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Abstract. The impossible boomerang (IB) attack was first introduced by Lu in
his doctoral thesis and subsequently published at DCC in 2011. The IB attack
is a variant of the impossible differential (ID) attack by incorporating the idea of
the boomerang attack. In this paper, we revisit the IB attack, and introduce the
incompatibility of two characteristics in boomerang to the construction of an IB
distinguisher. With our methodology, all the constructions of IB distinguisher are
represented in a unified manner. Moreover, we show that the related-(twea)key IB
distinguishers possess more freedom than the ones of ID so that it can cover more
rounds.
We also propose a new tool based on Mixed-Integer Quadratically-Constrained Pro-
gramming (MIQCP) to search for IB attacks. To illustrate the power of the IB at-
tack, we mount attacks against three tweakable block ciphers: Deoxys-BC, Joltik-BC
and SKINNY. For Deoxys-BC, we propose a related-tweakey IB attack on 14-round
Deoxys-BC-384, which improves the best previous related-tweakey ID attack by 2
rounds, and we improve the data complexity of the best previous related-tweakey
ID attack on 10-round Deoxys-BC-256. For Joltik-BC, we propose the best attacks
against 10-round Joltik-BC-128 and 14-round Joltik-BC-192 with related-tweakey
IB attack. For SKINNY-n-3n, we propose a 27-round related-tweakey IB attack, which
improves both the time and the memory complexities of the best previous ID attack.
We also propose the first related-tweakey IB attack on 28-round SKINNY-n-3n, which
improves the previous best ID attack by one round.
Keywords: Impossible Boomerang Attack · MIQCP · Deoxys-BC · Joltik-BC ·
SKINNY

1 Introduction
Differential cryptanalysis, one of the most important attacks on block ciphers, was first
introduced by Biham and Shamir in 1990 [BS91], and has since been widely studied. The
idea is to study the propagation of differences inside an iterated block cipher and construct
a high-probability differential. An adversary can use this high-probability differential to
recover (part of) the key bits. Built upon the foundation of differential attacks, various
derivative cryptanalytic methods have been developed, with impossible differential attacks
[BBS99a] and boomerang attacks [Wag99] being representative examples.

The impossible differential (ID) attack was first proposed independently by Knud-
sen [Knu98] and Biham [BBS99a]. Unlike traditional differential cryptanalysis, the im-
possible differential attack uses a differential with a probability of 0. The adversary can
use this impossible differential to eliminate wrong key bits. Since its introduction, the
impossible differential attack has gained widespread attention and has effectively targeted
some block ciphers. The most significant step of the impossible differential attack is to
construct a distinguisher that covers as many rounds as possible, and the typical way is
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to use the miss-in-the-middle technique [BBS99b]. In the miss-in-the-middle technique,
cryptanalysts try to track the propagation of input and output differences from the en-
cryption and decryption directions, respectively. If there is a contradiction at certain
points in between, then an impossible differential has been identified.

The boomerang attack was first introduced by Wagner [Wag99], sharing some similari-
ties with the impossible differential attack in that it involves cascading two characteristics.
In the boomerang attack, two short high-probability characteristics are combined to form
a longer distinguisher, aiming to achieve a better attack.

At INDOCRYPT 2003, Kim et al. [KHS+03] proposed the first computer-aided tool
for searching impossible differentials called the U-method. Later, some improved methods
such as the WW-method [WW12] and the UID-method [LLWG14] were introduced by
Wu et al. in 2012 and Luo et al. in 2014, respectively. Mixed-integer linear programming
(MILP) was introduced to search characteristics by Mouha et al. in 2011 [MWGP11],
and later was refined by Sun et al. in 2014 [SHW+14]. Based on the feasibility of the
model, Cui et al. [CJF+16] was the first to apply MILP to the search for impossible
differential distinguishers. At CRYPTO 2016, Derbez and Fouque [DF16] developed a
new Generalized Demirci-Selçuk search algorithm for a large class of block ciphers and
applied the algorithm to search for impossible differential attacks. At EUROCRYPT 2017,
Sasaki et al. [ST17] applied MILP to block ciphers with 8-bit S-boxes and tried to find
contradictions from linear layers. In recent works, [ARS+22, HPW22, CLH+23] all use
the solvability of the MILP/SMT problems to determine IDs. In [HSE23], Hadipour et
al. proposed a generic CP-based model to find full impossible differential attacks without
using the infeasibility.

For the automatic searching tools for the boomerang attack and its variants, Cid
et al. [CHP+17] in 2017 firstly introduced MILP to characterize the ladder switch in
the boomerang distinguishers for Deoxys-BC. Later, Zhao et al. [ZDJ19] used the MILP
method to search for boomerang distinguishers of Deoxys-BC including BDT effect. De-
laune et al. [DDV20] described a new MILP model to search for truncated boomerang
characteristics and a CP model to instantiate the truncated boomerang characteristics for
SKINNY with the effects of DDT, BCT, UBCT, etc. At EUROCRYPT 2022 [DQSW22],
Dong et al. managed to search rectangle distinguishers by proposing a new key guessing
strategy with MILP and CP models. In [DEFN22], Derbez et al. extended the MILP
model to search for a complete boomerang attack, which is applied to the attack on
AES-192.

Building upon the foundations of the impossible differential attack and the boomerang
attack, we think it is an interesting idea to combine them together, with the name impos-
sible boomerang attack. The impossible boomerang (IB) attack was firstly proposed by Lu
in his doctoral thesis [Lu08] and subsequently published in [Lu11]. In [Lu08, Lu11], the
author introduced the definition and extended its application to the related-key scenario.
With this new technique, Lu proposed several single-key attacks on 6-round AES-128
and 7-round AES-192/AES-256, and related-key attacks on 8-round AES-192 and 9-round
AES-256. In [CY09], Choy and Yap adapted the U-method [KHS+03] to align with the im-
possible boomerang attack and computed the maximum length of impossible boomerang
distinguishers for ciphers with MARS-like [BCD+98]/RC6-like [RRSY98] structure.

Our Contributions. In this work, we revisit the impossible boomerang attack, providing
a systematic overview of the contradiction conditions, a comparison with the impossible
differential attack, and the key recovery process under the related-key setting. Based
on Mixed-Integer Quadratically-Constrained Programming (MIQCP), we propose a new
automatic searching tool for impossible boomerang attacks and successfully apply it to
three block ciphers: Deoxys-BC, Joltik-BC and SKINNY. The main results are summarized
in Tables 1 and 2.
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Table 1: Summary of our cryptanalytic results. Apart from the ID-type attacks, we also
provide the best attacks against the targeted ciphers for a more comprehensive comparison.
MITM = Meet-in-the-middle attack, Boom. = Boomerang attack, Rect. = Rectangle
attack. All the attacks listed below are under related-(twea)key settings.

Cipher #R Key
Size

Tweak
Size Attack #K Data† Time Memory Ref.

Joltik-BC-128
10 > 109 <19 ID 2 271 2109.5 2104 [ZD18]
10 > 93 < 35 IB 4 268.3 293.8 292.6 Section 4.3

Joltik-BC-192
11 = 128 = 64 MITM 2 253 2123 2114 [LC21]
13 = 128 = 64 IB 4 268.9 2122.1 296 Section 4.4
14 > 183 < 9 IB 4 266.7 2183.65 2160 Section 4.5

Deoxys-BC-256

9 = 128 = 128 ID 2 2118 2118 2102 [MMS18]
10 > 173 < 83 ID 2 2135 2173 − [ZDW19]
10 > 186 < 70 IB 4 2132.8 2186.66 2181.6 Section 4.3
11 > 222 < 34 Rect. 4 2126.78 2222.49 2128 [SZY+22]
11 > 218 < 38 Boom. 4 2122.4 2218.65 2128 [SZY+22]

Deoxys-BC-384

12 > 329 < 55 ID‡ 2 2135.3 2329.7 2312 Appendix C
13 = 256 = 128 IB 4 2133.3 2243.5 2192 Section 4.4
14 > 368 < 16 IB 4 2130.9 2368 2320 Section 4.5
14 > 278 < 106 Boom. 4 2129 2278.8 2129 [BL23]
15 > 371 < 13 Rect. 4 2115.7 2371.7 2128 [SYC+24]

SKINNY-64-192

27 > 189 < 3 ID 2 263.53 2189 2184 [LGS17]
27 > 183 < 9 ID 2 263.64 2183.26 2172 [HSE23]
27 > 168 < 24 IB 4 267.1 2168.23 2160 Section 5.1
28 > 190 < 2 IB 4 266.37 2190.8 2184 Section 5.2
31 > 182 < 10 Rect. 4 262.78 2182.07 262.79 [DQSW22]

SKINNY-128-384

27 > 378 < 6 ID 2 2126.03 2378 2368 [LGS17]
27 > 362 < 22 ID 2 2124.99 2362.61 2344 [HSE23]
27 > 337 < 47 IB 4 2131.3 2337 2320 Section 5.1
28 > 382 < 2 IB 4 2130.26 2382.8 2368 Section 5.2
32 > 344 < 40 Rect. 4 2123.54 2344.78 2129.54 [SZY+22]

† Some attacks listed are beyond full-codebook attacks. For an introduction to beyond full-codebook
attacks and the computation of the corresponding data complexity, please refer to the remark in
Section 3.4.2. The preceding column "#K" refers to the number of related keys used in the attack.

‡ There is a lack of an impossible differential attack against Deoxys-BC-384 in the public literature.
We try to provide the best related-tweakey impossible differential attack against Deoxys-BC-384 for
comparison with the impossible boomerang attack.

• We revisit the impossible boomerang attack proposed in [Lu11] and introduce the ap-
plicable Generalized Boomerang Framework (GBF). For the impossible boomerang,
we introduce the generation of contradictions and its advantages over the impossi-
ble differential, and then give two key recovery methods. In addition, we propose a
MIQCP-based tool to search for complete impossible boomerang attacks.

• For Deoxys-BC, we provide a related-tweakey impossible boomerang attack against
10-round Deoxys-BC-256 and a related-tweakey impossible boomerang attack against
14-round Deoxys-BC-384. As a demonstration of the effectiveness of the impossible
boomerang attack, our attack against 14-round Deoxys-BC-384 surpasses the pre-
vious best related-tweakey impossible differential attack by two rounds. The dis-
tinguishers used in our attacks can cover 1 or 2 more rounds than the previous
related-tweakey impossible distinguishers.

• For Joltik-BC-128, we propose an improved 10-round related-tweakey impossible
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Table 2: Summary of cryptanalytic distinguishers.

Cipher #Rounds Distinguisher Reference

Joltik-BC-128
6 ID [CLH+23]
7 IB Table 8

Joltik-BC-192
7 ID [CLH+23]
9 IB Table 9

Deoxys-BC-256
6 ID [ZDW19]
7 IB Table 6

Deoxys-BC-384
7 ID Appendix C
9 IB Table 7

SKINNY-64-192
16 ID [LGS17]
17 ID [HSE23]
18 IB Figure 15

SKINNY-128-384
16 ID [LGS17]
17 ID [HSE23]
18 IB Figures 14 and 16

boomerang attack compared to the previous best attack. For Joltik-BC-192, we
present the best related-tweakey attack against 14-round Joltik-BC-192. The dis-
tinguishers used in our attacks can cover 1 or 2 more rounds than the previous
related-tweakey impossible distinguishers.

• For SKINNY-n-3n, we present a 27-round related-tweakey impossible boomerang
attack, with improved time and memory complexity compared to the previous
best related-tweakey impossible attack. We also provide the first 28-round related-
tweakey impossible boomerang attack, which extends one more round than the
previous best related-tweakey impossible attack.

Organization. In Section 2, we give a brief description of boomerang attacks, sandwich
attacks, boomerang connectivity table (BCT) and MIQCP, followed by the notations used
in this work. In Section 3, we revisit the impossible boomerang attack, then describe a new
automatic search tool, and propose two key recovery methods for impossible boomerang
attacks. We introduce the new cryptanalytic results on Joltik-BC and Deoxys-BC in Sec-
tion 4. The new cryptanalytic results on SKINNY-n-3n are provided in Section 5. Finally,
Section 6 concludes this paper.

2 Preliminaries

2.1 Boomerang Attacks
The boomerang attack [Wag99] is an extension of the traditional differential cryptanalysis
proposed by Wagner, which allows the adversary to use two short characteristics of high
probability to construct a long one.

The boomerang attack regards the targeted cipher E : {0, 1}n × {0, 1}k → {0, 1}n as
a cascade of two sub-ciphers E = E1 ◦ E0, where there are two short differentials α → β
and γ → δ with probability p and q for E0 and E1, respectively, as depicted in Figure 1.
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The probability of the boomerang distinguisher is

Pr[E−1(E(P )⊕ δ)⊕ E−1(E(P ⊕ α)⊕ δ) = α] = p2q2.
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Figure 1: Boomerang attack

E0

E0 E0

E0

E1

E1 E1

E1

α α

β β

γ

δ

γ

δ

Em

Em Em

Em

Figure 2: Sandwich attack

The boomerang attack is an adaptive chosen plaintext and ciphertext attack, with the
following process:

• Encrypt pair of plaintexts (p1, p2) s.t. p1 ⊕ p2 = α into (c1, c2) respectively.
• Get p3, p4 by decrypting c3 = c1 ⊕ δ and c4 = c2 ⊕ δ respectively.
• Check whether p3 ⊕ p4 = α.

2.2 Sandwich Attacks and Boomerang Connectivity Table
In [DKS10], Dunkelman et al. proposed the sandwich attack (see in Figure 2) to exploit
the dependence between two differentials of the boomerang distinguisher, which divides
a cipher E into three sub-ciphers: E = E1 ◦ Em ◦ E0. The probability of the sandwich
distinguisher is

Pr[E−1(E(P )⊕ δ)⊕ E−1(E(P ⊕ α)⊕ δ) = α] = p̃2q̃2r,

where p̃ (resp. q̃) is the probability of the differential of E0 (E1), and r is the probability
of generating a right quartet for Em.

In [CHP+18], Cid et al. proposed a tool, named Boomerang Connectivity Table (BCT),
to calculate r when Em is composed of a single S-box layer. The BCT well captures
the previous observations including incompatibility [Mur11], the S-box switch and the
ladder switch [BK09], and gives more new insights into the boomerang switch. Later,
the methods describing multi-round transitions of the boomerang have been proposed
by many works [WP19, SQH19, DDV20, HBS21]. These works indicate that a thorough
investigation on the construction of the middle layer can lead to a better boomerang
attack. Here, we provide the definition of the BCT.

Definition 1 ([CHP+18]). Let S be an n-bit bijective S-box, and ∆i,∇o ∈ Fn
2 . The BCT

of S is given by a 2n × 2n table, in which the entry for (∆i,∇o) is given by:

BCT(∆i,∇o) = #{x ∈ Fn
2 |S−1(S(x)⊕∇o)⊕ S−1(S(x⊕∆i)⊕∇o) = ∆i}.
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2.3 Mixed-Integer Quadratically-Constrained Programming

Mixed-Integer Programming (MIP) is a category of mathematical optimization problems
that includes Mixed-Integer Linear Programming (MILP), Mixed-Integer Quadratic Pro-
gramming (MIQP), Mixed-Integer Quadratically-Constrained Programming (MIQCP),
etc. These problems were initially applied in the field of Operations Research. Recently,
their applications in cryptanalysis have been extensively studied, especially the MILP
problem. Our new model employs MIQCP, which involves quadratic constraints and
quadratic objective functions. MIQCP has been previously used to model the differential-
linear attack in [BGG+23] and [LJC23]. We use the Gurobi solver1 to solve the MIQCP
model in this paper. Here, we provide the mathematical definition of MIQCP.

Definition 2 ([BS12]). A Mixed-Integer Quadratically-Constrained Programming (MIQCP)
is a problem, where the objective function and constraints can both include linear and
quadratic terms, and some or all the decision variables are integer variables. The mathe-
matical definition can be expressed as follows:

min or max xT Cx + cT x

s.t.

 xT Akx + aT
k x ≤ bk ∀k = 1, . . . , m

x ∈ Rn : l ≤ x ≤ u
xi ∈ Z ∀i ∈ I, I ⊆ N := {1, . . . , n}


where (C, c) ∈ Sn × Rn, (Ak, ak, bk) ∈ Sn × Rn × R for all k = 1, . . . , m, (l, u) ∈ (R ∪
{−∞})n × (R ∪ {+∞})n and Sn is the set of all n× n symmetric matrices.

It is worth noting that the distinction between MIQCP and MIQP lies in the types of
constraints and objective function. MIQP can only use linear constraints and a quadratic
objective function. MIQCP must include quadratic constraints, and the objective function
does not matter.

2.4 Notations

The following notations are followed throughout the rest of the paper.

STKr : Subtweakey of round r
eSTKr : Equivalent subtweakey of round r

Xr : Internal state before SubBytes (resp. SubCells) in round r for
Deoxys-BC (resp. SKINNY)

Yr : Internal state before ShiftRows (resp. AddRoundTweakey) in round r
for Deoxys-BC (resp. SKINNY)

Zr : Internal state before MixColumns (resp. ShiftRows) in round r for
Deoxys-BC (resp. SKINNY)

Wr : Internal state after MixColumns (resp. ShiftRows) in round r for
Deoxys-BC (resp. SKINNY)

∆X : Difference of a state X in the upper trail
∇X : Difference of a state X in the lower trail
Xr[i] : i-th cell of a state X in round r
Xr[i, ..., k] : i-th cell,..., k-th cell of a state X in round r

1Gurobi: www.gurobi.com

www.gurobi.com
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3 Revisiting the Impossible Boomerang Attack

3.1 Definition of the Impossible Boomerang Distinguisher
The impossible boomerang attack was first introduced by Lu in [Lu08, Lu11], and the
definition is given as follows.

Definition 3. Suppose E : {0, 1}n × {0, 1}k → {0, 1}n is a block cipher and K ∈ {0, 1}k

is a key for E. If there exist a quartet (α, α′, δ, δ′) ∈ Fn
2 × Fn

2 × Fn
2 × Fn

2 satisfying

∀X ∈ Fn
2 , Pr[E−1

K (EK(X)⊕ δ)⊕ E−1
K (EK(X ⊕ α)⊕ δ′) = α′] = 0,

then (α, α′, δ, δ′) is called an impossible boomerang distinguisher, written (α, α′) ↛ (δ, δ′).

The paper [Lu11] also describes how to construct an impossible boomerang distin-
guisher. Specifically, the distinguisher consists of four characteristics of probability 1:

- α→ β with probability 1 and α′ → β′ with probability 1 for E0;
- δ → γ with probability 1 and δ′ → γ′ with probability 1 for E−1

1 ,
where β, β′, γ, γ′ satisfy the condition β ⊕ β′ ⊕ γ ⊕ γ′ ̸= 0. The distinguisher is depicted
in Figure 3.
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β ⊕ β′ ⊕ γ ⊕ γ′ ̸= 0

Figure 3: Impossible Boomerang Distinguisher
in [Lu11]
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Figure 4: Difference transition
in the single S-box layer

3.2 Generalized Boomerang Framework
As we can see from Definition 3, the impossible boomerang distinguisher allows two sym-
metric characteristics used in E0 to be different, as well as the ones in E1. The same idea
has been briefly mentioned in [HBS21]. In this paper, to capture this unusual construction
of boomerang distinguishers, we propose the Generalized Boomerang Framework (GBF).
Similar to the traditional boomerang attack, the GBF divides the targeted cipher as two
sub-ciphers E = E1 ◦ E0, but there are two differentials α

p1−→ β, α′ p2−→ β′ for E0 and
two differentials γ

q1−→ δ, γ′ q2−→ δ′ for E1. The traditional boomerang is the GBF under
the conditions where α = α′, β = β′, γ = γ′, and δ = δ′. In GBF, structures excluding
traditional boomerangs are referred to as asymmetric boomerangs. The probability of the
generalized boomerang distinguisher is p1p2q1q2. Similarly, we can also generalize the
sandwich distinguisher.

The BCT can also be extended to the GBF, which was first proposed in [LWL22] and
named the Generalized Boomerang Connectivity Table (GBCT).
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Definition 4 ([LWL22]). Let S be an n-bit bijective S-box, and ∆i, ∆′
i,∇o,∇′

o ∈ Fn
2 .

The GBCT of S is given by a four-dimensional table, in which the entry for (∆i, ∆′
i,∇o,∇′

o)
is given by:

GBCT(∆i, ∆′
i,∇o,∇′

o) = #{x ∈ Fn
2 |S−1(S(x)⊕∇o)⊕ S−1(S(x⊕∆i)⊕∇′

o) = ∆′
i}.

Other generalized tables for multiple rounds in GBF are listed in Appendix A.

3.3 Construct Impossible Boomerang Attacks
The core step for the impossible boomerang attack is to find a boomerang distinguisher
that never returns back. One direction is to utilize four distinct characteristics such that
their XORed difference is nonzero, as described in Section 3.1. However, a limitation of
this direction is that it ignores the dependence of the two sub-ciphers, which has been
extensively studied in recent years since the introduction of the BCT. Even earlier, Mur-
phy [Mur11] pointed out that the incompatibility of two characteristics could lead to a
boomerang distinguisher of probability 0. Thus, an intuitive idea for constructing an
impossible boomerang distinguisher is to explore the incompatibility between the mid-
dle layer Em using advanced tools like BCT, GBCT, etc. The principle of generating an
impossible boomerang distinguisher is as follows.

Proposition 1. A boomerang distinguisher is impossible as long as the probability of
generating a right quartet for Em is zero.

It is easy to see that this proposition covers the impossible case described in Section 3.1.
More importantly, it reveals the construction of an impossible boomerang distinguisher
through the incompatibility of multiple rounds, which could possibly lead to a longer
distinguisher.

Similar to impossible differentials, we adopt the miss-in-the-middle approach to search
impossible boomerangs: For a cipher E = E1◦Em◦E0, we can find two forward character-
istics (same or different) and two backward characteristics (same or different) both with
probability one in order to make the difference transition through the middle layer Em

with probability zero. There are many studies on the switching probability of the middle
layer, and therefore a natural idea for constructing impossible boomerang distinguishers
is to consider the switching probability of certain cells in Em using the techniques such
as BCT, GBCT, etc., which can be easily modeled by MIQCP (discussed in Section 3.3.3).

In this work, we searched for IB attacks on both traditional boomerangs and asymmet-
ric ones, and found that the attacks based on traditional boomerangs are more effective,
so the rest of the paper will focus on traditional boomerangs.

3.3.1 Impossible Boomerangs vs Impossible Differentials

As another cryptanalytic technique using distinguishers with probability zero, impossible
differentials have been extensively studied. Then, an interesting discussion would arise
from comparing impossible boomerangs with impossible differentials.

For single-key setting, it has been proven in [SLG+16] that the upper bounds for the
length of impossible differentials depend on the linear layer. The same approach can be
applied to the impossible boomerangs. Related-key attacks [Bih94] allow the attacker
uses weaknesses of the encryption function and of the key schedule algorithm to derive
information on the unknown keys. In related-key impossible differentials, two related keys
are involved (Ka and Kb = Ka ⊕ ∆K), while related-key impossible boomerangs could
involve four related keys (Ka, Kb = Ka ⊕ ∆K, Kc = Ka ⊕ ∇K, Kd = Ka ⊕ ∇K ⊕
∆K). Compared to the single-key impossible boomerang in Definition 3, the related-key
impossible boomerang with the traditional boomerang structure can be defined as

∀X ∈ Fn
2 , Pr[E−1

Kc
(EKa(X)⊕ δ)⊕ E−1

Kd
(EKb

(X ⊕ α)⊕ δ) = α] = 0.
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This fact allows the adversary to have more freedom to choose key differences for the
upper and lower trails independently in the case of the impossible boomerang attack,
which is illustrated in Figure 5.

×
α β γ δ∆K ∆K

(a) Related-key impossible differential

×

α β

γ δ

∆K

∇K

(b) Related-key impossible boomerang

Figure 5: Impossible Differential vs Impossible Boomerang (related-key setting)

Therefore, related-key impossible boomerangs are expected to cover more rounds com-
pared to related-key impossible differentials. For example, we refer to our attack on
Deoxys-BC-384. Specifically, we provide a 9-round related-tweakey impossible boomerang
distinguisher and a 7-round related-tweakey impossible differential distinguisher in Ta-
ble 7 and Figure 13, respectively. The reason that the impossible boomerang is better
lies in the fact that the subtweakey difference cancellation (Proposition 2) is only applied
once in the impossible differential, whereas in the case of the impossible boomerang, this
cancellation is utilized twice (in Round 3-4 and Round 9-10).

3.3.2 Contradictions through Multiple Rounds

In addition to applying the BCT to find incompatibility of a single S-box layer, we can
also construct an impossible boomerang distinguisher through incompatibility of multiple
rounds. Double Boomerang Connectivity Table (DBCT) [HBS21] is a technique to evaluate
the boomerang switch through multiple rounds. Similar to the constraints on cells in a
single S-box layer, we can apply quadratic constraints on the propagation of active cells
through multiple rounds. The distinguisher in Figure 16 is an example of using the DBCT
technique.

∇o

∇o

∇i

∇i
S S

S S

∆i ∆i

∆o ∆o

S S

S S

Figure 6: DBCT of S-box

Definition 5 ([WP19, DDV20]). Let S be an n-bit S-box, and ∆i, ∆o,∇i,∇o ∈ Fn
2 . The

Upper BCT (UBCT) and the Lower BCT (LBCT) of S are three-dimensional tables defined as

UBCT(∆i, ∆o,∇i) = #

{
x ∈ Fn

2

∣∣∣∣∣ S(x)⊕ S(x⊕∆i) = ∆o

S−1(S(x)⊕∇i)⊕ S−1(S(x⊕∆i)⊕∇i) = ∆i

}
,

LBCT(∆o,∇i,∇o) = #

{
x ∈ Fn

2

∣∣∣∣∣ S(x)⊕ S(x⊕∇i) = ∇o

S−1(S(x)⊕∇o)⊕ S−1(S(x⊕∆o)⊕∇o) = ∆o

}
.
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Definition 6 ([HBS21, YSS+22]). Let S be an n-bit S-box, and ∆i, ∆o,∇i,∇o ∈ Fn
2 .

The DBCT of S is a 2n × 2n table, in which the entry for (∆i,∇o) is given by:

DBCT(∆i,∇o) =
∑

∆o,∇i

UBCT(∆i, ∆o,∇i) · LBCT(∆o,∇i,∇o).

In Figure 7, we give an example of constructing an impossible boomerang distinguisher
of SKINNY using the contradiction through multiple rounds. The complete 18-round dis-
tinguisher is shown in Figure 16. The contradiction occurs in consecutive three rounds:
Round 13 to 15. For ∆X13[2], its difference 0x05 is equal to ∆Z12[2], which comes from
∆STK12[2] = 0x05 of ART in Round 12. For ∇Z14[6], its difference α is equal to ∇X15[7]
due to the linear transformations SR and MC. And ∇X15[7] is derived from the operation
SC on the known difference ∇Y15[7] = 0x04 in Round 15. Therefore, we can use

DBCT(0x05, α) = 0 for ∀α s.t. DDT(α, 0x04) ̸= 0

to construct the contradiction.

∆Z12
05

SR

MC

∆X13
05

SC

AC

∆Y13

∇X13

SC

AC

∇Y13

ART

∇Z13

SR

MC

∇X14

SC AC

ART

∇Z14

α SR

MC

∇X15

α SC

AC

∇Y15

04

Figure 7: Three-round Em of the 18-round related-tweakey impossible boomerang distin-
guisher for SKINNY-128-384 in Figure 16

Remarks on the Usage of DBCT. In [BCL+24], Bonnetain et al. introduced the limi-
tations and disadvantages of using DBCT in identifying multi-round contradictions in IB.
Bonnetain and Lallemand also provided a counterexample of Figure 7 in [BL24], thereby
proving the flaw in the distinguisher of Figure 16. Using the notations from Figure 6 as
an example, DBCT only considers the case of (∆o,∇i,∇i, ∆o) between the two S-boxes,
ignoring those (∆o,∇i,∇′

i, ∆′
o) with ∆o ̸= ∆′

o. The counterexample for Figure 7 from
[BL24] is provided in Table 3. For a more detailed description of the usage of DBCT,
please refer to [BCL+24, BL24].

Table 3: An counterexample of an actual quartet for Figure 7 provided by [BL24] (Treat
the 2nd,5th,8th and 15th cells in X13 as a 32-bit word (red boxes in Figure 7).)

x1 x2 x3 x4

Input 0xa7ed0098 0xb8ed009d 0xa0690090 0xbf690095
Output 0x8e521bd8 0xab523ac8 0xeb7d4b8c 0xce7d6a9c

Middle key+constant 0x00028862 0x00028962(
x1, x2) (

x3, x4)
∆X13 0x1f000005 0x1f000005

After Sbox layer 0x7d000026 0x5d000006(
x1, x3) (

x2, x4)
∇Y14 0x652f 50︸︷︷︸

α

54 0x652f 50︸︷︷︸
α

54
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3.3.3 MIQCP-based Search Tool for Impossible Boomerang Attacks

In this section, we describe a MIQCP-based search tool for impossible boomerang attacks.
Differing from the previous search for distinguishers, the quadratic constraints make it
easier for us to search for complete attacks. In the following, we will use the round
function of Deoxys-BC to describe the constraints of the MIQCP model. We use this
model to search for the truncated attack and instantiate it after running the model.

Variables. We assign three attributes to each byte of the internal states and the sub-
tweakeys: z, k, and d, indicating whether it has a zero difference, whether it has a known
difference value, and whether it belongs to the distinguisher, respectively. For attributes
z and k, if z = 1, it means that the byte is zero difference (corresponding to the white
squares in the following figures); if z = 0, k = 1, it means that the byte is nonzero
known difference (corresponding to the green and pink squares in the following figures);
if z = k = 0, it means that the byte is unknown difference (corresponding to the gray
squares in the following figures). For attribute d, if d = 1, it implies that the byte belongs
to the distinguisher; if d = 0, it implies that the byte belongs to the key recovery phase.

Based on the notations introduced in Section 2.4, we use ∆Xr[i]z to represent the
attribute z of the difference ∆Xr[i], and so on. There are some intuitive constraints: for
any byte a, we have az ≤ ak. Let a

S→ b, where S is an S-box and a, b are the input and
output differences of S, we have az = bz. Additionally, the number of rounds R for a
complete attack and the number of rounds rm for the middle layer Em need to be fixed
before running the model. Thus, for the plaintext and ciphertext in the complete attack,
we have ∆plaintext[i]d = ∇ciphertext[i]d = 0 and ∇Xrm [i]d = ∆Xrm [i]d = 1.

New Constraints with Quadratic Terms. For attribute d, it indicates whether the
byte is in the distinguisher or in the key recovery phase. We use the notation T to
represent a transformation in the round function and let a

T→ b, where a and b are the
input and output differences of the transformation T , respectively. For the upper trail of
E0, there are three possibilities:

ad = 1 T bd = 1 ad = 0 T bd = 1 ad = 0 T bd = 0

and for the lower trail of E1, there are also three possibilities:

ad = 0 T bd = 0 ad = 1 T bd = 1 ad = 1 T bd = 0

Suppose that L1 and L2 respectively represent linear inequalities for the transformation
T within the distinguisher and the key recovery phase. Then we can use ad ·L1+(1−ad)·L2
as the quadratic terms to describe the transformation T . The description of the SubBytes
operation in the following text will serve as an example explaining the quadratic term.
These quadratic constraints make our model a MIQCP model rather than a MIQP one.
Since all variables in this model are binary, it is undeniable that the constraints in this
model can be rewritten as linear ones. In [DEFN22], the authors used linear constraints
with the same variable d to search for complete boomerang attacks. We fine-tuned their
model to adapt to IB attacks and our experiments show that for IB attack MIQCP is more
efficient than linear constraints, the rewritten linear inequalities would be more complex
and redundant.

SubBytes With the miss-in-the-middle technique, we aim to search for two charac-
teristics with probability 1. When the input difference of S-box takes a nonzero known
value, the output difference becomes unknown. For the upper trail of E0, the constraints
would be described as:
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∆Xr[i]d − ∆Yr[i]d ≤ 0 (1)
∆Xr[i]d · (∆Xr[i]k − ∆Yr[i]k + 1) + (1 − ∆Xr[i]d) · (∆Yr[i]k − ∆Xr[i]k + 1) ≥ 1 (2)
∆Xr[i]d · (∆Yr[i]k − ∆Yr[i]z + 1) + (1 − ∆Xr[i]d) · (∆Xr[i]k − ∆Xr[i]z + 1) = 1 (3)

The linear inequality (1) can be intuitively derived from the three possibilities men-
tioned above for E0. For inequalities (2) and (3), only one additive term will work,
corresponding to the propagation in the distinguisher or in the key recovery phase. For
instance, when ∆Xr[i]d = 1, both (2) and (3) will only activate the first term, constrain-
ing the difference propagation in the distinguisher: zero input difference (z = 1, k = 1) to
zero output difference (z = 1, k = 1), nonzero known difference (z = 0, k = 1) to unknown
output difference (z = 0, k = 0), and unknown input difference (z = 0, k = 0) to unknown
output difference (z = 0, k = 0).

The constraints for the lower trail of E1 are symmetric:
∇Xr[i]d − ∇Yr[i]d ≥ 0

∇Yr[i]d · (∇Yr[i]k − ∇Xr[i]k + 1) + (1 − ∇Yr[i]d) · (∇Xr[i]k − ∇Yr[i]k + 1) ≥ 1
∇Yr[i]d · (∇Xr[i]k − ∇Xr[i]z + 1) + (1 − ∇Yr[i]d) · (∇Yr[i]k − ∇Yr[i]z + 1) = 1

ShiftRows The ShiftRows operation preserves the values of all attributes of the vari-
able.

MixColumns For the constraints for MixColumns, we use some linear constraints on
the MDS matrix proposed in [DEFN22]. Let (b1, b2, b3, b4) = MC(a1, a2, a3, a4), then we
have

au
1 + au

2 + au
3 + au

4 + bu
1 + bu

2 + bu
3 + bu

4 ∈ {0, 1, 2, 3, 8}.
This could be translated into linear constraints by adding extra dummy variables eu,i

and e′
u,i corresponding to each u and i:

3∑
j=0

∆Zr[i + j]u +
3∑

j=0

∆Wr[i + j]u ≤ 8 − 5eu,i, for u ∈ {z, k, d}, i ∈ {0, 4, 8, 12} (4)

3∑
j=0

∆Zr[i + j]u +
3∑

j=0

∆Wr[i + j]u ≥ 8 − 8eu,i, for u ∈ {z, k, d}, i ∈ {0, 4, 8, 12} (5)

3∑
j=0

∇Zr[i + j]u +
3∑

j=0

∇Wr[i + j]u ≤ 8 − 5e′
u,i, for u ∈ {z, k, d}, i ∈ {0, 4, 8, 12} (6)

3∑
j=0

∇Zr[i + j]u +
3∑

j=0

∇Wr[i + j]u ≥ 8 − 8e′
u,i, for u ∈ {z, k, d}, i ∈ {0, 4, 8, 12} (7)

4∆Zr[i]d ≤
3∑

j=0

∆Wr[4⌊i/4⌋ + j]d (8)

4∇Wr[i]d ≤
3∑

j=0

∇Zr[4⌊i/4⌋ + j]d (9)

Besides, we introduce the following quadratic constraints to more accurately describe
the difference propagation of MixColumns operation by adding two dummy variables eu

and el:

∆Zr[i]d ·
3∑

j=0

∆Wr[4⌊i/4⌋ + j]k + (1 − ∆Zr[i]d) ·
3∑

j=0

∆Zr[4⌊i/4⌋ + j]k = 4 − 4eu (10)

∇Wr[i]d ·
3∑

j=0

∇Zr[4⌊i/4⌋ + j]k + (1 − ∇Wr[i]d) ·
3∑

j=0

∇Wr[4⌊i/4⌋ + j]k = 4 − 4el (11)
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Specifically, inequalities (4)-(9) provide a rough characterization of the MDS-type

MixColumns and can not eliminate cases such as

MC

(the green color stands for
nonzero known difference and the gray color stands for unknown difference). The prob-
lem can be solved with inequalities (10) and (11).

AddRoundTweakey For the primary XOR operation within the AddRoundTweakey,
expressed as a ⊕ b = c, we treat it as an ordered operation to exclude the possible case
a[z = 0, k = 0] ⊕ b[z = 0, k = 0] = c[z = 0, k = 1] that is feasible under the previous
constraint: au + bu + cu ̸= 2, u ∈ {z, k}.

Table 4: Possible values for a⊕ b = c

(az, ak) (bz, bk) (cz, ck)
(1, 1) (1, 1) (1, 1)
(1, 1) (0, 1) (0, 1)
(0, 1) (1, 1) (0, 1)
(0, 1) (0, 1) (1, 1)
(0, 1) (0, 1) (0, 1)
(1, 1) (0, 0) (0, 0)
(0, 0) (1, 1) (0, 0)
(0, 1) (0, 0) (0, 0)
(0, 0) (0, 1) (0, 0)
(0, 0) (0, 0) (0, 0)

Considering the attributes z and k of bytes a, b and c, there are a total of 10 possibilities
(shown in Table 4). We have the following inequality constraints for these cases:

ak − az + bk − bz + cz − ck >= 0

az − bz + bk − cz >= 0

ak − az + bz − cz >= 0

ck − ak − bk >= −1

ak − ck >= 0

bk − ck >= 0

Construct Contradiction The distinguisher retrieved by the model is based on the
contradiction we constructed rather than automatically captured by the model in previous
works. For the rm-th round Em which is composed of a single S-box layer, there exists at
least one byte whose input and output differences are both nonzero known values:

15∑
i=0

(∆Xrm [i]k − ∆Xrm [i]z) · (∇Yrm [i]k − ∇Yrm [i]z) ≥ 1. (12)

After running the MIQCP model, we use BCT and tweakey schedule to obtain specific
instantiation that satisfy the truncated characteristics. Inequality (12) can provide a very
simple example comparing linear constraints with quadratic constraints. If we rewrite it
as a linear constraint ∆Xrm

[i]k −∆Xrm
[i]z +∇Yrm

[i]k −∇Yrm
[i]z = 2, and then need to

run the model 16 times for i ranging from 0 to 15.
As for the contradictions through multiple rounds, it is necessary to analyze the round

function of the cipher to construct contradictions. It is possible that the model needs to
be run multiple times to obtain the final result. Thanks to the efficiency of our model, the
overall time takes a few minutes even when multiple iterations are required (single execu-
tion requiring only several seconds on Intel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz).
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Taking Figure 7 as an example, we use the following constraints to construct the contra-
diction:

(∆Xrm [2]k − ∆Xrm [2]k) · (3 − ∇Yrm+2[7]z − ∇Yrm+2[11]z − ∇Yrm+2[15]z) = 1
∇Yrm+2[7]k + ∇Yrm+2[11]k + ∇Yrm+2[15]k = 3

Objective Function. Generally, both the beginning and the end of an impossible
boomerang have very few active bytes. We aim to activate as few bytes as possible
during the key recovery phase, thus reducing the number of bytes with unknown differ-
ence (k = 0) of plaintext and ciphertext, and consequently lowering the complexity. Thus,
we have the following objective function and ask the solver for the maximum value:

15∑
i=0

(∆plaintext[i]k + ∇ciphertext[i]k),

in which the plaintext and ciphertext refer to the actual ones in a complete attack.

Advantages and Limitations. Previously, most automatic tools focused on searching for
impossible differential distinguishers. Those tools were designed by specifying a set of
input differences and a set of output dfferences in the model and asking the solver to
iterate through all input and output differences in the given sets. If the solver outputs
an error code with "infeasible", it implies the detection of an impossible differential. The
advantage of this method is that it can detect impossible differentials with arbitrary types
of contradictions. However, the search space is large, and it is time-consuming.

In our new model, we no longer need to specify the sets of input and output differences.
Instead, we use quadratic constraints to construct contradictions in Em and describe
the propagation of differences during the distinguisher and key recovery phase. This
significantly reduces the search space compared to previous models, allowing results to be
obtained in seconds. The limitation of the new model is that it cannot capture all types
of contradictions like the previous model. We need to sequentially describe contradictions
to run the model for several times. The model cannot promise the optimal results for IB
attacks because there has not been a thorough study on the types of contradictions yet.

3.4 Key Recovery Attacks under Related-Key Setting
The impossible boomerang combines the concepts of impossible differentials and boomerangs.
Therefore, we propose two approaches for its key recovery attack: the impossible differen-
tial style and the boomerang style. In the following, we will introduce the two methods,
both under the related-key setting with the targeted cipher having linear key schedule.
The introduction follows the procedures and notations from the previous works [BNS14,
BLNS18, ZDJ19].

As illustrated in Figure 8, assume that there is an impossible boomerang distinguisher
(α, α) ↛ (δ, δ). We denote the targeted cipher as E = Ef ◦Edist ◦Eb, where Edist denotes
the rounds covered by the impossible boomerang distinguisher, and Eb and Ef denote
the rounds added at the beginning and at the end of the distinguisher, respectively. We
denote by K the size of master key, by s the size of S-box, by rb (resp. rf ) the dimension
of vector space I (resp. O). Let kin (resp. kout) denotes the number of subkey bits
involved in Eb (resp. Ef ), cin (resp. cout) denotes the number of bit-conditions that have
to be verified during Eb (resp. Ef ).

The goal of the key recovery attack is to discard the keys that allow the differentials
I → α and O → δ at the same time at the both sides of the boomerang.
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Figure 8: Outline of impossible boomerang key recovery attack

3.4.1 Impossible Differential Style

Construct a structure of 2rb plaintexts, and each can combine 22rb plaintext pairs. In
total, 22N+4rb plaintext quartets can be constructed if 2N structures are prepared. After
filtration on the ciphertext side, Q = 22N+4rb−2(n−rf ) quartets will remain. For a given
key, the probability that a quartet satisfying the differences I and O verifies all the bit-
conditions in Eb and Ef is 2−2(cin+cout). Thus we have

2α ≥ 2|kin∪kout|(1− 2−2(cin+cout))Q,

where α denotes the number of subkey bits need to be exhaustively searched of the K =
|kin ∪ kout| subkey bits after incorrect keys are rejected.

Data Complexity. The formula above could be rewritten as:

Q ≥ 22(cin+cout) · K − α

log2 e
.

Thus, the data complexity of the attack is D = 2N+rb+2.
Time Complexity. As for the key recovery phase, we could adopt the early abort

technique [LKKD08], which is popular in impossible differential cryptanalysis. Similar
to impossible differential attack, the time complexity of impossible boomerang attacks
consists of three terms. The first term is the time of preparing Q = 22N+4rb−2(n−rf )

quartets, denoted by CQ. The second is the time of guessing all candidate keys kin ∪ kout

and the cost can be approximated by CG =
(

Q + 2K Q
22(cin+cout)

)
C ′

E , where C ′
E is the

ratio of the cost for one partial encryption to the full encryption. Finally, the last term is
the cost for brute force, including the remaining key candidates after the sieving and the
subkey bits not involved in key recovery procedure, given by CB = 2K−K+α. Considering
the cost of one encryption as CE , we have a total time complexity

T = (CQ + CG + CB)CE

=
(

CQ +
(

Q + 2K Q

22(cin+cout)

)
C ′

E + 2K−K+α

)
CE .

Memory Complexity. The memory complexity M of this attack is bounded by Q + 2K.
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3.4.2 Boomerang Style

1. Construct 2N structures of 2rb plaintexts each, each of them taking all the possible
values of rb active bits.

2. For each structure, query the ciphertexts corresponding to 2rb plaintexts under four
related keys: K1,K2 = K1⊕∆K,K3 = K1⊕∇K,K4 = K1⊕∇K⊕∆K, respectively.
We denote by Si the plaintext-ciphertext sets encrypted by Ki, where i ∈ {1, 2, 3, 4},
and insert S2 and S4 into hash tables H1 and H2 indexed by the rb bits of plaintexts.

3. Guess |kin| subkey bits involved in Eb:

(a) For each structure, partially encrypt P1 ∈ S1 to the beginning of the distin-
guisher, XOR the obtained state with α, then decrypt it to produce the plain-
text and search for a collision in H1 to find P2. It is expected for one collision
for each P1. Conduct the same operation to the set S3 to find expected pairs
(P3, P4). Two new sets can be obtained:

L1 = {(P1, C1, P2, C2) : (P1, C1) ∈ S1, (P2, C2) ∈ S2, EbK1
(P1)⊕EbK2

(P2) = α},

L2 = {(P3, C3, P4, C4) : (P3, C3) ∈ S3, (P4, C4) ∈ S4, EbK3
(P3)⊕EbK4

(P4) = α}.

(b) The sizes of L1 and L2 are both 2N ·2rb . Insert L1 into a hash table H3 indexed
by n − rf bits of C1 and n − rf bits of C2. For each element (P3, C3, P4, C4)
of L2, we lookup the hash table H3 to find the corresponding (P1, C1, P2, C2)
satisfying C1⊕C3 ∈ O and C2⊕C4 ∈ O. Finally, there are Q = 22N+2rb−2(n−rf )

quartets can be constructed.
(c) Guess the |kout| subkey bits involved in Ef and eliminate the candidate keys

which satisfy the differential O → δ. As this is a type of impossible attacks,
we employ the widely-used technique of early abort to eliminate incorrect keys,
as commonly done in impossible differential attacks.

4. Exhaustively search the remaining key candidates and the unknown K−|kin∪kout|
subkey bits.

Complexity. The average number of quartets Q required to be left with at most 2α

key candidates is given by the formula:

2α ≥ 2|kin∪kout|(1− 2−2cout)Q.

The data complexity is D = 2N+rb+2 chosen plaintexts and do 2|kin|(2 · 2N+rb + 2N+rb) =
3 · 2|kin|+N+rb table lookups to prepare quartets. The total time complexity, including
data collection, key guessing and brute force, is

T =
(

2N+rb+2 +
(

2|kin|(2 · 2N+rb) + 2|kin|Q + 2K Q

22cout

)
C ′

E + 2K−K+α

)
CE ,

where C ′
E is the ratio of the cost of partial encryption to the full encryption, K = |kin∪kout|

denotes the targeted key space, and CE denotes the cost of one encryption. The memory
complexity M is bounded by 4 · 2N · 2rb + 2N · 2rb + Q + 2K = 5 · 2N+rb + Q + 2K.

Beyond Full-Codebook. For the block cipher with block size n, an attack against it that
requires D > 2n plaintexts/ciphertexts is known as a beyond full-codebook attack. Recall
that a tweakable block cipher takes as input an n-bit plaintext and a t-bit tweak, it is
reasonable to assume that an attacker may have available an amount of data D ≫ 2n

to carry out an attack, as long as D ≤ 2n+t. Ciphers adopting the TWEAKEY framework
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[JNP14], such as Deoxys-BC and SKINNY, offer further flexibility in setting the limit of
data resources available for an attack. The construction allows one to add a tweak of
(almost) any length to a key-alternating block cipher and/or to extend the key space
of the block cipher to (almost) any size. This provides cryptanalysts with a potentially
optimal strategy to attack the ciphers: select the key size k as large as possible, which
results on a higher security claim, as long as the size of the tweak t is large enough to
supply the required data to run the attack. In fact, the beyond full-codebook attacks are
considered to be realistic and effective against real-world tweakable block ciphers, and
have been applied in previous works [BHT16, ABC+17, CHP+17, ZDW19].

Suppose the tweak size is t, the tweakey size is h, the number of related keys used in the
attack is rk, we have two natural constraints for the related-tweakey impossible boomerang
attack: (1) the data complexity under each related key D′ = D

rk = 2N+rb should be less
than 2n+t, and the total data complexity D should be less than 2n+t+log2 rk; (2) the time
complexity T should be less than 2h−t.

4 Applications to Deoxys-BC and Joltik-BC

4.1 Description of Deoxys-BC

Deoxys [JNPS16] is an authenticated encryption scheme selected as one of the finalists
for the CAESAR competition. As its internal primitive, Deoxys-BC is a 128-bit block
cipher conforming to the TWEAKEY framework [JNP14]. Deoxys-BC has two versions ac-
cording to different tweakey sizes: for Deoxys-BC-256 the tweakey size is 256 bits, while
for Deoxys-BC-384 it is 384 bits.

Deoxys-BC is an AES-like design, it adopts an iterative substitution-permutation net-
work (SPN) that transforms the internal states through a round function similar to that
of AES. Deoxys-BC-256 has 14 rounds, while Deoxys-BC-384 has 16 rounds. The ordering
of the internal state and the tweakey state is represented by a 4× 4 matrix:

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

 .

Each round function consists of the four transformations in the order specified below:
• AddRoundTweakey (ART): XOR the 128-bit round subtweakey to the internal state.
• SubBytes (SB): Apply the 8-bit AES S-box S to the 16 bytes of the internal state.
• ShiftRows (SR): Rotate the 4-byte i-th row left by i positions, i = 0, 1, 2, 3.
• MixColumns (MC): Multiply the internal state by the 4× 4 MDS matrix of AES.

At the end of the last round, a final AddRoundTweakey operation is applied to the internal
state to produce the ciphertext.

Tweakey Schedule. Different from the key schedule of AES, Deoxys-BC used a linear
tweakey schedule under the TWEAKEY framework. We denote the concatenation of the key
K and the tweak K as KT , i.e. KT = K||T . For Deoxys-BC-256, the size of KT is 256
bits with the first (most significant) 128 bits denoted as W1, the second W2, while the 384
bits tweakey of Deoxys-BC-384 is divided into W1, W2 and W3 per 128 bits sequentially.
For Deoxys-BC-256, a subtweakey of i-th round is defined as STKi = TK1

i ⊕ TK2
i ⊕RCi

while for the case of Deoxys-BC-384 it is defined as STKi = TK1
i ⊕ TK2

i ⊕ TK3
i ⊕RCi.

The 128-bit words TK1
i , TK2

i , TK3
i are outputs produced by tweakey schedule algo-

rithm, initialized with TK1
0 = W1 and TK2

0 = W2 for Deoxys-BC-256 and with TK1
0 =

W1, TK2
0 = W2 and TK3

0 = W3 for Deoxys-BC-384. The tweakey schedule algorithm is
defined as

TK1
i+1 = h(TK1

i ), TK2
i+1 = h(LFSR2(TK2

i )), TK3
i+1 = h(LFSR3(TK3

i )),
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Tweakey Schedule (p = 2)
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r

STKr
sr = C

Figure 9: Tweakey schedule of Deoxys-BC-256

where the byte permutation h is defined as:(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 6 11 12 5 10 15 0 9 14 3 4 13 2 7 8

)
.

The LFSR2 and LFSR3 functions are the application of an LFSR to each of the 16
bytes of a tweakey 128-bit word. The two LFSRs used are given in Table 5.

Table 5: Two LFSRs used in Deoxys-BC tweakey schedule

LFSR2 (x7 ∥x6∥x5 ∥x4∥x3 ∥x2∥x1∥x0)→ (x6 ∥x5∥x4 ∥x3∥x2 ∥x1∥x0∥x7 ⊕ x5)
LFSR3 (x7 ∥x6∥x5 ∥x4∥x3 ∥x2∥x1∥x0)→ (x0 ⊕ x6 ∥x7∥x6 ∥x5∥x4 ∥x3∥x2∥x1)

Additionally, for the specifics of round constants RCi, please refer to [JNPS16]. Fig-
ure 9 illustrates an instantiation of the TWEAKEY framework for Deoxys-BC-256, the one
for Deoxys-BC-384 is similar.

Proposition 2 (Subtweakey Difference Cancellation [JNPS16]). For Deoxys-BC-256, sup-
pose that a single cell of TK1 and TK2 are active. Let a1 and a2 be differences of the
active cell, respectively. Thus, the subtweakey difference of the first round is a2 ⊕ a1, and
in the i-th round, the subtweakey difference is a2 ⊕ LFSRi

2(a1). Since a1 and a2 are
both nonzero differences, a2 ⊕ LFSRi

2(a1) = 0 can happen only once over 15 consecutive
subtweakeys. For Deoxys-BC-384, suppose that a single cell of TK1, TK2 and TK3 are
active. Let a1, a2 and a3 be differences of the active cell, respectively. Thus, the sub-
tweakey difference of the first round is a1⊕ a2⊕ a3, and in the i-th round, the subtweakey
difference is a1 ⊕ LFSRi

2(a2) ⊕ LFSRi
3(a3). Since a1, a2 and a3 are both nonzero dif-

ferences, the cancellation a1 ⊕ LFSRi
2(a2) ⊕ LFSRi

3(a3) = 0 can happen twice for 15
consecutive subtweakeys.

4.2 Description of Joltik-BC

Joltik-BC is a lightweight ad-hoc tweakable block cipher of the authenticated encryp-
tion scheme Joltik [JNP15]. Similar to Deoxys-BC, Joltik-BC uses an AES-like round
function and conforms to the TWEAKEY framework. Adopting a lightweight and hardware-
oriented design, Joltik-BC has a 64-bit state, and it has two versions Joltik-BC-128
and Joltik-BC-192 according to different tweakey sizes. The number of rounds is 24 for
Joltik-BC-128 and 32 for Joltik-BC-192. Joltik-BC uses a 4-bit S-box and an involu-
tory MDS matrix, and the subtweakey update function in the tweakey schedule is a bit
different from Deoxys-BC. For a more detailed specification of Joltik-BC, please refer
to [JNP15]. The tweakey schedules of Joltik-BC family also have the property explained
in Proposition 2.
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4.3 Related-Tweakey Impossible Boomerang Attack on 10-Round
Deoxys-BC-256 and 10-Round Joltik-BC-128

For all the attacks in this paper, we omit the MixColumns in the last round as it is a linear
operation. Due to the similarities in the round function and tweakey schedule of Deoxys-BC
and Joltik-BC, we can mount a 10-round related-tweakey impossible boomerang attack
on these two ciphers. We prefix 1 round at the beginning and append 2 rounds at the end
of a 7-round distinguisher to mount the attack, as shown in Figure 10. The distinguishers
for Deoxys-BC-256 and Joltik-BC-128 are listed in Table 6 and Table 8, respectively. We
denote the cell size as c, with c = 4 for Joltik-BC-128 and c = 8 for Deoxys-BC-256. The
key recovery part follows the impossible differential style, as proposed in Section 3.4.1,
and the attack begins by constructing quartets on the plaintext side.

∆ST K0

∆P

ART

∆X0

SB

SR

∆Z0

MC

∆W0

7-Round IB

∇X8

SB

∇Y8

∇Y8

ART

∇eZ8

SR

∇eW8

MC

∇X9

SB

SR

∇Z9

ART

∇C

∇eST K9 ∇ST K10

Figure 10: The related-tweakey impossible boomerang attack against 10-round
Deoxys-BC-256 and Joltik-BC-128. The white color stands for zero difference in both
tweakey and internal states, the green (blue) color stands for known-nonzero difference in
internal (tweakey) states, and the grey color stands for unknown difference.

Data Collection. Prepare a structure S of size 22c by traversing the 2 gray cells ∆P [6, 11]
of the plaintext and fixing the remaining 14 cells to constants. Then, prepare another

structure S′ by XORing the difference to each element of S. We can obtain
24c ordered pairs (P1, P2) from the two structures, each XORed difference conforms to
∆P . For 2n structures, we can construct (2n+4c)2 = 22n+8c ordered plaintext quartets
(P1, P2, P3, P4). Encrypt P1, P2, P3, P4 with K1,K2 = K1 ⊕ ∆K,K3 = K1 ⊕ ∇K,K4 =
K1 ⊕ ∆K ⊕ ∇K, and get the corresponding ciphertext quartets (C1, C2, C3, C4). Then
filter the ciphertext quartets according to the 7 known differences of ∇C. Finally, there
are 22n+8c−14c = 22n−6c ciphertext quartets remaining.
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Guess-and-Filter. We make use of the 22n−6c quartets to eliminate wrong key bits, and
then exhaust the remaining key bits to recover the full key. The procedure of the tweakey
recovery phase is briefly described in Algorithm 1.

Algorithm 1: Guess-and-Filter Phase of Related-Tweakey Impossible
Boomerang Attacks on 10-round Deoxys-BC-256 and Joltik-BC-128

1 for 2c guesses of STK0[6] do
2 for 22n−6c remaining quartets do
3 Filter with known ∆Z0[14];
4 Obtain 22n−8c remaining quartets;
5 for 2c guesses of STK0[11] do
6 for 22n−8c remaining quartets do
7 Filter with known ∆Z0[15].
8 Obtain 22n−10c remaining quartets;
9 for 2c guesses of STK10[12] do

10 for 22n−10c remaining quartets do
11 Filter with known ∇X9[12].
12 Obtain 22n−12c remaining quartets;
13 for 24c guesses of STK10[1, 4, 11, 14] do
14 for 22n−12c remaining quartets do
15 Filter with known ∇eW8[5− 7].
16 Obtain 22n−18c remaining quartets;
17 for 24c guesses of STK10[2, 5, 8, 15] do
18 for 22n−18c remaining quartets do
19 Filter with known ∇eW8[8, 10, 11].
20 Obtain 22n−24c remaining quartets;
21 for 2c guesses of eSTK9[4] do
22 for 22n−24c remaining quartets do
23 Filter with known ∇X8[4].
24 Obtain 22n−26c remaining quartets;
25 for 2c guesses of eSTK9[13] do
26 for 22n−26c remaining quartets do
27 Use the known ∇X8[13] to filter out the wrong

subtweakeys.

1. Guess 2c possible values of STK0[6] and partially encrypt (P1, P2, P3, P4) for one
round, then use the known difference cell ∆Z0[14] to filter the quartets. There are
about 22n−6c · 2−2c = 22n−8c remaining quartets. The time complexity of this step
is 2c · 22n−6c+2 · 1

16·10 ≈ 22n−5c−5.32.
2. Guess 2c possible values of STK0[11] and partially encrypt (P1, P2, P3, P4) for one

round, then use the known difference cell ∆Z0[15] to filter the quartets. There are
about 22n−10c remaining quartets. The time complexity of this step is 22c ·22n−8c+2 ·

1
16·10 ≈ 22n−6c−5.32.

3. Guess 2c possible values of STK10[12] and partially decrypt (C1, C2, C3, C4) for one
round. Use the known difference cell ∇X9[12] to filter quartets and about 22n−12c

quartets left. The time complexity of this step is 23c ·22n−10c+2 · 1
16·10 ≈ 22n−7c−5.32.

4. Guess 24c possible values of STK10[1, 4, 11, 14]. Use the three cells ∇eW8[5−7] with
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zero difference from the operations of SB and MC in Round 9 to filter quartets and
about 22n−18c quartets left. The time complexity of this step is 27c·22n−12c+2· 4

16·10 ≈
22n−5c−3.32.

5. Guess 24c possible values of STK10[2, 5, 8, 15]. Use the three cells ∇eW8[8, 10, 11]
with known difference value from the operations of SB and MC in Round 9 to
filter quartets and about 22n−24c quartets left. The time complexity of this step is
211c · 22n−18c+2 · 4

16·10 ≈ 22n−7c−3.32.
6. Guess 2c possible values of eSTK9[4]2. Use the known ∇X8[4] to filter quartets

and keep only 22n−26c quartets remaining. The time complexity of this step is
212c · 22n−24c+2 · 1

16·10 ≈ 22n−12c−5.32.
7. Guess 2c possible values of eSTK9[13]. Use the known ∇X8[13] to filter out wrong

candidate subtweakeys. The time complexity of this step is 213c · 22n−26c+2 · 1
16·10 ≈

22n−13c−5.32.

Complexity. In this attack, we have 2α = 213c · (1 − 2−22c)22n−6c . For Joltik-BC-128,
c = 4, we choose α = 15, n ≈ 58.3, thus the time complexity of the attack is approximately
22n−5c−5.32 + 22n−6c−5.32 + 22n−5c−3.32 + 2128−13c+15 ≈ 293.8, the data complexity is 268.3

and the memory complexity is 292.6. For Deoxys-BC-256, c = 8, we choose α = 30, n ≈
114.8, thus the time complexity of the attack is approximately 22n−5c−5.32 + 22n−5c−3.32 +
2256−13c+30 ≈ 2186.66, the data complexity is 2132.8 and the memory complexity is 2181.6.

4.4 Related-Tweakey Impossible Boomerang Attack on 13-Round
Deoxys-BC-384 and 13-Round Joltik-BC-192

The 13-round related-tweakey impossible boomerang attack against Deoxys-BC-384 and
Joltik-BC-192 is based on a 9-round distinguisher each, which are listed in Table 7 and
Table 9, respectively. We prefix two rounds at the beginning and append two rounds at
the end of the distinguisher to mount the attacks, as shown in Figure 11. The key recovery
part follows the boomerang style, as proposed in Section 3.4.2, and the attacks begin by
constructing quartets on the ciphertext side.

Data Collection. Prepare a structure S of size 26c by traversing the 6 gray cells
C[2, 3, 5, 8, 9, 15] of the ciphertext and fixing the other 10 cells to constants. For the
ciphertexts in S, we query the corresponding plaintexts under two related tweakeys K1
and K2 = K1⊕∆K and denote the plaintext-ciphertext sets by S1 and S2. Then, prepare

another structure S′ by XORing the difference to each element of S. We can also
get two plaintext-ciphertext sets S3 and S4 under the related tweakeys K3 = K1 ⊕ ∇K
and K4 = K1⊕∆K⊕∇K. Then, we insert S3 and S4 into hash tables H1 and H2 indexed
by the 6 gray cells C[2, 3, 5, 8, 9, 15].

For K1, we guess 28c possible values of 6 cells STK13[2, 3, 5, 8, 9, 15] and 2 cells
eSTK12[2, 8]. For each guess, partially decrypt the ciphertexts C1 ∈ S1 under the key K1
to the position at X11, then XOR the decrypted states with the fixed difference ∇X11,
after that partially encrypt the XORed states to get the ciphertexts using the known
cells of K3, finally lookup the hash table H1 to find collisions indexed by the 6 cells
C[2, 3, 5, 8, 9, 15]. The expected number of collisions is 26c, and we store all the corre-
sponding plaintext-ciphertext pairs into a set

L1 = {(P1, C1, P3, C3) : (P1, C1) ∈ S1, (P3, C3) ∈ S3, E−1
fK1

(C1)⊕ E−1
fK3

(C3) = ∇X11}.

2For the r-th round subtweakey ST Kr, its equivalent subtweakey is defined as eST Kr = SR−1 ◦
MC−1(ST Kr).
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Figure 11: The related-tweakey impossible boomerang attack against 13-round
Deoxys-BC-384 and Joltik-BC-192

Similarly, we can get another set L2:

L2 = {(P2, C2, P4, C4) : (P2, C2) ∈ S2, (P4, C4) ∈ S4, E−1
fK2

(C2)⊕ E−1
fK4

(C4) = ∇X11}.

Then, we insert L1 in a hash table H3 indexed by 12 cells P1[0, 2, 7, 8, 13, 15] and
P3[0, 2, 7, 8, 13, 15]. For each element (P2, C2, P4, C4) of L2, we find the corresponding
(P1, C1, P3, C3) satisfying P1 ⊕ P2 ∈ ∆P and P3 ⊕ P4 ∈ ∆P . There are about 26c+n ·
26c+n · 2−12c = 22n quartets constructed using 2n structures. In total, we do 28c · (2 ·
26c+n + 26c+n) = 3 · 214c+n table lookups and 2n+6c+2 + 28c · 2 · 2n+6c · 8

16·13 ≈ 2n+14c−3.7

encryptions to prepare quartets.

Guess-and-Filter. For each of the 28c guesses in the data collection phase, we use the
22n quartets to eliminate wrong key bits, and then exhaust the remaining key bits to
recover the full key:

1. For each of the 22n quartets, we guess 2c possible values of STK0[5] and partially
encrypt (P1, P2, P3, P4) for one round. Use the known ∆Z0[1] to filter quartets and
about 22n−2c quartets left. The time complexity of this step is 29c · 22n+2 · 1

16·13 ≈
22n+9c−5.7.

2. Guess 2c possible values of STK0[10] and partially encrypt (P1, P2, P3, P4) for one
round. Use the known ∆Z0[2] to filter quartets and about 22n−4c quartets left. The
time complexity of this step is 210c · 22n−2c+2 · 1

16·13 ≈ 22n+8c−5.7.
3. Guess 24c possible values of STK0[3, 4, 9, 14] and partially encrypt (P1, P2, P3, P4)

for one round. Use the known ∆W0[7] after the MC operation in Round 0 to filter
quartets and about only 22n−6c quartets left. The time complexity of this step is
214c · 22n−4c+2 · 4

16·13 ≈ 22n+10c−3.7.
4. Guess 2c possible values of STK1[4] and use known difference ∆Z1[4] to filter quar-

tets. There are about 22n−8c remaining quartets. Then, guess 2c possible values of
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STK1[5], use ∆Z1[1] to filter quartets and 22n−10c quartets will remain. For the
remaining 22n−10c quartets, guess 2c possible values of STK1[6] and use ∆Z1[14]
to filter the quartets. There are about 22n−12c remaining quartets that meet the
above conditions. The time complexity of this step is 215c · 22n−6c+2 · 1

16·13 + 216c ·
22n−8c+2 · 1

16·13 + 217c · 22n−10c+2 · 1
16·13 ≈ 22n+9c−5.7.

5. Guess 24c possible values of STK0[1, 6, 11, 12] and partially encrypt (P1, P2, P3, P4)
for one round. Use the known ∆W0[13] after the MC operation in Round 0 to
filter quartets and about 22n−14c quartets left. The time complexity of this step is
221c · 22n−12c+2 · 4

16·13 ≈ 22n+9c−3.7.
6. Guess 2c possible values of STK1[12] and partially encrypt the remaining quartets.

Use the condition of known ∆Z1[12] to filter quartets and about 22n−16c quartets
will remain. The time complexity of this step is 222c · 22n−14c+2 · 1

16·13 ≈ 22n+8c−5.7.
7. Guess 2c possible values of STK1[14]. Use the condition of known ∆Z1[6] to filter

quartets and about 22n−18c quartets will remain. The time complexity of this step
is 223c · 22n−16c+2 · 1

16·13 ≈ 22n+7c−5.7.
8. Guess 2c possible values of STK1[15]. Use the condition of known ∆Z1[3] to filter

out wrong subtweakeys. The time complexity of this step is 224c ·22n−18c+2 · 1
16·13 ≈

22n+6c−5.7.

Complexity. We reduce all the guessed subtweakey bits to the master tweakey and
find that all the 16 cells in the master tweakey have been derived. In the guess-and-
filter phase, we have 2α = 224c · (1− 2−20c)22n . For Joltik-BC-192 with c = 4, we choose
α = 20, n ≈ 42.9, thus the time complexity of the whole attack is 2n+14c−3.7+22n+10c−3.7+
2192−24c+α ≈ 2122.1, the data complexity is 26c+n+2 = 268.9 and the memory complexity is
296. For Deoxys-BC-384 with c = 8, we choose α = 50, n ≈ 83.3, thus the time complexity
of the whole attack is approximately 2n+14c−3.7 + 22n+10c−3.7 + 2384−24c+α ≈ 2243.5, the
data complexity is 26c+n+2 = 2133.3 and the memory complexity is 2192.

4.5 Related-Tweakey Impossible Boomerang Attack on 14-Round
Deoxys-BC-384 and 14-Round Joltik-BC-192

The 13-round attack can be directly extended to a 14-round attack by appending one
round to the last round, which makes the states in the final round fully active.

At the data collection phase, we need to guess the full STK14, compared to the 13-
round attack. We prepare a structure of ciphertexts of size 2x, and then by guessing
28c+16c possible values of the subtweakeys STK12, STK13 and STK14, we can obtain the
set L1 and L2 of size 22x−16c for each guess. Then 22(2x−16c) ·2−12c = 24x−44c quartets can
be constructed. The time complexity of data collection is 224c · 2 · 2x · 24

16·14 = 2x+24c−2.22.
The guess-and-filter phase follows exactly the same as the 13-round attack in Section 4.4.
Finally, we have 2α = 240c · (1− 2−20c)24x−44c .

For Joltik-BC-192, c = 4, we choose α = 150, x ≈ 64.7, thus the time complexity of
the whole attack is 2x+24c−2.22 + 24x−18c−3.7 + 2192−40c+α ≈ 2183.65, the data complexity
is 2x+2 = 266.7 and the memory complexity is 2160. For Deoxys-BC-384, c = 8, we choose
α = 300, x ≈ 128.9, thus the time complexity of the whole attack is approximately 2368,
the data complexity is 2130.9 and the memory complexity is 2320.
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5 Applications to SKINNY

5.1 Related-Tweakey Impossible Boomerang Attacks on 27-Round
SKINNY-n-3n

In this section, we provide a 27-round related-tweakey impossible boomerang attack
against SKINNY-n-3n, the specification of SKINNY is given in Appendix E. Though the last
round of SKINNY completes the full round function, we omit the SR and MC operations
in the last round as they are linear operations. The impossible boomerang distinguishers
used in this attack are depicted in Figure 14 and Figure 15. We prefix 4 rounds at the
beginning and append 5 rounds at the end of the 18-round distinguisher (∆Y4 → ∇X22)
to mount a 27-round related-tweakey impossible boomerang attack, as shown in Figure 12.
The subtweakey bits involved in Eb and Ef are listed in Table 10. The guess-and-filter
part follows the boomerang style (introduced in Section 3.4.2) and the attack begins by
constructing quartets on the ciphertext side.
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Figure 12: The related-tweakey impossible boomerang attack against 27-round
SKINNY-n-3n

Data Collection. We prepare a set of ciphertexts of size 2x, and then by guessing 224c

possible values of STK26[0 − 7], STK25[0 − 7], STK24[1, 2, 3, 4, 5, 7], STK23[3, 7], we can
obtain two sets L1 and L2 of size 22x−16c for each guess. Then, 22(2x−16c) = 24x−32c quar-
tets satisfying ∇C → ∇X22 can be constructed. Because of the equivalent representation
of the first key eSTK0 = MC ◦ SR(STK0) in the first round, we can filter the quar-
tets obtained by ∆eW0 and about 24x−32c−2·9c = 24x−50c quartets will remain. In total,
224c(2 ·2x +22x−16c) = 2x+24c+1 +22x+8c table lookups and 224c ·2 ·2x · 48

16·27 = 2x+24c−2.17

encryptions are needed in this phase.
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Guess-and-Filter. For each of the 224c guesses in the data collection phase, we use the
24x−50c quartets to discard wrong key bits, and then exhaust the remaining key bits to
recover the full key.

1. Satisfying Round 1:
(a) Guess 22c possible values of eSTK0[2, 8]. Use the condition ∆W1[2] = ∆W1[10]

from the MC operation in round 1 to filter the quartets, and about 24x−50c−2c =
24x−52c quartets will remain. The time complexity of this step is 226c·24x−50c+2·

2
27·16 = 24x−24c−5.75.

(b) Guess 2c possible values of eSTK0[5]. Use the condition ∆W1[6] = ∆W1[10]
from the MC operation in round 1 to filter the quartets, and about 24x−54c

quartets will remain. The time complexity of this step is 227c ·24x−52c+2 · 1
27·16 =

24x−25c−6.75.
(c) Guess 22c possible values of eSTK0[7, 10]. Use the condition ∆W1[4] = ∆W1[8]

from the MC operation in round 1 to filter the quartets, and about 24x−56c

quartets will remain. The time complexity of this step is 229c ·24x−54c+2 · 2
27·16 =

24x−25c−5.75.
2. Satisfying Round 2:

(a) Guess 22c possible values of eSTK0[0], STK1[0]. Use the condition ∆Y2[0] =
∆STK2[0] to filter the quartets and about 24x−58c quartets will remain. The
time complexity of this step is 231c · 24x−56c+2 · 2

27·16 = 24x−25c−5.75.
(b) Guess 22c possible values of eSTK0[11], STK1[4]. Use the condition ∆W2[11] =

∆W2[15] from the MC operation in round 1 to filter the quartets, and about
24x−60c quartets will remain. The time complexity of this step is 233c·24x−58c+2·

2
27·16 = 24x−25c−5.75.

(c) Guess 2c possible values of STK1[2]. Use the condition ∆W2[7] = ∆W2[11]
from the MC operation in round 1 to filter the quartets, and about 24x−62c

quartets will remain. The time complexity of this step is 234c ·24x−60c+2 · 1
27·16 =

24x−26c−6.75.
3. Satisfying Round 4: Guess 26c possible values of eSTK0[9], STK1[3, 5, 7], STK2[3]

and STK3[2]. (For the involved subtweakey cell STK2[2], we can uniquely determine
its value in the tweakey schedule by the previously guessed values of STK26[3],
STK24[5] and eSTK0[0]. The same principle applies to another cell, STK2[7].)
Use the known ∆Y4[2] of the beginning of the distinguisher to filter out wrong
subtweakeys. The time complexity of this step is 240c·24x−62c+2· 6

27·16 = 24x−22c−4.17.

Complexity. We have 2α = 240c · (1 − 2−14c)24x−50c . When c = 4, α = 130, we choose
x ≈ 65.1. In total, the time complexity of this attack is 2x+24c−2.17 + 24x−22c−4.17 +
248c−40c+α ≈ 2168.23. The data complexity is 267.1 ciphertexts. The memory complexity
is 2160. When c = 8, α = 265, we choose x ≈ 129.3, thus the time complexity of this
attack is 2337. The data complexity is 2131.3 ciphertexts and the memory complexity is
2320.

5.2 Related-Tweakey Impossible Boomerang Attacks on 28-Round
SKINNY-n-3n

The 27-round attack can be directly extended to 28-round attack by appending one round
to the last round. The overall procedure of the attack is similar to Section 5.1.

Data Collection. We prepare a set of ciphertexts of size 2x, and then by guessing
232c possible values of STK27[0−7], STK26[0−7], STK25[0−7], STK24[1, 2, 3, 4, 5, 7] and
STK23[3, 7], we can obtain the sets L1 and L2 of size 22x−16c for each guess. Then, we
can construct 22(2x−16c) = 24x−32c quartets satisfying ∇C → ∇X22. After filtering with
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∆eW0, about 24x−32c−2·9c = 24x−50c quartets will remain. In total, 232c(2 ·2x +22x−16c) =
2x+32c+1 + 22x+16c table lookups are needed in this phase. The time complexity of this
step is 232c · 2 · 2x · 32

16·28 = 2x+32c−2.8 approximately.

Guess-and-Filter. For each of the 232c guesses in the data collection phase, we use the
24x−50c quartets obtained to recover subtweakeys.

1. Round 1: Guess 22c possible values of eSTK0[2, 8]. Use the condition ∆W1[2] =
∆W1[10] to filter the quartets and about 24x−50c−2c = 24x−52c quartets will remain.
The time complexity of this step is 234c · 24x−50c+2 · 2

28·16 = 24x−16c−5.8.
2. Round 1: Guess 2c possible values of eSTK0[5]. Use the condition ∆W1[6] =

∆W1[10] to filter the quartets and about 24x−54c quartets will remain. The time
complexity of this step is 235c · 24x−52c+2 · 1

28·16 = 24x−17c−6.8.
3. Round 1: Guess 22c possible values of eSTK0[7, 10]. Use the condition ∆W1[4] =

∆W1[8] to filter the quartets and about 24x−56c quartets will remain. The time
complexity of this step is 237c · 24x−54c+2 · 2

28·16 = 24x−17c−5.8.
4. Round 2: Guess 22c possible values of eSTK0[0], STK1[0]. Use the known value

of ∆Y2[0] to filter the quartets and about 24x−58c quartets will remain. The time
complexity of this step is 239c · 24x−56c+2 · 2

28·16 = 24x−17c−5.8.
5. Round 2: Guess 2c possible values of eSTK0[11]. Use the condition ∆W2[11] =

∆W2[15] to filter the quartets and about 24x−60c quartets will remain. The time
complexity of this step is 240c · 24x−58c+2 · 1

28·16 = 24x−18c−6.8.
6. Round 2: Guess 2c possible values of STK1[2]. Use the condition ∆W2[7] = ∆W2[11]

to filter the quartets and about 24x−62c quartets will remain. The time complexity
of this step is 241c · 24x−60c+2 · 1

28·16 = 24x−19c−6.8.
7. Round 4: Guess 25c possible values of eSTK0[9], STK1[3, 5, 7], STK2[3]. Use the

known ∆Y4[2] to filter out wrong subtweakeys. The time complexity of this step is
246c · 24x−62c+2 · 5

28·16 = 24x−16c−4.22.

Complexity. We have 2α = 246c ·(1−2−14c)24x−50c . When c = 4, α = 180, we choose x ≈
64.37, thus the time complexity of this attack is 2x+32c−2.8 + 24x−16c−5.8 + 24x−16c−4.22 +
248c−46c+α ≈ 2190.8 approximately. The data complexity is 266.37 ciphertexts and the
memory complexity is 2184. When c = 8, α = 365, we choose x ≈ 128.26, thus the
time complexity of this attack is 2382.8 approximately. The data complexity is 2130.26

ciphertexts and the memory complexity is 2368.

6 Conclusions

In this paper, we revisit the impossible boomerang attack. We introduce a systematic
overview of the generation of impossible boomerang distinguishers, analyze the advan-
tages of impossible boomerang attacks over impossible differential attacks, and propose
two key recovery methods for impossible boomerang attacks. Based on MIQCP, we pro-
pose an automatic tool for searching complete impossible boomerang attacks and success-
fully apply it to three tweakable block ciphers: Deoxys-BC, Joltik-BC and SKINNY. In
particular, the results for Deoxys-BC-384, Joltik-BC-128, Joltik-BC-192, SKINNY-64-192
and SKINNY-128-384 have all improved the best previous related-tweakey impossible dif-
ferential attacks, demonstrating the power of the impossible boomerang attack. Our
cryptanalytic results show that the impossible boomerang attack needs more attention in
the design and analysis of block ciphers. In addition, the MIQCP tool has the potential to
be extended for modeling other cryptanalytic methods, due to the convenience provided
by the quadratic constraints in describing block ciphers.
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A Cryptanalytic Tables in Generalized Boomerang Frame-
work

For the previously extended techniques for Em with multiple rounds, all of them can be
generalized to be applicable in GBF:

Definition 7 (Generalized Upper BCT (GUBCT)). Let S be an n-bit bijective S-box, and
∆i, ∆′

i, ∆o, ∆′
o,∇o,∇′

o ∈ Fn
2 . The GUBCT of S is a six-dimensional table, in which the entry

for (∆i, ∆′
i, ∆o, ∆′

o,∇o,∇′
o) is given by:

GUBCT(∆i, ∆′
i, ∆o, ∆′

o, ∇o, ∇′
o) = #

{
x ∈ Fn

2

S(x) ⊕ S(x ⊕ ∆i) = ∆o

S(x) ⊕ ∇o ⊕ S(x ⊕ ∆i) ⊕ ∇′
o = ∆′

o

S−1(S(x) ⊕ ∇o) ⊕ S−1(S(x ⊕ ∆i) ⊕ ∇′
o) = ∆′

i

}
.

Definition 8 (Generalized Lower BCT (GLBCT)). Let S be an n-bit bijective S-box, and
∆i, ∆′

i,∇i,∇′
i,∇o,∇′

o ∈ Fn
2 . The GLBCT of S is a six-dimensional table, in which the entry

for (∆i, ∆′
i,∇i,∇′

i,∇o,∇′
o) is given by:

GLBCT(∆i, ∆′
i, ∇i, ∇′

i, ∇o, ∇′
o) = #

{
x ∈ Fn

2

x ⊕ S−1(S(x) ⊕ ∇o) = ∇i

x ⊕ ∆i ⊕ x ⊕ ∇i ⊕ ∆′
i = ∇′

i

S−1(S(x) ⊕ ∇o) ⊕ S−1(S(x ⊕ ∆i) ⊕ ∇′
o) = ∆′

i

}
.

Definition 9 (Generalized Extended BCT (GEBCT)). Let S be an n-bit bijective S-box,
and ∆i, ∆′

i, ∆o, ∆′
o,∇i,∇′

i,∇o,∇′
o ∈ Fn

2 . The GEBCT of S is a eight-dimensional table, in
which the entry for (∆i, ∆′

i, ∆o, ∆′
o,∇i,∇′

i,∇o,∇′
o) is given by:

GEBCT(∆i, ∆′
i, ∆o, ∆′

o, ∇i, ∇′
i, ∇o, ∇′

o)

= #

 x ∈ Fn
2

S(x) ⊕ S(x ⊕ ∆i) = ∆o

S(x) ⊕ ∇o ⊕ S(x ⊕ ∆i) ⊕ ∇′
o = ∆′

o

x ⊕ S−1(S(x) ⊕ ∇o) = ∇i

x ⊕ ∆i ⊕ x ⊕ ∇i ⊕ ∆′
i = ∇′

i

S−1(S(x) ⊕ ∇o) ⊕ S−1(S(x ⊕ ∆i) ⊕ ∇′
o) = ∆′

i

 .

Definition 10 (Generalized Double BCT (GDBCT)). Let S be an n-bit bijective S-box, and
∆i, ∆′

i,∇o,∇′
o ∈ Fn

2 . The GDBCT of S is a four-dimensional table, in which the entry for
(∆i, ∆′

i,∇o,∇′
o) is given by:

GDBCT(∆i, ∆′
i, ∇o, ∇′

o) =
∑

∆o,∆′
o,∇i,∇′

i

GUBCT(∆i, ∆′
i, ∆o, ∆′

o, ∇i, ∇′
i) · GLBCT(∆o, ∆′

o, ∇i, ∇′
i, ∇o, ∇′

o).

The GBCT exhibits the following two apparent properties:

Property 1 (Commutativity).

GBCT(∆i, ∆′
i,∇o,∇′

o) = GBCT(∆′
i, ∆i,∇o,∇′

o)
= GBCT(∆i, ∆′

i,∇′
o,∇o)

= GBCT(∆′
i, ∆i,∇′

o,∇o)

Property 2 (Symmetry).

GBCT(∆i, ∆i,∇o,∇o) = BCT(∆i,∇o)

Similar to GBCT, the properties of commutativity and symmetry are equally applicable
to the generalized tables above. Under the condition of identical opposite differentials,
they can be transformed into UBCT, LBCT, and so forth.
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B Related-Tweakey Impossible Boomerang Distinguishers
for Deoxys-BC

Table 6: The 7-round related-tweakey impossible boomerang distinguisher for
Deoxys-BC-256 (Contradiction: 15-th byte in Round 4, BCT(2c, 2c) = 0)

∆TK1
0 : 00 00 5c 00 00 00 00 5c 00 00 00 00 00 b3 00 00

∆TK2
0 : 00 00 57 00 00 00 00 57 00 00 00 00 00 6c 00 00

∇TK1
0 : 00 00 00 00 d9 00 00 00 00 00 00 00 00 e1 00 00

∇TK2
0 : 00 00 00 00 25 00 00 00 00 00 00 00 00 95 00 00

R ∆STK ∆X ∆Y ∆W

0

00 00 00 6a
00 00 00 f2
00 00 00 f2
00 00 00 00

1

00 00 00 6a
00 00 00 f2
00 00 00 f2
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

2

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

3

00 00 e4 00
00 00 00 00
00 00 d5 00
e4 00 00 00

00 00 e4 00
00 00 00 00
00 00 d5 00
e4 00 00 00

00 00 ?? 00
00 00 00 00
00 00 ?? 00
?? 00 00 00

?? ?? ?? 00
?? ?? ?? 00
?? ?? ?? 00
?? ?? ?? 00

4

00 00 00 00
00 7e 00 00
00 00 2c 00
00 00 00 2c

?? ?? ?? 00
?? ?? ?? 00
?? ?? ?? 00
?? ?? ?? 2c

∇STK ∇X ∇Y ∇W

4

3a ?? ?? ??
?? 9d ?? ??
?? ?? e4 ??
?? ?? ?? 2c

00 59 ?? 00
00 00 00 ??
00 00 00 00
6f ?? 00 00

5

00 59 00 00
00 00 00 00
00 00 00 00
6f 00 00 00

00 00 ?? 00
00 00 00 ??
00 00 00 00
00 ?? 00 00

00 00 fd 00
00 00 00 1c
00 00 00 00
00 c5 00 00

00 00 00 00
00 00 00 00
00 00 b5 00
00 00 91 00

6

00 00 00 00
00 00 00 00
00 00 b5 00
00 00 91 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

7

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

8

00 6a 00 00
00 00 00 23
00 00 00 00
00 00 00 00

00 6a 00 00
00 00 00 23
00 00 00 00
00 00 00 00
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Table 7: The 9-round related-tweakey impossible boomerang distinguisher for
Deoxys-BC-384 (Contradiction: 15-th byte in Round 6, BCT(4f, 4f) = 0)

∆TK1
0 : cb c5 bc 00 00 00 60 00 35 00 95 a5 00 89 00 5e

∆TK2
0 : f7 48 4d 00 00 00 9b 00 e2 00 d1 d3 00 af 00 26

∆TK3
0 : 95 34 bc 00 00 00 fa 00 35 00 cb ce 00 89 00 5e

∇TK1
0 : 00 00 00 00 00 3d 00 4a 00 00 00 00 00 00 00 00

∇TK2
0 : 00 00 00 00 00 e4 00 86 00 00 00 00 00 00 00 00

∇TK3
0 : 00 00 00 00 00 19 00 7a 00 00 00 00 00 00 00 00

R ∆STK ∆X ∆Y ∆W

1

71 e1 00 26
13 00 00 98
00 f1 00 f2
d7 e9 00 00

2

71 e1 00 26
13 00 00 98
00 f1 00 f2
d7 e9 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

3

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

4

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

5

00 d7 e9 00
00 26 71 e1
00 00 98 13
00 f1 00 f2

00 d7 e9 00
00 26 71 e1
00 00 98 13
00 f1 00 f2

00 ?? ?? 00
00 ?? ?? ??
00 00 ?? ??
00 ?? 00 ??

?? ?? ?? 00
?? ?? ?? 00
?? ?? ?? 00
?? ?? ?? 00

6

00 78 aa 53
00 e5 bc 00
00 ef 00 6b
00 00 13 4f

?? ?? ?? 53
?? ?? ?? 00
?? ?? ?? 6b
?? ?? ?? 4f

∇STK ∇X ∇Y ∇W

6

80 ?? ?? ??
?? c0 ?? ??
?? ?? c5 ??
?? ?? ?? 4f

ca ?? 00 00
00 00 ?? 00
00 00 5d ??
00 00 00 00

7

ca 00 00 00
00 00 00 00
00 00 5d 00
00 00 00 00

00 ?? 00 00
00 00 ?? 00
00 00 00 ??
00 00 00 00

00 ff 00 00
00 00 67 00
00 00 00 4c
00 00 00 00

00 00 00 00
00 e5 00 00
00 00 00 00
00 31 00 00

8

00 00 00 00
00 e5 00 00
00 00 00 00
00 31 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

9

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

10

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

11

00 00 31 00
00 00 00 00
e5 00 00 00
00 00 00 00

00 00 31 00
00 00 00 00
e5 00 00 00
00 00 00 00
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C Related-Tweakey Impossible Differential Attack against
12-Round Deoxys-BC-384

We mount a 12-round related-tweakey impossible differential attack on Deoxys-BC-384
by prefixing 2 rounds at the beginning and appending 3 rounds at the end of a 7-round
distinguisher (∆W1 → ∆X9), shown in Figure 13.
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Figure 13: 12-round related-tweakey impossible differential attack against Deoxys-BC-384

Data Collection. Construct 2n structures that each of them traverses all 296 possible
values of ∆P [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14], then we get 2192 plaintext pairs for each
structure. Encrypt the plaintexts under two related tweakeys (KA, KB), choose the pairs
satisfying ciphertext differences and 2192+n pairs would remain.

Guess-and-Filter For each of the remaining pairs:
1. Guess 232 possible values of STK0[3, 4, 9, 14] and partially encrypt (PA, PB) for one

round, then check whether WA,0[5] ⊕ WB,0[5] = WA,0[6] ⊕ WB,0[6] = WA,0[7] ⊕
WB,0[7] = 0. Keep only 2192+n · 2−24 = 2168+n pairs that meet above condition
remain. Time complexity of this step is 2n+192+1 · 232 · 4

16·12 = 2n+219.4.
2. Guess 232 possible values of STK0[2, 7, 8, 13] and partially encrypt (PA, PB) for one

round, then check whether WA,0[8]⊕WB,0[8] = WA,0[11]⊕WB,0[11] = 0, WA,0[10]⊕
WB,0[10] = ∆STK1[10]. Keep only 2168+n · 2−24 = 2144+n pairs that meet above
conditions remain. Time complexity of this step is 2n+168+1 · 264 · 4

16·12 = 2n+227.4.
3. Guess 232 possible values of STK0[1, 6, 11, 12] and partially encrypt (PA, PB) for

one round, then check whether WA,0[12] ⊕ WB,0[12] = WA,0[13] ⊕ WB,0[13] =
0, WA,0[15] ⊕WB,0[15] = ∆STK1[15]. Keep only 2144+n · 2−24 = 2120+n pairs that
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meet above conditions remain. Time complexity of this step is 2n+144+1 ·296 · 4
16·12 =

2n+235.4.
4. Guess 28 possible values of STK1[4] and partially encrypt for one round, then check

whether ZA,1[4] ⊕ ZB,1[4] = ∆Z1[4]. Keep only 2120+n · 2−8 = 2112+n pairs that
meet above condition remain. Time complexity of this step is 2n+120+1 ·2104 · 1

16·12 =
2217.4+n.

5. Guess 28 possible values of STK1[9] and partially encrypt for one round, then check
whether ZA,1[5]⊕ZB,1[5] = ∆Z1[5]. Keep only 2112+n ·2−8 = 2104+n pairs that meet
above conditions remain. Time complexity of this step is 2n+112+1 · 2112 · 1

16·12 =
2217.4+n.

6. Guess 28 possible values of STK1[14] and partially encrypt for one round, then check
whether ZA,1[6]⊕ZB,1[6] = ∆Z1[6]. Keep only 2104+n ·2−8 = 296+n pairs that meet
above condition remain. Time complexity of this step is 2n+104+1 · 2120 · 1

16·12 =
2217.4+n.

7. Guess 232 possible values of STK12[1, 4, 11, 14] and partially decrypt for one round,
then check whether eWA,10[4 − 6] ⊕ eWB,10[4 − 6] = ∆eW10[4 − 6]. Keep only
296+n · 2−24 = 272+n pairs that meet above condition remain. Time complexity of
this step is 2n+96+1 · 2152 · 4

16·12 = 2243.4+n.
8. Guess 232 possible values of STK12[2, 5, 8, 15] and partially decrypt for one round,

then check whether eWA,10[8, 9, 11]⊕ eWB,10[8, 9, 11] = ∆eW10[8, 9, 11]. Keep only
272+n · 2−24 = 248+n pairs that meet above condition remain. Time complexity of
this step is 2n+72+1 · 2184 · 4

16·12 = 2251.4+n.
9. Guess 232 possible values of STK12[0, 7, 10, 13] and partially decrypt for one round,

then check whether eWA,10[2, 3] ⊕ eWB,10[2, 3] = ∆eW10[2, 3]. Keep only 248+n ·
2−16 = 232+n pairs that meet above condition remain. Time complexity of this step
is 2n+48+1 · 2216 · 4

16·12 = 2259.4+n.
10. Guess 232 possible values of STK12[3, 6, 9, 12] and partially decrypt for one round,

then check whether eWA,10[12, 15] ⊕ eWB,10[12, 15] = ∆eW10[12, 15]. Keep only
232+n · 2−16 = 216+n pairs that meet above condition remain. Time complexity of
this step is 2n+32+1 · 2248 · 4

16·12 = 2275.4+n.
11. Guess 28 possible values of eSTK11[5] and partially decrypt for one round, then

check whether XA,10[5] ⊕XB,10[5] = ∆X10[5]. Keep only 216+n · 2−8 = 28+n pairs
that meet above conditions remain. Time complexity of this step is 2n+16+1 · 2256 ·

1
16·12 = 2265.4+n.

12. Guess 28 possible values of eSTK11[6] and partially decrypt for one round, then
check whether XA,10[6]⊕XB,10[6] = ∆X10[6]. Keep only 28+n · 2−8 = 2n pairs that
meet above condition remain. Time complexity of this step is 2n+8+1 · 2264 · 1

16·12 =
2265.4+n.

13. Guess 232 possible values of eSTK11[0−3] and partially decrypt for one round, then
check whether eWA,9[0 − 1] ⊕ eWB,9[0 − 1] = ∆eW9[0 − 1]. Keep only 2n · 2−16 =
2n−16 pairs that meet above condition remain. Time complexity of this step is
2n+1 · 2296 · 4

16·12 = 2291.4+n.
14. Guess 28 possible values of eSTK10[10] and partially decrypt for one round, then

check whether XA,9[10]⊕XB,9[10] = ∆X9[10]. Keep only 2n−16 · 2−8 = 2n−24 pairs
that meet above condition remain. Time complexity of this step is 2n−16+1 · 2304 ·

1
16·12 = 2281.4+n.

15. Guess 28 possible values of eSTK10[15] and partially decrypt for one round, then
use the condition XA,9[15] ⊕ XB,9[15] = ∆X9[15] to filter out wrong tweakey bits.
Time complexity of this step is 2n−24+1 · 2312 · 1

16·12 = 2281.4+n.

Complexity. In this attack, we have 2α = 2312(1−2−28·8)2192+n . We choose α = 200, n ≈
38.3, thus the time complexity of the whole attack is 2291.4+n ≈ 2329.7 approximately. The
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data complexity is 2135.3 and the memory complexity is 2312.
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D Related-Tweakey Impossible Boomerang Distinguishers
for Joltik-BC

Table 8: The 7-round related-tweakey impossible boomerang distinguisher for
Joltik-BC-128 (Contradiction: 15-th byte in Round 4, BCT(8, 8) = 0)

∆TK1
0 : 0 0 c 0 0 0 0 7 0 0 0 0 0 f 0 0

∆TK2
0 : 0 0 3 0 0 0 0 5 0 0 0 0 0 7 0 0

∇TK1
0 : 0 0 0 0 f 0 0 0 0 0 0 0 0 7 0 0

∇TK2
0 : 0 0 0 0 6 0 0 0 0 0 0 0 0 8 0 0

R ∆STK ∆X ∆Y ∆W

0

0 0 0 1
0 0 0 a
0 0 0 d
0 0 0 0

1

0 0 0 1
0 0 0 a
0 0 0 d
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

2

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3

0 0 9 0
0 0 0 0
0 0 2 0
7 0 0 0

0 0 9 0
0 0 0 0
0 0 2 0
7 0 0 0

0 0 ? 0
0 0 0 0
0 0 ? 0
? 0 0 0

? ? ? 0
? ? ? 0
? ? ? 0
? ? ? 0

4

0 0 0 0
0 6 0 0
0 0 9 0
0 0 0 8

? ? ? 0
? ? ? 0
? ? ? 0
? ? ? 8

∇STK ∇X ∇Y ∇W

4

2 ? ? ?
? 4 ? ?
? ? 6 ?
? ? ? 8

0 2 ? 0
0 0 0 ?
0 0 0 0
8 ? 0 0

5

0 2 0 0
0 0 0 0
0 0 0 0
8 0 0 0

0 0 ? 0
0 0 0 ?
0 0 0 0
0 ? 0 0

0 0 7 0
0 0 0 2
0 0 0 0
0 9 0 0

0 0 0 0
0 0 0 0
0 0 1 0
0 0 d 0

6

0 0 0 0
0 0 0 0
0 0 1 0
0 0 d 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

7

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

8

0 2 0 0
0 0 0 9
0 0 0 0
0 0 0 0

0 2 0 0
0 0 0 9
0 0 0 0
0 0 0 0
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Table 9: The 9-round related-tweakey impossible boomerang distinguisher for
Joltik-BC-192 ( Contradiction: 15-th byte in Round 6, BCT(6, 9) = 0)

∆TK1
0 : 3 d 9 0 0 0 a 0 b 0 f 6 0 5 0 8

∆TK2
0 : 3 d 9 0 0 0 a 0 b 0 f 6 0 5 0 8

∆TK3
0 : f c b 0 0 0 4 0 1 0 6 d 0 2 0 e

∇TK1
0 : 0 0 0 0 0 1 0 9 0 0 0 0 0 0 0 0

∇TK2
0 : 0 0 0 0 0 a 0 5 0 0 0 0 0 0 0 0

∇TK3
0 : 0 0 0 0 0 e 0 7 0 0 0 0 0 0 0 0

R ∆STK ∆X ∆Y ∆W

1

8 c 0 5
f 0 0 9
0 2 0 d
4 b 0 0

2

8 c 0 5
f 0 0 9
0 2 0 d
4 b 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

4

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

5

0 6 7 0
0 e c a
0 0 4 1
0 3 0 2

0 6 7 0
0 e c a
0 0 4 1
0 3 0 2

0 ? ? 0
0 ? ? ?
0 0 ? ?
0 ? 0 ?

? ? ? 0
? ? ? 0
? ? ? 0
? ? ? 0

6

0 c 2 3
0 f 7 0
0 e 0 9
0 0 1 6

? ? ? 3
? ? ? 0
? ? ? 9
? ? ? 6

∇STK ∇X ∇Y ∇W

6

2 ? ? ?
? 8 ? ?
? ? 1 ?
? ? ? 9

2 ? 0 0
0 0 ? 0
0 0 6 ?
0 0 0 0

7

2 0 0 0
0 0 0 0
0 0 4 0
0 0 0 0

0 ? 0 0
0 0 ? 0
0 0 0 ?
0 0 0 0

0 2 0 0
0 0 1 0
0 0 0 c
0 0 0 0

0 0 0 0
0 a 0 0
0 0 0 0
0 5 0 0

8

0 0 0 0
0 a 0 0
0 0 0 0
0 5 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

9

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

10

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

11

0 0 e 0
0 0 0 0
f 0 0 0
0 0 0 0

0 0 e 0
0 0 0 0
f 0 0 0
0 0 0 0
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E Description of SKINNY
SKINNY is a tweakable block cipher family following the TWEAKEY framework, first proposed
in [BJK+16]. SKINNY family has 6 versions, denoted by SKINNY-n-t: n ∈ {64, 128} is the
block size and t ∈ {n, 2n, 3n} is the tweakey size. The cell size c is 4 for SKINNY-64 and 8 for
SKINNY-128. The number r of rounds is 32 for SKINNY-64-64, 36 for SKINNY-64-128, 40 for
SKINNY-64-192 and SKINNY-128-128, 48 for SKINNY-128-256 and 56 for SKINNY-128-384.
The ordering of the internal state and the tweakey state is represented by a 4× 4 matrix:

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

 .

The SKINNY round function applies five transformations: SubCells (SC), AddConstants (AC),
AddRoundTweakey (ART), ShiftRows (SR), MixColumns (MC):

• SubCells (SC): Apply a 4-bit (resp. 8-bit) S-box on each cell for SKINNY-64 (resp.
SKINNY-128).

• AddConstants (AC): XOR the round constant to the internal state,

• AddRoundTweakey (ART): XOR the first and second rows of subtweakey with the
corresponding cells in the internal state,

• ShiftRows (SR): Rotate the 4-cell i-th row right by i positions, i = 0, 1, 2, 3,

• MixColumns (MC): Multiply the internal state by a binary matrix M =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

.

We denote the internal states in the r-th round as follows:

Xr
SC−−→
AC

Yr
ART−−−−→

ST Kr

Zi
SR−→Wi

MC−−→ Xr+1.

Similar to Deoxys-BC, the tweakey schedule of SKINNY is a linear algorithm and satisfies
the property explained in Proposition 2. It divides the master tweakey into z tweakey
arrays (TK1, ..., TKz) with n-bit length each, where z = t

n ∈ {1, 2, 3}. TK1, TK2 and
TK3 follow three independent update functions. The subtweakey used in r-th round
STKr is generated from:

• STKr = TK1r when z = 1,

• STKr = TK1r ⊕ TK2r when z = 2,

• STKr = TK1r ⊕ TK2r ⊕ TK3r when z = 3,

where TK1r, TK2r, TK3r denote the tweakey arrays in round r and are generated as fol-
lows. First, a permutation h is applied to each tweakey array as TKzr+1[i]← TKzr[h[i]].
Next, each cell of the first and second rows of TK2r and TK3r are individually updated
with an LFSR. For more details about SKINNY, please refer to [BJK+16].
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F Related-Tweakey Impossible Boomerang Distinguishers
for SKINNY-n-3n
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Figure 14: The 18-round related-tweakey impossible boomerang distinguisher for
SKINNY-128-384 with BCT effect (Contradiction: 7-th cell in Round 13, BCT(11, 11) = 0)
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Figure 15: The 18-round related-tweakey impossible boomerang distinguisher for
SKINNY-64-192 with BCT effect (Contradiction: 7-th cell in Round 13, BCT(5, 5) = 0)
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Figure 16: The 18-round related-tweakey impossible boomerang distinguisher for
SKINNY-128-384 with DBCT effect
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G Subtweakey cells involved in Eb and Ef of the attack
against 27-round SKINNY-n-3n

Table 10: Subtweakey cells involved in Eb and Ef of the attack against 27-round
SKINNY-n-3n

Filter Involved Subtweakey Cells

Eb

∆W1[2] = ∆W1[10] eSTK0[2, 8]
∆W1[6] = ∆W1[10] eSTK0[5, 8]
∆W1[4] = ∆W1[8] eSTK0[7, 10]
∆Y2[0] eSTK0[0, 10, 13], STK1[0]
∆W2[11] = ∆W2[15] eSTK0[0, 4, 10, 11], STK1[0, 4]
∆W2[7] = ∆W2[11] eSTK0[2, 4, 11], STK1[2, 4]

∆Y4[2] eSTK0[2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 15],
STK1[2, 3, 4, 5, 7], STK2[2, 3, 7], STK3[2]

Ef

∇X25[1] = ∇X25[13] STK25[1]
∇X25[5]⊕∇X25[9] = ∇X25[13] STK25[5]
∇X25[6] = ∇X25[14] STK25[6]
∇X25[7]⊕∇X25[11] = ∇X25[15] STK25[7]
∇X25[3] = ∇X25[15] STK25[3]
∇X24[11] STK25[5]
∇X24[9] = ∇X24[13] STK25[0, 7]
∇X24[1] = ∇X24[13] STK25[0, 5], STK24[1]
∇X24[7] = ∇X24[15] STK25[2, 4], STK24[7]
∇X24[3] = ∇X24[15] STK25[2, 7], STK24[3]
∇X23[11] = ∇X23[15] STK25[0, 1, 6], STK24[2, 5]
∇X23[3] = ∇X23[15] STK25[1, 4, 6], STK24[2, 7], STK23[3]
∇X22[9] STK25[1, 3, 5, 6], STK24[2, 4], STK23[7]

STK26[0− 7]
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