SIGNITC: Supersingular Isogeny Graph
Non-Interactive Timed Commitments

Knud Ahrens
University of Passau, Germany
knud.ahrens@uni-passau.de

Abstract

Non-Interactive Timed Commitment schemes (NITC) allow to open
any commitment after a specified delay t¢q. This is useful for sealed bid
auctions and as primitive for more complex protocols. We present the
first NITC without repeated squaring or theoretical black box algorithms
like NIZK proofs or one-way functions. It has fast verification, almost
arbitrary delay and satisfies IND-CCA hiding and perfect binding. Our
protocol is based on isogenies between supersingular elliptic curves making
it presumably quantum secure, and all algorithms have been implemented
as part of SQISign or other well-known isogeny-based cryptosystems. Ad-
ditionally, it needs no trusted setup and can use known primes for SQISign
or its higher dimensional variants.

Keywords: Non-interactive timed commitments, post-quantum, isogeny
walks, Deuring correspondence.

1 Introduction

The concept of time-lock puzzles [37] has been around for more than twenty
years and timed commitments [8] developed shortly after. We will use the
rather new definition of Non-Interactive Timed Commitment schemes (NITC)
by Katz, Loss, and Xu [31] from the year 2020. These protocols satisfy binding or
non-malleability properties and efficient verification just like usual commitment
schemes, but a commitment can be opened by anyone after some delay t¢q. So
hiding only lasts for this time ttq and there are additional algorithms: one to
verify that a commitment can be opened by others and another one to open the
commitment forcefully in time at least tfq. A possible application is a sealed
bid auction, where all bids can be revealed after time t¢q even if some of the
bidders refuse to open their commitment. Other applications include e-voting,
fair coin tossing or contract signing [8].

Our approach uses random walks in the isogeny graph of supersingular ellip-
tic curves to construct a NITC, hence the name Supersingular Isogeny Graph
Non-Interactive Timed Commitments or SIGNITC! for short. The main idea is
that computing isogenies of large or non-smooth degree is slow, but if we know
the endomorphism ring of the starting curve, we can find a smooth shortcut.
So we use a secret isogeny to a curve with known endomorphism ring for fast

Ipronounced like “signets”

commitment and verification, but the forced decommitment has to compute the
delay isogeny and thus it needs time at least t¢q.

The advantage of isogeny-based cryptography is that it is presumably quan-
tum secure and relatively slow compared to other fields of post-quantum cryp-
tography. Since we need a delay, this is a good thing. The field has undergone
thorough scrutiny due to the candidates SIKE [30] and SQISign [22] in NIST
competitions for post-quantum protocols and is still very active. The proto-
col only uses (known) isogeny-based cryptography, so we do not need to know
several fields and this facilitates correct and secure implementations. This also
means that we have no theoretical black box algorithms like zero-knowledge
proofs, succinct non-interactive arguments (SNARGs) of knowledge or one-way
functions. In addition, all needed calculations have already been implemented
as subroutines in other cryptosystems. To our knowledge this is the first quan-
tum secure NITC scheme with explicit algorithms. The only drawbacks are that
some algorithms are still quite involved and that we need to differ slightly from
the original definitions for hiding and binding.

Related Work Thyagarajan et al. [39] present an approach based on class
groups using non-interactive zero-knowledge (NIZK) proofs. Katz et al. [31] and
Chvojka and Jager [16] use protocols based on repeated squaring in a group of
unknown order and NIZK proofs. Finally, Ambrona et al. [3] avoid NIZK proofs
but still use repeated squaring. None of these is quantum secure.

NITC schemes are related to verifiable delay functions (VDF') [9] in the sense
that both have fast verification and a function that needs a long time to evaluate.
The main difference is the handling of secrets. For VDF's finding the correct
response for a given challenge has to be slow for everyone. For NITC schemes
however someone has to compute the commitment and therefore already knows
the output of the slow task, namely finding the message to a given commitment.
So we can construct NITC schemes from VDFs, but the contrary is difficult or
impossible, depending on the protocol.

VDFs have direct applications to blockchains and there are already several
approaches. Many are based on repeated squaring for the delay. A new publica-
tion [7] suggests that this might not be sequential. So contrary to current belief,
repeated squaring could be parallelizable, disqualifying it as a delay function.
Additionally, this is not quantum secure. There are even some isogeny-based
candidates for VDF's, but they all still have some flaws. The pairing-based ap-
proach [21] is not quantum secure. Chavez-Saab et al. [14] use SNARGs and
their verification time increases for larger delays. Finally, there is one base on
Kani’s criterion for abelian surfaces [24], but the authors state that it is not clear
how to implement it. A different approach based on endomorphism rings [2] has
the problem that the generation of a challenge also gives (a significant advantage
in finding) the response. So it is closer to a NITC scheme and gave the initial
idea for this article. Burdges and De Feo [11] introduced isogeny-based delay
encryption, but they use the same delay as the pairing-based VDF.

Structure of this Article The remainder of this paper is structured as fol-
lows. First we give a definition of NITC schemes and discuss their properties.
Next we recall the necessary definitions and fix the notations of isogeny-based
cryptography. Readers familiar with one of these topics can briefly skim through

the respective sections as we aimed to use standard notations. The sole differ-
ence is a slight variation in Definitions 5.11 and 5.14 of IND-CCA and BND-CCA
security games. In Section 4 we present our protocol in full detail. Its security
and its properties are discussed in Section 5. Finally, we give a short conclusion
and outlook.

2 Non-Interactive Timed Commitments

In this section we recall NITC schemes and their properties. In their paper Katz
et al. [31] gave the first formal definition of this concept.

Definition 2.1 (NITC [31]). A (fcom;tcvs tdv, tta) non-interactive timed com-
mitment scheme (NITC) is a tuple TC = (PGen, Com, ComVrfy, DecVrfy, FDecom)
of five algorithms with the following behavior:

o The randomized parameter generation algorithm PGen takes as input the
security parameter 1% and outputs a common reference string crs.

e The randomized commit algorithm Com takes as input a string crs and a
message m. It outputs a commitment C and proofs Teom, Tdec N time at
most teom -

e The deterministic commitment verification algorithm ComVrfy takes as
input a string crs, a commitment C and a proof Teom- It outputs accept
(if C could be forcefully decommitted) or reject in time at most tey.

e The deterministic decommitment verification algorithm DecVrfy takes as
input a string crs, a commitment C, a message m and a proof Tgec. It
outputs accept or reject in time at most tqy.

o The deterministic forced decommitment algorithm FDecom takes as input
a string crs and a commitment C. It outputs a message m or invalid in
time at least tgq.

We require that for all k, all crs output by PGen(17), all m and all C, Teom, Tdec
output by Com(crs, m), it holds that

ComVrfy(crs, C, meom) = accept = DecVrfy(crs, C, m, Tdec)
and FDecom(crs, C) = m.

To be relevant for applications a NITC also needs to satisfy three further
properties. First we give a definition of practicality and then recall definitions for
hiding and binding in our notation. There is no benefit in verification algorithms
if we can verify faster by using FDecom. There are applications for protocols
where Com is as slow as FDecom, but efficiently creating commitments even for
long delays is desirable. Definition 2.2 tries to represent this. A more precise
definition is difficult as one may wish for an absolute gap for small delays and
relative gap for large delays.

Definition 2.2 (Practicality). A NITC scheme is practical, if verification is
much faster than forcefully opening the commitment, so tey,tay < tiq. If in
addition the commitment is also much faster than forced decommitment, i.e.
teom <K tig, we call it perfectly practical.

We present two IND-CCA security games and define hiding in terms of the
probability that an adversary A wins the games. In both cases the adversary
has access to an oracle for FDecom and a query is considered to have only a small
computational cost. The first game is the one used by Katz et al. [31].

Definition 2.3 (IND-CCA original [31]). For a NITC scheme TC and an algo-
rithm A, define the game IND-CCAz as follows:

1. Compute crs < PGen(1").
2. Run A(crs) in a preprocessing phase with access to FDecom(crs, -).

3. When A outputs (mg,m1), choose a uniform bit b < {0,1} and then
compute (Cp, Teom, Tdec) < Com(crs, my). Give (Cy, Teom) to A, who con-
tinues to have access to FDecom(crs,) except that it may not query the
oracle on the given commitment Cy.

4. When A outputs a bit V', it wins iff b = b.

The commitment C in our approach is a tuple and not a single value. Because
of that we can only satisfy a slightly weaker variation of the IND-CCA security
game. The new Definition 5.11 is given and discussed in Section 5.2. Hiding
is defined with respect to an IND-CCA game. This allows us to evaluate the
security of our NITC in terms of both the original and our adapted definition.
Broadly speaking hiding guarantees that it is impossible to infer information
about the message from the commitment. In our case hiding should hold at
least for the time tgq it takes to open a commitment by force, so for all t, < tgg
in the following definition.

Definition 2.4 (Hiding [31]). A NITC scheme TC is (tp,t,,¢)-CCA-secure if
for all adversaries A running in time at most t,, in the preprocessing phase and
time at most t, in the subsequent online phase,

1
Pr [A wins IND-CCAz¢] < gte

Similar to hiding, binding is defined in terms of the probability that A wins
a BND-CCA security game. Again, we have to modify it slightly and the new
Definition 5.14 is given in Section 5.2.

Definition 2.5 (BND-CCA original [31]). For a NITC scheme TC and an al-
gorithm A, define the game BND—CCA{% as follows:

1. Compute crs < PGen(1").
2. Run A(crs) with access to FDecom(crs, -).

3. A outputs (m, C, Teom, Tdec, M, The.) and wins iff ComVry(crs, C, Teom) =
accept and either:

e m # m/, yet DecVrfy(crs, C,m, Tgec) and DecVriy(crs, C,m', 7))
both output accept;
e DecVrfy(crs, C,m, gec) = accept but FDecom(crs, C) # m.

Binding makes sure that a commitment can not be opened to two different
messages and that FDecom gives the correct messages for valid commitments.

Definition 2.6 (Binding [31]). A NITC scheme TC is (t,¢)-BND-CCA-secure
if for all adversaries A running in time t,

Pr [A wins BND-CCA7¢| < e.

3 Isogeny-based Cryptography

In this section we provide the necessary basics for isogeny-based cryptography,
quaternion algebras and the Deuring correspondence. We also discuss some
computational problems in this area.

3.1 Elliptic Curves and the Quaternion Algebra

Elliptic curves have ties to different fields resulting in several equivalent defini-
tions. We will mostly follow the notation of Silverman [38], but restrict ourselves
to aspects relevant for this paper.

Definition 3.1 (Elliptic Curve). An elliptic curve is a pair (E,00), where E
is a curve of genus one and co € E. It is defined over a field K, if it is defined
over K as a curve and oo € E(K).

We can define an addition of points on the curve making (EF,+) an addi-
tive group where oo is the neutral element. This permits scalar multiplication
written as [m]: E — E and torsion subgroups E[m] := {P € E | [m]P = oo}.

Definition 3.2 (Isogeny). Let E and E' be elliptic curves. Then a morphism
p: E — E' such that p(c0) = oo is called an isogeny. If a non-zero isogeny
p: B — E' exists, then E and E' are called isogenous.

In fact, every isogeny between two curves is also a group homomorphism.
The isogenies from a curve F into itself form the endomorphism ring End E.
Isogenies can be written as rational maps and their degree is defined by this
map. Thus, the degree deg(y o ¢’) = deg pdeg ¢’ is multiplicative. In addition,
each isogeny ¢: E — E’ has a unique dual isogeny ¢: E’ — E such that the
composition ¢ o ¢ = [deg | is the multiplication by the degree. The isogenies
of degree 1 are the isomorphisms, and each isomorphism class can be labelled
by the so-called j-invariant. This allows to construct the f-isogeny graph that
has those j-invariants as vertices and isogenies of degree £ as edges.

Definition 3.3 (Supersingularity). Let K be a field of characteristic p > 0
and E an elliptic curve defined over K. The curve E is supersingular if the
torsion group E[p] is trivial. Equivalently, this means that the endomorphism
ring End E is an order in a quaternion algebra.

For the rest of this paper p > 3 will be a large prime. This allows us to
write every elliptic curve in short Weierstra8 form as E: y? = 2% + Az + B
with j(E) = 108(4A4)3/(4A3 + 27B?). For supersingular curves there is always
a representation with A, B,j in F,2. The Galois conjugate curve EP: y? =
23+ APz + BP has j(EP) = jP. There are only |p/12] + € supersingular elliptic
curves for fields with characteristic p where ¢ € {0,1,2}. Hence, the subset
Jss C E,2 of supersingular j-invariants has cardinality at least |p/12].

We have already seen in Definition 3.3 that supersingular curves are related
to quaternion algebras. We are interested in the quaternion algebra B, ., ram-
ified at p and infinity with Q-basis {1,1,j,k} such that

i?=-1, ?=-p, k=ij=ji

The (reduced) norm of an element &« = ag + a1l + a2j + ask € By o is given
by nrd(ax) = a& for @ = ag — a1i — asj — azk. The bilinear form f(x,) =
(B + Bax)/2 satisfies f(o,) = o = nrd(«), and two elements o, B € B, o
are called orthogonal if f(«, 3) = 0. An order in B, is a lattice that is also a
subring, and it is maximal if its discriminant equals p. Now an elliptic curve F is
supersingular if and only if End E' is isomorphic to a maximal order O in B, .

Theorem 3.4 (Deuring Correspondence [25]). The isomorphism classes of su-
persingular elliptic curves correspond to the isomorphism classes of invertible
left O-ideals in the quaternion algebra, for a fized maximal order O.

This so-called Deuring correspondence also gives us that an f-isogeny ¢
starting at E corresponds to a left ideal I, of norm ¢ in O = End F, and the
image curve has an endomorphism ring isomorphic to the right order Or(I,) =
{o € Bpoo | Ioax C I} of I, see [40, Ch. 42] for more details.

3.2 Application to Cryptography

Many isogeny-based protocols rely on secret walks in isogeny graphs of supersin-
gular elliptic curves. The fact that the endomorphism ring is non-commutative
gives rise to presumably quantum secure protocols. Moreover, the graphs have
fast mixing properties, meaning that we reach an almost uniform distribution
on the graph after a short random walk [20].

Taking n steps in the f-isogeny graph corresponds (up to isomorphism) to
an isogeny ¢: E — E’ of degree d = ¢"™. For our purposes the degree of such
isogenies will always be coprime to the characteristic p of the field and the
isogeny ¢ is determined by a point K of order d on the staring curve E. This
point generates the kernel of ¢ and we write E/ = E/(K). In this case the
d-torsion group E[d] has d? elements and can be generated by two points P, Q
of order d on E. This allows us to efficiently choose and describe a random
walk by two integers a,b such that K = [a]P + [b]Q. We can even use this to
define a random walk starting on a different curve. For an isogeny ¢: £ — E”
with degree coprime to the degree of ¢ the pushforward [¢],p is determined
by the kernel (¢(K) = [a]®(P) + [b]1(Q)) and starts at the codomain E” of
1. Note that although every supersingular elliptic curve has a representation
in [z, the kernel of an isogeny and hence its generators might be elements of
extensions [F,ze.

Now we list some computational tasks that are relevant for isogeny-based
cryptosystems. First we present tasks that can be solved efficiently and have a
polynomial or even constant complexity.

Task 1: Compute isogenies given their kernels.

Task 2: Given two elliptic curves E, E’, an isogeny ¢: E — E’ as well as the
corresponding order O = End E' and ideal I,, compute O’ = End E'.

Task 3: Given two elliptic curves E, E’, and the corresponding orders O =
End E, O’ = End E’, compute a connecting ideal I corresponding to an
isogeny ¢r: E — E'.

Task 4: Given a left ideal I of a maximal order O C B, o, find an equivalent
ideal J = I (for B € B, ,,) with specific norm (usually small or smooth).

Task 5: Given O = End F, translate between isogenies ¢: E — E’ and their
corresponding left O-ideals I,.

Depending on the degree, Task 1 can be solved using Vélu’s formulae [41] or the
V/élu algorithm [6]. For Task 2 we can compute O’ as Og(1,,) and the connecting
ideal I in Task 3 satisfies O = Op(I), where the left order Or(I) is defined
analogously to the right order Or(I) = O'. Task 4 is solved by the KLPT
algorithm [32] and Task 5 is addressed by subroutines of SQISign [22]. The
right orders of the equivalent ideals from Task 4 only agree up to isomorphism,
and if we translate them with Task 5 the codomains of the resulting isogenies
only agree up to Galois conjugacy.

Note that these are not very specific and might have significantly different
running times for special cases or when given additional information. For ex-
ample, Task 1 is more efficient for smooth degrees than for non-smooth ones of
similar size (see Section 5.1) and Task 5 can be done faster when given extra
information.

In general, Task 5 only requires corresponding generators O = {xg, .. ., o3) =
(ag,...,a3) = End E. Given an ideal I, the kernel of the corresponding isogeny
@7 is the set of points K € FE such that a(K) = oo for all & € End E corre-
sponding to an element of I. Given an isogeny ¢: E — E’ with kernel (K), the
corresponding ideal I, is the set of elements o € O such that the corresponding
a € End E satisfies a(K) = co. If we know the norm or degree d (coprime to the
characteristic p) of the ideal or isogeny, we can (pre)compute the action of the
generators (ap, . .., ag) of End E on the torsion group F[d] and write it as 2 x 2
matrices (Ay,..., As) with respect to a basis (P, Q) of E[d]. Also, it suffices to
find one point or one quaternion to generate the kernel or the ideal, respectively.
Finding a generator is then reduced to finding a solution to a system of linear
equations modulo d. If we additionally know two non-trivial endomorphisms
6, n such that (K,0(K)) = E[d] and the corresponding quaternions 0, n are
orthogonal, we can solve [a]K + [b]0(K) = n(K) to get I, = Ox + Od for
« = a+ b0 —n. This can be done by writing K = [s]P + [t]Q € E[d] as a vector
(s,t)T and 6,7 as matrices in terms of (Ao, ..., Az) in order to solve this as a
matrix equation as in [15, Algorithm 23].

To create a delay we need moderately hard problems, which are still poly-
nomial in complexity but might take a considerable time to compute. In Sec-
tion 5.1 we show that Task 1 can be made sufficiently slow. The following hard
problems have a conjectured exponential complexity (see Section 5.1) and are
equivalent [42]. They are the basis for encryption or signature schemes like
CSIDH [13] or SQISign [22]. In our case they ensure that there are no shortcuts
for the forced decommitment.

Problem 3.5 (Isogeny Path Problem). Given two (isogenous) supersingular
elliptic curves E, E' and a prime ¢, find a path from E to E’ in the {-isogeny
graph.

Problem 3.6 (Endomorphism Ring Problem). Given a supersingular elliptic
curve E, find four endomorphisms that generate End E as a lattice.

Problem 3.7 (Maximal Order Problem). Given a supersingular elliptic curve E,
find four quaternions in B, o that generate a mazimal order O = End E.

Remark 3.8. Knowledge of endomorphism rings can break the hard problems.
If we know both endomorphism rings the first hard problem becomes polynomial
using Tasks 3 - 5. If we know an isogeny from a curve with known endomorphism
ring to our curve the third hard problem becomes polynomial by Task 2. Using
Task 5 a solution for the third problem can be translated into a solution for the
second hard problem.

Finding supersingular elliptic curves can basically be done in two ways. We
can reduce an elliptic curve in characteristic 0 modulo a prime and check if
the resulting curve is supersingular, or take a random isogeny starting at one
of these curves. In both cases the endomorphism ring of the final curve can
be computed either via reduction or by transport along the isogeny. But as
discussed in Remark 3.8 this weakens the hard problems. Hence, many cryp-
tosystems require curves with unknown endomorphism ring. This in turn forces
them to use a multi-party computation or a trusted authority in their setup
to ensure that no single participant knows a complete path from a curve with
known endomorphism ring to the one used. See [4] for more information. Note
that the present cryptosystem has the advantage of not relying on a curve with
unknown endomorphism ring.

4 The Protocol

Now we can combine the previous two sections and present our construction.
First we give a high-level overview and discuss some challenges. Then we look
at the algorithms and choices for the parameters.

4.1 Overview

At the heart of our protocol is an isogeny @7 of degree dr, which takes time t¢q
to evaluate and hence causes the delay. Its domain is a public supersingular
elliptic curve F; with secret Oy = End Es and its kernel is generated by a
publicly known point K7 on Es. We use the j-invariant jr of the codomain Er
of o1 to hide the message m € M. Therefore, an adversary needs to compute Er
(or rather jp = j(Er)) in order to break hiding or to open the commitment by
force. We can choose how long the commitment should be kept secret by setting
the degree dr accordingly. This gives us hiding. Since F; and Kp are part of
the commitment, the codomain Er & E,/(Kr) is fixed (up to isomorphism)
and we have perfect binding.

For verification to be faster than forced opening, we need a more efficient way
to compute jp. The starting curve Ey has a known endomorphism ring, which al-
lows us to compute elements of End Ey = Oy efficiently using precomputations.
During the commitment we choose a smooth secret isogeny ¢s: Ey — E5 and an
isogeny ¢ Eg — El of degree dp. We set the delay isogeny o1 = [@s].¢f, the
composition ¢ = pr o and use the precomputations to find the corresponding

ideals I,, I, I7,I,. Now we translate these ideals into isogenies that are effi-
ciently computable using so-called IdealToIsogeny algorithms. Note that we
can also use higher dimensional isogenies for this step. For the 1-dimensional
variant we compute another isogeny ¢ : Ey — Er of smooth degree (Tasks 4 &
5 from Section 3.2). This is visualized in Figure 1.

We give ¢, and ¢} to the verifier as part of the decommitment proof, so
Com and DecVrfy can compute Ep as the codomain of 1Z (or the result of the
higher dimensional IdealToIsogeny algorithm)?. An adversary only knows Ej,
but not ¢, or ¢/ and hence can neither compute O, = End E nor the ideals
I, I, Ir, I;. Therefore, it has no efficient way to compute shortcuts. This gives
us the preferred difference in speed between verification and forced opening.

Ey ElL = Ey/(K%)

©s @5 = [prlsps

E, =~ Ey/(K,) Ep = E,/(Kr)

o1 = [@sletpp

Figure 1: Walk in the isogeny graph with (efficiently computable) smooth de-
grees deg(ps), deg(v)) and large and/or non-smooth degree deg .

To efficiently verify the validity of a commitment, we need to map the j-
invariant j7 into the group of messages M. This map has to satisfy the following
property. Otherwise the commitment might leak information about jr.

Definition 4.1 (Inverse Resistant Functions). A function f: X — Y is A
inverse resistant, if for all y € Y the preimage f~'(y) € X has at least 2*
elements.

This definition is other than one-way functions, since finding an element in
the preimage is allowed as long as the probability to find the original input is suf-
ficiently small. It also differs from hash functions, which are mostly considered
to be collision resistant. A simple projection with a sufficiently large preimage
set satisfies this definition but is neither a one-way function nor a proper hash
function.

4.2 Algorithms

As seen in Definition 2.1 we have five algorithms PGen, Com, ComVrfy, DecVrfy
and FDecom. In this subsection we give pseudocode for each algorithm and
discuss their (relative) speed and some subroutines. The IdealToIsogeny al-
gorithms used in Com and DecVrfy are discussed in Section 4.2.6.

2In practice, they only compute ET isomorphic to Ep or its Galois conjugate E%.

4.2.1 Parameter Generation

The parameter generation PGen defines the security of the whole protocol and
fixes the delay tgq. It sets all general parameters like the characteristic p of the
finite fields, the starting curve Ey, Oy = End Ey, the degrees dg and dp, as well
as the message group (M, ®) and the inverse resistant function F': Jgg — M.
It also provides some precomputations that improve the speed of the commit-
ment and the decommitment verification. These precomputations include bases
of the ds- and dp-torsion groups of Ey, and matrices that correspond to the
action of two endomorphisms 6 and 1 on Ey[d;] and Ey[dr]. The quaternions
corresponding to 6 and 7 are orthogonal and (R, 0(R)) = Ey[d] for all R € Ey[d]
of maximal order. This permits efficient translation of isogenies into ideals as
in [15, Algorithm 23]. It may also include additional information to improve
the translation of these ideals into suitable isogenies. For the 1-dimensional
approach this can be a smooth integer d; ~ p? and matrices that correspond to
the action of End Ey on Ey[d,;]. Its output is the common reference string crs.

Algorithm 1 Parameter generation algorithm PGen

Require: Security parameter 17

Ensure: crs = (crso, crss, Crsy, Crsyyr)

Ensure: crsy = (p, Ey, End Ey, Oy, 0,1, M, F)

Ensure: crs, = (ds, Ps,Qs, Ao, Ay), crsp = (dr, P, Q' e, Bg, By)

1: Choose prime p of right size

2: Choose supersingular elliptic curve Ey with known Oy = End Ej

3: Find corresponding bases Op = (o, ..., as) and End Ey = {(ayg,...,as)

4: Choose a group (M, ®) with efficient membership testing as message space

5: Choose an efficient, inverse resistant function F': Jgg — M oblivious to
Galois conjugacy, i.e. F(j) = F(57)

6: Choose smooth d, € N such that Ey[ds] C Eo(F,2)

7: Find Ps € Ey[ds] of maximal order ord(P;) = d;

8: Choose e,dr € N such that dr is coprime to dy and Eyldr] C Eo(Fpze)

9: Find P} € Eyldr] of maximal order ord(Pr) = dr

10: Find endomorphisms 0,7 € End Ej such that the corresponding quaternions
0,1 are orthogonal and (Ps, 0(Ps)) = Ey[ds], (Pr,0(Pr)) = Eyldr]

11: Set crsg = (p, Ey, End Ey, Oy, 0,1, M, F), Qs = 0(Ps) and Q% = 0(Pr)

12: Compute the action of 6,7 on Ey[ds] as matrices Ay, A, € Matoy2(Z/dsZ)
with respect to the basis (Ps, Qs)

13: Set crsy = (ds, Ps, Qs, Ag, Ay)

14: Compute the action of 6,7 on Ey[dr] as matrices By, B,, € Matax2(Z/drZ)
with respect to the basis (Pr, Q)

15: Set crsp = (dr, Pp, Q' €, By, By,) > Fizes delay tgq

16: Compute crsyiy > Depends on chosen IdealToIsogeny algorithm

17: return crs = (crsg, Crs,, Crsy, Crsyyy)

A detailed description can be found in Algorithm 1. The speed is dominated
by finding generators of Fyl[dr] and computing the action of # and n. The
bottlenecks are checking the order and linear independency of two points in

10

Ey(Fp2¢) and decomposing the images of this basis under the endomorphisms in
terms of this basis.

4.2.2 Commitment

The commitment algorithm Com takes as input a message m € M and outputs
a tuple (C,Tcom, Tdec). First it chooses a random isogeny ¢s: Ey — E; of
smooth degree ds and a second random isogeny ¢%.: Eg — Ef of large and/or
non-smooth degree dp. These can be extended to a SIDH-square with the
pushforwards @1 = [psl«pp: Es — Ep and ¢, = [¢hlps: Efy — Er, see
Figure 1. Let j7 = j(E7) denote the j-invariant of E7. Then it computes F'(jr)
and u = m © F(jr) € M.> The commitment itself C = (E,, K7, u) is again
a tuple of a supersingular elliptic curve Ey, a point K1 on Ey that generates
the kernel of ¢ and uw € M. While the commitment proof 7oy, is empty, the
decommitment proof mge. allows to reconstruct the secret isogenies ¢, ¢ and
to use the same method for computing F(jr) as in the commitment algorithm.
If Com uses heuristic algorithms (like KLPT) for finding special elements 3 € I
or vy € Oy, i.e. equivalent ideals J = I3 or endomorphisms v € End Ey, these
can be added to mge. to make DecVrfy deterministic.

To compute F(jr) efficiently, we need a faster method than computing o7
directly. Since ¢, and ¢/ are isogenies with domain Ey there are efficient ways to
compute the corresponding ideals Iy and I.. The ideal I, corresponding to ¢ =
props: By — Er can then be computed as Iy, = I Iy = I([I), 1}) = I;NI} by
Lemma 3 from SQISign [22]. Now we use one of the IdealToIsogeny algorithms
discussed in Section 4.2.6 to efficiently compute a curve ET isomorphic to Ep
or its Galois conjugate E¥. and F'(jr) = F(j(Er)).

The individual steps are given in Algorithm 2. In SQISign [15] the authors
state that converting between ideals and isogenies is the bottleneck of their
computation. Therefore, we assume that the slowest part of this algorithm
is computing IdealToIsogeny. We use (efficient) IdealToIsogeny algorithms
based on those of SQISign or their improvements using higher dimensions. So
the commitment algorithm Com is efficient and for properly chosen dr it is faster
than computing the delay isogeny ¢ (over F,2.). A more detailed discussion
can be found in Section 5.3.

4.2.3 Commitment Verification

Algorithm 3 shows the commitment verification ComVrfy. It is fast since it
only needs to check if the three parts of the commitment are of the correct
form. Namely, E; is an elliptic curve, Kp is a point on that curve and u is an
element of the group M. All of these membership tests can be done efficiently.
If we want to assure that forced opening does not take too long, we can also
check if Kp € IFp?ze. This sets an upper bound for the degree dr of pr as

E(Fyee) = Eg[p® — (—1)¢] (if |Eo(F,2)| = (p + 1)?) and hence dr | p® — (—1)°.

Remark 4.2. If we want to make sure that forcefully opening C takes mot
much longer than ti, we can check ord Kr | dp. Remark 5.18 discusses how
this affects the speed.

3Here © means the addition of the inverse in the group (M,®) such that m © m is the
neutral element in M and in particular u @ F(j) = m © F(5) ® F(j) = m.

11

Algorithm 2 Commitment algorithm Com

Require: Common reference string crs, message m € M

Ensure: (C, Teom, Taec) = ((Es, K7,u), (), (s,t,1))

Choose random s € [0,d;) and compute K = Py + [s]Qs € Folds]
Compute E; & Ey/(K,) via Vélu’s formulae

Set v=(1,5)" and A = (v, Agv) € GLo(Z/d,7)

Compute (a1,as)’ = A~'A,v and ideal Iy = Op(a; + a0 — 1) + Oods
corresponding to isogeny ¢,: Ey — E, with kernel (Kj)

5: Choose random t € [0,d,) and set w = (1,t)T > We use ds for efficiency

6: Set B = (w, Byw) € GLy(Z/d7Z) and compute (b1,bs)" = B™1B,w

7. Compute ideal I, = Og(by + b20 — M) + Opdr corresponding to isogeny
o By — El with kernel (K. = Pj + [t]Q%)

8: Compute ideal I, = I, N I}, corresponding to isogeny 1 = [@s]x 0 @5

9: Use IdealTolIsogeny to get Ep isomorphic to Ep = E,/(p s(K)) or EL.,
and the random elements r used to find it (Go back to step 5 if it fails)

10: Compute Kg = es(Pr + [t]Q7) € Es [dT]

11: Compute jr = j(Er) and u =m © F(jr) € M > F(jr) = F(§(ET))
12: Set C = (Es, K7, u) > Commitment
13: Set Teom = () > Commitment proof (empty)
14: Set Tgec = (8,¢,1) > Decommitment proof

15: return (C, Teom, Tdec)

Algorithm 3 Commitment verification algorithm ComVrfy

Require: Common reference string crs, commitment C and proof meom,
1: Check if E; is an elliptic curve over Fp2, K7 € E, and u € M
Optional: check Kp €]Fize > Check upper bound for degree of o1
2: return (accept/reject)

4.2.4 Decommitment Verification

The decommitment verification DecVrfy (Algorithm 4) is similar to the commit-
ment algorithm. It first reconstructs ¢, ¢4 from mge. and verifies ps: Ey — Ej
and Kr = ¢ps(Pr + [t]Q7). Then it computes the ideals I, I} and I, = I, N I,
corresponding to ¢, ¢ and ¢ = @ o @, respectively. Now it checks that the
rest of myee is of the expected form and uses it to run IdealToIsogeny as a
deterministic algorlthm to efficiently find ET Finally, it computes jr = j(ET)
and checks if u & F(jT) = m. As stated above, we assume the slowest part of
this algorithm to be the computation of IdealToIsogeny. Again, this is still
faster than forced decommitment (cf. Section 5.3).

4.2.5 Forced Decommitment

In terms of the number of tasks the forced decommitment algorithm is rather
simple. It just computes Ep as codomain of the isogeny @ given by the point
Krp that generates its kernel. From there it recovers the message m = u &
F(j(Er)). Computing an isogeny ¢r can be made slow if its degree dr is

12

Algorithm 4 Decommitment verification algorithm DecVrfy

Require: Common reference string crs, commitment C
Require: Message m, decommitment proof mgec
1: Compute Ks = Ps + [s]Qs € Ey[ds] and check Es 2 FEy/(Ks)
2: Compute K7. = P} + [t|Q%F € Ep[dr] and check ps(K%) = Krp

3: Set v=(1,5)" and A = (v, Agv) € GL(Z/d,Z)

4: Compute (ay,az)" = A'A,v and ideal Iy, = Op(a; + a0 — 1) + Oods
corresponding to isogeny ¢,: Ey — E, with kernel (Kj)

5 Set w = (1,t)" and B = (w, Bew) € GLy(Z/d77)

6: Compute (b1,by)" = B~!'B,w and ideal I}. = Og(by + b20 —) + Opdr
corresponding to isogeny ¢4.: Ey — Ef. with kernel (K7.)

7. Compute ideal I, = I, N I} corresponding to isogeny ¥ = [@q]. ¢ 0 s

8: Check that the elements in r are of the correct form

9: Use r to recompute IdealToIsogeny as deterministic algorithm to get
codomain Erp isomorphic to Ep = E;/(Kr) or Ef.

10: Compute jr = j(Er) and check u® F(jr) =m > F(jr) = F(j(Er))

11: return (accept/reject)

sufficiently large and/or non-smooth (cf. Theorem 5.8), especially when the
calculations have to be done in a field extension F,2.. This allows us to make
Algorithm 5 (almost) arbitrarily slow.

Algorithm 5 Forced decommitment algorithm FDecom

Require: Common reference string crs, commitment C

Ensure: Message m
1: Compute Er = E,/(Kr) via Vélu’s formulae or v/élu algorithm
2: Compute jr = j(Er) and m = u @ F(jr)
3: return m

4.2.6 Ideal to Isogeny Algorithms

Explicitly computing the Deuring correspondence (Task 5 in Section 3.2) and
in particular translating ideals into isogenies is part of SQISign [22]. There
have been several improvements of this step including the application of higher
dimensional isogenies. All approaches sample random elements until they find
ones with special properties. This might fail, but their respective publications
provide heuristics for parameters such that they succeed with high probability.

Using 1-dimensional isogenies we can do something similar to SQISign. We
use an algorithm like KLPT [32, 36] to find an equivalent ideal I, ~ I, of norm
c%, ~ p> a power of 2. Then we translate fw into its corresponding isogeny
U: E, — Er using the methods of SQIsign [15] with the improvements of [23].
This allows us to efficiently compute the j-invariant }T =7 (ET) such that
F(jr) = F(jr). Note that SQISign uses ideals with norm of size p*3/4 > p3 ~ Jw
and is still considered efficient. If we use Algorithm 6, we need SQISign-friendly
primes, but crsiyr in Algorithm 1 can be empty.

13

Algorithm 6 1-dimensional IdealToIsogeny algorithm (SQIsign)

Require: Common reference string crs, left Op-ideal I
Ensure: (Ep,r) = (E7, Bey)
1: Compute equivalent ideal I~,/, = I,By/nrd(I) with smooth norm c’lvi/, ~ p3
using KLPT-like alogorithms > Optional: require Jw | d;
2: Compute corresponding isogeny zZ By — Er of degree c?w as in SQlsign
3: return (ET, By)

If we go to higher dimensional isogenies we can find efficiently computable
representations of ¢ or 1, i.e. embeddings into higher dimensional isogenies.
The degree of these representations is usually a power of 2 that divides p+1 and
hence much smaller than p3. This makes the higher dimensional variants more
efficient. For example, IdealToIsogeny from SQIsign2D-West [5] allows to eval-
uate 9 using Iy and a chain of (2, 2)-isogenies. The IdealToIsogeny algorithm
from [35] can use I, s and It = I;llslT = I;lLl, to find a representation
of @p via (2,2)-isogenies. There are other 2-dimensional IdealToIsogeny al-
gorithms (e.g. [33]) and 4- or 8-dimensional IdealToIsogeny algorithms like
in SQIsignHD [19]. For higher dimensional IdealToIsogeny algorithms the
slowest part is usually evaluating the higher dimensional isogenies, but we can
choose the degree dr of the delay isogeny ¢ such that computing the higher
dimensional isogeny is faster than computing 7. We present one approach
based on SQIsign2D-West in Algorithm 7. It needs crser = (g, Py, Q4) where
the points Py, Q4 € Ey(IF,2) form a basis of the 29-torsion of Ej.

Algorithm 7 2-dimensional IdealToIsogeny algorithm (SQIsign2D-West)
Require: Common reference string crs, left Op-ideal Iy
Ensure: (ETv I‘) = (ET7 (Bla B2, a1, as, f, ’717’72))
1: Find equivalent ideals Iy = I,B1/nrd(Iy),Io = IyB2/nrd(1y) of odd and
coprime norms dy,dy = /p and ay,az € N such that aid; + azdy = 2f
f < g and ged(aydy, asds) =1
2: Find v1,72 € End Ey of degrees a1(29 — a1) and as(29 — az), respectively,
using FullRepresentInteger
3: Set r = (B1, B2, a1, a2, f,71,72)
4: Construct (29,29)-isogenies ®;: Ey x Ey — E; x E! with kernels
(([as] Py, 7i(Py)), ([ai]Qq,7i(Qy))) for i € {1,2}
5. Compute ¢;(P,),pi(Qq) for isogenies ¢;: Ey — E; of degrees a; as
D, (P,0) = (p;(P),*) for i € {1,2}
6: Compute v = 122 o1 € End Ey corresponding to y = Baf1/nrd(Iy)
7. Compute Py = [297F|P, and Q7 = [297/]Q,
8: Construct (2f,2/)-isogeny V¥: By x Ey — ET x E' with kernel
(([da]e1(Py), 2 0 v(Pr)), ([di]p1(Qf), 2 0 7(Qr)))

9: Compute Er via codomain of ¥
10: return (Ep,r)

The main idea of Algorithm 7 is to find equivalent ideals Iy,I> ~ Iy of
norms di,ds and isogenies (1, s of degrees aj,as in order to construct a 2-
dimensional isogeny ¥ of degree a;d; + asds = 2 that represents . It uses

14

FullRepresentInteger from [23] to find ~1,7v2 € End Ey with degrees a;(29 —
a;). They are formally split into an isogeny ¢; of degree a; and another isogeny
of degree 29 — a;. Then Kani’s Lemma allows to compute ¢1, 2 and W. A more
detailed description is given in [5, Section 3.2].

4.3 Parameter Sizes and other Choices

The algorithms above do not specify all properties of the parameters. Therefore,
we now discuss the necessary and some optional choices. For example, the hiding
property sets requirements on the size of some parameters and we also propose
some choices for implementing this protocol. In Appendix A we give an example
how explicit numbers may look like.

The delay ¢5q should be large, but it has to be polynomial in x (or logp).
On one hand the main idea of NITC schemes is that we can forcefully open a
commitment (in polynomial time) with FDecom, if someone refuses to open it
themselves. On the other hand generic algorithms to solve Problems 3.5 - 3.7
could be faster than FDecom and therefore violate hiding, if tzq was superpoly-

nomial. In particular, we need trq < d;/‘l due to Assumptions 5.6 and 5.7 of
Section 5.1 for quantum security and tgq > tey, tay-

4.3.1 Prime p, Starting Curve E; and Isogenies ¢; and @1

The starting curve could be any supersingular elliptic curve Ey with a known
efficient representation of Oy. For our protocol we choose Ey to be the curve
Ey: y* = 2® + z with (p + 1)? points over F,: and Oy = (1,1,1;, %)Z for
p = 3 mod 4. In this case the endomorphisms [i]: (z,y) — (—=z,1y), ¢: (z,y) —
(x?,y?) (Frobenius map), 6 and n correspond to i, j, j + 1‘51‘ and i, respec-
tively?. This also allows for more efficient KLPT variants and higher dimen-
sional IdealToIsogeny algorithms. In order to satisfy the hiding property, p
and ds would have a certain size. It has to be infeasible to precompute O, for
all possible F; or to find an isogeny from Ej to F; in time less than tgq in the
online phase. Therefore, we choose p = 228 28 < g < 22% and dy < p. In
Section 5 we give a more detailed justification of these numbers.

Usually, we would want ds and dp to be smooth numbers both dividing p+1
in order to have fast evaluation of the corresponding isogenies. So ds should be
smooth and divide p+1 (or p?> —1). However, evaluating ¢ does not need to (in
fact should not) be fast, since it is only evaluated by FDecom. Therefore, dr can
contain larger prime factors and does not need to divide p+ 1 (or p? —1). It is
chosen such that computing an isogeny of degree dr takes at least time t¢q (and
preferably not much longer). Note that we can choose dr as a large composite
number with many prime factors to have more confidence in sequentiality. Since
Pr = ¢s(P}) and Qr = ¢s(Q) have to generate E[dr], we need the degree
ds of ¢4 to be coprime to dp. Computing Kr = ¢s(Pr + [t]Q}) can be slow
if t = dr, since computing [t]Q/- takes O(logt) operations. Thus, we just take
0<t<d,.

For a supersingular curve with (p+1)? points over F,2 we have (p® — (—1))
points over F,.c and the largest fully Fjz.-rational torsion group is the (p® —
(=1)¢)-torsion. If dp is large or contains prime factors that do not divide p +

2

4This is not a typo. We have n = [i].

15

1, this means that we need to go to extensions of Fy to find a basis for the
dr-torsion group of Eg or F,. Higher extensions and larger p slow down the
computations, therefore we want to minimize the degree of the extension and
the size of p to increase efficiency. The size of p affects almost all computations,
whereas the size of e only influences computations related to the Kp or ¢op. Both
Com and DecVrfy have to compute K7, but not ¢p. Thus, for longer delays it
can be beneficial to make dr less smooth rather than making it larger. This
can increase the delay without increasing the extension degree e, i.e. without
slowing down Com and DecVrfy.

For an implementation we can choose a prime p = 3 mod 4 such that p + 1
contains a smooth factor d; = 2%. This ensures that the first isogeny ¢s: Ey —
E, can be evaluated efficiently. After choosing a prime, we find an extension
degree e such that p® — (—1)¢ contains a suitable factor dr that is coprime
to ds. For example, we can use Assumption 5.4 to choose dr odd with prime
factorization dr = [[¢;* such that) e;\/q; > ttq. Hence, the size of dr and e
depend on the target delay t¢qy and the smoothness of dr. If dr is a prime, both
dr and e can potentially be small. But if dr is smooth it has to be large and
requires a large extension degree e. The primes used in SIKE allow to choose d;
(and dr) this way. So there are already known primes with the right properties
for different security levels. For ds =~ p, the delay tzq can be almost as large as
p'/* instead of p'/8. This could be a good trade-off for large delays.

Remark 4.3. If we use the 1-dimensional IdealToIlsogeny Algorithm 6, we
need additional Fpa-rational torsion and have to use SQISign-friendly primes.
In that case the mazximal power of 2 that divides p + 1 is often smaller than
P- This in turn requires using more involved methods (like [15, Algorithm
14]) for finding isogenies of degree ds. Using higher dimensional isogenies as in
Algorithm 7, however, only requires p = ¢2¥ — 1 with ¢ as small as possible.

4.3.2 Message Space M and Function F

We choose M to be a finite group M = Z/NZ for an integer N € N. This
gives us very efficient membership testing and group operations. The size of
N depends on the needed length of a message m and the prime p. If N is
larger than |p/12] 4+ 2, then F': Jgg — M can not be surjective and therefore
u=m© F(jr) might leak information about the message m.

As mentioned before, computing jr from F(jr) has to be infeasible or at
least slow. In order to satisfy hiding we choose the function F' to be A-inverse
resistant with A = 25 ~ log p3/*. In addition, it has to be fast since Com and
DecVrfy have to compute F'(jr). An easy way to accomplish this is to take a
function that is not injective. The larger the kernel of F, i.e. smaller N, the
more information is lost. A simple projection F,2 D Jgg — I, onto one of the
components or even their sum will leak information, since there is a subset of
j-invariants that already are in F,. If we use a simple map like (a,b) — b mod N
or (a,b) — a+bmod N, we thus need to use N < p.

The right orders of equivalent ideals are only isomorphic and the correspond-
ing shortcut isogenies have codomains with j-invariants that agree only up to
Galois conjugacy. It is easier to choose F oblivious to Galois conjugacy than to
ensure equality of orders or j-invariants. For an implementation we can identify

16

Jss C F,2 with a subset of Fy[i] = F,2 and choose
F:Jss - M=Z/NZ, a+bi— a+]|b|modN.

Since we choose p = 3 mod 4 we have (a + bi)? = a — bi and F(j) = F(5?).
Also, F should be 2 -inverse resistant, so we take N < [p!/*/12]. Then we can
expect every element in M to be the image of about p?/* ~ 23%/2 elements in
Jsg. There is no direct way of finding the supersingular j-invariants. Hence,
one would have to compute the preimage in F,2 (about 12p™/* elements) and
check if they are j-invariants of supersingular elliptic curves. This is sufficiently
inverse resistant in practice.

Remark 4.4 (Publicly Verifiable). To make the scheme publicly verifiable, we
can add an encryption Enc;, (Tdec) Of Tdee to the commitment such that jr is
the key for the decryption Decj, (Encj, (Tdec)) = Tdec. This allows FDecom to
provide the decommitment proof Tgec and everyone could use DecVrfy to verify
the output of FDecom instead of computing it themselves.

5 Security

We show that our protocol satisfies the Definition 2.1 of a NITC scheme by Katz
et al. [31] and prove the three properties practicality, hiding and binding. These
proofs are based on assumptions for the relative speed of some algorithms.
Our algorithms have the correct input and output arguments, and for all
and m € M every set of honestly generated (k,m,crs, C, Teom, Tdec) Satisfies
verification ComVrfy(crs, C,eom) = accept = DecVrfy(crs, C,m, mqec) and
forced decommitment FDecom(crs, C) = m. This makes it a NITC scheme.

5.1 Relative Running Times

Computing isogenies of prime degree q can be done using Vélu’s formulae in time
O(g), or the V/élu algorithm [6] in time ,/g(log ¢)**°(") or O(,/g) for short. Here
O may also contain additional logarithmic terms O(n) = O(n poly(logn)). The
crossover point for optimized algorithms is at ¢ &~ 100, and we denote the time
it takes to compute an isogeny of prime degree ¢ with eval,iime(¢). Remember
that our timings are the number of operations rather than real-world times.

Remark 5.1. If the kernel ker o of an isogeny p: E — E’ or a point P € E
in its domain is only B,z -rational, we need the same number of operations to
find the codomain E/ker¢ or to evaluate o(P), but they could be operations
in Fyee instead of Fy2. The point K of the commitment might only be defined
over extension fields and we need to compute ¢s(K) = K. Therefore, we only
considered the number of operations and do not distinguish between operations
in 2 and more costly operations in extension fields Fy2.. The majority of oper-
ations of FDecom may be in extension fields, but for Com, ComVrfy and DecVrfy
most operations can be done in F,2. So our timings are rather conservative.

Lemma 5.2. There is a (small) constant ¢, such that evaluating an isogeny of
prime degree q takes time evalpime(q) < cpq.

17

Now let us look at an isogeny ¢ with a kernel that is generated by a point K
of order ¢¥. We can decompose ¢ = ¢ o --- 0 into isogenies ; of degree q.
In each step we compute the points K; = [¢*7!|K/_, generating the kernel
of ¢; and K| = ¢;(K[_;) generating the kernel of ¢, = @ o -0 p;11. So
every step takes time evalpime(q) plus the time it takes to compute the point
multiplication. Generalizing this to isogenies of arbitrary composite degree gives
us bounds for the time eval(d) it takes to compute an isogeny of degree d. If we
ignore the multiplications for the lower bound we get the following lemma.

Lemma 5.3. Letd = [[;_, ¢i* be the prime factorization of the degree d. There
is a (small) constant ¢, > 1 such that the time eval(d) it takes to evaluate an
isogeny of degree d is bounded by

Z e; evalprime(q;) < eval(d) < ¢, Z €; evalprime (¢;)-

i=1 i=1

This allows us to choose dr such that eval(dr) > tgq. If we assume that
Vélu’s formulae and the v/élu algorithm are close to optimal in computing prime
degree isogenies we can use the following assumption to choose values for dr.

Assumption 5.4. Let d = H:=1 q;* be the prime factorization of the degree d.
We assume that \/q, < evalprime(q;) and hence Y ._, ein/qi < eval(d).

Combining these results we get an upper bound for the computation time of
isogenies of smooth degree.

Lemma 5.5. An isogeny of degree d with prime factorization d = [[,_, ¢i* and

¢i < B (B-smooth) can be evaluated in time O(IO];B log d).

Proof. We use Lemmas 5.3 and 5.2 to write

T T
eval(d) < ¢, Z ei evalprime(¢s) < CeCp Z €iq;-
i=1 i=1

Since ¢; < B for all 1 <i <r, we get ¢; < log qiﬁ and

eval(d) < cccp Z e; log q; O

B
—c, log d.
£ B~ “PlogB 8

log

According to Eisentréager et al. [27] the fastest (currently known) algorithms
for solving the (equivalent) general Isogeny Path Problem, general Endomor-
phism Ring Problem or general Maximal Order Problem (cf. Section 3.2) over
F,2 take time O(p*/?) for classical computations and O(p'/4) with a quantum
computer. Since Fy and E, are known to be connected by a ds-isogeny there is
also a meet-in-the-middle or claw-finding attack in classical time 6(di/ 2) and
5(dé/ 4) when applying Grover’s Algorithm [29].

Assumption 5.6 (General Isogeny Assumption). We assume that the fastest
algorithms to solve the general Isogeny Path Problem, the general Endomor-
phism Ring Problem or the general Mazimal Order Problem over Fy. need at
least p'/? or p'/* operations for classical or quantum algorithms, respectively.

18

Assumption 5.7 (Special Isogeny Assumption). We assume that the fastest
algorithms to find an isogeny between two d-isogenous curves over K> with d < p
take at least d*/? or d*/* operations for classical or quantum algorithms, respec-
tively.

With these assumptions we can prove that computing the codomain of an
isogeny can be made almost arbitrarily slow.

Theorem 5.8. Let E' be a supersingular elliptic curve over F,» with unknown
O = End E, but d'-isogenous to a curve Eg with known endomorphism ring.
Let further K be a point on E of order d, such that computing the corre-
sponding isogeny takes at least time t, according to Lemma 5.3. Then for t <
min{d/*,p'/*} and under Assumptions 5.6 and 5.7, computing Ex = E/(K)
takes at least time t.

Proof. The isogeny ¢: E — FEx with kernel (K) has degree d. Efficiently
calculating a shortcut isogeny p: E — Ei or an efficient higher dimensional
representation requires knowledge of O = End E. Finding the endomorphism
ring End E or the order O = End E without an isogeny ¢’: Ey — E, or finding
an isogeny @ without O = End F are hard problems. By Assumption 5.6 finding
End E or O takes time at least p'/* > t. Finding an isogeny ¢’ needs at least
time d’''/* > ¢ by Assumption 5.7 if &’ < p or p*/* > t by Assumption 5.6 if
d" > p. Therefore, computing Ex = E/(K) takes at least time ¢. O

The algorithm FDecom only has crs and C = (E,, Kr,u) as input. In order
to compute m = u @ F(jr) it has to calculate the j-invariant jr of the secret
curve Ep =2 E;/(Kr). Theorem 5.8 gives us the following corollary:

Corollary 5.9. For tyg < di/4 and under the Assumptions 5.6 and 5.7, the
forced decommitment FDecom takes at least time tiq.

Note that the restriction tiq < di/ * is based on the quantum timings in
Assumptions 5.6 and 5.7. For classical algorithms tgg < d;/ ? would be sufficient,
but since our protocol should be quantum secure we chose the more general
bound including quantum algorithms.

5.2 Hiding and Binding

For hiding we use the same (non-malleability) Definition 2.4 as Katz et al. [31].
First we show why we need an adapted security game. In Definition 2.3 the
adversary A sends two messages mg, m; and receives the commitment C;, =
(Es, K7, up) corresponding to message m;, for a uniform b € {0, 1}. It is allowed
to query an oracle for FDecom(-) except for FDecom(crs, Cy).

Lemma 5.10. An adversary A can break hiding with the original security game
from Definition 2.3.

Proof. Since my_p © my, B up = uj_p, querying FDecom(crs, (Es, K1, ut)) with
ur = (mp ©my) ®up and u_ = S(mo © my) S up gives my_p and a random
message m’. For |M| = 2 we have uy = u_ and get mq_p. For |[M| > 2 however,
we can assume mg # m’ # my. This allows A to output the correct b’ = b with
high probability.

19

Even worse, if we replace K1 by any other point K’ such that (K') =
(Kr), e.g. K' = [(]Kr for ¢ coprime to dr, or apply an isomorphism such that
E'/(K'") 2 Er @ E,/(Kr) then FDecom(crs, (E’, K', up)) will return my,. O

Thus, it is reasonable to disallow queries of the form FDecom(crs, (E', K',-))
for B'/(K') & Er = E,/(Kr). Since F is oblivious to Galois conjugacy, we
also disallow queries with E'/(K’) = El. and use the adapted security game in
Definition 5.11.

Definition 5.11 (IND-CCA adapted). For a NITC scheme TC and an algorithm
A, define the game IND-CCA%, as follows:

1. Compute crs < PGen(1").

2. Run A(crs) in a preprocessing phase with access to FDecom(crs, C) for
valid commitments C = (E, K,u) with ord K | dr.

3. When A outputs (mg, m1), choose a uniform bit b < {0,1} and then com-
pute (Cp, Teom, Tdee) < Com(crs, myp). Give (Cp, Teom) to A, who contin-
ues to have access to FDecom(crs, C) for valid commitments C = (E, K, u)
with ord K | dr except that it may not query the oracle on (E',K',-)
for E'/(K') isomorphic to Es/(Kr) or its Galois conjugate where C, =
(ES7 KT, ub).

4. When A outputs a bit b, it wins iff b/ =b.

This is still in the spirit of the original definition, since it prohibits the
“decryption” of the commitment in question. In our case the security arises from
the secret isogeny ¢: Eg — FE; and the delay isogeny ¢r: Es — Ep with kernel
(Kr), and the “key” is F(jr) for jr = j(Er). Such queries would enable A to
find F(jr) and would hence basically allow to query FDecom(crs, (Es, K1, uyp))
by proxy, which is forbidden in the original definition.

Remark 5.12. The restriction of oracle queries to valid commitments C =
(E, K,u) with ord K | dp ensures that the oracle can be simulated in polynomial
time. This is a reasonable restriction, as FDecom in the original definition can
output invalid for malformed inputs. We can even check ord K | dr in ComVrfy
as mentioned in Remark 4.2.

Theorem 5.13. For a %n—inverse resistant function F' and under the Assump-
tions 5.6 and 5.7, SIGNITC is (t,,t,,c)-CCA-secure (satisfies hiding) with se-
curity game from Definition 5.11 for t, < 2" polynomial in K, t, < tyq and
e=2"".

Proof. The precomputation phase can only provide a negligible advantage for
an adversary A. The computation of Com(crs,m) includes choosing random
K, =P + [S]Qs S Eo[ds] and Kt = Pr + [t]QT S Es[dT} with s,t € [O,ds)
Since 2" < dj, it is infeasible to precompute (and store) a significant subset of
all possibilities in time ¢, < 2" polynomial in .

In the online phase A sends two messages mg, m; and receives the output
(Es, K1,up) of Com(crs,my) for a uniform b € {0,1}. The adversary A knows
that F(jr) is equal to Fy = Oup®mg or Fy = Sup®my. Since F is a %m—inverse
resistant function, there are at least 23%/2 j-invariants j such that F(j) = F; for

20

each i € {0,1} and none of them is more likely than the other. To verify one of
them, A would have to compute E;/(Kr), but this is equivalent to computing
FDecom(crs, (Es, K7, up)). Under Assumptions 5.6 and 5.7 we get that it can
not be done in time ¢, less than t¢g by Corollary 5.9.

We can choose the smallest prime ¢ | dr and find E, K such that j =
J(E/(K)) is one of the ¢ + 1 neighbors of jr in the ¢-isogeny graph. Then we
can compute the £ 4+ 1 neighbors jj of j and check if F(j;) matches Fy or Fj.
If we have only one match, then this gives F(jr). If we have more matches,
then we have to try again with a different j. To increase our confidence in a
candidate, we can repeat this for more or all £ 4 1 neighbors of jr, since F(jr)
has to be a match for a neighbor for all of them. The easiest way to find such
E and K is to take E = E5; and K = [(]Kr. If we need more neighbors, we
can also compute the isogeny ¢,: E, — E of degree £ with kernel ([dTT]Kﬂ and
take E = E8/<[d7T]KT>. For the point K we take one of the points in E such
that [¢(]K = p¢(Kr). The problem with this approach is that computing F, K,
E/(K) and ¢ + 1 isogenies of degree ¢ is slower than computing E,/(Krp). As
discussed above, we assume that this can not be done in time £, less than t¢4.

If we query the oracle on (E, K, 0) instead of computing E/(K), then we only
get F(j) = 0@ F(j) instead of j = j(E/(K)). Since F is an $x-inverse resistant
function, there are at least 23%/2 indistinguishable candidates for each j. In this
case the best approach is to find £+ 1 pairs (Ej, K}) such that j, = j(Ex/(K))
are the £ 4+ 1 neighbors of jr in the f-isogeny graph. Then we query the oracle
on all of them to get F(ji) for 1 < k < ¢+ 1. Now we have to match them
with the neighbors of the (at least) 23%/2 candidates for jy from each F, and
Fy. To have confidence in a candidate, its neighbors have to match with several
or all F(ji). If Fy # Fy, then their preimages are disjoint and there are at least
2. 23%/2 candidates for jr. We can only spend less than t, < tiqq < di/4 < on/2
operations on these comparisons. Therefore, the probability to find jr is less
than ¢,273%/2 < 27+,

When we replace Es and K by a curve E’ and point K’ such that E'/(K')
is unrelated to F,/(Kr), the query FDecom(crs, (E', K’ ,up)) gives completely
unrelated results. In conclusion, in the online phase the advantage over guessing
is less than 27" under Assumptions 5.6 and 5.7. O

The new security game for binding in Definition 5.14 only restricts oracle
access to valid commitments in order to allow efficient simulations as mentioned
in Remark 5.12.

Definition 5.14 (BND-CCA adapted). For a NITC scheme TC and an algo-
rithm A, define the game BND-CCAf as follows:

1. Compute crs < PGen(1").

2. Run A(crs) with access to FDecom(crs, C) for valid commitments C =
(E, K,u) with ord K | dr.

3. A outputs (m, C, Teom, Tdec, M', Thy.) and wins iff ComVrfy(crs, C, Teom) =
accept and either:

e m # m/, yet DecVrfy(crs, C,m, mqec) and DecVrfy(crs, C,m’, 7))
both output accept;

21

e DecVrfy(crs, C, m, mgec) = accept but FDecom(crs, C) # m.

The proof for binding works with the original Definition 2.6 and the new
security game from Definition 5.14. With our protocol we even achieve perfect
binding.

Theorem 5.15. SIGNITC is (00, 0)-BND-CCA-secure (satisfies binding) with
security game from Definition 5.14.

Proof. If the commitment C is accepted by ComVrfy, then it contains an elliptic
curve Fg, a point K1 on E4 and an element w of an additive group M. Since
DecVrfy verifies u @ F(jr) = m for jr = j(Es/{Kr)), we have that acceptance
of both (crs, C, m, m4ec) and (crs, C,m’, 7)..) by DecVrfy implies m& F(jr) =
u=m'6OF(jr) and hence m = m’. The speedup does not change this, because it
can only change jr by Galois conjugacy and F' is oblivious to that. Similarly, if
DecVrfy accepts (crs, C,m, Tdec) then u = m© F(jr). FDecom computes F(jr)
from E and Kt and thus outputs the correct message m = u @ F(jr). O

5.3 Practicality

We show that Com, ComVrfy and DecVrfy can be computed efficiently and that

we achieve a perfectly practical NITC scheme. We chose p ~ 22%, 2% < d, < 22,
ds < pand tyq < di/ Y to get k bits of classical and /2 bits of quantum security
for the precomputation phase in hiding. In this subsection “efficiently” means
an expected running time of at most poly(logp) operations for probabilistic

algorithms.
Lemma 5.16. The commitment Com takes time tecom € poly(logp).

Proof. The number of operations on Ej for computing Ks = P, + [s]@s and
K7, = Py + [t]Q7 is linear in logd, since 0 < s,t < ds. By Lemma 5.5 we can
find Es = Ey/(K,) and Ky = ¢s(K7%) via Vélu's formulae in time O(logd,)
since d; is a power of 2 and hence smooth. We adapted Algorithm 23 from [15]
to compute I and I7. from K and K/, using each one inversion and a few addi-
tions and multiplications modulo ds or dp, respectively. The IdealToIsogeny
algorithms are in poly(log p). Finding the isogenies can be done efficiently with
the algorithms from SQIsign [15] or SQIsign2D-West [5] for Algorithms 6 or 7,
and the evaluation of the resulting chains of 2- or (2, 2)-isogenies is also efficient.
Finally, we have to compute jr = j(Er) and v = m © F(jr). Since we chose F
and the group operation in M to be efficiently computable and ds < p, we get
that the algorithm takes time t.om € poly(logp). O

Lemma 5.17. The maximal number of operations t., for algorithm ComVrfy is
a small constant.

Proof. The algorithm has to complete three tasks. First it has to check if E
is an elliptic curve. To do that, it suffices to check that the discriminant is
non-zero. For curves in short Weierstra form E: y? = x2 + Az + B this is just
4A3 # —27B2%. To check if K is a point on F, it can simply compute if Kp
satisfies the curve equation. Finally, membership testing for u € M is efficient
by definition of M. For M = Z/NZ this means checking if u is an integer (and
if 0 <wu < N). So all this can be done in very few operations and their number
is independent of the size of ds, dr, p and k. O

22

Remark 5.18. If we also check ord Kr | dr as suggested in Remark 4.2, we
need to compute [dr|Kr. This takes O(logdr) operations, but for sufficiently
non-smooth dr = [[q¢;" we can assume that logdy < " e;\/q;, i.e. scalar
multiplication by dp is faster than evaluating an isogeny of degree dr. In this
case ComVrfy is still faster than FDecom.

Lemma 5.19. The decommitment verification algorithm DecVrfy takes time
tay € poly(logp).

Proof. The decommitment verification has the same steps as the commitment.
There are only three differences: Firstly, it gets s, ¢t from g, instead of choosing
them and hence does not need to try again for bad choices of t. Secondly, it has
to compare the Fs and K7 it computes to the ones in the commitment and m
to the decommitment. And thirdly, it computes IdealToIsogeny as determin-
istic algorithm using r from mge.. This makes its version of IdealToIsogeny
faster. Since these differences are computationally insignificant we get that the
algorithm also takes time t4, € poly(logp). O

Note that the running times of Com, ComVrfy and DecVrfy are not dominated
by dr. Even for low security levels like £ = 128 we get that logp < p'/8 < di/4.
Since t¢q can be almost as large as d;/ 4, the previous Lemmas 5.16, 5.17 and
5.19 show that we can choose ttq such that teom,tey,tav << teg. This gives us
the following theorem:

Theorem 5.20. SIGNITC is perfectly practical under Assumptions 5.6 and 5.7.

Assumption 5.4 allows us to choose dr = [[._; ¢f' more explicitly such
that teom, tev, tav <K 22:1 €i\/qi (and logdr < Zei\/@ if we want to check
ord Kt | dr in ComVrfy).

Conclusion

We showed that SIGNITC is a perfectly practical NITC that satisfies hiding
and perfect binding. It is the first NITC without repeated squaring or black
box algorithms, it needs no trusted setup and all subroutines have already been
implemented for other cryptosystems. Since it uses only isogeny-based cryptog-
raphy, it is presumably quantum secure. Since repeated squaring might not be
a good candidate for creating a delay anymore, this could also be an interesting
starting point for isogeny-based delay in other settings.

Finally, we list some open topics for further research. The most obvious
one is to implement this protocol to get some benchmarks for (relative) real-
world timings and to choose some specific parameters. Another open question
is how this can be optimized. A recent paper [12] introduces new algorithms
that can potentially improve the precomputations in PGen. We only looked at
the number of operations regardless of the field extensions. Since working in
higher extension fields can significantly slow down the computations, it might
be beneficial to represent our isogenies other than with one point in a (possibly
large) extension field. Other optimizations might include different ways to find
a corresponding ideal given an isogeny, and improvements to KLPT like [36].

Choosing the best IdealToIsogeny algorithm for SIGNITC is another open
question. KLPT and similar methods used in SQISign give ideals of norm d > p?

23

so the d-torsion is not Fps-rational. Computing an isogeny corresponding to such
an ideal is the bottleneck in SQISign and there are already several approaches
to improve this step. SQISign computes them in blocks and ApresSQI [17] tries
to reduce the number of blocks. In [28] they try to reduce the needed extension
degree and give some general speedups. Other approaches [5, 19, 26, 33, 34, 35]
use higher dimensional isogenies to avoid (higher) extension fields or to lift
smoothness requirements on the norm d of the equivalent ideal. We only need
to know (the j-invariant of) the codomain and do not need to evaluate the
isogeny on any points. So it would be interesting to see if these approaches can
improve Algorithms 6 and 7.

Acknowledgments

The author would like to thank Antonio Sanso for pointing out the concept
of NITC schemes, Valerie Gilchrist, Lorenz Panny and anonymous reviewers
for their comments on previous versions of this article, Max Duparc for inter-
esting discussions on pushforwards and higher dimensional isogenies, and Jens
Zumbragel for his support during the work on this article.

A Example Parameters

This is an example of how realistic parameters might look like. These are
all based on estimates and assumptions. An implementation is needed to
choose definitive parameters. We give three sets of parameters. One for the 1-
dimensional IdealToIsogeny Algorithm 6 using a SQISign-friendly prime and
two for the 2-dimensional IdealToIsogeny Algorithm 7 with primes for higher
dimensional versions of SQISign.

A.1 1-dimensional IdealToIsogeny

For a security of NIST level I with k = 128 we can take the SQIsign-friendly

prime p = ply,; with

p{973 = 0x34e29e286b95d98c33a6a86587407437252c9e49355147ffffffffffffffffff

and log, plgz5 ~ 251.9 from the specifications of SQlIsign [15]. The F-rational

torsion is

p?—1=276.3%6.74.11.13.232.37-.59%.89-97-101%-107 - 109% - 131 - 137
1977 - 223 - 239 - 383 - 389 - 4912 - 499 - 607 - 743 - 1033 - 1049 - 1193
-19132 - 1973 - 32587069 - 275446333 - 1031359276391767

and we choose ds = 2150, As mentioned in Remark 4.3, we have to use a method
similar to [15, Algorithm 14] to produce isogenies of degree ds as the maximal
power of 2 that divides p+ 1 is 27°. For Algorithm 6 we use the same additional
[F,+-torsion
3%6.74.11-13-23%.37-59%-89-97-101% - 107 - 109* - 131 - 137 - 1977 - 223
=239 - 383 - 389 - 491% - 499 - 607 - 743? - 1033 - 1049 - 1193 - 19132 - 1973

24

for translating as in SQIsign. For the group M = Z/NZ we need N smaller than
1036363420827959282, e.g. N = 2°°. The delay has to be t¢q < 194368031998.
Using Sage for computing isogenies we can choose

dp=T7*-11-13-37-89-97-107 - 131 - 137 - 223 - 239 - 383 - 389 - 499 - 607
<1033 - 1049 - 1193 - 1973 - 32587069 - 275446333

for a delay of roughly 1 minute and we estimate that dpr = 1031359276391767
will cause a delay of roughly 1 day. Both divide p — 1 so we only need extension
degree e = 2 and can work in [F,« or even in [F,» using quadratic twists.

A.2 2-dimensional IdealToIsogeny

For a security of NIST level I with x = 128 we have several options. We could
choose the prime p = 22163137 — 1 from the SIKEp434 parameter set [30], but
for 2-dimensional IdealToIsogeny algorithms primes of the form p = ¢2F — 1
with ¢ as small as possible are preferable. We can choose p = 79 -2%47 — 1 as in
[35] or we take the prime p = 5 - 224® — 1 from SQIsign2D-West [5].

For p=5- 2248 _ 1 we choose ds = 2248 and N < 574673255585861476 for
the group M = Z/NZ, e.g. N = 2%, The delay has to be ttq < 252 and we can
choose d =5 -7 -3631 - 2857849 for e = 3.

For p = 79-22*7 —1 we choose d, = 22*" and N < 963446845306433641 for the
group M = Z/NZ, e.g. N = 259, The delay has to be t,q < 3877950241171266237
and we can choose dp =7-13-19-79-21313 for e = 3.

Estimating the actual delay is difficult due to the field extensions. Finding
primes p such that p + 1 contains a large power of 2 and p? — 1 contains some
primes of size at most 20 would allow for different delays within Fp. This is
related to the search for SQISign-friendly primes, e.g. [1, 10, 15, 18, 22].

References

[1] Knud Ahrens. Sieving for large twin smooth integers using single solutions to
prouhet-tarry-escott. Cryptology ePrint Archive, Paper 2023/219, 2023. URL
https://eprint.iacr.org/2023/219.

[2] Knud Ahrens and Jens Zumbrégel. DEFEND: Towards verifiable delay functions
from endomorphism rings. Cryptology ePrint Archive, Paper 2023/1537, 2023.
URL https://eprint.iacr.org/2023/1537.

[3] Miguel Ambrona, Marc Beunardeau, and Raphaél R. Toledo. Timed com-
mitments revisited. Cryptology ePrint Archive, Paper 2023/977, 2023. URL
https://eprint.iacr.org/2023/977.

[4] Andrea Basso, Giulio Codogni, Deirdre Connolly, Luca De Feo, Tako Boris
Fouotsa, Guido Maria Lido, Travis Morrison, Lorenz Panny, Sikhar Patranabis,
and Benjamin Wesolowski. Supersingular curves you can trust. In Carmit Hazay
and Martijn Stam, editors, Advances in Cryptology — EUROCRYPT 2023, pages
405-437, Cham, 2023. Springer Nature Switzerland.

[5] Andrea Basso, Pierrick Dartois, Luca De Feo, Antonin Leroux, Luciano Maino,
Giacomo Pope, Damien Robert, and Benjamin Wesolowski. Sqisign2d—west. In
Kai-Min Chung and Yu Sasaki, editors, Advances in Cryptology — ASIACRYPT
202/, pages 339-370, Singapore, 2025. Springer Nature Singapore. ISBN 978-981-
96-0891-1. doi: 10.1007/978-981-96-0891-1_11.

25

https://eprint.iacr.org/2023/219
https://eprint.iacr.org/2023/1537
https://eprint.iacr.org/2023/977

[6]

(13]

(14]

(15]

(16]

Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith. Faster
computation of isogenies of large prime degree. In Steven D. Galbraith, editor,
Proceedings of the Fourteenth Algorithmic Number Theory Symposium, pages 39—
55, Berkeley, 2020. Mathematical Sciences Publishers. doi: 10.2140/0bs.2020.4.39.

Alex Biryukov, Ben Fisch, Gottfried Herold, Dmitry Khovratovich, Gaétan
Leurent, Maria Naya-Plasencia, and Benjamin Wesolowski. Cryptanalysis of al-
gebraic verifiable delay functions. In Leonid Reyzin and Douglas Stebila, editors,
Advances in Cryptology — CRYPTO 2024, pages 457-490, Cham, 2024. Springer
Nature Switzerland. ISBN 978-3-031-68382-4. doi: 10.1007/978-3-031-68382-4_
14.

Dan Boneh and Moni Naor. Timed commitments. In Mihir Bellare, editor,
Advances in Cryptology — CRYPTO 2000, pages 236—254, Berlin, Heidelberg,
2000. Springer Berlin Heidelberg. doi: 10.1007/3-540-44598-6_15.

Dan Boneh, Joseph Bonneau, Benedikt Biinz, and Ben Fisch. Verifiable delay
functions. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in
Cryptology — CRYPTO 2018, pages 757-788, Cham, 2018. Springer International
Publishing. doi: 10.1007/978-3-319-96884-1_25.

Giacomo Bruno, Maria Corte-Real Santos, Craig Costello, Jonathan Komada
Eriksen, Michael Meyer, Michael Naehrig, and Bruno Sterner. Cryptographic
smooth neighbors. In Jian Guo and Ron Steinfeld, editors, Advances in Cryptology
-~ ASIACRYPT 2023, pages 190-221, Singapore, 2023. Springer Nature Singapore.
ISBN 978-981-99-8739-9. doi: 10.1007/978-981-99-8739-9_7.

Jeffrey Burdges and Luca De Feo. Delay encryption. In Anne Canteaut and
Frangois-Xavier Standaert, editors, Advances in Cryptology — EUROCRYPT
2021, pages 302-326, Cham, 2021. Springer International Publishing. ISBN 978-
3-030-77870-5. doi: 10.1007/978-3-030-77870-5_11.

Shiping Cai, Mingjie Chen, and Christophe Petit. Faster algorithms for isogeny
computations over extensions of finite fields. Cryptology ePrint Archive, Paper
2024/1852, 2024. URL https://eprint.iacr.org/2024/1852.

Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost
Renes. CSIDH: An efficient post-quantum commutative group action. In
Thomas Peyrin and Steven Galbraith, editors, Advances in Cryptology — ASI-
ACRYPT 2018, pages 395-427, Cham, 2018. Springer International Publishing.
doi: 10.1007/978-3-030-03332-3_15.

Jorge Chavez-Saab, Francisco Rodriguez-Henriquez, and Mehdi Tibouchi. Ver-
ifiable isogeny walks: Towards an isogeny-based postquantum VDF. In Ri-
ham AlTawy and Andreas Hiilsing, editors, Selected Areas in Cryptography,
pages 441-460, Cham, 2022. Springer International Publishing. doi: 10.1007/
978-3-030-99277-4_21.

Jorge Chavez-Saab, Maria Corte-Real Santos, Luca De Feo, Jonathan Ko-
mada Eriksen, Basil Hess, David Kohel, Antonin Leroux, Patrick Longa,
Michael Meyer, Lorenz Panny, Sikhar Patranabis, Christophe Petit, Francisco
Rodriguez Henriquez, Sina Schaeffler, and Benjamin Wesolowski. SQIsign algo-
rithm specifications and supporting documentation. Project Homepage, 2023.
URL https://sqisign.org/spec/sqisign-20230601.pdf.

Peter Chvojka and Tibor Jager. Simple, fast, efficient, and tightly-secure non-
malleable non-interactive timed commitments. In Alexandra Boldyreva and

26

https://eprint.iacr.org/2024/1852
https://sqisign.org/spec/sqisign-20230601.pdf

(17]

(18]

(19]

[20]

(21]

22]

(24]

Vladimir Kolesnikov, editors, Public-Key Cryptography — PKC 2023, pages 500—
529, Cham, 2023. Springer Nature Switzerland. doi: 10.1007/978-3-031-31368-4_
18.

Maria Corte-Real Santos, Jonathan Komada Eriksen, Michael Meyer, and Krijn
Reijnders. Apressqi: Extra fast verification for sqisign using extension-field sign-
ing. In Marc Joye and Gregor Leander, editors, Advances in Cryptology — EU-
ROCRYPT 202, pages 63-93, Cham, 2024. Springer Nature Switzerland. ISBN
978-3-031-58716-0. doi: 10.1007/978-3-031-58716-0_3.

Craig Costello, Michael Meyer, and Michael Naehrig. Sieving for Twin Smooth
Integers with Solutions to the Prouhet-Tarry-Escott Problem. In Anne Canteaut
and Francois-Xavier Standaert, editors, Advances in Cryptology — EUROCRYPT
2021, pages 272-301, Cham, 2021. Springer International Publishing. ISBN 978-
3-030-77870-5. doi: 10.1007/978-3-030-77870-5_10.

Pierrick Dartois, Antonin Leroux, Damien Robert, and Benjamin Wesolowski.
SQIsignHD: New dimensions in cryptography. In Marc Joye and Gregor Lean-
der, editors, Advances in Cryptology — EUROCRYPT 2024, pages 3-32, Cham,
2024. Springer Nature Switzerland. ISBN 978-3-031-58716-0. doi: 10.1007/
978-3-031-58716-0_1.

Luca De Feo. Mathematics of isogeny based cryptography. Preprint, 2017. URL
https://arxiv.org/abs/1711.04062.

Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifi-
able delay functions from supersingular isogenies and pairings. In Steven D.
Galbraith and Shiho Moriai, editors, Advances in Cryptology — ASIACRYPT
2019, pages 248-277, Cham, 2019. Springer International Publishing. doi:
10.1007/978-3-030-34578-5_10.

Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin
Wesolowski. SQISign: Compact post-quantum signatures from quaternions and
isogenies. In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology —
ASIACRYPT 2020, pages 64—93, Cham, 2020. Springer International Publishing.
doi: 10.1007/978-3-030-64837-4_3.

Luca De Feo, Antonin Leroux, Patrick Longa, and Benjamin Wesolowski. New
algorithms for the deuring correspondence. In Carmit Hazay and Martijn Stam,
editors, Advances in Cryptology — EUROCRYPT 2023, pages 659690, Cham,
2023. Springer Nature Switzerland. doi: 10.1007/978-3-031-30589-4_23.

Thomas Decru, Luciano Maino, and Antonio Sanso. Towards a quantum-resistant
weak verifiable delay function. In Abdelrahaman Aly and Mehdi Tibouchi, edi-
tors, Progress in Cryptology — LATINCRYPT 2023, pages 149-168, Cham, 2023.
Springer Nature Switzerland. doi: 10.1007/978-3-031-44469-2_8.

Max Deuring. Die Typen der Multiplikatorenringe elliptischer funktionenkorper.
Abh. Math. Sem. Hansischen Univ., 14:197-272, 1941. doi: 10.1007/BF02940746.

Max Duparc and Tako Boris Fouotsa. SQIPrime: A dimension 2 variant
of SQISignHD with non-smooth challenge isogenies. In Kai-Min Chung and
Yu Sasaki, editors, Advances in Cryptology — ASIACRYPT 2024, pages 396—
429, Singapore, 2025. Springer Nature Singapore. ISBN 978-981-96-0891-1. doi:
10.1007/978-981-96-0891-1_13.

27

https://arxiv.org/abs/1711.04062

27]

(28]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

37]

(38]

Kirsten FEisentrdger, Sean Hallgren, Kristin Lauter, Travis Morrison, and
Christophe Petit. Supersingular isogeny graphs and endomorphism rings: Re-
ductions and solutions. In Jesper Buus Nielsen and Vincent Rijmen, editors, Ad-
vances in Cryptology — EUROCRYPT 2018, pages 329-368, Cham, 2018. Springer
International Publishing. doi: 10.1007/978-3-319-78372-7_11.

Jonathan Komada Eriksen, Lorenz Panny, Jana Sotakova, and Mattia Veroni.
Deuring for the people: Supersingular elliptic curves with prescribed endomor-
phism ring in general characteristic. Cryptology ePrint Archive, Paper 2023/106,
2023. URL https://eprint.iacr.org/2023/106.

Lov K. Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the Twenty-FEighth Annual ACM Symposium on Theory of Com-
puting, STOC ’96, pages 212219, New York, NY, USA, 1996. Association for
Computing Machinery. doi: 10.1145/237814.237866.

David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca
De Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa,
Michael Naehrig, Geovandro Pereira, Joost Renes, Vladimir Soukharev, and
David Urbanik. Supersingular isogeny key encapsulation. Project Homepage,
2020. URL https://sike.org/files/SIDH-spec.pdf.

Jonathan Katz, Julian Loss, and Jiayu Xu. On the security of time-lock puzzles
and timed commitments. In Rafael Pass and Krzysztof Pietrzak, editors, Theory
of Cryptography, pages 390-413, Cham, 2020. Springer International Publishing.
doi: 10.1007/978-3-030-64381-2_14.

David Kohel, Kristin Lauter, Christophe Petit, and Jean-Pierre Tignol. On the
quaternion ¢-isogeny path problem. LMS J. Comput. Math., 17:418-432, 2014.
doi: 10.1112/S1461157014000151.

Antonin Leroux. Verifiable random function from the deuring correspondence
and higher dimensional isogenies. Springer-Verlag, 2025.

Kohei Nakagawa, Hiroshi Onuki, Wouter Castryck, Mingjie Chen, Riccardo
Invernizzi, Gioella Lorenzon, and Frederik Vercauteren. SQIsign2D-east: A
new signature scheme using 2-dimensional isogenies. In Kai-Min Chung and
Yu Sasaki, editors, Advances in Cryptology — ASIACRYPT 2024, pages 272—
303, Singapore, 2025. Springer Nature Singapore. ISBN 978-981-96-0891-1. doi:
10.1007/978-981-96-0891-1.9.

Hiroshi Onuki and Kohei Nakagawa. Ideal-to-isogeny algorithm using 2-
dimensional isogenies and its application to sqisign. In Kai-Min Chung and
Yu Sasaki, editors, Advances in Cryptology — ASIACRYPT 2024, pages 243—
271, Singapore, 2025. Springer Nature Singapore. ISBN 978-981-96-0891-1. doi:
10.1007/978-981-96-0891-1_8.

Christophe Petit and Spike Smith. An improvement to the quaternion analogue
of the f-isogeny path problem. MathCrypt 2018, 2018. URL https://crypto.
iacr.org/2018/affevents/mathcrypt/medias/08-50_3.pdf.

Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles and
timed-release crypto. Technical report, USA, 1996.

Joseph H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Graduate
Texts in Mathematics. Springer New York, 1986. doi: 10.1007/978-1-4757-1920-8.

28

https://eprint.iacr.org/2023/106
https://sike.org/files/SIDH-spec.pdf
https://crypto.iacr.org/2018/affevents/mathcrypt/medias/08-50_3.pdf
https://crypto.iacr.org/2018/affevents/mathcrypt/medias/08-50_3.pdf

(39]

(40]

(41]

Sri Aravinda Krishnan Thyagarajan, Guilhem Castagnos, Fabian Laguillaumie,
and Giulio Malavolta. Efficient CCA timed commitments in class groups. In Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’21, page 2663—2684, New York, NY, USA, 2021. Association
for Computing Machinery. doi: 10.1145/3460120.3484773.

John Voight. Quaternion algebras, volume 288 of Graduate Texts in Mathematics.
Springer Cham, 2021. doi: 10.1007/978-3-030-56694-4.

Jacques Vélu. Isogénies entre courbes elliptiques. Comptes Rendus Hebdomadaires
des Séances de I’Académie des Sciences, Série A, 273, N°4:238-241, 1971.

Benjamin Wesolowski. The supersingular isogeny path and endomorphism ring
problems are equivalent. In 2021 IEEFE 62nd Annual Symposium on Foundations
of Computer Science (FOCS), pages 1100-1111, 2022. doi: 10.1109/FOCS52979.
2021.00109.

29

	Introduction
	Non-Interactive Timed Commitments
	Isogeny-based Cryptography
	Elliptic Curves and the Quaternion Algebra
	Application to Cryptography

	The Protocol
	Overview
	Algorithms
	Parameter Generation
	Commitment
	Commitment Verification
	Decommitment Verification
	Forced Decommitment
	Ideal to Isogeny Algorithms

	Parameter Sizes and other Choices
	Prime p, Starting Curve E0 and Isogenies s and T
	Message Space M and Function F

	Security
	Relative Running Times
	Hiding and Binding
	Practicality

	Example Parameters
	1-dimensional IdealToIsogeny
	2-dimensional IdealToIsogeny

