
Perceived Information Revisited II
Information-Theoretical Analysis of Deep-Learning Based Side-Channel

Attacks

Akira Ito1, Rei Ueno2 and Naofumi Homma3

1 NTT Social Informatics Laboratories, Nippon Telegraph and Telephone Corporation,
3–9–11 Midori-cho, Musashino-shi, Tokyo, 180-8585, Japan

akria.itoh@ntt.com
2 Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto, 606-8501, Japan

ueno.rei.2e@kyoto-u.ac.jp,
3 Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai-shi, Miyagi, 980-8577, Japan

naofumi.homma.c8@tohoku.ac.jp

Abstract. Previous studies on deep-learning-based side-channel attacks (DL-SCAs)
have shown that traditional performance evaluation metrics commonly used in DL,
like accuracy and F1 score, are not effective in evaluating DL-SCA performance.
Therefore, some previous studies have proposed new alternative metrics for evaluating
the performance of DL-SCAs. Notably, perceived information (PI) and effective
perceived information (EPI) are major metrics based on information theory. While
it has been experimentally confirmed that these metrics can give the attack success
rate (SR) for DL-SCAs, their theoretical validity remains unclear.
In this paper, we propose a new theoretically valid performance evaluation metric
called latent perceived information (LPI), which serves as an alternative to the existing
metrics. LPI is defined as the mutual information between the output of the feature
extractor of a neural network (NN) model and the intermediate value, representing the
potential attack performance of the trained model. First, we prove that LPI provides
an upper bound on the SR of a DL-SCA by modeling and formulating DL-SCA as
a communication channel. Additionally, we clarify the conditions under which PI
and EPI theoretically provide an upper bound on the SR from the perspective of
LPI. For practical computation of LPI, we present two methods. One utilizes the
Kraskov (KSG) estimator, a common mutual information estimator, and the other is
based on logistic regression. While the KSG estimator is computationally intensive,
it yields accurate LPI values. In contrast, the logistic regression is faster but provides
a lower bound for LPI. Through experimental attacks on AES software and hardware
implementations with masking countermeasures, we demonstrate that the LPI values
estimated by these two methods are significantly similar, indicating the reliability
and soundness of our proposed estimation techniques. Furthermore, we show that,
by using the logistic regression as a classifier, we can significantly improve the attack
performance of the trained model when the difference between the SR upper bound
by the LPI and its actual SR is large. This indicates that LPI represents the potential
for performance improvement in the trained model. Therefore, our study contributes
to optimizing the distinguisher for attack performance using the trained model.

Keywords: Profiled side-channel attacks · Perceived information · Success rate ·
Deep learning · Information theory

mailto:akria.itoh@ntt.com
mailto:ueno.rei.2e@kyoto-u.ac.jp
mailto:naofumi.homma.c8@tohoku.ac.jp

2 Perceived Information Revisited II

1 Introduction
1.1 Background
Deep-learning-based side-channel attack. Deep-learning based side-channel attacks
(DL-SCAs) have been an active research topic in the field of cryptographic implemen-
tation [MHM14,MPP16,CDP17,PHJ+19,HHGG20,UXT+22,PPM+23,TUX+23,SM23]
because of their effectiveness. Profiled DL-SCA can achieve high performance in a key-
recovery SCA on AES as well as in side-channel assisted chosen-ciphertext attacks on
post-quantum key encapsulation mechanisms, even if the implementation is protected using
masking and random delay [ZBHV19, WAGP20, ZBHV21, LZC+21, UXT+22, TUX+23].
An attacker using DL-SCA requires fewer assumptions and less prior knowledge about the
target implementation than those using other SCAs because the model can implicitly learn
these assumptions and knowledge during the profiling phase if the attacker has a profiling
device. For example, conventional SCAs, such as correlation power analysis [BCO04] and
template attacks [CRR02], require modifications to the attack algorithm and preprocessing
of traces based on countermeasures employed in the target implementation. For example,
these attacks require preprocessing to align the traces when targeting implementations
with random delay-based countermeasures. Conversely, in DL-SCA, a neural network (NN)
effectively counteracts these measures by utilizing a sufficient number of traces during the
NN training. A thorough investigation of the theory and practice of DL-SCAs is imperative
to comprehend potential threats posed by SCAs to cryptographic implementations.

Performance metrics of DL-SCA. In a DL-SCA, selecting an objective function, referred
to as a loss function, is essential because it directly affects the training efficacy of the model
(i.e., its attack performance). In multi-class classification problems in machine learning,
negative log-likelihood (NLL), often referred to as categorical cross-entropy in deep learning
contexts, is frequently utilized as a loss function because it is considered as a surrogate
loss for enhancing accuracy [MMZ23]. Most studies on DL-SCA have also utilized the
NLL; however, it also sometimes contradicts the attack performance of the model, as
described in Section 2.3. Furthermore, most traditional performance metrics such as F1
score and accuracy in machine learning are likely to be unsuitable for predicting the attack
performance in DL-SCA as reported in [PHJ+19]. Thus, the success rate (SR) has been
commonly used for a quantitative evaluation of the performance of DL-SCAs [SMY09].

Mutual information (MI), perceived information (PI), and success rate (SR). Masure
et al. presented the pioneering theoretical analysis of model training using NLL in DL-
SCA [MDP20]. They proved that the NLL asymptotically converges to a cross-entropy
(CE) function as the number of traces utilized approaches infinity. Furthermore, they
demonstrated that perceived information (PI) can be derived from CE. Given a model,
the PI is a lower bound on the mutual information (MI) I(Z; X) between a side channel
trace X and an intermediate value Z. MI can be estimated using PI by identifying
model parameters that minimize CE. Besides, de Chérisey et al. [dCGRP19] presented an
inequality that upper-bounds the SR by MI, thereby making MI crucial for evaluating the
achievable SR. Further, when the PI equals the MI, the distribution modeled by the NN
is equal to the true distribution, thereby yielding an optimal distinguisher for the most
potent attack [HRG14]. Note, however, that the computation and precise estimation of
MI are usually quite difficult; this is a reason why, in practice, we require an alternative
metric that is computable and theoretically valid for evaluating SCA.

Conjecture on PI–SR inequality. In [MDP20], Masure et al. revealed the significance of
identifying parameters that minimized NLL, which is approximately equivalent to CE in
SCAs. However, the NLL loss function cannot attain its minimum value during model

Akira Ito, Rei Ueno and Naofumi Homma 3

training. In fact, parameters that minimize the NLL may not exist depending on the
model architecture, which makes it crucial to understand the relationship between the SR
and non-minimized NLLs from both theoretical and practical perspectives. Given this
context, Masure et al. [MDP20] conjectured that an inequality similar to the one proposed
by de Chérisey et al. [dCGRP19] may exist between the PI and SR; that is, the PI is
an upper bound of the SR for a given model. If this inequality holds, the upper bound
of the SR for the model can be evaluated from the PI (or equivalently, NLL), thereby
allowing the rapid prediction of model performance during training without resorting to
computationally intensive SR estimation through key recovery. Therefore, validating this
inequality has significant practical implications.

Effective CE/PI (ECE/EPI) and conjecture on EPI–SR inequality. Grosso and Stan-
daert [GS18] empirically observed that the PI–SR inequality does not hold in the context
of a soft analytical side-channel attack (SASCA). Subsequently, Ito et al. [IUH22b] con-
structed a counterexample that disproved the conjecture by Masure et al. [MDP20]. They
demonstrated that the SR remained invariant to variations in the inverse temperature
β of the softmax function in the model output, whereas CE/NLL changed. Their find-
ings indicated that an increase in β results in an unbounded increase in the CE without
changing the SR; therefore, a high NLL, which is approximately equal to the CE, does not
inherently signify an unsuccessful attack. Further, they introduced effective CE (ECE)
as the CE minimized with respect to β and defined effective PI (EPI) using ECE. ECE
and EPI were defined to solve the uncertainty of SR. Accordingly, Ito et al. conjectured
a similar inequality that upper-bounds SR by EPI and demonstrated its experimental
validity. However, this conjecture is yet to be theoretically substantiated. Proving this
inequality would theoretically validate the estimation of SR from NLL loss. Further, the
theoretical foundations would aid the study on DL-SCA in practical aspects to improve its
performance and develop countermeasures. Therefore, clarifying the relationship among
PI, EPI, and SR and exploring more appropriate evaluation metrics than these metrics
are important in this research domain.

1.2 Our contributions
The contribution of this study is threefold.

Information-theoretical analysis of DL-SCA. Although previous studies examined DL-
SCA from an information-theoretic perspective, no communication channel for DL-SCA
has been developed. In this study, we establish a new communication channel model for
DL-SCA for its detailed analysis. Based on our communication channel, we introduce
latent perceived information (LPI) as a new metric theoretically relating to SR, which plays
an essential role in our analysis. LPI is defined by the MI between the feature extractor
output of the model and the intermediate value. We derive an information-theoretical
inequality that links the model in DL-SCA to the SR. Namely, we formally prove that the
LPI is an upper bound of SR, as stated by the LPI–SR inequality.

Revealing conditions when EPI–SR inequality holds. As the LPI–SR inequality is
formally proven, the EPI–SR inequality is also valid if the LPI and EPI are equivalent.
We identify conditions under which the EPI–SR inequality holds using the relationship
between the LPI and EPI. Consequently, we demonstrate that the conjecture of the
EPI–SR inequality holds when the distribution modeled by an NN is well-calibrated with
the inverse temperature and matches the true distribution of the intermediate value given
the feature extractor output.

4 Perceived Information Revisited II

LPI estimation methods and improvement of DL-SCA performance through LPI. We
propose two methods for estimating LPI in practice. One utilizes the Kraskov (KSG)
estimator, which estimates mutual information, and the other is based on logistic regression.
In general, estimating MI, including LPI, is extremely difficult. However, the LPI is defined
using the output of the feature extractor, whose dimension is usually low. This renders the
LPI estimation feasible in practice. Through experimental attacks on AES software and
hardware implementations with masking countermeasures, we demonstrate that the LPI
values estimated using both methods are very close, which indicates that the LPI would
be accurately estimated. Furthermore, we also demonstrate that the LPI–SR inequality
is useful to gauge the potential for improving the attack performance of NN models.
Subsequently, we present a concrete method to improve the model attack performance by
using a logistic regression-based classifier and evaluate it experimentally.

1.3 Paper organization
Section 2 introduces the mathematical notations used in this paper and the DL-SCA.
Section 3 presents the information-theoretical analyses on DL-SCA. Section 4 presents the
relationship among PI, EPI, and LPI and shows the condition when the EPI–SR inequality
holds. Section 5 presents LPI estimation methods for DL-SCAs. Section 6 demonstrates
the experimental DL-SCAs on masked AES implementations to verify the validity of our
theoretical analysis. Finally, Section 7 concludes the paper.

2 Preliminaries
2.1 Notations
A calligraphic letter (e.g., X) represents a set, a lowercase variable (e.g., x) represents
an element of the corresponding set (i.e., x ∈ X), and an uppercase variable (e.g., X)
represents a random variable over the corresponding set (i.e., X for X), unless otherwise
defined. Let Pr(A), p, and q represent the probability of an event A, true density or mass
function, and probability density or mass function represented by an NN, respectively.
For example, the true probability mass function of discrete random variables X and Y is
given by pX,Y (x, y) = Pr(X = x, Y = y). We may omit the subscripted random variables
if the random variables of the probability distribution are obvious. For example, we
may write p(x, y) for pX,Y (x, y). The conditional probability distribution is denoted by
pX|Y (x | y) = p(x | y) = p(x, y)/p(y) if p(y) ̸= 0; otherwise, pX|Y (x | y) = 0. Let E
represent the expectation. For example, EX [f(X)] represents the expectation of f(X) in
terms of X, where f : X → R represents a (measurable) function. In this paper, we omit
brackets and simply write EXf(X) if there is no confusion. Let H(X) = −EX log pX(X)
represent an entropy function, where log is the binary logarithm. The MI between X and
Y is defined as I(X; Y) = H(X)−H(X | Y) = EX,Y log pX,Y (X, Y)/(pX(X)pY (Y)). A
sequence of m random variables/vectors independently sampled from a distribution of X
is represented by independent copies as Xm = (X1, X2, . . . , Xm).

2.2 Overview of profiled DL-SCA
This study focuses on SCAs on block ciphers, particularly AES because AES is the
most widely used symmetric key cipher and is the target of attacks in much of the DL-
SCA studies [IUH22b,WAGP20,BIK+24]. The DL-SCA consists of profiling and attack
phases. During the profiling phase, an NN is trained to model the conditional distribution
corresponding to the device leakage characteristics. Let Sp = { (Xi, Zi) | 1 ≤ i ≤ mpro }
be a training dataset used in the profiling phase, where Xi, Zi, and mpro ∈ N represent
the i-th side-channel trace of the i-th observation, corresponding intermediate value (e.g.,

Akira Ito, Rei Ueno and Naofumi Homma 5

first-round Sbox output in typical SCAs on software AES implementation), and the number
of traces used in the profiling phase, respectively. We assume that X1, X2, . . . , Xmpro and
Z1, Z2, . . . , Zmpro are independent and identically distributed (i.i.d.) random variables over
X = Rnℓ and T = {0, 1}n, respectively. Here, nℓ ∈ N is the number of sample points
in a trace, and n ∈ N is the bit length of the intermediate value (in the case of AES,
n = 8). Let θ ∈ Rnθ represent the NN parameters, where nθ denotes the dimension of the
parameters. The profiling phase estimates adequate model parameters θ̂ using the training
dataset Sp. Optimal parameters are obtained by solving the minimization problem of the
CE loss function, which is defined as

CE(qθ) = −EZ,X log qθ(Z |X) = −
∫ ∑

z

pZ,X(z, x) log qθ(z | x) dx, (1)

where Z and X are the random variables of label z and trace x, respectively, and qθ

represents the conditional probability distribution modeled by the NN with parameters θ.
In Equation (1), CE(qθ) takes the minimum value if and only if pZ|X = qθ [Bis06,

GBC16]. We can model the true distribution p if we can determine the optimal parameters
θ̂ that make CE(qθ̂) sufficiently small; however, we cannot calculate Equation (1) because it
contains the integral and summation of the unknown probability distribution p. Therefore,
we approximate CE(qθ) using the training data Sp via the Monte Carlo method as

CE(qθ) ≈ L(qθ) = − 1
mpro

mpro∑
i=1

log qθ(Zi |Xi). (2)

The approximation of CE in Equation (2) is called the negative log-likelihood (NLL).
According to the law of large numbers, the NLL converges almost surely to CE(qθ) as
m→∞ for fixed qθ.

In the attack phase, we estimate the secret key k∗ of the target device by using the
trained model. Let Sa = { (Xi, Ti) | 1 ≤ i ≤ matk } be the dataset used in the attack
phase, where Xi, Ti, and matk ∈ N represent the side-channel trace at the i-th observation,
and corresponding plaintext or ciphertext, and the number of attack traces, respectively.
During the attack phase, we calculate the NLL for each hypothetical key candidate k ∈ K
using the intermediate value Z

(k)
i calculated from Ti as

L(k)(qθ̂) = − 1
matk

matk∑
i=1

log qθ̂(Z(k)
i |Xi).

Here, Z
(k)
i is given as the output of the selection function (e.g., Z

(k)
i = Sbox(Ti ⊕ k)).

The correct key is estimated as the key candidate with the lowest NLL value, which is
equivalent to approximating and comparing the results

CE(k)(qθ̂) = −E log qθ̂(Z(k) |X),

for each key candidate k. It has been proven that such a DL-SCA is optimal (i.e., it
maximizes the SR) if we have qθ̂ = pZ|X [IUH21, IUH22b].

Hereafter, we simply denote the number of traces by m instead of matk and mpro.

2.3 SCA evaluation metrics
Success rate (SR) is a common and promising metric for a quantitative evaluation of
(DL-)SCAs [SMY09, MDP20, WAGP20], as well as guessing entropy (GE). SR is the
probability that the rank of the correct key is one, and GE is the expected rank of the

6 Perceived Information Revisited II

correct key. The SR and GE with m traces in an SCA are formally defined as

SRm = Pr(rank(k∗, m) = 1) = Pr(K̂m = k∗ | K = k∗),
GEm = E[rank(k∗, m)],

respectively, where k∗ is the correct key, rank(k, m) is the rank of a key k with m-trace
SCA, K̂m is the estimated correct key value from m attack traces, and K is the random
variable of secret key. For a DL-SCA, the correct key rank is formally defined by

rank(k∗, na) = 1 +
∑

k̂∈K\k∗

1{L(k∗)(qθ̂)≥L(k̂)(qθ̂)},

where 1A is an indicator function on a set A and K\k∗ is a set consisting of all key
candidates except for the correct key. Note that SRm, GEm, and rank are function of
trained model parameters θ̂ in the case of DL-SCA.

SR directly represents the performance of SCAs, while GE is important for estimating
the complexity of key enumeration algorithms [PSG16]. Importantly, GE is bounded from
above and below by SR [IUH21] (i.e., we have 2− SRm ≤ GEm ≤ |K|(1− SRm) + SRm,
where K is the set of all key candidates). For example, if SRm = 0.9, then the upper bound
on GE in [IUH21] yields GEm ≤ 26.5. Thus, in this paper, we conduct an information-
theoretical analysis of SR, which is crucial for evaluating the key recovery performance
of DL-SCA in an information-theoretical manner and is related to the key enumeration
complexity through GE.

Contradiction between SCA and DL metrics. As described in Section 2.2, NLL is
commonly used as a key metric for evaluating NN models. However, there have been
reports of contradictions between SCA metrics (e.g., SR and GE) and NLL [IUH21]. For
example, an overfitted NN model can sometimes outperform one with a smaller NLL.
Overfitting occurs when an NN is trained for too many epochs, leading to a larger validation
loss. In the machine learning community, the model with the smallest validation loss
is generally considered the best for generalization. However, as shown in [IUH22b], an
overfitted NN can sometimes perform better than a model with a small validation loss.
Specifically, the attack performance (e.g., SR) can improve with overfitting, even if this
increases validation NLL. In fact, our experiments in Section 6 (Figure 3) also demonstrate
that SR remains consistent even when NLL significantly increases (i.e., PI decreases).

2.4 Conventional communication channel model and MI–SR inequality
Figure 1 shows a communication channel model developed by de Chérisey et al. [dCGRP19]
that represents an SCA, where K, T m = (T1, T2, . . . , Tm), Zm = (Z1, Z2, . . . , Zm), Xm =
(X1, X2, . . . , Xm), and K̂m represent the secret key byte, tuple of m plaintext/ciphertext
bytes, secret intermediate values targeted by SCA, side-channel traces, and secret key
byte estimated using m traces, respectively.1 In the figure, “Adversary” refers to any
key-recovery algorithm that operates in polynomial time based on the given inputs. Let
SRm = Pr(K = K̂m) denote the SR of the optimal SCA with m traces. Based on this
model, de Chérisey et al. proved the following theorem, which states that the optimal SR
is bounded from above by the MI between the side-channel trace and intermediate value.

1In the previous section, the correct key was defined as a constant value k∗, whereas here it is
introduced as a random variable K. This is necessary to derive an upper bound on SR by information
theory. The definition of SR given here is consistent with the definition in the previous section if the
secret key is chosen uniformly at random and the attack difficulty is independent of the choice of secret
key (i.e., ∀k, k′; Pr(K̂m = k | K = k) = Pr(K̂m = k′ | K = k′)). In fact, we have Pr(K = K̂m) =∑

k∗∈Km
Pr(K̂m = K | K = k∗) Pr(K = k∗) = Pr(K̂m = k∗ | K = k∗).

Akira Ito, Rei Ueno and Naofumi Homma 7

Selection
function Side channel Adversary

Figure 1: Communication channel of SCA by de Chérisey et al. [dCGRP19].

Theorem 1 (MI–SR inequality [dCGRP19]). In the communication channel shown in
Figure 1, the SR of an optimal SCA with m traces, defined as SRm = Pr(K̂m = K), is
bounded from above as

ξ(SRm) ≤ mI(Z; X), (3)

where ξ : [0, 1]→ R≥0 is defined as

ξ(r) = H(K)−H2(r)− (1− r) log(2n − 1). (4)

Here, H2 : [0, 1] ∋ r 7→ −r log r − (1 − r) log(1 − r) ∈ [0, 1] is a binary entropy function,
where we define 0 log 0 = 0.

In [dCGRP19], de Chérisey et al. demonstrated experimentally that this theorem can
be used for a precise estimation of the achievable SR for an optimal SCA. However, this
inequality is used only to evaluate the optimal SCA, and it cannot be used to evaluate a
DL-SCA with the model parameters θ̂. In fact, an adversary in the communication channel
is supposed to use an optimal distinguisher. In addition, neither the communication
channel nor Equation (3) includes the model parameter θ̂. Thus, it is impossible to discuss
the SR of DL-SCA with the model parameters θ̂. This motivated us to develop a new
communication channel model for discussing the SR of DL-SCAs.

3 Information-theoretical analyses on DL-SCA
3.1 Overview
We model the DL-SCA as a communication channel. Based on this communication channel,
we then derive an inequality in which the SR of the DL-SCA is bounded from above by the
MI between the output of the feature extractor of NN and the intermediate value Z. Finally,
we discuss the relationship between our inequality and the MI–SR inequality reported by de
Chérisey et al. and show that our inequality is more useful for evaluating the performance
of DL-SCAs. Our major technical contribution here includes the establishment of the
communication channel model of DL-SCA and the discovery of the LPI–SR inequality as
a new upper bound of SR rather than the development of new proof techniques.

3.2 Communication channel model of DL-SCA
Figure 2 shows the proposed communication channel model of DL-SCA for a given NN
model. This paper assumes that an NN model consists of a feature extractor f that extracts
information from the given trace and a classifier g that performs classification from the
information extracted by the feature extractor. Generally, the classifier is the last layer
with a softmax activation function, and the feature extractor comprises the layers before
the last layer. Our assumption that the activation function of the last layer is the softmax
function is not a strong limitation because the softmax function is the most commonly used
when performing classification using an NN model [GBC16, Chapter 6.2.2.3]. In fact, the
softmax function is also widely used in DL-SCA [WAGP20,ZBD+21]. This study focuses

8 Perceived Information Revisited II

Selection

function
Side channel

Feature

extractor
Classifier Adversary

NN model

Figure 2: Communication channel of DL-SCA.

on attacks against a block cipher such as AES. We describe the definition of random
variables and the meanings of this model.

• m ∈ N represents the number of traces used in the attack phase.

• θ ∈ Rnθ represents the model parameters of the neural network, where nθ represents
the number of dimensions of the parameters.

• K and K̂m(θ) represent the correct and estimated partial secret keys, respectively.
They belong to the key space K = {0, 1}n, where n represents the bit length of the
secret key (i.e., n = 8 for AES). Here, the estimated key is expressed as K̂m(θ) to
show that it depends on the NN parameters θ and the number of traces m.

• T m = (T1, T2, . . . , Tm) represents the tuple of m plaintexts/ciphertexts corresponding
to the attack traces, where T1, T2, . . . , Tm denote n-bit plaintext/ciphertexts. In this
study, they are assumed to be sampled from the uniform distribution and i.i.d.

• Zm = (Z1, Z2, . . . , Zm) represents the tuple of m intermediate values corresponding to
the attack traces. Each intermediate value is given by Zi = ϕ(K, Ti), i ∈ {1, 2, . . . , m}
with a selection function ϕ : K×T → Z. For example, we frequently have ϕ(K, Tj) =
Sbox(K ⊕ Tj) in attacking software AES implementations.

• Xm = (X1, X2, . . . , Xm) represent the tuple of m side-channel traces. Each trace
Xi represents a random variable over an nℓ-dimensional Euclidean space Rnℓ . These
random variables are assumed to be i.i.d.

• F m = (F1, F2, . . . , Fm) represents a tuple of the feature extractor outputs of the NN
for the attack traces. For each i, Fi represents a vector and is given by Fi = fθ(Xi),
where fθ : X → F = Rnf represents the feature extractor of NN with the model
parameters θ, and nf represents its output dimension.

• Qm = (Q1, Q2, . . . , Qm) represents a tuple of the outputs of the NN for the attack
traces. For each i, Qi represents a vector and is given by Qi = gθ(fθ(Xi)), where
gθ : F → Q = Rnq represents the NN classifier with the model parameters θ, and
nq represents the number of output classes. For example, if the NN predicts the
probability of intermediate values (i.e., nq = 2n), the output Qi represents a 256-
dimensional vector consisting of the outputs of the softmax function as Qi = (qθ(0 |
Xi), qθ(1 | Xi), . . . , qθ(2n − 1 | Xi)) for each i, where n = 8 for AES. Further,
if the NN predicts the probability of the HW of the intermediate value, it is an
(n + 1)-dimensional vector given by Qi = (qθ(0 |Xi), qθ(1 |Xi), . . . , qθ(n |Xi)) for
each i.

In Figure 2, “Adversary” estimates the secret key by using all outputs Qm of the NN and
the plaintexts/ciphertexts T m. In [dCGRP19], de Chérisey et al. implied that a Markov
chain (K, T m) → (Zm, T m) → (Xm, T m) → (F m, T m) → (Qm, T m) → (K̂m(θ), T m)
holds. This communication channel model does not depend on how the NN is trained or
used during an attack. This means that, for example, the model is valid even if any loss

Akira Ito, Rei Ueno and Naofumi Homma 9

function, such as the CER [ZZN+20] or ranking loss [ZBD+21], is used as the loss function
during training.

Based on the communication channel illustrated in Figure 2, we define a new information-
theoretical metric named the LPI, which plays an essential role in our analysis and has
desirable properties for evaluating DL-SCA2.

Definition 1 (Latent Perceived Information (LPI)). Let θ represent the model parameters
of a neural network and qθ(Z | X) represent the conditional probability distribution
modeled by the NN. In the communication channel in Figure 2, the LPI of the model is
defined as

LPI(qθ) := I(Z; F) = H(Z)−H(Z | F).

3.3 Relationship between the SR and model outputs
We prove the following theorem, which states that inequality between F and SR holds on
the communication channel in Figure 2, which we call the LPI–SR inequality.

Theorem 2 (LPI–SR inequality). In the communication channel shown in Figure 2, the SR
with m traces using the NN with model parameters θ, defined as SRm(θ) = Pr(K̂m(θ) = K),
is bounded from above as

ξ(SRm(θ)) ≤ mI(Z; F) = mLPI(qθ), (5)

where ξ denotes the function defined in Equation (4).

Proof. The proof is based on Fano’s inequality [CT06, Theorem 2.10.1] similarly to the
MI–SR inequality [dCGRP19, Lemma 2]. In their proof, they used the data processing in-
equality [CT06, Theorem 2.8.1] on the Markov chain of (K, T m)→ (Zm, T m)→ (Xm, T m)
represented in Figure 1, given as

I(K, T m; Xm, T m) ≤ I(Zm, T m; Xm, T m).

In this proof, we alternatively focus on the Markov chain of (K, T m) → (Zm, T m) →
(Xm, T m) → (F m, T m) in Figure 2, implying that the corresponding data processing
inequality is

I(K, T m; F m, T m) ≤ I(Zm, T m; F m, T m). (6)

According to the relationship between MI and entropy, the left-hand side of Equation (6)
can be written as

I(K, T m; F m, T m) = H(K, T m)−H(K, T m | F m, T m)
= H(K) + mH(T)−H(K | F m, T m)
= H(K) + mH(T)−H(K | F m, T m, K̂m(θ))
≥ H(K) + mH(T)−H(K | K̂m(θ)).

2In [PBP21], Perin et al. conducted an information-theoretical analysis of DL-SCA focusing on I(Z; Ẑ),
where Ẑ represents the predicted label by the NN. This would be similar to LPI, but their analysis was
devoted to discussing the relation between I(Z; Ẑ) and MIs of hidden layers to evaluate the generalization
of the NN for early stopping, rather than establishment of communication channel and evaluation of SR.
Thus, their motivation, focus, goal, and results are different from those of this paper. Actually, the Markov
chain focused in [PBP21] does not include K, while ours includes it to analyze the SR. One advantage
of our proposed method over theirs is its theoretical validity. Their method is based on the information
bottleneck principle, which has been observed in NN generalization and empirically confirmed but not
proven. In contrast, our proposed LPI provides a proven upper bound on SR, making it more theoretically
sound than their method.

10 Perceived Information Revisited II

The equation H(K | T m, F m) = H(K | T m, F m, K̂m(θ)) holds because K̂m(θ) is a
deterministic function of T m and F m. Using Fano’s inequality, we obtain

H(K | K̂m(θ)) ≤ H2(SRm(θ)) + (1− SRm(θ)) log(2n − 1).

Thus, it holds

I(K, T m; F m, T m) ≥ H(K) + mH(T)−H2(SRm(θ))− (1− SRm(θ)) log(2n − 1). (7)

The right-hand side of Equation (6) can be written as

I(Zm, T m; F m, T m) = H(Zm, T m)−H(Zm, T m | F m, T m)
= H(T m) + H(Zm | T m)−H(Zm | F m, T m)
= mH(T) + I(Zm; F m | T m). (8)

By combining Equations (6) to (8) with [IUH22a, Lemma 4.2], we conclude that

H(K)−H2(SRm(θ))− (1− SRm(θ)) log(2n − 1) ≤ I(Zm; F m | T m) ≤ mI(Z; F),

as required.

Theorem 2 states that an inequality similar to the one proved by Cherisey et al. is
applicable to DL-SCAs. On the left-hand side of Equation (5), ξ(SRm(θ)) represents
the entropy required to achieve a given SRm(θ) in the DL-SCA using an NN model
parameterized by θ with m traces. For example, if the bit length of the secret key is eight
bits, an SR of 100% in the DL-SCA requires eight bits of key entropy. Consequently,
we deduce ξ(SRm(θ)) = ξ(1) = 8, as anticipated. Meanwhile, mI(Z; F) quantifies the
information concerning the intermediate value that the NN model can potentially extract
from the m traces. Therefore, this inequality indicates that, to achieve a certain SR,
information about intermediate values potentially extracted by the NN (i.e., mI(Z; F))
must surpass the information required to achieve it (i.e., ξ(SRm(θ))).

In Equation (5), the MI I(Z; F) measures the extent of information regarding the
intermediate value that can potentially be retrieved from the feature extractor output.
This concept is intrinsically linked to PI and EPI, as described in Section 4.
Remark 1 (Upper bound vs. lower bound). Upper bounds of SR are crucial for leakage
assessment and security validation against DL-SCA. Conversely, lower bounds of SR are
important from the attacker’s perspective and for improving DL-SCA. This paper primarily
focuses on upper bounds, as it centers on the information-theoretical analysis of DL-SCA
using MI. Since MI represents the maximum amount of information in communication, it
is suitable for deriving upper bounds. However, it is less useful for discussing lower bounds,
which are better derived from probability-theoretical analysis. For a lower bound of SR
in DL-SCA developed for ranking loss, refer to [ZBD+21], and for another based on a
probability concentration inequality, see [IUH21].

3.4 Difference from MI–SR inequality
We discuss the differences between the MI–SR inequality and our LPI–SR inequality to
demonstrate that Equation (5) is more effective in evaluating DL-SCA performance.

In [dCGRP19], de Chérisey et al. established the inequality ξ(SRm) ≤ mI(Z; X)
for the SR of side-channel attacks, not limited to DL-SCA. Here, SRm represents the
probability of successful attacks by any SCA using m traces. The function ξ : [0, 1]→ R≥0
converts the SR to entropy. Thus, ξ(SRm) on the left-hand side represents the entropy
of the key required for a certain SR by any SCA. Conversely, mI(Z; X) quantifies the
amount of information regarding intermediate values retrieved from m side-channel traces,

Akira Ito, Rei Ueno and Naofumi Homma 11

where any extraction method is acceptable. This implies that to achieve a given SR,
the information about the intermediate values extractable from m traces mI(Z; X) must
exceed the necessary information of the secret key ξ(SRm).

Further, this inequality must hold for DL-SCA. Let SRm(θ) denote the SR with model
parameter θ, and ξ(SRm(θ)) ≤ mI(Z; X) must hold. However, this inequality may be
too loose to evaluate the attack performance (i.e., SR) of a specific model because the
right-hand side does not depend on the model parameters. For example, if θ represents
random values in the initial learning phase, the SR is assumed to be SRm(θ) ≈ 2−n,
which is as high as a random guess, regardless of the number of traces m. However, the
right-hand side increases monotonically with m when I(Z; X) > 0 because the MI I(Z; X)
is a constant independent of the model parameters. Therefore, the MI–SR inequality
suggests that the attack can succeed with high probability (e.g., SRm(θ) = 1) given a
sufficient number of traces, even for ineffective model parameters. Hence, the MI–SR
inequality is unsuitable for evaluating DL-SCA models.

In contrast, LPI(qθ) = I(Z; F) on the right-hand side of Equation (5) depends on the
model parameters. For example, if the model parameters are unsuitable for the attack,
the feature extractor output is likely to be a random number with little relevance to the
intermediate values. In such cases, the MI between Z and F is approximately zero. Thus,
ξ(SRm(θ)) ≤ mI(Z; F) ≈ 0, followed by SRm(θ) ≈ 2−n.3 This suggests that the LPI–SR
inequality is more suitable for evaluating DL-SCA than the MI–SR inequality.

In addition, the difficulty in MI estimation may differ significantly between I(Z; X)
and LPI(qθ) = I(Z; F). The feature extractor output F has a lower dimensionality than
X, and therefore, the LPI estimation is dimensionally reduced to extract information
on intermediate values compared with the MI estimation. Therefore, estimating LPI(qθ)
is easier than estimating I(Z; X). The methodology for estimating LPI is detailed in
Section 5.
Remark 2 (Strength of LPI–SR inequality). As mentioned earlier, for a given trained model,
the LPI–SR inequality provides a stronger evaluation than the MI–SR inequality. However,
this does not mean that the LPI–SR inequality is always tight. While LPI represents the
amount of information about the intermediate values extracted by the feature extractor,
it does not indicate how effectively the classifier utilizes the feature extractor’s output.
Therefore, even if the LPI is large, the classifier may still perform poorly. In such cases, the
LPI–SR inequality will be loose. In Section 6, we experimentally demonstrate a scenario
where the LPI–SR inequality is loose in AES hardware implementations (i.e., there is a
discrepancy between the performance expected from the LPI–SR inequality and the actual
performance), and we show that this gap can be bridged by using an appropriate classifier.

4 Relationship with other perceived information metrics
4.1 Overview
In this section, we first review the PI and its related information quantity, EPI. Next,
we explain the relationship among PI, EPI, and LPI and demonstrate that SR can be
estimated when PI and EPI are equal to LPI. Further, we examine when PI and EPI are
equal to LPI in terms of the conditional probability distributions.

4.2 Review of PI
Definition of PI. In EUROCRYPT 2011 [RSVC+11], Renauld et al. defined PI as follows:

3Note that ξ takes a global minimum value of 0 at 2−n [IUH22a, Lemma 5.1]. This is deduced from
the fact that the entropy required for a random guess of an n-bit key is zero.

12 Perceived Information Revisited II

Definition 2 (Perceived Information (PI)). Let θ represent the model parameters of
an NN and qθ(Z |X) represent the conditional probability distribution modeled by this
model. The PI of the model is defined as

PI(qθ) := H(Z) + E log qθ(Z |X) = H(Z)− CE(qθ).

PI has two important properties.

(i) PI can be approximated by NLL. We obtain PI(qθ) = H(Z)− CE(qθ) using the CE
CE(qθ) = −E log qθ(Z |X). Further, the CE can be approximated using NLL L(qθ) when
the number of traces m is sufficiently large, implying that PI(qθ) ≈ H(Z) − L(qθ). In
other words, a decrease in the value of the NLL loss function during training is equivalent
to an increase in PI.

(ii) PI is a lower bound of MI. Using the conditional entropy H(Z |X) = −E log p(Z |
X), the MI between the trace and intermediate value is given by I(Z; X) = H(Z)−H(Z |
X), where p(Z |X) represents the true conditional distribution of the intermediate value
Z given trace X. According to the non-negativity of the Kullback–Leibler (KL) divergence
DKL(pZ|X ∥ qθ) = E log p(Z|X)

qθ(Z|X) ≥ 0 [CT06, Theorem 2.6.3], we have

H(Z |X) = −E log p(Z |X) ≤ −E log qθ(Z |X) = CE(qθ).

Therefore, MI is bounded from below as I(Z; X) ≥ H(Z)− CE(qθ) = PI(qθ).

Conjecture on the PI–SR inequality. These properties suggest an intuitive interpretation:
the PI represents the amount of information of the intermediate value that the NN can
extract from the trace [RSVC+11]. To explain this, we consider the following properties.
A decrease in the value of the NLL loss function increases the amount of information
that an NN can extract (i.e., the PI). Then, the PI becomes equal to the MI when the
NN can retrieve the information most successfully (i.e., when the PI is at its maximum).
Meanwhile, when the model training completely fails (i.e., when NLL loss is large), the PI
is approximately equal to or less than zero, and the inequality I(Z; X) ≥ PI(qθ) becomes
meaningless. This can be considered as the model that does not extract any information
about intermediate values from the traces. Based on these observations, we hypothesize
that the PI represents the amount of information that the model can extract. Thus,
Masure et al. [MDP20] conjectured that SRm(θ) is bound above by PI(qθ) as

ξ(SRm(θ)) ≤ mPI(qθ),

which we call the PI–SR inequality in this study. Yet, this is not proven formally. Indeed,
this is not always true, as described in Section 4.3.

4.3 Review of EPI
Transformation by inverse temperature. Ito et al. [IUH22b] showed that the conjecture
on the PI–SR inequality is not always true by constructing a counterexample. They used
the fact that a transformation of the softmax function using the inverse temperature
β > 0 does not change the SR, whereas the PI varies depending on β. For the conditional
probability distribution qθ(Z | X) modeled by the NN, the transformed conditional
probability distribution q

(β)
θ (Z |X) with an inverse temperature β > 0 is given by

q
(β)
θ (z | x) = (qθ(z | x))β∑

z′ (qθ(z′ | x))β
. (9)

Akira Ito, Rei Ueno and Naofumi Homma 13

Ito et al. showed that CE(q(β)
θ) → ∞ and PI(q(β)

θ) → −∞ hold as β → ∞ [IUH22b,
Prpoposition 3], which indicates that PI can take a negative value and be arbitrarily small
by changing β. Hence, we can create a counterexample for the PI–SR inequality conjecture
using a sufficiently large β because the SR is invariant to this transformation for β > 0.
Further, this suggests that the idea of PI expressing the amount of information that a
model can retrieve is incorrect.

Definition of ECE and EPI. Ito et al. defined ECE and EPI to rectify the problem of
the inverse temperature of PI. Their basic idea was calibrating the CE and PI to β to
solve their uncertainty for an identical SR.

Definition 3 (Effective CE (ECE) and Effective PI (EPI) [IUH22b]). Let q
(β)
θ represent

the probability distribution transformed with the inverse temperature β ≥ 0 defined in
Equation (9). Using the same notation as Definition 2, ECE and EPI of qθ are defined as

ECE(qθ) := min
β≥0

CE(q(β)
θ) = min

β≥0
−E log q

(β)
θ (Z |X),

EPI(qθ) := max
β≥0

PI(q(β)
θ) = max

β≥0

(
H(Z) + E log q

(β)
θ (Z |X)

)
= H(Z)− ECE(qθ),

respectively.4

Conjecture on EPI–SR inequality. Similar to Masure et al., Ito et al. also conjectured
that the SR is bounded above by the EPI as

ξ(SRm(θ)) ≤ mEPI(qθ),

which we refer to as EPI–SR inequality in this paper. Ito et al. [IUH22b] experimentally
confirmed its validity and precision; that is, EPI enables precise SR evaluation through
the inequality reported by de Chérisey et al. However, this is yet to be proven formally.

4.4 Relationship among PI, EPI, LPI, and MI
The LPI–SR inequality was formally proven; therefore, if LPI and EPI/PI are equivalent,
the EPI/PI–SR inequality is valid. We discuss the relationship among PI, EPI, LPI, and
MI and describe them when the above two conjectures hold.

First, we have the following inequality among the PI, EPI, LPI, and MI. LPI is a lower
bound of MI, tighter than PI and EPI.

Theorem 3 (Order of PI, EPI, LPI, and MI).

PI(qθ) ≤ EPI(qθ) ≤ LPI(qθ) ≤ I(Z; X). (10)

Proof. From the definition, PI(qθ) ≤ EPI(qθ) holds. We have LPI(qθ) = I(Z; F) ≤ I(Z; X)
according to the data processing inequality on the Markov chain of Zm → Xm → F m

in Figure 2. We then demonstrate that EPI(qθ) ≤ I(Z; F) holds. As EPI(qθ) = H(Z)−
minβ≥0 CE(q(β)

θ) and LPI(qθ) = I(Z; F) = H(Z)−H(Z | F) hold, it suffices to show that

min
β≥0

CE(q(β)
θ) ≥ H(Z | F).

Fix any β. Here, it holds that

CE(q(β)
θ) = −E log q

(β)
θ (Z |X) (a)= −E log q

(β)
θ (Z |X, F) (b)= −E log q

(β)
θ (Z | F), (11)

4In the original paper, these are defined using inf and sup; however, in this paper, they are defined
using min and max for simplicity, as CE(q(β)

θ
) always has a global minimum in terms of β ≥ 0.

14 Perceived Information Revisited II

because (a) if X is given, conditioning (Z | X) by F does not change the resulting
distribution as F is deterministic function of X, and (b) the probability of Z given
by the model is determined solely from F without X. Let DKL(p ∥ q) denote the
Kullback–Leibler (KL) divergence between p and q. Because KL divergence is always
non-negative [CT06, Theorem 2.6.3], we have

DKL

(
p(Z | F)

∥∥∥ q
(β)
θ (Z | F)

)
= E log p(Z | F)

q
(β)
θ (Z | F)

≥ 0

⇔ −E log q
(β)
θ (Z | F) ≥ −E log p(Z | F) = H(Z | F). (12)

Combining Equations (11) and (12), we conclude that CE(q(β)
θ) ≥ H(Z | F) holds for

any β. This completes the proof.

From Theorem 3, we have the following corollary.

Corollary 1.

CE(qθ) ≥ ECE(qθ) ≥ H(Z | F) ≥ H(Z |X).

From Theorem 3, the conjectures of the PI–SR and EPI–SR inequalities hold if the
equality in Equation (10) holds. We first prove Theorem 4, which states that the condition
for the EPI–SR inequality holds.

Theorem 4 (Equality condition between EPI and LPI). EPI(qθ) = LPI(qθ) holds if and
only if

DKL

(
p(Z |X)

∥∥∥ q
(β′)
θ (Z |X)

)
= DKL

(
p(Z |X)

∥∥∥ p(Z | fθ(X))
)

,

where DKL represents the KL divergence and β′ = arg minβ≥0 CE(q(β)
θ); that is, q

(β′)
θ

represents the probability distribution used to calculate EPI(qθ).

Proof. Recall that LPI(qθ) = H(Z)−H(Z | F) and EPI(qθ) = H(Z)−minβ>0 CE(q(β)
θ).

The condition LPI(qθ) = EPI(qθ) is equivalent to

H(Z | F) = min
β≥0

CE(q(β)
θ) = CE(q(β′)

θ). (13)

H(Z | F) = −E log p(Z | F) = −E log p(Z | fθ(X)) holds because of the definition of
conditional entropy. Therefore, Equation (13) is equivalent to

E log p(Z | fθ(X)) = E log q
(β′)
θ (Z |X)

⇔ E log p(Z |X)
p(Z | fθ(X)) = E log p(Z |X)

q
(β′)
θ (Z |X)

⇔ DKL

(
p(Z |X)

∥∥∥ p(Z | fθ(X))
)

= DKL

(
p(Z |X)

∥∥∥ q
(β′)
θ (Z |X)

)
, (14)

as required for the sufficiency proof. Equation (14) can be inversely transformed to
Equation (13) as required for the necessity proof. This completes the proof.

Theorem 4 states that EPI is equal to LPI if the distance between the true distribution
p(Z | X) and the distribution p(Z | fθ(X)) is the same as the distance between the
true distribution and the modeled probability q

(β′)
θ (Z | X). An important case is that

p(Z | fθ(X)) = q
(β′)
θ (Z |X) holds. Its intuitive explanation is provided below.

Since fθ is a feature extractor, fθ(X) represents the extracted information about the
intermediate values. The true distribution p(Z | fθ(X)) makes an optimal prediction about

Akira Ito, Rei Ueno and Naofumi Homma 15

Algorithm 1 LPI estimation using KSG estimator
Input: Trained model parameters θ, validation (or test) set Sa = {(Xi, Zi) | 1 ≤ i ≤ m},

batch size m′, and number of iterations nb

Output: estimated value L̂PI
1: (Fi)m

i=1 ← GetFeatureMap(θ, (Xi)m
i=1)

2: for j = 1, 2, . . . , nb do
3: (Fi, Zi)m′

i=1 ← Sample((Fi, Zi)m
i=1) ▷ Sampling with replacement.

4: L̂PIj ← KSG((Fi)m′

i=1, (Zi)m′

i=1)
5: end for
6: L̂PI← 1

nb

∑nb

j=1 L̂PIj

Z based on this intermediate value information. Furthermore, when the feature extractor
parameters are fixed, this true distribution p(Z | fθ(X)) minimizes NLL. Therefore, the
distribution p(Z | fθ(X)) gives the optimal distinguisher for the attack in terms of both
attack performance and NLL. However, since the true distribution p(Z | fθ(X)) is usually
unknown, we use the alternative distribution qθ(Z |X), which is obtained from the model
classifier gθ. If this distribution qθ(Z | X) matches p(Z | fθ(X)), which means that
the classifier gθ is the best in terms of SR and NLL, LPI and PI are equivalent. When
estimating EPI, we apply a transformation using inverse temperature β′, which is invariant
with respect to SR, to the classifier gθ and minimize NLL. Therefore, from our LPI–SR
inequality, we can say that the EPI–SR inequality holds if the classifier is optimal in terms
of both SR and NLL (i.e., p(Z | fθ(X)) = q

(β′)
θ (Z |X)), except for the degrees of freedom

for the inverse temperature.
Finally, the equality condition between the PI and LPI is that qθ(Z |X) = q

(β′)
θ (Z |

X) = p(Z | F). This represents a situation where the trained model qθ(Z |X) is equal to
the distribution q

(β′)
θ (Z |X) obtained by minimizing the CE on the inverse temperature,

and it is also equal to the distribution p(Z | F) simultaneously. In [IUH22b], it was shown
experimentally that qθ(Z |X) = q

(β′)
θ (Z |X) rarely holds, which implies that the PI–SR

inequality may not be valid. We will also demonstrate this experimentally in Section 6.

5 Estimation of LPI
In this section, we introduce two methods for the estimation of LPI. One method is to
directly use the Kraskov (KSG) estimator, which is an asymptotic unbiased estimator of
MI. The other method is to estimate a lower bound for LPI by using logistic regression
to approximate the best model classifier. The method using the KSG estimator can
asymptotically estimate the true LPI but is computationally expensive. Logistic regression,
on the other hand, is not guaranteed to estimate the true LPI but has the advantage of
being computationally less expensive. We confirm experimentally in Section 6 that the
values estimated by both methods are very close.

5.1 Direct estimation
Since LPI is the MI between the output of the feature extractor F and the intermediate
value Z, it can be estimated using an MI estimator. To avoid bias in the estimation, the
MI must be estimated using a validation or test dataset, which is not used for updating
the model parameters.

In this paper, we employ the KSG estimator, a common MI estimator that utilizes
the k-nearest neighbor (k-NN) method. Typically, the output of the feature extractor in
models used for SCAs is limited to a few dozen dimensions (e.g., the feature extractor of

16 Perceived Information Revisited II

the model proposed by Wouters et al. [WVdHG+20] has around 10 dimensions), which is
relatively small compared to the dimension of side-channel trace. Therefore, even with the
KSG estimator based on the k-NN method, the impact of the curse of dimensionality on
estimation accuracy is expected to be far smaller than the case of estimating I(Z; X).

However, if the MI between the intermediate values and the traces is very small due
to masking or other countermeasures, the LPI will also become small, which requires a
large number of traces to achieve sufficient estimation accuracy. Thus, we need to reduce
the computational complexity of the KSG estimator because its worst-case computational
complexity is O(m2) when using m traces. To address this, we use the bootstrap method to
reduce computational complexity. Algorithm 1 shows our algorithm to estimate LPI using
the KSG estimator. We first determine an appropriate batch size m′ smaller than m and
the number of iterations nb. In line 1, we obtain the feature maps (Fi)m

i=1 from the trained
model θ by inputting the traces (Xi)m

i=1 into the model. In line 3, we resample m′ data
from the m traces. This resampling simulates sampling from the empirical distribution
generated by the m data points. In line 4, we estimate the mutual information with
the KSG estimator using the resampled m′ data. The KSG estimator is available in
open-source libraries such as NPEET5, so it can be easily estimated using these. This
process is repeated nb times, and the average of these estimates is taken as the final MI
estimate.

Since the KSG estimator is asymptotically unbiased, increasing m′ and nb can minimize
the bias in the MI estimate. However, the computational complexity of the estimation
grows proportionally with nb and m′. Therefore, nb and m′ must be chosen based on a
trade-off between estimation accuracy and computational complexity.

5.2 Logistic regression based estimation
The second method for estimating MI involves using logistic regression. The basic idea is
that, for a given NN model, if we can identify the optimal classifier for the last layer, we
can calculate a good lower bound for LPI.

Let W and b be the weight and bias of the last layer, respectively. The classifier (i.e.,
the last layer) is represented by

gθ(f) = softmax(W f + b), (15)

where f is the input feature map. The model defined in Equation (15) is known as multi-
class logistic regression. When the parameters of the feature extractor are fixed, the optimal
parameters of W and b can be obtained by performing logistic regression fitting. When
NLL is used as the error function, optimizing the logistic regression parameters becomes
a convex optimization problem, implying that its global optimum can be analytically
found by, for example, the Newton–Raphson method. Therefore, the NLL (and CE) of the
trained model can be reduced by optimizing the last layer as a logistic regression.

The estimation procedure for LPI using logistic regression is shown in Algorithm 2.
This algorithm takes the trained parameters θ, the validation (or test) dataset Sa, and the
number of cross-validation folds c. In line 1, the outputs of the feature extractor (Fi)m

i=1
are obtained from the trained parameters θ and the validation traces (Xi)m

i=1. Next, in
lines 2–7, we perform c-fold cross-validation of logistic regression using these feature maps
(Fi)m

i=1 and intermediate values (Zi)m
i=1 to obtain the average NLL value of the logistic

regressions across all evaluations. In line 2, we split the dataset (Fi, Zi)m
i=1 into c equal

folds (Fk)c
k=1. In lines 3–6, we perform the logistic regression fitting and NLL calculation.

In line 4, we fit the logistic regression using the k-th fold (set) to obtain the parameter
ω. In line 5, we use the parameter ω to perform inference on the remaining data set
(Fi, Zi)m

i=1 −Fk that was not used for training6, and calculate the NLL. This is done for
5https://github.com/gregversteeg/NPEET
6Here, subtraction represents removing the data contained in Fk from (Fi, Zi)m

i=1.

https://github.com/gregversteeg/NPEET

Akira Ito, Rei Ueno and Naofumi Homma 17

Algorithm 2 LPI estimation using logistic regression
Input: Trained model parameters θ, validation (or test) set Sa = {(Xi, Zi) | 1 ≤ i ≤ m},

number of folds c
Output: estimated value L̂PI

1: (Fi)m
i=1 ← GetFeatureMap(θ, (Xi)m

i=1)
2: (Fk)c

k=1 ← Split((Fi, Zi)m
i=1) ▷ Splitting Sa into c equal folds.

3: for k = 1, 2, . . . , c do
4: ω ← FitLogisticRegression(Fk)
5: N̂LLk ← Inference(ω, (Fi, Zi)m

i=1 −Fk)
6: end for
7: L̂PI← 1

c

∑c
k=1 N̂LLk

all folds. In line 7, the average NLL is then returned as the estimated LPI. It is known
that increasing the number of folds in cross-validation reduces the generalization error.
Therefore, by using a sufficiently large c and number of traces m, we can approximate
the cross-entropy of logistic regression accurately. The computational complexity of this
algorithm is O(c ·m ·s) when logistic regression is trained using the L-BFGS method, where
s represents the maximum number of iterations for the L-BFGS method. For example, in
the Python Scikit-learn library [PVG+11], s = 100 by default. Since cs is expected to be
smaller than the number of traces m, this algorithm estimates the LPI value more quickly
than using the KSG estimator proposed in Section 5.1.

The validity of this algorithm can be explained as follows. Let θ be the parameters of
the trained NN model, and let θ′ be the result of updating the parameters of the last layer
by treating it as a logistic regression. For simplicity, we will assume that an infinite amount
of training data is available, thus preventing the models from overfitting the training
set (note that when estimating LPI using logistic regression during actual evaluation, a
validation set is used; overfitting does not need to be considered).

Based on these assumptions, the NLL or CE of θ′ must be smaller than that of θ (i.e.,
−E log qθ′(Z; X) ≤ −E log qθ(Z; X) = CE(qθ)). Additionally, since the parameter space
of logistic regression includes degrees of freedom due to inverse temperature, the CE of θ′

must also be smaller than the effective cross-entropy (ECE); that is, CE(qθ′) ≤ ECE(qθ).
Furthermore, H(Z)−CE(qθ′) is also smaller than LPI, which is followed by LPI(qθ) ≥

H(Z) − CE(qθ′) ≥ H(Z) − ECE(qθ). In other words, CE(qθ′) provides a more accurate
evaluation of LPI than ECE. Specifically, if the true distribution p(Z | F) is within the
hypothesis set of logistic regression, then with an infinite number of traces, the lower
bound of the LPI estimated using this method matches the true value of LPI.

Given that logistic regression is a linear model with a relatively small model capacity,
assuming that the true distribution is included in the hypothesis set might seem optimistic.
However, as shown in Section 6, the lower bound of the LPI estimated by logistic regression
is close to the LPI estimated by the KSG estimator in Section 5.1, suggesting that the
true distribution p(Z | F) can be approximately included in the hypothesis set.

6 Experimental validation
6.1 Dataset and experimental setup
This section validates our theoretical analyses through experimental DL-SCAs on masked
AES software and hardware implementations. We evaluate the empirical values of PI, EPI,
and LPI and examine whether the relationship among them mentioned in Section 4 and
each SR inequality hold experimentally. In this experiment, we do not use the validation
set because this experiment aims to confirm the validity of our analysis, and we do not

18 Perceived Information Revisited II

perform the hyperparameter-tuning of the model. We directly use the test (attack) set to
calculate PI, EPI, and LPI. If these metrics are to be used in the actual evaluation of the
trained model, it is necessary to prepare a separate validation set for evaluation.

Software target. We used a first-order Boolean masked AES software provided imple-
mentation by ASCAD [BPS+20]. We implemented it on an Atmel Xmega128D4-AU
eight-bit microcontroller and acquired the side-channel traces because we required more
traces than the ASCAD dataset for improving the accuracy of estimating PI, LPI, and
EPI. We acquired the side-channel traces for two different keys, which correspond to
profiling (i.e., NN training) and attack phases. The target microcontroller is mounted
on a ChipWhisperer CW308 UFO baseboard. The ChipWhisperer CW1200 capture box
generated the base clock, and the clock frequency was set to 50 MHz. The microcontroller
was connected to a Keysight DSOX6004A oscilloscope at a sampling rate of 1.33 GSa/s
for acquiring side-channel traces. The number of traces acquired was 100,000 each for the
training and attack phases. We used a selection function of Z(k) = Sbox(T ⊕ k), as in
many previous studies on (DL-)SCA on ASCAD and AES software implementations.

Hardware target. We used a public dataset released by Ito et al.7, which was also used
in the evaluation in [IUH22b]. The AES hardware implementation, presented in [UHA17],
employs threshold implementation (TI) as a masking scheme [NRS11,RBN+15] with a
byte-serial architecture. The implementation was conducted on a Xilinx Kintex-7 FPGA on
a SAKURA-X board, and its power traces were acquired at a sampling rate of 455 MSa/s.
The number of traces was 1,500,000 for training and 500,000 for the attacks. Similar
to [IUH22a], we used a selection function targeting the register transition between the first
and fifth bytes of the inversion output, denoted by

Z(k[1],k[5]) = Inv(∆f (T [1])⊕∆f (k[1]))⊕ Inv(∆f (T [5])⊕∆f (k[5])),

where T [1] and T [5] represent the first and fifth byte of plaintext, respectively; k[1] and k[5]
represent the first and fifth byte of the secret key, respectively; ∆f represents the isomorphic
mapping from AES field (i.e., GF(28)) to Canright’s tower field (i.e., GF(((22)2)2)) [Can05];
and Inv represents the GF(((22)2)2) inversion in Canright’s Sbox (See [UHA17] for the
details). We must guess two consecutive key bytes to employ an XOR-based selection
function. Hence, the partial key length in the attack is n = 16 for the AES hardware
implementation in our experiment.

Neural networks for qθ̂(Z | X) and its training. For evaluating the software implemen-
tation, we employ an NN architecture presented in [WAGP20] for implementing it with
a random delay measure of 50 sample points. We set the learning rate, batch size, and
maximum number of epochs to 1e−2, 512, and 100, respectively. We normalize the side-
channel traces using feature standardization presented by Wouters et al. in [WAGP20].
For the hardware implementation, we used another neural network architecture proposed
in [IUH22b] and set the learning rate, batch size, and maximum number of epochs to 1e−2,
1000, and 500, respectively. We normalize the side-channel traces using feature scaling
between -1 and 1 proposed in [WAGP20].

LPI estimation. In the LPI estimation using the KSG estimator described in Section 5.1,
it is necessary to determine the number of samplings nb and batch size m′. In this
experiment, for the evaluation of the software implementation, nb = 100 and m′ = 8, 192

7The dataset of side-channel traces is publicly available at https://github.com/ECSIS-lab/perceived_
information_revisited/tree/main. The AES hardware is publicly available at https://github.com/
ECSIS-lab/curse_of_re-encryption/tree/main/Masked_AES_hardware.

https://github.com/ECSIS-lab/perceived_information_revisited/tree/main
https://github.com/ECSIS-lab/perceived_information_revisited/tree/main
https://github.com/ECSIS-lab/curse_of_re-encryption/tree/main/Masked_AES_hardware
https://github.com/ECSIS-lab/curse_of_re-encryption/tree/main/Masked_AES_hardware

Akira Ito, Rei Ueno and Naofumi Homma 19

0 20 40 60 80 100
#epochs

0.00

0.02

0.04

0.06

0.08

0.10
Am

ou
nt

 o
f i

nf
or

m
at

io
n

PI EPI LPI_LR LPI_KSG

(a) PI values.

0 20 40 60 80 100
#epochs

102

103

104

#
tr

ac
es

Est. w/ PI
Est. w/ EPI
Est. w/ LPI_LR

Est. w/ LPI_KSG
Attack results

(b) Number of traces to achieve an SR of 90%.

Figure 3: DL-SCA on the AES software implementation.

0 100 200 300 400 500
#epochs

0.000

0.001

0.002

0.003

0.004

Am
ou

nt
 o

f i
nf

or
m

at
io

n PI EPI LPI_LR LPI_KSG

(a) PI values.

0 100 200 300 400 500
#epochs

104

105

106

#
tr

ac
es

Est. w/ PI
Est. w/ EPI
Est. w/ LPI_LR

Est. w/ LPI_KSG
Attack results

(b) Number of traces to achieve an SR of 90%.

Figure 4: DL-SCA on the AES hardware implementation.

were used. For the hardware implementation evaluation, nb = 1, 000 and m′ = 8, 192
were used. All test traces were used to evaluate the KSG estimator. We used the KSG
estimator provided by the Python library NPEET.

For the LPI estimation using logistic regression (i.e., Algorithm 2), the test set was
used for evaluation, with c = 5 for both the software and hardware implementations. The
training and inference of logistic regression were performed using the LogisticRegression
class from cuML [Tea23], which is a GPU-accelerated machine learning library compatible
with Scikit-learn [PVG+11]. We changed the hyperparameter C, which determines the
strength of regularization. For C, we tried all of {0.01, 0.1, 1} and used the one with the
lowest average NLL in cross-validation as the estimated LPI.

6.2 Evaluation result
Figures 3 and 4 report experimental results on the AES software and hardware implemen-
tations, respectively. Here, Figures 3(a) and 4(a) display the estimated PI, EPI, and LPI
values during training, while Figures 3(b) and 4(b) display the empirical and estimated
numbers of traces to achieve an SR of 90% using the model and inequalities. In Figures 3
and 4, LPI_LR and LPI_KSG mean the LPI values estimated by logistic regression and
KSG estimator, respectively. Precisely, Figures 3(a) and 4(a) show the estimated PI, EPI,
and LPI values during training, where the horizontal axis represents the number of epochs
and the vertical axis represents the amount of information. Figures 3(b) and 4(b) show the
empirical and estimated numbers of traces to achieve an SR of 90% by the model at each
epoch. The red, blue, purple, and gray curves correspond to the number of traces required
to achieve the SR estimated from the PI, EPI, LPI with logistic regression, LPI with KSG
estimator, respectively, using the corresponding inequality. The yellow line denotes the
empirical number of traces in an actual attack using the model.

We first focus on the results of AES software implementation. From Figure 3(a), we
observe that the PI value increases over the first 20 epochs and decreases subsequently.

20 Perceived Information Revisited II

0 20 40 60 80 100
#epochs

102

103

104
#

tr
ac

es
Est. w/ LPI_LR
Est. w/ LPI_KSG

Attack results w/ LR
Attack results w/o LR

(a) Attack results on the AES software imple-
mentation.

0 100 200 300 400 500
#epochs

104

105

106

#
tr

ac
es

Est. w/ LPI_LR
Est. w/ LPI_KSG

Attack results w/ LR
Attack results w/o LR

(b) Attack results on the AES hardware imple-
mentation.

Figure 5: Number of traces to achieve an SR of 90% by improved attack.

The values of EPI and LPI do not (relatively) decrease after 20 epochs. Therefore, after
20 epochs, the PI indicates a degradation in the attack performance of the model, whereas
the EPI and LPI indicate a slight change in attack efficacy. In fact, Figure 3(b) indicates
that the number of traces estimated from PI exceeds the number of traces in the actual
attack at the last epoch, thereby disproving the conjecture on the PI–SR inequality in the
experiment, in addition to the theoretical argument. In contrast, the number of traces
estimated from the EPI and LPI are smaller compared to those for the actual attack, and
they correlate proportionally. The attack performance can be estimated from the LPI and
EPI values through SR inequalities. The results show that PI < EPI < LPI holds, and
the difference between LPI and EPI is relatively small. Therefore, the EPI is appropriate
for predicting attack performance, and the EPI–SR inequality is valid. In addition, it can
be seen that the difference between the LPI values estimated by the KSG estimator and
by logistic regression is small. In other words, this suggests that the classifier obtained by
logistic regression is close to the optimal one.

Next, we focus on the results of the AES hardware implementation. First, from
Figure 4(a), we can see that PI is zero for almost all epochs. If the PI–SR inequality
holds, this means that the attack will fail for almost all epochs. However, as shown in
Figure 4(b), the attack succeeds with the models trained from around the 30th epoch
onwards, indicating that the PI–SR inequality does not hold. While PI is almost zero,
EPI and LPI are significantly greater than zero in the epochs where the attack succeeded.
In fact, as shown in Figure 4(b), the number of traces estimated from either EPI or LPI
provides a lower bound on the number of traces actually required for a successful attack.
However, the difference between EPI and LPI is large, and the lower bound estimated
from EPI is more accurate. While the LPI–SR inequality has been proven, the EPI–SR
inequality is only a conjecture and has not been proven. Furthermore, if LPI and EPI are
significantly different, why the EPI–SR inequality holds is still unclear and has not been
proven from our analyses. Nevertheless, at least within this experiment, it was found that
both the EPI–SR inequality and the LPI–SR inequality hold8. Finally, when we look at the
differences in the methods used to estimate LPI, we can see that the difference between the
estimation results of LPI_LR and LPI_KSG is small, and the difference in the estimation
of the number of traces required for an attack is also small. This indicates that the LPI
value can be accurately estimated by logistic regression instead of MI estimators.

Akira Ito, Rei Ueno and Naofumi Homma 21

0 100 200 300 400 500
#traces

0.0

0.2

0.4

0.6

0.8

1.0

SR
epoch = 50

Est. w/ LPI_LR
Est. w/ LPI_KSG
Attack result w/ LR
Attack result w/o LR

0 100 200 300 400 500
#traces

0.0

0.2

0.4

0.6

0.8

1.0

SR

epoch = 100

Est. w/ LPI_LR
Est. w/ LPI_KSG
Attack result w/ LR
Attack result w/o LR

(a) SRs on the AES software implementation at
the 50th and 100th epochs.

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

#traces

0.0

0.2

0.4

0.6

0.8

1.0

SR

epoch = 250

Est. w/ LPI_LR
Est w/ LPI_KSG
Attack result w/ LR
Attack result w/o LR

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

#traces

0.0

0.2

0.4

0.6

0.8

1.0

SR

epoch = 500

Est. w/ LPI_LR
Est w/ LPI_KSG
Attack result w/ LR
Attack result w/o LR

(b) SRs on the AES hardware implementation
at the 250th and 500th epochs.

Figure 6: SRs at the middle and the end of the model training.

6.3 Improved attack using logistic regression as classifier

Figure 4(b) has shown that the LPI–SR inequality is clearly loose. LPI is the mutual
information between the output of the feature extractor F and the intermediate value Z.
In other words, the LPI–SR inequality ignores the model’s classifier. Therefore, the reason
that the LPI–SR inequality is loose in Figure 4(b) may be due to the poor performance of
the classifier in the trained model. In other words, in this case, the attack performance is
likely to be improved if we can improve the classifier.

Accordingly, we trained a logistic regression model on the training set to improve the
performance of the classifier and used it to calculate the number of traces required for key
recovery. Specifically, we first input the training data into the pre-trained model to obtain
the feature maps. Next, we used these feature maps to perform cross-validation of the
logistic regression and selected a regularization parameter C from the set {0.01, 0.1, 1}. We
then used the obtained regularization parameter C to train the logistic regression model
on the entire training data. This trained logistic model was then used as the last layer
classifier, and we performed attacks on test traces.

Figures 5 and 6 show the experimental attack results. Figures 5(a) and 5(b) present
the results of attacks on AES software and hardware implementations for all epochs,
respectively. Figures 6(a) and 6(b) show the SRs of attacks on AES software and hardware
implementations using the trained models at the middle and the end of the model training as
examples (i.e., 50th and 100th epochs for the software implementation, and 250th and 500th
epochs for the hardware implementation). For comparison, the results of attacks using the
original trained models are also shown in these figures. From these figures, we find that
the attack performance on the hardware implementation is significantly improved in most
epochs, while the performance improvement seems trivial for the software implementation.
This indicates that the looseness of the LPI–SR inequality in the hardware implementation
evaluation shown in Figure 4 is due to the poor performance of the model’s classifier. In
fact, when logistic regression is used as the output layer, the LPI–SR inequality provides a
more precise lower bound evaluation. This indicates that the LPI–SR inequality allows us
to estimate the room for performance improvement for a given model. Additionally, these
figures show the logistic regression performed well without overfitting, even though the
training data for NN model training was also used to train the logistic regression model.
This is likely because the logistic regression is a linear model with limited capacity, which
suppresses overfitting. These results demonstrate that the proposed LPI–SR inequality can
accurately estimate the model’s performance based on the NN model’s feature extractor.

8At epoch 270, the EPI–SR inequality does not appear to be satisfied, but in fact, the attack fails at
this point and there is no plot in “Attack results”. Therefore, the EPI–SR inequality holds at this epoch
as well.

22 Perceived Information Revisited II

7 Concluding remarks
This study conducted an information theoretical analysis of DL-SCA. We developed a
communication channel model for DL-SCA and defined a novel metric called LPI. Based
on this model, we derived the LPI–SR inequality. Then, we discussed the relationships
among LPI, PI, and EPI to validate the conjecture on the EPI–SR inequality through
the LPI–SR inequality, and we commented on the similarity between LPI and EPI. For
the practical computation of LPI, we proposed two methods to estimate LPI using a
KSG estimator and logistic regression. Finally, we conducted experimental DL-SCAs
on masked AES software and hardware implementations to validate the correctness of
our analyses. Within the scope of our experiments, it was found that EPI provides an
accurate lower bound on the number of traces for successful attacks using a given model.
However, the EPI–SR inequality lacks proof, and in the current situation, it does not
provide a theoretical guarantee that this lower bound is always correct. In contrast, the
LPI–SR inequality is formally proven, ensuring a theoretically guaranteed lower bound.
Additionally, it can enhance attack performance by improving the classifier. In this sense,
the LPI offers a more reliable security evaluation than the EPI.

The experiments in this study were conducted for cases in which the selection function
has good properties, such as bijection. Major practical ciphers, including AES, are included
in this scope. However, the generality of our analysis for other cases is unclear. In the
future, the validity of our analysis for other ciphers should be investigated. Furthermore,
clarifications regarding the accuracy of the proposed LPI estimation method and the
development of better alternatives should be pursued in the future.

Acknowledgment
We appreciate Olivier Rioul and Julien Béguinot for their inspiring discussion, which
enhanced this study. This research was supported by JSPS KAKENHI Grant No.
22H04999/21H04867 and JST CREST Grant No. JPMJCR19K5, Japan.

References
[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power

analysis with a leakage model. In Marc Joye and Jean-Jacques Quisquater,
editors, Cryptographic Hardware and Embedded Systems - CHES 2004,
Lecture Notes in Computer Science, pages 16–29, Berlin, Heidelberg, 2004.
Springer.

[BIK+24] Elie Bursztein, Luca Invernizzi, Karel Král, Daniel Moghimi, Jean-Michel
Picod, and Marina Zhang. Generalized power attacks against crypto hard-
ware using long-range deep learning. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2024:472–499, 2024.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning (In-
formation Science and Statistics). Springer-Verlag, Berlin, Heidelberg,
2006.

[BPS+20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. Deep learning for side-channel analysis and introduction to ASCAD
database. Journal of Cryptographic Engineering, 10(2):163–188, 2020.

[Can05] D. Canright. A very compact S-box for AES. In International Workshop
on Cryptographic Hardware and Embedded Systems, volume 3659 of Lecture
Notes in Computer Science, pages 441–455. Springer, 2005.

Akira Ito, Rei Ueno and Naofumi Homma 23

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neural
networks with data augmentation against jitter-based countermeasures.
In Cryptographic Hardware and Embedded Systems – CHES 2017, volume
10529 of Lecture Notes in Computer Science, pages 45–68. Springer, 2017.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
International Workshop on Cryptographic Hardware and Embedded Systems,
LNCS, pages 13–28, 2002.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wi-
ley Series in Telecommunications and Signal Processing). Wiley-Interscience,
USA, 2006.

[dCGRP19] Eloi de Chérisey, Sylvain Guilly, Olivier Rioul, and Pablo Piantanida. Best
information is most successful: Mutual information and success rate in
side-channel analysis. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2019(2):49–79, 2019.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[GS18] Vincent Grosso and François-Xavier Standaert. Masking proofs are tight
and how to exploit it in security evaluations. In EUROCRYPT (2), pages
385–412. Springer, 2018.

[HHGG20] Benjamin Hettwer, Tobias Horn, Stefan Gehrer, and Tim Güneysu. En-
coding power traces as images for efficient side-channel analysis. In 2020
IEEE International Symposium on Hardware Oriented Security and Trust
(HOST), pages 46–56, 2020.

[HRG14] Annelie Heuser, Olivier Rioul, and Sylvain Guilley. Good is not good enough
- deriving optimal distinguishers from communication theory. In CHES,
pages 55–74. Springer, 2014.

[IUH21] Akira Ito, Rei Ueno, and Naofumi Homma. Toward optimal deep-learning
based side-channel attacks: Probability concentration inequality loss and
its usage. Cryptology ePrint Archive, Report 2021/1216, 2021. https:
//ia.cr/2021/1216.

[IUH22a] Akira Ito, Rei Ueno, and Naofumi Homma. On the success rate of side-
channel attacks on masked implementations: Information-theoretical bounds
and their practical usage. In ACM SIGSAC Conference on Computer and
Communications Security (CCS 2022), pages 1521–1535, 2022.

[IUH22b] Akira Ito, Rei Ueno, and Naofumi Homma. Perceived information revis-
ited: New metrics to evaluate success rate of side-channel attacks. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2022(4),
2022.

[LZC+21] Xiangjun Lu, Chi Zhang, Pei Cao, Dawn Gu, and Haining Lu. Pay attention
to raw traces: A deep learning architecture for end-to-end profiling attacks.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021(3):235–274, 2021.

[MDP20] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. A comprehensive
study of deep learning for side-channel analysis. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2020(1):348–375, 2020.

http://www.deeplearningbook.org
https://ia.cr/2021/1216
https://ia.cr/2021/1216

24 Perceived Information Revisited II

[MHM14] Zdenek Martinasek, Jan Hajny, and Lukas Malina. Optimization of power
analysis using neural network. In Aurélien Francillon and Pankaj Rohatgi,
editors, Smart Card Research and Advanced Applications, pages 94–107,
Cham, 2014. Springer International Publishing.

[MMZ23] Anqi Mao, Mehryar Mohri, and Yutao Zhong. Cross-entropy loss func-
tions: Theoretical analysis and applications. In Proceedings of the 40th
International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and E. Prouff. Breaking crypto-
graphic implementations using deep learning techniques. Security, Privacy,
and Applied Cryptography Engineering (SPACE), 10076:3–26, 2016.

[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware
implementation of nonlinear functions in the presence of glitches. Journal
of Cryptology, 24(2):292–321, 2011.

[PBP21] Guilherme Perin, Ileana Buhan, and Stjepan Picek. Learning when to
stop: A mutual information approach to prevent overfitting in profiled
side-channel analysis. In Constructive Side-Channel Analysis and Secure
Design, pages 53–81, 2021.

[PHJ+19] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco
Regazzoni. The curse of class imbalance and conflicting metrics with machine
learning for side-channel evaluations. IACR Transactions on Cryptographic
Hardware and Embedded Systems, (1):209–237, 2019.

[PPM+23] Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and Lejla Batina.
SoK: Deep learning-based physical side-channel analysis. ACM Computing
Surveys, 55(11):1–35, 2023.

[PSG16] Romain Poussier, François-Xavier Standaert, and Vincent Grosso. Simple
key enumeration (and rank estimation) using histograms: An integrated
approach. In Cryptographic Hardware and Embedded Systems, pages 61–81,
2016.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In Advances in Cryptology—
CRYPTO 2015, pages 764–783, 2015.

[RSVC+11] Mathieu Renauld, François-Xavier Standeart, Nicolas Veyrat-Charvillon,
Dina Kamel, and Denis Flandre. A formal study of power variability issues
and side-channel attacks for nanoscale devices. In Advances in Cryptology—
Eurocrypt 2011, volume 6632 of Lecture Notes in Computer Science, pages
109–128, 2011.

[SM23] Marvin Staib and Amir Moradi. Deep learning side-channel collision attack.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2023(3):422–444, 2023.

Akira Ito, Rei Ueno and Naofumi Homma 25

[SMY09] François-Xavier Standeart, Tal G. Malkin, and Moti Yung. A unified
framework for the analysis of side-channel key recovery attacks. In Advances
in Cryptology—Eurocrypt 2009, volume 5479 of Lecture Notes in Computer
Science, pages 443–461, 2009.

[Tea23] RAPIDS Development Team. RAPIDS: Libraries for End to End GPU
Data Science, 2023. https://rapids.ai.

[TUX+23] Yutaro Tanaka, Rei Ueno, Keita Xagawa, AKira Ito, Junko Takahashi, and
Naofumi Homma. Multiple-valued plaintext-checking side-channel attacks
on post-quantum KEMs. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2023(3), 2023.

[UHA17] Rei Ueno, Naofumi Homma, and Takafumi Aoki. Toward more efficient DPA-
resistant AES hardware architecture based on threshold implementation. In
International Workshop on Constructive Side-Channel Analysis and Secure
Design, volume 10348 of Lecture Notes in Computer Science, pages 50–64,
2017.

[UXT+22] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and
Naofumi Homma. Curse of re-encryption: A generic power/EM analysis on
post-quantum KEMs. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 1:296–322, 2022.

[WAGP20] Lennert Wouters, Victors Arribas, Benedikt Gierlichs, and Bart Praneel.
Revisiting a methodology for efficient CNN architectures in profiling attacks.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2020(3):147–168, 2020.

[WVdHG+20] Lennert Wouters, Jan Van den Herrewegen, Flavio D. Garcia, David Oswald,
Benedikt Gierlichs, and Bart Preneel. Dismantling DST80-based immobiliser
systems. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2020(2):99–127, 2020.

[ZBD+21] Gabriel Zaid, Lilian Bossuet, François Dassance, Amaury Habrard, and
Alexandre Venelli. Ranking loss: Maximizing the success rate in deep learn-
ing side-channel analysis. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2021(1):25–55, 2021.

[ZBHV19] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli.
Methodology for efficient CNN architectures in profiling attacks. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2020(1):1–
36, 2019.

[ZBHV21] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli.
Efficiency through diversity in ensemble models applied to side-channel
attacks – a case study on public-key algorithms –. IACR Transactions on
Cryptographic Hardware and Embedded Systems (TCHES), 2021(3):60–96,
2021.

[ZZN+20] Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu, and Nenghai Yu.
A novel evaluation metric for deep learning-based side channel analysis
and its extended application to imbalanced data. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2020(3):73—-96, 2020.

https://rapids.ai

	Introduction
	Background
	Our contributions
	Paper organization

	Preliminaries
	Notations
	Overview of profiled DL-SCA
	SCA evaluation metrics
	Conventional communication channel model and MI–SR inequality

	Information-theoretical analyses on DL-SCA
	Overview
	Communication channel model of DL-SCA
	Relationship between the SR and model outputs
	Difference from MI–SR inequality

	Relationship with other perceived information metrics
	Overview
	Review of PI
	Review of EPI
	Relationship among PI, EPI, LPI, and MI

	Estimation of LPI
	Direct estimation
	Logistic regression based estimation

	Experimental validation
	Dataset and experimental setup
	Evaluation result
	Improved attack using logistic regression as classifier

	Concluding remarks

