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Abstract

In recent years, there have been several constructions combining FHE
with SNARGs to add integrity guarantees to FHE schemes. Most of these
works focused on improving efficiency, while the precise security model
with regards to client side input privacy has remained understudied. Only
recently it was shown by Manulis and Nguyen (Eurocrypt’24) that this
combination does not yield IND-CCA1 security. So an interesting open
question is: does the SNARG actually add any meaningful security to
input privacy? We address this question in this note and give a security
definition that meaningfully captures the security of the FHE plus SNARG
construction.

1 Introduction

FHE has gained a lot of traction in recent years and is being deployed in practice.
It promises to unlock a wide range of applications and the first one that comes
to mind is secure outsourcing of computation. For this, consider a client that
holds some data and it wishes to compute a function on that data. In many
settings, the client is not able to do so on its own due to resource constraints.
So the client may send the inputs to a server, which computes the function and
returns the results. We will focus on this scenario in this note.

This setting immediately raises at least two security concerns. The first
is input privacy: since the client sends the input to the server in the clear,
the server will trivially learn these inputs. In many applications, this data is
sensitive and thus this might rule out such applications or introduce strong
assumptions about the honesty of the server. FHE may be used to address this
problem, as the client can encrypt the inputs and the server can still compute
the function on the encrypted data and return the result in encrypted form.

The second security issue is integrity: how does the client know that a func-
tion was indeed computed correctly? FHE does not provide any guarantees for
integrity. Note that this is also related to the privacy issue above as most practi-
cal FHE schemes [DM15], [CGGI20, BGV12, [CKKS17] are only passively secure,
meaning that they only protect input privacy for honest-but-curious servers, i.e.
servers that do not deviate from the protocol. If the server is actively malicious,



e.g. executing the incorrect function or tampering with ciphertexts, privacy of
the client might be lost entirely [CGGI16]. There are several approaches to
add integrity to the system, see for example [VKH23] and references therein.
The approach relevant to this work is a line of research that uses SNARGs
[ENP20, BCFK21) [GNS23| [VKH23, [ACGSV23l, [ABPS24, [TTW24]. With the
exception of [ACGSV23], the basic idea is to use a SNARG to prove the correct
execution of the homomorphic evaluation of a function.

Adding this integrity check to the FHE system seems to also address the
privacy concern with regards to malicious servers since it seems difficult now to
deviate from the protocol. Indeed, in [VKH23] it was claimed that such a system
is IND-CCAT1 secure. Unfortunately, as shown in [MN24], this is incorrect. The
reason is that an adversary may still tamper with the input ciphertexts and
return a faulty ciphertext that was correctly computed using the homomorphic
evaluation.

The work of [MN24] then showed how to construct IND-CCA1 secure schemes
(and even stronger ones) by adding additional checks to the input ciphertexts.
Of course, this comes with additional cost and it still leaves open the question:
what security exactly is achieved by combining a SNARG with IND-CPA secure
FHE? As it currently stands, the strongest known definition achieved by this
construction is IND-CPA security - the same as the FHE scheme by itself. So
one may ask if adding a SNARG (which is typically very expensive) actually
provides any additional security guarantees. Previous work has typically fo-
cused on improving the practical efficiency of this approach, while the security
model with regards to privacy has remained understudied.

In this work, we give a security definition, semi-active security (IND-SA),
that exactly captures the privacy of the client data of such a construction and
allows to deduce precisely, for which applications this construction is suitable
and guarantees privacy of the client input. The definition is inspired by the
observation that in our above application, the client first computes the input
ciphertexts and “knows” the function it wants to be computed. So as long as it
stores these, it may check the output ciphertext received from the server against
these inputs. Since this requires full control over the encryptions by the client,
it is natural to focus on the case of symmetric FHE, which we do here. We also
show that IND-SA lies strictly in between IND-CPA and IND-CCA2 security
(in fact, it is strictly in between IND-CPA and IND-vCCA) and is incomparable
to IND-CCA1 (and also FuncCPA, IND-CCVA and IND-CCA1.5).

1.1 Open Problems

In this work we focus on symmetric FHE since we need full control of the in-
puts and we can leverage the fact that the client has state, which we assume
cannot be tampered with. There are ways to obtain such control even in the
public key setting using additional machinery like proofs of plaintext and state
in a blockchain. But from a definitional standpoint, this is harder to capture
precisely, so we consider it out of scope for this work. We do believe that an



extension of our definition to the public key case would be a valuable contribu-
tion.

Furthermore, in this work we focus on exact schemes. Embedding the defi-
nition in the landscape of security definitions for approximate schemes ([LM21],
CFPT24]) is left to future work.

1.2 Related Work

We already mentioned the work of [MN24] that shows how to achieve an even
stronger security notion than ours at the expense of adding additional checks on
the well-formedness of the input ciphertext. While this is applicable in a wider
range of contexts, it comes at the price of an added cost in the constructions.
Note that the cost comprises not only proving and verifying that a ciphertext
is wellformed. But the verification also has to be proven using the SNARK, at
least in the fully compact case, which is likely to add significant overhead in
practice. Furthermore, the constructions in [MN24] require SNARKSs that are
black-box, straightline, simulation extractable, which most practical SNARKSs
are not. In contrast, our definition is achievable using constructions merely re-
quiring SNARGs. On the other hand, it is only applicable in the private key
setting, where the user has full control over the ciphertexts, knows the function
to be executed, and is able to store that information. So compared to [MN24],
our definition yields a different trade-off in ease of achievability versus applica-
bility. Finally, we remark that the definition of [MN24] is based on an eztractor,
which is arguably counter-intuitive in the context of indistunguishability notions
for encryption schemes and yields a significantly more complex definition than
ours.

We also mention that the idea of checking inputs and correct evaluation
of input ciphertexts to achieve security against actively malicious adversaries
actually predates the work of [MN24]. This approach was already proposed in
[Sma23] using multiple evaluators to achieve integrity by consensus. The work
of [Sma23| views FHE applications through an MPC lens and proves security for
its construction using the UC model. The latter is simulation-based and thus
stronger than game-based definitions, but for simplicity we focus on game-based
definitions in this note.

Acknowledgment An earlier draft of this note incorrectly claimed that IND-SA
implies FuncCPA. We are grateful to Jérome Nguyen for pointing out that that
is incorrect and the two notions are in fact incomparable.

2 Preliminaries

Compared to the typical definition, we extend the syntax of FHE and allow the
decryption function to take additional inputs specifying the function and input
ciphertexts that were used to obtain the ciphertext.



Definition 1. Let P, C and F be the plaintext space, ciphertext space and a
function family, respectively. A symmetric FHE scheme &€ for F is a tuple of
algorithms:

o £.Gen(1"): generates a secret key s and an evaluation key p

e E.Enc(s,m): takes a key s and message m € P and outputs a ciphertext

celC
e &.Dec(s,c, f,(c1,...,ce)): takes a secret key, a ciphertext ¢ € C, a function
in F and a tuple of input ciphertests (cy,...,ce) € C° and returns a

message in P.

E.Eval(p, f,(c1,...,c0)): takes an evaluation key p, a function in F and
a tuple of input ciphertests (ci,...,c;) € CY and returns a ciphertest C.

In the following we will assume that £.Dec and £.Eval are deterministic.
As stated above, there is a trivial construction of FHE from any encryption
scheme simply by having €. Dec decrypt all ciphertexts ¢; and apply f to obtain
the message. This construction is typically ruled out by requiring that the
ciphertexts are compact, i.e. independent of the function f and input ciphertexts
c1,...,co. As we make the function and input ciphertexts explicit inputs to
the decryption function, this is not possible in our case. We could take the
approach of [MN24] and not provide f as an input to the decryption. Looking
ahead that would mean that the decryption algorithm does not check that f
evaluated on ¢y, ..., ¢, to obtain the ciphertext ¢, but rather that some f' € F
was used to obtain c¢. However, we believe that in applications that we have in
mind it is actually very useful to be able check that a specific f was evaluated.
There are still non-trivial contructions that leverage preprocessing of f and
state to yield compact (or at least relaxed compact in the sense of [MN24])
decryption functions. In any case, we are more interested in the security of such
constructions, so we ignore the compactness requirement.

An FHE scheme & is correct if for all (my,...,my) € P’ and all f € F we
have

(s5,p) < E.Gen(1*)
¢i + £.Enc(s,m;) for all ¢
¢+ E.Eval(p, f,c1,...,¢0)
m <+ E.Dec(s,c, f,c1,...,¢p)

Pr |m # f(m,...,mye) = negl(A) .

Definition 2. A succinct non-interactive argument (SNARG) llsy arc = (Gen, Prove, Verify)
for a relation R is a triple of algorithms such that:

1. Gen takes as input a security parameter A € N and outputs a common
reference string crs.

2. Prove takes as input crs, a statement x and a witness w and outputs a
proof ™ when (x,w) € R.



8. Verify takes as input crs, a statement x and a proof ™ and outputs Acc or
Rej.

A SNARG is complete if for all (z,w) € R,

Pr [Verify(crs,x, ) = Acc ors < Gen(}) ) } =1 .

7 < Prove(crs, x, w

A SNARG is sound if for all PPT adversaries A

crs <— Gen(\)

Verify(crs, z, ) = Acc _
Pr[ (@, 7)  A(crs) } = negl(A) -

ANe ¢ R

2.1 FHE Security Notions

In this note we propose a new security definition and relate it to other notions
from the literature. We use the multi-challenge (or Left-or-Right) version for
all of our definitions. At times, we will still refer to the challenge ciphertext, in
which case we simply mean the first encryption query where mg # my, i.e. the
point at which the “left” and the “right” worlds diverge.

Definition 3. A symmetric FHE scheme & is IND-CPA secure if for all PPT
adversaries A it holds that

s+ E.KeyGen()
2-Prlb="b| b+ U({P, 1}) — 1| = negl(\)
b/ <— AOEncs ()

where OY,,. (mo,my) is the oracle from Algorithm .

Algorithm 1: Encryption Oracle O%ncs (mg, m1;1)

1 ¢+ E.Encs(mp)
2 S[i] + (mg,m1,¢)
31+ 1+1

4 return c,1

The other notions used in this work are extensions of the IND-CPA definition
with varying versions of decryption oracles. Note that we adjust decryption
oracles to match our modified syntax. This might be slightly confusing at first
read, especially when other functions or ciphertexts are sent or extracted during
the security game, so we invite the reader to ignore this modification on first
read.

Definition 4. A symmetric FHE scheme & is IND-CCA2 secure if all PPT
adversaries A have negligible advantage in winning the IND-CPA game, where
A additionally has access to the following decryption oracle:



Algorithm 2: CCA Decryption Oracle Ope, (¢, f, (c1,...,¢0))

1 if 3i: S[i] = (mo,m1,¢) and my # mq then
2 ‘ return |

3 else

4 | return €.Dec,(c, f,(c1,...,cp))

IND-CCA2 security is unachievable for homomorphic encryption schemes,
but we may hope for IND-CCA1 security.

Definition 5. A symmetric FHE scheme & is IND-CCA1 secure if all PPT
adversaries A have negligible advantage in winning the IND-CPA game, where
A additionally has oracle access to the CCA decryption oracle ( Algorithm @)
only until receiving the challenge ciphertext.

Until recently, it was assumed that FHE schemes that use bootstrapping
(involving public bootstrapping keys) cannot be IND-CCA1 secure. (This as-
sumption was proven incorrect in [MN24]). Unfortunately, most efficient FHE
schemes do employ bootstrapping, so other relaxations of IND-CCA2 were in-
vestigated for certain applications [AGHV22].

Definition 6. A symmetric FHE scheme £ is FuncCPA secure if all PPT adver-
saries A have negligible advantage in winning the IND-CPA game, where A addi-
tionally has access to a re-encryption oracle that takes a ciphertext ¢ (along with
fland (c1,...,ce)) and a function f and returns €. Enc(f (€. Dec(c, f', (¢1,---,¢0))))-

Interestingly, in [AGHV22| is was suggested that FuncCPA is incompara-
ble to IND-CCA1. However, one may check that the proof of IND-vCCA =
FuncCPA in [MN24] applies also to IND-CCA1 secure schemes as the “post-
challenge” decryption oracle is never used. Accordingly, we also have IND-CCA1 =
FuncCPA and since the FuncCPA constructions in [AGHV22] are not IND-CCA1
secure, FuncCPA is strictly weaker than IND-CCAL.

One may also weaken the decryption oracle to match certain attack scenarios
in practice, which was essentially done for IND-CCVA security.

Definition 7. A symmetric FHE scheme & is IND-CCVA secure if all PPT
adversaries A have negligible advantage in winning the IND-CPA game, where
A additionally has access to a ciphertext validation oracle that takes a ciphertext
¢ along with f and (c1, ..., ce) and returns L if €. Dec(c, f, (c1,...,¢)) = L and
T otherwise.

One may combine IND-CCVA security and IND-CCA1 security to obtain a
slightly stronger notion.

Definition 8. A symmetric FHE scheme £ is IND-CCA1.5 secure if all PPT
adversaries A have negligible advantage in winning the IND-CCA1 game, where
A additionally has access to the ciphertext validation oracle defined in Defini-
tion [4



Finally, we give the IND-vCCA definition. While originally proposed in
[MN24], we will focus on the IND-vCCA definition from |[CEP™24], because it
is closer in style to our definition and thus a little easier to hightlight similarities
and differences. Note that the two definitions from [MN24] and |[CEP™24] were
proven equivalent for exact FHE schemes in |[CFP™24].

The IND-vCCA definition requires that a scheme £ has two disjoint sets of
ciphertexts, C; and Co, where C; is the range of £.Enc and Cy is the range of
E.Eval. The set C; is called fresh ciphertexts.

Definition 9. For an FHE scheme £ a sound extractor £. Extract : C — F xCf
is defined as an algorithm that on input:

e ¢ €y returns (Id,c), and

o c€Co returns (f € F,(c1,...,ce) €CY) such that

E.Dec(c) = f(€.Dec(cy),...,E. Dec(ey)) .

With this definition in place, we can define IND-vCCA security in the fol-
lowing way.

Definition 10. A symmetric FHE scheme & is IND-vCCA secure if all PPT
adversaries A have negligible advantage in winning the IND-CPA game, where
A additionally has access to the following decryption oracle:

Algorithm 3: vCCA Decryption Oracle Opec, (¢, f', (c],...,¢c}))

(f,c1y...,¢0) « E. Extract(c)
for je€1,...,0do
if i : S[Z]C = ¢; then

| (mlj,m) — (S[i).mo, S[i).m1)

if f(m},...,m}) # f(m{,...,m}) then
‘ return |

else
| return &.Decs(c, f, (¢}, ..., c}))
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3 Semi-Active Security for Symmetric FHE

Consider a query-based application, where the client encrypts its input and
sends it to the sever for evaluation, which in turn responds with the result of the
computation. A natural approach to define active security would be to reflect
the query-based interaction in the security game, where the challenger sends



queries in the form of functions and ciphertexts and the adversary responds
with ciphertexts. The latter are decrypted and returned to the adversary. If
the challenger never sends the challenge ciphertext in the form of a query, we
obtain a security notion similar to [MN24], but where active security is much
easier to achieve. Intuitively, the queries tie the input ciphertexts to the output
ciphertexts and fulfil the role of the extractor from [MN24]. Then, combining a
passively secure FHE scheme with a SNARK to verify correct evaluation should
be sufficient.

There is a slight definitional issue in that it is unclear which distributions the
messages and queries should be drawn from. We use the typical cryptographic
approach in letting the adversary pick them. This is straight-forward in the
symmetric key setting, since the adversary needs to query an encryption oracle
to obtain ciphertexts of known messages and thus we arrive at the following
security definition.

Definition 11 (IND-SA security). A symmetric FHE scheme £ is semi-actively
secure if for all PPT adversaries A it holds that

(s,p) < E.KeyGen()
2-Prjb=V b« U({0,1}) -1
Y — AOE'IL(;S)ODecS (p)

is negligible, where Opgne, and Opec, are defined as in Algorithm [1] and Algo-
rithm[4), respectively.

Algorithm 4: Decryption Oracle Ope., (¢, f, (i1,...,i))
if 3i; ¢ S then
‘ return |
mo < f(S[’il].mo, Ceey S[Z@]mo)
my < f(S[il].ml, ceey S[u]ml)
if mo = My then
| return &.Dec,(c, f, (Slir].c,...,Slid.c))
else
‘ return |

o N o Uk W N

This definition is heavily inspired by the IND-CPA” from [LM21], but
strengthened to allow the adversary to submit any ciphertext to the decryp-
tion oracle. The caveat is that the adversary must specify, how it claims the
ciphertext was computed. This information is forwarded to the decryption algo-
rithm that may now use this information to verify this claim. This is to reflect
the fact that in the application we assume that the client sent a specific query
to the server that it expects to be evaluated.



4 Relations to Other Notions

Notation In this section we will use the notation Left = Right and Left +
Right for two security definitions Left and Right. By the former, we mean that
the Left definition implies the Right definition. By the latter, we mean that
there is a separation between the two definitions in the sense that there exists
a scheme that satifies the Left definition but not the Right definition.

We first show that IND-SA lies strictly in between IND-vCCA and IND-CPA.

Lemma 1. IND-vCCA = IND-SA = IND-CPA and IND-CPA # IND-SA #
IND-vCCA.

Proof. IND-vCCA = IND-SA: Let £ be an IND-vCCA secure FHE scheme. It
is not IND-SA secure as is, since the adversary may lie about the input cipher-
texts and function it used to compute a ciphertext submitted to the decryption
oracle and thus bypass the equality check in the IND-SA decryption oracle.
However, a natural modification of £ does yield an IND-SA secure scheme: Re-
call that the IND-vCCA security requires the existence of an extractor that can
recover the function and input ciphertexts from a ciphertext derived through
E.Eval. So &'.Dec first calls the extractor and checks that the recovered in-
put ciphertexts and function matches the ones claimed by the adversary in the
IND-SA security game. If not, it returns |, otherwise it calls £. Dec and returns
the result. The implication follows from the observation that the two games are
now syntactically the same.

IND-SA = IND-CPA: This follows simply from the fact that the IND-CPA
game is the same as the IND-SA game without decryption oracle.

IND-CPA = IND-SA: None of the basic IND-CPA secure FHE schemes
from the literature are IND-SA secure.

IND-SA # IND-vCCA: Below we show that IND-SA = IND-CCAL, so the
claim follows from IND-vCCA = IND-CCA1 [MN24]. O

We now establish through a series of lemmas that IND-SA is incomparable
to IND-CCA1, IND-CCVA, and IND-CCA1.5.

Lemma 2. IND-CCA1.5= IND-SA.

Proof. We construct an IND-CCAL1.5 secure FHE scheme £’ from an IND-vCCA
secure FHE scheme £ and show that it is not IND-SA secure. For simplicity,
restrict the set of functions to the ones with two inputs, i.e. F = {P? — P}.
We assume that £ is also IND-SA secure by undergoing the transformation
presented in the proof of Lemma

We leave £.Gen, £.Enc and £.Eval unchanged, but modify £.Dec such
that &'.Dec(e, f, c1, ¢2) first calls m «+ £.Dec(c, f,c1,c2). If m # L, return m.
Otherwise, compute m’ < £.Dec(c, f, co, ¢1) and return m/’.

We first argue that £ is IND-CCA1.5 secure. Assume it is not. Then an
adversary against the IND-CCA1.5 security of £ can faithfully simulate the de-
cryption and ciphertext verification oracle to an IND-CCA1.5 adversary against



&’ by leveraging its own decryption and ciphertext verification oracle and mim-
icking the decryption procedure of £. The claim follows from the fact that
IND-vCCA = IND-CCA1.5 [MN24].

We now show that £’ is not IND-SA secure. Let P = {0,1} and f : P2 — P
be such that f(xg,z1) = (2o V1) Az1. Note that f depends on the second input
but not on the first. Now query the encryption oracle on

e (0,0) and receive ¢’ < £’.Enc(s,0) and index i’ and
o (mg,m1) = (0,1) and receive ¢* + &’. Enc(s, m;) and index i*.

Now compute ¢ + £'. Eval(f, ¢/, ¢*) and query the decryption oracle on (¢, f, (¢*,1)).
Since f(mg,0) = f(mq,0) = 0, this is a valid IND-SA decryption query and thus
&' Dec(e, f,c*, ') will be called. Note that £. Dec(c, f,c*, ) will return L due
to the additional check in the IND-vCCA-to-IND-SA security transformation,
due to the incorrect ordering of the input ciphertexts. Accordingly, £’. Dec will
return &. Dec(c, f, ¢/, ¢*) = m; and thus allow the adversary to win the IND-SA
game. O

Lemma 3. IND-SA = IND-CCA1L.

Proof. Note that in Section [5| we present a construction that is IND-SA secure.
The construction is essentially the one from [VKH23] that was shown not to be
IND-CCAL1 secure in [MN24]. O

Lemma 4. IND-SA = IND-CCVA.

Proof. Let £ an IND-CPA secure FHE scheme that is vulnerable to an IND-CCVA
attack. Apply the construction of Section [f|to obtain an IND-SA secure scheme
&’. Note that £.Dec can be simulated in the new scheme by evaluating the
identity function on the ciphertext and submitting the result to £'.Dec. The
same holds for the ciphertext verification oracle. Thus, any IND-CCVA attack
on & will still be applicable to £. O

Summarizing the results from the three lemmas, we have

e IND-SA = IND-CCA1 and IND-CCA1 % IND-SA,

o IND-SA % IND-CCVA and IND-CCVA = IND-SA,

e IND-SA = IND-CCA1.5 and IND-CCAL1.5 = IND-SA.

Finally, we show that IND-SA is strictly stronger than FuncCPA.
Lemma 5. FuncCPA # IND-SA and IND-SA # FuncCPA.

This proof is similar to the equivalent proofs for IND-vCCA (see [MN24],
Theorem 4 and Proposition 3), so we only sketch the proofs.
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Proof. IND-SA # FuncCPA: Take an arbitrary IND-SA secure scheme and
apply the transformation from [AGHV22] (Theorem 10). This does not af-
fect IND-SA security, but the theorem shows that the resulting scheme is not
FuncCPA secureE

FuncCPA # IND-SA: This follows by a similar argument as in [MN24]. The
work of [AGHV22] shows that sanitized HE schemes are FuncCPA secure, while
they do not have a machanism to check correct evaluation. Accordingly, they
cannot be IND-SA secure, since the decryption oracle can trivially be used to
win the game. O

5 FHE plus SNARK is IND-SA Secure

Let £ be a IND-CPA secure FHE scheme for function family F with ciphertext
space C and let II be a SNARG for the relation

R ={(p,c, f,c1,...,ce) | c=E.Eval(p, f,c1,...,¢c0)} .
The following construction of an FHE scheme £’ is common in the literature.

o &.Gen(1") computes (s,p) + €. Gen(1* and crs < II. Gen(1*) and re-
turns secret key (s, p, crs) and evaluation key (p, crs)

&' Enc((s,p, crs),m) computes ¢ « £.Enc(s,m) and returns ¢

o &' Eval((p,crs), f,c1,...,co) computes ¢ < E.Eval(p, f,c1,...,cp) and m +
I1. Prove(crs, ((p, ¢, f,c1,...,ce))) and returns (c, )

o &'.Dec((s,p,crs),(c,m), f,c1,...,ce) computes
d = II. Verify(crs, ((p, ¢, f,c1,. .., ¢0)), ) (1)
and returns £. Dec(s, ¢) if d = Acc and L otherwise.
Lemma 6. If & is IND-CPA secure and 11 is sound, then £’ is IND-SA secure.

Proof. Let A be an adversary against the IND-SA security of £’. Then it is easy
to build an adversary B against the IND-CPA security of £ assuming soundness
of II: the encryption oracle ( Algorithm [If) is simulated by using the IND-CPA
encryption oracle in Line [l} The decryption oracle ( Algorithm [4]) is simulated
by performing the check in (Equation ) and returning mg from Line (3] if it
succeeds (assuming mg = mq). The correctness of this simulation follows from
the correctness of £ and the soundness of II. O

IThis observation is to Jérome Nguyen.
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5.1 Performance in the Outsourcing Application

Consider the query-based model, where a client wants to privately outsource
some heavy computation by encrypting the inputs and asking the server to
perform the computation.

As defined above the construction is asymptotically not any better for the
client than performing the computation itself, since the decryption takes f and
the ¢q1,...,cp as input. Simply reading this input is essentially as expensive as
performing the computation itself. However, the construction bears the poten-
tial of large asymptotic savings if using state and preprocessing. For example,
recall that in our target applications the client sends f and cq,...,cp to the
server to obtain the output. Clearly, any sane implementation will store these
inputs so that they do not need to be sent back by the server.

Furthermore, by re-using the preprocessing of SNARGs like [GWC19] [Gro16]
BBB™18, [COS20] the verification of the proof and thus decryption can be very
efficient. The preprocessing is linear in the circuit size of the function (but
independent of the input) and produces some “compressed” information about
the circuit for the verifier. Of course, it is not obvious which party should
perform the preprocessing. If the client performs it itself, this might defeat
the purpose of using FHE since a linear preprocessing is similarly expensive as
performing the computation in the first place. Still, this approach can be useful
if the same function is applied multiple times, such that the preprocessing effort
of the client can be amortized over many computations. An example could be
database or ML queries. Another approach could be to let the server perform the
preprocessing if this preprocessing is transparent (for example using [BBHR1S]),
but this begs the question how the client can check the preprocessing without
spending too much computational effort. A plausible approach could require
the server to commit to the output of the preprocessing by, e.g., uploading
the verifier input (or the hash value thereof) to a blockchain. Since anyone
can perform the preprocessing, anyone can also re-run it and check the server’s
honesty. So a cheating server runs a very high risk of being caught by someone
(not necessarily a client, but maybe a competitor).
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