Classic McEliece
(mceliece348864f) in both operations.

- CRYSTALS-Dilithium &. FALCON vs. HAETAE & NCC-Sign The
comparison results for performance comparison: CRYSTALS-Dilithium &. FAL-
CON vs. HAETAE & NCC-Sign are presented in Table 29 and Table 30. These



30 Sim et al.

Table 28: Performance Comparison: Classic McEliece & HQC & BIKE vs.
PALOMA(ARM)(unit:clock cycles)

Rank Scheme Keyget Rank Scheme Encap Rank Scheme Decap

1 hqc-128 1,504,516 1 PALOMA128 57,476 1 hqc-128 4,624,790

2 hqc-192 4,499,872 2 PALOMA192 80,913 2 PALOMA128 8,177,108

3 hqc-256 8,181,740 3 PALOMA256 95,934 3 hqc-192 13,685,601

4 mceliece348864f 104,286,620 4 mceliece348864f 169,711 4 hqc-256 15,196,978

5 PALOMA128 121,551,322 5 mceliece348864 170,002 5 PALOMA192 41,189,957

6 mceliece348864 220,493,568 6 mceliece8192128f 390,583 6 PALOMA256 43,095,506

7 mceliece460896f 294,991,120 7 mceliece8192128 390,685 7 mceliece348864f 61,817,900

8 mceliece6960119f 519,756,682 8 mceliece460896f 431,503 8 mceliece348864 61,821,538

9 mceliece6688128f 547,192,847 9 mceliece460896 432,698 9 mceliece460896 129,451,256

10 PALOMA192 579,462,770 10 mceliece6688128f 661,603 10 mceliece460896f 129,624,278

11 mceliece8192128f 597,865,145 11 mceliece6688128 663,925 11 mceliece6960119 240,555,949

12 mceliece460896 634,445,332 12 mceliece6960119f 2,339,770 12 mceliece6960119f 240,459,344

13 PALOMA256 691,203,675 13 mceliece6960119 2,358,294 13 mceliece6688128f 248,341,895

14 mceliece6960119 1,337,245,665 14 hqc-128 3,031,270 14 mceliece6688128f 248,477,346

15 mceliece6688128 1,486,936,619 15 hqc-192 9,079,169 15 mceliece8192128f 303,876,177

16 mceliece8192128 1,638,084,312 16 hqc-256 16,738,076 16 mceliece8192128 303,877,879

tables represent the performance measurements conducted on Intel and ARM
processors, respectively.

In the key generation process, NCC-Sign1 consistently demonstrated the best
performance, requiring only 205,450 clock cycles on Intel and 165,845 clock cycles
on ARM, making it the most efficient algorithm in this category. Dilithium2
followed closely, with slightly higher clock cycles on both platforms.

For the signing operation, Dilithium2 emerged as the top performer on both
processors, completing the task in 450,483 clock cycles on Intel and 306,143 clock
cycles on ARM. NCC-Sign1 also showed strong performance, particularly on the
ARM processor, where it ranked second with 358,150 clock cycles.

In the verification process, Falcon512 outperformed other algorithms, demon-
strating the highest efficiency with 132,067 clock cycles on Intel and 91,243 clock
cycles on ARM. This highlights Falcon512’s suitability for applications where
fast verification is essential. HAETAE2 and NCC-Sign1 also performed well in
verification, ranking second and third on ARM and Intel, respectively.

Overall, the results indicate that NCC-Sign1 excels in key generation,
Dilithium2 is most efficient in signing, and Falcon512 leads in verification across
both Intel and ARM platforms.



KpqClean Ver2: Comprehensive Benchmarking and Analysis 31

Table 29: Performance Comparison: CRYSTALS-Dilithium &. FALCON vs.
HAETAE & NCC-Sign(Intel)(unit:clock cycles)

Rank Scheme keygen Rank Scheme Sign Rank Scheme Verify

1 NCC-Sign1 205,450 1 dilithium2 450,483 1 falcon-512 132,067

2 dilithium2 278,954 2 NCC-Sign3 884,954 2 falcon-padded-512 133,669

3 NCC-Sign3 280,512 3 NCC-Sign5 1,049,172 3 HAETAE2 170,103

4 NCC-Sign5 416,020 4 NCC-Sign1 1,161,522 4 falcon-padded-1024 281,205

5 dilithium3 482,104 5 dilithium5 1,463,427 5 falcon-1024 281,777

6 dilithium5 734,609 6 HAETAE2 1,866,070 6 dilithium2 281,907

7 HAETAE2 1,067,696 7 dilithium3 2,465,069 7 HAETAE3 285,845

8 HAETAE3 2,155,146 8 HAETAE5 3,389,114 8 NCC-Sign1 288,198

9 HAETAE5 2,225,344 9 HAETAE3 7,057,356 9 HAETAE5 355,867

10 falcon-padded-512 37,897,367 10 falcon-512 10,617,704 10 NCC-Sign3 391,048

11 falcon-512 37,959,474 11 falcon-padded-512 10,959,368 11 dilithium3 440,805

12 falcon-1024 108,091,196 12 falcon-1024 23,159,283 12 NCC-Sign5 630,294

12 falcon-padded-1024 108,252,565 13 falcon-padded-1024 23,186,413 13 dilithium5 737,849

Table 30: Performance Comparison: CRYSTALS-Dilithium &. FALCON vs.
HAETAE & NCC-Sign(ARM)(unit:clock cycles)

Rank Scheme keygen Rank Scheme Sign Rank Scheme Verify

1 NCC-Sign1 165,845 1 Dilithium2 306,143 1 Falcon-512 91,243

2 Dilithium2 190,398 2 NCC-Sign1 358,150 2 HAETAE2 137,345

3 NCC-Sign3 218,097 3 NCC-Sign3 460,644 3 Falcon-1024 182,233

4 NCC-Sign5 333,251 4 NCC-Sign5 745,970 4 Dilithium2 195,294

5 Dilithium3 362,409 5 HAETAE2 968,079 5 NCC-Sign1 219,515

6 Dilithium5 540,914 6 Dilithium5 1,023,099 6 HAETAE3 240,094

7 HAETAE2 975,752 7 Dilithium3 1,741,397 7 NCC-Sign3 281,971

8 HAETAE3 1,936,358 8 HAETAE3 2,147,559 8 HAETAE5 301,920

9 HAETAE5 2,115,228 9 HAETAE5 3,457,214 9 Dilithium3 321,151

10 Falcon-512 35,583,909 10 Falcon-512 10,044,417 10 NCC-Sign5 448,855

11 Falcon-1024 106,966,738 11 Falcon-1024 21,844,507 11 Dilithium5 542,833

- SPHINCS+ vs. AIMer The comparison results for performance compari-
son: SPHINCS+ vs. AIMer are presented in Table 31 and Table 32. These tables



32 Sim et al.

represent the performance measurements conducted on Intel and ARM proces-
sors, respectively.

Table 31: Performance Comparison: SPHINCS+ vs. AIMer(Intel)(unit:clock cy-
cles)
Rank Scheme keygen Rank Scheme Sign Rank Scheme Verify

1 AIMer128s 85,760 1 AIMer128f 7,020,534 1 sphincs-sha2-128s-simple 1,769,297

2 AIMer128f 86,858 2 AIMer192f 13,314,965 2 sphincs-sha2-192s-simple 2,394,749

3 AIMer192s 221,051 3 AIMer256f 34,079,571 3 sphincs-sha2-128s-simple 2,763,529

4 AIMer192f 221,939 4 AIMer128s 54,057,979 4 sphincs-sha2-256s-simple 3,554,691

5 AIMer256f 532,954 5 sphincs-sha2-128f-simple 81,191,592 5 sphincs-shake-192s-simple 3,872,933

6 AIMer256s 536,662 6 AIMer192s 103,955,683 6 sphincs-sha2-128f-simple 4,989,027

7 sphincs-sha2-128f-simple 3,512,168 7 sphincs-shake-128f-simple 131,239,147 7 sphincs-shake-256s-simple 5,538,012

8 sphincs-sha2-192f-simple 5,106,785 8 sphincs-sha2-192f-simple 133,555,092 8 AIMer128f 6,429,942

9 sphincs-shake-128f-simple 5,676,001 9 sphincs-shake-192f-simple 212,061,614 9 sphincs-sha2-256f-simple 7,081,467

10 sphincs-shake-192f-simple 8,233,255 10 AIMer256s 263,703,008 10 sphincs-sha2-192f-simple 7,123,456

11 sphincs-sha2-256f-simple 13,540,513 11 sphincs-sha2-256f-simple 272,214,600 11 sphincs-sha2-128f-simple 7,812,153

12 sphincs-shake-256f-simple 21,778,482 12 sphincs-shake-256f-simple 440,803,080 12 sphincs-shake-192f-simple 11,374,784

13 sphincs-sha2-256s-simple 213,627,804 13 sphincs-sha2-128s-simple 1,690,989,832 13 sphincs-shake-256f-simple 11,778,032

14 sphincs-sha2-128s-simple 222,113,099 14 sphincs-sha2-256s-simple 2,630,577,802 14 AIMer192f 13,025,861

15 sphincs-sha2-192s-simple 323,514,039 15 sphincs-sha2-128s-simple 2,725,259,275 15 AIMer256f 31,939,622

16 sphincs-shake-256s-simple 346,536,078 16 sphincs-sha2-192s-simple 2,989,370,882 16 AIMer128s 53,876,227

17 sphincs-shake-128s-simple 359,032,336 17 sphincs-shake-256s-simple 4,124,025,081 17 AIMer192s 102,567,956

18 sphincs-sha2-192s-simple 524,022,262 18 sphincs-shake-192s-simple 4,710,044,154 18 AIMer256s 257,224,646

In both Intel and ARM processors, the AIMer algorithms consistently demon-
strated superior performance. For key generation, AIMer128 proved to be the
most efficient, with all AIMer parameters significantly outperforming those of
SPHINCS+.

In signing operations, AIMer128f achieved the best results, and overall, the
AIMer algorithms outperformed SPHINCS+ across the board.

However, in the verification process, SPHINCS+ generally exhibited better
performance than the AIMer algorithms.

In summary, AIMer algorithms were the most effective in key generation and
signing, while SPHINCS+ was more efficient in verification on both Intel and
ARM processors.

7 Conclusion

This paper presents the benchmarking efforts performed on the candidate al-
gorithms of KpqC Round 2. KpqClean Ver2, the successor to the KpqClean
library, is now available on GitHub2. The goal of KpqClean Ver2, as with pre-

2 https://github.com/kpqc-cryptocraft/KpqClean ver2



KpqClean Ver2: Comprehensive Benchmarking and Analysis 33

Table 32: Performance Comparison: SPHINCS+ vs. AIMer(ARM)(unit:clock cy-
cles)
Rank Scheme keygen(avg) Rank Scheme Sign(avg) Rank Scheme Verify(avg)

1 AIMer128f 56,314 1 AIMer128f 2,324,875 1 sphincs-sha2-128s-simple 1,691,069

2 AIMer128s 56,395 2 AIMer192f 5,887,515 2 sphincs-shake-128s-simple 1,826,203

3 AIMer192f 123,386 3 AIMer256f 11,554,222 3 AIMer128f 2,158,816

4 AIMer192s 169,004 4 AIMer128s 18,404,651 4 sphincs-sha2-192s-simple 2,695,583

5 AIMer256s 291,148 5 AIMer192s 45,924,420 5 sphincs-shake-192s-simple 2,711,920

6 AIMer256f 292,269 6 sphincs-sha2-128f-simple 84,542,863 6 sphincs-sha2-256s-simple 3,758,715

7 sphincs-sha2-128f-simple 3,649,196 7 AIMer256s 88,425,057 7 sphincs-shake-256s-simple 3,998,496

8 sphincs-shake-128f-simple 3,952,483 8 sphincs-shake-128f-simple 92,399,930 8 sphincs-sha2-128f-simple 5,133,120

9 sphincs-sha2-192f-simple 5,312,027 9 sphincs-sha2-192f-simple 138,373,380 9 AIMer192f 5,482,033

10 sphincs-shake-192f-simple 5,800,574 10 sphincs-shake-192f-simple 148,824,161 10 sphincs-shake-128f-simple 5,565,225

11 sphincs-sha2-256f-simple 13,962,889 11 sphincs-sha2-256f-simple 284,393,734 11 sphincs-sha2-192f-simple 7,429,704

12 sphincs-shake-256f-simple 15,202,018 12 sphincs-shake-256f-simple 305,656,621 12 sphincs-sha2-256f-simple 7,765,007

13 sphincs-sha2-256s-simple 222,570,090 13 sphincs-sha2-128s-simple 1,750,772,084 13 sphincs-shake-192f-simple 8,013,609

14 sphincs-sha2-128s-simple 230,498,741 14 sphincs-sha2-128s-simple 1,915,535,299 14 sphincs-shake-256f-simple 8,148,539

15 sphincs-shake-256s-simple 242,995,939 15 sphincs-sha2-256s-simple 2,746,781,740 15 AIMer256f 10,770,937

16 sphincs-sha2-128s-simple 252,420,789 16 sphincs-sha2-128s-simple 2,894,620,586 16 AIMer128s 18,288,170

17 sphincs-sha2-192s-simple 337,468,644 17 sphincs-sha2-192s-simple 3,103,763,239 17 AIMer192s 45,489,467

18 sphincs-sha2-192s-simple 367,897,731 18 sphincs-sha2-192s-simple 3,310,939,009 18 AIMer256s 87,568,082

vious versions, is to provide benchmark results for KpqC candidate algorithms
in a standardized environment. This project aims to present benchmark results
in an integrated environment while offering a more convenient KpqC library.
Currently, it includes “clean” and “avx2” implementations, with plans to add
an “m4” implementation in the future. The comprehensive benchmark analy-
sis results can serve as valuable insights for understanding and researching the
KpqC cryptographic algorithm in the future. Our efforts are aimed at increasing
interest among researchers in the field of KpqC and providing a comfortable and
conducive environment for optimization implementation, algorithm analysis, and
further research and exploration.

References

1. “Nist pqc project.” https://csrc.nist.gov/Projects/

post-quantum-cryptography. Accessed : 2023-10-06.

2. R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS-Kyber algorithm specifications
and supporting documentation,” NIST PQC Round, vol. 2, no. 4, 2019.

3. L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and
D. Stehlé, “Crystals-Dilithium: A lattice-based digital signature scheme,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, pp. 238–268,
2018.



34 Sim et al.

4. P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest,
T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, “Falcon: Fast-fourier lattice-
based compact signatures over NTRU,” Submission to the NIST’s post-quantum
cryptography standardization process, vol. 36, no. 5, 2018.

5. D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rijneveld, and P. Schwabe,
“The SPHINCS+ signature framework,” in Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security, pp. 2129–2146, 2019.

6. R. Azarderakhsh, M. Campagna, C. Costello, L. D. Feo, B. Hess, A. Jalali, D. Jao,
B. Koziel, B. LaMacchia, P. Longa, et al., “Supersingular isogeny key encapsu-
lation,” Submission to the NIST Post-Quantum Standardization project, vol. 152,
pp. 154–155, 2017.

7. N. Aragon, P. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville, P. Ga-
borit, S. Ghosh, S. Gueron, T. Güneysu, et al., “Bike: bit flipping key encapsula-
tion,” 2022.

8. D. J. Bernstein, T. Chou, T. Lange, I. von Maurich, R. Misoczki, R. Niederha-
gen, E. Persichetti, C. Peters, P. Schwabe, N. Sendrier, et al., “Classic McEliece:
conservative code-based cryptography,” NIST submissions, 2017.

9. C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville,
P. Gaborit, E. Persichetti, G. Zémor, and I. Bourges, “Hamming quasi-cyclic
(hqc),” NIST PQC Round, vol. 2, no. 4, p. 13, 2018.

10. “Kpqc competition.” https://kpqc.or.kr/competition.html. Accessed: 2023-
07-30.

11. D.-C. Kim, C.-Y. Jeon, Y. Kim, and M. Kim, “Paloma: binary separable goppa-
based kem,” in Code-Based Cryptography Workshop, pp. 144–173, Springer, 2023.

12. J.-L. Kim, J. Hong, T. S. C. Lau, Y. Lim, and B.-S. Won, “Redog and its perfor-
mance analysis,” Cryptology ePrint Archive, 2022.

13. J. Kim and J. H. Park, “Ntru+: compact construction of ntru using simple encoding
method,” IEEE Transactions on Information Forensics and Security, 2023.

14. “Smaug-t: the key exchange algorithm based on module-lwe and module-lwr.”
https://kpqc.or.kr/images/pdf/SMAUG-T_Document.pdf. Accessed : 2024-02-23.

15. J. H. Cheon, H. Choe, D. Hong, and M. Yi, “Smaug: pushing lattice-based key
encapsulation mechanisms to the limits,” in International Conference on Selected
Areas in Cryptography, pp. 127–146, Springer, 2023.

16. S. Park, C.-G. Jung, A. Park, J. Choi, and H. Kang, “Tiger: tiny bandwidth key
encapsulation mechanism for easy migration based on rlwe (r),” Cryptology ePrint
Archive, 2022.

17. J. H. Cheon, H. Choe, J. Devevey, T. Güneysu, D. Hong, M. Krausz, G. Land,
M. Möller, D. Stehlé, and M. Yi, “Haetae: Shorter lattice-based fiat-shamir signa-
tures,” Cryptology ePrint Archive, 2023.

18. K.-A. Shim, J. Kim, and H. Kwon, “Ncc-sign: A new lattice-based signature scheme
using non-cyclotomic polynomials and trinomials,” KpqC Round, vol. 1, 2024.

19. K.-A. Shim and H. Kwon, “Mq-sign: A new post-quantum signature scheme based
on multivariate quadratic equations: Shorter and faster,” KpqC Round, vol. 1, 2024.

20. S. Kim, J. Ha, and J. Lee, “Aim: Symmetric primitive for shorter signatures with
stronger security,” in ACM CCS 2023: ACM Conference on Computer and Com-
munications Security, ACM (Association for Computing Machinery), 2023.

21. H. Kwon, M. Sim, G. Song, M. Lee, and H. Seo, “Evaluating kpqc algorithm
submissions: Balanced and clean benchmarking approach,” in International Con-
ference on Information Security Applications, pp. 338–348, Springer, 2023.

22. “PQClean project.” Available online: https://github.com/PQClean/PQClean. Ac-
cessed: 2022-07-29.



KpqClean Ver2: Comprehensive Benchmarking and Analysis 35

23. Y. Choi, M. Kim, Y. Kim, J. Song, J. Jin, H. Kim, and S. C. Seo, “Kpqbench:
Performance and implementation security analysis of kpqc competition round 1
candidates,” IEEE Access, 2024.

24. J. Viega, M. Messier, and P. Chandra, Network security with openSSL: cryptogra-
phy for secure communications. ” O’Reilly Media, Inc.”, 2002.

25. D. T. Nguyen and K. Gaj, “Optimized software implementations of crystals-kyber,
ntru, and saber using neon-based special instructions of armv8,” in Proceedings of
the NIST 3rd PQC Standardization Conference (NIST PQC 2021), 2021.

26. “Valgrind.” https://valgrind.org/. Accessed : 2024-07-23.



36 Sim et al.

A Appendix-A

A.1 Performance Comparison of KEM Clean

Table 33: Performance Comparison of KEM Key Generation(clean)(unit:cc)
Key Generation

Testing Environment1 Testing Environment2 Testing Environment3

rank scheme avg rank scheme avg rank scheme avg

1 SMAUG-TiMER 69,234 1 SMAUG-TiMER 61,064 1 SMAUG-T1 39,278

2 SMAUG-T1 143,625 2 SMAUG-T1 128,685 2 SMAUG-TiMER 40,742

3 SMAUG-T3 193,935 3 SMAUG-T3 176,020 3 SMAUG-T3 66,770

4 NTRU+KEM576 253,031 4 NTRU+PKE576 207,953 4 SMAUG-T5 119,675

5 NTRU+PKE768 310,102 5 NTRU+KEM576 209,949 5 NTRU+KEM576 152,653

6 NTRU+PKE576 329,712 6 NTRU+PKE864 223,966 6 NTRU+PKE576 162,109

7 NTRU+PKE864 348,486 7 NTRU+KEM864 228,042 7 NTRU+KEM768 170,987

8 NTRU+KEM864 354,592 8 NTRU+KEM768 232,394 8 NTRU+PKE768 172,444

9 NTRU+KEM768 354,704 9 SMAUG-T5 233,829 9 NTRU+KEM864 175,592

10 NTRU+PKE1152 637,652 10 NTRU+PKE768 234,498 10 NTRU+PKE864 180,081

11 NTRU+KEM1152 659,905 11 NTRU+PKE1152 558,631 11 NTRU+PKE1152 420,607

12 SMAUG-T5 1,566,958 12 NTRU+KEM1152 558,996 12 NTRU+KEM1152 425,625

13 PALOMA128 131,189,151 13 PALOMA128 147,357,235 13 PALOMA128 119,572,480

14 PALOMA256 769,657,392 14 PALOMA192 700,965,299 14 PALOMA192 561,481,159

15 PALOMA192 650,967,499 15 PALOMA256 819,112,319 15 PALOMA256 662,511,849

Table 34: Performance Comparison of KEM Encapsulation(clean)(unit:cc)
Encapsulation

Testing Environment1(clean) Testing Environment2(clean) Testing Environment3(clean)

rank scheme avg rank scheme avg rank scheme avg

1 SMAUG-T1 66,403 1 SMAUG-TiMER 58,115 1 SMAUG-T1 39,889

2 SMAUG-TiMER 76,165 2 SMAUG-T1 58,942 2 SMAUG-TiMER 39,914

3 NTRU+PKE576 83,245 3 NTRU+PKE576 78,594 3 NTRU+PKE576 56,945

4 NTRU+KEM576 85,541 4 NTRU+KEM576 81,678 4 NTRU+KEM576 57,392

5 NTRU+KEM768 106,690 5 PALOMA128 87,441 5 PALOMA128 58,133

6 NTRU+PKE768 107,632 6 SMAUG-T3 98,497 6 SMAUG-T3 64,752

7 NTRU+PKE864 128,465 7 NTRU+KEM768 101,297 7 NTRU+PKE768 73,866

8 NTRU+KEM864 128,823 8 NTRU+PKE768 102,024 8 NTRU+KEM768 74,605

9 PALOMA128 133,345 9 NTRU+KEM864 109,860 9 PALOMA192 83,003

10 NTRU+PKE1152 164,153 10 NTRU+PKE864 110,043 10 NTRU+PKE864 83,385

11 NTRU+KEM1152 164,274 11 PALOMA192 136,963 11 NTRU+KEM864 83,862

12 PALOMA192 176,834 12 NTRU+PKE1152 151,692 12 PALOMA256 97,140

13 PALOMA256 215,487 13 NTRU+KEM1152 152,931 13 NTRU+PKE1152 108,907

14 SMAUG-T3 243,970 14 SMAUG-T5 165,370 14 NTRU+KEM1152 108,935

15 SMAUG-T5 1,663,364 15 PALOMA256 200,987 15 SMAUG-T5 114,363



KpqClean Ver2: Comprehensive Benchmarking and Analysis 37

Table 35: Performance Comparison of KEM Decapsulation(clean)(unit:cc)
Decapsulation

Testing Environment1(clean) Testing Environment2(clean) Testing Environment3(clean)

rank scheme avg rank scheme avg rank scheme avg

1 SMAUG-T1 104,474 1 SMAUG-TiMER 73,249 1 SMAUG-TiMER 48,089

2 NTRU+PKE576 107,302 2 SMAUG-T1 74,463 2 SMAUG-T1 49,270

3 NTRU+KEM576 110,140 3 NTRU+PKE576 98,820 3 NTRU+KEM576 64,897

4 SMAUG-TiMER 112,282 4 NTRU+KEM576 108,342 4 NTRU+PKE576 65,513

5 NTRU+PKE768 140,803 5 NTRU+KEM768 125,636 5 SMAUG-T3 78,442

6 NTRU+KEM768 141,220 6 SMAUG-T3 128,148 6 NTRU+PKE768 85,777

7 NTRU+PKE864 169,804 7 NTRU+PKE768 129,611 7 NTRU+KEM768 85,814

8 NTRU+KEM864 170,729 8 NTRU+PKE864 142,710 8 NTRU+KEM864 100,583

9 NTRU+KEM1152 219,767 9 NTRU+KEM864 145,575 9 NTRU+PKE864 100,620

10 NTRU+PKE1152 230,312 10 SMAUG-T5 184,943 10 SMAUG-T5 130,111

11 SMAUG-T3 421,956 11 NTRU+KEM1152 212,747 11 NTRU+PKE1152 137,555

12 SMAUG-T5 1,877,628 12 NTRU+PKE1152 212,804 12 NTRU+KEM1152 137,606

13 PALOMA128 8,424,379 13 PALOMA128 8,033,779 13 PALOMA128 8,091,350

14 PALOMA192 41,799,839 14 PALOMA192 41,802,948 14 PALOMA192 39,835,958

15 PALOMA256 43,735,841 15 PALOMA256 45,735,541 15 PALOMA256 41,789,539

A.2 Performance Comparison of DSA Clean

Table 36: Performance Comparison of DSA Key Generation(clean)(unit:cc)
Key Generation

Testing Environment1(clean) Testing Environment2(clean) Testing Environment3(clean)

rank scheme avg rank scheme avg rank scheme avg

1 AIMer128s 108,704 1 AIMer128f 90,968 1 AIMer128s 60,690

2 AIMer128f 159,134 2 AIMer128s 146,339 2 AIMer128f 62,198

3 AIMer192s 187,591 3 AIMer192f 175,871 3 AIMer192s 126,874

4 AIMer192f 201,497 4 NCC-Sign1 205,450 4 AIMer192f 132,077

5 NCC-Sign1 300,401 5 AIMer192s 223,472 5 NCC-Sign1 169,791

6 NCC-Sign3 352,126 6 NCC-Sign3 280,512 6 NCC-Sign3 218,513

7 AIMer256f 413,606 7 NCC-Sign5 416,020 7 AIMer256s 299,965

8 AIMer256s 454,476 8 AIMer256f 448,151 8 AIMer256f 302,295

9 NCC-Sign5 455,065 9 AIMer256s 488,242 9 NCC-Sign5 330,636

10 HAETAE2 1,160,435 10 HAETAE2 1,067,698 10 HAETAE2 951,707

11 HAETAE5 1,998,427 11 HAETAE3 2,155,146 11 HAETAE3 1,686,812

12 HAETAE3 2,103,397 12 HAETAE5 2,225,344 12 HAETAE5 1,993,473

13 MQ-Sign-MQLR-256-72-46 74,764,874 13 MQ-Sign-MQLR-256-72-46 70,289,113 13 MQ-Sign-MQLR-256-72-46 108,328,299

14 MQ-Sign-MQRR-256-72-46 100,975,612 14 MQ-Sign-MQRR-256-72-46 101,307,620 14 MQ-Sign-MQRR-256-72-46 137,903,106

15 MQ-Sign-MQLR-256-112-72 286,180,511 15 MQ-Sign-MQLR-256-112-72 270,156,039 15 MQ-Sign-MQLR-256-112-72 548,057,963

16 MQ-Sign-MQRR-256-112-72 387,732,599 16 MQ-Sign-MQRR-256-112-72 372,556,356 16 MQ-Sign-MQRR-256-112-72 650,807,901

17 MQ-Sign-MQLR-256-148-96 750,300,836 17 MQ-Sign-MQLR-256-148-96 682,362,344 17 MQ-Sign-MQLR-256-148-96 1,575,443,946

18 MQ-Sign-MQRR-256-148-96 997,169,889 18 MQ-Sign-MQRR-256-148-96 913,690,602 18 MQ-Sign-MQRR-256-148-96 1,822,096,906



38 Sim et al.

Table 37: Performance Comparison of DSA Sign(clean)(unit:cc)
Sign

Testing Environment1(clean) Testing Environment2(clean) Testing Environment3(clean)

rank scheme avg rank scheme avg rank scheme avg

1 MQ-Sign-MQLR-256-72-46 463,964 1 MQ-Sign-MQLR-256-72-46 423,941 1 AIMer128s 60,690

2 NCC-Sign1 479,198 2 MQ-Sign-MQRR-256-72-46 753,662 2 AIMer128f 62,198

3 NCC-Sign3 600,143 3 NCC-Sign3 884,954 3 AIMer192s 126,874

4 MQ-Sign-MQRR-256-72-46 809,523 4 NCC-Sign5 1,049,172 4 AIMer192f 132,077

5 MQ-Sign-MQLR-256-112-72 1,289,973 5 MQ-Sign-MQLR-256-112-72 1,138,677 5 NCC-Sign1 169,791

6 NCC-Sign5 1,585,378 6 NCC-Sign1 1,161,522 6 NCC-Sign3 218,513

7 MQ-Sign-MQRR-256-112-72 2,057,398 7 MQ-Sign-MQRR-256-112-72 1,812,867 7 AIMer256s 299,965

8 HAETAE3 2,739,863 8 HAETAE2 1,866,070 8 AIMer256f 302,295

9 MQ-Sign-MQLR-256-148-96 2,762,744 9 MQ-Sign-MQLR-256-148-96 2,370,417 9 NCC-Sign5 330,636

10 HAETAE5 3,369,567 10 AIMer128f 3,288,188 10 HAETAE2 951,707

11 AIMer128f 3,742,915 11 HAETAE5 3,389,114 11 HAETAE3 1,686,812

12 MQ-Sign-MQRR-256-148-96 4,298,168 12 MQ-Sign-MQRR-256-148-96 3,660,222 12 HAETAE5 1,993,473

13 HAETAE2 5,032,357 13 HAETAE3 7,057,356 13 MQ-Sign-MQLR-256-72-46 108,328,299

14 AIMer192f 8,745,805 14 AIMer192f 7,292,073 14 MQ-Sign-MQRR-256-72-46 137,903,106

15 AIMer256f 16,706,302 15 AIMer256f 15,639,023 15 MQ-Sign-MQLR-256-112-72 548,057,963

16 AIMer128s 26,541,270 16 AIMer128s 23,324,902 16 MQ-Sign-MQRR-256-112-72 650,807,901

17 AIMer192s 65,094,493 17 AIMer192s 57,739,339 17 MQ-Sign-MQLR-256-148-96 1,575,443,946

18 AIMer256s 119,340,970 18 AIMer256s 116,361,684 18 MQ-Sign-MQRR-256-148-96 1,822,096,906

Table 38: Performance Comparison of DSA Verify(clean)(unit:cc)
Verify

Testing Environment1(clean) Testing Environment2(clean) Testing Environment3(clean)

rank scheme avg rank scheme avg rank scheme avg

1 HAETAE2 158,529 1 HAETAE2 170,103 1 HAETAE2 135,534

2 HAETAE3 275,419 2 HAETAE3 285,845 2 NCC-Sign1 220,085

3 NCC-Sign1 285,502 3 NCC-Sign1 288,198 3 HAETAE3 238,747

4 HAETAE5 342,870 4 HAETAE5 355,867 4 NCC-Sign3 279,032

5 NCC-Sign3 356,543 5 NCC-Sign3 391,048 5 HAETAE5 300,372

6 NCC-Sign5 591,947 6 NCC-Sign5 630,294 6 NCC-Sign5 447,622

7 MQ-Sign-MQRR-256-72-46 706,565 7 MQ-Sign-MQRR-256-72-46 643,609 7 MQ-Sign-MQLR-256-72-46 1,383,970

8 MQ-Sign-MQLR-256-72-46 733,587 8 MQ-Sign-MQLR-256-72-46 656,693 8 MQ-Sign-MQRR-256-72-46 1,449,188

9 MQ-Sign-MQRR-256-112-72 1,986,691 9 MQ-Sign-MQRR-256-112-72 1,709,939 9 MQ-Sign-MQLR-256-112-72 5,069,042

10 MQ-Sign-MQLR-256-112-72 2,016,272 10 MQ-Sign-MQLR-256-112-72 1,747,581 10 MQ-Sign-MQRR-256-112-72 5,294,775

11 AIMer128f 3,545,576 11 AIMer128f 2,961,062 11 AIMer128f 2,162,878

12 MQ-Sign-MQRR-256-148-96 4,272,864 12 MQ-Sign-MQRR-256-148-96 3,359,634 12 MQ-Sign-MQRR-256-148-96 6,023,046

13 MQ-Sign-MQLR-256-148-96 4,307,611 13 MQ-Sign-MQLR-256-148-96 3,454,074 13 MQ-Sign-MQLR-256-148-96 6,086,471

14 AIMer192f 7,800,523 14 AIMer192f 6,832,062 14 AIMer192f 5,503,737

15 AIMer256f 15,776,925 15 AIMer256f 14,820,473 15 AIMer256f 10,906,990

16 AIMer128s 27,013,406 16 AIMer128s 22,820,605 16 AIMer128s 13,628,278

17 AIMer192s 62,821,167 17 AIMer192s 56,700,184 17 AIMer192s 45,737,177

18 AIMer256s 119,625,648 18 AIMer256s 114,818,217 18 AIMer256s 88,643,000



KpqClean Ver2: Comprehensive Benchmarking and Analysis 39

A.3 Performance Comparison of KEM AVX2

Table 39: Performance Comparison of KEM Key Generation(AVX2)(unit:cc)
Key Generation

Testing Environment2(avx2) Testing Environment4(avx2)

rank scheme avg rank scheme avg

1 NTRU+PKE864 22,996 1 SMAUG-T1 (KEM90s) 72,566

2 NTRU+KEM864 26,132 2 NTRU+KEM576 73,798

3 NTRU+PKE576 28,451 3 NTRU+PKE576 79,520

4 NTRU+PKE768 29,094 4 NTRU+PKE864 87,100

5 NTRU+KEM768 34,551 5 NTRU+KEM864 94,406

6 SMAUG-T1 (KEM) 41,139 6 SMAUG-T1 (KEM) 131,751

7 NTRU+KEM1152 60,927 7 SMAUG-T3 (KEM) 132,416

8 SMAUG-T3 (KEM) 64,350 8 NTRU+KEM768 140,673

9 SMAUG-T1 (KEM90s) 70,489 9 NTRU+PKE768 141,808

10 NTRU+KEM576 74,524 10 SMAUG-T5 (KEM90s) 144,015

11 SMAUG-T3 (KEM90s) 91,033 11 NTRU+KEM1152 158,476

12 NTRU+PKE1152 97,123 12 NTRU+PKE1152 158,938

13 SMAUG-T5 (KEM90s) 108,447 13 SMAUG-T3 (KEM) 162,901

14 SMAUG-T5 (KEM) 146,222 14 SMAUG-T5 (KEM) 224,491

Table 40: Performance Comparison of KEM Encapsulation(AVX2)(unit:cc)
Encapsulation

Testing Environment2(avx2) Testing Environment4(avx2)

rank scheme avg rank scheme avg

1 NTRU+PKE576 21,394 1 NTRU+PKE768 26,999

2 NTRU+KEM768 29,121 2 NTRU+KEM768 37,193

3 NTRU+PKE768 29,486 3 NTRU+KEM1152 38,796

4 NTRU+PKE864 30,464 4 NTRU+PKE1152 44,797

5 NTRU+KEM864 32,559 5 SMAUG-T1 (KEM) 48,594

6 SMAUG-T1 (KEM) 33,704 6 NTRU+KEM864 51,431

7 SMAUG-T1 (KEM90s) 35,396 7 NTRU+KEM576 55,179

8 NTRU+KEM1152 40,212 8 NTRU+PKE576 61,034

9 NTRU+PKE1152 40,233 9 NTRU+PKE864 64,849

10 NTRU+KEM576 43,325 10 SMAUG-T3 (KEM90s) 69,773

11 SMAUG-T3 (KEM90s) 45,414 11 SMAUG-T1 (KEM90s) 74,438

12 SMAUG-T3 (KEM) 55,982 12 SMAUG-T3 (KEM) 74,948

13 SMAUG-T5 (KEM90s) 62,174 13 SMAUG-T5 (KEM90s) 76,148

14 SMAUG-T5 (KEM) 107,760 14 SMAUG-T5 (KEM) 135,314



40 Sim et al.

Table 41: Performance Comparison of KEM Decapsulation(AVX2)
Decapsulation

Testing Environment2(avx2) Testing Environment4(avx2)

rank scheme avg rank scheme avg

1 NTRU+KEM576 12,933 1 NTRU+PKE576 14,639

2 NTRU+KEM768 16,449 2 NTRU+KEM768 17,330

3 NTRU+KEM864 17,272 3 NTRU+PKE768 17,558

4 NTRU+PKE768 18,613 4 NTRU+KEM864 19,302

5 NTRU+PKE864 19,384 5 NTRU+KEM576 19,814

6 NTRU+PKE1152 24,370 6 NTRU+PKE864 21,408

7 NTRU+KEM1152 26,813 7 NTRU+KEM1152 24,911

8 SMAUG-T1 (KEM90s) 39,227 8 NTRU+PKE1152 26,357

9 SMAUG-T3 (KEM90s) 57,594 9 SMAUG-T1 (KEM90s) 42,832

10 SMAUG-T3 (KEM) 63,344 10 SMAUG-T1 (KEM) 55,682

11 SMAUG-T1 (KEM) 64,401 11 SMAUG-T3 (KEM90s) 67,223

12 SMAUG-T5 (KEM90s) 85,226 12 SMAUG-T3 (KEM) 91,347

13 SMAUG-T5 (KEM) 109,709 13 SMAUG-T5 (KEM90s) 102,099

14 NTRU+PKE576 11,979 14 SMAUG-T5 (KEM) 156,083

A.4 Performance Comparison of DSA AVX2

Table 42: Performance Comparison of DSA Key Generation(AVX2)(unit:cc)
Key Generation

Testing Environment2(avx2) Testing Environment4(avx2)

rank scheme avg rank scheme avg
1 AIMer128f 40,172 1 AIMer128f 109,474
2 AIMer128s 93,037 2 AIMer128s 126,120
3 AIMer192s 97,972 3 AIMer192f 199,741
4 AIMer192f 99,173 4 AIMer192s 211,196
5 NCC-Sign1 137,139 5 NCC-Sign1 226,966
6 NCC-Sign3 187,859 6 NCC-Sign3 233,022
7 AIMer256f 236,956 7 AIMer256s 294,201
8 AIMer256s 242,895 8 AIMer256f 359,442
9 NCC-Sign5 265,387 9 NCC-Sign5 398,589
10 HAETAE2 834,651 10 HAETAE2 829,349
11 HAETAE3 1,423,068 11 HAETAE3 1,463,470
12 HAETAE5 1,924,879 12 HAETAE5 1,902,225
13 MQ-Sign-MQLR-256-72-46 4,947,896 13 MQ-Sign-MQLR-256-72-46 3,737,246
14 MQ-Sign-MQRR-256-72-46 7,538,634 14 MQ-Sign-MQRR-256-72-46 5,690,604
15 MQ-Sign-MQLR-256-112-72 23,971,764 15 MQ-Sign-MQLR-256-148-96 16,810,793
16 MQ-Sign-MQRR-256-112-72 32,740,982 16 MQ-Sign-MQLR-256-112-72 16,810,793
17 MQ-Sign-MQLR-256-148-96 57,884,657 17 MQ-Sign-MQRR-256-112-72 24,379,382
18 MQ-Sign-MQRR-256-148-96 81,811,186 18 MQ-Sign-MQRR-256-148-96 61,059,896



KpqClean Ver2: Comprehensive Benchmarking and Analysis 41

Table 43: Performance Comparison of DSA Sign(AVX2)(unit:cc)
Sign

Testing Environment2(avx2) Testing Environment4(avx2)

rank scheme avg rank scheme avg
1 MQ-Sign-MQLR-256-72-46 59,773 1 MQ-Sign-MQLR-256-72-46 46,147
2 MQ-Sign-MQRR-256-72-46 76,323 2 MQ-Sign-MQRR-256-72-46 63,070
3 MQ-Sign-MQLR-256-112-72 164,022 3 MQ-Sign-MQLR-256-112-72 126,525
4 MQ-Sign-MQRR-256-112-72 206,977 4 MQ-Sign-MQRR-256-112-72 179,025
5 NCC-Sign1 207,323 5 NCC-Sign1 211,273
6 MQ-Sign-MQLR-256-148-96 260,591 6 MQ-Sign-MQLR-256-148-96 248,743
7 HAETAE3 374,489 7 MQ-Sign-MQRR-256-148-96 300,749
8 NCC-Sign3 374,557 8 NCC-Sign3 327,080
9 MQ-Sign-MQRR-256-148-96 409,799 9 HAETAE3 391,344
10 NCC-Sign5 422,955 10 HAETAE5 439,080
11 AIMer128f 811,275 11 NCC-Sign5 509,618
12 HAETAE5 1,077,729 12 HAETAE2 689,815
13 AIMer192f 2,210,305 13 AIMer128f 988,392
14 AIMer256f 4,071,768 14 AIMer192f 2,693,700
15 HAETAE2 4,945,876 15 AIMer256f 5,216,095
16 AIMer128s 5,889,742 16 AIMer128s 7,384,692
17 AIMer192s 15,833,475 17 AIMer192s 20,005,582
18 AIMer256s 29,154,407 18 AIMer256s 42,617,762

Table 44: Performance Comparison of DSA Verify(AVX2)(unit:cc)
Verify

Testing Environment2(avx2) Testing Environment4(avx2)

1 MQ-Sign-MQLR-256-72-46 59,773 1 MQ-Sign-MQLR-256-72-46 46,147
2 MQ-Sign-MQRR-256-72-46 76,323 2 MQ-Sign-MQRR-256-72-46 63,070
3 MQ-Sign-MQLR-256-112-72 164,022 3 MQ-Sign-MQLR-256-112-72 126,525
4 MQ-Sign-MQRR-256-112-72 206,977 4 MQ-Sign-MQRR-256-112-72 179,025
5 NCC-Sign1 207,323 5 NCC-Sign1 211,273
6 MQ-Sign-MQLR-256-148-96 260,591 6 MQ-Sign-MQLR-256-148-96 248,743
7 HAETAE3 374,489 7 MQ-Sign-MQRR-256-148-96 300,749
8 NCC-Sign3 374,557 8 NCC-Sign3 327,080
9 MQ-Sign-MQRR-256-148-96 409,799 9 HAETAE3 391,344
10 NCC-Sign5 422,955 10 HAETAE5 439,008
11 AIMer128f 811,275 11 NCC-Sign5 509,618
12 HAETAE5 1,077,729 12 HAETAE2 699,815
13 AIMer192f 2,210,305 13 AIMer128f 988,392
14 AIMer256f 4,071,768 14 AIMer192f 2,674,129
15 HAETAE2 4,946,575 15 AIMer256f 5,216,095
16 AIMer128s 5,889,742 16 AIMer128s 7,384,692
17 AIMer192s 15,833,475 17 AIMer192s 20,005,582
18 AIMer256s 29,154,407 18 AIMer256s 42,617,762


