
A Generic Framework for Side-Channel Attacks
against LWE-based Cryptosystems

Julius Hermelink1 , Silvan Streit2,3 , Erik Mårtensson4,5 , and Richard Petri1

1 Max Planck Institute for Security and Privacy, Bochum, Germany,
{julius.hermelink,richard.petri}@mpi-sp.org

2 Fraunhofer AISEC, Garching, Germany, silvan.streit@aisec.fraunhofer.de
3 Technical University of Munich (TUM), Munich, Germany

4 Lund University, Lund, Sweden, erik.martensson@eit.lth.se
5 Advenica AB, Malmö, Sweden

Abstract. Lattice-based cryptography is in the process of being stan-
dardized. Several proposals to deal with side-channel information using
lattice reduction exist. However, it has been shown that algorithms based
on Bayesian updating are often more favorable in practice.
In this work, we define distribution hints; a type of hint that allows mod-
elling probabilistic information. These hints generalize most previously
defined hints and the information obtained in several attacks.
We define two solvers for our hints; one is based on belief propagation
and the other one uses a greedy approach. We prove that the latter
is a computationally less expensive approximation of the former and
that previous algorithms used for specific attacks may be seen as special
cases of our solvers. Thereby, we provide a systematization of previously
obtained information and used algorithms in real-world side-channel
attacks.
In contrast to lattice-based approaches, our framework is not limited
to value leakage. For example, it can deal with noisy Hamming weight
leakage or partially incorrect information. Moreover, it improves upon
the recovery of the secret key from approximate hints in the form they
arise in real-world attacks.
Our framework has several practical applications: We exemplarily show
that a recent attack can be improved; we reduce the number of traces and
corresponding ciphertexts and increase the noise resistance. Further, we
explain how distribution hints could be applied in the context of previous
attacks and outline a potential new attack.

Keywords: Lattice-based cryptography · Lattice Reduction · ML-KEM
· Belief Propagation · Side-Channel Attacks · Kyber

1 Introduction

The National Institute of Standards and Technology (NIST) post-quantum stan-
dardization process is in the fourth round, and the draft standards for four
post-quantum schemes have been published. Two of those schemes base their

https://orcid.org/0000-0002-1649-4231
https://orcid.org/0000-0002-5822-2402
https://orcid.org/0000-0001-5824-7282
https://orcid.org/0000-0003-0972-1544

2 Julius Hermelink , Silvan Streit , Erik Mårtensson , and Richard Petri

security on the hardness of the Module Learning with Errors (MLWE) problem
– ML-DSA [20], a signature scheme, and ML-KEM [21], a Key Encapsulation
Mechanism (KEM). ML-KEM was known as Kyber throughout the competi-
tion [2], and ML-DSA was known as Dilithium [9]. Both ML-DSA and ML-KEM
are particularly well-suited for embedded devices, and with the fourth round
still in process, ML-KEM is currently the only key exchange scheme that has
been selected for standardization. With the standardization of two Learning with
Errors (LWE)-based schemes being imminent, understanding their side-channel
security is crucial.

A wide variety of attacks on the secret key is already known. Several works
have focused on the inverse Number Theoretic Transform (NTT) during the
decapsulation [25,12,31,26]. Another line of research have been plaintext-checking,
full decryption and decryption failure oracles (see, e.g., [29,24,16,31,27]). In many
of these attacks, an algorithm to recover the secret key from the obtained side-
channel information is required.

Known classic attacks on lattice-based schemes – unsurprisingly – rely on
lattice-reduction. The public key equation allows deriving (computationally hard)
shortest vector problems, which give the secret key when solved. These attacks are
known as the primal and the dual attack [1]. The framework of [4] explains how
the complexity of the lattice resulting from the primal attack can be reduced using
side-channel information. In their work, the authors assume that side-channel
information is given in terms of several types of hints. These hints can be applied
to the Distorted Bounded Distance Decoding Problem (DBDD) posed by the
public key equation and reduce the hardness of the subsequently derived unique
Shortest Vector Problem (uSVP). Their framework has been extended in [5] to
inequality hints. A recent work by May and Nowakowski [19] greatly reduces the
complexity of integrating perfect and modular hints on parts of the secret. Their
work integrates hints into the LWE instance instead of working with a derived
DBDD problem.

In practice, many side-channel attacks rely on different techniques. Most
notably this includes Belief Propagation (BP)[25,23,17,12,16], but different ap-
proaches have also been explored [24,28]. In the case of (uncorrelated6) decryption
failure information, lattice-based approaches have proven to be less efficient than
BP (compare [3] with [16] and see [7]). It has also been shown that BP can be
combined with lattice reduction in some cases [13]. A recent work published
at TCHES 2024 [28] claims that their greedy approach outperforms BP by a
factor of two in terms of required information in the context of decryption failure
inequalities. These types of algorithms work by iteratively updating guesses or
probability distributions, which is why we call them Bayesian updating-based.

Current Bayesian updating-based solvers are specific to the targeted informa-
tion, or even to concrete attacks. While they often perform better in special cases,
a systematic and more generally applicable approach complementing lattice-
based hints is yet missing. Further, neither the relation between different types
of Bayesian-updating-based algorithms nor the relation between those algorithms

6 These arise in several chosen-ciphertext attacks.

https://orcid.org/0000-0002-1649-4231
https://orcid.org/0000-0002-5822-2402
https://orcid.org/0000-0001-5824-7282
https://orcid.org/0000-0003-0972-1544

A Generic Framework for SCAs against LWE-based Cryptosystems 3

and lattice-based approaches is yet understood. In practice, the signal-to-noise
ratio (SNR) can be reduced and t-order masking prevents t-order attacks; how-
ever, leakage can never be fully prevented and higher-order attacks may be an
option. Thus, understanding how and how effectively side information can be
exploited is crucial.

Our contribution. In this work, we define distribution hints and state algorithms
to solve for the secret key. Our definition of hints entails all but one type of
previously defined lattice-based hints in a single generalized form. Moreover, our
definition allows modelling the information arising in several attacks in practice
that was previously not, or only insufficiently, captured. In particular, uncertainty
in side-channel information is intrinsic to our definition.

We propose two algorithms to solve for the secret key from distribution
hints: a BP-based algorithm and a greedy approach. We explain the conceptual
difference between the greedy algorithm and BP – the greedy solver can be seen
as an approximation of the BP. While, in theory, the greedy solver requires more
hints for key recovery than BP, it may outperform BP due to numerical problems
and gives advantages with regard to practical considerations. This gives a more
nuanced perspective on the claim of [28] (see above): Greedy solvers and BP
complement each other. Further, we prove that previous algorithms to solve
decryption failure inequalities can be seen as special cases of our method.

Compared to lattice-based solvers, our framework allows modelling hints that
are incorrect with positive probability. Further, we require fewer approximate hints
or may even solve for the secret key for cases in which lattice-based approaches
could not achieve a sufficient reduction in computational hardness. For example,
we may fully recover an ML-KEM768 secret key from leakage that occurs in
practice for which previous work requires running BKZ with blocksize β ≈ 300.
In addition, our framework covers various types of leakage, e.g., with non-normal
noise distributions or hints on Hamming weights (HWs); it applies generically
and is not limited to a specific leakage model or (type of) implementation.

Our framework has several practical applications: We exemplarily show that
it may be used to reduce the required information for key recovery in the attack
of [28] by a factor of more than two; this makes the attack practical for noise
levels that had previously required increasing the numbers of traces to infeasible
levels. Furthermore, we explain how distribution hints could potentially be used
to improve upon previous attacks on the inverse NTT [25,12]. We also outline a
previously unexplored attack on ML-KEM’s decryption routine.

In summary, our work provides a systematic way of dealing with side-channel
information, complementing previous work on lattice-based hints. We provide a
framework for side-channel information that is far more extensive, flexible, and
more generally applicable than previous work.

Conceptual comparison to previous frameworks. As noted in [19], the leaky LWE
framework [4] takes a lattice-centric approach to side-channel information by
working on a DBDD instance in which the hints are integrated. On the other hand,
the framework of [19] takes the LWE-centric route; hints are integrated into the

4 Julius Hermelink , Silvan Streit , Erik Mårtensson , and Richard Petri

LWE instance. Practical attacks mostly use Bayesian updating-based approaches
such as BP or greedy algorithms. While the work of [13] combines lattice reduction
with BP, these attacks are fundamentally based on updating probabilities based
on information arising from side-channel attacks. In fact, [13] integrates the BP
output into the LWE instance. These algorithms are often superior in the setting
of their specific attack. Our framework formalizes and generalizes this approach,
and it may be seen as complementary to using lattice-based methods.

Application to different types of schemes. Our solvers can also be adapted to
other classes of schemes. Large parts of the algorithms are not dependent on an
LWE-based or even lattice-based setting. We rely on [13] to integrate BP output
into the primal attack lattice derived from the public key equation. Additionally,
we show how this can be done for greedy solvers as well. This part is specific to
an LWE-based setting, and if it can be adapted to different types of schemes, our
method applies as well.

Practical recommendations. Our work together with the work of [19] covers how
to efficiently integrate all types of hints defined in [4,5] except short vector hints
and modular hints on both e and s. For error-free modular/perfect hints on s, we
recommend the approach of [19]. In the case of approximate hints with uniform
coefficients and perfect hints on x = (e, s), the framework of [4] has an advantage
but requires vast computational resources, while the work of [19] does not yet
consider these hints.

For inequality hints with coefficients that are uncorrelated to the secret key
coefficients (arising, e.g., in [24,3,16,7,15]), erroneous perfect and approximate
hints, approximate hints with small coefficients or large noise, and whenever
leakage on HWs is obtained, our framework should be applied. Furthermore,
we provide the first algorithms that may recover the secret key in practice on
widely-available hardware for hints on both parts of the secret key. If coefficients
are small and the number of hints is not too large, we recommend our BP
instantiation. In all other cases, the greedy solver should be used.

Open source and optimized implementations. All resources developed for this
work are publicly available7. This includes Rust implementations of both a greedy
solver and a BP solver, both of which can be compiled to a Python module.
Our solvers are optimized for performance and fully multithreaded, and include
specialized implementations for types of hints in which computations can be
carried out more efficiently. We also provide a simplified Python implementation
of the method of [13].

2 Background

After introducing some basic notation, we reiterate the required background on
lattice-based hints, i.e., the works of [4,5,19]. We then give a brief overview of BP
7 Available under https://github.com/juliusjh/distribution_hints and https://github.

com/juliusjh/distribution_hints_solvers.

https://orcid.org/0000-0002-1649-4231
https://orcid.org/0000-0002-5822-2402
https://orcid.org/0000-0001-5824-7282
https://orcid.org/0000-0003-0972-1544
https://github.com/juliusjh/distribution_hints
https://github.com/juliusjh/distribution_hints_solvers
https://github.com/juliusjh/distribution_hints_solvers

A Generic Framework for SCAs against LWE-based Cryptosystems 5

and its application to side-channel attacks. Finally, we discuss recent solvers for
decryption failure inequalities. This includes the belief-propagation-based solver
of [13] and the greedy approach of [28].

Notation. Vectors are generally denoted in bold, i.e., as a,x, We will denote
a random variable a following a distribution D as a ∼ D. For vectors a,b ∈ Zn,
we denote the inner product by ⟨a,b⟩ =

∑n
i=1 aibi. In the following, we assume

an MLWE setting in (Fq/(f))
k with n = deg(f); that means, for k = 1 we

have an Ring Learning with Errors (RLWE) setting and for n = 1 we have an
unstructured LWE setting. Given the secret key x = (e, s) ∈ {−η, . . . , η}2kn, we
use j as index for key coefficients, and i as index for hints. Key guesses will be
denoted by x′, while the true key will always be x. We will also implicitly use
x to denote the random variable belonging to the true key, i.e., in the form of
P (x = x′). Let Bη denote the central binomial distribution, that is, a distribution
whose output is computed as

∑η
i=1(ai − bi), where ai and bi are independently

and uniformly randomly sampled from {0, 1}. Let N (µ, σ) denote the normal
distribution with mean µ and standard deviation σ. A message from variable
node i to factor node j at step t of a BP instantiation is denoted by mt,i,j or mi,j

if the step is irrelevant. Further, supp(D) is the support of a discrete probability
distribution D, i.e., {a | PD(a) ̸= 0}, and Dom(xj) the domain of the secret key
coefficients.

2.1 The Learning with Error Problem Family

ML-KEM relies on the MLWE problem, which is a variant of the LWE problem.

Learning with Errors. The LWE problem is defined as finding a coefficient-
wise small vector s ∈ Fn

q given samples of the form ⟨ai, s⟩ + ei = ti ∈ Fq for
uniformly random vectors ai ∈ Zn and ei ∈ Fq sampled from an error distribution
χ with small (when interpreted as integers) support. In cryptographic practice,
the number of samples is often fixed to the dimension of s and can thus be written
as recovering s from both A and sA + e = t where A ∈ Fn×n

q , e, t ∈ Fn
q . In

practice, both s and e are often coefficient-wise sampled from a small, central
binomial distribution. The vectors s, e, and t can be chosen to be matrices as
well – combining several LWE secrets and samples into one matrix.

Ring Learning with Errors. The RLWE problem replaces Zn
q by a factor

ring of the form R = Fq[x]/(f) where f = xn + 1 in the case of Newhope, the
predecessor of ML-KEM. This means that the adversary is asked to recover s ∈ R
given both a and sa+e = t where a, e, t ∈ R. It can be easily seen that this gives
an LWE instance: The elements of R can be written as an n-tuple over Fq with
a different multiplication arising from reducing modulo the ideal generated by f .
Now our equation is a polynomial equation over Fq, and writing out the equations
coefficient-wise gives exactly n LWE equations. However, these LWE samples
are not independently sampled but structured. Whether structured samples are

6 Julius Hermelink , Silvan Streit , Erik Mårtensson , and Richard Petri

more vulnerable to attacks is a controversially discussed matter, but until now,
no attacks have been able to exploit this structure.

The structure also drastically reduces the computational effort of a key
exchange relying on the RLWE problem: elements of R can multiplied using a
so-called NTT in O(n log n). The NTT may be seen as a discrete Fast-Fourier
Transformation (FFT) and computes the Chinese remainder theorem; pointwise
multiplication in the target domain is polynomial multiplication in R.

Module Learning with Errors. The MLWE problem can be seen as a middle
ground between LWE and RLWE. Here, A is an element of Rk×k for some
(typically small) integer k; s, e ∈ Rk. The adversary is again given A and
sA+ e = t ∈ Rk and asked to find s. For k = 1, the MLWE is just an RLWE
problem, for setting k to n and n to 1, it is the (unstructured) LWE problem.
In ML-KEM, k ∈ {2, 3, 4}, n = 256, and q = 3329. Clearly, an MLWE instance
directly gives multiple (structured) LWE samples.

The primal attack. Common approaches to solving (ring/module) LWE include
the primal and the dual attack on LWE. Both methods rely on lattice reduction,
in most cases using the Blockwise Korkine-Zolotarev (BKZ) algorithm. Current
frameworks that recover the secret key from side-channel hints using lattice
reduction rely on the primal attack [4,5,13,19].

The primal attack relies on first obtaining a Closest Vector Problem (CVP)
from the LWE instance and a Shortest Vector Problem (SVP) from the CVP
using Kannan’s embedding. Given A ∈ Zn×m, t ∈ Zm and unknown s ∈ Zn and
e ∈ Zm over the integers such that sA+ e ≡ t (mod q), the matrix(

qIm 0
A In

)
(1)

generates a lattice containing (t− e, s) which is close to (t,0). Adding (t,0) to
the lattice (and increasing the dimension by one to avoid solutions of the form
sA+ ke for k ̸= 1) thus results in a lattice in which the secret is short.

2.2 ML-KEM

ML-KEM is the only key exchange scheme that has been selected in the third
round of the NIST standardization process. It bases its security on the MLWE
problem, and its public key equation directly poses an MLWE problem. ML-KEM
is constructed by first defining a Public-Key Encryption (PKE) scheme, and then
deriving an IND-CCA2-secure KEM using an Fujisaki-Okamoto (FO)-transform.
In the following, we give a quick introduction to ML-KEM ignoring the NTT. For
the definitions of the compression, decompression and all parameters, we refer
to [21]. The PKE and KEM are stated in Figure 1 and Figure 2, respectively.
The parameters are chosen depending on the security level; we have η1 ∈ {2, 3},
η2 = 2, n = 256, and k ∈ {2, 3, 4}. For a full description of ML-KEM, see [21].

https://orcid.org/0000-0002-1649-4231
https://orcid.org/0000-0002-5822-2402
https://orcid.org/0000-0001-5824-7282
https://orcid.org/0000-0003-0972-1544

A Generic Framework for SCAs against LWE-based Cryptosystems 7

The PKE. The secret key (of the PKE) is a vector of polynomials s ∈ Rk =
(Fq[x]/(x

n + 1))k, with coefficient-wise small values sampled from the central
binomial distribution Bη1 . The public key directly gives an MLWE sample

(sA⊤ + e = t,A) (2)

for secret e ∈ Rk sampled from Bη1 , but instead of A, the seed required to sample
A is stored. The key pair of the PKE is generated as described in Algorithm 1.

The PKE receives a parameter r that determines the pseudorandomness and
samples r1, r, e2 ∈ Rk and e1 ∈ R. The ciphertext components c1 and c2 are
computed by compressing

u = rA+ e1 and v = ⟨t, r⟩+ e2 +mpoly, (3)

where mpoly is the message represented as a polynomial. To obtain mpoly, unset
bits of the message are mapped to 0 ∈ Fq and set bits are mapped to ⌈q/2⌉ ∈ Fq.

Ignoring errors caused by the compression, the decryption may now retrieve
the decrypted message m′ by computing v′ − ⟨s,u′⟩. Denoting the decompressed
v and u as v′, u′, respectively, and the differences caused by the compression by
∆u and ∆v, the decryption arrives at

v′ − ⟨s,u′⟩ = mpoly + ⟨e, r⟩ − ⟨s, e1⟩+ e2. (4)

Now the coefficients of

⟨e, r⟩ − ⟨s, (e1 +∆u)⟩+∆v + e2 (5)

are small. The message m can therefore be recovered with high probability by
mapping coefficients to a zero bit if and only if they are closer (when interpreted
as symmetrically reduced integers) to 0 than they are to ⌈q/2⌉. In ML-KEM, the
decryption failure probability is smaller than 2−139 for all security levels. The
term in (4) is called the noisy message, and the one in (5) is called the noise
term or error term. If an adversary with access to the ciphertext generation
can recover a coefficient of the noise term or the noisy message, they may derive
a linear equation on the secret x = (e, s) over the integers.

The KEM. The generation of the KEM keypair is described in Algorithm 1; the
secret key of the KEM additionally contains the public key, a hash of the public
key, and a rejection value z. Apart from that, it is essentially the key generation
of the PKE. The encapsulation, see Algorithm 5, samples a random message,
derives a shared secret and the coins r, and encrypts the message using the public
key and the randomness r to a ciphertext ct. The decapsulation may now arrive
at the same shared secret by decryption the PKE ciphertext. However, to ensure
IND-CCA2 security, it first reencrypts the message to ct′, and checks whether
the ct was honestly generated by comparing ct to ct′. In case of a mismatch,
the decapsulation is rejected by returning z instead of the shared secret.

8 Julius Hermelink , Silvan Streit , Erik Mårtensson , and Richard Petri

Algorithm 1 PKE.KeyGen
Input: Randomness seeds ρ, σ
Output: Public key pk, secret key sk

1: A ∈ Rk×k $←− U(ρ)
2: e, s ∈ Rk $←− Bη1(σ)

3: t← sA⊤ + e
4: return pkpke = (t, ρ), skpke = s

Algorithm 2 PKE.Dec
Input: sk = s, ct = (c1, c2)
Output: Decrypted message m′

1: u′, v′ ← Decompress(ct)

2: mpoly ← v′ − ⟨s,u′⟩
3: m′ ← Compress(mpoly, 1)
4: return m′

Algorithm 3 PKE.Enc
Input: pk = (t, ρ), m, coins r
Output: Ciphertext ct = (c1, c2)

1: A ∈ Rk×k $←− U(ρ)
2: r1 ∈ Rk $←− Bη1(r)

3: r, e1 ∈ Rk $←− Bη2(r)

4: e2 ∈ R
$←− Bη2(r)

5: mpoly ← Decompress(m, 1)

6: u← rA+ e1

7: v ← ⟨t, r⟩+ e2 +mpoly

8: c1 ← Compress(u, du)
9: c2 ← Compress(v, dv)

10: return ct = (c1, c2)

Fig. 1: Simplified version of the PKE defined by ML-KEM. Public key equation,
ciphertext generation, and noisy message computation are highlighted.

2.3 Lattice Reduction-Based Hints

The most promising algorithms to solve LWE instances rely on lattice reduc-
tion techniques. To recover the secret key, several methods that also rely on
lattice reduction have been suggested. Side-channel information is assumed to be
available in the form of “hints” that can be used to reduce the hardness of the
resulting SVP instance in the primal attack. If the hardness of the SVP has been
sufficiently reduced, the secret key can be obtained using lattice reduction.

The framework of [4]. The framework of [4] defines four types of hints that
allow reducing the hardness of an LWE instance. To make use of these hints,
the authors suggest to first derive a DBDD instance8 from the LWE instance.
The DBDD instance can in turn be converted to an SVP instance similar to the
one derived in the primal attack. Hints are “integrated” into the DBDD instance,
reducing the computational complexity of the subsequently obtained SVP.

Let x = (e, s) denote the LWE secrets, v denote a known vector and l denote
a scalar value. Furthermore, the parameters k, σ and the lattice Λ are assumed
to be known to the attacker. The following hints are defined in [4]:

– Perfect hint: ⟨v,x⟩ = l
– Modular hint: ⟨v,x⟩ = l mod k
– Approximate hint: ⟨v,x⟩ = l +N (0, σ)
– Short vector hint: v ∈ Λ

While powerful for estimations and theoretical considerations, this method of
dealing with side-channel information has proven to be difficult to apply in
practice due to its long runtime in high dimensions. Further, it has been shown
8 For the definition, we refer to [4].

https://orcid.org/0000-0002-1649-4231
https://orcid.org/0000-0002-5822-2402
https://orcid.org/0000-0001-5824-7282
https://orcid.org/0000-0003-0972-1544

A Generic Framework for SCAs against LWE-based Cryptosystems 9

Algorithm 4 KEM.KeyGen
Input: Randomness seeds ρ, σ
Output: Public key pk, secret key sk

1: z
$←− U()

2: pk, skpke ← PKE.KeyGen()
3: h = H(pk)
4: sk← (skpke, pk, h, z)
5: return pk, sk

Algorithm 5 KEM.Encaps
Input: pk

Output: Ciphertext ct, shared secret
K

1: m
$←− U()

2: K̄, r← G((m,H(pk))
3: ct← PKE.Enc(pk, m, r)
4: K← KDF((K̄,H(ct)))
5: return ct, K

Algorithm 6 KEM.Decaps
Input: sk = (skpke, pk, h, z), ct
Output: Shared secret K

1: m′ ← PKE.Dec(skpke, ctpke)
2: K̄′, r′ ← G((m′, h))
3: ct′ ← PKE.Enc(pk, m′, r′)
4: b← Compare(ct, ct′)
5: if b then
6: return K = KDF(K′,H(ct))
7: else
8: return K = KDF(z,H(ct))
9: end if

Fig. 2: Simplified version of ML-KEM. G and H are hash functions.

that using BP may outperform the lattice-based approach in terms of required
information for full key recovery [7]. This is at least the case for the type
of decryption failure inequalities arising in attacks such as, e.g., [24,3,16,7,15]
(c.f., Section 2.5). In these attacks, the adversary obtains an inequality over the
noise term (5) and thereby over the secret key. In these attacks the inequality
coefficients are uncorrelated to the secret key coefficients.

The work of [5] extends the framework of [4] by adding hints that aim at
solving decryption failure inequalities. Given inequalities with coefficients that
are correlated to the secret key coefficients (arising, e.g., in [6,10]), [5] lowers the
remaining hardness considerably with very few hints (compared to the number
of inequalities used for full key recovery in [10]), but it seems like no end-to-end
key recovery has yet been performed in practice. To the best of our knowledge,
the method is not well suited for uncorrelated inequalities.

The improvements of [19]. In [19] methods for efficiently integrating perfect
hints and modular hints are introduced. For modular hints, their method simply
corresponds to reducing the dimension by the number of hints given. However,
for perfect hints, their approach decreases the difficulty of the underlying LWE
problem by more than one dimension per hint. They build up a so-called hint
matrix, where each column corresponds to the parameters [v, l]T of a perfect
hint. The larger the (absolute value of the) determinant of the lattice spanned by
these columns, the easier the transformed lattice problem becomes. If the entries
of (v, l) consist of uniformly random vectors from Fn+1

q , then the determinant
becomes very large and their approach performs surprisingly well. The approach
of [19] does not cover any of the other hints introduced by [4,5].

10 Julius Hermelink , Silvan Streit , Erik Mårtensson , and Richard Petri

2.4 Belief Propagation

BP is a message passing algorithm that aims at computing marginal distributions.
It was first described in [11] to decode Low-Density Parity Check (LDPC) codes,
and has been proposed for recovering the secret key in side-channel attacks in
the seminal work of [30]. In [16], it was shown that BP can be used to solve for
the secret key from decryption failure information. Their instantiation makes use
of a fully connected graph which is very unusual; however, due to the structure
of the processed information, computational improvements first presented in [24]
allow for a somewhat efficient (but not exact) computation. The work of [13]
explains how BP may be combined with lattice reduction.

Let (X0, . . . , Xn−1) = X be a vector of random variables with joint mass
function p(X). Let fi : Ii → [0, 1] ⊆ R such that p(X) =

∏n′

i=0 fi(Ii) for n′ < n
and Ii ⊆ {X0, . . . , Xn−1}. Then, BP aims at computing the marginals for p(X),
i.e., p(Xj) for all j, using a factor graph consisting of variable nodes for the Xj

and factor nodes that represent the relationship between variable nodes, i.e., the
fi. An edge between a variable node with index j and a factor node with index i
represents that fi has Xj as input.

BP passes messages from variable nodes to factor nodes and vice versa.
Messages represent probability distributions for a variable node. Variable nodes
have an associated prior; in the first step, the variable nodes send the priors to the
factor nodes. Given message mt,i,j , i.e., messages from variable node i to factor
node j at step t, the factor nodes compute the update for the i′-th variable node as
mt+1,j,i(x) =

∑
x,xi=x fj(x)

∏
i′ ̸=i mt,i′,j(x). In turn, the variable nodes compute

the update for the j-th factor node as mt+1,j′,i =
∏j′−1

j=1 mt,i,j ·
∏k

j=j′+1 mt,i,j .
After every step, i.e., after passing from variable nodes to factor nodes and vice
versa, the marginals can be computed by normalizing bi(x) =

∏
j µj,i(x).

2.5 Noise Term Leakage

Recall from (2.2) that the noise term (5), which occurs during the decryption,
contains information about the secret key. In fact, as vector, a coefficient of the
noise term can be written as

⟨vi,x⟩+ ci (6)

where x = (e, s) interpreted as integer vectors, vi ∈ Z2kn, and c ∈ Z. The terms
vi, ci are known to an adversary that has access to the ciphertext generation.
Several recent attacks, e.g., [24,3,16,7,14], exploit information contained in the
noise term by causing and observing decryption failures. A recent attack also
suggested targeting the noise term directly by performing a side-channel analysis
on the computation of the noisy message (4) [28].

Decryption failure attacks. Decryption failure attacks introduce an error
in the noisy message using either a chosen ciphertext [3,7,14], a fault [24], or a
combination of both [16]. This error causes the message recovery (see Section 2.2)

https://orcid.org/0000-0002-1649-4231
https://orcid.org/0000-0002-5822-2402
https://orcid.org/0000-0001-5824-7282
https://orcid.org/0000-0003-0972-1544

A Generic Framework for SCAs against LWE-based Cryptosystems 11

to fail if the noise term is positive. If a chosen ciphertext is used, the adversary
requires a side-channel to observe whether a failure is caused or the decryption
succeeds; the decapsulation always fails. If a fault or a combination of a chosen
ciphertext and a correcting fault is used, it suffices to observe the decapsulation
outcome – the fault circumvents the FO-transform. From each observed decryption
failure, the adversary obtains an inequality over the noise term and may derive
an integer inequality over the secret key of the form (6).

The attack of [28]. The work of [28] suggests targeting the noise term directly
during the computation of the subtraction in v − ⟨u, s⟩. Thereby, the adversary
obtains a probability distribution on the HW of the noisy message. The authors
then explain how to derive inequalities in the form of (6) from these distributions.
These can be solved using the algorithms presented in [16,8,13]. Additionally, the
authors present a new solver.

Solving inequalities using BP. Pessl and Prokop [24] first presented a
method based on Bayesian updating to solve for decryption failures. Subsequently,
Hermelink, Pessl, and Pöeppelmann [16] used BP to improve upon the number of
required inequalities to recover the secret key. Both methods fail if insufficiently
many inequalities are available, and no attempt to reduce the computational
hardness of the underlying lattice problem is made. Therefore, in contrast to
the framework of [4], these solvers do not give any estimates on the remaining
hardness to solve for the secret key with a certain number of inequalities. In
addition, the information available to the adversary through the public key
equation is not considered at all, and no incorrect inequalities may be present in
the data set. To circumvent these limitations, the work of [13] explains how to
deal with incorrect inequalities. It shows how to use the BP’s output to derive
an SVP instance from the public key equation (2) that is computationally easier
than in the primal attack.

The BP graph used in the method of [16,13] is fully connected, i.e., each
variable node is connected to every factor node. Variable nodes represent unknown
key coefficients of x = (e, s), and factor nodes represent inequalities. The variable
nodes are initialized to Bη1

, the distribution the key coefficients are sampled
from, which represents the initial belief into the key. In the first step, the
variable nodes send these prior distributions to the factor nodes. A factor node
representing an inequality

∑
i aixi ≤ b performs the following computation to

update. First, for each coefficient with index i, it computes the distribution of
the sum si′ =

∑
i ̸=i′ aixi based on the received beliefs. Then, for each possible

value c ∈ {−η, . . . , η}, the factor nodes compute the updated beliefs as

P(xi = c) = pP(xi = c | si ≤ b− c) + (1− p) P(xi = c | si > b− c) (7)

where p is the probability of the inequality being correct. These beliefs are sent
back to the variable nodes.

Even if the BP cannot fully recover the secret key, some key coefficients
can often be assumed to be fully recovered. The authors of [13] suggest sorting

12 Julius Hermelink , Silvan Streit , Erik Mårtensson , and Richard Petri

coefficients by entropy of the corresponding variable node and argue that all
coefficients up to the first incorrect should be assumed to be known to the
adversary (c.f., with Theorem 4). Alternatively, an adversary could only assume
coefficient with zero entropy to be fully recovered. Every fully recovered coefficient
of s allows reducing the dimension of the LWE instance by one. Every fully
recovered coefficient of e allows deriving a linear equation on one coefficient
of s that can in turn be used to reduce the dimension of the LWE problem.
The information on the remaining coefficients comes in form of probability
distributions. The most likely key according to these distributions serves as a
new target vector for the CVP, further reducing the computational hardness.

The greedy approach of [28]. The attack of [28] requires solving for the
secret key from decryption failure inequalities as well. The authors avoid the
computationally more expensive BP and present their own greedy approach. They
claim that their solver also requires fewer inequalities than BP based methods.
This claim stems from the comparison to [8]. However, [8] approximates several
computations to reduce the runtime, which also leads to an increased number of
inequalities that are required to recover the secret key.

Given a number of linear inequalities ⟨vi,x⟩ ≤ bi, i ∈ {1, . . . , r}. Also assuming
that we have knowledge about the distribution of the values in x. Let vi =
(vi,j)j∈{1,...,2kn}, let x′ denote the current guess for x, and define an action (j, c)
to be a tuple {1, . . . , 2kn} × Z such that x′

j + c ∈ Dom(xj). The greedy solver
from [28] then works as follows:

1. Initialize the current solution as the most likely guess x′ and choose an initial
value for κ, which is the number of indices to be updated.

2. For hint i, coefficient j, and changes c, compute the score si,j(c) for the
action (j, c) (which modifies x′[j] to x′[j] + c) as max(⟨vi,x

′⟩+ vi,jc− bi, 0).
3. Compute the overall score sj(c) for the action (j, c) as the sum over the

scores si,j(c) from all hints.
4. Perform the best κ actions (j, c) to x′ and adjust κ for the next step.
5. Repeat from Step 2 until a correct solution is found.

The key point here is that in Step 2 for a given action (j, c) and a hint i, the
action is scored as 0 if the inequality is fulfilled, and as the distance from being
fulfilled otherwise. Also notice that the relative score of an unfulfilled inequality
can be seen as ⟨vi,x

′⟩+ vi,jc, as bi is independent of j and c.

3 Distribution Hints

The framework of [4,5] and the work of [19] already explain how to deal with side-
channel information by integrating it into the underlying lattice problem. However,
several practical attacks, e.g., [25,23,12,24,16,13,28], rely on BP, Bayesian updat-
ing, or a greedy approach instead. In this section, we first discuss the limitations
of lattice-based hints, and then define distribution hints.

https://orcid.org/0000-0002-1649-4231
https://orcid.org/0000-0002-5822-2402
https://orcid.org/0000-0001-5824-7282
https://orcid.org/0000-0003-0972-1544

A Generic Framework for SCAs against LWE-based Cryptosystems 13

3.1 Limitations of Lattice-Based Hints

In many side-channel attacks, the adversary obtains information that cannot
be (fully) expressed using lattice-based hints. Previous definitions of hints do
not allow directly modeling several types of information encountered in practice.
Nevertheless, the framework of [4] can make use of information very generically,
beyond the hints defined in [4]. However, in many cases, this loses a large amount
of the information that has been obtained using the side-channel.

Distribution on Hamming weights. The prime example for information loss
is when having to model Gaussian distributions on HW leakage as Gaussian
distributions on values. Side-channel attacks often obtain information on the
HWs of secret values, where the error is usually assumed to follow a normal
distribution. Modeling these values as Gaussian’s on values cannot be done
without losing most information unless the value range is very small.

Decryption failures. Another example is the case of decryption failure inequalities.
These may be modeled as approximate hints, as shown in [4] and [3]. But this
process does lose some information, and it has also been shown (e.g., mentioned
in [7]) that the BP of [16,13] requires far fewer inequalities.

Correctness of hints. In many cases, hints come with a correctness probability
that cannot be expressed directly in previously defined lattice-based hints, and [4]
can only partly incorporate the information. For example, an adversary may
obtain a perfect hint, but this hint is only correct with a certain probability
p < 1 (see Section 5.1). The same problem occurs in the case of decryption
failure attacks – a fault or side-channel may often only cause or detect decryption
failures with a certain probability p. This is not captured in previous definition.
While [4] can still make use of such a hint, this discards most information except
for an updated mean and variance for the secret key distributions.

3.2 Distribution Hints

Given the limitations of lattice-based hints outlined in the previous section, we
now define a generalization that avoids these problems. Distribution hints allow
modeling all but one of the kinds of hints named above, formalize the approaches
taken in several previous works, and are compatible with a BP-based approach.
The public key equation (2) can be made use of by integrating the BP output
into the lattice instance following [13]. Let in the following x = (e, s) ∈ Z2n be
the secret of the LWE instance.

Definition 1. Let v ∈ R2kn, D be a probability distribution on R, such that

⟨v,x⟩ ∼ D. (8)

We then call the tuple (v,D) a distribution hint.

14 Julius Hermelink , Silvan Streit , Erik Mårtensson , and Richard Petri

It should be noted that the definition does not restrict the probability distribution
D or v in any form. However, in practice, solving distribution hints using BP is
limited to cases where v is relatively small in the 1-norm. We discuss a greedy
solver without these limitations in Section 4.2. For our implementations, D is
assumed to be discrete and v ∈ Z2kn.

3.3 Expressing Lattice-Based as Distribution Hints

Distribution hints may not only model previously defined lattice-based hints
except for short vector hints, but also model side-channel information occurring in
practice in previous attacks. In the following, we denote the resulting distribution
hint as (v,D).

Proposition 1. Distribution hints allow expressing perfect, approximate, and
modular hints.

Proof. A perfect hint of the form ⟨vp,x⟩ = l can simply be expressed with
v = vp and D = {l : 1}. An approximate hint ⟨va,x⟩ = l +N (0, σ) for some
standard deviation σ can naturally be written using v = va and D = N (l, σ), and
it can be seen clearly, that our definition is a generalization. A modular hint
⟨vm,x⟩ ≡ l mod m can be expressed as v = vm, with D being the distribution
that is uniform on all values that are l modulo m and 0 everywhere else.

Proposition 2. Distribution hints allow expressing decryption failure inequali-
ties as well as noise term leakage.

Proof. Decryption failure inequalities ⟨v≤,x⟩ ≤ b can be modeled with the
inequalities coefficients being v = v≤ and D the distribution that is uniform on all
values smaller or equal than b and 0 everywhere else. Noise term leakage, can
be expressed in a similar fashion, just that the distribution D directly expresses
the obtained leakage on the noise term.

For example, given a measurement of ⟨v,x⟩ following a HW distribution DHW, we
set D to be the corresponding value distribution weighted with the appropriate
noise term prior (i.e., considering that the noise term is non-uniform).

4 Solving Distribution Hints

The use of a generalized definition is limited unless these hints can also be solved.
In the following, we discuss two different (but related) approaches to solving
distribution hints, i.e., obtaining the secret key x from several hints.

4.1 Solving Distribution Hints using BP

We now give a BP instantiation for solving for the secret key. While our algorithm
in theory works for arbitrary distribution hints, it is limited to hints with small
v in practice due to increasing computational complexity. In addition, depending

https://orcid.org/0000-0002-1649-4231
https://orcid.org/0000-0002-5822-2402
https://orcid.org/0000-0001-5824-7282
https://orcid.org/0000-0003-0972-1544

A Generic Framework for SCAs against LWE-based Cryptosystems 15

on the types of hints, it may run into numerical problems for instances with
a large number of hints. Our algorithm itself is a generalization of the BP
used to solve decryption failures in [16,13]. Instead of factor nodes representing
inequalities, our factor nodes represent any distribution hint. Thus, the main
difference to [16,13] and the dependence of the algorithm on distribution hints,
lies in the computations in the factor nodes.

Graph, variable nodes, priors, and messages. Similar to [16,13], our graph
consists of a variable node for every unknown key coefficient and a factor node for
every hint. A message is a belief (can be thought of as a probability distribution)
about the value of a single coefficient of the secret x. Initially, all messages
at variable nodes are set to the binomial distribution Bη that the secret key
coefficients are sampled from in ML-KEM.

A hint is represented by a single factor node that takes care of updating the
belief into all coefficients according to this hint based on the current belief, i.e.,
based on the messages arriving at the factor node. The variable nodes in turn
combine the beliefs coming from the factor nodes. This means that a variable
node j receives beliefs from all factor nodes concerning the j-th coefficient of x.
The message from a variable node with index j to a factor node with index i is
the product over all beliefs on xj leaving out the i-th message. Thus, in the next
step, the factor node updates the probabilities for all coefficients of x based on
the combined beliefs from all other factor nodes.

Factor nodes Fix a hint (v,D), i.e., we have ⟨v,x⟩ ∼ D, where x = (e, s) is
the secret, and a step t+ 1. For each coefficient j, there is precisely one message
coming from the j-th variable node, mt,j,i representing the current belief in
the j-th coefficients of x. To compute the outgoing messages mt+1,k,i directed
at variable node k, we fix one coefficient and assume the others to follow the
distribution given by the respective incoming message mt,j,i and that we have
no information on xk.

Theorem 1. Given the hint (v,D), i.e., ⟨v,x⟩ ∼ D, and messages mt,j,i for
some step t, coefficient indices j, and factor node index i, the probability of xk

being x′
k, k ∈ {1, . . . , 2kn}, is equal to

P (xk = x′
k | xj ∼ mt,j,i ∀j ̸= k) (9)

=
∑

a∈supp(D)

PD(a)P (
∑
j ̸=k

vjxj = a− vjx
′
j | xj ∼ mt,j,i ∀j ̸= k). (10)

Proof. In the following, we assume that xj ∼ mt,j,i ∀j ≠ k. Given the distribu-
tions of xj for j ̸= k, we get a distribution on the partial sum sk =

∑
j ̸=k vjxj .

The hint, by definition, gives a distribution on s =
∑

j vjxj . Under the assump-
tion of no knowledge on xk, these random variables are independent. However,
given that vk is known, sk and s together determine xk. Formally, we have that
for a ∈ supp(D) = supp(s), b ∈ supp(sk)

P (xk = x′
k | s = a, sk = b) = P (xk = x′

k | vkxk = a− b) = Ia−vkx′
k
(b) (11)

16 Julius Hermelink , Silvan Streit , Erik Mårtensson , and Richard Petri

where Ia−vkx′
k

denotes the indicator function, i.e., is 1 if and only if b = a− vkx
′
k.

Now by the law of total probability applied to the joint distribution of s and sk,
we get

P (xk = x′
k) =

∑
a∈supp(D)
b∈supp(sk)

P (xk = x′
k | s = a, sk = b)P (s = a, sk = b) (12)

which given the independence assumption and (11) is∑
a∈supp(D)

P (sk = a− vkx
′
k)P (s = a) (13)

which gives (9).

Accordingly, for each coefficient with index k of x the corresponding factor node
first computes the probability distribution of

sk =
∑
j ̸=k

vjxj (14)

from the current belief, i.e., from the incoming messages. This can be done
efficiently in the Fourier domain using techniques similar to [24,16]. The factor
node then computes the updated belief for the j-th coefficient as

mt+1,j,i(x
′) =

∑
a∈supp(D)

PD(a)P (sj = a− vjx
′) ∀x′ ∈ Dom(xj) (15)

where mt+1,j,i is the computed updated message and Dom(xj) is the domain for
secret key coefficients.

Using the public key equation. The work of [13] explains how to integrate
the BP output in the underlying instance. Their work is directly applicable to
our approach, and we employ their techniques.

Limitations. Unfortunately, our BP instantiation cannot solve for the secret key
from arbitrary distribution hints, but is limited to cases where v is rather small
and not too many hints in total are present. We note that the first condition
is often not a restriction, as coefficients in side-channel attacks on lattice-based
KEM are often small; this is because otherwise reductions occur that greatly
decrease the information content and thus large equations are often not of use in
the first place. Our greedy solver avoids some of these limitations. Note that if
the secret x is discrete, the distribution D can always be assumed discrete as the
support of ⟨x,v⟩ is.

https://orcid.org/0000-0002-1649-4231
https://orcid.org/0000-0002-5822-2402
https://orcid.org/0000-0001-5824-7282
https://orcid.org/0000-0003-0972-1544

A Generic Framework for SCAs against LWE-based Cryptosystems 17

Large v. The computation in (14) can be carried out efficiently if v has reasonably
small coefficients as shown in [16]. However, their computation using the two-
tree approach from [24] has some disadvantages, and we replace it by a simple
two-pass algorithm. Nevertheless, if v has large coefficients, the sj can take on
very large coefficients and the computation of the probability distribution of sj
in (14), becomes inefficient and the memory consumption increases. Therefore,
our method is currently limited to cases where v is reasonably small. In our
experiments, the sum of sj was usually limited to value ranges of length of up to
214 coefficients, each represented by a 64 bit float.

An approach for larger v could be to first only determine the range of
coefficients, i.e., compute the probabilities for intervals of coefficients. As soon
as intervals can be ruled out as their probability is close to zero, the intervals
for certain coefficients can be refined. This essentially corresponds to iteratively
computing upper and lower bounds until the probabilities for actual values can
be computed. Thereby, the computed distributions for sj stay small at all times,
as only the probabilities for a certain range have to be computed. We did not
implement such an approach, as we are not aware of any attack that requires
large v in this context, and because our greedy solver presented in the next
section does not share this limitation with the BP.

Number of hints. The number of messages arriving at a variable node is precisely
the number of factor nodes, i.e., the number of hints. To compute the message
for factor node i, these messages are (pointwise) multiplied with each other,
omitting the incoming message i. Thus, for m hints, the variable nodes compute
the product of m − 1 floats for each potential value of each coefficient. If m
is too large and many messages are close to uniform, numerical errors prevent
correct updating. This limitation can be circumvented by a determined attacker:
using larger floats (we use 64-bit) decreases performance, but this may in turn
be circumvented by more cores (scales up to m threads). Moreover, ignoring
messages that hold very little information could improve upon this problem by
reducing the number of beliefs that are being multiplied. However, in the cases
with a large number of hints or large v, it is most likely beneficial to employ the
greedy solver introduced in the next section.

4.2 A Greedy Approach to Solving Hints

The work of [28] proposes to use a greedy approach instead of BP in the context of
solving decryption failure inequalities. We explain how a greedy approach can be
used to solve distribution hints as well. When applying the solver to decryption
failure inequalities, the solver of [28] is (almost) a special case of our solver.
Finally, we show that both greedy solvers can be considered an approximated
version of the BP-based approach.

The greedy solver. Let (vi,Di) be distribution hints, vi = (vi,j)j∈{1,...,2kn},
denote the current guess for x as x′, and define an action (j, c) to be a tuple

18 Julius Hermelink , Silvan Streit , Erik Mårtensson , and Richard Petri

{1, . . . , 2kn} × Z such that x′
j + c ∈ Dom(xj). Our greedy solver for distribution

hints works as follows:

1. Initialize the current guess with the most likely key x′ and choose an initial
value for κ.

2. For hint i, coefficient j, and all potential changes c compute the score si,j(c)
for the action (j, c) as

si,j(c) =
∑

a∈suppDi

PDi(a)|v⊤
i x

′ + vi,jc− a|. (16)

3. Compute the overall score sj(c) for the action (j, c) as sum over the scores
si,j(c) from all hints.

4. Perform the best κ actions (j, c) (at most one per coefficient) to x′ and adjust
k for the next step.

5. Repeat from Step 2 until the correct solution is found.

In step 4, we select the best action for each coefficient and then only perform one
action per coefficient. Clearly, performing several actions for the same coefficient
would have already been expressed (and been assigned a score) in another single
action. We empirically chose to adjust k by starting with k = 2n and halving it
in every step, i.e., k =

⌈
2n

2imod log2(2n)

⌉
. Note that fixed values for k lead to less

favorable convergence properties.

Relation to [28]. The solver of [28] (see Section 2.5) is only defined for decryption
failure inequalities. These, however, can be modeled as distribution hints, see
Lemma 2. Applying our greedy solver to these inequalities yields an algorithm that
is very close to the algorithm of [28]. To see that this is close to a generalization
of [28] for inequalities v⊤

i x ≤ bi: set Di to be the distribution that is 0 for all
values smaller than bj and uniform otherwise:

Theorem 2. For an inequality ⟨vi,x⟩ ≤ bi, a coefficient j, current guess x′, the
changes with best score are the same for both algorithms if no change with score
0 in the algorithm [28] exists.

Proof. Let s = v⊤
i x

′+ vi,jc. Then s > bi as no change has score 0. Then, because
s > a for all a ∈ suppDi, our algorithm computes

si,j(c) =
∑

a∈suppDi

PDi
(a)|s− a| = 1

| suppDi|
∑

a∈suppDi

(s− a) (17)

= s− 1

| suppDi|
∑

a∈suppDi

a (18)

where the sum is independent of j and c. Therefore, the relative score is simply s
as in the algorithm of [28] for all coefficients, where all scores are non-zero.

For changes which do fulfill the inequality, our algorithm ranks those further away
from the bound higher, while [28] does not differentiate between those. Changes
very close to the boundary might actually not fulfill the inequality because we
only used an approximation for the distribution of the partial sum (14).

https://orcid.org/0000-0002-1649-4231
https://orcid.org/0000-0002-5822-2402
https://orcid.org/0000-0001-5824-7282
https://orcid.org/0000-0003-0972-1544

A Generic Framework for SCAs against LWE-based Cryptosystems 19

Relation to belief propagation. Both BP and the greedy algorithms compute
how changes affect the probability of a solution with respect to the hints. This
asks for whether we can conceptually understand where the differences lie. In
fact, the BP and the greedy solver are closely related: by using an approximation,
the greedy algorithm avoids costly computations of probability distributions:

Theorem 3. Our greedy solver is the algorithm that results from replacing the
sum distribution by the distance to the most likely value (of the sum), collapsing
the probability distributions to the most likely value after each step, and updating
only a limited number of variables.

Proof. For a value x′
j + c, a factor node updates the belief by computing the

distribution of vjc+ vjx
′
j +

∑
j′ ̸=j vj′xj′ by computing∑

b

PD(vjc+ vjx
′
j + b)Psum(b) =

∑
a

PD(a)Psum(a− vjc+ vjx
′
j) (19)

for given probability distributions on all j′ ≠ j where Psum denotes the measure
belonging to the distribution of

∑
j′ ̸=j vj′xj′ . The greedy solver simply approxi-

mates
∑

j′ ̸=j vj′xj′ by its most likely value, i.e.,
∑

j′ ̸=j vj′x
′
j′ for the current best

guess x′ and computes
∑

a PDi
(a)|v⊤

i x
′ + vi,jc − a|. In addition, the “variable

nodes” do not keep track of scores, but instead collapse to the most likely value,
i.e., choose the values with the lowest scores to update the current guess.

While this approximation greatly increases the performance in terms of computa-
tional effort, it also decreases the performance in terms of required number of
hints. Note that the first two limitations discussed in Section 4.1 do not apply
for the greedy solver. Thus, the greedy solver is perfectly suited for situations
where v is large, many hints are present, or a very fast (and easy to implement)
solver is required. In this sense, BP and greedy solver complement each other;
both are in turn complementary to lattice-based solvers.

Using the public key equation. The work of [13] shows how to use the BP
output to decrease the computational hardness of the lattice problem that can
be derived from the public key equation (2) in the primal attack. We show that
the outputs of our greedy algorithm can be used similarly: The probabilities
computed during the BP corresponds to action scores in the greedy algorithm.
In fact, the action scores are approximately proportional to the beliefs, as shown
in Theorem 3. Thus, the score for no change, i.e., the score sj,0, is an (inverse)
approximation of the probability of the guess for xj being correct. Using this
metric, we may therefore define correct and recovered similarly to the BP setting:

Definition 2. Given a key x = (x1, . . . , xn), current guess x′, and scores sj,0
for j ∈ {1, . . . , n}, we call the j-th coefficient correct if xj = x′

j. Let w.l.o.g.
sj,0 ≤ sj+1,0 for all j. We call a coefficient with index j recovered if xj′ = x′

j′ for
all j′ ≤ j.

20 Julius Hermelink , Silvan Streit , Erik Mårtensson , and Richard Petri

We may assume that the adversary knows the number of recovered coefficients
using an argument first stated informally in [13] for BP-based solvers. We formalize
these arguments and state them in the context of our greedy solver:

Theorem 4. Let A be an algorithm that recovers the secret key and checks for
its correctness from the guess and the recovered coefficients given by the greedy
solver, and let 2kn be the dimension of the secret. Given the scores for zero
actions for every coefficient, we may then recover the secret without knowledge of
the recovered coefficient with at most a factor of 2kn− 1 increase in runtime.

Proof. Let x = (e, s) ∈ {−η, . . . , η}2kn, x′ be the guess given by the greedy solver.
Assume w.l.o.g. that the zero scores sj,0 for j ∈ {1, . . . , 2n} fulfill sj,0 ≤ sj+1,0

(otherwise, sort the key coefficients by zero scores), and let r be the number of
recovered coefficients, i.e., xj = x′

j for j ∈ {1, . . . , r}.
For every r′ ∈ {1, . . . , n}, the adversary assumes that r′ coefficients have been

recovered, assigns the most likely value to the first r′ coefficients, and runs A
with the best guess and these r′ recovered coefficients. Now A outputs either the
correct key or fail. But by premise, A recovers the secret key as soon as r′ = r,
which happens after at most 2kn− 1 iterations.

Using the recovered coefficients and the best guess for the remaining coefficients,
we may now directly apply the technique of [13]; see Section 2.5 for a summary.

Limitations. The greedy solver in general requires more hints than the BP-
based solver. This does not come as a surprise, as the greedy solver computes
an approximation to the probabilities computed during the BP. However, for a
large number of hints, the BP becomes numerically infeasible, while the greedy
solver can still recover the secret key.

Improving convergence. The greedy solver has no knowledge of the priors
for the variable nodes except that it start of with the most likely key guess. If
the distribution D is such that its most probable values are not concentrated
around the expected value, the greedy solver’s performance thus quickly decreases.
For example, given a distribution arising from HW leakage with small standard
deviation, we get isolated spikes around values with HW with high probability.
Given that the key coefficients, and thus the sum ⟨v,x⟩, are centered around 0,
these values have very different probabilities of occurring. In contrast to the BP,
the greedy solver does not implicitly fully make use of this information. Instead,
starts with guess 0, but as the guess is updated, so are the distances and the
information about the prior gets lost. In these cases, it is advantageous to factor
the distribution of the sum into the distribution of D. One might be tempted to
do this for the BP as well, but this in fact considers the same information twice
and leads to a degradation in performance.

Factoring in the actual distribution of ⟨v,x⟩ alone can still be suboptimal,
instead convoluting the distribution with a uniform distribution gives better
results. Intuitively, considering the variable nodes priors in D leads to the key

https://orcid.org/0000-0002-1649-4231
https://orcid.org/0000-0002-5822-2402
https://orcid.org/0000-0001-5824-7282
https://orcid.org/0000-0003-0972-1544

A Generic Framework for SCAs against LWE-based Cryptosystems 21

coefficient’s distribution to be considered (more); convoluting with a uniform
distribution before doing so reduces the effect. In Section 5.2, we make use of
this strategy for the greedy solver, and in Appendix B we provide an evaluation
of the uniform distribution width

5 Applications and Evaluation

Several previous attacks may be improved by modeling the side-channel informa-
tion the adversary obtains as distribution hints and employing our solver. We
first model several types of noise term leakage in ML-KEM and compare our
solvers against the leaky LWE framework. Thereby, we improve upon a recent
attack [28] on the subtraction during ML-KEM’s decapsulation. We also describe
how to make use of leakage on single coefficients of ⟨u, s⟩ which could improve
upon previous attacks on the inverse NTT or lead to new attacks. Subsequently,
we evaluate our solvers on artificially generated perfect and approximate hints.

Implementation and experimental setup. To simulate ML-KEM, we used PQ-
Clean [18]. The solvers are written in Rust (available as Python modules). All
results for our solvers and the solvers of [13,28] were obtained as mean over 5
runs per setting. Let BIKZ denote the estimated smallest β such that BKZ-β
recovers the secret key. To compare to [4], we used a single run of the estimator
per setting and recorded the computational hardness after every 100 hints. This
is possible because the [4] integrates hints sequentially; in addition, the variation
in the resulting BIKZ is much smaller. We only provide comparisons for the
selected setting because merely estimating the computational hardness using [4]
requires far more time than fully recovering the secret key using our framework.

For the BP, we define an iteration to be passing messages from variable nodes
to factor nodes and vice versa. For the greedy solver, an iteration is the number
of updates until the number of applied actions is at 2kn again. To keep runtimes
reasonable, we abort the solvers if BIKZ have not improved over 10 iterations.
We also abort if more than half of the coefficients are correct (in that case the
public key equation (2) allows recovering the remaining kn coefficients) or if the
BIKZ is below 100 (shown by a dashed red line in the figures). We report on
the minimum BIKZ achieved after any number of iterations. Aborting at ≤ 100
BIKZ leads to a slight bias in the mean BIKZ to the upper end. Further, we
rounded approximate hints to the nearest integer for our solvers; improving upon
our implementation in this regard could further improve our results.

It should be noted that there usually is an interval of number of hints for which
our solvers can in some cases fully solve for the secret key while it completely fails
in other cases. Thus, whenever it does not impact readability, we additionally
plot the area between minimum and maximum.

5.1 Perfect and Approximate Hints

To evaluate the performance on (erroneous) perfect and approximate hints, see
Figure 3, we sample either uniformly random (over {− ⌊q/2⌋ , . . . , ⌊q/2⌋}) or

22 Julius Hermelink , Silvan Streit , Erik Mårtensson , and Richard Petri

0.6 0.7 0.8 0.9 1
0

200

400

600

Correctness [Probability]

Se
cu

ri
ty

[B
IK

Z]

(a) Perfect/Uniform

0.6 0.7 0.8 0.9 1
0

200

400

600

Correctness [Probability]

1600 (BP)
1600 (GR)
2500 (BP)
2500 (GR)
5000 (GR)

10 000 (GR)

(b) Perfect/Binomial

0 5 10 15 20
0

200

400

600

Noise [σ]

Se
cu

ri
ty

[B
IK

Z]

(c) Approximate/Uniform

0 5 10 15 20
0

200

400

600

Noise [σ]

1600 (BP)
1600 (GR)
2500 (BP)
2500 (GR)

(d) Approximate/Binomial

Fig. 3: Evaluation for perfect and approximate hints for different number of hints.
Coefficients are either uniform over

{
⌊−q

2 ⌋, . . . , ⌊ q
2⌋
}

or sampled from B5.
.

binomially (η = 5) distributed coefficients. For perfect hints, we additionally
simulate erroneous hints. This means that we sample a hint ⟨v,x⟩ = b, but with
probability p, we replace b by a uniformly random sampled value. The BP is able
to succeed with fewer hints than the greedy solver as well as handle larger noise
levels. This relates well to the greedy being an approximation of the BP. For
error-free perfect hints, our solvers require more hints than [4] but also greatly
reduce the runtime ([19] can currently only handle hints on s). For modular
hints see Appendix C. Figure 4a shows the comparison to [4] for σ = 1.0 with
approximate hints. In case of uniform coefficients with small σ, the greedy solver
requires more hints to reach β ≈ 100 but can then quickly fully recover the secret
key, while [4] barely diminishes further. Furthermore, our solvers scale better
with increasing σ; for example, with σ = 10 (see Figure 4b), we can fully recover
the secret key with 2300 hints while [4] still requires β ≈ 140. For approximate
hints with coefficients sampled from Bη, our framework can recover the secret
key in practice with fewer hints than [4] requires in order to reach β ≈ 300. We
thus expect our method to be favorable in the case of approximate hints in most
real-world scenarios.

5.2 Noise Term Leakage

The hints defined in Section 3.2 naturally occur in various attacks on LWE-based
KEMs. These schemes rely on recovering the message from a noisy polynomial,

https://orcid.org/0000-0002-1649-4231
https://orcid.org/0000-0002-5822-2402
https://orcid.org/0000-0001-5824-7282
https://orcid.org/0000-0003-0972-1544

A Generic Framework for SCAs against LWE-based Cryptosystems 23

1,000 2,000
0

200

400

600

Hints [#]

Se
cu

ri
ty

[B
IK

Z]

(a) Noise σ = 1

1,000 2,000 3,000
0

200

400

600

Hints [#]

Uniform (GR)
Uniform ([4])
Binomial (BP)
Binomial (GR)
Binomial ([4])

(b) Noise σ = 10

Fig. 4: Comparison to [4]: Remaining computation hardness in BIKZ per number
of applied hints for approximate hints with σ ∈ {1, 10}. Coefficients are either
uniform over

{
⌊−q

2 ⌋, . . . , ⌊ q
2⌋
}

or sampled from B5.

and the noise term depends on the secret key and on both ciphertext components.
Given the noise term and the ciphertext, the secret key can be obtained by
solving a system of affine linear equations with small coefficients. Any kind of
probabilistic information on a coefficient of the noise term can be expressed using
our definition of hints. In this section, we analyze noise term leakage, compare
against previous specialized solvers, and improve upon known attacks.

Recall from Section 2.2 that the i-th error term may be written as bi =
⟨ai,x⟩+ ci, where x ∈ Z2kn is the flattened key and ai ∈ Z2kn, ci ∈ Z are known
to the adversary. Given information (in the form of a probability distribution)
on any coefficient of the noise term bi, we may thus derive a distribution hint.

When doing so and using the greedy solver, we should always consider the
prior distribution of bi which we denote as Pprior. In the case of the BP this
information is already contained in the variable node priors. Thus, it works best
if the hint distribution does not contain this information. We therefore construct
slightly different hints depending on which solver we use. In some cases, we
observed that employing the same strategy with the BP prevents convergence
against an incorrect value that is more likely given the distribution hints but
very unlikely given just the variable node priors. These cases only appear if an
insufficient number of hints is present.

Exploiting decryption failures. Our proof regarding the relation between
BP and greedy solver seems contradictory to the results of [28]. In their work,
the authors claim that their greedy solver outperforms BP-based solvers. Thus,
we started by comparing the greedy solver of [28] against the back-then state-
of-the-art BP-based solver of [13]. We do not yet directly compare against our
solver because the attack of [28] outputs inequalities that already suffer from
information loss – for a fair comparison we use the same inequalities as in [28]. In
the next section, we simulate comparable leakage and show that directly working
with distribution hints is advantageous (see Figure 7).

24 Julius Hermelink , Silvan Streit , Erik Mårtensson , and Richard Petri

20,000 25,000 30,000 35,000
0

0.2

0.4

0.6

0.8

1

Inequalities [#]

Su
cc

es
s

R
at

e Reference (BP [13])
Reference (GR [28])
Optimized (BP [13])
Optimized (GR [28])

Fig. 5: Success rate per number of inequalities obtained in [28] for the greedy
approach of [28] and the BP of [13]. The figure shows two settings of [28]: Targeting
the reference and an optimized implementation of ML-KEM respectively.

The results of our comparison are shown in Figure 5. It can be seen that
the BP-based solver of [13] outperforms the greedy solver of [28] in terms of the
required number of inequalities. We thereby disprove the claim in [28] that their
greedy solver outperforms BP solvers by a factor of two. It should be noted that
the greedy solver can be improved by several techniques. However, most of these
improvements should translate to the BP of [13] as well [22] . Given Theorem 3,
we argue that the greedy solver’s disadvantage in this regard is inherent. It should
be noted that deriving distribution hints instead of inequalities and applying our
solvers greatly reduces the number of hints needed to recover the secret.

Value leakage and comparison to [4]. We now first evaluate the performance
of our solver in the case of value leakage, i.e., assuming that an adversary obtains
the value of bi +N (0, σ). This can be modeled as approximate hint9 and both of
our solvers and [4] may be used.

We simulate this type of leakage for σ = 1.0 and compare both our solvers
against [4]. Note that running the lightweight version of [4] for estimation in
many of our experiments took longer than fully recovering the secret key using
our solvers. Also, in practice, an adversary would usually obtain HW leakage,
which cannot be targeted by [4] at all (see next section).

The results are shown in Figure 6: The framework of [4] has a clear advantage
for a small number of hints, but the reduction in security gradually declines with
an increased number of hints. Our framework achieves better results starting from
about 1400 hints. For an adversary that can for some reasons only obtain a very
small number of hints, but has exceptionally large computational resources, [4]
could be advantageous. However, we assume that recovering a few more hints
is in practice almost always easier than obtaining computational resources far
exceeding a public attack (i.e., running BKZ with β ≈ 300). In addition, in
practice, the adversary will obtain HW leakage in almost all cases, which cannot
be modeled using lattice-based frameworks.

9 But the equation the hints originate from is affine linear.

https://orcid.org/0000-0002-1649-4231
https://orcid.org/0000-0002-5822-2402
https://orcid.org/0000-0001-5824-7282
https://orcid.org/0000-0003-0972-1544

A Generic Framework for SCAs against LWE-based Cryptosystems 25

1,000 2,000 3,000
0

200

400

600

Hints [#]

Se
cu

ri
ty

[B
IK

Z]
GR
BP
[4]

Fig. 6: Comparison to [4]: mean computation hardness in BIKZ per number of
applied hints for noise term value leakage for σ = 1.

HW leakage and comparison to [28]. The attack of [28] derives inequalities,
but, in fact, targets the subtraction of v − ⟨u, s⟩ (see Section 2.5) for ciphertexts
where the message m is zero. Thereby, the attack obtains the HW of bi directly.
The authors of [28] derive inequalities from the HWs distributions. Instead, we
may also directly express the information as distribution hints, which allows
recovering the key with far fewer ciphertexts/traces.

If we obtain the Hamming weight of bi, for any value w we get that the
posterior distribution Ppost(w) is equal to

P (⟨ai,x⟩ = w | HW(⟨ai,x⟩+ ci) = h) (20)
∝ P (HW(⟨ai,x⟩+ ci) = h | ⟨ai,x⟩ = w)Pprior(⟨ai,x⟩ = w) (21)

and thus

Ppost(w) =

{
Pprior(⟨ai,x⟩ = w) if HW(w + ci) = h,

0 otherwise.
(22)

Similarly, we get that, if the Hamming weight of bi follows a distribution DHW,

Ppost(w) ∝ PDHW(w + ci)Pprior(⟨ai,x⟩ = w). (23)

We did not perform any ciphertext filtering to reduce the size of ci; similar
to the results in previous work on decryption failure inequalities, we expect the
results to be vastly better with ciphertext filtering in place. For the greedy solver
we factored in the prior convoluted with a uniform distribution with width 150
(c.f., Section 4.2). Figure 7 shows the results of applying our solvers to HW
leakage for different noise levels. For full key recovery, we require half as many
chosen ciphertexts compared to [28].

Leakage on ⟨u, s⟩. Another location that may leak information on the noise term
is the computation of ⟨u, s⟩. Previous attacks [25,12] that target the inverse NTT
may recover such leakage. These attacks use BP to combine leakage in different
layers of the NTT. It is well understood that fully recovering coefficients of the

26 Julius Hermelink , Silvan Streit , Erik Mårtensson , and Richard Petri

0 1 2 3 4 5
0

200

400

600

Noise [σ]

Se
cu

ri
ty

[B
IK

Z]

5000 (BP)
10000 (BP)
20000 (BP)
20000 (GR)
30000 (GR)
100000 (GR)

Fig. 7: Remaining computational hardness after applying our solver given HW
leakage on the noise term in BIKZ per standard deviation.

0 1 2 3 4 5
0

200

400

600

Noise [σ]

Se
cu

ri
ty

[B
IK

Z]

5000 (BP)
10000 (BP)
20000 (GR)
30000 (GR)

Fig. 8: Remaining computational hardness after applying our solver given HW
leakage on ⟨u, s⟩ in BIKZ per standard deviation with ciphertext filtering.

first layer allows deriving a lattice problem from which s can be recovered [12].
Using our method, fully recovering coefficients from the last layer gives another
angle of attack. In fact, this results in value leakage on the noise term, and the
evalaution in Section 5.2 applies.

An adversary could also target the summation of the inner product or target
the inverse NTT with the chosen ciphertext used in [12]. In this case, they could
obtain HW or value leakage on ⟨u, s⟩. In the case of HW leakage, the distribution
for a hint can be computed by considering that

Ppost(w) ∝ PDHW(vi − w − ci)Pprior(⟨ai,x⟩ = w). (24)

For our evaluation, we only took coefficients into account for which both values
of ci = (∆v + e2)i and vi are small. Thereby, we greatly decrease the value
range for ⟨u, s⟩i = vi − w − ci, resulting in (simulated) measurements with a far
higher information content. Figure 8 shows the results for leakage on ⟨u, s⟩ for
ci = vi = 0.

5.3 Comparison of Solvers

The greedy solver has several advantages: it is several orders of magnitudes
faster, it overcomes the limitation of large coefficients, and it is less impacted by

https://orcid.org/0000-0002-1649-4231
https://orcid.org/0000-0002-5822-2402
https://orcid.org/0000-0001-5824-7282
https://orcid.org/0000-0003-0972-1544

A Generic Framework for SCAs against LWE-based Cryptosystems 27

numerical limitations. The latter two cases cause the greedy solver be able to
handle several types of information that the BP cannot solve. However, the BP
requires fewer hints in various settings.

Runtime. The BP usually finishes within a few hours on a single core and scales
very well with the number of cores (see Appendix D) Thus, in practice, for non-
corner cases, the key can often be recovered in a few minutes on widely-available
hardware. However, in corner cases, we also observed runtimes of a day on 20
cores. This is unlikely to prevent determined adversaries, especially as it is highly
parallelizable; though, it may cause difficulties in designing attacks. The greedy
solver is usually done in a few minutes even on very few cores.

Lattice-based solvers. Both solvers require more hints in noise-/error-free settings
than lattice-based solvers. However, the drastically reduced runtime could still
cause them to be favorable for a real-world attacker when compared to [4],
and [19] currently only applies to perfect and modular hints on s. In the case of
approximate hints, the BP outperforms [4] but cannot handle large coefficients.
As soon as information becomes erroneous, non-normal noisy, or information is
not obtained in the value leakage model, only our solver can be used.

6 Conclusion

In this work, we provide a framework to handle generic probabilistic side-channel
information in lattice-based cryptography. We show that distribution hints are a
generalization of almost all the hints previously defined for lattice-based frame-
works. Further, we prove that solvers used in practice are special cases of our
algorithms and explain the relation between these algorithms. Our evaluations
show that several practical attacks as well as artificial settings benefit from
the usage of distribution hints and our solving methods. In short: Whenever
information is erroneous or noisy, our framework has an advantage and is often
even the only viable option.

Future work and open problems. We cannot yet give any precise relation between
information content and convergence of our solvers. In previous work [13], some
evaluation in this direction has been provided for decryption failure information.
But the relation between the information content and convergence is not yet
fully understood. The convergence of cyclic BP seems to be particularly hard to
analyze, and, in our case, the BP graph is additionally fully connected.

Another open question is whether the connection between greedy algorithms
and BP holds more generally. Our greedy algorithm can be seen as a “collapsed”
BP. In our opinion, it is an interesting question under which circumstances we
can derive a BP instantiation from a greedy algorithm.

Acknowledgments. We would like to thank the authors of [28], in particular Thales
Paiva, for the helpful discussion and for granting us access to their source code. We
would also like to thank Daniel Apon his helpful comments and for pointing out

28 Julius Hermelink , Silvan Streit , Erik Mårtensson , and Richard Petri

an inaccuracy in an earlier version of this work. Silvan Streit was supported by the
Bavarian Ministry of Economic Affairs, Regional Development and Energy, in the project
“Trusted Electronics Center Bavaria”. Erik Mårtensson was funded by the Wallenberg
AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

Disclosure of Interests. The authors have no competing interests to declare that are
relevant to the content of this article.

References

1. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015), http://www.degruyter.com/view/j/
jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml

2. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,
J.M., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS-KYBER. Tech. rep., National
Institute of Standards and Technology (2020), available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions

3. Bhasin, S., D’Anvers, J.P., Heinz, D., Pöppelmann, T., Van Beirendonck, M.:
Attacking and defending masked polynomial comparison. IACR Transactions on
Cryptographic Hardware and Embedded Systems 2021(3), 334–359 (2021). https://
doi.org/10.46586/tches.v2021.i3.334-359, https://tches.iacr.org/index.php/TCHES/
article/view/8977

4. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side information:
Attacks and concrete security estimation. In: Micciancio, D., Ristenpart, T. (eds.)
Advances in Cryptology – CRYPTO 2020, Part II. Lecture Notes in Computer
Science, vol. 12171, pp. 329–358. Springer, Cham, Switzerland, Santa Barbara, CA,
USA (Aug 17–21, 2020). https://doi.org/10.1007/978-3-030-56880-1_12

5. Dachman-Soled, D., Gong, H., Hanson, T., Kippen, H.: Revisiting security estima-
tion for LWE with hints from a geometric perspective. In: Handschuh, H., Lysyan-
skaya, A. (eds.) Advances in Cryptology – CRYPTO 2023, Part V. Lecture Notes in
Computer Science, vol. 14085, pp. 748–781. Springer, Cham, Switzerland, Santa Bar-
bara, CA, USA (Aug 20–24, 2023). https://doi.org/10.1007/978-3-031-38554-4_24

6. D’Anvers, J.P., Guo, Q., Johansson, T., Nilsson, A., Vercauteren, F., Verbauwhede,
I.: Decryption failure attacks on IND-CCA secure lattice-based schemes. In: Lin, D.,
Sako, K. (eds.) PKC 2019: 22nd International Conference on Theory and Practice
of Public Key Cryptography, Part II. Lecture Notes in Computer Science, vol.
11443, pp. 565–598. Springer, Cham, Switzerland, Beijing, China (Apr 14–17, 2019).
https://doi.org/10.1007/978-3-030-17259-6_19

7. D’Anvers, J.P., Heinz, D., Pessl, P., Van Beirendonck, M., Verbauwhede, I.: Higher-
order masked ciphertext comparison for lattice-based cryptography. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2022(2), 115–139 (2022).
https://doi.org/10.46586/tches.v2022.i2.115-139

8. Delvaux, J.: Roulette: A diverse family of feasible fault attacks on masked Kyber.
IACR Transactions on Cryptographic Hardware and Embedded Systems 2022(4),
637–660 (2022). https://doi.org/10.46586/tches.v2022.i4.637-660

9. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler,
G., Stehlé, D.: CRYSTALS-DILITHIUM. Tech. rep., National Institute of
Standards and Technology (2020), available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions

https://orcid.org/0000-0002-1649-4231
https://orcid.org/0000-0002-5822-2402
https://orcid.org/0000-0001-5824-7282
https://orcid.org/0000-0003-0972-1544
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.46586/tches.v2021.i3.334-359
https://doi.org/10.46586/tches.v2021.i3.334-359
https://doi.org/10.46586/tches.v2021.i3.334-359
https://doi.org/10.46586/tches.v2021.i3.334-359
https://tches.iacr.org/index.php/TCHES/article/view/8977
https://tches.iacr.org/index.php/TCHES/article/view/8977
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-031-38554-4_24
https://doi.org/10.1007/978-3-031-38554-4_24
https://doi.org/10.1007/978-3-030-17259-6_19
https://doi.org/10.1007/978-3-030-17259-6_19
https://doi.org/10.46586/tches.v2022.i2.115-139
https://doi.org/10.46586/tches.v2022.i2.115-139
https://doi.org/10.46586/tches.v2022.i4.637-660
https://doi.org/10.46586/tches.v2022.i4.637-660
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

A Generic Framework for SCAs against LWE-based Cryptosystems 29

10. Fahr, M., Kippen, H., Kwong, A., Dang, T., Lichtinger, J., Dachman-Soled, D.,
Genkin, D., Nelson, A., Perlner, R.A., Yerukhimovich, A., Apon, D.: When frodo
flips: End-to-end key recovery on FrodoKEM via rowhammer. In: Yin, H., Stavrou,
A., Cremers, C., Shi, E. (eds.) ACM CCS 2022: 29th Conference on Computer
and Communications Security. pp. 979–993. ACM Press, Los Angeles, CA, USA
(Nov 7–11, 2022). https://doi.org/10.1145/3548606.3560673

11. Gallager, R.G.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28
(1962). https://doi.org/10.1109/TIT.1962.1057683, https://doi.org/10.1109/TIT.
1962.1057683

12. Hamburg, M., Hermelink, J., Primas, R., Samardjiska, S., Schamberger, T., Streit,
S., Strieder, E., van Vredendaal, C.: Chosen ciphertext k-trace attacks on masked
CCA2 secure Kyber. IACR Transactions on Cryptographic Hardware and Embedded
Systems 2021(4), 88–113 (2021). https://doi.org/10.46586/tches.v2021.i4.88-113,
https://tches.iacr.org/index.php/TCHES/article/view/9061

13. Hermelink, J., Mårtensson, E., Samardjiska, S., Pessl, P., Rodosek, G.D.: Belief
propagation meets lattice reduction: Security estimates for error-tolerant key re-
covery from decryption errors. IACR Transactions on Cryptographic Hardware
and Embedded Systems 2023(4), 287–317 (2023). https://doi.org/10.46586/tches.
v2023.i4.287-317

14. Hermelink, J., Ning, K.C., Petri, R., Strieder, E.: The insecurity of masked compar-
isons: SCAs on ML-KEM’s FO-transform. In: Luo, B., Liao, X., Xu, J., Kirda, E.,
Lie, D. (eds.) ACM CCS 2024: 31st Conference on Computer and Communications
Security. pp. 2430–2444. ACM Press, Salt Lake City, UT, USA (Oct 14–18, 2024).
https://doi.org/10.1145/3658644.3690339

15. Hermelink, J., Ning, K., Strieder, E.: The insecurity of masked comparisons: Scas
on ml-kem’s fo-transform. IACR Cryptol. ePrint Arch. p. 60 (2024), https://eprint.
iacr.org/2024/060

16. Hermelink, J., Pessl, P., Pöppelmann, T.: Fault-enabled chosen-ciphertext attacks
on kyber. In: Adhikari, A., Küsters, R., Preneel, B. (eds.) Progress in Cryptology -
INDOCRYPT 2021 - 22nd International Conference on Cryptology in India, Jaipur,
India, December 12-15, 2021, Proceedings. Lecture Notes in Computer Science, vol.
13143, pp. 311–334. Springer (2021). https://doi.org/10.1007/978-3-030-92518-5_
15, https://doi.org/10.1007/978-3-030-92518-5_15

17. Kannwischer, M.J., Pessl, P., Primas, R.: Single-trace attacks on Keccak. IACR
Transactions on Cryptographic Hardware and Embedded Systems 2020(3), 243–
268 (2020). https://doi.org/10.13154/tches.v2020.i3.243-268, https://tches.iacr.org/
index.php/TCHES/article/view/8590

18. Kannwischer, M.J., Schwabe, P., Stebila, D., Wiggers, T.: Improving software
quality in cryptography standardization projects. In: IEEE European Symposium
on Security and Privacy, EuroS&P 2022 - Workshops, Genoa, Italy, June 6-10,
2022. pp. 19–30. IEEE Computer Society, Los Alamitos, CA, USA (2022). https:
//doi.org/10.1109/EuroSPW55150.2022.00010, https://eprint.iacr.org/2022/337

19. May, A., Nowakowski, J.: Too many hints - when LLL breaks LWE. In: Guo, J.,
Steinfeld, R. (eds.) Advances in Cryptology – ASIACRYPT 2023, Part IV. Lecture
Notes in Computer Science, vol. 14441, pp. 106–137. Springer, Singapore, Singapore,
Guangzhou, China (Dec 4–8, 2023). https://doi.org/10.1007/978-981-99-8730-6_4

20. National Institute of Standards and Technology: Module-lattice-based digital sig-
nature standard. Tech. rep., Department of Commerce, Washington, D.C. (2023),
federal Information Processing Standards Publication (FIPS) NIST FIPS 204 ipd.
https://doi.org/10.6028/NIST.FIPS.204.ipd

https://doi.org/10.1145/3548606.3560673
https://doi.org/10.1145/3548606.3560673
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.46586/tches.v2021.i4.88-113
https://doi.org/10.46586/tches.v2021.i4.88-113
https://tches.iacr.org/index.php/TCHES/article/view/9061
https://doi.org/10.46586/tches.v2023.i4.287-317
https://doi.org/10.46586/tches.v2023.i4.287-317
https://doi.org/10.46586/tches.v2023.i4.287-317
https://doi.org/10.46586/tches.v2023.i4.287-317
https://doi.org/10.1145/3658644.3690339
https://doi.org/10.1145/3658644.3690339
https://eprint.iacr.org/2024/060
https://eprint.iacr.org/2024/060
https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.1007/978-3-030-92518-5_15
https://doi.org/10.13154/tches.v2020.i3.243-268
https://doi.org/10.13154/tches.v2020.i3.243-268
https://tches.iacr.org/index.php/TCHES/article/view/8590
https://tches.iacr.org/index.php/TCHES/article/view/8590
https://doi.org/10.1109/EuroSPW55150.2022.00010
https://doi.org/10.1109/EuroSPW55150.2022.00010
https://doi.org/10.1109/EuroSPW55150.2022.00010
https://doi.org/10.1109/EuroSPW55150.2022.00010
https://eprint.iacr.org/2022/337
https://doi.org/10.1007/978-981-99-8730-6_4
https://doi.org/10.1007/978-981-99-8730-6_4
https://doi.org/10.6028/NIST.FIPS.204.ipd

30 Julius Hermelink , Silvan Streit , Erik Mårtensson , and Richard Petri

21. National Institute of Standards and Technology: Module-lattice-based key-
encapsulation mechanism standard. Tech. rep., Department of Commerce, Wash-
ington, D.C. (2023), federal Information Processing Standards Publication (FIPS)
NIST FIPS 203 ipd. https://doi.org/10.6028/NIST.FIPS.203.ipd

22. Paiva, T., Hermelink, J.: Personal conversation (2024)
23. Pessl, P., Primas, R.: More practical single-trace attacks on the number the-

oretic transform. In: Schwabe, P., Thériault, N. (eds.) Progress in Cryptology
- LATINCRYPT 2019: 6th International Conference on Cryptology and Infor-
mation Security in Latin America. Lecture Notes in Computer Science, vol.
11774, pp. 130–149. Springer, Cham, Switzerland, Santiago, Chile (Oct 2–4, 2019).
https://doi.org/10.1007/978-3-030-30530-7_7

24. Pessl, P., Prokop, L.: Fault attacks on CCA-secure lattice KEMs. IACR Transactions
on Cryptographic Hardware and Embedded Systems 2021(2), 37–60 (2021). https:
//doi.org/10.46586/tches.v2021.i2.37-60, https://tches.iacr.org/index.php/TCHES/
article/view/8787

25. Primas, R., Pessl, P., Mangard, S.: Single-trace side-channel attacks on masked
lattice-based encryption. In: Fischer, W., Homma, N. (eds.) Cryptographic Hardware
and Embedded Systems – CHES 2017. Lecture Notes in Computer Science, vol.
10529, pp. 513–533. Springer, Cham, Switzerland, Taipei, Taiwan (Sep 25–28, 2017).
https://doi.org/10.1007/978-3-319-66787-4_25

26. Qiao, Z., Liu, Y., Zhou, Y., Shao, M., Sun, S.: When NTT meets SIS: Efficient
side-channel attacks on dilithium and kyber. Cryptology ePrint Archive, Paper
2023/1866 (2023), https://eprint.iacr.org/2023/1866

27. Rajendran, G., Ravi, P., D’Anvers, J.P., Bhasin, S., Chattopadhyay, A.: Pushing
the limits of generic side-channel attacks on LWE-based KEMs - parallel PC oracle
attacks on Kyber KEM and beyond. IACR Transactions on Cryptographic Hardware
and Embedded Systems 2023(2), 418–446 (2023). https://doi.org/10.46586/tches.
v2023.i2.418-446

28. Ravi, P., Paiva, T., Jap, D., D’Anvers, J., Bhasin, S.: Defeating low-cost counter-
measures against side-channel attacks in lattice-based encryption A case study on
crystals-kyber. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems 2024(2), 795–818 (2024). https://doi.org/10.46586/TCHES.V2024.I2.795-818

29. Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic side-channel attacks on
CCA-secure lattice-based PKE and KEMs. IACR Transactions on Cryptographic
Hardware and Embedded Systems 2020(3), 307–335 (2020). https://doi.org/10.
13154/tches.v2020.i3.307-335, https://tches.iacr.org/index.php/TCHES/article/
view/8592

30. Veyrat-Charvillon, N., Gérard, B., Standaert, F.X.: Soft analytical side-channel
attacks. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology – ASIACRYPT 2014,
Part I. Lecture Notes in Computer Science, vol. 8873, pp. 282–296. Springer
Berlin Heidelberg, Germany, Kaoshiung, Taiwan, R.O.C. (Dec 7–11, 2014). https:
//doi.org/10.1007/978-3-662-45611-8_15

31. Xu, Z., Pemberton, O., Roy, S.S., Oswald, D.F., Yao, W., Zheng, Z.: Magnifying
side-channel leakage of lattice-based cryptosystems with chosen ciphertexts: The
case study of kyber. IEEE Trans. Computers 71(9), 2163–2176 (2022). https:
//doi.org/10.1109/TC.2021.3122997, https://doi.org/10.1109/TC.2021.3122997

https://orcid.org/0000-0002-1649-4231
https://orcid.org/0000-0002-5822-2402
https://orcid.org/0000-0001-5824-7282
https://orcid.org/0000-0003-0972-1544
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.1007/978-3-030-30530-7_7
https://doi.org/10.1007/978-3-030-30530-7_7
https://doi.org/10.46586/tches.v2021.i2.37-60
https://doi.org/10.46586/tches.v2021.i2.37-60
https://doi.org/10.46586/tches.v2021.i2.37-60
https://doi.org/10.46586/tches.v2021.i2.37-60
https://tches.iacr.org/index.php/TCHES/article/view/8787
https://tches.iacr.org/index.php/TCHES/article/view/8787
https://doi.org/10.1007/978-3-319-66787-4_25
https://doi.org/10.1007/978-3-319-66787-4_25
https://eprint.iacr.org/2023/1866
https://doi.org/10.46586/tches.v2023.i2.418-446
https://doi.org/10.46586/tches.v2023.i2.418-446
https://doi.org/10.46586/tches.v2023.i2.418-446
https://doi.org/10.46586/tches.v2023.i2.418-446
https://doi.org/10.46586/TCHES.V2024.I2.795-818
https://doi.org/10.46586/TCHES.V2024.I2.795-818
https://doi.org/10.13154/tches.v2020.i3.307-335
https://doi.org/10.13154/tches.v2020.i3.307-335
https://doi.org/10.13154/tches.v2020.i3.307-335
https://doi.org/10.13154/tches.v2020.i3.307-335
https://tches.iacr.org/index.php/TCHES/article/view/8592
https://tches.iacr.org/index.php/TCHES/article/view/8592
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1109/TC.2021.3122997
https://doi.org/10.1109/TC.2021.3122997
https://doi.org/10.1109/TC.2021.3122997
https://doi.org/10.1109/TC.2021.3122997
https://doi.org/10.1109/TC.2021.3122997

A Generic Framework for SCAs against LWE-based Cryptosystems 31

A Numerical Issues

In Figure 9, we visualize the numerical problems described in Section 4.1. For
a large number of hints, the BP-based solver cannot solve for the secret key
anymore (compare with Figure 7) in low noise levels, but larger amounts of noise
improve convergence.

0 1 2 3 4 5
0

200

400

600

Noise [σ]

Se
cu

ri
ty

[B
IK

Z]

30000 (BP)
30000 (GR)

Fig. 9: Remaining computational hardness after applying our solver given HW
leakage on the noise term in BIKZ per standard deviation. The BP graph for
30000 hints shows the numerical problems that can occur with too many hints.

B Prior Distribution

For the greedy solver, a prior has to be considered for the ⟨v,x⟩ distribution
in the HW leakage model. This is necessary, in order to implicitly include the
prior for the variable nodes, as described in Section 4.2. In order to reduce the
influence of the prior and improve convergence, the prior distribution is flattened
by convoluting it with a uniform distribution on intervals of size c. Figure 10
shows our evaluations for several sizes of intervals. We achieved the best results
with an interval of size c = 150.

0 50 100 150 200 250
0

200

400

600

Convolution Size [c]

Se
cu

ri
ty

[B
IK

Z]

hints=30000 σ = 0.0001 (GR)
hints=30000 σ = 2 (GR)

Fig. 10: Applying the greedy solver to HW noise term leakage for different uniform
distributions on intervals of size c.

32 Julius Hermelink , Silvan Streit , Erik Mårtensson , and Richard Petri

C Modular Hints

We did not manage to recover the secret from modular hints with uniform
coefficients. For small coefficients, we require more hints than lattice-based
frameworks. Figure 11 shows our evaluations for binomially sampled coefficients
(η = 5) and coeffcients sampled uniformly random over {−20, . . . , 20};

1,000 2,000 3,000 4,000 5,000
0

200

400

600

Hints [#]

Se
cu

ri
ty

[B
IK

Z]

(a) Uniform

1,000 2,000 3,000 4,000 5,000
0

200

400

600

Hints [#]

BP
GR

(b) Binomial

Fig. 11: Evaluation for modular hints.

https://orcid.org/0000-0002-1649-4231
https://orcid.org/0000-0002-5822-2402
https://orcid.org/0000-0001-5824-7282
https://orcid.org/0000-0003-0972-1544

A Generic Framework for SCAs against LWE-based Cryptosystems 33

D Runtime

In Table 1, we report on the runtimes for solving perfect and approximate hints
(with σ = 10 and binomial coefficients) on a single core and on 40 cores on two
Intel Xeon Gold 6230. The results are averaged over 5 runs each. Note that
we did not ensure ideal benchmarking conditions. Thus, these numbers are only
rough estimates.

For the BP, we suspect memory throughput to be the limiting factor and
Hyperthreading seems to be disadvantageous if many hints are integrated. We in
some cases observed threads going into uninteruptable sleep. We cannot pinpoint
the exact reason for this behavior but suspect it to be related to limited memory
throughput. This also occurs in the implementations of [16,13]. Both of these
share a common core, while our implementation is independent but reuses the
FFT-based strategy that was proposed by [24] and has also been used in [16,13].

Table 1: Mininmum, maximum, and average runtimes on 1 and 40 cores for
approximate and perfect hints in minutes (min./max./avg.).
Setting Approx. (2000) Approx. (5000) Perfect (2000) Perfect (5000)

GR (1 core) 6.55/11.15/9.59 1.81/1.98/1.93 1.50/1.64/1.59 0.45/0.50/0.48
GR (40 cores) 0.97/1.44/1.19 0.26/0.65/0.43 0.74/1.09/0.88 0.19/0.34/0.23
BP (1 core) – – – – – – 302.50/305.44/304.27 311.83/459.51/400.36
BP (40 cores) 38.58/57.43/47.66 13.35/30.27/24.77 9.67/11.56/10.50 9.68/15.68/13.08

	A Generic Framework for Side-Channel Attacks against LWE-based Cryptosystems

