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Abstract

Zero-knowledge Succinct Non-interactive ARguments of Knowledge (zkSNARKs) allow a prover to
convince a verifier of the correct execution of a large computation in private and easily-verifiable manner.
These properties make zkSNARKs a powerful tool for adding accountability, scalability, and privacy to
numerous systems such as blockchains and verifiable key directories. Unfortunately, existing zkSNARKs
are unable to scale to large computations due to time and space complexity requirements for the prover
algorithm. As a result, they cannot handle real-world instances of the aforementioned applications.

In this work, we introduce HEKATON, a zkSNARK that overcomes these barriers and can efficiently
handle arbitrarily large computations. We construct HEKATON via a new “distribute-and-aggregate”
framework that breaks up large computations into small chunks, proves these chunks in parallel in a
distributed system, and then aggregates the resulting chunk proofs into a single succinct proof. Underlying
this framework is a new technique for efficiently handling data that is shared between chunks that we
believe could be of independent interest.

We implement a distributed prover for HEKATON, and evaluate its performance on a compute cluster.
Our experiments show that HEKATON achieves strong horizontal scalability (proving time decreases
linearly as we increase the number of nodes in the cluster), and is able to prove large computations quickly:
it can prove computations of size 235 gates in under an hour, which is much faster than prior work.

Finally, we also apply HEKATON to two applications of real-world interest: proofs of batched insertion
for a verifiable key directory and proving correctness of RAM computations. In both cases, HEKATON is
able to scale to handle realistic workloads with better efficiency than prior work.
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1 Introduction

Zero-knowledge Succinct Non-interactive ARguments of Knowledge (zkSNARKs) are cryptographic proofs
that allow a prover to convince a verifier that, given a function F and public input x, there is a private
witness w such that F(x,w) = 1. zkSNARKs hide all information about w, and are small and easy to
verify regardless of the complexity of F . Recent efficient constructions of zkSNARKs [GGPR13; Gro16;
GWC19; CHMMVW20; Set20] have enabled a range of applications and industrial deployments that rely on
zkSNARKs to improve efficiency and privacy characteristics. However, zkSNARKs cannot currently scale to
prove useful computations on realistic problem sizes. Indeed, many proposed applications of zkSNARKs,
such as verifiable key transparency [TFZBT22], proofs of program execution or vulnerability [BCGTV13;
ZGKPP18], or machine learning inference [LXZ21], are limited to toy problem sizes due to zkSNARK
scalability limitations.

In more detail, in typical zkSNARKs, to prove the correctness of a computation F on inputs (x,w), we
must first express F as an arithmetic circuit CF . The size of the latter is often much larger than the description
of F , leading to two scalability issues:

• Poor parallelization: zkSNARK provers perform a number of expensive operations whose cost grows
linearly with the circuit size |CF |. Unfortunately, these operations have diminishing parallelizability,
particularly for real implementations that must account for inter-process communication costs between
cores, processors, and even compute clusters.

• Large memory overheads The space complexity of the prover also tends to scale linearly with |CF |. As a
result, memory often ends up being the key bottleneck for proving complex computations: while one can
always wait longer for a proof, one cannot always add more RAM to the prover’s machine.

These problems are not merely asymptotic, but lead to high concrete costs even for relatively simple
computations. For instance, a circuit for proving the multiplication of two 700×700 matrices requires 685
million gates. Prior work [WZCPS18] reports that using even a 64-threaded machine to prove this circuit
requires hundreds of minutes and a prohibitive 1.7TB of RAM.

Moreover, these problems are exacerbated for many exciting SNARKs applications which, frequently, are
RAM Programs (e.g., proofs of vulnerability, zkRollups, etc.). This poses two challenges. First, representing
a RAM program as a bare circuit requires all branches be taken and loops be unrolled, drastically increasing
circuit size. Second, circuits do not, natively, provide memory access and the methods for providing memory
either offer high overhead or, as we will see, place constraints how we can address the space and time
complexity.
Distributed proving: a path forward? A promising approach to scale zkSNARKs up to large circuits is to
distribute the proving algorithm across a set of workers in a way that ensures that the proof computation is
parallelized across the workers, and which ensures that each worker’s local memory requirements are low.
In this work, we revisit this approach and design HEKATON, a new horizontally-scalable zkSNARK whose
prover algorithm can be distributed over large compute clusters much more efficiently than all prior work
[WZCPS18; Xie+22; LXZSZ24]. We detail the technical contributions underlying HEKATON next.

1.1 Our contributions

HEKATON is the result of several contributions:
(1) Scalable proving via divide-and-aggregate. We distill a generic framework for constructing scalable
zkSNARKs that we call divide-and-aggregate, or DNA for short. Our framework proceeds as follows:
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Figure 1: Partitioning circuits for use with our divide-and-aggregate zkSNARK.

to prove the execution of a function F represented as a circuit CF , partition CF into smaller subcircuits
C1, . . . ,Cn, and have each cluster machine use a simpler “inner” zkSNARK to prove the satisfaction of an
individual subcircuit separately. Then, invoke a proof aggregation protocol [BMMTV21; GMN22; ABST23]
to relatively cheaply aggregate these subcircuit proofs into a single succinctly-verifiable proof.

Instantiating the foregoing blueprint requires addressing two challenges: aggregating proofs for different
subcircuits, and sharing wires between subcircuits.

(2) Multi-circuit aggregation. We generalize prior proof aggregation schemes [BMMTV21; GMN22] to
efficiently aggregate proofs for different circuits. This allows our framework to handle computations with
arbitrary subcircuit structure. In contrast, schemes implicit in prior work [BMMTV21] are only able to
handle uniform circuits that just repeat the same subcircuit many times.

(3) Shared wires via efficient global memory. All known aggregation schemes (including ours) are only
able to achieve succinct verification when proofs for neighbouring subcircuits share a small constant amount
of data. However, this is incompatible with our goal of designing a proof system for arbitrary circuits where
subcircuits might share many wires.

We overcome this challenge via a new low-overhead technique for providing subcircuits with efficient
access to a global memory bank. This allows subcircuits to share wire values by accessing them from the
memory bank, rather than directly passing them between subcircuits. To efficiently prove correctness of
memory accesses, we design a new memory-checking circuit that can itself be partitioned into subcircuits
that share just a constant number of wires. The resulting workflow is illustrated in Fig. 1.

On a technical level, our approach extends recent work on permutation-based memory checking techniques
[ZGKPP18; BCGJM18] that uses commit-carrying SNARKs by extending our aggregation scheme into one
that supports a commit-carrying mode.

(4) Efficient instantiation and implementation. We instantiate our DNA zkSNARK blueprint by choosing
Mirage [KPPS20] as the inner zkSNARK, and designing a new “commit-carrying” aggregation scheme for
Mirage. We call the resulting system HEKATON.

We implement HEKATON in a Rust library that supports distributed proving. Our implementation also
provides a novel framework for writing partitioned circuits that enables us to minimize communication (in
distributed mode) and memory requirements (in both modes). We provide details in Section 7.
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(5) Applications and evaluation. As noted above, our evaluation of HEKATON demonstrates that it can
prove computations that are orders-of-magnitude larger than prior work, while requiring a fraction of the
time. We provide details in Section 8. To showcase the improvements HEKATON offers over state of the art
provers, we implement two real world applications. In the first application, we use HEKATON to prove the
correctness of batched updates to a Verifiable Key Directory [TFZBT22], whose configuration, for the first
time, matches that of deployed systems, i.e., using a sparse Merkle Tree and SHA256 as a hash function. In
the second application, we adapt our memory-checking techniques to build a proof for RAM execution that
achieves a throughput of 50kHz. Our system is able to prove a large execution trace of 225 instructions via a
circuit of 235 constraints.

1.2 Related work

Lookup tables. Our global memory technique is reminiscent of recent work on lookup arguments [GW20;
ZBKMNS22]. Indeed, one could consider constructing a large lookup table containing the shared wire
values. However, a key difference is that most lookup arguments assume that the commitment to the table is
constructed honestly in an offline phase (often over public values), and hence optimize their proving algorithm
for this regime. In our setting, the “table” is for secret wire values unique to the witness and therefore must
be constructed online during the proving phase by the untrusted prover. To use a lookup argument, we would
first need to check that the table commitment was generated honestly, and would need to design a proving
algorithm optimized for this regime.
Partitioning circuits. Assuming sufficient resources, HEKATON’s latency is determined by the size of the
largest subcircuit and the number of shared wires between subcircuits. Because handling shared wires costs
only 13 constraints per wire, in practice partitioning the circuit into equal-sized subcircuits leads to good
performance, because these circuits that arise in practice tend to be partitionable in a manner that results in a
small number of shared wires. We leave the problem of optimal circuit partitioning to future work, but note
that HEKATON is compatible with prior automatic circuit partitioning schemes [Cos+15; San+23].

1.2.1 Distributed zkSNARKs

Like HEKATON, all prior works on distributed zkSNARKs use a coordinator which gets as input the circuit
C, the public input x, and the witness w, and is responsible for distributing these to the worker nodes, who in
turn jointly compute the zkSNARK proof. Existing protocols differ in how these workers perform the latter
computation. We provide an asymptotic comparison between the above systems in Table 1, and focus below
on qualitative differences.

system
supported

computation
proof
size

per-worker
time

total
comm.

verifier
time

SRS size

DIZK [WZCPS18] arbitrary O(1) Õ(|C|/n) O(|C|) O(1) O(|C|)
DeVirgo [Xie+22] data-parallel O(n) Õ(|C|/n) O(|C|) O(logn) O(λ )
Pianist [LXZSZ24] arbitrary O(1) Õ(|B|) O(1) O(1) O(|C|)

HEKATON arbitrary O(logn) Õ(|B|) O(1) O(logn) O(n+ k|B|)

Table 1: Comparison of distributed zkSNARKs. Here C is the circuit being proved, n is the number of subcircuits,
k is the number of unique subcircuits, and B is the largest unique subcircuit.

DIZK [WZCPS18] initiated the study of distributed algorithms for zkSNARK provers, focusing on the
zkSNARK in [Gro16] (though the techniques are applicable to other proof systems as well). In more detail,
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the core contributions of DIZK are the design and implementation of efficient distributed algorithms for the
core operations performed in zkSNARK provers, namely FFTs and multi-scalar multiplications. The primary
drawback of DIZK is its need for a linear amount of inter-worker communication. In practice, this greatly
increases the latency of proving: the per-gate cost is 10× worse than local proving. In contrast, HEKATON

requires only constant inter-worker communication, and is able to achieve per-gate costs that are very similar
to local proving.
DeVirgo [Xie+22] is a SNARK with a distributed prover that focuses on supporting only data-parallel
computations, i.e., the circuit being proved consists of repeated copies of a single subcircuit. DeVirgo’s
prover requires the primary node to perform cryptographic work that scales with the size of the subcircuit,
and requires linear inter-worker communication. In contrast, as noted above, HEKATON supports arbitrary
computations, requires only constant inter-worker communication, and ensures that the cryptographic work
performed by the primary node scales only with the number of workers.
Pianist [LXZSZ24] is a very recent work that designs a distributed proving algorithm for the Plonk zk-
SNARK [GWC19]. At a high level, Pianist relies on the elegant observation that using bivariate polynomial
commitments allows one to decompose Plonk’s global permutation check, which is used for circuit wiring
correctness, into local per-worker permutation checks. The resulting protocol, produces constant proof size
and verifier time, whereas the latter costs scale logarithmically for HEKATON.1

However, Pianist, as instantiated, requires an SRS whose size scales linearly with circuit size. To be
precise, the SRS for the bivariate polynomial commitment in Pianist depends on the degree of the variables.
The degree of the first variable corresponds to subcircuit size, and that of the other to the number of workers.
As a result, Pianist’s SRS size is O(|C|). In contrast, because HEKATON’s SRS consists of the SRS(es) for
subcircuits and a small SRS for aggregation, its SRS size is dominated by the number of unique subcircuits.
For many circuits of interest (e.g., RAM programs), the number and size of the unique subcircuits is much
smaller than the total circuit size, leading to substantial SRS size savings for HEKATON. We provide a
thorough experimental comparison of HEKATON and Pianist in Section 8.2.
Mangrove [NDCTB24] is a concurrent theoretical work that uses similar commit-and-prove-based permutation-
checking techniques as us. Unlike us, however, Mangrove only reports estimated performance numbers,
and does not provide a full implementation or evaluation. Furthermore, applying Mangrove’s techniques to
distributed proving would lead to a prover that requires linear inter-worker communication.

Distributed proving based via recursive proofs. A promising idea for distributed proving is to use
recursive verification, where the system uses recursive proofs to aggregate subcircuit proofs. The idea would
be to replace the custom aggregation scheme in HEKATON with a system that verifies batches of subcircuit
proofs recursively in a tree-like manner. However, this approach has several drawbacks.

First, even assuming state-of-the-art folding-based techniques [BCLMS21; KST22] that have reduced
the cost of recursive verification, a back-of-the-envelope calculation shows that such an approach would
have over 2×-worse aggregation time than HEKATON. This is even when we assume that the aggregation
step is also distributed; without this assumption, the recursive verification approach would have much worse
aggregation time.

Second, even a state-of-the-art recursive aggregation scheme, would still need to support shared wires
between subcircuits, and as discussed in Section 2.1.1, existing approaches for this would incur much
higher overhead than HEKATON. Adapting the memory-checking techniques in HEKATON to a recursive
verification setting is a non-trivial research problem, and indeed formed a key component of concurrent work
[NDCTB24].

1Note that one can generically reduce HEKATON’s proof sizes via depth-1 recursive proof composition [Cos+15; BCGMMW20].
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Finally, scalable implementation of these approaches would be challenging due to the need for complex
multi-round communication and straggler management.
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2 Techniques

We construct our divide-and-aggregate zkSNARK via the blueprint outlined in Section 1.1, which we recall
next. To prove a circuit C, (a) partition C into subcircuits (C1, . . . ,Cn), (b) replace shared wires with accesses
to a global memory, (c) construct augmented subcircuits (C′1, . . . ,C

′
n) that additionally check memory accesses,

(d) prove each C′i using via an inner zkSNARK (denoted ARG), and (e) aggregate the resulting proofs using
an aggregation scheme for ARG proofs (denoted Agg).

In the rest of this section, we will expand on each of these steps, focusing on our novel memory checker
(Section 2.1) and our new commit-carrying aggregation scheme (Section 2.2) that supports this memory
checker.

2.1 Partition-friendly memory checking

To check the consistency of these memory accesses, one can design a “memory-checker” circuit M using
standard memory checking techniques [BEGKN91]. However, integrating this into our blueprint requires that
the memory checker M can be partitioned into n subcircuits M1, . . . ,Mn, such that (a) Mi checks the memory
accesses made by Ci, and (b) Mi and Mi+1 share just a constant number of wires. Given such an M, we can
obtain a DNA zkSNARK for arbitrary circuits by invoking our blueprint on augmented subcircuits C′i that
invoke Ci and Mi together. Let us thus focus on constructing such a partitioning-friendly memory checker.

2.1.1 Limitations of existing memory checkers

Attempt 1: Online memory checkers. In online memory checking [BEGKN91], memory is committed to
via a Merkle tree and read/write operations consist of checking/updating the Merkle path for that location.
This requires sharing only a single wire value (the Merkle root) between subcircuits, and is used in all
prior divide-and-aggregate SNARKs [BCTV14a; CTV15]. However, online memory checking creates both
asymptotic and concrete bottlenecks.

Asymptotically, Merkle path checking imposes a logarithmic overhead: if si is the number of shared wires
in the i-th subcircuit Ci, then checking Ci’s memory accesses requires si ·O(logs) hash function invocations,
where s = ∑i si is the size of the global memory. Since in the worst case the number of shared wires can be as
large as the circuit size |Ci|, the size of the memory checker subcircuit Mi, and hence that of the augmented
subcircuit C′i , can be as large as O(|Ci| log |Ci|). Concretely, even with zkSNARK-friendly [AABDS20;
GKRRS21] hash functions that require∼ 300 gates, each memory access costs 300log |s| gates, which results
in unacceptable slowdowns in practice.
Attempt 2: Memory trace checkers. A second approach [BCGT13] verifies memory operations by
recording them in a memory trace, and performing cheap checks on the trace entries. In more detail, a
memory trace logs each memory operation as (subcircuit-number,op= read/write,addr,value). The
checker then considers two versions of this trace: one sorted by address (denoted AAA), and another sorted by
subcircuit number (denoted TTT ), and performs both local and global checks on these traces. As we will show
later, the local checks are easily partitioned across subcircuits, but the global check requires verifying that the
two traces contain the same entries, and are hence permutations of each other. Efficiently implementing this
“permutation check” in a manner amenable to partitioning is a challenge, as we explain next.
Permutation checking. State-of-the-art permutation checking techniques [ZGKPP18; BCGJM18; KPPS20]
require the optimal O(s) gates to check permutations between s-sized traces. They achieve this low cost
by relying on randomized Reed–Solomon fingerprinting [Lip89; Lip90], which performs the following
randomized check to ensure that two traces TTT := (t1, . . . , ts) and AAA := (a1, . . . ,as) are permutations:
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1. construct trace polynomials T (X) := ∏
s
i=1(X− ti) and A(X) := ∏

s
i=1(X−ai);

2. sample a random field element r← F; and
3. check that T (r) = A(r).
This check can be realized quite efficiently via a circuit that witnesses TTT , AAA, and r, computes the products
∏

s
i=1(r− ti) and ∏

s
i=1(r−ai), and checks that these are equal. We now show that this computation can also

be partitioned easily across subcircuits in a way that ensures that each subcircuit only pays for the accesses it
makes to the memory.

2.1.2 Partitioning polynomial evaluation

Our partitioning strategy relies on the simple but crucial observation that the trace polynomials can be
evaluated incrementally. In more detail, notice that for every j ∈ [s], if we are given the running products
τ := ∏

j
i=1(r− ti) and α := ∏

j
i=1(r−ai), and the j+1-th trace entries t j+1 and a j+1, we can easily compute

the next running products τ ′ := τ · (r− t j+1) and α ′ := α · (r− a j+1). We can then iterate this process to
eventually compute T (r) and A(r). We leverage this observation to construct memory-checking subcircuits
M1, . . . ,Mn as follows.

Notation. Denote by si the number of memory accesses in the i-th subcircuit Ci, by ki = ∑
i−1
j=1 s j the total

number of accesses in the previous subcircuits C1, . . . ,Ci−1, and finally by Si the set {ki +1, . . . ,ki + si}.
Let TTT = (t1, . . . , ts) and AAA = (a1, . . . ,as) be the memory traces as defined in Section 2.1.1. We split

these traces up into n subtraces, one for each subcircuit, as follows. The i-th subtrace of TTT is defined to
contain those entries access by Ci, i.e., TTT i := {t j | j ∈ Si}. The i-th subtrace of AAA is defined analogously
as AAAi := {a j | j ∈ Si}.2 Finally, denote by τi and αi the running products up to (but excluding) the i-th
subcircuit, i.e., τi := ∏ j∈[ki](r− t j) and αi := ∏ j∈[ki](r−a j).

Construction. We are now ready to describe how our construction of the memory-checking subcircuits Mi.
• Mi receives as public input the random challenge r, the last entries t and a of TTT i−1 and AAAi−1 respectively,

as well as the running products τi and αi.
• The public output of M′i consists of the last entries t ′ and a′ of TTT i and AAAi respectively, as well as the

updated running evaluations τi+1 and αi+1.
• Mi receives as additional witness the subtraces TTT i and AAAi.
• Mi performs the following computations:

– Mi replaces each memory gate with with a ‘read’ from the value in the corresponding entry in TTT i.
– Mi checks that entries in TTT i all have the subcircuit number set to i, and that AAAi is sorted by address.
– Mi checks that consecutive entries in AAAi are consistent: if they have the same address, then they must

contain the same value.
– Mi computes the new running products τi+1 := τi ·∏ j∈Si(r− t j) and αi+1 := αi ·∏ j∈Si(r−a j)

This approach, illustrated in Fig. 2, achieves the desired performance: the i-th memory-checking circuit
processes exactly an si/s-fraction of the traces in just O(si) gates, as required, and the hidden constants
are great: just 13 gates per shared wire. We provide formal details and analyses of this construction in
Section 4.2.

We note that our full construction in Section 4.2 incorporates the optimizations mentioned in Section 2.4
to further simplify and reduce the cost of memory-checking.

2Note that AAAi can be entirely disjoint from TTT i, i.e., it might contain no entries corresponding to Ci’s memory accesses.
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Figure 2: Memory traces are partitioned across subcircuits.

2.2 Aggregating heterogeneous commit-carrying zkSNARKs

A question left open by the description of the memory-checker construction in Section 2.1 is that of how to
derive the challenge r for the trace polynomial evaluation. An approach taken by prior work [ZGKPP18;
KPPS20] is to derive the random challenge r by hashing (via a random oracle ρ) commitments to the traces.
This requires the SNARK proof for each subcircuit to additionally ensure that the witnessed traces are
consistent with their claimed commitments. Prior work achieves this consistency check efficiently by using
special commit-carrying zkSNARKs (cc-zkSNARK) [CFQ19] where the commitment scheme is co-designed
with the SNARK so that the contents of the commitment are “natively” available as witnesses in the proven
circuit.

We briefly recall their high-level strategy here, and then explain why it does not work in our setting.
First, the prover commits to the traces, obtaining commitments tcm and acm; then, it derives the challenge
r := ρ(tcm,acm); and finally, it invokes the zkSNARK’s proving algorithm on the augmented subcircuits
C′i to prove that the committed traces are valid memory traces. Unfortunately, the natural extension to our
setting where the prover derives the challenge r by hashing the individual subcircuit commitments fails to
meet our goals because the proof is no longer succinct.

Our approach: commit-carrying aggregation schemes. We resolve this issue by defining a new notion
of commit-carrying aggregation schemes that support aggregating not only the proofs the underlying inner
cc-zkSNARK, but also their commitments. Our notion also naturally supports multi-circuit aggregation that
allows the prover to aggregate proofs for multiple circuits into a single combined proof.

With this new tool in hand, we can augment our blueprint construction as follows. Given an inner
cc-zkSNARK ARG and a commit-carrying aggregation scheme Agg for ARG, to prove a partitioned circuit
C = (C1, . . . ,Cn),
1. construct augmented subcircuits (C′1, . . . ,C

′
n) and memory subtraces (TTT 1, . . . ,TTT n) and (AAA1, . . . ,AAAn);

2. compute trace commitments (tcm1, . . . , tcmn) and (acm1, . . . ,acmn) using ARG’s commitment scheme;
3. aggregate these with Agg to obtain succinct commitments (tcm,acm), and derive r := ρ(tcm,acm);
4. prove each circuit C′i with ARG and aggregate the resulting inner proofs with Agg.
This approach achieves succinctness while preserving soundness. We provide details of our construction in
Section 6.

2.3 Our aggregation scheme for Mirage

To instantiate the foregoing blueprint, we choose the Mirage cc-zkSNARK [KPPS20] as our inner zkSNARK.
Mirage is a commit-carrying variant of the Groth16 zkSNARK [Gro16], and inherits the succinctness and
prover efficiency of the latter. In more detail, a Mirage proof, like a Groth16 one, consists of three group
elements (A,B,C), while the commitment is another group element D. The verifying key, like that of Groth16,
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contains elements α ∈G1 and β ,δ ,∈G2, as well as an extra element η ∈G2. To check a proof π = (A,B,C)
with respect to a commitment D, the verifier checks that the following pairing equation is satisfied.

e(A,B) = e(α,β )e(C,δ )e(D,η) .

Background for Mirage. To construct an aggregation scheme for Mirage, we follow existing work on
aggregation schemes for Groth16 [BMMTV21; GMN22] by relying on inner-pairing product argument
systems [BMMTV21]. The latter generalize inner-product argument systems [BCCGP16; BBBPWM18]
to enable proving more general bilinear products. Two variants are relevant for our purposes: “MIPPs”,
which prove the inner product ∑i ai ·Bi for (committed) vectors aaa ∈ Fn,BBB ∈Gn, and “TIPPs”, which prove
the pairing product ∏i e(ri ·Ai,Bi) for a scalar r and (committed) vectors AAA ∈Gn

1,BBB ∈Gn
2.

To construct an aggregation scheme for Mirage that proves the correctness of a batch of Mirage proofs
(AAA,BBB,CCC) with respect to commitments DDD, we will use the above ingredients to prove the following randomized
pairing check with respect to a random challenge r:

∏i e(ri ·Ai,Bi) = e(α,β )∑ri
∏i e(ri ·Ci,δ )∏i e(ri ·Di,η) .

To aggregate these proofs, the aggregation prover first commits to the AAA,BBB,CCC,DDD using a “structure-preserving”
commitment scheme [AFGHO16], hashes these to obtain r, and then proves the above equation using MIPPs
and TIPPs. Clearly, the left hand side can be proven using a TIPP, while the remaining terms can be proven
using MIPPs. Unfortunately, we are not done yet, as our setting requires us to aggregate proofs for multiple
circuits simultaneously.

Multi-circuit aggregation. When aggregating multiple circuits, the δ and η components of the verifying
key differ across circuits, meaning our randomized check changes to the following:

∏i e(ri ·Ai,Bi) = e(α,β )∑ri
∏i e(ri ·Ci,δi)∏i e(ri ·Di,ηi) .

While all the pairing checks can now be proven using TIPPs, preserving succinctness requires care. To
see this, let us inspect the two kinds of TIPPs performed in the above equation. Notice that in the TIPP
for the left-hand-side check (∏i e(ri ·Ai,Bi)), both arguments are prover-supplied, and hence it is fine for
the prover to provide commitments to AAA and BBB. The TIPPs on the right-hand side, however, involve one
prover-supplied argument (CCC and DDD) and one verifier-supplied argument (δδδ and ηηη). While the prover can
provide commitments to CCC and DDD, it would be unsound for it to do the same for δδδ and ηηη , as it could commit
to arbitrary elements that cause the checks to pass.

Therefore, the verifier must obtain these commitments itself. The straightforward solution of having the
verifier compute them itself would violate succinctness. To resolve this issue, we leverage the fact that the
subcircuit structure is known at setup time, which in turn means that the vectors δδδ and ηηη are also known at
setup time. This means that commitments to the latter can be computed then and included in the verifying
key, thus preserving succinctness.

Reducing the number of TIPPs. The aggregation scheme proposed so far is sound and relatively efficient.
However, it requires the prover to prove multiple TIPPs, worsening prover complexity and proof size. Because
aggregation is performed on a single machine (and is not parallelized), improving its prover complexity is
important. We do so by devising a method for batching multiple TIPP instances together into a single TIPP
instance, and providing a single TIPP proof for the latter.

Our aggregation scheme for Mirage. The sketch above omits details, including how we handle public
inputs. We provide these details in Section 5.
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2.4 Optimizations

The foregoing discussions omit a number of optimizations that we developed to improve the efficiency of our
construction. We describe these next.

Read-only memory. Notice that we can assume that the memory is read-only, as the prover can initialize
the memory with values of all the shared wires, and subcircuits which access these wires can simply check
that the memory contains the correct value. This optimization greatly reduces the concrete cost of the local
checks performed on the memory traces.

Reducing SRS size. The description in the foregoing sections obscures the fact that, as described, each
augmented subcircuit C′i is unique, even if the topology of the underlying subcircuit Ci is shared with other
subcircuits. This is because we need to embed into C′i information about (a) its circuit number i (so that it
can check the trace entries correspond to its own memory access), and (b) the addresses it reads from (so
that it reads the appropriate shared wires). Because of this, each subcircuit becomes unique, leading to a
blowup in SRS size when we instantiate HEKATON with the Mirage cc-zkSNARK [KPPS20] as the latter has
circuit-specific setup (we would need to generate a separate SRS for each subcircuit).

To resolve this issue, we observe that the aforementioned information (circuit number and addresses)
is not dependent on the prover’s witness, and can be committed to via Mirage’s commitment scheme in a
preprocessing phase. We provide details in Section 6.3.

Homogenizing public inputs via Merkle trees. Recall from Section 2.1.2 that each memory-checking
subcircuit Mi receives as public input the triple ini = (r,(t,a),(τki ,αki)), and outputs the pair outi =
((t ′,a′),(τki+1 ,αki+1)). This means that each Mi’s public input is necessarily different. Existing constructions
of aggregation schemes [BMMTV21] can handle such heterogeneous public inputs, but incur prover com-
plexity and proof size overheads. Instead, we propose to homogenize the public inputs of all the subcircuits
by careful and selective use of online memory checking: we commit to (ini,outi) in the i-th leaf of a Merkle
tree, and use the corresponding path to verifiably access the i-th leaf in the i-th subcircuit. This allows us to
eschew the complex public input handling mechanisms of prior aggregation schemes.

Batch setup optimization. We perform a common setup for all circuits simultaneously. This helps us
improve efficiency by reducing the number of TIPPs by 1.
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3 Preliminaries

Indexed relations. An indexed relation R is a set of triples (i,x,w) where i is the index, x is the instance,
and w is the witness; the corresponding indexed language L (R) is the set of pairs (i,x) for which there
exists a witness w such that (i,x,w) ∈R. An indexed relation is said to be committable if the witness can
be split into two parts, w = (w1,w2).

Definition 3.1 (circuit satisfiability). The committable indexed relation CSAT is the set of triples (i,x,w) =(
(F, ℓ,m,n,C),x,(w1,w2)

)
where F is a finite field, ℓ, m, and n are natural numbers, x ∈ Fℓ, w1 ∈ Fm, and

w2 ∈ Fn are vectors, and C : Fℓ+m+n→ F is an arithmetic circuit over F such that C(x,w1,w2) = 0.

To obtain the usual notion of circuit satisfiability we can set m = 0 and w1 =⊥.

Security parameters. For simplicity of notation, we assume that all public parameters have length at least
λ , so that algorithms which receive such parameters can run in time poly(λ ).

Random oracles. We denote by U(λ ) the set of all functions that map {0,1}∗ to {0,1}λ . A random oracle
with security parameter λ is a function ρ : {0,1}∗→{0,1}λ sampled uniformly at random from U(λ ).
Bilinear groups. We denote groups by G. A bilinear function e : G1×G2 → GT is a type-3 bilinear
pairing if there is no efficiently computable group homomorphism from G2 to G1. e is degenerate if there is
a non-identity G ∈G1 such that e(G,H) = 1 for all H ∈G2. We use additive notation for G1 and G2, and
multiplicative notation for GT . As shorthand we sometimes write [a]1 for a ·G and [b]2 for b ·H.

3.1 Commitment schemes

A commitment scheme CM= (Setup,Commit) over a universe of message spaces {Mi}i∈N enables a party
to generate a (perfectly) hiding and (computationally) binding commitment to a given message m ∈M.
• Setup: on input a security parameter and a description of the message spaceM, CM.Setup samples a

commitment key ck.
• Commitment: on input public parameters ck, message m ∈M, and randomness r, CM.Commit outputs a

commitment C to m.

3.2 Commit-carrying zkSNARKs

A tuple of algorithms ARG= (G,C,P,V) is a commit-carrying succinct non-interactive argument of knowl-
edge (cc-SNARK) [CFQ19] in the random oracle model (ROM) for a committable indexed relation R if it
satisfies the following syntax and properties:

• Setup. On input a security parameter λ and a set of indices [ii]ni=1, G outputs corresponding proving keys
[ipki]

n
i=1, commitment keys [icki]

n
i=1, and verification keys [ivki]

n
i=1. When n = 1, we omit indices.

• Commitment. On input a commitment key ick, a message w1, and commitment randomness r, C outputs a
commitment cm.

• Proving. On input a proving key ipk, an instance x, a witness w= (w1,w2), and commitment randomness
r, P outputs a proof π .

• Verifying. On input a verification key ivk, an instance x, a commitment cm, and a proof π , V outputs a bit
indicating whether π is a valid proof.

Throughout, we assume without loss of generality that the proving key ipk contains ick, ivk and i. These
algorithms must satisfy the following properties:
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• Multi-instance completeness. For every set of indices [ii]ni=1 and every efficient adversaryA, the following
probability is 1.

Pr


∀i ∈ [n] : (ii,xi,wi) ∈R
⇓

Vρ(ivki,xi,cmi,πi) = 1


∣∣∣∣∣∣∣∣∣

ρ ←U(λ )
([ipki]

n
i=1, [icki]

n
i=1, [ivki]

n
i=1)←Gρ(1λ , [ii]

n
i=1)

([xi]
n
i=1, [wi]

n
i=1, [ri]

n
i=1)←Aρ([ipki]

n
i=1)

∀i ∈ [n] : cmi←Cρ(icki,wi,1;ri)
∀i ∈ [n] : πi←Pρ(ipki,xi,wi;ri)


• Multi-instance knowledge soundness. For every efficient adversary P̃ and auxiliary input distribution D,

there exists an efficient extractor EP̃ such that for every set of indices [ii]ni=1, the following probability is
negligible:

Pr


∃i ∈ [n] : (ii,xi,wi) ̸∈R
∨

Cρ(ipki,wi,1;ri) ̸= cm


∧

Vρ(ivki,xi,cmi,πi) = 1

∣∣∣∣∣∣∣∣∣∣∣

ρ ←U(λ )
([ipki]

n
i=1, [icki]

n
i=1, [ivki]

n
i=1)←Gρ(1λ , [ii]

n
i=1)

aux←Dρ(1λ , [ipki]
n
i=1)

[(xi,cmi,πi)]
n
i=1← P̃ρ([ipki]

n
i=1,aux)

[(wi,ri)]
n
i=1←EP̃([ipki]

n
i=1,aux)


• Multi-instance zero-knowledge. There exists an efficient simulator S = (S1,S2) such that for every

efficient stateful adversary Ṽ = (Ṽ1, Ṽ2, Ṽ3), the following probabilities are negligibly close:

Pr


∀i ∈ [n] :

(ii,xi,wi) ∈R
∧

Ṽρ

3 ([ipki]
n
i=1, [cmi]

n
i=1, [πi]

n
i=1,st) = 1

∣∣∣∣∣∣∣∣∣∣∣

ρ ←U(λ )
[ii]

n
i=1← Ṽ

ρ

1 (1
λ )

([ipki]
n
i=1, [icki]

n
i=1, [ivki]

n
i=1)←Gρ(1λ , [ii]

n
i=1)

([xi]
n
i=1, [wi]

n
i=1)← Ṽ

ρ

2 (1
λ , [ipki]

n
i=1)

∀i ∈ [n] : cmi←Cρ(icki,wi,1)
∀i ∈ [n] : πi←Pρ(ipki,xi,wi)


and

Pr


∀i ∈ [n] :

(ii,xi,wi) ∈R
∧

Ṽρ[µ]
3 ([ipki]

n
i=1, [cmi]

n
i=1, [πi]

n
i=1,st) = 1

∣∣∣∣∣∣∣∣∣
ρ ←U(λ )

[ii]
n
i=1← Ṽ

ρ

1 (1
λ )

([ipki]
n
i=1,τ)←S

ρ

1 (1
λ , [ii]

n
i=1)

([xi]
n
i=1, [wi]

n
i=1)← Ṽ

ρ

2 (1
λ , [ipki]

n
i=1)

([cmi]
n
i=1, [πi]

n
i=1,µ)←S

ρ

2 ([ipki]
n
i=1, [xi]

n
i=1,τ)


In the foregoing, ρ[µ] is the function that, on input x, equals µ(x) if µ is defined on x, or ρ(x) otherwise.

This definition uses explicitly-programmable random oracles [BR93]. Note that we can recover the definition
of a standard zkSNARK by setting the commitment algorithm C to be a no-op and considering n = 1.

3.3 Aggregation schemes

Let ARG= (G,C,P,V) be a ccSNARK for CSAT. Then, at a high level, an aggregation scheme for ARG is a
ccSNARK that proves the validity of a batch of ARG proofs (for possibly different circuits). Formally, an
aggregation scheme for ARG is a ccSNARK for the committable indexed relation RAgg defined below.

Definition 3.2 (aggregation relation). The committable indexed relation RAgg is the set of triples

(i,x,(w1,w2)) = ([ivki]
n
i=1,x,([cmi]

n
i=1, [πi]

n
i=1))

where, for each i ∈ [n],
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• ivki is an honestly-generated verification key under ARG for some index ii for CSAT,
• x is a valid instance for CSAT with respect to ii (i.e., (ii,x) ∈L (CSAT)),
• cmi is a commitment, and
• πi is a valid proof under ivki for x, i.e., V(ivki,x,cmi,πi) = 1.
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4 Partitioning circuits via memory checking

We now describe our transformation that partitions a circuit C into augmented subcircuits via the memory-
checking infrastructure described in Section 2.1. Our transformation can be decomposed into two steps. First,
in Section 4.2, we show how to augment a partitioned circuit C into a ‘ROM’-circuit where wires between
subcircuits are replaced with memory accesses. Then, in Section 4.3, we show how to check these memory
accesses with a memory checker, and how to split the checks performed by the latter across subcircuits.

The resulting transformation, which we denote by f = ( fi, fw1 , fx,w2), maps a partitioned circuit instance
(i,x,w) ∈ k-CSAT (Definition 4.3) to a batch of CSAT instances [(ii,x′,(wi,1,wi,2))]

k
i=1 such that x′ is of

the form (1, rt,α,β ), where (α,β ) are field elements, and rt is the root of a Merkle tree. The reduction
satisfies the following lemma.

Lemma 4.1. There exists an efficient transformation f = ( fi, fw1 , fx,w2) satisfying the following properties:
• Completeness: For all α,β ∈F, if (i,x,w)∈ k-CSAT, then x is the 0-th leaf of rt and (ii,x′,(wi,1,wi,2))∈

CSAT for all i ∈ [k].
• Knowledge soundness: Let CM= (Setup,Commit) be a commitment scheme whose message spaces are

indexed by k-CSAT indices i. Then there exists an efficient extractor E such that for every k-CSAT index i,
every efficient adversaryW , and every benign auxiliary-input distribution D, the following probability is
negligible:

Pr



(i,x,w) /∈ k-CSAT
&

∀i ∈ [k] :
(ii,x

′,(wi,1,wi,2)) ∈ CSAT
&

x is the 0-th leaf of rt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ ← U(λ )
[ii]

n
i=1 = fi(i,C)

ck← CM.Setup(1λ ,Mi)

auxW ←D(i)
([wi]

n
i=1, rt)←Wρ (i,auxW )

cm← CM.Commit(ck, [wi,1]
n
i=1)

(α,β )← ρ(cm)

x
′ := (1, rt,α,β )

(x,w)← Eρ

W (i,auxW )


We now describe the components of the transformation f , beginning with some notation.

4.1 Notation

We begin by defining a notion of graph and circuit partitions.

Definition 4.2. A labelled k-partition V of a graph G = (V,E) is a list {V1, . . . ,Vk} that partitions the vertex
set V . Specifically, V is a k-partition of G if and only if the sets in V are non-empty and mutually disjoint,
and the union of these sets equals V .

In the following, let G = (V,E) be a directed acyclic graph, and V a k-partition of G. The cut-set of two
vertex subsets V1,V2 ⊆ V is defined as the set of edges originating in V1 and terminating in V2. That is,
cut(V1,V2) := {(u,v) ∈ E | u ∈V1,v ∈V2}. The reduced cut-set of V1,V2 (denoted d-cut(V1,V2)) is obtained
from cut(V1,V2) by removing all edges with the same source vertex except the lexicograpically first one. That
is, for all e = (u,v) ∈ cut(V1,V2), e ∈ d-cut(V1,V2) if and only if there is no v′ such that (u,v′) ∈ d-cut(V1,V2).

We often identify circuits with their underlying graphs. If If C = {C1, . . . ,Ck} is a partition of the graph
underlying a circuit C, then we say that C partitions C itself. Each Ci ∈ C is called a subcircuit of C. This
identification allows us to define the following relation.
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Definition 4.3 (k-partitioned circuit satisfiability). The committable indexed relation k-CSAT is the set
of triples (i,x,w) =

(
(iCSAT = (F, ℓ,m,n,C),C),xCSAT,wCSAT

)
where (iCSAT,xCSAT,wCSAT) ∈ CSAT and

C = {C1, . . . ,Ck} is a k-partition of C.

Notice that the set of wires shared between two subcircuits Ci,C j ∈ C is exactly the reduced cut-set
d-cut(Ci,C j). We will denote by S the set of all shared wires, i.e., S =

⋃
i ̸= j d-cut(Ci,C j).

4.2 Eliminating shared wires with ROM circuits

We introduce a new circuit model: circuits with read-only access to a memory bank. We call such circuits
ROM circuits.

Definition 4.4. A ROM circuit over the field F is an arithmetic circuit over F equipped with access to a
memory M, which is an array of F elements that is indexed by the elements of F. A ROM circuit, in addition
to the standard addition and multiplication gates, contains a read gate that takes as input an index i and
outputs the value M[i].

Throughout this section, we will use s to denote the size of a memory bank M.

Definition 4.5 (k-partitioned ROM circuit satisfiability). The indexed relation k-RCSAT is the set of all
triples (i,x,w) =

(
(F,k, ℓ,n,s,C,C),x,(w,M)

)
where F is a finite field, ℓ, n, and s are natural numbers,

x ∈ Fℓ and w ∈ Fn are vectors over F, M is a memory bank of size s over F, and C : Fℓ+n→ F is a ROM
circuit over F with respect to M, such that CM(x,w) = 0 and C = {C1, . . . ,Ck} is a k-partition of C.

In Figure 3, we provide a formal description of our reduction c2r = (c2ri,c2rx,c2rw) from k-CSAT to
k-RCSAT that removes shared wires between subcircuits. The following lemma follows from the construction
of the reduction.

Lemma 4.6. The function c2r= (c2ri,c2rx,c2rw) defined in Fig. 3 is a reduction from k-CSAT to k-RCSAT.
That is, (i,x,w) ∈ k-CSAT if and only if (iM,xM,wM) ∈ k-RCSAT, where iM = c2ri(i), xM = c2rx(x), and
furthermore, there are no shared wires between the subcircuits in iM.

4.3 Reducing partitioned ROM circuits to committable circuits

We now show how to reduce the problem of checking satisfiability of an instance of k-RCSAT to that of
checking simultaneous satisfaction of k instances of CSAT. For this we use the notion of a memory trace
[BCGT13; BCGTV13; BCTV14b; ZGKPP18]. Informally, a memory trace is a list of entries recording
memory reads performed by a ROM circuit.

Definition 4.7. A memory trace entry is a tuple eee = (t, i,v), where t ∈ [s] is the index of the subcircuit that
performed this operation, i is the memory address accessed, and v is the value read from M[i].
A memory trace is a list of memory trace entries, one for each read gate in a ROM circuit.

We will consider memory traces whose entries are sorted by subcircuit index (denoted TTT ), and by memory
address (denoted AAA).
Notation. We now introduce some notation for partitioning memory traces arising from a k-partitioned ROM
CSAT instance (F, ℓ,n,s,R,R= {R1, . . . ,Rk}). Denote by si the number of read gates in the i-th subcircuit Ri,
by ki = ∑

i−1
j=1 s j the cumulative number of read gates in circuits R1, . . . ,Ri−1, and by Si = {ki +1, . . . ,ki+1}

the set of (indices of) all read gates in Ri.
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c2ri(i= (F,k, ℓ,n,C,C))→ iM:
1. Parse C as {C1, . . . ,Ck}.
2. Initialize an empty memory bank M and a counter t := 0.
3. For each i ∈ [k], initialize new ROM subcircuits Ri :=Ci.
4. For each pair of distinct subcircuits Ci,C j ∈ C, and for each shared wire w = (u,v) ∈ d-cut(Ci,C j):

(a) Append a new entry to M containing the value of w, and increment t.
(b) Add read gates to Ri and R j that read index t of the memory M.
(c) Add to Ri a new equality check between u and the output of the new read gate.
(d) For every wire w′ = (u,v′) ∈ cut(Ci,C j) with the same source u as w:

i. Remove w′ from Ri and R j.
ii. Add to R j a new equality check between v′ and the output of the new read gate.

5. Denote by R the circuit whose partition isR= {R1, . . . ,Rk}.
6. Denote by s the size of M, and by ℓ′ and n′ the number of public input and witness wires in R, respectively.
7. Output (F, ℓ′,n′,s,R,R).

c2rx(x)→ xM: Output xM := x.

c2rw(i,x,w)→wM:
1. Use c2ri(i) to obtain the ROM circuit R.
2. Use x and w to compute the witness wM for R (i.e., the wires wM and the contents of M).
3. Output wM .

Figure 3: Reduction from k-CSAT to k-RCSAT.

Let TTT = (TTT 1, . . . ,TTT s) and AAA = (AAA1, . . . ,AAAs) denote the subcircuit-sorted and the address-sorted memory
traces respectively. Then the i-th subcircuit-sorted subtrace TTT i is defined as TTT i := (TTT ki+1, . . . ,TTT ki+si). Note
that, by construction, the subcircuit index of each entry in TTT i equals i, i.e. TTT i contains only those trace
entries that correspond to the memory reads made by Ri. Denote by ttt i the last entry in TTT i. Similarly, the i-th
address-sorted subtrace is defined as AAAi := (AAAki+1, . . . ,AAAki+si), and aaai denotes the last entry in AAAi.3

Construction intuition. We begin by noting that valid memory traces for ROM circuits produced by the
reduction in Section 4.2 should satisfy the following properties:
1. Values are consistent: If consecutive entries (t, i,v) and (t ′, i′,v′) in the trace AAA have the same address

(i.e. i = i′), they must have the same values (v = v′).
2. Every subcircuit reads: Consecutive entries (t, i,v) and (t ′, i′,v′) in TTT satisfy the constraint that either

t = t ′ or t = t ′+1. If t = t ′, then it must be that i≤ i′.
3. Every address is read: Consecutive entries (t, i,v) and (t ′, i′,v′) in AAA must satisfy the constraint that either

i = i′ or i = i′+1. If i = i′, then it must be that t ≤ t ′.
4. Traces are consistent: TTT and AAA are permutations of each other.

We now describe the intuition behind our reduction f k = ( f k
i
, f k
w1
, f k
x,w2

) from k-RCSAT to k-CSAT,
deferring to Figure 4 the formal pseudocode of the reduction.

The function f k
i

constructs a set of k ‘commit-carrying’ circuits R′i by relying on the following observations.
Checks 1 to 3 are entirely local as they inspect only consecutive entries in TTT i and AAA′i, and can thus be enforced
by each subcircuit Ri independently. Check 4, on the other hand, is a global property that requires coordination
between the subcircuits. To enable this coordination, we store the running trace evaluations (as well as the
last entries of the sorted traces) in a Merkle tree, and give to each subcircuit the root of this tree as public

3Note that AAAi can be entirely disjoint from TTT i, i.e., it might contain no entries corresponding to Ci’s memory accesses.
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input. In more detail, each circuit R′i is constructed as follows.
• R′i takes as public input x′ = (1, rt,α,β ) where α,β ∈ F are field elements, and rt is a Merkle tree root.

(We will specify how these are obtained below.)
• R′i takes as input a witness that can be split two parts, wi,1 and wi,2, where the first contains the subtraces

TTT i and AAAi, while the second contains the witness wires of Ri and two Merkle paths.
• R′i enforces (a) that the input Merkle paths are valid paths for the i− 1-th and the i-th leaves in a

Merkle tree with root rt; (b) that the i-th leaf of the Merkle tree contains the last entries ttt i and aaai of
TTT i and AAAi respectively; (c) the correctness of running trace evaluations Ti(α,β ) and Ai(α,β ), where
Ti(X ,Y ) := ∏

ki+1
j=1(X− (tT

j +Y · iTj +Y 2 ·vT
j )) and Ai(X ,Y ) := ∏

ki+1
j=1(X− (tA

j +Y · iAj +Y 2 ·vA
j )); and (d) that

the 0-th leaf holds the public input x of R.

f k
i
(i)→ [ii]

k
i=1:

Parse i= (F, ℓ,n,s,R,R= {R1, . . . ,Rk}) and construct circuits [Ci]
k
i=1 by augmenting [Ri]

k
i=1 as follows:

1. Each Ci takes as public input x′ and takes as witness wi,1 and wi,2. The contents of these are as described in
the construction intuition.

2. For each i ∈ [k]\{1}, augment Ci further as follows:
(a) Replace the output wire of the j-th read gate in Ri with a wire carrying the value of the j-th entry in TTT i.
(b) Ci parses wi,2 as Merkle proofs π

i−1
rt and π i

rt, and checks that:
• For each j ∈ {i − 1, i}, π

j
rt is a valid path with respect to rt for the j-th leaf with value

(ttt j,aaa j,Tj(α,β ),A j(α,β )).
• The trace (ttt i−1,TTT i) is sorted by the label tT

j , and the trace (aaai−1,AAAi) is sorted by the address iAj .
• Entries of (aaai−1,AAAi) with the same address iAj contain the same value vA

j , and that consecutive values of
iAj differ by at most 1.

• The running products are computed correctly:
Ti(α,β ) = Ti−1(α,β ) ·∏ j∈Si(α− (tT

j +β · iTj +β 2 · vT
j )), and

Ai(α,β ) = Ai−1(α,β ) ·∏ j∈Si(α− (tA
j +β · iAj +β 2 · vA

j )).
• The entries ttt i and aaai are the last entries of TTT i and AAAi respectively.

3. C1 is augmented to perform analogous checks on leaf 1 of the Merkle tree and to additionally check that x in
leaf 0 is consistent with its wires.

4. For each i ∈ [k], compute ℓ′i,n
′
i,m
′
i to be the sizes of x′i, wi,1 and wi,2 respectively.

Output [(F, ℓ′i,n′i,m′i,Ci)]
k
i=1.

f k
w1

(i,x,(w,M))→ [wi,1]
k
i=1:

1. Parse i as ((F, ℓ,n,s,R),R).
2. Construct the memory traces TTT and AAA by executing RM(x,w), and partition them to obtain [TTT i]

k
i=1 and [AAAi]

k
i=1.

3. Output [wi,1 = (TTT i,AAAi)]
k
i=1.

f k
x,w2

(i,x,(w,M),α,β )→ (x′, [wi,2]
k
i=1):

1. Parse i as ((F, ℓ,n,s,R),R).
2. Compute the augmented indices [i′i]

k
i=1 := f k

i
(i).

3. Construct the memory traces TTT and AAA by executing RM(x,w).
4. Use x, α , β , TTT and AAA to construct a Merkle tree with root rt with the 0-th leaf containing x and the i-th leaf

containing (ttt i,aaai,Ti(α,β ),Ai(α,β )).
5. Partition w into disjoint subwitnesses w1, . . . ,wk, corresponding to R1, . . . ,Rk respectively.
6. For each i ∈ [k], construct wi,2 to contain wi and the Merkle paths for leaves i−1 and i of the Merkle tree.
7. Output (x′ := (1, rt,α,β ), [wi,2]

k
i=1).

Figure 4: Reduction from k-RCSAT to k instances of CSAT.
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The reduction satisfies the following lemma, which roughly says that when the inputs α,β are chosen by
hashing commitments to the memory traces, the output circuits are satisfiable if and only if the input ROM
circuit is satisfiable.

Lemma 4.8. The reduction f k = ( f k
i
, f k
w1
, f k
x,w2

) defined in Fig. 4, on input (i,x,(w,M),α,β ), outputs
([ii]

k
i=1,x

′, [wi,1]
k
i=1, [wi,2]

k
i=1) such that the following properties hold:

• Completeness: For all α,β ∈ F, if (i,x,(w,M)) ∈ k-RCSAT, then (ii,x
′,(wi,1,wi,2)) ∈ CSAT for all

i ∈ [k] and x is the 0-th leaf of rt.
• Knowledge soundness: Let CM= (Setup,Commit) be a commitment scheme whose message spaceM

consists of the memory traces TTT and AAA. There exists an efficient extractor E such that for every efficient
adversaryW , the following probability is negligible:

Pr



(i,x,(w,M)) /∈ k-RCSAT
&

∀i ∈ [k] :
(ii,x

′,(wi,1,wi,2)) ∈ CSAT
&

x is the 0-th leaf of rt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ ← U(λ )
[ii]

k
i=1 = f k

i
(i,C)

ck← CM.Setup(1λ ,M)

auxW ←D(i)

([wi]
k
i=1, rt)←Wρ (i,auxW )

cm← CM.Commit(ck, [wi,1]
k
i=1)

(α,β )← ρ(cm)

x
′ := (1, rt,α,β )

(x,(w,M))← Eρ

W (i,auxW )


Proof. Completeness. Let α,β be arbitrary elements of F and parse i as (F,k, ℓ,n,s,R,R) and x

′ as
(1, rt,α,β ). By construction, x is the 0-th leaf of the Merkle tree with root rt.

If (i,x,(w,M)) ∈ k-RCSAT, then RM(x,w) = 0, which in turn implies that we can construct appropriate
memory sub-traces [wi,1 = (TTT i,AAAi)]

k
i=1 and witnesses [wi,2]

k
i=1 such that (ii,x′,(wi,1,wi,2)) ∈ CSAT for all

i ∈ [k].

Knowledge soundness. We construct an extractor E such that if (ii,x′,(wi,1,wi,2)) ∈ CSAT for all i ∈ [k],
the probability that E fails to produce (x,(w,M)) such that (i,x,(w,M)) ∈ k-RCSAT and x is the 0-th leaf
of rt is negligible. E works as follows:

Eρ

W(i,auxW)→ (x,(w,M)):
1. Parse i as (F,k, ℓ,n,s,R,R) and compute [i′i]

k
i=1 = f k

i
(i).

2. Obtain ([(wi,1,wi,2)]
k
i=1, rt)←Wρ(i,auxW).

3. Compute (α,β )← ρ(CM.Commit(ck, [wi,1]
k
i=1)).

4. Set x′ := (1, rt,α,β ).
5. For all i in {1, . . . ,k} parse wi,1 as (TTT i,AAAi) and construct TTT = TTT 1|| · · · ||TTT k and AAA = AAA1|| · · · ||AAAk.
6. For all i ∈ [k]\{1}, check that the values read from the i-th leaf of the Merkle tree with root rt are consistent in

wi−1,2 and wi,2.
7. Check that TTT is sorted by subcircuit index, AAA is sorted by address, and that TTT and AAA are permutations of each

other.
8. Construct the memory M from TTT and AAA.
9. For all i ∈ [k], parse wi,2 to obtain wi corresponding to Ri and the Merkle paths for leaves i−1 and i of the tree

corresponding to rt.
10. Use [wi]

k
i=1 to reconstruct w.

11. Use the merkle path from w1,2 to set x to be the value in the 0-th leaf of the Merkle tree.
12. Output (x,(w,M)).

We prove the following claim about the extractor E .
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Claim 4.9. Given that (ii,x′,(wi,1,wi,2)) ∈ CSAT for all i ∈ [k], if the extractor E does not abort, it outputs
a valid (x,(w,M)) such that (i,x,(w,M)) ∈ k-RCSAT.

Proof. Since the public input of R is used only in the first subcircuit R1, the fact that (i1,x′,(w1,1,w1,2)) ∈
CSAT and the extracted x is exactly the 0-th leaf of rt implies that the public input of R is consistent with x,
by construction of C1.

Since E does not abort, this implies that all the values read from the Merkle tree are consistent amongst
all k subcircuits and TTT and AAA are permutations of each other.

By construction of each index [i]ki=1, and because for each i, (ii,x′,(wi,1,wi,2)) ∈ CSAT, we have that
the witness w and memory M extracted by E are such that RM(x,w) = 1.

It is now sufficient to prove that the extractor aborts with negligible probability, which we do in the
following claim.

Claim 4.10. Given that (ii,x′,(wi,1,wi,2)) ∈ CSAT for all i ∈ [k], the extractor E aborts with negligible
probability.

Proof. The extractor only aborts if the values read from the Merkle tree are not consistent amongst all k
subcircuits, or if TTT and AAA are not permutations of each other.

The probability that the adversary can open the same leaf to two different values is negligible due to
collision resistance of the underlying hash function, and so it must be the case that, except with negligible
probability, the values read from the Merkle tree are consistent amongst all k subcircuits.

Now, (ii,x′,(wi,1,wi,2)) ∈ CSAT for all i ∈ [k] implies that TTT is a valid subcircuit-sorted trace, AAA is a
valid address-sorted trace, and T (α,β ) = A(α,β ), where T (X ,Y ) := ∏

s
j=1(X − (tT

j +Y · iTj +Y 2 · vT
j )) and

A(X ,Y ) := ∏
s
j=1(X− (tA

j +Y · iAj +Y 2 ·vA
j )). Lemma B.1 now implies that, except with negligible probability,

T (X ,Y ) = A(X ,Y ), thus implying that TTT and AAA are permutations of each other.
Thus overall the probability of abort is negligible.
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5 Aggregation scheme for Mirage

We now describe our aggregation scheme for the Mirage commit-carrying zkSNARK (Section 5.1.1). We
describe the aggregation scheme and prove it secure in Section 5.3. A key building block of our construction
is a method to prove the correctness of multiple pairing products simultaneously. We describe this building
block in Section 5.2.

Throughout this section we assume that the public inputs to each subcircuit are of the form (1, rt,α,β ) as
this is what the reduction in Section 4 mandates. We also assume Agg.C does not take any randomness as
input as Agg does not have to be hiding.

5.1 Background

We begin by recalling some results from prior work [BMMTV21; GMN22] that we will use in our construc-
tion.

Commitment schemes. The commitment scheme CMD [GMN22] is defined as follows.

CMD.Setup(Gn
1,Gn

2):
1. Sample a,b← F.
2. Set v1 := [aiH]n−1

i=0 , and v2 := [biH]n−1
i=0 .

3. Set w1 := [aiG]2n−1
i=n , and w2 := [biG]2n−1

i=n .
4. Output ckD := (v1,v2,w1,w2).

CMD.Commit(ckD,m = (AAA,BBB)):
1. Parse ckD as (v1,v2,w1,w2).
2. Parse v1 as [aiH]n−1

i=0 , and v2 as [biH]n−1
i=0 .

3. Parse w1 as [aiG]2n−1
i=n , and w2 as [biG]2n−1

i=n .
4. Parse AAA as [Ai]

n−1
i=0 and BBB as [Bi]

n−1
i=0 .

5. Set T := ∏
n−1
i=0 e(Ai,aiH) ·∏n−1

i=0 e(an+iG,Bi).
6. Set U := ∏

n−1
i=0 e(Ai,biH) ·∏n−1

i=0 e(bn+iG,Bi).
7. Output C := (T,U).

We will also use CM1 and CM2, two special cases of the above commitment scheme. In the former, the
G2 component of the message is ignored, while in the latter, the G1 component is ignored. That is, CM1 is a
commitment scheme with message space Gn

1, while CM2 is a commitment scheme with message space Gn
2.

In fact, CM1 is the same as the commitment scheme CMS from [GMN22].
We now define two relations associated with the above commitment schemes. These are slightly modified

versions of the relation RTIPP defined in [BMMTV21]:

Definition 5.1 (seprate pairing product relation). The indexed relation RSPP is the set of triples

(i,x,w) = (ckD,(cm
1
A,cm

2
B,Z,r),(AAA

′,BBB))

where ckD is a commitment key for the commitment schemes CM1 and CM2 (Section 3.1), cm1
A and cm2

B are
commitments under CM1 and CM2, Z is the claimed pairing product of AAA′ and BBB, r is a field element, and
AAA′ ∈Gn

1 and BBB ∈Gn
2 are vectors of group elements such that

cm1
A = CM1.Commit(ckD,rrr−1 ◦AAA′)

cm2
B = CM2.Commit(ckD,BBB)

Z = AAA′ ∗BBB

Definition 5.2 (combined pairing product relation). The indexed relation RCPP is the set of triples

(i,x,w) = (ckD,(cm
D,Z,r),(AAA′,BBB))
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where ckD is a commitment key for the commitment scheme CMD (Section 3.1), cmD is a commitment under
CMD, Z is the claimed pairing product of AAA′ and BBB, r is a field element, and AAA′ ∈Gn

1 and BBB ∈Gn
2 are vectors

of group elements such that

cmD = CMD.Commit(ckD,rrr−1 ◦AAA′,BBB)

Z = AAA′ ∗BBB

5.1.1 Mirage: commit-carrying Groth16

Below we describe the commit-carrying zkSNARK Mirage [CFQ19; KPPS20]. We note that while [KPPS20]
does not have a formal statement regarding the binding property of Mirage, the ccGro16 construction in
[CFQ19] is morally the same as Mirage, except that the latter handles public inputs as well. As a result,
Theorem H.1 from [CFQ19] can easily be extended to prove knowledge soundness for Mirage. For simplicity,
in our use case, we use a construction of ARG where ipki = icki for all i ∈ [n].

Mirage.Setup(λ , [ii]
n
i=1)→ ([ipki]

n
i=1, [icki]

n
i=1, [ivki]

n
i=1) :

1. For each i in {1, . . . ,n}, parse ii as (F, ℓi,mi,ni,Ci) and construct from it the QAP index (F, ti(X),aaai(X),bbbi(X),ccci(X)).
2. Sample α,β , [γi]

n
i=1, [si]

n
i=1← F and [δi]

n
i=1, [ηi]

n
i=1← F.

3. For each i ∈ [n] and j ∈ [ℓi +mi +ni], define pi, j(X) := βai, j(X)+αbi, j(X)+ ci, j(X).
4. For each i in [n], construct the verifying, committing, and proving keys, and output these:

ivki :=
(

e([α]1, [β ]2), [γi]2, [δi]2, [ηi]2,
{[

pi, j(si)/γi
]

1

}ℓi−1
j=0

)
; cki :=

(
[δi]1,

{[
pi, j(si)/ηi

]
1

}ℓi+mi−1
j=ℓi

)
ipki :=

(
cki, ivki,

{[
s j

i

]
1
,
[
s j

i

]
2

}ℓi+mi+ni−1

j=0
,
{[

pi, j(s)/δi
]

1

}ℓi+mi+ni−1
j=ℓi+mi

,
{[

s j
i ti(si)/δi

]
1

}ℓi+mi+ni−1

j=0

)
; icki := ipki

5. Output ([ipki]
n
i=1, [icki]

n
i=1, [ivki]

n
i=1).

Mirage.Commit(ick,w′C,κD)→ D:
1. Obtain ck from ick and parse ck as(

[δ ]1,{[pi(s)/η ]1}
ℓ+m−1
i=ℓ

)
.

2. Obtain partial QAP witness w′ = [wi]
ℓ+m−1
i=ℓ from w

′
C.

3. Define V1(X) := ∑
ℓ+m−1
i=ℓ wi · pi(X).

4. Output D := [V1(s)/η ]1 +[κDδ ]1.

Mirage.Verify(ivk,xC,D,π)→{0,1}:
1. Obtain the QAP instance x from xC.
2. Parse proof π as (A,B,C).
3. Check that e(A,B) =

e([α]1, [β ]2)e(
[
∑
ℓ−1
i=0

xi pi(s)
γ

]
1
, [γ]2)e(C, [δ ]2)e(D, [η ]2).

Mirage.Prove(ipk,xC,(w
′
C,wC),κD)→ π:

1. Parse ipk as
(
ck, ivk,

{[
si]

1,
[
si]

2

}ℓ+m+n−1
i=0 ,{[pi(s)/δ ]1}

ℓ+m+n−1
i=ℓ+m ,

{[
sit(s)/δ

]
1

}ℓ+m+n−2
i=0

)
.

2. Obtain the QAP instance x from xC and the QAP witness (w′,w) from (w′C,wC).
3. Parse x as the public input variables [wi]

ℓ−1
i=0 , w′ as [wi]

ℓ+m−1
i=ℓ and w as [wi]

ℓ+m+n−1
i=ℓ+m .

4. Sample randomizers κA,κB← F, and set
(a) pA(X) := ∑

ℓ+m+n−1
i=0 wi ·ai(X).

(b) pB(X) := ∑
ℓ+m+n−1
i=0 wi ·bi(X).

(c) pC(X) := ∑
ℓ+m+n−1
i=0 wi · ci(X).

(d) p′A(X) := α + pA(X)+κAδ .
(e) p′B(X) := β + pB(X)+κBδ .

(f) V2(X) := ∑
ℓ+m+n−1
i=ℓ+m wi · pi(X).

(g) h(X) := pA(X)·pB(X)−pC(X)
t(X)

.

5. Compute A :=
[
p′A(s)

]
1, B := [p′B(s)]2, and C :=

[
h(s)t(s)

δ

]
1
+[V2(s)/δ ]1 +κBA+κA[p′B(s)]1− [κAκBδ ]1− [κDη ]1.

6. Output π := (A,B,C).
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5.2 Proving multiple pairing products simultaneously

We now describe our protocol for showing the correctness of multiple pairing products, where the inputs to
each pairing product are vectors of group elements committed under the commitment schemes described in
Section 5.1. Concretely, we describe a protocol for the following relation.

Definition 5.3 (multiple pairing product relation). The indexed relation RMPP is the set of triples
i = ck

x =

(
cmD

AB
ZAB

)
,

(
cm1

S,cm
2
γ

ZSγ

)
,

(
cm1

C,cm
2
δ

ZCδ

)
,

(
cm1

D,cm
2
η

ZDη

)
, r

w =
(
AAA′,BBB

)
,

(
SSS′,γγγ

)
,

(
CCC′,δδδ

)
,

(
DDD′,ηηη

)


where ck is a commitment key for the commitment schemes CMD, CM1, and CM2 (Section 3.1), and
• (ck,(cmD

AB,ZAB,r),(AAA′,BBB)) ∈RCPP,
• (ck,(cm1

S,cm
2
γ ,ZSγ ,r),(SSS′,γγγ)) ∈RSPP,

• (ck,(cm1
C,cm

2
δ
,ZCδ ,r),(CCC

′,δδδ )) ∈RSPP, and
• (ck,(cm1

D,cm
2
η ,ZDη ,r),(DDD′,ηηη)) ∈RSPP.

Theorem 5.4. Given a SNARK TIPP for the RCPP NP relation, the construction MPP in Fig. 5 is a SNARK
for the RMPP relation. MPP achieves the following efficiency properties:
• The prover’s running time is the cost of running TIPP.Prove once.
• The proof size |π| is |πTIPP|+12|GT |.

Proof. Completeness. Completeness follows from the completeness of TIPP.

Knowledge soundness. We reduce to the knowledge soundness of the underlying TIPP protocol by using
any successful adversary A against MPP to construct an adversary B against TIPP. We then use the extractor
for the latter to construct an extractor EA for A.

Bρ ′(pkTIPP,aux)→ (xTIPP,πTIPP):
1. Set pkMPP = pkTIPP.
2. Obtain (x,π)←Aρ ′(pkMPP,aux).
3. Construct xTIPP := ((cmD

LR,ZLR),r) as in MPP.Prove.
4. Output (xTIPP,πTIPP).

Now we construct EA as follows. The high level idea is to have EA rewind A with the same x, but
obtaining TIPP proofs for x with respect to 4 different random challenges (s1, t1), (s2, t2), (s3, t3) and (s4, t4).
We then use the TIPP extractor EB to extract witnesses for each of these TIPP instances, and interpolate to
obtain a valid witness w for RMPP.

Eρ

A(pkMPP,aux)→w:
1. Set pkTIPP = pkMPP.
2. Compute (x,π = (ZCP,πTIPP))←Aρ(pkMPP,aux).
3. For i ∈ {1,2,3,4}:

(a) If i ̸= 1, sample (si, ti)← F2 and program ρ to return (si, ti) at (vkTIPP,x,ZCP).
(b) Extract TIPP witness (LLLi,RRRi)←Eρ

B(pkTIPP,aux).
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MPP.Setup(λ ,i)→ (pkMPP,vkMPP) :
1. Sample (pkTIPP,vkTIPP)← TIPP.Setup(λ ,i).
2. Set (pkMPP := (pkTIPP,vkTIPP),vkMPP := vkTIPP)

MPP.Proveρ (pkMPP,x,w)→ π:
1. Parse pkMPP as (pkTIPP,vkTIPP).
2. Parse x as (cmD

AB,(cm
1
S,cm

2
γ ),(cm

1
C,cm

2
δ
),(cm1

D,cm
2
η ),ZIP,r) and w as

(
(AAA′,BBB),(SSS′,γγγ),(CCC′,δδδ ),(DDD′,ηηη)

)
.

3. Parse the claimed inner products ZIP as (ZAB,ZSγ ,ZCδ ,ZDη ).
4. Compute the cross-products ZCP :=

{
ZXY = XXX ′ ∗YYY : X ∈ {A,S,C,D} ,Y ∈ {B,γ,δ ,η }

}
\ZIP.

5. Compute random linear combination challenges (s, t) := ρ(vkTIPP,x,ZCP).
6. Compute linear combinations of left and right inputs: LLL = AAA′+ s ·SSS′ · s2 ·CCC′+ s3 ·DDD′ and RRR = BBB+ t · γγγ + t2 ·δδδ + t3 ·ηηη .
7. Commit to combined left and right inputs: cmD

LR = cmD
AB · (cm1

S)
s · (cm1

C)
s2 · (cm1

D)
s3 · (cm2

γ )
t · (cm2

δ
)t2 · (cm2

η )
t3

.
8. Compute inner product of combined left and right inputs:

ZLR = LLL∗RRR = ∏
X∈{A,S,C,D},
Y∈{B,γ,δ ,η }

Zs(X)t(Y )
XY where

s(A) = 1 s(S) = s s(C) = s2 s(D) = s3

t(B) = 1 t(γ) = t t(δ ) = t2 t(η) = t3

9. Assemble the RCPP instance and witness: x′ := ((cmD
LR,ZLR),r) and w′ := (LLL,RRR).

10. Run the TIPP prover to obtain πTIPP := TIPP.Prove(pkTIPP,x
′,w′).

11. Output π := (ZCP,πTIPP).

MPP.Verifyρ (vkMPP,x,π)→{0,1}:
1. Parse vkMPP as vkTIPP.
2. Parse x as (cmD

AB,(cm
1
S,cm

2
γ ),(cm

1
C,cm

2
δ
),(cm1

D,cm
2
η ),ZIP,r).

3. Parse π as (ZCP,πTIPP).
4. Parse ZCP as

{
ZXY = XXX ′ ∗YYY : X ∈ {A,S,C,D} ,Y ∈ {B,γ,δ ,η }

}
\ZIP.

5. Compute random linear combination challenges (s, t) := ρ(vkTIPP,x,ZCP).
6. Reconstruct commitment: cmD

LR = cmD
AB · (cm1

S)
s · (cm1

C)
s2 · (cm1

D)
s3 · (cm2

γ )
t · (cm2

δ
)t2 · (cm2

η )
t3

.
7. Reconstruct inner product of combined left and right inputs:

ZLR = ∏
X∈{A,S,C,D},
Y∈{B,γ,δ ,η }

Zs(X)t(Y )
XY

8. Assemble the RCPP instance: x′ := ((cmD
LR,ZLR),r).

9. Output TIPP.Verify(vkTIPP,x
′,πTIPP).

Figure 5: The MPP Protocol
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4. Interpolate the extracted TIPP witnesses to obtain w := (AAA,BBB,CCC,DDD).

The correctness of the extractor Eρ

A follows from Lemma B.1.

Efficiency. The efficiency claims follow from inspection:
• MPP.Prove runs TIPP.Prove once.
• πMPP is of the form (ZCP,πTIPP), where ZCP consists of 12 GT elements.

5.3 Construction

We present the full construction of our aggregation scheme for Mirage in Fig. 6.

5.3.1 Completeness and knowledge soundness proofs

Completeness. Completeness follows from the completeness of MPP and CMD.Commit.
Knowledge Soundness. Knowledge soundness reduces to the knowledge soundness of MPP and the
binding property of CMD.Commit. That is, given a successful adversary A against Agg, we will construct an
adversary B against MPP. We will then use the knowledge soundness of the latter to construct an extractor
EA for A. We begin by constructing B for MPP as follows:

Bρ (pkMPP,auxB)→ (xMPP,πMPP):
1. Parse auxB as (auxA,pkAgg).
2. Parse pkAgg as (pkMPP,vkAgg, S̃SS,SSS2,SSS3,γγγ,δδδ ,ηηη).
3. Parse verification key vkAgg = (vkMPP,cm

1
S1
,cm1

S2
,cm1

S3
,cm2

γ ,cm
2
δ
,cm2

η ).
4. Obtain (x,cmAgg,π)←A(pkAgg,aux).
5. Parse public input x as (1, rt,α,β ), commitment cmAgg as cm1

D, and proof π as (cmD
AB,cm

1
C,
(
ZAB,ZSγ ,ZCδ ,ZDη

)
,πMPP).

6. Construct xMPP and πMPP as in Agg.P , and output these.

Agg.V accepting implies that the batched SNARK verification equation holds and MPP.Verify accepts.
The latter implies that EB outputs a valid witness wMPP =

(
(AAA′,BBB),(SSS′,γγγ),(CCC′,δδδ ),(DDD′,ηηη)

)
for xMPP, except

with negligible probablity.
After rescaling AAA = rrr−1 ◦AAA′, SSS = rrr−1 ◦ SSS′, CCC = rrr−1 ◦CCC′ and [cmi]

n
i=1 = rrr−1 ◦DDD′, the batched SNARK

verification equation ZAB = (e([α]1, [β ]2))
σ ·ZSγ ·ZCδ ·ZDη implies that, except with negligible probability,

for all i ∈ [n], Mirage.Verify(ivki,(1, rt,α),cmi,(Ai,Bi,Ci)) = 1 (by Lemma B.1).
This allows us to argue the success of the extractor EA constructed below:

Eρ

A(pkAgg,auxA)→wAgg:
1. Set auxB := (auxA,pkAgg).
2. Obtain wMPP← Eρ

B(pkMPP,auxB).
3. Parse wMPP as

(
(AAA′,BBB),(SSS′,γγγ),(CCC′,δδδ ),(DDD′,ηηη)

)
.

4. Rescale AAA = rrr−1 ◦AAA′, SSS = rrr−1 ◦SSS′, CCC = rrr−1 ◦CCC′ and [cmi]
n
i=1 = rrr−1 ◦DDD′. c

5. Output (w1 := DDD,w2 := (Ai,Bi,Ci)
n
i=1).

Efficiency. The efficiency claims follow from inspection:
• Agg.P runs MPP.Prove once, CMD.Commit once, and CM1.Commit once.
• πAgg is of the form (cmD

AB,cm
1
C,ZIP,πMPP), where ZIP consists of 4 GT elements and cmD

AB and cm1
C are 2

GT elements each.

24



Agg.G(λ ,(ivki)
n
i=1,((vi, j)

u
j=5)

n
i=1)→ (pkAgg,ckAgg,vkAgg) :

1. Sample public parameters for MPP: (pkMPP,vkMPP)←MPP.Setup(λ ).

2. For all i ∈ [n] parse ivki as
(

e([α]1, [β ]2), [γi]2, [δi]2, [ηi]2,
{[

pi, j(s)/γi
]

1

}4
j=1

)
.

3. For each j in {1,2,3,4}, set SSS j := (
[
p1, j(s)/γ1

]
1, . . . ,

[
pn, j(s)/γn

]
1) and commit to SSS j: cm1

S j
← CM1.Commit(ckD,SSS j).

4. Set γγγ := ([γ1]2, . . . , [γn]2), δδδ := ([δ1]2, . . . , [δn]2), and ηηη := ([η1]2, . . . , [ηn]2).
5. Commit to γγγ,δδδ ,ηηη : cm2

γ ← CM2.Commit(ckD,γγγ), cm2
δ
← CM2.Commit(ckD,δδδ ), cm2

η ← CM2.Commit(ckD,ηηη).
6. Parse pkMPP as ((ckD,ckKZG),vkTIPP).
7. Set ckAgg := ckD.
8. Set vkAgg := (vkMPP,cm

1
S1
,cm1

S2
,cm1

S3
,cm1

S4
,cm2

γ ,cm
2
δ
,cm2

η ).
9. Set pkAgg := (pkMPP,ckAgg,vkAgg,SSS1,SSS2,SSS3,SSS4,γγγ,δδδ ,ηηη).

10. Output (pkAgg,ckAgg,vkAgg).

Agg.Cρ (ckAgg, [cmi]
n
i=1)→ cmAgg:

1. Parse commitment key ckAgg as ckD and commitments [cmi]
n
i=1 as DDD.

2. Output cmAgg := CM1.Commit(ckD,DDD).

Agg.Pρ (pkAgg,x,w,cmAgg)→ π:
1. Parse pkAgg as (pkMPP,ckAgg,vkAgg,SSS1,SSS2,SSS3,SSS4,γγγ,δδδ ,ηηη),
2. Parse ckAgg as ckD and vkAgg as (vkMPP,cm

1
S1
,cm1

S2
,cm1

S3
,cm1

S4
,cm2

γ ,cm
2
δ
,cm2

η ).
3. Parse x as (1, rt,α,β ) and w as (DDD,(Ai,Bi,Ci)

n
i=1).

4. Parse cmAgg as cm1
D.

5. Commit to AAA and BBB: cmD
AB← CMD.Commit(ckD,AAA,BBB).

6. Commit to CCC: cm1
C← CM1.Commit(ckD,CCC).

7. Compute public input vector SSS = SSS1 + rt ·SSS2 +α ·SSS3 +β ·SSS4.
8. Compute public input commitment cm1

S := (cm1
S1
) · (cm1

S2
)rt · (cm1

S3
)α · (cm1

S4
)β .

9. Compute random linear combination challenge r := ρ(vkAgg,x,cm
D
AB,(cm

1
S,cm

2
γ ),(cm

1
C,cm

2
δ
),(cm1

D,cm
2
η )).

10. Construct rrr := (1,r1,r2, . . . ,rn−1).
11. Rescale AAA′ = rrr ◦AAA, SSS′ = rrr ◦SSS, CCC′ = rrr ◦CCC and DDD′ = rrr ◦DDD.
12. Compute the claimed inner products ZIP =

(
ZAB := AAA′ ∗BBB,ZSγ := SSS′ ∗ γγγ,ZCδ :=CCC′ ∗δδδ ,ZDη := DDD′ ∗ηηη

)
.

13. Assemble the RMPP instance and witness: xMPP :=
(
cmD

AB
ZAB

) (
cm1

S,cm
2
γ

ZSγ

) (
cm1

C,cm
2
δ

ZCδ

) (
cm1

D,cm
2
η

ZDη

)
r

wMPP :=
(
AAA′,BBB

) (
SSS′,γγγ

) (
CCC′,δδδ

) (
DDD′,ηηη

)
 .

14. Compute Multi-TIPP proof: πMPP←MPP.Prove(pkMPP,xMPP;wMPP).
15. Output π := (cmD

AB,cm
1
C,ZIP,πMPP).

Agg.V(vkAgg,x,cmAgg,π)→{0,1}:
1. Parse verification key vkAgg = (vkMPP,cm

1
S1
,cm1

S2
,cm1

S3
,cm2

γ ,cm
2
δ
,cm2

η ).
2. Parse public input x as (1, rt,α,β ), commitment cmAgg as cm1

D, and proof π as (cmD
AB,cm

1
C,
(
ZAB,ZSγ ,ZCδ ,ZDη

)
,πMPP).

3. Compute cm1
S = (cm1

S1
) · (cm1

S2
)rt · (cm1

S3
)α · (cm1

S4
)β .

4. Compute r = ρ(vkAgg,x,cm
D
AB,(cm

1
S,cm

2
γ ),(cm

1
C,cm

2
δ
),(cm1

D,cm
2
η )).

5. Assemble the RMPP instance: xMPP :=
((

cmD
AB

ZAB

) (
cm1

S,cm
2
γ

ZSγ

) (
cm1

C,cm
2
δ

ZCδ

) (
cm1

D,cm
2
η

ZDη

)
r
)

.

6. Check that MPP.Verify(vkMPP,xMPP,πMPP) = 1.
7. Check that the batched Mirage verification equation holds: ZAB = (e([α]1, [β ]2))

σ ·ZSγ ·ZCδ ·ZDη .

Figure 6: Our aggregation scheme for Mirage.
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6 Divide-and-aggregate zkSNARKs

The following theorem describes our main result: a divide-and-aggregate (DNA) zkSNARK for CSAT that
supports both the distributed and low-memory prover workflows.

Theorem 6.1. Consider the following ingredients:
- an inner commit-carrying zkSNARK ARG for CSAT (Section 3.2), and
- an aggregation scheme Agg for ARG (Section 3.3),
Then the construction in Section 6.1 is a zkSNARK for CSAT that has a horizontally-scalable distributed
prover (Section 6.2).

Remark 6.2. Our construction can be instantiated with a variety of different ingredients, including aggregation
schemes based on proof-carrying data [CT10; BCTV14a; BCMS20; BCLMS21]. However, it fails to capture
divide-and-aggregate zkSNARKs which leverage fine-grained aggregation within the execution of the inner
zkSNARK. An example of such a scheme is the aPlonk SNARK [ABST23], which aggregates separately the
polynomial commitments generated in each round of the Plonk SNARK. We leave the task of extending our
construction to capture such zkSNARKs to future work.

6.1 Construction

Generator DNA.G. On input the security parameter λ and the CSAT index i= (F,k, ℓ,n,C,C), compute
the index-specific proving and verifying keys (ipk, ivk) as follows.
1. Reduce i to multiple CSAT indices: [ii]ni=1 := fi(i).
2. Sample keys for CSAT indices: ([ipki]

n
i=1, [icki]

n
i=1, [ivki]

n
i=1)← ARG.G(λ , [ii]ni=1).

3. Construct Agg index: iAgg := [ivki]
n
i=1.

4. Sample keys for Agg: (pkAgg,ckAgg,vkAgg)← Agg.G(λ ,iAgg).
5. Construct verifying key: ivk := vkAgg and proving key ipk := (i, ivk, [ipki]

n
i=1,pkAgg).

6. Output (ipk, ivk).

Prover DNA.P . Given oracle access to a random oracle ρ , and on input the proving key ipk, the CSAT
instance x, and the CSAT witness w, compute the proof π as follows.
1. Parse the proving key as ipk = (i, ivk, [ipki]

n
i=1,pkAgg).

2. Compute the memory subtraces: [w′i]
n
i=1 = fw1(i,x,w).

3. For each i in {1, . . . ,n}, obtain icki from ipki and commit to w′i: cmi← ARG.C(icki,w
′
i).

4. Obtain ckAgg from pkAgg and commit to [cmi]
n
i=1: cmAgg← Agg.Cρ(ckAgg, [cmi]

n
i=1).

5. Compute the challenges (α,β ) = ρ(ivk,cmAgg).
6. Compute instances and witnesses for subcircuits: (xAgg, [wi]

k
i=1) = fx,w2(i,x,w,α,β ).

7. For each i in {1, . . . ,n}, compute the cc-zkSNARK proofs: πi← ARG.P(ipki,xAgg,(w
′
i,wi)).

8. Parse xAgg as (1, rt,α,β ).
9. Compute a membership proof πrt asserting that the first leaf of the Merkle tree with root rt is x.

10. Assemble RAgg witness: wAgg := ([cmi]
n
i=1, [πi]

n
i=1).

11. Compute aggregated proof: πAgg← Agg.Pρ(pkAgg,xAgg,wAgg,cmAgg).
12. Output π := (xAgg,cmAgg,πAgg,πrt).

Verifier DNA.V . Given oracle access to a random oracle ρ , and on input the verification key ivk, the CSAT
instance x, and the proof π , compute the verdict b as follows.
1. Parse the verification key as ivk = vkAgg.
2. Parse π as (xAgg,cmAgg,πAgg,πrt).
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3. Parse xAgg as (1, rt,α,β ).
4. Check that πrt is a valid proof that x is the first leaf of the Merkle tree with root rt.
5. Check that (α,β ) = ρ(vkAgg,cmAgg).
6. Check that Agg.V(vkAgg,xAgg,cmAgg,πAgg) = 1.

6.2 Distributed prover workflow

We now describe at a high level the workflow for distributed proving of the foregoing zkSNARK. Proving
responsibilities are split between a central coordinator and n workers.
1. Setup: The coordinator generates and partitions the memory traces, and distributes the subtraces and

witness shares to the respective workers.
2. Commit: In parallel, each worker invokes ARG.C to commit to its subtrace, and sends the resulting

commitment back to the coordinator.
3. Challenge: The coordinator aggregates the received commitments via Agg.C, and uses the resulting

commitment to derive a challenge r which it sends to each worker.
4. Prove: In parallel, each worker invokes ARG.P to compute its proof πi for its subcircuit, and sends the

resulting proof back to the coordinator.
5. Aggregate: The coordinator aggregates the received proofs via Agg.P to compute the final proof π .
Note that “Commit” and “Prove” steps above are highlighted in brown in Section 6.1.

Efficiency analysis.
• Per-worker running time is the cost of running ARG.C and ARG.P on input Ci.
• Per-worker communication cost is the size of a single proof and a single commitment of ARG, |πARG|+
|CMARG|.

• The primary node’s active compute time is dominated by the cost of running Agg.C and Agg.P on inputs
of size n.

• Proof size is |π|= |πAgg|+ |cmAgg|+ |πrt|+3|F|.

6.3 Optimizations

When the underlying ccSNARK ARG relies on circuit-specific setup, it is not clear how to obtain an SRS that
grows only with the number of unique subcircuits because the construction in Section 6.1 creates subcircuits
which have hardcoded in them the subcircuit number as well as the indices of the accessed shared wires.
Since the latter are unique to each subcircuit, the SRS size would grow with the number of subcircuits.

To address this, we can modify the construction in Section 6.1 via the following optimization: instead
of hardcoding the aforementioned values, we will instead provide these as public input to each subcircuit;
since these values are known at setup time, the computations required for this public input handling can
also be done during setup. This would ensure that we only need to perform one setup per unique subcircuit
independent of how it is wired with respect to other subcircuits or how it is numbered. We provide details
next. Assuming each subcircuit takes at most u public inputs, they can be preprocessed in Agg.G as follows:
1. For all i ∈ [n] parse ivki as (e([α]1, [β ]2), [γi]2, [δi]2, [ηi]2,{

[pi, j(s)/γi]1
}u

j=1).
2. For each i ∈ [n] let the i-th subcircuits public inputs be (1, rt,α,β ,

vi,5, . . . ,vi,u).
3. For each j in {5,6, . . . ,u}, multiply the G1 elements of (ivki)

n
i=1 corresponding to public inputs with the

appropriate coeffecients to obtain SSS j := (v1, j · [p1, j(s)/γ1]1, . . . ,vn, j · [pn, j(s)/γn]1).
4. Replace SSS1 with S̃SS := SSS1 +∑

u
j=5 SSS j.
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5. Replace cm1
S1

with a commitment to S̃SS: cm1
S̃← CM1.Commit(ckD, S̃SS).

6. Set vkAgg := (vkMPP,cm
1
S̃,cm

1
S2
,cm1

S3
,cm1

S4
,cm2

γ ,cm
2
δ
,cm2

η).
7. Set pkAgg := (pkMPP,ckAgg,vkAgg, S̃SS,SSS2,SSS3,SSS4,γγγ,δδδ ,ηηη).

Now in Agg.P and Agg.V we can:
1. Compute public input vector SSS = S̃SS+ rt ·SSS2 +α ·SSS3 +β ·SSS4.
2. Compute public input commitment cm1

S := (cm1
S̃) · (cm

1
S2
)rt · (cm1

S3
)α · (cm1

S4
)β .

3. We can then proceed by using SSS and cm1
S as usual.
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7 Implementation

We implemented HEKATON in 5400 lines of Rust code using the arkworks framework [Ark22]. Our
library implements: (1) a generic API to describe partitionable circuits with shared wires, (2) an implemen-
tation of the Mirage cc-zkSNARK, (3) the aggregation scheme for Mirage described in Section 5, (4) an
OpenMPI implementation of coordinator and worker nodes for distributed proving described below, and
(5) implementations of the applications described in Section 1 atop HEKATON. Our code will be open-sourced
shortly.

Design choices for distributed proving. Our library is cluster-agnostic and highly configurable. Due to
space constraints, we defer further discussion of design decisions to Appendix A.

We use the OpenMPI message passing framework for communication, and SLURM for job orchestration.
We implement our system using two rounds of MPI scatter-gather: one for the Commit phase and one for the
Proving phase. Our system is highly configurable: each MPI node has multiple threads to run tasks, and the
number of nodes, threads per node, and memory per thread is configurable at runtime.
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8 Evaluation

In this section we evaluate the performance of our built system HEKATON via a set of scalability experiments
(Section 8.2) and via two applications: verifiable key directories (Section 8.3) and verifiable RAM computation
(Section 8.4). Overall, our experiments suggest that HEKATON indeed achieves its goal of horizontal
scalability, and furthermore, improves upon existing solutions for the aforementioned applications.

8.1 Experimental setup

Hardware. Our experiments are run on a large multi-tenant HPC cluster. The cluster consists of nodes with
AMD EPYC 7763 processors with 128 cores and 512GB of RAM. The cluster costs $0.00232 per core-hour.
(For comparison, on-demand pricing for the equivalent AWS instance (m6a.32xlarge) is $0.0432 per
core-hour).

Circuit choice. For most zkSNARKs, prover performance is independent of the circuit structure. This
is true for Mirage, and so should also hold (modulo shared wires) for HEKATON. We want a circuit that,
when partitioned into subcircuits, exercises the full features of HEKATON, yielding heterogeneous subcircuits
and shared wires. We generate 5 distinct subcircuits, each with a tunable number of shared wires between
them and an adjustable number of constraints. This adjustability is necessary both for benchmarking, and
also for prototyping and performance tuning early iterations of HEKATON. We define the larger circuit as a
power-of-two number of subcircuits.

Shared wire costs are low. We find that shared wires cost 13 constraints each. At the scale we aim for, this
adds a negligible overhead to the cost of subcircuit proving. Indeed, for any reasonable computation, the
additional cost of handling shared wires is negligible compared the cost of the core computation. For our
end-to-end experiments, we arbitrarily fix the proportion of constraints that come from shared wires to 10%.

Parameters for distributed proving. As described in Section 7, HEKATON’s distributed prover is highly
configurable. To determine an appropriate configuration for our cluster, we ran preliminary experiments
which confirmed our intuition to allocate each subcircuit its own core (this avoids diminishing returns of
multithreading subcircuit proof generation). Further exploration indicated that, accounting for miscellaneous
memory overhead, we could not reliably exceed 3.5GB of memory for the prover. This translates to proving
a 1.3 million constraint subcircuit. For our distributed experiments, we fix this as the subcircuit size and vary
total circuit size by adding subcircuits.

We found that a configuration where each MPI node runs 32 provers, each equipped with one core and
4GB of memory, was the optimal setting for our workload.

8.2 Scaling experiments

Figure 7 plots latency and throughput for HEKATON, for a varying number of cores, as the size of the circuit
increases. We stress that, in a departure from previous work [WZCPS18; LXZSZ24], the numbers are
end-to-end, counting the full cost of pre-positioning data, serialization and deserialization, data transmission,
and computation.

Prover latency and throughput. Both latency and throughput scale well. As shown in the latency graph,
Figure 7a, workers appear to initially starve, having insufficient work to achieve full utilization. However,
after initial starvation, latency stabilizes. The throughput in Figure 7b follows the same pattern.

For an ideal system, we would expect end-to-end latency to scale linearly; doubling the circuit size should
double the runtime Indeed this is the largely case: of all the plots in Figure 7a, the worst fitting simple linear
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Figure 7: HEKATON proving performance for a fixed set of cores as total circuit size increases.

regression line is a 98.58% fit.4

Communication costs. We report the communication costs per subcircuit in Table 2. The largest overhead
is less than 1MB per subcircuit. As expected, commit and proving phase responses sizes do not vary with any
circuit parameters. Commit phase request sizes do not vary with number of circuits.

Number of
subcircuits

Commit phase Proving phase
request response request response

28 ↑ ↑ 577B ↑
211 923kB 136B 673B 496B
214 ↓ ↓ 769B ↓

Table 2: Maximum communication costs per subcircuit for each round of HEKATON.

Proof size and verification time. Proofs size and verifier time grow logarithmically. Concretely, in our
largest test at 218 subcircuits, proofs are 32kB and take 83ms to verify. We did not attempt to optimize the
latter cost, but expect that it can be reduced greatly.
Aggregation times. We report aggregation times in Fig. 8. As expected, aggregation time grows linearly
with number of subcircuits, topping out at ≈ 100100s for 216 subcircuits. While this is non-trivial, we expect
that the aggregation itself can be distributed across multiple nodes. We leave this task to future work.
Overhead relative to existing provers. Recall that HEKATON is modular, using an existing monolithic
inner cc-zkSNARK ARG to prove subcircuits. We now investigate the overhead added by HEKATON relative
to ARG (which in the experiments is Mirage).

Overhead comes from two sources, First, for every subcircuit, HEKATON adds extra constraints for
shared wires that are not needed in a single monolithic prover. Second, HEKATON imposes overhead for the
additional machinery for the commit-carrying aggregation scheme and extra communication.

4Computed as r2, or the coefficient of determination of the model.
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Figure 8: Time to aggregate subcircuit proofs. Note that our experimental measurements are end-to-end, meaning
that they include aggregation time.

To measure total overhead, we compare normalized throughput in constraints per core-second (cpcs) of a
monolithic Mirage prover versus HEKATON. To set the baseline maximum normalized throughput, we run
the monolithic prover using just 1 thread. This operates at 38kcpcs. For comparison, HEKATON achieves
34kcpcs (90% baseline) at 4 threads.

We now look at how this overhead scales when we add more compute cores. For context, the normalized
throughput for a perfectly parallelizable problem would be identical regardless of the number of cores. When
we scale up our baseline monolithic Groth16 prover by 32×, the normalized throughput drops dramatically to
1.2kcpcs (5% of the baseline). Meanwhile, when we scale up HEKATON by 32×, the normalized throughput
drops to 33kcpcs (87% baseline). When we scale again by 32×, it drops to 12kcpcs (64% baseline). This is
promising: HEKATON is able to utilize its additional resources much more effectively than the monolithic
prover.

Comparison to Pianist. As noted in Section 1.2, the most closely related prior work to ours is Pianist
[LXZSZ24], and so we tried to benchmark their implementation on our cluster. Unfortunately, despite
signficant effort, we were unable to get their implementation to run stably on our cluster for circuit sizes
larger than 221 constraints, or with more than 2 worker nodes. The numbers that we did obtain, however, are
in line with the numbers reported in Pianist.

For example, the running time of Pianist when trying to prove 221 constraints with 128 cores, each with
4GB of memory, is the same in our setup as in theirs, at around 9.3s.5 This allows us to perform a rough
extrapolated comparison of the performance of the two systems, which we do next.

Pianist reports a runtime of 1 second for a circuit of size 222 and, for their largest measured circuit, sub-10s
runtimes for 225 constraints. Both of these are on 2048 cores, the most powerful hardware configuration they
benchmark for general circuits. In contrast, the smallest circuit size we benchmark (227) takes 11.6s to prove
on 2048 cores in the same configuration. Extrapolating Pianist’s numbers to this many constraints indicates
that HEKATON is able to achieve ≈ 3× lower latency.

This gap is despite a couple of factors in Pianist’s favor. First, Pianist uses the BN254 curve, which is
faster than BLS12-381 used by HEKATON, but has worse security, estimated to be 100 bits [BD19]. Updating
Pianist to use the latter curve would likely lead to a further slowdown in their reported numbers.

Second, Pianist’s circuit sizes are for Plonk constraints [GWC19]. Liu et al. [LXZSZ24] themselves
5See [LXZSZ24, Figure 2]. Numbers are approximate as this is a log-log plot.
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report that equivalent R1CS circuits would be ≈ 7 times smaller, meaning that the effective number of
constraints proved by Pianist in a given time is ≈ 7 times smaller than that proved by HEKATON. (However,
keep in mind that optimized circuits and custom Plonk gates might reduce this overhead.)

Overall, these factors combine to indicate that HEKATON is able to achieve better performance in
practice.

8.3 Application: verifiable key directories

A Verifiable Key Directory (VKD) [MBBFF15; CDGM19] is a primitive that allows clients to monitor a
key-value mapping maintained by an untrusted server that a service is distributing on their behalf. VKDs
are commonly used to maintain public key registries for end-to-end encrypted messaging services [EA23;
LL23] in a way that prevents the server from tampering with the registry by changing users’ public keys
undetectably.

In a VKD, the server maintains a mapping from a client-specific identifier k to a tuple (i,v), where i is
a version number recording the number of times this entry has been updated, and v is the current value. A
client can request the server to either insert a new key-value pair (k,(0,v)), or to update an existing key k to a
new value v′ while incrementing the version number. This mapping is committed inside a Merkle tree, and
both operations come with “proofs” that the server has indeed performed the requested operation correctly.
Periodically at each epoch t, the server signs and publishes a digest dt corresponding to the current state of
the tree.

To verify the integrity of its stored value, a client can request from the server a proof attesting that the
value v is indeed the one committed in the latest published digest dt . Existing VKDs use this mechanism
to allow clients to audit the integrity of their mappings over time: they can request proofs for the value
of their key at different epochs, and verify that the server has not tampered with their key-value mapping.
Unfortunately, this mechanism is not scalable: if the client goes offline between epochs t and t ′ that are far
apart, they would need to download and verify all intervening digests and proofs to ensure integrity.

Baseline approach. Recent work [TFZBT22] proposes to improve the efficiency of this process via invariant
proofs. Roughly, such a proof would assert that if at any point between t and t ′ the server updated the value
of k, then the server must have also incremented the version number. Now, if version numbers it and it ′ are
equal, then the invariant proof guarantees that the value v was unchanged between epochs t and t ′.

Tyagi et al. [TFZBT22] construct constant-sized invariant proofs by replacing Merkle trees with RSA-
based authenticated dictionaries, and using SNARKs to prove the preservation of the invariant. Unfortunately,
their reliance on RSA accumulators makes them incompatible with existing systems that already use Merkle
tree based registries.

Our approach. We leverage HEKATON to provide invariant proofs for existing registries by proving that all
operations performed by the server on the key-value mapping preserve the versioning invariant and correctly
update the Merkle tree.

In more detail, we consider a VKD with a SHA-256-based Merkle tree of depth 128. Our circuit verifies
a batch of update operations on the VKD, each of which requires incrementing the user’s version number
and checking two Merkle paths. Because the task of checking even a single Merkle path is too onerous for a
single subcircuit, we partition each path check into four subcircuits. Each subcircuit passes its intermediate
computation to the next, until the root is computed and checked against the expected root.

Experimental comparison. We measure total proving latency as we increase the size of the batch of VKD
updates. We use 4096 cores, with the same core allocation as in the previous section. Each subcircuit is
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2.4M constraints. Prover performance is illustrated in Fig. 9; observe that prover throughput increases as we
increase the batch size.
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Figure 9: End-to-end runtime for proving batches of updates in a Merkle-tree-based VKD; the x-axis indicates
the batch size.

8.4 Application: verifiable RAM computation

Numerous applications are most easily and efficiently expressed as RAM computations. As a result, much
industrial and academic effort has been invested in constructing efficient “zkVMs” that can verify the
correctness of RAM computations [BCGTV13; BCTV14b; ZGKPP18; Sta21; AST24].6 In this section, we
show that HEKATON can scale to prove such RAM computations very efficiently, focusing on the TinyRAM
instruction set.

Circuit construction. Our circuit consists of repeated CPU “cycle” circuits. Each of the latter contains two
modules: an ALU that executes TinyRAM instructions, and a memory checker that verifies memory accesses.
We instantiate the ALU module with dummy constraints that do not actually execute TinyRAM instructions,
but whose cost equals that of a real ALU. The resulting dummy ALU module costs roughly 1,114 constraints
(we obtained this number from the breakdown in [BCTV14b, Figure 7]).

We instantiate the memory checking module in two ways. The first constitutes our baseline approach that
uses online memory checking via Merkle trees. Indeed, as discussed in Section 2.1.1, prior to our work, this
was the only way to verify memory accesses in a distributed setting. We use a Merkle tree of depth 32 with
the Poseidon hash function (concretely, two Merkle path verifications).

The second instantiation is obtained by adapting our permutation-based memory checker to the read-write
setting in a standard way [BCTV14b]. This adaptation does not fundamentally change any asymptotic costs,
and only increases the cost of the local checks by a constant factor.

Again, we use 4096 cores, with the same core allocation as in the previous section. Each Merkle-backed
subcircuit is 2.4M constraints, and each shared wire-backed subcircuit is 1.6M constraints.

Experimental comparison. The performance of the two approaches is illustrated in Fig. 10. It can be
clearly seen that the permutation-based memory checker offers much higher throughput (in terms of cycles
per second) than the Merkle tree-based memory checker.

6The name zkVM is a misnomer, as many of these works do not provide zero knowledge, but rather only succinct proofs. A term
like “verifiable VM” is a more accurate description in our opinion.

34



216 218 220 222 224

Num. zkVM cycles

27

28

29

En
d-

to
-e

nd
 ru

nt
im

e 
(s

)

End-to-end 4096-core proving latency vs. num. zkVM cycles

Portal RAM
Poseidon Merkle RAM

Figure 10: Comparison of end-to-end runtime for proving a TinyRAM computation using a Merkle tree-based
memory checker versus a permutation-based memory checker.
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A Design choices and cluster architecture

There are many choices for using a cluster for the above fan-out/fan-in approach. Below we consider the
design choices.

Breaking down the job. Firstly, we must define precisely what a worker does. In the SLURM clustering
architecture, a job (a complete end-to-end computation) is broken up into multiple tasks. Each task can be
thought of an individual process, with access to some number of threads, in communication with the other
tasks, which possibly reside on the same node (physical machine) or other nodes. For HEKATON, a worker
task could reasonably be a single-threaded or multi-threaded process which proves one subcircuit or many
subcircuits. After experimentation, we found it is most efficient to have a worker task be a multithreaded
process, which batch executes a many (specifically 32) single-threaded provers. For a fixed number of
subcircuits, it is more efficient to have many single-threaded provers than few multi-threaded provers because
of the sublinear speedup conferred by adding threads to proving.

Scheduling. Beyond the structure of tasks, there is also the choice of scheduling of tasks. Two options here
are a work-stealing queue, wherein workers ingests subcircuit proof requests as threads open up, or fixed
allocation, wherein every worker is given its set of proof requests in advance, and it must work through all of
them. There are meaningful tradeoffs in both cases. A work-stealing queue is an adaptive strategy, and thus
optimal in a theoretic sense because it avoids over- or under-utilization due to environmental conditions of the
cluster. On the other hand, this method requires a large amount of coordination in the form of a literal queue,
which must be available and highly responsive to every worker performing the job. The fixed allocation
method is suboptimal from a utilization perspective, since you may have workers which complete all their
requests while other workers still have many remaining. On the other hand, far less coordination is required,
as there is no queue to maintain. For simplicity in our implementation, we choose the fixed array allocation.
But we leave the queue method as an interesting avenue for future optimizations.

Our final note on scheduling: rather than bringing up N workers for committing, tearing them down, and
bringing up N workers for proving, we simply bring them up once and use them for both committing and
proving. Again, this is not perfectly optimal in terms of utilization, since some workers may be idle while
stragglers finish their work. But we avoid an extra set of setup and teardown costs for our job. In addition, it
simplifies our deployment, as our entire worker job is encapsulated by a single binary, which we execute via
mpirun on our cluster.

Communication channels. Communication in a cluster can operate one of two ways: via MPI channels for
small, low-latency transfers; and via the cluster filesystem (BeeGFS) for large, high-bandwidth transfers. The
largest single piece of data in our experiments is the bundle of Groth16 proving keys, which reaches up to
5GB. Since this data must be precomputed in order for the protocol to run, it must exist in nonvolatile storage
anyway. From experimentation, we found that the optimal data loading procedure is to have the coordinator
load the proving keys from the filesystem, and use MPI for all further communications, including sending
workers the proving key bundle.

B Additional definitions and lemmas

We now recall formal definitions and lemmas that we will use in our proofs and algorithm descriptions in
subsequent appendices.
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B.1 Zero-finding lemma

We recall a simplification of a useful lemma from [BCMS20; BCLMS21] that bounds the probability that
applying a random oracle to a commitment to a polynomial yields a root of the polynomial.

Lemma B.1. Let CM= (Setup,Commit) be a commitment scheme for a message space universe {Mi}i∈N.
Let F be a finite field, M ∈ N a number of variables, and D ∈ N a total degree bound. Then, for large enough
message size i ∈ N, every family of (possibly inefficient) functions { f : Mi→ F≤D[X1, . . . ,XM]} mapping
messages to polynomials of degree at most D over F, and every t-query oracle algorithm A that runs in
expected polynomial time, the following holds:

Pr


p ̸≡ 0
∧

p(zzz) = 0

∣∣∣∣∣∣∣∣∣∣∣∣

ρ ←U(λ )
ck← CM.Setup(1λ ,Mi)

(p ∈Mi,r)←Aρ(ck)
C← CM.Commit(ck,p;r)

zzz ∈ FM ← ρ(C)
p← f (p)

≤
√

(t +1) ·MD
|F|

+negl(λ ) .

If CM is perfectly binding, then the above holds also for computationally-unbounded t-query adversaries A.
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C Proof of Theorem 6.1

We now prove Theorem 6.1 which asserts that the protocol DNA in Section 6.1 satisfies the completeness
and knowledge soundness properties. We assume that a partitioning of the circuit is provided during setup
and proving.

C.1 Completeness

Completeness follows from the completeness of f , ARG and Agg. To see this, we first recall the following
definitions.

The completeness of f = ( fi, fw1 , fx,w2) defined in Section 4 gives that for all α,β ∈ F and (i,x,w) ∈
k-CSAT, on input (i,x,w,α,β ), f outputs ([ii]

n
i=1,x

′, [wi,1]
n
i=1, [wi,2]

n
i=1), such that (ii,x′,(wi,1,wi,2)) ∈

CSAT for all i ∈ [n] and x is the 0-th leaf of rt.
The completeness of Agg gives that for every index iAgg and every adversary B, the following probability

is 1.

Pr


(iAgg,xAgg,wAgg) ̸∈RAgg

∨
Agg.Vρ(vkAgg,xAgg,cmAgg,πAgg) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ ←U(λ )
(pkAgg,ckAgg,vkAgg)←

Agg.Gρ(1λ ,iAgg)
(xAgg,wAgg)←Bρ(pkAgg)

cmAgg←
Agg.Cρ(ckAgg,(wAgg)1)

πAgg←
Agg.Pρ(pkAgg,xAgg,wAgg)


The completeness of ARG gives that, for every set of indices [ii]ni=1 and every adversary C, the following

probability is 1.

Pr


∀i ∈ [n] : (ii,xi,wi) ∈R
⇓

ARG.Vρ(ivki,xi,cmi,πi) = 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ ←U(λ )
([ipki]

n
i=1, [icki]

n
i=1, [ivki]

n
i=1)←

ARG.Gρ(1λ , [ii]
n
i=1)

([xi]
n
i=1, [wi]

n
i=1)←

Cρ([ipki]
n
i=1)

∀i ∈ [n] : cmi←
ARG.Cρ(icki,wi,1)
∀i ∈ [n] : πi←

ARG.Pρ(ipki,xi,wi)


Construction of adversaries. Given an index i and an adversary A for DNA, we can define iAgg and B for
Agg, and [ii]

n
i=1 and C for ARG as follows:

1. Obtain the partitioned indices [ii]ni=1← fi(i).
2. Sample ARG public parameters: ([ipki]

n
i=1, [icki]

n
i=1, [ivki]

n
i=1)← ARG.Gρ(1λ , [ii]

n
i=1).

3. Set iAgg := [ivki]
n
i=1.

If A(ipk) outputs (x,w), do the following:
1. Partition w to obtain the subcircuit witnesses to be committed to: [wi,1]

n
i=1← fw1(i,x,w).

2. For each i in {1, . . . ,n}, commit to wi,1: cmi← ARG.C(icki,wi,1).
3. Commit to [cmi]

n
i=1: cmAgg← Agg.Cρ(ckAgg, [cmi]

n
i=1).

4. Compute the challenge (α,β ) := ρ(vkAgg,cmAgg).
5. Obtain the witnesses that depend on the committed witnesses: (xAgg, [wi,2]

n
i=1)← fx,w2(i,x,w,α,β ).

6. For each i in {1, . . . ,n}, compute the cc-SNARK Proofs: πi← ARG.P(ipki,xAgg,(w
′
i,wi)).
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7. Set wAgg := ([cmi]
n
i=1, [πi]

n
i=1).

B outputs (xAgg,wAgg) and C outputs (xAgg,wi).

Completeness analysis. We now show that for every index i and every adversaryA, the following probability
is 1.

Pr

 (i,x,w) ̸∈R
∨

DNA.Vρ(ivk,x,cm,π) = 1

∣∣∣∣∣∣∣
ρ ←U(λ )

(ipk, ick, ivk)← DNA.Gρ(1λ ,i)
(x,w)←Aρ(ipk)

π ← DNA.Pρ(ipk,x,w)


If (i,x,w) ̸∈R, the condition trivially holds. If (i,x,w) ∈R, then the completeness of f implies that

∀i ∈ [n], (ii,xAgg,(wi,1,wi,2)) ∈RARG and πrt is a valid proof that x is the first leaf of the Merkle tree with
rooth rt.

The completeness of ARG thus implies that ∀i ∈ [n], ARG.Vρ(ivki,xi,cmi,πi) = 1, implying that
(iAgg,xAgg,wAgg) ∈RAgg.

Now the completeness of Agg gives that Agg.Vρ(vkAgg,xAgg,cmAgg,πAgg) = 1. This, along with
the fact that πrt is a valid proof that x is the first leaf of the Merkle tree with rooth rt implies that
DNA.Vρ(ivk,x,cm,π) = 1.

C.2 Knowledge soundness

Let A be an adversary that succeeds against EA constructed above with probability ε(λ ), that is, for some i:

Pr


(i,x,w) ̸∈R

∧
DNA.Vρ(ivk,x,cm,π) = 1

∣∣∣∣∣∣∣∣∣∣
ρ ←U(λ )

(ipk, ick, ivk)← DNA.Gρ(1λ ,i)
auxA←DA(ipk)

(x,cm,π)←Aρ(ipk,auxA)
w←EA(ipk,auxA)

≥ ε(λ ) . (1)

Given this i, do the following:
1. Reduce i to multiple CSAT indices: [ii]ni=1 := fi(i).
2. Sample keys for the CSAT indices: ([ipki]

n
i=1, [icki]

n
i=1, [ivki]

n
i=1)← ARG.G(λ , [ii]ni=1).

3. Construct Agg index: iAgg := [ivki]
n
i=1.

For this value of i, Lemma 4.1 says that there exists an efficient extractor EW such that for every efficient
adversaryW and auxiliary distribution DW , the following probability is negligible:

Pr



(i,x,w) /∈ k-CSAT
&

∀i ∈ [k] :
(ii,x

′,(wi,1,wi,2)) ∈ CSAT
&

x is the 0-th leaf
of rt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ ← U(λ )
[ii]

n
i=1 = fi(i,C)

ck← CM.Setup(1λ ,Mi)

auxW ←DW (i)
([wi]

n
i=1, rt)←Wρ (i,auxW )

cm← CM.Commit(ck, [wi,1]
n
i=1)

(α,β )← ρ(cm)

x
′ := (1, rt,α,β )

(x,w)← Eρ

W (i,auxW )


For the aforementioned values [ii]ni=1, multi-instance knowledge soundness of ARG says that for every

adversary C and auxiliary input distribution DC , there exists an efficient extractor EC such that the following
probability is negligible 7.

7Recall that for simplicity, we use a construction of ARG where ipki = icki for all i ∈ [n].
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Pr


∃i ∈ [n] : (ii,xi,wi) ̸∈R
∨

Cρ(ipki,wi,1;ri) ̸= cm


∧

Vρ(ivki,xi,cmi,πi) = 1

∣∣∣∣∣∣∣∣∣∣∣

ρ ←U(λ )
([ipki]

n
i=1, [icki]

n
i=1, [ivki]

n
i=1)

←Gρ(1λ , [ii]
n
i=1)

aux←Dρ(1λ , [ipki]
n
i=1)

[(xi,cmi,πi)]
n
i=1← P̃ρ([ipki]

n
i=1,aux)

[(wi,ri)]
n
i=1←EP̃([ipki]

n
i=1,aux)


Finally, for this iAgg, knowledge soundness of Agg gives that for every adversary B and auxiliary input

distribution DB, there exists an efficient extractor EB such that the following probability is negligible.

Pr



 (iAgg,xAgg,wAgg) ̸∈RAgg

∨
Agg.Cρ(ckAgg,(wAgg)1) ̸= cmAgg


&

Agg.Vρ(vkAgg,xAgg,cmAgg,πAgg) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ ←U(λ )
(pkAgg,ckAgg,vkAgg)←

Agg.Gρ(1λ ,iAgg)
auxB←DB(pkAgg)

(xAgg,cmAgg,πAgg)←
Bρ(pkAgg,auxB)

wAgg←
EB(pkAgg,auxB)


Construction of adversaries and auxiliary input distribution. We describe how to use A to build an
adversary B and auxiliary distribution DA against Agg, an adversary C and auxiliary distribution DB against
ARG, and an adversaryW and auxiliary distribution DC that breaks Lemma 4.1, such that

Pr

 B breaks
knowledge soundness

of Agg for iAgg

+Pr

 C breaks multi-instance
knowledge soundness

of ARG for [ii]ni=1

+Pr
[

W breaks
Lemma 4.1 for i

]
≥ ε(λ ) ,

This is sufficient, because if ε(λ ) is non-negligible, then at least one of the three probabilities on the left-hand
side must be non-negligible, leading to a contradiction.
Constructing B. We construct adversary B from the adversary A as follows:

Bρ(pkAgg,auxB):
1. Parse auxB as (auxA, ipk).
2. Obtain (x,π)←Aρ(ipk,auxA).
3. Parse π as (xAgg,cmAgg,πAgg,πrt).
4. Output (xAgg,cmAgg,πAgg).

Constructing C. Denote by EB the extractor corresponding to B for Agg. Then we construct C from B as
well as the extractor EB as follows:

Cρ([ipki]
n
i=1,auxC):

1. Parse auxC as (auxA, ipk).
2. Obtain pkAgg from ipk.
3. Obtain (xAgg,cmAgg,πAgg)←Bρ(pkAgg,auxC).
4. Extract wAgg←Eρ

B(pkAgg,auxC).
5. Parse wAgg as ([cmi]

n
i=1, [πi]

n
i=1).

6. Output [(xAgg,cmi,πi)]
n
i=1.

ConstructingW . Denote by EC the extractor corresponding to C for ARG. Then we constructW from the
adversary C as well as the extractor EC as follows:
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Wρ(1λ ,i,auxW):
1. Parse auxW as (auxA, ipk).
2. Obtain [ipki]

n
i=1 from ipk.

3. Extract [(wi)]
n
i=1←EC([ipki]

n
i=1,auxW).

4. Use x, α , β , TTT and AAA from [(wi)]
n
i=1 to construct rt as

in Fig. 4.
5. Output ([(wi)]

n
i=1, rt)

Constructing an extractor EA for A. We now use the extractor forW to construct an extractor for A.

EA(ipk,auxA)→w:
1. Obtain i from ipk.
2. Set auxW := (auxA, ipk).
3. Run (x,w)←EW(i,aux′).
4. Output w.

Success probability of EA. For i in Eq. (1) we have:

Pr

 (i,x,w) ̸∈R
∧

DNA.Vρ(ivk,x,cm,π) = 1

∣∣∣∣∣∣∣∣∣
ρ ←U(λ )

(ipk, ick, ivk)← DNA.Gρ(1λ ,i)
auxA←DA(ipk)

(x,cm,π)←Aρ(ipk,auxA)
w←EA(ipk,auxA)

≥ ε(λ ) .

Parsing π as (xAgg,cmAgg,πAgg,πrt) and ivk as vkAgg, by construction of DNA, DNA.Vρ(ivk,x,cm,π)=
1 implies that Agg.Vρ(vkAgg,xAgg,cmAgg,πAgg) = 1. Thus:

Pr


(i,x,w) ̸∈R

∧
Agg.Vρ(vkAgg,xAgg,cmAgg,πAgg) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ ←U(λ )
(ipk, ick, ivk)← DNA.Gρ(1λ ,i)

aux←D(pp)
(x,cm,π)←Aρ(ipk,aux)

w←EA(ipk,aux)

π = (xAgg,cmAgg,πAgg,πrt)
ivk = vkAgg


≥ ε(λ ) .

‘Factoring out’ the probability of EW failing. (i,x,w) ̸∈R either when
1. ∀i ∈ [n] : (ii,x′,(wi,1,wi,2)) ∈ CSAT but EW fails to extract a valid w. The probability of this happening

is precisely:

Pr
[

W breaks
Lemma 4.1 for i

]
2. ∃i ∈ [n] : (ii,x′,(wi,1,wi,2)) /∈ CSAT.

‘Factoring out’ the probability of EC failing. ∃i ∈ [n] : (ii,x′,(wi,1,wi,2)) /∈ CSAT either when
1. ∀i ∈ [n] : ARG.Vρ(ivki,xi,cmi,πi) = 1 but EC fails to extract valid [wi]

n
i=1. The probability of this

happening is precisely:

Pr

 C breaks multi-instance
knowledge soundness

of ARG for [ii]ni=1


2. ∃i ∈ [n] : ARG.Vρ(ivki,xi,cmi,πi) ̸= 1.
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‘Factoring out’ the probability of EB failing. The probability that Agg.Vρ(vkAgg,xAgg,cmAgg,πAgg) = 1
and ∃i ∈ [n] : ARG.Vρ(ivki,xi,cmi,πi) ̸= 1 is exactly:

Pr

 B breaks
knowledge soundness

of Agg for iAgg


Putting the above together, we obtain our desired contradiction, i.e., that

Pr

 B breaks
knowledge soundness

of Agg for iAgg

+Pr

 C breaks multi-instance
knowledge soundness

of ARG for [ii]ni=1

+Pr
[

W breaks
Lemma 4.1 for i

]
≥ ε(λ ) ,

C.3 Zero-knowledge

The construction in Section 6.1 can be turned zero-knowledge by using a commit-carrying SNARK ARG
with multi-instance zero-knowledge and the hiding version of Merkle commitments.

Zero-Knowledge then follows from the multi-instance zero-knowledge property of ARG and the zero-
knowledge property of hiding Merkle proofs. The former implies the existence of SARG = (SARG1 ,SARG2 ) for
ARG.

The Simulator S = (S1,S2) for the distributed zkSNARK DNA is presented in Figure 11.

Sρ

1 (1
λ ,i)→ (ipk,τ):

1. Obtain the partitioned indices: [ii]ni=1 := fi(i).
2. Run SARG

1 to obtain ([ipki]
n
i=1,τ)← (SARG

1 )
ρ
(1λ , [ii]

n
i=1).

3. Obtain [ivki]
n
i=1 from [ipki]

n
i=1 and set iAgg = [ivki]

n
i=1.

4. Sample public parameters for Agg: (pkAgg,ckAgg,vkAgg)← Agg.G(1λ ,iAgg).
5. Output (ipk := (i, ivk, [ipki]

n
i=1,pkAgg),τ).

Sρ

2 (ipk,x,τ)→ (π,µ):
1. Parse proving key as ipk = (i, ivk, [ipki]

n
i=1,pkAgg).

2. Sample random (α,β )← F2.
3. Compute a random Merkle tree root rt and proof πrt that x is its first leaf.
4. Set xAgg := (1, rt,α,β ).
5. Run SARG

2 to obtain ([cmi]
n
i=1, [πi]

n
i=1,µ)← (SARG

2 )
ρ
([ipki]

n
i=1, [xAgg]

n
i=1,τ).

6. Commit to [cmi]
n
i=1: cmAgg← Agg.Cρ (ckAgg, [cmi]

n
i=1).

7. Program µ(ivk,cmAgg) := (α,β ).
8. Assemble the RAgg instance and witness:

(xAgg,wAgg) = ((1, rt,α,β ),([cmi]
n
i=1, [πi]

n
i=1))

9. Compute aggregated proof: πAgg← Agg.Pρ (pkAgg,xAgg,wAgg,cmAgg).
10. Output (π := (xAgg,cmAgg,πAgg,πrt),µ).

Figure 11: Simulator for the Distributed zkSNARK

Proof sketch. The zero-knowledge of DNA follows from the multi-instance zero-knowledge property of
ARG and the zero-knowledge property of hiding Merkle proofs. At a high level, the proof π generated by
DNA consists of xAgg = (1, rt,α,β ), πrt and (cmAgg,πAgg). (α,β ) are randomly sampled and (rt,πrt) hide
all information about their leaves because of the hiding property of Merkle trees. Lastly, cmAgg and πAgg are
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also indistinguishable from the honest case, as they are deterministic functions of [cmi]
n
i=1 and [πi]

n
i=1 and the

latter hide all information about the underlying witness since ARG has multi-instance zero-knowledge.
Note that the simulator can fail if the simulator SARG for ARG also programs the random oracle at the

point (ivk,cmAgg) to a value different from (α,β ). This can happen with non-negligible probability only
if SARG is ‘adversarial’ and purposely programs that point. However, for all natural constructions of ARG
(including Mirage, the cc-zkSNARK we use in HEKATON), the simulator is benign. In fact, the simulator for
Mirage does not program the random oracle at all.

C.4 Efficiency

The efficiency claims follow from inspection:
• Each worker node runs ARG.C and ARG.P once.
• Each worker node’s communication cost is the size of a single commitment of ARG and a single proof of
ARG.

• The primary node runs Agg.C and Agg.P once on inputs of size n.
• Proof size is the size of an Agg proof and one Merkle proof for the tree with root rt.
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