IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

Sanitizable and Accountable Endorsement for
Dynamic Transactions in Fabric

Zhaoman Liu ®, Jianting Ning

Abstract—Hyperledger Fabric, an open-source, enterprise-
grade consortium platform, employs an endorsement policy
wherein a set of endorsers signs transaction proposals from
clients to confirm their authenticity. The signatures from en-
dorsers constitute the core component of endorsement. However,
when dealing with dynamic transactions with high timeliness
and frequent updates (e.g., stock trading, real-time ad delivery,
news reporting, etc.), the current endorsement process somewhat
slows down the transaction execution. Meanwhile, handling these
continuously updated transactions consumes significant resources
from endorsers, thereby constraining overall application effi-
ciency.

To address these issues, this paper devises a novel sanitizable
and accountable endorsement scheme by proposing a sanitizable
multi-signature (SMS) as the theoretical tool. Specifically, we
introduce the novel concept of sanitizable multi-signature and
detail its instantiation. SMS combines the advantages of multi-
signature and sanitizable signature, maintaining the compactness
of the signature while allowing the sanitizer to adjust the initial
endorsement result to fit the updated transaction content without
interacting with the endorsers, so that both the authenticity
and timeliness of transactions can be ensured. Additionally,
SMS incorporates an innovative accountability mechanism to
trace instances of improper data updates, thereby enhancing the
security and reliability of the endorsement process.

We demonstrate the security of the proposed scheme through
rigorous security analysis. Performance evaluations show that
SMS can significantly reduce verification overhead and trans-
action size compared to the default ECDSA scheme in Fabric.
Specifically, when verifying multiple endorsers’ endorsements,
our scheme exhibits a storage space reduction by approximately
30%-40% and a verification time reduction ranging from 9.2%
to nearly 26.3%.

Index Terms—Fabric, endorsement, dynamic transaction, san-
itizable multi-signature, accountability.

I. INTRODUCTION

YPERLEDGER Fabric is an open-source consortium

blockchain platform specifically designed for enterprise
applications, which distinguishes itself through its innovative
system architecture that decouples transaction execution from
ledger updates. By employing an innovative endorsement and
validation mechanism, Fabric ensures that only transactions
certified by a specific group of endorsers are committed to
the blockchain [1]. This mechanism not only enhances trans-
action security but also provides the flexibility and scalability
necessary for diverse application scenarios.

In a myriad of economic activities, dynamic transactions
like stock trading, real-time ad delivery, timely news reporting
and government document revisions are widespread, which
require high timeliness for data updates. When Fabric is em-
ployed to manage these transactions, it is objectively required

, Huiying Hou

, and Yunlei Zhao

to ensure both transaction security and rapid data process-
ing for timely updates [2]. However, Fabric’s endorsement
mechanism exhibits significant inefficiencies in handling such
transactions. Specifically, continuously auditing these updates
is not only cumbersome but also requires endorsers to remain
perpetually online. If any endorser experiences a failure or
goes offline, it directly results in increased processing delays.
Furthermore, the constant handling of dynamic transaction
updates consumes a significant amount of resources from the
endorsers, further degrading the overall system performance.
Consequently, optimizing the endorsement process for dy-
namic transactions has become an imperative challenge that
must be addressed.

The concept of sanitizable signature was initially introduced
by Ateniese et al. [3], which aims to permit an authorized
third party, also known as a sanitizer, to modify signatures in
a controlled and non-interactive manner without affecting their
verifiability. This capability enables a variety of applications
[3-5] and presents potential benefits when employed as an
endorsement tool for dynamic transactions. By mitigating the
need for repetitive endorsements during transaction updates, it
can enhance the overall efficiency of transaction processing.
Meanwhile, multi-signature, which compresses multiple sig-
natures into a singular one, plays a crucial role in blockchain
applications due to its ability to effectively reduce transaction
size and enhance block utilization [6-8]. Integrating this
feature with sanitizable signature to create an efficient en-
dorsement mechanism for dynamic transactions is a promising
area that has not yet been fully explored. Such an integration
could further enhance transaction efficiency. However, this
mechanism also introduces the risk of malicious modifications
by either signers or sanitizers, with the potential for mutual
blame. For instance, in stock trading, a portfolio manager
might manipulate stock price fluctuations for personal gain and
shift the blame to their investment bank. In news reporting,
a news editor might intentionally exaggerate or distort facts
about an event to attract traffic and then accuse the news
platform. Therefore, designing a sanitizable multi-signature
that supports accountability for malicious users is also a crucial
consideration for endorsing dynamic transactions.

In this study, we firstly introduce the concept of sanitizable
Multi-Signatures (SMS) and design its instantiation in detail.
Based on this scheme, we further devise an efficient endorse-
ment mechanism tailored for dynamic transaction, which not
only represents a significant theoretical innovation but also fur-
ther broadens Fabric’s application scenarios. Our contributions
can be summarized as follows.

https://orcid.org/0000-0003-1931-5259
https://orcid.org/0000-0001-7165-398X
https://orcid.org/0000-0002-6994-1955
https://orcid.org/0000-0002-2623-9170

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

A. Contribution

« we introduce the novel concept of SMS, which merges the
advantages of sanitizable signature and multi-signature.
This innovation preserves the compactness of signatures
while incorporating the role of sanitizers, enabling effi-
cient management of dynamic updates. Specifically, sani-
tizers can adjust the initial endorsement to reflect updated
transaction content without requiring interaction with
the original endorsers, thereby ensuring the authenticity,
timeliness, and usability of transactions.

o Based on the SMS scheme, we devise a sanitizable and
accountable endorsement mechanism that offers a more
efficient solution for auditing dynamic transactions with
high temporal requirements. This mechanism utilizes a
lightweight endorsement scale, significantly streamlining
the audit process for dynamically adjusted transactions.
Additionally, the proposed framework includes an ac-
countability feature that can trace malicious modification
actions, effectively preventing fraudulent transactions and
mutual scapegoating.

« We conducted a comprehensive performance analysis of
the proposed SMS scheme and evaluated its practical ap-
plication in the Fabric platform. Compared to the existing
ECDSA [9] scheme, our scheme significantly reduces
time and storage overhead when verifying endorsements
from multiple endorsers. Specifically, with 10 endorsers,
our scheme can reduce verification time by 9.2%; with
1000 endorsers, it reduces by 26.28%. Furthermore, we
demonstrated that SMS can substantially decrease storage
space usage both at the individual transaction and block
levels, achieving reduction rates of approximately 30%
and 40%, respectively. While we acknowledge the poten-
tial value of comparing our scheme to other sanitizable
or multi-signature schemes, focusing on ECDSA, which
is the default and standard algorithm in Fabric, under-
scores the practical and immediate enhancements our
SMS scheme brings to Fabric. This choice emphasizes the
tangible benefits of adopting SMS in existing frameworks.

B. Organization

The rest of this paper is organized as follows. The related
work is summarized in Section II, followed by the preliminar-
ies in Section III. In Section IV, we outline the construction
idea of SMS, and gives its formal definition, security model,
general construction and instantiation in Section V. After
that, We describe how to apply the proposed scheme in
Fabric in Section VI, and give a performance evaluation and
implementation on it in Section VII. Finally, we conclude our
work in Section VIIIL

II. RELATED WORK
A. Sanitizable Signature

Since the pioneering work of Ateniese et al.[3] on sani-
tizable signature, this field has attracted extensive academic
attention. Bilzhause et al.[10] have categorized sanitizable
signature schemes into four main categories: 1) schemes

offering additional security attributes, such as non-interactive
public accountability [11] and invisibility [12, 13]; 2) schemes
supporting more fine-grained sanitization [14—16]; 3) schemes
restricting sanitizers to use only values selected by the signer
[17, 18]; 4) schemes allowing sanitization of encrypted data
[19, 20]. Considering that trapdoor-based sanitizable signa-
tures often necessitate interaction between the sanitizer and the
signer to obtain trapdoor information after signature generation
[14, 15], there was a pressing need for new solutions. In
response, Samelin and Slamanig [16] proposed the first policy-
based sanitizable signature scheme (P3S), which assigns sani-
tizable rights to any sanitizer that satisfies a predefined access
policy. After that, Afia and AlTawy [21] present an Unlinkable
Policy-based Signature Scheme (UP3S), which ensures that
the generated sanitized versions of original document are
unlinkable where it is infeasible to associate them with the
same original one. Aside from the above categories, some
studies have explored scenarios with strong unforgeability of
signature [22] and conducted some generalization efforts, such
as integrating the functionalities of sanitizeable signature and
redactable signature [23, 24].

B. Multi-Signature

Multi-Signature (MS) [25] allows a group of signers (each
possessing their own key pair) to run an interaction protocol
and produce a single signature on the same message. Due to
the rise of distributed applications such as Bitcoin and other
blockchains, MS has seen a resurgence of interest. It’s worth
noting that the Bitcoin community has adopted the Schnorr
signature [26] proposed in BIP 340 [27], and is seeking a
practical MS scheme that is fully compatible with Schnorr
signature.

One of the most well-known Schnorr-based MS schemes
is proposed by Bellare and Neven [28] (abbreviated as BN
scheme), which has been proved to be secure under the plain
public key model. In this model, each signer independently
generates its own key pair, without any interactive key gen-
eration requirements [29] or any knowledge of secret key
assumptions [30, 31] employed in previous works.

Following the work of Bellare and Neven [28], the sub-
sequent researches have improved on two aspects, which
are summarized in Table I: (1) Key Aggregation. It means
to aggregate a set of verification keys into a single, short
aggregated key and keep the verification time constant using
the fixed-size aggregated public key. By making adjustments
to [28], schemes Musig [25], BDN ([32], Musig-DN [33]
and DWMS [34] add the feature of key aggregation. (2)
Two rounds of interaction. Based on [28] that requires three
rounds of interactions, several schemes [25, 28, 35, 36] have
attempted to reduce the number of interactions to two rounds,
however, all of these schemes have been frustrated by Drijvers
et al. [37], who pointed that when the adversary is allowed to
conduct an arbitrary number of concurrent sessions, none of
these above two-round schemes can be proven secure in a pure
DL setting (without pairing), and all of them are vulnerable to
attacks of sub-exponential complexity. Then, they proposed an
improved scheme called mBCJ [37] based on [35]. Although

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

TABLE I
COMPARISONS OF MULTI-SIGNATURE SCHEMES

Scheme Type Key Aggregation Rounds concurrent security

BN [28] Schnorr-based X 3 v
BCJ [38] Schnorr-based X 2 X
BDN [32] BLS-based v 3 v
Musig [25] Schnorr-based v 3 v
mBCJ [37] Schnorr-based X 2 v
Musig-DN [33] Schnorr-based v 2 v
DWMS [34] Schnorr-based v 2 v
Musig2 [39] Schnorr-based v 2 v

mBC]J requires only two rounds, its output is not Schnorr-like
and makes it unsuitable as a replacement for Schnorr signature.
MuSig-DN also requires only two rounds of interactions,
but it relies on heavy zero-knowledge proofs, which greatly
increases the complexity of the implementation and makes
MusSig-DN actually less efficient than the three-round MuSig.
MusSig? is the first scheme that makes improvements on the
above two aspects, with a signer complexity similar to that
of ordinary Schnorr signature, and is secure under concurrent
signing sessions. It is worth noting that DWMS, a two-round
MS scheme derived using linear combinations of multiple
nonces, is very similar to MuSig2, but it lacks some of the
optimizations present in MuSig2 such as: aggregating the first-
round messages from all signers, which saves bandwidth and
ensures that each signer performs only a constant number of
exponential operations; setting the coefficient of one nonce
to constant 1, which saves an exponential operation for each
signer when aggregating the nonces; and setting the coefficient
of one public key to constant 1, which achieves one exponen-
tial optimization when aggregating the public keys.

III. PRELIMINARIES

A. Multi-Signature

Consider a group of signers labeled 1, --- ,n that collabo-
rate to generate a signature for message m, where each of them
has his own key pairs as well as the public keys of the others.
A Multi-Signature scheme MS consists of four algorithms,
namely MS = (Setup, KGen, Sign, Verify). The Setup algorithm
takes 1* as input, and outputs the public parameters pp.
The KGen algorithm is run by each signer independently,
which takes pp as input, and outputs their respective key
pair (sk,pk). The Sign algorithm is an interactive protocol
that is run by multiple signers simultanesouly. Suppose L
is a multiset of public keys {pki,---,pkn}. After several
rounds of interactions, each signer ¢+ € L can output a compact
signature 6. The Verify algorithm takes L, a message m and a
signature & as inputs, and outputs 1 or O representing ¢ is valid
or not. The completeness requires that if 6 is a multi-signature
generated by Sign algorithm for message m, then the Verify
algorithm must be verified as valid under the corresponding
public keys and message m.

Definition 1 (MS-EUF-CMA Security). Let MS = (Setup,
KGen, Sign, Verify) be a multi-signature scheme. Assuming
the target honest signer is identified by 1, and (ski,pki) <

KGen(1*) is the secret key pair of target honest signer.
Consider the following MS-EUF-CMA game between forger
F and challenger C.

Setup. The forger F is given public key pk; generated by
KGen and can play the role of signers (2,--- ,n) , in particular
it can choose public keys pks, - - - , pk,, arbitrarily.

Queries. The forger F has access to the signing oracle. It
can adaptively request signatures on any messages under any
multiset L of {pky,--- ,pk,} including at least one pk;.

Response. The forger F outputs a message m™*, a multiset
L* of {pky,--- ,pk,} and a multi-signature &*.

The advantage of F in above game is defined as
AdVNSEUECMA (1) = Pr{Verify(m*, L*,6*) = 1], where n is
polynomial in A. To make the security definition meaningful,
we require that pk; € L* and F has never queried (m*, L*)
to signing oracle. The probability is taken over the random
coins used by KGen and the above game. A multi-signature
scheme is MS-EUF-CMA secure if for any PPT forger F, its
advantage is negligible in .

B. Chameleon Hash Function

Setup(1*): The Setup algorithm takes a security parameter
1* as input, and outputs public parameter PPcy that determines
the hash key space H/C, the trapdoor space 7D, the input
domain M and the randomness domain HR.

KGen(PPcy): The KGen algorithm takes PPcy as input, and
outputs a trapdoor key td € 7D and a hash key hk € HK.

Hash(hk, m): The Hash algorithm takes the hash key hk, a
message m € M as inputs, and outputs the hash value h and
a randomness hr.

Adapt(td, hk, m, hr,m'). The Adapt algorithm takes the
trapdoor key td, the hash key hk, a message m € M, a
randomness hr € HR and a new message m’ € M as inputs,
and outputs a new randomness hr’.

A correctness definition and a formal security definition of
chameleon hash are given in [40]. Due to space constraints
here we will not repeat them.

IV. SYSTEM MODEL AND SCHEME OVERVIEW

In this section we briefly describe the system model and de-
sign ideas of sanitizable and accountable endorsement scheme.

A. System Model

Our proposed sanitizable and accountable endorsement
scheme is shown in Fig. 1. This model mainly involves two
types of participants: the client and the endorsers. Their roles
are defined as follows.

Client: The client is responsible for generating a transaction
proposal, which is then sent to specified endorsers according
to a predetermined endorsement policy. Upon receiving the
endorsement result, the client verifies its compliance with the
endorsement policy.

Endorser: The endorsers are a group of privileged nodes
that simulate the execution of a transaction and collaboratively
generate a single endorsement result. A key distinction of our
endorsement scheme is that it produces a single, consolidated

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

endorsement rather than multiple individual endorsements,
thereby maintaining a constant endorsement size regardless
of the number of endorsers.

When the transaction proposal requires dynamic updates,
the client can individually sanitize the transaction content
and adjust the endorsement to ensure its continued validity
for the updated transaction. Then, it forward the updated
proposal along with the endorsement result to the orderer. To
ensure accountability and prevent arbitrary modifications by
the client, our endorsement scheme includes mechanisms to
track the origin of the updated transaction.

collaborate to
endorse

Orderer

Fig. 1. The Framework of Sanitizable and Accountable Endorsement Scheme

B. Scheme Overview

The proposed scheme is designed to effectively facilitate
the endorsement of transactions that require dynamic up-
dates, without compromising the authenticity and usability
of on-chain transactions. To achieve this, we introduce a
sanitizable multi-signature (SMS) as the technical foundation,
which incorporates an accountability mechanism to prevent
users—whether signers or sanitizers—from posting false trans-
actions and falsely accusing one another.

The SMS scheme involves three key roles: signer, sanitizer,
and verifier. To illustrate the execution process of SMS, we
draw an analogy with real-time news reporting, as depicted in
Fig. 2.

« Signer: The role of the signer is performed by multiple
participants who interactively sign the same message and
output a compact multi-signature. This multi-signature
acts as a collective endorsement from all signers, ensuring
that the transaction is authenticated by multiple parties.

o Sanitizer: The sanitizer is responsible for updating the
message content when changes are necessary, such as
in the case of breaking news or evolving events. Upon
modifying the message, the sanitizer also updates the
multi-signature to maintain its validity for the revised
message. This step is crucial in ensuring that the trans-
action remains current and accurate without losing the
initial endorsements.

o Verifier: The verifier checks the validity of the multi-
signature. In the event of a dispute, where a signer or
another party questions the legitimacy of the sanitization,
the verifier examines the changes made by the sanitizer.

Constructing a General SMS: We present a general
method for constructing Sanitizable Multi-Signatures (SMS)

Fig. 2. Sanitizable Multi-Signature (SMS)

based on the combination of a Multi-Signature (MS) and a
Chameleon Hash (CH). Typically, the MS algorithm takes a
message m as input. In our approach, we compute the CH
value h of a message m using a random number hr and adjust
the MS algorithm’s input to h. Consequently, the MS algorithm
outputs a signature ¢ on h rather than m. This transformation
allows the sanitizer, holding the trapdoor key, to compute a
collision hr’ given the message-randomness pair (m, hr) and
a new message m’, ensuring that the signature o remains valid
for (m’, hr’). This method forms the foundational construction
of SMS.

Regulating the Sanitizer: As highlighted, the ability of the
sanitizer to derive a valid message-signature pair by finding a
hash collision introduces potential risks of privilege abuse. To
mitigate this risk, we introduce the principle of accountability.
Specifically, in addition to signing the CH value, both signers
and sanitizers sign the randomness used to compute h, thereby
ensuring accountability.

To maintain a constant signature size, we employ an ag-
gregation method where an aggregator among the signers
selects the randomness used in computing h and broadcasts
it to the co-signers. This allows multiple signatures on the
same randomness to be aggregated into a single signature,
maintaining efficiency while ensuring accountability.

V. SANITIZABLE MULTI-SIGNATURE

We give a formal definition and outline the security prop-
erties of Sanitizable Multi-Signature (SMS) primitive. Specif-
ically, a SMS scheme is a secure signature scheme designed
to enable a semi-honest sanitizer to modify a signed message
without needing interaction with co-signers, while ensuring
that the original signature remains equally valid for the re-
vised message. In addition, SMS incorporates accountability
mechanisms to deter malicious behavior, such as posting false
transactions and making false accusations among users (co-
signers or sanitizer).

A. Definition

A Sanitizable Multi-Signature (SMS) scheme with public
accountability for a message space M consists of the follow-
ing algorithms.

pp < Setup(1*): It takes a security parameter A as input,
and outputs the public parameter pp. Assume that the public
parameter pp is an implicit input to all other algorithms.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

(sk,pk) + KGen(pp): It takes the public parameter pp as
input, and generates a key pair (sk, pk), where the private key
sk is kept in secret and the public key pk is available to all
users in the system.

(td, hk) < HKGen(pp): It takes the public parameter pp
as input, and generates a trapdoor key pair (td, hk), where the
trapdoor td is kept in secret and the hash key hk is public to
all users.

(hr,6) « Sign(sk;, hk,m,L): The Sign algorithm is
a protocol that is executed collaboratively by all signers.
Assuming that there are n signers in the system, in terms
of signer i (i € {1,---,n}), it takes as inputs the private
key sk;, the hash key hk, a message m to be signed and a
multiset L of public keys {pki, - - ,pky}. After a few rounds
of interactions, each signer ¢ corresponding to L will generate
a signature o; and obtain the signatures of the remaining
co-signers j(j € L\{i}). The algorithm finally outputs a
randomness hr and a multi-signature 6 with the same size
as a normal signature o;.

(hr',0') < Sanitize(sks, td, hk, m, hr,&,m’). It takes the
sanitizer’s signing key sk;, the trapdoor key pair (¢d, hk), a
message-signature pair (m, hr,5) and a new message m' as
inputs, and outputs a new randomness hr’ and a valid signature
o’ ,which satisfies ¢’ is a valid signature on (m’, hr’).

{0,1} < VerifyMS(L, hk,m, hr,&). Given a multiset L
of public keys {pki,--- ,pkn}, the hash key hk, a message-
randomness pair (m, hr) and a candidate signature & as inputs,
it outputs 1 if & is a valid signature on (m, hr) under L and
0 otherwise.

{0,1} « VerifySS(L, pks,m,hr,5). Given a multiset L
of public keys {pk1, - - -, pky}, the sanitizer’s signing key pks,
a message-randomness pair (m, hr) and a candidate signature
¢ as inputs, it outputs 1 if & is a valid signature on (m, hr)
under L and pks, and O otherwise.

Correctness. Correctness requires that for all security
parameter A, for all n € Z , for all m € M, for
all pp <« Setup(1*), for all (sk;,pk;) < KGen(pp)
and for all (td,hk) <+ HKGen(pp), it holds that
VerifyMS(L, hk,m,hr,6) = 1 with probability 1, where
(hr,6) < Sign(sk;, hk,m,L) for i € {1,--- ,n}. We also
require that for all m’ € M, for all (sks, pks) < KGen(pp)
and for all (hr',0") < Sanitize(sks,td, hk,m, hr,6,m’),
we have that VerifySS(L, pks, hk,m’, hr',o’) = 1.

B. Security Model

By constructing security experiments Expi‘fgf\%vm()\) and
Exp’yaus(\) between an adversary A and a challenger C,
we give the required security definitions for SMS, including
unforgeability and accountability, respectively. The oracles

used in the security experiments are defined in Table II.

« Unforgeability. Unforgeability requires that an adversary
cannot forge a valid multi-signature involving at least
one honest signer or act as a sanitizer to forge a valid
signature for a sanitized message. Without loss of gener-
ality, we assume there exists an honest signer identified
by 1 and the adversary can corrupt all other co-signers
(namely, choosing corrupted public keys arbitrarily or

TABLE 11
SMS SECURITY ORACLES

Q1,Q2:= 1
Oracle Sign(sky,-,-,-) on input hk, m and L:
if pki ¢ L, return L
(hr,0) < Sign(sky, hk,m,L)
Q1 :=Q1U{(m,hr,L)}
return o
Oracle Sanitize(sks,td, hk,-,-) on input (m,hr,L,o), m’:
if VerifyMS(L,hk,m,hr,o) =0, return L
(hr',0") < Sanitize(sks, td, hk, (m, hr,o),m’)
Q2 := QU {(m/, hr")}

return (hr',o”)

even as a function of the honest signer’s public key).
In this way, the adversary can compute multi-signatures
indirectly by accessing the honest signer’s signing oracle.
The unforgeability experiment Expi[fgl'\fy/\()\) is detailed
in Table IIl. The challenger C generates key pairs
(sk1,pk1) for the honest signer and (sks,pks) for the
sanitizer, and provides A with pk; and pk,. The security
experiment allows A to access oracles Og;q, and Oggpirize,
simulating the signing process of the honest signer and
the sanitizing process of the sanitizer, respectively.

To win the game, the adversary must output a message-
randomness pair (m*, hr*), a multiset L* of public keys
{pki1, -+ ,pkn} and a signature o*. The conditions for
the adversary’s success are:

1) Multi-Signature Fogery: If A returns a multi-signature,
it wins if pky € L*, VerifyMS(L*, hk, m*, hr*,o*) =
1 and it has never accessed Og;g, With (m*, hr*, L*).
2) Sanitized Signature Fogery: If A re-
turns a sanitized signature, it wins if
VerifySS(L*, pks, hk,m* hr* o*) = 1 and it
has never accessed Oganitize With (m* hr*) as the
sanitized message-randomness pair.

Definition 2. A Sanitizable Multi-Signature (SMS)
scheme is EUF-CMA secure if for any PPT adversary
A,

Advisyis ™ () = PrExpiis (A) = 1] = negl(\).

Accountability. The accountability experiment
Expﬁ?ng(A) between an adversary .4 and a challenger C
is defined in Table III, where the adversary owns private
key sk, (or skq) and can access to Ogigrn, (0r Osanitize)-
We can see accountability grants the adversary greater
capabilities, as it ensures that even with access to
one party’s private key, the adversary cannot falsely
accuse another party. Consequently, our definition of
the accountability security experiment encompasses the
requirements of the unforgeability experiment, making
the latter a special case of the former. By defining the
accountability security experiment, we implicitly address
the unforgeability requirements.

Definition 3. A Sanitizable Multi-Signature (SMS)
scheme is accountable if for any PPT adversary A4,

Advii s (V) = Pr[Bxpl{sus(A) = 1] = negl(X).

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

TABLE III
SMS UNFORGEABILITY AND ACCOUNTABILITY EXPERIMENTS

Experiment Expius,\j[\SCT(/\)

pp Setup(N)
{(sk1,pk1), (sks,pks)} < KGen(pp)
(td, hk) < Gen(pp)
Q1,Q2:=0
A chooses a random bit b € {0,1}
if b==0,
(m*, hr*, L*, 0*) < A5 (pky, hk, pks, sks, td)
return pky € L* A (m*, hr*,L*) ¢ Q1 A VerifyMS(L*, hk, m*, hr*, o*)
elseif b == 1,
(m*, hr*, L*, 0*) < ASanitize(pky bk, pks, sk)
return (m*, hr*) ¢ Qa A VerifySS(L*, pks, hk, m*, hr*, o*)

C. General Construction

The proposed general construction consists of two build-
ing blocks, an EUF-CMA secure multi-signature scheme
Y = (Setup, KGen, Sign,Verify) and a collision-resistant
chameleon hash function CH = (Setup, KGen, Hash,
Adapt). Define the sanitizable multi-signature scheme SMS
as follows.

1) pp + SMS.Setup(1?). The Setup algorithm takes 1*
as input, and outputs pp := {pps,ppcu}, Wwhere
pps<X.Setup(1*) and ppey<CH.Setup(1*).

2) (sk,pk) < SMS.KGen(pp). Parsing pp as (pps, ppcu),
each signer i € {1,--- ,n} and the sanitizer s use pps
to generate their respective signing key pairs (sk;, pk;)
and (sks, pks). Specifically, (sk;, pk;) < X.KGen(ppyx)
for each signer and (sks,pks) <+ X.KGen(ppy) for
the sanitizer. All participants in the system expose their
public key and keep their private key secret.

3) (td,hk) < SMS.HKGen(pp). Parsing pp as (pps,
ppcH), the sanitizer takes ppcy as inputs and outputs
(td, hk) < CH.K Gen(ppcu), where td is a trapdoor key
and hk is a hash key.

4) (hr,6) < SMS.Sign(sk;, hk,m, L). The Sign algorithm
is an interactive protocol, which is described here in terms
of signer i.

a) Given a message m to be signed and a randomness hr,
compute h <— CH.hash(hk, m, hr).

b) Let L be a multiset of public keys {pki,---,
pky}, compute &, < X.Sign(sk;, h,L), Gpr
X.Sign(sk;, hr||m, L), and output the randomness hr
and multi-signature & := (6, Gpy).

5) (0,1) « SMS.VerifyMS(L,hk,m,hr,&5). Given a
multiset L of public keys {pki,---,pk,}, a hash
key hk and a message-signature pair (m,hr,5),
the verifier parses 6 as (Gp,0ph), computes h <+
CH.hash(hk, m,hr) and returns X.Verify(L,h,6r) A
S Verify(L, hr||m,6n.).

6) (hr',6") <« SMS.Sanitize(sks,td, hk,m, hr,6,m’).
Given the signing key sk, of sanitizer s, the hash key pair
(td, hk), a message-signature pair (m, hr,d) and a new
message m’, the sanitizer parses & as (Gp,Gpy), com-
putes hr’ < CH.Adapt(td, hk,m,hr,m’) and o}, <
X.Sign(sks, hr'||m’, pks), and returns 6" := (64, 07,.).

7) (0,1) < SMS.VerifySS(L,pks, hk, m,hr,5). Given

a multiset L of public keys {pki,---,pky}, the sani-
tizer’s public key pks, the hash key hk and a message-
signature pair (m,hr,5), the verifier parses & as
(6h,0nr), computes h < CH.hash(hk,m,hr) and re-
turns X.Verify(L, h,opn) A X.Verify(pks, hr||m, 6p.).

Note: In designing the accountability mechanism, we opted
to sign hr||m rather than only hr to enhance system security
against impersonation attacks. Signing hr solely would allow
a malicious adversary to use the output hr from the Sanitize
algorithm as input to the Sign algorithm and generate valid
signatures o}, and o, under L and pk,. This could mislead
the verification process and compromise data integrity and
accountability.

By signing hr||m, the signature is tethered to both the
randomness hr and the specific data m. Even if an adversary
obtains hr output from the Sanitize algorithm, it cannot forge
a valid signature without m.

D. Security Proof

Here we will prove the unforgeability and accountability
of the proposed SMS scheme. Due to space constraints,
the detailed security proofs are submitted as supplementary
material.

Theorem 1. If MS is EUF-CMA secure and CH is CR
secure, then the SMS scheme is EUF-CMA secure.

Specifically, for any PPT adversary A with advantage
Adviugfvlcslvm, there exists PPT adversaries Bys and Bew,
such that AdvEUEEMA(1%) < AdvgIFMA (12) 4+ AdugR (17),
where Advig "t CMA(1’\) represents the advantage of adversary
Bums against ‘the underlying MS scheme and AdeR (1>‘) rep-
resents the advantage of adversary Bcy against the underlying
CH scheme.

Theorem 2. The SMS scheme achieves accountability if
the underlying signature scheme is EUF-CMA secure and the
underlying chameleon hash scheme is CR secure.

Specifically, assuming that Advg, (17) denotes the advan-
tage of B, in finding a CH collision together with forging a
valid signature, and Advg, (1) denotes the advantage of B;
in finding a CH collision together with forging a valid multi-
signature, the advantage AdvE'FMA(11) of A in breaking
our instantiated SMS scheme satisfied AdvEUFEMA(1A) <
AdUBS (1/\)+Ad1131 (1)‘)

E. Instantiation

In this section, we present the proposed instantiation, along
with implementation and evaluation analysis. For simplicity,
we assume an aggregator among the signers is responsible
for receiving external messages to be authenticated, verifying
and aggregating outputs from other signers, and sending the
multi-signature to outsides. The instantiation of SMS based on
Musig2[39] and CH [40] is as follows.

o Setup(1*) — pp. On input of a security parameter \,
choose a group G of order ¢ with generator g, where ¢ is
a k-bit prime. Choose hash functions H; : {0, 1}* — Z
and Hj : {0,1}* — G, and output the public parameter

pp :={G,q,9,Hy, Ha2}.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

o KGen(pp) — (sk, pk). On input of the public parameter
pp, each signer i € {1,--- ,n} sets the signing key sk; :=
x; with z; S Ly, computes X; := g*, and publishes
the public key PK; = X;. Accordingly, the sanitizer s
computes its signing key pair as (zs, Xs).

o HKGen(pp) — (td,hk). On input of the public pa-

rameter pp, the sanitizer sets the trapdoor key td := z;
with L Zy, computes the hash key hk := ¢g** and
publishes pks and hk.
In Musig2 [39], there exists a KeyAgg algorithm, which
takes a multiset L of public keys {pki,---,pkn,} =
{X1, -+, X} as inputs, computes and outputs X :=
[T, X where a; = Hy(L, X;) fori € {1,--- ,n}.

o Sign(sk;,hk,m,L) — (hr,6). Each signer i €
{1,-++,n} chooses ;1,7 2,d;1,d;2 & 7}, computes
nounces Ri1 = g™, Rip = g"2, Diq = g%,
D;s = g%2 and sends these nonces to the aggrega-
tor. The aggregator then computes Ry := [[; R;1,
Ry := [}, Rio, D1 :=[[}= Dix, D2 :=[_ Dis
and outputs (Ry, Ry, D1, D3).

When receiving a message m to be signed, the aggre-
gator computes hr := (g%, hk®) with « & Zy, and
broadcasts (m, hr) to all signers.

Once receiving (R1, Ra, D1, D5), each signer i computes
bl = Hl(X, Rl,Rg,m) and b2 = Hl(X, Dl,DQ,hT')
using the aggregated public key X from the KeyAgg
algorithm, then computes h := ¢ - Hy(hk)f(m),

R = H2 ijfl — R, -RY™ D = H2 DbJ;l

: j=1"Y 1 2>) j=1"3
Dy - D%, ¢, == H\(X,R,h), ¢ := H\(X, D, hr||m),
5i = (rin + ri2by + crax;) mod q, p; = (di1 +
d; 2bs + c2a;x;) mod ¢ where a; = H;(L,X,;), and
sends o; := (s;,p;) to the aggregator.
The aggregator parses o; as (s;,p;) fori € {1,--- ,n},
computes § := Y ., s; and p := > ., p;, and then
outputs the randomness hr and the multi-signature 6 :=
(01,02) = ((R, 3), (D, p)).

o VerifyMS(X,hk,m,hr,5) — (0,1). On input of
the aggregated public key X, hash key hk, message
tuple (m,hr) where hr = (g%, hk®) and aggregated
signature 6 = (61,62), the verifier parses (61,02)
as ((R,3),(D,p)), computes h := g* - Hy(hk)H1(m),
c1:= Hi(X,R,h), ca := Hi(X, D, hr||m), and accepts
the aggregated signature if g° = R- X and g? = D-X¢2.

o Sanitize(sks,td, hk, m,hr,6,m') — (hr';6’). On in-
put of the sanitizer’s signing key sk, trapdoor key pair
(td, hk), a message-signature pair (m, hr,5) and a new
message m/, the sanitizer computes a new randomness
hr'. Here, hr = (g* hk®), hr' = (¢, hk®) where
g% = g% Hs(hk)H(m)=Hi(m") and pke’ .= hk* .
Hg(hk)z(Hl(m)*Hl(m/)). Then, it chooses d, L Zy,
computes a new signature p := dg + coxs for hr’ with
D, := g% and ¢y = H(X,, Ds,hr'||m’). Finally,
it adapts the signature for m’ to 6’ = (o1,02) =
((R,8),(Ds, D)), where oy is a valid aggregated signature
for m, which is also valid for m’ due to the chameleon
hash.

o VerifySS(X,pks, hk,m,hr,6) — (0,1). Given the
aggregated public key X, the sanitizer’s public key
pks := X, the hash key hk and a message-signature
pair (m,hr,5) with hr := (g% hk*) and & =
(61,02) = ((R,3),(D,p)), the verifier computes h :=
g% - Ho(hk)™ (M) if g5 = R. XH(XRA) and gP =
DX Dhrllm) e verifier outputs 1 indicating that
G is the signature of the new message m’ sanitized by
sanitizer s. Otherwise, it outputs 0.

VI. APPLYING SANITIZABLE AND ACCOUNTABLE
ENDORSEMENT TO FABRIC

A. The Current Transaction Flow in Fabric

The transaction execution process in Fabric generally fol-
lows six steps, as shown in Fig. 3: (1) the client builds a
transaction proposal and signs it, then sends the transaction
request to the endorsers specified in the endorsement policy.
(2) The endorsers validate the signature, simulate the proposed
transaction without committing it to the ledger, and return the
proposal response to the client. (3) The client checks whether
the responses are consistent and satisfy the endorsement
policy. If the required number of matching endorsements is
obtained, the transaction, along with its endorsements, are
submitted to the orderer. (4) The orderer sorts the transactions,
encapsulates them into a block and broadcasts the block to all
the committers in the channel. (5) The committers verify the
transactions within the block. Upon validation, the block is
appended to the blockchain. (6) The peer nodes write each
valid transaction to their respective ledger and update the
world state.

The endorsement process primarily refers to steps 2, 3 and
4 of the transaction execution flow. In handling dynamic trans-
actions, the existing endorsement process often encounters
performance bottlenecks due to multi-node signature genera-
tion. Furthermore, the failure of critical endorsers can degrade
system robustness and availability. We apply our proposed
SMS to construct a sanitizable and accountable endorsement
scheme, aiming to optimize the existing endorsement process
and enhance the efficiency of dynamic transaction processing.

Sl blockchain
o {
|
Al
|
|
I
|
|
I

i~ i
I
I
[Vl Vs }
5. verify TXs and add valid | |
J/ _ blocktothe chain '/

Client
3. verify whether the endorsements
satisfy endorsement policy

Fig. 3. Hyperledger Fabric Workflow with Our Endorsement Scheme

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

B. Sanitizable and Accountable Endorsement for Fabric

Here, we describe how to apply SMS to construct a san-
itizable and accountable endorsement scheme for dynamic
transaction updates. By integrating the concepts shown in
Fig.1 and Fig.2, the client first sends a real-time transaction
proposal to the endorsers for authenticity verification. A com-
mittee of endorsers assesses the proposal based on the given
endorsement policy. If the proposal is supported, the endorsers
collaboratively execute the SMS.Sign algorithm to produce an
endorsement with a multi-signature, which is then sent to the
client. In this way, the endorsement size can be reduced to a
constant level.

Upon receiving the endorsement from the endorsers, the
client verifies whether the multi-signature rather than multiple
signatures satisfies the endorsement policy and originates from
a sufficient number of endorsers. The client then updates
the proposal dynamically and executes the SMS.Sanitize al-
gorithm, so as to enable the endorsement remains valid for
the updated transaction. The updated transaction proposal and
the aggregated endorsement are then packaged into a single
transaction, which is signed and sent to the orderer. This re-
duces the client’s verification overhead to a constant level and
mitigates the transaction size, thereby improving block utiliza-
tion. Importantly, our enhanced endorsement process ensures
both the authentication of dynamically updated transactions
by the endorsers and the preservation of update integrity by
the client, while supporting tracking to prevent the shirking
of endorsement responsibilities. In summary, applying our
sanitizable and accountable endorsement scheme to Fabric’s
transaction execution process can achieve performance gains
and functional optimization.

VII. PERFORMANCE EVALUATION AND IMPLEMENTATION
A. Performance Evaluation

Our instantiation uses [39] and [40] as building blocks,
which is the best combination for efficiency and security rea-
sons. We first analyze the performance of various MS schemes
in theory. Specifically, we compare the MS schemes in terms
of computational complexity, storage overhead, interaction
rounds, and communication complexity. The comparison re-
sults are shown in Table IV. In particular, the computational
complexity mainly focuses on expensive operations such as
exponentiation, multiplication and inverse operations. From
Table IV, we can see that only scheme [28] is a three-round
scheme, which does not support key aggregation and thus
implicitly leads to a linear correlation between its verifica-
tion time and the number of signers. Among the remaining
two-round MS schemes, the key aggregation algorithm of
mBCJ [37] has double the exponential operations compared
to other two-round schemes, and the signing overhead of
DWMS (m=2) [41] is linearly related to the number of
signers, which is significantly larger than the other schemes.
In addition to the comparable constant number of exponential
operations with mBC]J [37] and Musig2 [39], the signing algo-
rithm of Musig-DN [33] additionally requires expensive zero-
knowledge proofs, which greatly increases the implementation
complexity. In summary, Musig2 [39] outperforms the other

schemes in terms of the overall performance, especially in
terms of interaction rounds and computational complexity in
signing and verification.

Then, we analyze the performance of typical CH functions
in theory. From Table V, we know that CHy and CHg,
suffer from key leakage. That is, an attacker can compute the
trapdoor key based on the information obtained and further
find the collision of arbitrary messages, and thus making them
impractical. CH, is resistant to key leakage but is based on
the RSA assumption, which makes it significantly less efficient
in computing CH values and finding collisions than [40]. This
efficiency consideration explains why [40] was chosen in our
instantiation scheme. To provide a more intuitive view of the
performance of our instantiation, we additionally summarize
its theoretical performance in Table VI.

B. Implementation

We enhance the original MuSig2 implementation! by in-
tegrating a chameleon hash function, thereby implementing
our SMS scheme in Python. Performance is evaluated on a
XiaoxinAir 14+ with a 2.3GHz AMD R5-5600U CPU and
16GB RAM. We choose the secp256k1 curve, known for its
256-bit security and widespread use in blockchain systems like
Bitcoin and Ethereum, as the cyclic group and perform variety
of operations on it. We instantiate the general hash function
in chameleon hash with Sha256. Table VII summarizes the
average running time and key communication overheads of
our instantiation when using secp256k1, where the public key
and the aggregated public key are in compressed form (i.e., a
1-byte prefix and a 32-byte x-coordinate). Note that the time
costs for KeyAgg and AggSign algorithms in Table VII reflect
scenarios with 3 co-signers.

Next, we evaluate the impact of the co-signer set on the
overall scheme. In our instantiation scheme, the computational
overhead of KeyGen, Sign, Verify, and Sanitize algorithms
remains independent of the co-signer set. Conversely, the
KeyAgg and AggSign algorithms exhibit linear complexity
relative to the size of the co-signer set. Evaluation results,
detailed in Table VIII, confirm this behavior. For instance, with
n = 100, KeyAgg takes approximately 0.147s, and AggSign
about 0.01ms. With n = 1000, these times increase to ap-
proximately 2.682s and 0.119ms, respectively. Notably, while
KeyAgg governs the scheme’s performance and its impact
escalates with larger co-signer sets, it can be precomputed
upon receipt of the message and executed only once, remain-
ing unchanged for subsequent identical co-signer multisets.
Additionally, though AggSign’s time cost scales linearly with
the co-signer set, its overall computational impact is negligible.

Finally, we show the impact on Fabric blockchain upon
integrating our instantiation. Fig.4 illustrates the general struc-
ture of a block in Fabric, comprising a block header, m
transaction structures, and Block Metadata. Each transaction
structure’s payload includes multiple TransactionAction (TA)
structures since multiple endorser nodes are required. Each
TA includes the endorser’s identity (consisting of a certificate
and a public key) and its endorsement to the transaction. Our

'musig2.py [source code]. https:/github.com/meshcollider/musig2-py

https://github.com/meshcollider/musig2-py

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

TABLE IV
THE PERFORMANCE COMPARISON AMONG VARIOUS MS SCHEMES

KeyGen KeyAgg Sign Verify Rounds pk X o
BN [28] 1E € 1E+ (n—1)M (n+1)E+nM 3 |G| L |G + Zy|
mBCJ [37] 2F 2nE + (2n —1)M 5E+3(|C1+1)M 6E +4M 2 |G| +2|Zp| |G| 2|G|+3|Zy]|
Musig-DN [33] 1E nE+(n—1)M 3E+ (n—1)M 2E+ 1M 2 |G| |G| |G+ Zy|
DWMS [41] 1E nE+(n—-1)M 2n+1)E+2n—1)M 2E+1M + 1INV 2 |G| |G| |G+ Zy|
Musig?2 [39] 1E nE+ (n—1)M 3E+(2n—-1)M 2E +1M 2 |G| |G| |G+ Zy|

Denote: E as an exponential operation; M as a multiplication operation; n as the size of signature set; |G| as the size of an element
in group G; |Zp| as the size of an element in group Zy; |C| as the number of children in the current node; NV as an inverse operation.

TABLE V
THE PERFORMANCE COMPARISON AMONG VARIOUS CHAMELEON HASH SCHEMES

KeyGen Hash Adapt Assumption Size of CH value Key-exposure free
CHg [42] 1E 2E + 1M 1M DLP |G| X
CH,y, [43] 1E 2E + 1M 1E + 1M RSA |Zy| v
ye min=1M?2, Y .
CHp, [44] IM max=IM + 1M2 max=[M FAC |Zy| X
[40] 1E 3E+1M 2E +2M CDHP |G| v

Denote: [as the binary length of a message; |Z7},| as the size of an element in group Z%}; M 2 as a square operation; DLP as the Discrete
Log Problem; FAC as the factoring assumption; CDHP as the Computational Diffie-Hellman Problem.

TABLE VI
THE PERFORMANCE FIGURES OF INSTANTIATED SMS SCHEME

Computation Cost Storage Cost and Communication Cost
KeyGen KeyAgg Sign Verify Sanitize Judge pk X I
Si iti Si A ¢ Si Saniti
igner | sanitizer | . + - 1)M igner ggregator SE+3M | 8E+2M | 2B+ 1M igner | Sanitizor Gl | 206] + 212,
1E 2F TE+3M | 2E+4(n—1)M |G| 2|G|
TABLE VII

THE RUNNING TIME (MS) AND THE COMMUNICATION COST (B) OF INSTANTIATED SMS SCHEME

KeyGen KeyAgg Sign AggSign Verify | Sanitize Communication Cost
Signer | sanitizer | » =3) | CH Sign (n=3) pk | X I
0.408 0.803 2723 | 4.246 | 7.091 | 1.876 %+ 10~* | 3.533 | 3.891 33 | 33 130

TABLE VIII
TIME OVERHEAD (MS) OF THE SCHEME WITH DIFFERENT NUMBER OF CO-SIGNERS
Algorithm KeyGen Sign X . .
KeyAgg AggSign Verify Sanitize
Number Signer sanitizer CH Sign
n=3 0.408 0.803 2569 4246 7.091 1.876%107* 3.533 3.891
n =10 0.416 0.808 11.870 4.324 7.181 1.489%1073 3.634 3.958
n =50 0.402 0.802 63.262 4299 7.014 5870%107% 3.551 3.913
n = 100 0.406 0.803 126.977 4317 7.150 1.145%1072 3.619 3.898
n = 1000 0.402 0.807 1290 4.333 7.105 0.119 3505 3.938

instantiation can aggregate signatures on the same transaction
from multiple endorsers into a single aggregated one so as to
compress the block space. In addition, by verifying the validity
of the aggregated signature rather than individual signatures
from each endorser, it confirms whether a sufficient number
of specified endorsers have endorsed the proposal, which in
turn reduces the block confirmation time.

To evaluate the performance improvements of integrating
our instantiation into the Fabric, we conducted comparative
analyses on endorsement sizes and verification time costs
with ECDSA (i.e., the current signature algorithm applied
in the Fabric). Fig.5 presents results for a single transaction,
where with 3 endorsers, our scheme reduces endorsement size

by 12.84% compared to ECDSA. This reduction increases
to nearly 40% with 1000 endorsers. At the block level, as
depicted in Fig.6, with 10 endorsers, storage space decreases
by approximately 31% regardless of whether the block con-
tains 1500 or 5000 transactions, and by nearly 38% with 50
endorsers.

The runtime of verifying endorsement information for both
a single transaction and a block is presented in Fig.7 and Fig.8§,
respectively. It is observed that with 3 endorsers, ECDSA
verification time is 0.948ms faster than our instantiation. This
difference arises because our approach requires aggregating
endorsers’ public keys before verification, involving compu-
tationally expensive exponential operations. However, as the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

Block Header

Number [Previoustash | DataHash |

Block Data (contains m transactions)
Ix-1 Type | Version | Timestamp | Channel ID | TxID | Epoch [PayloadVisibility |

Chaincode Path (deploy tx) | Chaincode Name (invoke tx) | Chaincode Version
Creator Identity (certificate, public key) -Client [signatwre |
Chaincode Type | Tnput(Chaincode function and arguments) | Timeout |

TransactionAction structure(TA, contains N endorsements)

[Endorser-1 Identity (certificate, public key) [Endorser- Signature

\ Endorser-2 Identity (certificate, public key)

|
| Endomser2Signature |
|

\ Endorser-N Identity (certificate, public key) [EndorserN signature

Proposal Hash | Chaincode Events | Response Status Namespace

Read Set: List of <Key, Version> read by the transaction

‘Write Set: List of <Key, Value, IsDelete>

tart Ke; ¢ ey 1st of <Key, Version> rac erkle Tree Quer umma
StartKey | EndKey | Listof <Key, Ve d | Merkle T 1y Summary

Tx-m Type | Version | Timestamp | Channel ID | Tx ID | Epoch | PayloadVisibility

Chaincode Path (deploy tx) | Chaincode Name (invoke tx) | Chaincode Version
Creator Identity (certificate, public key) -Client [signature
Chaincode Type | Tnput(Chaincode function and arguments) |

Timeout

“TransactionAction structure(TA, contains N endorsements)

Endorser-1 Identity (certificate, public key) | Endorser- signature

\ |
\ Endorser-2 Identity (certificate, public key) | Endomer2Signature |

Endorser-N Identity (certificate, public key) | EndorserN signature

Proposal Hash | Chaincode Events | Response Status Namespace

Read Set: List of <Key, Version> read by the transaction

Write Set: List of <Key, Value, IsDelete>

StartKey | EndKey | Listof <Key, Version>rad | Merkle Tree Query Summary

| Block MetaData

[Creator Identity (certificate, public key) -Orderer [signature
|| Last configuration block# | Creator Identity (certificate, public key) | Signature
| Flag for each transaction

| Lastoffet persisted: Kafka | Creator Identity (certificate, public key) [Signature

s ®
< 16 9.16
s o7 |
N — |:| |
o HE
0.25

n=3 n=10 n=50 n=100 n=1000
@TA Size with SMS 0.41 1.07 4.86 9.16 94.85
BTA Size with ECDSA 047 1.57 7.86 15.72 157.23

Endorser Set Size

B TA Size with SMS £ TA Size with ECDSA

Fig. 5. Total TAs Size (KB) in One Transaction Using Instantiated SMS vs
ECDSA

number of endorsers increases, the verification time of our
instantiation gradually becomes less than that of ECDSA.
As illustrated in Fig.7, when the number of endorsers in-
creases from 10 to 50, our scheme exhibits a verification time
reduction ranging from 9.2% to nearly 25%, demonstrating
greater efficiency with more endorsers. Furthermore, if the
composition of endorsers is predetermined or the endorser
set remains constant across multiple transactions, in which
case the verification time when using our instantiation will
be further shortened.

VIII. CONCLUSION

In this paper, we introduce the concept of sanitizable multi-
signature (SMS), detailing its general construction and prac-
tical application. SMS enables co-signers to audit data while
allowing the sanitizer to update information to maintain the
validity of the signature for the updated data without requiring
interaction with the co-signers. Leveraging SMS, we design a
sanitizable and accountable endorsement scheme that reduces

BSMS (n=10) BECDSA (n=10)

Drop Ratio: -31.74% Drop Ratio: -31.64% |

9
g * —
< 7
Z 6
E s
g 4
: s
“
1
° B
NTX=1500 NTX-5000
@SMS (n=10) 157 525
SECDSA (n=10) 23 7.68

Number of TXs

(a) TAs size in one block when n=10

BSMS (n=50) SECDSA (n=50)

Endorsement Size (MB)

10 08 ‘

NTX=1500 NTX=5000
BSMS (n=50) 7.08 2375
ECDSA (n=50) 152 38.38
Number of TXs

(b) TAs size in one block when n=50
Fig. 6. Total TAs size in one block using instantiated SMS vs ECDSA

n=1000 |

w100
|

n-so i 6,513
LY —

neto I 15,504
r—

Number of Endorsers

1 10 100 1000 10000

03 =10 =50 =100 =100

Blnstantiated SMS 6,102 15,504 66813 130.553 1293

BECDSA 5154 17.076 86,176 174017 1754
Time cost (ms)

B Instantiated SMS £ ECDSA

Fig. 7. Total runtime to verify signature sets in one transaction using
instantiated SMS vs ECDSA

| 12927

Number of Endorsers

BECDSA 2561
@SS 2326

120 140

Time Cost (s)

[ECDSA B SMS.

(a) TAs size in one block when Ntx=1500

19

: hoss
R b
z

g

£

z

BMECDSA 8538 430.88

msMS 71.52 334.07

Tmeconts

[ECDSA B SMS.

(b) TAs size in one block when N7x=5000

Fig. 8. Total runtime to verify signature sets in one block using instantiated
SMS vs ECDSA

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

transaction size to a constant level and significantly lowers
verification overhead compared to existing methods. By incor-
porating an accountability mechanism, the proposed scheme
can further prevent the abuse of authority and false accusations
among participants. The proposed scheme not only meets
authenticity and high-timeliness requiurements for dynaimc
transactions in Fabric, provides a novel technical solution for
processing such transactions, but also enhances transaction
processing speeed, thereby improving the overall performance
of Fabric. Our security analysis rigorously demonstrates the
robustness of the proposed scheme. Performance evaluations
indicate that SMS substantially reduces time overhead and
transaction size on the Fabric platform compared to the default
ECDSA scheme. When verifying multiple endorsements, our
scheme decreases storage space by approximately 30%-40%
and a verification time reduction ranging from 9.2% to nearly
26.3%, thus improving the overall efficiency and applicability
of the Hyperledger Fabric network.

For future research, we plan to integrate SMS with other
blockchain platforms to assess its versatility and performance
in different environments. Additionally, we aim to optimize
the endorsement process by incorporating SMS with other
existing endorsement strategies in Fabric. These efforts will
further enhance the efficiency and security of the endorse-
ment process, broadening the applicability and impact of our
proposed scheme.

REFERENCES

[1] E. Androulaki, A. De Caro, M. Neugschwandtner, and
A. Sorniotti, “Endorsement in hyperledger fabric,” in
2019 IEEE International Conference on Blockchain
(Blockchain). 1EEE, 2019, pp. 510-519.

[2] M. ElMessiry and A. ElMessiry, “Blockchain frame-
work for textile supply chain management: Improving
transparency, traceability, and quality,” in Infernational
conference on blockchain. Springer, 2018, pp. 213-227.

[3] G. Ateniese, D. H. Chou, B. De Medeiros, and G. Tsudik,
“Sanitizable signatures,” in Computer Security—ESORICS
2005: 10th European Symposium on Research in Com-
puter Security, Milan, Italy, September 12-14, 2005.
Proceedings 10. Springer, 2005, pp. 159-177.

[4] C. Brzuska, M. Fischlin, A. Lehmann, and D. Schroder,
“Unlinkability of sanitizable signatures,” in Public Key
Cryptography—-PKC 2010: 13th International Confer-
ence on Practice and Theory in Public Key Cryptogra-
phy, Paris, France, May 26-28, 2010. Proceedings 13.
Springer, 2010, pp. 444-461.

[5] K. Miyazaki, M. Iwamura, T. Matsumoto, R. Sasaki,
H. Yoshiura, S. Tezuka, and H. Imai, “Digitally signed
document sanitizing scheme with disclosure condi-
tion control,” IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences,
vol. 88, no. 1, pp. 239-246, 2005.

[6] Y. Xiao, P. Zhang, and Y. Liu, “Secure and efficient
multi-signature schemes for fabric: An enterprise
blockchain platform,” IEEE Trans. Inf. Forensics Secur.,
vol. 16, pp. 1782-1794, 2021. [Online]. Available:
https://doi.org/10.1109/TIFS.2020.3042070

[71 C. Li, Y. Wu, and F. Yu, “An improved schnorr-based
multi-signature scheme with application to blockchain,”
in 2021 IEEE 3rd International Conference on Civil
Aviation Safety and Information Technology (ICCASIT).
IEEE, 2021, pp. 858-863.

[8] P. Zhang, Y. Huang, F. Ge, and Y. Liu, “Group-oriented
multi-signature supporting monotonic endorse policies in
hyperledger fabric,” in 2023 IEEE International Confer-
ence on Blockchain (Blockchain). IEEE, 2023, pp. 256—
264.

[9] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic

curve digital signature algorithm (ecdsa),” International

Jjournal of information security, vol. 1, pp. 36-63, 2001.

A. Bilzhause, H. C. Pohls, and K. Samelin, “Position

paper: The past, present, and future of sanitizable and

redactable signatures,” in Proceedings of the 12th In-
ternational Conference on Availability, Reliability and

Security, 2017, pp. 1-9.

C. Brzuska, H. C. Pohls, and K. Samelin, “Non-

interactive public accountability for sanitizable signa-

tures,” in Public Key Infrastructures, Services and Appli-
cations: 9th European Workshop, EuroPKI 2012, Pisa,

Italy, September 13-14, 2012, Revised Selected Papers 9.

Springer, 2013, pp. 178-193.

X. Bultel, P. Lafourcade, R. W. Lai, G. Malavolta,

D. Schroder, and S. A. K. Thyagarajan, “Efficient invisi-

ble and unlinkable sanitizable signatures,” in Public-Key

Cryptography—PKC 2019: 22nd IACR International Con-

ference on Practice and Theory of Public-Key Cryptog-

raphy, Beijing, China, April 14-17, 2019, Proceedings,

Part I 22. Springer, 2019, pp. 159-189.

J. Camenisch, D. Derler, S. Krenn, H. C. Pohls,

K. Samelin, and D. Slamanig, “Chameleon-hashes with

ephemeral trapdoors: And applications to invisible san-

itizable signatures,” in Public-Key Cryptography—PKC

2017: 20th IACR International Conference on Practice

and Theory in Public-Key Cryptography, Amsterdam, The

Netherlands, March 28-31, 2017, Proceedings, Part I1 20.

Springer, 2017, pp. 152-182.

S. Canard, F. Laguillaumie, and M. Milhau, “Trapdoor

sanitizable signatures and their application to content

protection,” in Applied Cryptography and Network Se-
curity: 6th International Conference, ACNS 2008, New

York, NY, USA, June 3-6, 2008. Proceedings 6. Springer,

2008, pp. 258-276.

J. Lai, X. Ding, and Y. Wu, “Accountable trapdoor

sanitizable signatures,” in Information Security Practice

and Experience: 9th International Conference, ISPEC

2013, Lanzhou, China, May 12-14, 2013. Proceedings

9. Springer, 2013, pp. 117-131.

K. Samelin and D. Slamanig, “Policy-based sanitizable

signatures,” in Topics in Cryptology—CT-RSA 2020: The

Cryptographers’ Track at the RSA Conference 2020, San

Francisco, CA, USA, February 24-28, 2020, Proceed-

ings. Springer, 2020, pp. 538-563.

S. Canard and A. Jambert, “On extended sanitizable

signature schemes,” in Cryptographers’ Track at the RSA

Conference. Springer, 2010, pp. 179-194.

[10]

[14]

https://doi.org/10.1109/TIFS.2020.3042070

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

D. Derler and D. Slamanig, ‘“Rethinking privacy for
extended sanitizable signatures and a black-box con-
struction of strongly private schemes,” in International
Conference on Provable Security. Springer, 2015, pp.
455-474.

C. Badertscher, C. Matt, and U. Maurer, “Strengthening
access control encryption,” in Advances in Cryptology—
ASIACRYPT 2017: 23rd International Conference on the
Theory and Applications of Cryptology and Information
Security, Hong Kong, China, December 3-7, 2017, Pro-
ceedings, Part I 23. Springer, 2017, pp. 502-532.

I. Damgard, H. Haagh, and C. Orlandi, “Access control
encryption: Enforcing information flow with cryptog-
raphy,” in Theory of Cryptography: 14th International
Conference, TCC 2016-B, Beijing, China, October 31-
November 3, 2016, Proceedings, Part Il 14. Springer,
2016, pp. 547-576.

I. Afia and R. AlTawy, “Unlinkable policy-based saniti-
zable signatures,” in Cryptographers’ Track at the RSA
Conference. Springer, 2023, pp. 191-221.

S. Krenn, K. Samelin, and D. Sommer, “Stronger security
for sanitizable signatures,” in International Workshop on
Data Privacy Management. Springer, 2015, pp. 100-
117.

S. Krenn, H. C. Pohls, K. Samelin, and D. Slamanig,
“Protean signature schemes,” in International Conference
on Cryptology and Network Security. Springer, 2018,
pp. 256-276.

——, “Fully invisible protean signatures schemes;? show
[aq id= q1]?;,” IET Information Security, vol. 14, no. 3,
pp. 266-285, 2020.

G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille, “Sim-
ple schnorr multi-signatures with applications to bitcoin,”
Designs, Codes and Cryptography, vol. 87, no. 9, pp.
2139-2164, 2019.

C.-P. Schnorr, “Efficient signature generation by smart
cards,” Journal of cryptology, vol. 4, pp. 161-174, 1991.
P. Wauille, J. Nick, and T. Ruffing, “Schnorr signatures
for secp256k1,” Bitcoin Improvement Proposal, 2018.
M. Bellare and G. Neven, “Multi-signatures in the plain
public-key model and a general forking lemma,” in
Proceedings of the 13th ACM conference on Computer
and communications security, 2006, pp. 390-399.

S. Micali, K. Ohta, and L. Reyzin, “Accountable-
subgroup multisignatures,” in Proceedings of the Sth
ACM Conference on Computer and Communications
Security, 2001, pp. 245-254.

A. Boldyreva, “Threshold signatures, multisignatures and
blind signatures based on the gap-diffie-hellman-group
signature scheme,” in International Workshop on Public
Key Cryptography. Springer, 2002, pp. 31-46.

S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and
B. Waters, “Sequential aggregate signatures and mul-
tisignatures without random oracles,” in Advances in
Cryptology-EUROCRYPT 2006: 24th Annual Interna-
tional Conference on the Theory and Applications of
Cryptographic Techniques, St. Petersburg, Russia, May
28-June 1, 2006. Proceedings 25. Springer, 2006, pp.

[32]

[33]

[41]

[44]

465-485.

D. Boneh, M. Drijvers, and G. Neven, “Compact multi-
signatures for smaller blockchains,” in International Con-
ference on the Theory and Application of Cryptology and
Information Security. Springer, 2018, pp. 435-464.

J. Nick, T. Ruffing, Y. Seurin, and P. Wuille, “Musig-
dn: Schnorr multi-signatures with verifiably determinis-
tic nonces,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security,
2020, pp. 1717-1731.

H. K. Alper and J. Burdges, “Two-round trip schnorr
multi-signatures via delinearized witnesses,” Cryptology
ePrint Archive, Paper 2020/1245, 2020, https://eprint.
iacr.org/2020/1245. [Online]. Available: https://eprint.
iacr.org/2020/1245

A. Bagherzandi, J. H. Cheon, and S. Jarecki, “Multisig-
natures secure under the discrete logarithm assumption
and a generalized forking lemma,” in ACM conference
on Computer and communications security, 2008.

E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic,
L. Gasser, N. Gailly, I. Khoffi, and B. Ford, “Keeping
authorities” honest or bust” with decentralized witness
cosigning,” in 2016 IEEE Symposium on Security and
Privacy (SP). leee, 2016, pp. 526-545.

M. Dirijvers, K. Edalatnejad, B. Ford, E. Kiltz, J. Loss,
G. Neven, and I. Stepanovs, “On the security of two-
round multi-signatures,” in 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 2019, pp. 1084-1101.
A. Bagherzandi, J.-H. Cheon, and S. Jarecki, “Multisig-
natures secure under the discrete logarithm assumption
and a generalized forking lemma,” in Proceedings of the
15th ACM conference on Computer and communications
security, 2008, pp. 449-458.

J. Nick, T. Ruffing, and Y. Seurin, “Musig2: simple two-
round schnorr multi-signatures,” in Annual International
Cryptology Conference. Springer, 2021, pp. 189-221.

X. Chen, F. Zhang, H. Tian, B. Wei, and K. Kim,
“Discrete logarithm based chameleon hashing and sig-
natures without key exposure,” Computers & Electrical
Engineering, vol. 37, no. 4, pp. 614-623, 2011.

H. Kiling Alper and J. Burdges, “Two-round trip schnorr
multi-signatures via delinearized witnesses,” in Advances
in Cryptology—CRYPTO 2021: 41st Annual International
Cryptology Conference, CRYPTO 2021, Virtual Event,
August 16-20, 2021, Proceedings, Part I 41. Springer,
2021, pp. 157-188.

H. Krawczyk and T. Rabin, “Chameleon hashing and
signatures,” Cryptology ePrint Archive, 1998.

G. Ateniese and B. de Medeiros, “On the key ex-
posure problem in chameleon hashes,” in Security in
Communication Networks: 4th International Conference,
SCN 2004, Amalfi, Italy, September 8-10, 2004, Revised
Selected Papers 4. Springer, 2005, pp. 165-179.

M. Bellare and T. Ristov, “A characterization of
chameleon hash functions and new, efficient designs,”
Journal of cryptology, vol. 27, no. 4, pp. 799-823, 2014.

https://eprint.iacr.org/2020/1245
https://eprint.iacr.org/2020/1245
https://eprint.iacr.org/2020/1245
https://eprint.iacr.org/2020/1245

	Introduction
	Contribution
	Organization

	related work
	Sanitizable Signature
	Multi-Signature

	Preliminaries
	Multi-Signature
	Chameleon Hash Function

	system model and scheme overview
	System Model
	Scheme Overview

	Sanitizable Multi-Signature
	Definition
	Security Model
	General Construction
	Security Proof
	Instantiation

	Applying Sanitizable and Accountable Endorsement to Fabric
	The Current Transaction Flow in Fabric
	Sanitizable and Accountable Endorsement for Fabric

	Performance Evaluation and Implementation
	Performance Evaluation
	Implementation

	conclusion

