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Abstract. The search for differential characteristics on block ciphers
is a difficult combinatorial problem. In this paper, we investigate the
performances of an AI-originated technique, Single Player Monte-Carlo
Tree Search (SP-MCTS), in finding good differential characteristics on
ARX ciphers, with an application to the block cipher SPECK. In order
to make this approach competitive, we include several heuristics, such as
the combination of forward and backward searches, and achieve signif-
icantly faster results than state-of-the-art works that are not based on
automatic solvers. We reach 9, 11, 13, 13 and 15 rounds for SPECK32,
SPECK48, SPECK64, SPECK96 and SPECK128 respectively. In order
to build our algorithm, we revisit Lipmaa and Moriai’s algorithm for
listing all optimal differential transitions through modular addition, and
propose a variant to enumerate all transitions with probability close (up
to a fixed threshold) to the optimal, while fixing a minor bug in the
original algorithm.

Keywords: Monte Carlo Tree Search · Differential Cryptanalysis · ARX
· Block Ciphers · SPECK

1 Introduction

Block ciphers are a major building block for modern communications and every-
day applications. Assessing the security of these primitives is a difficult, yet essen-
tial task: in particular, thorough theoretical evaluation of block ciphers permits
to estimate their security margin, based on the highest number of rounds that can
be attacked by classical attacks, such as differential cryptanalysis [Mat94]. Dif-
ferential cryptanalysis studies the propagation of a perturbation of the plaintext
through the cipher, in the form of differential characteristics. This perturbation
represents the difference between the evaluation of two plaintexts throughout
the rounds of the cipher. The goal is to find differential characteristics with high



probability, since they can be used to attack the cipher. Finding such character-
istics rapidly is important, as a fast search enables designers to test vast sets of
parameters in a short amount of time when building new primitives.

Two main approaches coexist to find good differential characteristics: one
relies on manually implemented specialized graph-based search strategies, in the
line of Matsui’s algorithm [Mat94], while the other uses automatic tools, such
as SAT, CP, or MILP solvers. The main appeal of using solvers is that the user
only needs to implement a representation of the problem in a specific paradigm,
and the search itself is performed by an optimized solver, using dedicated propa-
gators. Therefore, using a solver often results in a more efficient implementation,
and less chances of human error, as the solvers are typically battle-tested. On
the other hand, the generality of automatic solvers may come at the cost of
performance, as more efficient specialized algorithms may exist. While the two
approaches share the same final goal, the solver-based route mostly focuses on
finding efficient ways to model the problem, whereas the graph-based route re-
quires finding better ways to explore the search space.

Indeed, the difficulty in finding good differential characteristics stems from
the mere size of the search space, and the resulting combinatorial explosion.
However, games such as Go have comparably massive search spaces (over 10170

possible games), but are being dominated through AI-originated methods. In
particular, Monte-Carlo Tree Search (MCTS) [CBSS08] has proven to be a good
exploration strategy for multiplayer games. An extension to single-player games,
called single-player MCTS [SWvdH+08], enables similar performances for non-
adversarial scenarios.

In this paper, we focus on graph-based searches (as opposed to solver-based),
and explore new algorithms for the search of differential characteristics. Among
the three main families of block ciphers, Substitution Permutation Networks
(SPN), Feistel ciphers and Addition Rotation Xor (ARX), we focus on the latter.
In ARX ciphers, modular addition is used to provide non-linearity; its differential
properties were extensively studied by Lipmaa and Moriai in [LM01]. Building
on their work on efficient algorithms for the differential analysis of modular addi-
tion, we propose new variations, as well as a minor correction. We then propose
a single-player MCTS based approach for finding differential characteristics, ex-
ploiting new heuristics, and obtain promising results on the block cipher SPECK.

Our contributions are the following:

1. We show an inaccuracy in Lipmaa-Moriai Alg. 3for enumerating optimal tran-
sitions through modular addition, and propose a fix.

2. We propose an extension to Lipmaa-Moriai Alg. 3, to enumerate not only the
transitions with optimal probability 2−t, but also δ-optimal transitions, with
probability better than 2−t−δ, for a fixed offset δ. Besides being of theoretical
interest, this is useful in our techniques.

3. We propose an adaptation of single-player MCTS to the differential charac-
teristic search problem.
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4. We propose a specialization of this algorithm for the block cipher SPECK,
using new dedicated heuristics. These heuristics allow our tool to be faster
than other graph-based techniques on all instances of SPECK, and some-
times even solver-based ones.

1.1 Related Works

The search for good differential characteristics on SPECK has first been tackled
using a variant of Matsui’s algorithm. Matsui’s algorithm [Mat94] is a Depth-
First Search (DFS) algorithm which derives A∗-like heuristics from the knowl-
edge of previous rounds information. Initially proposed for Feistel ciphers, Mat-
sui’s algorithm was then extended to ARX ciphers in [BV14], using the concept
of threshold search. Threshold search relies on a partial Difference Distribution
Table (pDDT), containing all differential transitions up to a probability thresh-
old. The same authors later noted that sub-optimal results were returned by
threshold search, and proposed a new variant of Matsui’s algorithm, that main-
tains bit-level optimality through the search. In [LLJW21], a different variant
of Matsui’s algorithm is proposed, where the differential propagation through
modular addition is modeled as a chain of connected S-Boxes, using carry-bit-
dependent difference distribution tables (CDDT). A similar method is further
improved, both in the construction of the CDDT and in the search process,
in [HW19].

Finally, in 2018, Dwivedi et al. used for the first time a MCTS-related method
to find differential characteristics on the block cipher LEA [DS18] and, subse-
quently, on SPECK [DMS19]. Their work have some similarities with ours, es-
pecially the fact that we are both using single-player variants of MCTS (in their
case, the Nested MCTS). The main differences are:

– in [DMS19] the expansion step is missing. Moreover, when a difference is
not in the initial table, the XOR between the two words of SPECK is taken
deterministically as the output difference of the modular addition.

– A scoring function is missing, so the paths are completely randomized and
the results of the previous searches are not used for the new ones.

The results were sub-optimal, due to the fact that this interpretation of the
MCTS is equivalent to a search that optimizes the best differential transition
only locally rather than globally.

In addition to these Matsui-based approaches, the state-of-the-art solver-
based results are presented in Table 1 for completeness, although we do not
directly compare to them, as solver-based approaches, to this day, scale better
than Matsui-based techniques for the case of SPECK. In particular, the listed
results are an SMT model based on the combination of short trails by Song et
al [SHY16], an MILP model by Fu et al. [FWG+16], and an SMT model by Liu
et al., integrating Matsui-like heuristics [LLJW21].
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SPECK
version

Reference of
the attack

Technique Number of
rounds reached

Weight Time

32

[DMS19] NMCTS 9 31 -
[FWG+16] MILP 9 30 -
[SHY16] SMT 9 30 -
[BRV14] Matsui-like 9 30 240m

[BVLC16] Matsui-like 9 30 12m
[LLJW21] Matsui-like (CarryDDT) 9 30 0.15h
[SWW21] Matsui + SAT 9 30 7m
[HW19] Matsui-like (CombinationalDDT) 9 30 3m

This work SP-MCTS 9 30 55s

48

[BVLC16] Matsui-like 9 33 7d
[DMS19] NMCTS 10 43 -
[BRV14] Matsui-like 11 47 260m
[SHY16] SMT 11 46 12.5d

[FWG+16] MILP 11 45 -
[SWW21] Matsui + SAT 11 45 11h
[LLJW21] Matsui-like (CarryDDT) 11 45 4.66h
[HW19] Matsui-like (CombinationalDDT) 11 45 2h

This work SP-MCTS 11 45 7m18s

64

[BVLC16] Matsui-like 8 27 22h
[DMS19] NMCTS 12 63 -

This work SP-MCTS 13 55 48m50s
[BRV14] Matsui-like 14 60 207m

[FWG+16] MILP 15 62 -
[SWW21] Matsui + SAT 15 62 5.3h
[HW19] Matsui-like (CombinationalDDT) 15 62 1h
[SHY16] SMT 15 62 0.9h

[LLJW21] Matsui-like (CarryDDT) 15 62 0.24h

96

[BVLC16] Matsui-like 7 21 5d
[HW19] Matsui-like (CombinationalDDT) 8 30 162h

[LLJW21] Matsui-like (CarryDDT) 8 30 48.3h
[SWW21] Matsui + SAT 10 49 515.5h
This work SP-MCTS 10 49 1m23s

[DMS19] NMCTS 13 89 -
This work SP-MCTS 13 84 14m21s
[FWG+16] MILP 16 87 -
[SHY16] SMT 16 ≤ 87 ≤ 11.3h

128

[BVLC16] Matsui-like 7 21 3h
[HW19] Matsui-like (CombinationalDDT) 7 21 2h

[LLJW21] Matsui-like (CarryDDT) 8 30 76.86h
[SWW21] Matsui + SAT 9 39 40.1h
This work SP-MCTS 9 39 1m29s

[DMS19] NMCTS 15 127 -
This work SP-MCTS 15 115 8m34s
[FWG+16] MILP 19 119 -
[SHY16] SMT 19 ≤ 119 ≤ 5.2h

Table 1. Comparison between the different techniques found in literature, with timings
when reported. Solver-based works are indicated in italic.
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1.2 Structure of This Work

This work is structured as follows. In Section 2, we give reminders on relevant
background knowledge. In Section 3, we give an overview of Lipmaa and Moriai’s
algorithm, which we adapted to our needs; moreover, we address an inaccuracy
in the original version of the algorithm. In Section 4, we propose a general
algorithm to address the problem of searching differential characteristics with
the Monte Carlo Tree Search technique. In Section 5, we explain the weaknesses
of the aforementioned algorithm when it is applied specifically to SPECK and
we describe the solutions we adopted. We conclude the paper in Section 6.

2 Preliminaries

In this section, we present the main concepts on which our work is based. We
describe the Monte Carlo Tree Search algorithm, the concept of differential crypt-
analysis, the related structure called Difference Distribution Table, the SPECK
family of ciphers and, in conclusion, one key recovery attack strategy for SPECK.

2.1 Notation

In the paper, we use the following notation. We consider bit strings of size n,
indexed from 0 to n− 1, where xi denotes the ith bit of x, with 0 being the least

significant bit, i.e. x =
n−1

∑
i=0

xi ⋅ 2
i.

We respectively use ⊞, ⋘, ⋙ and ⊕ to denote addition modulo 2n, left and
right bitwise rotations and bitwise XOR.

2.2 Monte Carlo Tree Search

Monte Carlo inspired methods are a very popular approach for intelligent playing
in board games. They usually extend classical tree-search methods in order to
solve the problem of not being able to search the full tree for the best move
(as in a BFS or a DFS, both described in [Koz92]) because the game is too
complex, or not being able to construct an heuristic evaluation function to apply
classical algorithms like A* or IDA*, introduced respectively in [HNR68] and in
[Kor85]. The general approach of using Monte Carlo methods for tree-search
related problems is referred as Monte Carlo Tree Search (MCTS). Monte Carlo
Tree Search was first described as such in 2006 by Coulom [Cou06] on two-player
games. Similar algorithms were however already known in the 1990s, for example
in Abramson’s PhD thesis of 1987 [Abr87]. MCTS for single-player games, or SP-
MCTS, was introduced in 2008 by Schadd et al. [SWvdH+08], on the SameGame
puzzle game.

The classical algorithm of MCTS has four main steps:
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– Selection. In the selection phase, the tree representing the game at the cur-
rent state is traversed until a leaf node is reached. The root of the tree here
is the current state of the game (for example, the positions of the pieces in a
chess board), while a leaf is a point ahead in the game (not necessarily the
end). The tree is explored using the results of previous simulations.

– Simulation. In the simulation phase, the game is played from a leaf node
(reached by selection) until the end. Simulation usually uses completely ran-
dom choices or heuristics not depending on previous simulations or on the
game so far. A payout is given when the end is reached, that in two-player
games usually is win, draw or lose (represented as {1,0,−1}). Usually for the
first runs, when there is no information on the goodness of the moves in the
selection phase, only the simulation is done.

– Expansion. In the expansion phase, the algorithm decides, based on the
payout, if one or more of the states explored in the simulation phase are
worth to be added to the tree. For each simulation a small number of nodes
(possibly zero) are added to the initial tree.

– Backpropagation. In the backpropagation phase, the results of the simulation
are propagated back to the root. In particular, for every node in the path
followed in the selection step, some information about the final payout of the
simulation is added, in order to make the following simulation phases more
accurate.

Single Player Monte Carlo Tree Search. Single Player MCTS [SWvdH+08] (SP-
MCTS), is an application of these techniques to single-player games. The struc-
ture of the algorithm is the same as the two-player version, with two major
differences:

– In the selection phase, there is no uncertainty linked to the opponent’s next
moves, so that the scores can be set in a more accurate way for each node.

– In the simulation phase, the space of the payout may be way bigger than
3 elements, leading to difficulties in the backpropagation of the final score.
In games where there is a theoretical minimum and maximum payout, it is
usually rescaled in the interval [0,1].

The UCT formula. For the selection phase, Schadd et al. [SWvdH+08] used
a modified version of the UCT (Upper Confidence bounds applied to Trees)
formula initially proposed by Kocsis and Szepesvári [KS06]. It computes the
score of an edge of the search tree as:

UCT (N, i) =X +C ⋅

¿
Á
ÁÀ ln t(N)

t(Ni)
+

¿
Á
Á
ÁÀ∑x2j − t(Ni) ⋅X

2
+D

t(Ni)

where N is the current node, Ni is the i-th child node of N (i ∈ {1,2, . . . n} if
the node N has n children nodes), the xj are the scores of the runs started from
node Ni, X is the average of them, t(N) is the number of visits of the node N ,
and C, D are constants to be chosen.
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2.3 Differential Cryptanalysis

Differential cryptanalysis is a technique introduced by Biham and Shamir in
[BS91] and used to analyze the security of cryptographic primitives. The basic
element used in this field is a difference, which is a perturbation of the input or
the output of the studied function. Usually the differences are defined as XOR
ones, so, given two plaintexts p0, p1 and the corresponding ciphertexts c0, c1,
we call an input difference a value ∆p = p0 ⊕ p1 coming from the XOR of the
two plaintexts, and an output difference ∆c = c0 ⊕ c1 the one coming from the
two ciphertexts. The pair of input and output differences (∆p,∆c) is called a
differential. For primitives divided in rounds, we call the sequence of differentials
for each round a differential characteristic.

Differentials and differential characteristics are (usually) not deterministic
due to non-linear components in the structure of cryptographic primitives, so
the main goal for the cryptanalyst is to calculate their probability for randomly
sampled plaintexts. More formally, for a function f we have

Pf(∆p→∆c) =
∑p0∈P Id(f(p0) ⊕ f(p0 ⊕∆p) =∆c)

∣P ∣
,

where P is the space of possible plaintexts and Id is the identity function, as-
suming value 1 if the condition is true and 0 otherwise.

For differential characteristics we can usually rely on the Markov assumption,
which is formalized in [LMM91], having

Pf(∆p→∆1 →∆2 → ⋯→∆n →∆C) =

= Pf(∆p→∆1) ⋅ Pf(∆1 →∆2) ⋅ ... ⋅ Pf(∆n →∆c).

This assumption does not hold in general since it relies on particular condi-
tions. In the case of key-alternating ciphers, i.e., the round keys are added by
XOR as in SPECK, having independent and uniformly distributed round keys
is sufficient. However, the assumption is usually made for practical reasons.

The key point of differential cryptanalysis is usually to find differential char-
acteristics that propagate with a high probability through the largest possible
numbers of rounds.

2.4 Modular Addition and (Partial) DDTs

The source of branching in our search is the non-linear component, the modular
addition modulo 2n. Its differential properties were famously studied by Lipmaa
et al. [LM01] and Biryukov et al. [BV13].

Given a differential we can define the XOR differential probability of modular
addition xdp+ as

xdp+(α,β, γ) =
∣{(a, b) ∶ (a⊕ α) ⊞ (b⊕ β) = (a ⊞ b) ⊕ γ}∣

22n
.

Similarly we can define xdp− for modular subtraction.
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In this paper, we sometimes refer to the inverse base 2 logarithm of a differ-
ential probability, e.g., −log2(xdp+(α,β, γ)), as its weight.

Lipmaa et al. showed that xdp+(α,β, γ) > 0 if and only if α0 ⊕ β0 = γ0 and
for every position i such that αi = βi = γi we have γi+1 = αi+1 ⊕ βi+1 ⊕ βi.

The authors give then a closed formula for this probability, that is

xdp+(α,β, γ) = 2−(n−1)+w

where w is the number of indices i such that αi = βi = γi, excluding the most
significant bit.

Moreover, they give an efficient algorithm to find all values of γ such that
xdp+(α,β, γ) is maximum for fixed α and β. This algorithm is described in the
next section.

For some functions, such as SBoxes, a difference distribution table (DDT)
containing the possible differential transitions and their probabilities can be
built.

In the case of modular addition, as n grows, the size of the DDT makes it
impractical to compute and store, as it would need to store all 22⋅n possible
input differences, and up to 2n output differences for each input difference. To
address this issue, in [BV13], Biryukov et al. proposed the idea of a partial DDT
(pDDT), where only differential transitions with probability greater than a fixed
threshold are stored. The authors have shown that, for some families of functions,
an efficient algorithm to compute pDDT entries exists, and this is the case for
modular addition.

The algorithm relies on the fact that, calling

pk = xdp+(αk−1...α0, βk−1...β0, γk−1...γ0),

it holds 1 ∶= p0 ≥ p1,≥ ... ≥ pn−1. From this fact, the algorithm constructs the
table bit-by-bit. The interested reader can find the details in the original work.

2.5 The SPECK Family of Block Ciphers

SPECK [BSS+15] is a family of ARX block ciphers proposed in 2013 by the
National Security Agency (NSA). SPECK comes in five versions, identified by
their block sizes (in bits) as SPECK32, SPECK48, SPECK64, SPECK96 and
SPECK128; each version has different options for the key size, which, together
with the block size, determines the number of rounds.

The state of the cipher is divided in two words of N/2 bits, where N is the
block size (for example, SPECK32 has two words of 16 bits); calling xi and yi
the input words at round i, the cipher can be described as

xi+1 = ((xi ⋙ α) ⊞ yi) ⊕ ki,

yi+1 = (yi ⋘ β) ⊕ xi+1,

where α and β are constants depending on the version of SPECK ((α,β) = (7,2)
for SPECK32 and (α,β) = (8,3) otherwise). The term ki refers to the round key,
obtained from the master key through the key schedule algorithm.
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2.6 Differential characteristics and key recovery in SPECK

In 2014, Dinur [Din14] proposed an attack on round-reduced versions of all the
variants of SPECK. Starting from an r round differential characteristic, the
attack recovers the last two subkeys of the r + 2 rounds cipher working with a
guess-and-determine strategy on the last two modular additions of the cipher.
The attack can be extended to r + 4 rounds by bruteforcing two more subkeys,
adding a complexity of 22n.

3 Lipmaa’s Algorithms: Known Facts and New Results

In [LM01], Lipmaa and Moriai present a set of algorithms for the study of the
differential behaviour of modular addition. The most widely used of these al-
gorithms is Algorithm 2, which, given α,β, γ, returns xdp+(α,β → γ); it is a
cornerstone in the differential cryptanalysis of ARX ciphers. A less known, yet
very useful result, is Algorithm 3 (Lipmaa-Moriai Alg. 3), which, given α,β, enu-
merates all output differences γ such that xdp+(α,β → γ) is maximal.

In this section, we present a generalization of Lipmaa-Moriai Alg. 3to find good
but not optimal transitions, and a fix for an inaccuracy in the original algorithm,
leading to wrong results for some inputs. The final algorithm is reported at the
end of the section.

3.1 Overview of Algorithm 2

As a reminder, the output difference γ to a modular addition is equal to α⊕β⊕δc,
where δc denotes a difference in the carry.

Algorithm 2 first determines whether a transition from (α,β) to γ is valid,
before computing its probability. A transition is said to be valid iff

eq(α << 1, β << 1, γ << 1) ∧ (α⊕ β ⊕ γ ⊕ (β << 1)) = 0 (1)

where x << 1 is the left shift, which append a 0 at the rightmost side of x’s
bit representation, and eq(x, y, z) is 1 in all positions where xi = yi = zi, and 0
elsewhere.

This condition stems from the observation that three carry patterns are de-
terministic, whereas the other cases all have probability 1

2
:

1. γ0 = α0 ⊕ β0
2. If αi = βi = γi = 0, then γi+1 = αi+1 ⊕ βi+1 (because it implies that δci+1 = 0)
3. If αi = βi = γi = 1, then γi+1 = αi+1⊕βi+1⊕1 (because it implies that δci+1 = 1)

Any transition violating these conditions is invalid; all other transitions are
possible. It is easy to verify that Equation 1 eliminates the invalid transitions.

The probability of a valid transition is determined by the number of oc-
currences w of above mentioned deterministic carry propagation cases 2 and 3,
excluding the most significant bit, as 2−n+1+w.
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3.2 High Level Overview of Lipmaa-Moriai Alg. 3

Following the notations of [LM01], let li be the length of the longest common
alternating bit chain: αi = βi ≠ αi+1 = βi+1 ≠ ... ≠ αi+li = βi+li , and let the
common alternation parity C(α,β) be a binary string with length n defined as:

– C(α,β)i = 1 if li is even and non-zero,
– C(α,β)i = 0 if li is odd,
– unspecified when li = 0 (can be both 0 and 1, not affecting subsequent

algorithms since there is no chain).

The interested reader can find an algorithm to retrieve C(x, y) in O(logn) in
the original work [LM01]. This tool is the main ingredient used by the authors to
construct Algorithm 3, an algorithm that, given in input two n-bit values α,β,
retrieves all the possible values γ such that the probability of modular addition
with respect to xor: xdp+(α,β → γ) is maximum.

Alternating chains are relevant to Lipmaa-Moriai Alg. 3, because in the case
of a chain of length 2, the carry propagation rules force at least one probabilistic
transition: if γi = αi = βi, then we have γi+1 = αi+1 ⊕ βi+1 ⊕ βi, and by definition
γi+1 ≠ αi+1, so that γi+2 is free. Conversely, if γi ≠ αi, then γi+1 is free; in both
cases, a probability is paid. Intuitively, the number if times a probability is paid
for an even length chain is li

2
, whereas for an odd length chain, it depends on

which value is chosen first.
In Lipmaa-Moriai Alg. 3, the list of optimal γ values is built bit-by-bit, starting

from position 1; position 0 is always set to α0 ⊕ β0, following rule 1.
For the remaining bits, 3 cases are to be distinguished:

(a) if αi−1 = βi−1 = γi−1, then the choice γi = αi−1 ⊕ αi ⊕ βi is the only valid
option, by transition rule 1.

(b) else if αi ≠ βi, then both choices of γi incur a probability of 1
2

(as none of the
deterministic transitions are available); this is equivalent to a chain of length
0. Similarly, if i = n − 1, then both choices are equivalent, as position i − 1
is not part of the total probability. Finally, if αi = βi but C(α,β)i = 1, then
both choices are equivalent again; in reality, this last case is not completely
true, but we will come back to it at the end of the section.

(c) Finally, when αi = βi and C(α,β)i = 0, choosing γi = αi results in a proba-

bility cost equal to 2−⌊
li
2 ⌋ for the next li positions, whereas the other choice

has cost 2−⌊
li
2 +1⌋, so that the optimal choice is γi = αi.

For the remainder of this section, we refer to these as case or branch (a), (b),
(c) respectively.

3.3 A fix for the original algorithm

Lipmaa-Moriai Alg. 3 presents an inconsistency. Consider for example the input
difference (α,β) = (10112,10012); we have C(α,β) = 01002. Applying Algorithm
3, we find:
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– γ0 = 0 (initialisation case)

– γ1 = {0,1} (case (b), since α1 ≠ β1)

– γ2 = {0,1} (case (b), since C(α,β)2 = 1)

– γ3 = 0 if γ2 = 0, {0,1} otherwise.

Therefore, γ = 11102 is listed as optimal. However, we have xdp+(10112,10012 →
11102) = 2−3, while the optimal probability is 2−2 (reached, for instance, with
γ = 00102). The discrepancy occurs when C(α,β)n−2 is equal to 1, and αn−3 ≠
βn−3. The proof given in [LM01] considers both choices of γi equivalent in the (b)
branch when C(α,β)i = 1, because the length of the chain is l

2
, and choosing 0

or 1 only shifts the probability vector. This is however incorrect when the chain
ends at position n−1, as this position does not count in the probability, and can
therefore not be counted as bad.

However, at position n− 2, picking γn−2 = αn−2 implies that no probability is
paid (because eq(αn−2, βn−2, γn−2) = 1), and position n − 1 is free by definition.
On the other hand, picking γn−2 ≠ αn−2 costs a probability, so that both choices
are not equivalent in this case.

To fix this issue, the bit string returned by the common alternation parity
algorithm can be modified so that all positions that are part of a chain ending
at position n−1 are set to 0. The new algorithm to compute C(α,β) is reported
in Algorithm 1.

Algorithm 1 Fix for the computation of C(α,β)

Require: a bit-size n ≥ 1, two n-bits input differences α,β.
Ensure: the corrected version of C(α,β) to make Lipmaa-Moriai Alg. 3work.

p = CLM(α,β) ▷ original version from Lipmaa and Moriai

for i = 0 to n − 1 do
j = n − 1 − i
if αj = βj and αj−1 = βj−1 and αj ≠ αj−1 then

pj = 0
else

break
return p

In addition, Lipmaa-Moriai Alg. 3describes a solution by the values allowed for
γ only (rather than building an explicit list). Consider α = 0b0010, β = 0b1011:
for this example, C(α,β)1 = 1, so that the elif branch is chosen for bit 1, allowing
both 0 and 1 for γ1: the possible values for γ2 depends on the choice made for
γ1. Removing information on this dependency leads to invalid or sub-optimal
solutions being enumerated (such as 0b1101). This can be addressed either via
building an explicit list, or with a graph representation described further. The
final fixed algorithm is Algorithm 2 with δ = 0.
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3.4 Finding δ-optimal Transitions

We propose a generalization of Lipmaa-Moriai Alg. 3(see Algorithm 2), which
takes as input α,β, δ, where δ is an offset, such that that the algorithm returns
all γ having xdp+(α,β → γ) ≥ maxγ(xdp+(α,β → γ)) ⋅ 2−δ; i.e., solutions with
probability within a distance 2−δ of the optimal. We call such solutions δ-optimal.

Intuitively, the goal is to modify a branch to eliminate at most δ visits of
case (a) compared to an optimal difference, paying every time a cost of 1

2
.

Violating case (a) immediately leads to a transition with probability 0, per
rules 2 and 3. On the other hand, the values chosen in case (b) have no influence
on the final probability. Therefore, we focus on case (c).

Our algorithm works as follows: for at most δ times, when in branch (c),
chose γi = ¬αi. Therefore, at position i+1, branch (a) cannot be chosen anymore.
Intuitively, this is equivalent to paying a probability cost at a position that should

be free. In order to list all solutions, we go through all
δ

∑
i=0

(
t
i
) possible positions,

where t is the number of visits to case (c) in Lipmaa-Moriai Alg. 3.
We now give arguments for the soundness and completeness of our algorithm;

i.e., show that our algorithm returns only δ-optimal solutions, and that it returns
all δ-optimal solutions.

Soundness. By Lemma 2 of [LM01], xdp+(α,β, γ) = 2−(n−1)+w, where w is the
number of visits to branch (a). In our algorithm, we change the outcome of
branch (c), effectively forbidding one access to branch (a), at most δ times,
therefore adding a factor at most 2−δ to the final probability.

Completeness. Assume γ′ to be a δ-optimal output difference for a given (α,β),
such that it is not found by our algorithm. Let γ′′ be a δ-optimal returned by
our algorithm for the same (α,β). Compare these differences bit-by-bit: if they
differ at an index that (in our difference γ′′) originated from case (b), we have
it in our list. If the difference originates from case (c), then we also have it since
we flipped all the possible combinations of indices originating from case (c).
As discussed before, the difference can not be originated from case (a). Notice
that we can always choose γ′′ since our algorithm (as well as Lipmaa’s) always
outputs at least one valid solution.

Complexity Lipmaa-Moriai Alg. 3is described in the original paper as a linear-
time algorithm. This is, however, not direct from the description given by the
authors: in particular, if we consider the case α⊕ β = 2n − 1, then branch (b) is
the only possible choice for all bit positions except 0. This means that, all 2n−1

choices for the remaining bits of γ are valid, and the enumeration is exponential.
This enumeration issue can be addressed by using a compact representation

of all possible γ in linear time, by representing the solution space as a directed
graph G = (V,E), with 2 ⋅ n vertices, and at most 4 ⋅ n edges. In this repre-
sentation, vertices Vi,0 and Vi,1 represent the statement bit i of γ takes value 0
(resp. 1), and vertex Vi,j is connected to vertex Vi+1,k if (γi, γi+1) = (j, k) is a

12



pair that belongs to the set of all optimal γ values. A γ value is 0−optimal iff
V0,γ0 , V1,γ1 , . . . , Vn−1,γn−1 is a connected path in the graph. Through the loop of
Lipmaa-Moriai Alg. 3, each vertex is visited at most once, yielding a time com-
plexity in O(n). Sampling an optimal solution from the graph can then be done
in O(n), by following a connected path.

This representation is possible because the choice of a bit value at position i
is independent from the choices made before position i − 1. On the other hand,
when further dependencies exist, as in our variant, the situation is more complex.

Our variant introduces additional computations:

1. We add a pass to zero some values of C(α,β), according to the fix mentioned
previously. The computation becomes worse-case n, rather than logarithmic;

2. In order to enumerate all the solutions, we need to go through
δ

∑
i=0

(
t
i
) (with

t the maximum number of visits to the (c) branch) possible positions of flip
in the (c) case.

Point 1 is not an issue, as the computation of C(α,β) is only done once at
the start of the algorithm. On the other hand, point 2 prevents application of the
aforementioned graph approach, as the possible choices for bit i now depend on
a state defined by the number of times branch (c) was flipped. On the contrary,
our graph representation requires bit i to only depend on bit i − 1, and not on
the previous choices.

We therefore propose to have one graph for each combination of flipped bits,

effectively multiplying the computation time by
δ

∑
i=0

(
t
i
), resulting in a complexity

in Θ(nδ), with δ a constant. Crucially, the number of visits to branch (c) t is
loosely upper bounded by n

2
(as it requires a chain of odd length), and we restrict

ourselves to δ values lower than 3, so that the computation overhead factor is

upper bounded by
2

∑
i=0

(
32
i
) = 528 for 64 bit words, as in SPECK-128.

Sampling a δ-optimal solution from the graph can be done in linear time, by
choosing one of the graphs at random, and following a connected path, while the
enumeration can be done, for example, with a DFS. This approach can however
lead to duplicate solutions, so that using an explicit list of solutions remains the
best way for full enumeration.

4 Differential characteristic search with MCTS

In this section, we outline a general strategy to find differential characteristics
with MCTS, using Lipmaa’s algorithm, for ciphers with a single modular ad-
dition per round. This generic algorithm is not sufficient in practice, so that
cipher specific optimizations are required, which we address in the next section
for SPECK.
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Algorithm 2 Generalized Lipmaa-Moriai Alg. 3
Require: a bit-size n ≥ 1, two n-bits input differences α,β and the offset 0 ≤ δ ≤ n− 1.
Ensure: all possible output differences γ such that xdp+(α,β → γ) differs by at most

a 2−δ factor from the optimal one in the form of graphs. In order to sample from
them, we can use a simple randomized traversal.

Class Node:
lsb = -1
successors = [[False, False], [False, False]]

graphs = []
p = C(α,β) ▷ our fixed version, as stated in Algorithm 1

procedure GenGraph(α,β)
possibleCPositions = [i for i = 1 to n − 1 if αi = βi]
positionsLists = [combinations(possibleCPositions, i) for i = 0 to δ]
for positions in positionsLists do

graph = [new Node() for i = 0 to n − 1]
graph.lsb = α0 ⊕ β0
for i = 1 to n − 1 do

for j ∈ {0,1} do
if (i = 1 and graph.lsb = j) or (i ≥ 2 and graph[i − 2].successors[0][j] or

graph[i − 2].successors[1][j])) then
if αi−1 = βi−1 = j then

graph[i − 1].successors[j][αi ⊕ βi ⊕ βi−1] = True
else if αi ≠ βi or pi = 1 or i = n − 1 then

graph[i − 1].successors[j] = [True, True]
else

if i is in positions then
graph[i − 1].successors[j][1 − αi] = True

else
graph[i − 1].successors[j][αi] = True

Append graph to graphs

return graphs
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4.1 A general algorithm

The general idea behind our algorithm is to start with a tree that is as small as
possible and expand it with the algorithm presented in Algorithm 2.

Building the initial tree. The initial plaintext difference is chosen from a pDDT
with threshold probability t = 2−τ , built following Biryukov et al.’s [BV14] algo-
rithm. A virtual root node is set to have all entries of the pDDT as its children
at the start of the search.

Exploring paths. We begin our simulation of differential characteristics as runs
of a single-player game. We start from the virtual root (that can be seen as the
fixed starting position of a game), and select one of the differences in the pDDT
as our initial plaintext difference. We use a second threshold k to determine how
we choose this difference. Suppose for the moment that every node has children:

– if the node has already been visited at least k times, we select the best child
according to its score, using the UCT formula from Schadd et al. [SWvdH+08]
; at the end of the run, we update the score of each node of the path using
the same formula.

– If the node has not been visited k times yet, we choose a child uniformly at
random from allowed choices, using again the UCT formula to update the
scores at the end of the game. This allows us to have enough information on
the node before making choices based on the previous games.

These two cases can be seen respectively as the selection and simulation steps
of the classic MCTS algorithm.

Choosing the plaintext difference. We add a tweak to the selection of the plain-
text difference: we select it uniformly at random from the pDDT for the first
k iterations, then we store the input differences in a sorted list in descending
order based on their score, and select them using a geometrical distribution with
probability p. This favors exploration over exploitation, by permitting each dif-
ference to have some probability to be chosen at every run. Experimentally, we
found that this techniques dramatically improve the performance of the initial
difference selection.

Tree expansion. If the node has no children, i.e. no corresponding entry in the
pDDT, then we need to generate some. For this purpose, we use our modified
version of Lipmaa-Moriai Alg. 3presented in the previous section. This comes
from the idea that choosing always the best possible next difference is a very
local strategy, that does not allow us to look for long characteristics. In practice,
we fix a penalty threshold δ and list all the possible choices differing at most
2−δ from the optimal one, i.e., the δ-optimal transitions. We then add them to
the tree and proceed with our exploration strategy. This approach, in the case
of SPECK, is explained in more details in the following section.
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Scoring the nodes. To score the nodes, we use the UCT formula, with a custom
formula for the payouts. Our choice here is to mix the global weight of the char-
acteristic with a measure of the local one, weighted appropriately. This results
in a scoring that is similar to the one used in the α-AMAF heuristic presented
in [HPW09]. In formulas, we have that each payout used to compute the UCT
score has this form:

x = βG + (1 − β)L,

where:

– G is the global score of the characteristic, calculated as 1
w

, with w being the
weight of the differential characteristic.

– L is the local score, calculated as α 1
w′ , where w′ is the weight of the dif-

ferential characteristic from this point to the end, and α is a normalization
constant.

– 0 ≤ β ≤ 1 is a constant to weight the two parts of our score.

The purpose of this kind of scoring is to measure the choice of a difference
relatively to the current round, because some choices can be good at some point
of the characteristic (i.e. near the end, if they have a very good probability)
but very bad in others (i.e. near the beginning, if they do not generate good
successive choices). This score is then used to backpropagate the results to each
node of the path up to the root, meaning that the value of x is added to the list
of scores (used inside the UCT formula) of each encountered node.

4.2 Limitations of this approach

We outline here the two main issues that can arise from the application of this
method to a real cipher.

The branch number. Even with a small value of δ, expanding the tree can lead
to nodes with a very high number of children. Intuitively, this is bad for MCTS,
because for its score to be precise, a node must be visited at least a few times,
and this becomes harder as the tree gets wider. Because of this issue we need to
find a way to give a limitation on the expansion without affecting the result of
the search.

The choice of the plaintext difference. In our outline, we proposed to choose the
initial plaintext difference inside a pDDT. Experimentally, this works very well
when looking for short differential characteristics, but not too well for longer
ones. The motivation here is similar to the one of the tree expansion: with the
exception of pathological ciphers or cyclic characteristics, in general, differen-
tial characteristics start with differences that allow a long propagation without
increasing the cost too much. This is not guaranteed to happen with a small
pDDT, and creating a very big one can make the branching number too high for
the search to work.

How to solve these issues and their impact on the actual search is very cipher-
dependent. In the following section, we try to address both of them in our ap-
plication to the SPECK cipher.
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5 Application to SPECK

In this section, we apply the previously described method to the search for
differential characteristics on the SPECK cipher. The initial discussion is done
on the SPECK32 version, but applications and results for all the versions of
SPECK are discussed in the last subsections. We stress again that our objective
is to show that our algorithm can be competitive against the state-of-the-art
Matsui-like approaches. For this reason, we put ourselves in the same settings
as them instead of pushing for a very large number of rounds, showing that our
implementation finds good characteristics way faster. We leave optimizations,
generalizations and the understanding of the limits of this algorithm for future
works.

5.1 The start-in-the-middle approach

We start by tackling what, in our opinion, is the biggest limitation of our previ-
ous approach: the choice of the initial difference. In order to better explain the
problem, and our solution, we used a SAT solver to list all the optimal differen-
tial characteristics for 9 rounds on SPECK32. They are reported in Appendix A.
We start by noticing that there are only two characteristics that start with a
transition with probability 2−3, while most of them start with 2−5. As reported
by Biryukov et al., a pDDT containing all the possible differential transitions
with probability up to 2−5 contains about 230 elements in the case of SPECK32,
that is impossible to handle with MCTS.

Another observation from the reported characteristics is that each of them
contains a transition with probability 1 or 1/2. Our aim is to start from that
point. We start by creating a pDDT with all the transitions with probability
at most 1/2. For SPECK32 this table contains 183 transitions, that is a lot
more tractable than 230. Suppose for the moment that we are looking for a
differential characteristic on r rounds, and that we know the position s of this
“low weight” difference inside the characteristic. We build a cache by applying
our strategy on r − s rounds for a fixed number of iterations of MCTS. At the
end of this procedure we have a table that maps every low weight difference to a
characteristic starting with it. Then we simply run MCTS again in the backward
direction for s rounds. Notice that we can use the exact same algorithm that we
described in Section 3 because for every α,β, γ it holds

xdp+(α,β, γ) = xdp−(α,β, γ).

To conclude, we can simply drop the assumption of knowledge of s by brute-
forcing it: we start r parallel processes to do the search with all possible values
of s and we find one or more values that generate optimal characteristics. We
call this approach the start-in-the-middle, as an analogy with the classic meet-
in-the-middle one. The pseudocode for this algorithm is given in Section C.
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5.2 Branching number and the choice of δ

We then address the other issue pointed out in the previous section: the branch-
ing number. From now on we will call the offset of a differential characteristic
the maximum possible deviation of a transition inside the characteristic from an
optimal one. For example: if all the transitions in the characteristic are optimal,
then its offset is 0. Otherwise, if there is at least a transition that deviates from
the optimal by a factor 2−δ and no bigger deviations, we say that the offset
of that characteristic is δ. We start again by analyzing our characteristics on
SPECK32. We can see that none of them has offset equal to 0, while only three,
which are very similar to each other, have offset equal to 1. On the contrary,
almost all the other characteristics, which are different from the aforementioned
three, have at least one transition that makes their offset equal to 2. For com-
pleteness, it has to be said that only one characteristic among those 15 has offset
equal to 3, and there are no bigger offsets. Motivated by this we decided to run
our expansion step keeping δ between 1 and 3. This is a very crucial part of our
algorithm: in fact, we stress again that the MCTS algorithm needs to explore
each branch several times in order to assign an accurate score and make bet-
ter choices. This is also the main reason behind the fact that chess (and other
games) are dominated by computers, while Go is a lot harder. If we compare the
branching factor of the two games, chess’s one is 35, while Go’s is very large,
with a value of about 200 [BW95]. This implies a huge difference when com-
paring the sizes of the two corresponding trees. When dealing with differential
characteristic search, if not limited, the branching factor could be even bigger
than Go’s one, having a maximum value of 2n−1 when α⊕ β is 2n − 1.

5.3 Adding further heuristics to improve the search

With the previous approach we produce, on average, 83 children to each node
on SPECK32 when δ = 1. This number is in line with what we mentioned for the
game of chess, and in fact it is enough to find an optimal differential characteristic
for this version of SPECK; however, the branch number becomes too large for
bigger versions of SPECK. This is not feasible anymore, so we need to add
further heuristics to reduce these numbers.

Low Hamming weight differences. As it can be observed in all characteristics
found for SPECK and for several other ARX ciphers, good differentials have, in
general, a low Hamming weight. Intuitively, this makes sense because we want
the smallest possible number of carry propagations to have higher probabilities.
This heuristic has already been used in literature to improve the performances
of algorithms that find differential characteristics on SPECK, e.g. Biryukov et
al. in [BRV14].

Specifically, in our work, we use two kinds of filters based on the Hamming
weight of α,β and γ: the first one is based on the Hamming weight of each word,
while the second one limits the sum of the Hamming weights of the three words.
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Based on the known list of characteristics for SPECK32, we have that the
maximum value for the Hamming weight of each 16-bit words is 8, while the
average is 4.7. The sum of the three Hamming weight has a maximum value of
20 and an average of 13.1. We use these to derive the parameters given in the
experimental results section.

The expansion threshold. Another optimization that we considered is to choose
to not expand some nodes. In addition to the bounding done through δ-optimal
transitions, we choose to further bound the probability of each transition by
a fixed threshold. In practice, we do not allow for transitions with probability
lower than 2−12 This is because nodes with good optimal transition probability
generate on average a small number of δ-optimal transitions, while bad optimal
transitions usually explode into very big numbers of δ-optimal transitions. In-
tuitively, a low optimal probability implies numerous visits to branches (b) and
(c) in Lipmaa-Moriai Alg. 3; each visit in branch (b) adds valid solution (as both

bit values are allowed), and each visit to branch (c) affects the
δ

∑
i=0

(
t
i
) factor in

the enumeration, and thus the number of solutions.
Using these heuristics significantly reduces the size of the search space, and

enable better scaling for larger versions of SPECK.

5.4 Experimental Results and Discussion

All experiments are performed on a laptop equipped with an Intel® CoreTM i7-
11800H 3.6GHz. The code is implemented in Python and executed with PyPy3.6.
The results are presented in Table 1. The parameters used in the search were:

– C = 1
4

and D = 100 for the UCT, for all the versions.

– β = 1
5

to balance the scoring function, for all the versions.

– p = 1
4

for the geometric distribution, for all versions.
– δ = 2 for all the versions except SPECK32, for which δ = 1 was enough.
– 105 forward iterations for each version to build the cache.
– (t1, t2) = (8,20) for the two Hamming weight thresholds on SPECK32, while

(12,24) was used for all the other versions.
– A probability threshold of 2−12 was used for SPECK32, while 2−16 was used

on all the other versions.
– k = 5 for the number of visits of a node before starting to use the UCT, for

all the versions.

A key difference between MCTS and others is that the approach is not com-
plete; therefore, it is not able to determine when a solution is optimal, and can
keep searching until it exhausts all its allowed iterations. Because we let the
search in the backwards direction run without an iteration limit, we do not have
a stopping time to report; however, we report the time after which a solution is
found by our program.

For SPECK32 and SPECK48, the optimal differential characteristics are
found significantly faster than for state-of-the-art graph-based search methods,
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as well as solvers. This is encouraging, even though it is worth noting that solvers
may require additional time to prove optimality; in that sense, the methods are
not directly comparable.

SPECK64 appears to be more difficult for our algorithm, as we can only find
good differential characteristics up to 13 rounds. We assume that the depth of
the tree makes the search more difficult for MCTS, as we generally struggle with
characteristics longer than 12 rounds.

For SPECK96, we find the optimal solution for 10 rounds in less than one
and a half minute, significantly outperforming the 48 hours of the closest graph-
based approach. We also report a non-optimal result for 13 rounds, found in
12 minutes, as a comparison with the previous Monte-Carlo based approach.
However, solver-based methods remain significantly ahead for this version of
SPECK.

A similar analysis holds for SPECK128, where our approach dominates for
small number of rounds (up to 9), but, similarly to the other graph-based ap-
proaches, does not scale to as many rounds as solver-based methods.

6 Conclusions

In this paper, we studied variations of custom search algorithms for the search
of differential characteristics for SPECK, using SP-MCTS. In the process, we re-
visited Lipmaa-Moriai Alg. 3to provide an efficient algorithm for the enumeration
of δ-optimal differentials. A naive implementation of SP-MCTS proved to be
inefficient, so that we derived additional heuristics from the structure of known
good characteristics, allowing us to outperform all other graph-based methods
for most instances, and sometimes even solver-based ones.

Our approach, on the other hand, seems to struggle with longer characteris-
tics, equivalent to deeper trees. Further performance gains could be achieved
by additional heuristics, possibly derived through reinforcement learning, or
through parallelization, as well as further parameters tuning, in particular in
the scoring function.

This research is very specific to the SPECK cipher, and it would be in-
teresting to evaluate how it can be extended to other ARX constructions, in
particular those with more than one modular addition per round, or even to
SPN constructions. Our results constitute a new step along the graph-based
search route, which, while more challenging than solver-based approaches, has
the potential to outperform solvers through specialization.
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Appendix A All optimal characteristics on SPECK32

r ∆L ∆R − log2 p r ∆L ∆R − log2 p r ∆L ∆R − log2 p

- 0211 0a04 - - 7448 b0f8 - - 8054 a900 -

1 2800 0010 4 1 01e0 c202 5 1 0000 a402 3

2 0040 0000 2 2 020f 0a04 5 2 a402 3408 3

3 8000 8000 0 3 2800 0010 5 3 50c0 80e0 8

4 8100 8102 1 4 0040 0000 2 4 0181 0203 4

5 8004 840e 3 5 8000 8000 0 5 000c 0800 5

6 8532 9508 8 6 8100 8102 1 6 2000 0000 3

7 5002 0420 7 7 8000 840a 2 7 0040 0040 1

8 0080 1000 3 8 850a 9520 4 8 8040 8140 1

9 1001 5001 2 9 802a d4a8 6 9 0040 0542 2

- 1488 1008 - - ad40 0012 - - a540 0012 -

1 0021 4001 4 1 8148 8100 5 1 8148 8100 5

2 0601 0604 4 2 1002 1400 3 2 1002 1400 3

3 1800 0010 6 3 1060 4060 4 3 1060 4060 4

4 0040 0000 3 4 0180 0001 5 4 0180 0001 5

5 8000 8000 0 5 0004 0000 3 5 0004 0000 3

6 8100 8102 1 6 0800 0800 1 6 0800 0800 1

7 8000 840a 2 7 0810 2810 2 7 0810 2810 2

8 850a 9520 4 8 0800 a840 3 8 0800 a840 3

9 802a d4a8 6 9 a850 0952 4 9 a850 0952 4

- a000 0508 - - 7458 b0f8 - - 0050 8402 -

1 0448 1068 4 1 01e0 c202 5 1 2402 3408 3

2 80a0 c100 5 2 020f 0a04 5 2 50c0 80e0 7

3 0207 0604 6 3 2800 0010 5 3 0181 0203 4

4 1800 0010 5 4 0040 0000 2 4 000c 0800 5

5 0040 0000 3 5 8000 8000 0 5 2000 0000 3

6 8000 8000 0 6 8100 8102 1 6 0040 0040 1

7 8100 8102 1 7 8000 840a 2 7 8040 8140 1

8 8000 840a 2 8 850a 9520 4 8 0040 0542 2

9 850a 9520 4 9 802a d4a8 6 9 8542 904a 4

- 052a 9000 - - 056a 9000 - - d40a 0120 -

1 440a 0408 5 1 440a 0408 5 1 1488 1008 6

2 1080 00a0 4 2 1080 00a0 4 2 0021 4001 4

3 0083 0203 4 3 0083 0203 4 3 0601 0604 4

4 000c 0800 6 4 000c 0800 6 4 1800 0010 6

5 2000 0000 3 5 2000 0000 3 5 0040 0000 3

6 0040 0040 1 6 0040 0040 1 6 8000 8000 0

7 8040 8140 1 7 8040 8140 1 7 8100 8102 1

8 0040 0542 2 8 0040 0542 2 8 8000 840a 2

9 8542 904a 4 9 8542 904a 4 9 850a 9520 4

- 7c48 b0f8 - - 540a 0120 - - 7c58 b0f8 -

1 01e0 c202 5 1 1488 1008 6 1 01e0 c202 5

2 020f 0a04 5 2 0021 4001 4 2 020f 0a04 5

3 2800 0010 5 3 0601 0604 4 3 2800 0010 5

4 0040 0000 2 4 1800 0010 6 4 0040 0000 2

5 8000 8000 0 5 0040 0000 3 5 8000 8000 0

6 8100 8102 1 6 8000 8000 0 6 8100 8102 1

7 8000 840a 2 7 8100 8102 1 7 8000 840a 2

8 850a 9520 4 8 8000 840a 2 8 850a 9520 4

9 802a d4a8 6 9 850a 9520 4 9 802a d4a8 6

Table 2. A list of all the differential characteristics with weight 30 in SPECK32.
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Appendix B Best characteristics found with our method

SPECK32 SPECK48 SPECK64

r ∆L ∆R − log2 p r ∆L ∆R − log2 p r ∆L ∆R − log2 p

- 7448 b0f8 - - 001202 020002 - - 40104200 00400240 -

1 01e0 c202 5 1 000010 100000 3 1 00001202 02000002 5

2 020f 0a04 5 2 000000 800000 1 2 00000010 10000000 3

3 2800 0010 5 3 800000 800004 0 3 00000000 80000000 1

4 0040 0000 2 4 808004 808020 2 4 80000000 80000004 0

5 8000 8000 0 5 8400a0 8001a4 4 5 80800004 80800020 2

6 8100 8102 1 6 608da4 608080 9 6 84008020 80008124 4

7 8000 840a 2 7 042003 002400 11 7 a08481a4 a0808880 8

8 850a 9520 4 8 012020 000020 5 8 04200401 00244004 9

9 802a d4a8 6 9 200100 200000 3 9 01202000 00022020 6

10 202001 202000 3 10 00010000 00100100 4

11 210020 200021 4 11 00100000 00900800 2

12 00900800 04104800 4

13 04104808 24920808 7

SPECK96

r ∆L ∆R − log2 p r ∆L ∆R − log2 p

- 00800a080808 0800124a0848 - - 900f00480001 011003084008 -

1 000092400040 400000104200 10 1 00800a080808 0800124a0848 10

2 000000820200 000000001202 6 2 000092400040 400000104200 10

3 000000009000 000000000010 4 3 000000820200 000000001202 6

4 000000000080 000000000000 2 4 000000009000 000000000010 4

5 800000000000 800000000000 0 5 000000000080 000000000000 2

6 808000000000 808000000004 1 6 800000000000 800000000000 0

7 800080000004 840080000020 3 7 808000000000 808000000004 1

8 808080800020 a08480800124 5 8 800080000004 840080000020 3

9 800400008124 842004008801 9 9 808080800020 a08480800124 5

10 a0a000008880 81a02004c88c 9 10 800400008124 842004008801 9

11 a0a000008880 81a02004c88c 9

12 000080044804 0d0180220c60 12

13 010080a20028 690c81b26328 13

SPECK128

r ∆L ∆R − log2 p r ∆L ∆R − log2 p

- 00000000924000c0 4000000000104200 - - 0000900f00480001 0100001003084008 -

1 0000000000820200 0000000000001202 6 1 000000800a080808 08000000124a0848 10

2 0000000000009000 0000000000000010 4 2 0000000092400040 4000000000104200 10

3 0000000000000080 0000000000000000 2 3 0000000000820200 0000000000001202 6

4 8000000000000000 8000000000000000 0 4 0000000000009000 0000000000000010 4

5 8080000000000000 8080000000000004 1 5 0000000000000080 0000000000000000 2

6 8000800000000004 8400800000000020 3 6 8000000000000000 8000000000000000 0

7 8080808000000020 a084808000000124 5 7 8180000000000000 8180000000000004 2

8 8004000080000124 8420040080000801 9 8 8000800000000004 8c00800000000020 5

9 a0a0000080800800 81a020048080480c 9 9 8080808000000020 e084808000000124 6

10 0004000080000124 0420040080000803 10

11 2020000080800800 0120200480804818 9

12 0100000480004800 08010020840208c0 11

13 0800002080820808 48080124a0924e08 11

14 4000012480124000 0040080184803042 17

15 00000800a0000202 0200480c84018012 12

Table 3. Differential characteristics related to the results listed in Table 1.
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Appendix C Pseudocode for the search algorithm

Algorithm 3 MCTS search for optimal differential characteristics for SPECK

Require: a bit-size n ≥ 1, the number of forward rounds and backward rounds for the
search, all the parameters specified in Section 5.

Ensure: Differential characteristics of decreasing weights.
Class Node:

visits, children, payout = 0, [], []
Class Cached:

path, path weights, best weight = [], [], ∞
Build the initial tree from the pDDT as a collection of Node
Initialize cache as a collection of Cached
procedure mcts iteration(∆L, ∆R, num rounds)

path, path weights = [(∆L,∆R)], []; increment tree[(∆L,∆R)].visits
for i = 1 to num rounds do

if (∆L,∆R) ∈ tree then
if tree[(∆L,∆R)].visits ≤ k then

∆L,new, ∆R,new, p = random choice from tree[(∆L,∆R)].children
else

∆L,new, ∆R,new, p = node with max UCT in tree[(∆L,∆R)].children

else
possible children = δ-optimal(∆L, ∆R, δ) ▷ All δ-optimal transitions
for child in possible children do

if xdp+(child) > expand threshold then
Add child to tree[(∆L,∆R)].children

∆L,new, ∆R,new, p = random choice from tree[(∆L,∆R)].children

Add (∆L,new,∆R,new) to path and − log2 p to path weights
tree[(∆L,new, ∆R,new)].visits = tree[(∆L,new, ∆R,new)].visits + 1
∆L,∆R = ∆L,new, ∆R,new

weight = sum(path weights)
for i = 0 to num rounds do

payout = β 1
weight

+ (1 − β)num rounds−i
num rounds

1
sum(path weights[i,i+1,i+2,...])

Add payout to tree[path[i]].payouts

return path, path weights, weight

procedure main
for i = 1 to forward iterations do

∆L,∆R ← sample from the the first level of tree
path, path weights, weight = mcts iteration(∆L, ∆R, fwd rounds)
if weight < cache[(∆L,∆R)].best weight then

update cache[(∆L,∆R)]

for i = 1 to backward iterations do
∆L,∆R ← sample from the the first level of tree
path, path weights, weight = mcts iteration(∆L, ∆R, bwd rounds)
weight = weight + cache[(∆L,∆R)].best weight
if weight < global best weight then

print the full characteristic and update global best weight
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