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Abstract. In this article we present a non-uniform reduction from rank-
2 module-LIP over Complex Multiplication fields, to a variant of the
Principal Ideal Problem, in some fitting quaternion algebra. This reduction
is classical deterministic polynomial-time in the size of the inputs. The
quaternion algebra in which we need to solve the variant of the principal
ideal problem depends on the parameters of the module-LIP problem,
but not on the problem’s instance. Our reduction requires the knowledge
of some special elements of this quaternion algebras, which is why it is
non-uniform.
In some particular cases, these elements can be computed in polynomial
time, making the reduction uniform. This is the case for the Hawk
signature scheme: we show that breaking Hawk is no harder than solving
a variant of the principal ideal problem in a fixed quaternion algebra
(and this reduction is uniform).

1 Introduction

Two lattices L,L′ are isomorphic when there exists a linear isometry between
them, and the Lattice Isomorphism Problem (LIP) asks to compute such an
isometry. It has been studied in [16,23,34] as a standalone algorithmic problem,
and these works achieved an algorithm with nO(n) time complexity for lattices of
rank n. Stemming from this apparent hardness, LIP has recently been introduced
as a security assumption to found cryptographic primitives in [1,3,15], joining
other isomorphism-finding-based assumptions already in use in multivariate or
code-based cryptography. Soon after, the signature scheme Hawk was presented [14],
relying on a structured variant of LIP called module-LIP. In this variant, L and
L′ are now modules lattices (a transition identical to that of LWE to module-
LWE in more standard lattice-based cryptography) and an isometry compatible
with the module structure must be found. This design leads to an eponymous
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submission4 to the second call for post-quantum digital signatures organized
by the NIST. The resulting scheme demonstrates efficiency and signature sizes
comparable to Falcon and Dilithium, the two lattice-based signatures selected by
NIST during the first call [33]. Owing to its recent cryptographic introduction,
the cryptanalysis of module-LIP and thus of Hawk is however quite young,
making it an attractive target for cryptanalysts.

In the simplest version of module-LIP [14], an attacker is given a (module-
compatible) rotation of O2

K , where OK is the ring of algebraic integers of a
number field K, and is asked to recover the corresponding isometry. As there
may be many more symmetries linked to the algebraic structure of K, it can
be hoped that finding isometries of module lattices can be an easier task than
for the plain case. At Eurocrypt 2024, Mureau et al. [31] focused on the case of
totally real5 number fields and proposed a (heuristic) algorithm to solve module-
LIP over such fields. In the special case of the module O2

K and for some totally
real number fields, this algorithm runs in polynomial time. On the one hand,
this confirmed the intuition that module-LIP could be significantly easier than
LIP (in our current state of knowledge). But, on the other hand, the current
representative of module-LIP-based schemes, Hawk, is not designed over totally
real fields. Instead, it is designed over the pervasive power-of-two cyclotomic
fields, which are by nature totally imaginary. One notes that a cyclotomic field
K = Q(ζ) always comes with a totally real maximal subfield F = Q(ζ + ζ−1),
but the authors of [31] could not use this to their advantage to extend their
algorithm to Hawk’s design. This work aims at narrowing this gap.

Contributions. Our main contribution is a reduction from the rank-2 version of
module-LIP over complex multiplication number fields (a.k.a. CM fields),6 to the
reduced-norm Principal Ideal Problem (nrdPIP). This second problem consists in
computing a particular generator of a principal ideal in a suitable (not necessarily
commutative) extension of K, given the so-called reduced norm (relative to the
extension) of the generator we are looking for. Depending on the application
context, our reduction has different precomputation and computation cost. A
notable particular case, that includes Hawk’s instances, is the following:

Theorem 1.1 (Informal, special case of Corollary 3.16). Let K be a
cyclotomic field of degree d and let G = V ∗V ∈ M2(OK) with V ∈ GL2(OK)
a basis of O2

K . Given access to an oracle solving nrdPIP, computing a matrix
U ∈ GL2(OK) such that U∗U = G can be done in time polynomial in d and in
the size of G, by making only one call to the nrdPIP oracle.

The general reduction involves quaternion algebras and ideals. While being
somewhat common objects in isogeny-based cryptography, such structures have
4 https://hawk-sign.info/
5 Any number field comes with a set of embeddings into either R or C. The field is

said totally real (resp. totally imaginary) when all these embeddings map to R (resp.
none of these embeddings maps to R).

6 A CM field K is a totally imaginary field which is a degree 2 extension of some
totally real subfield F .
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less exposure or involvement in lattice-based cryptography (they can be seen
as a particular case of cyclic algebras, studied in a lattice context in e.g. [28]).
In essence, we extend the reduction of Mureau et al. [31] to cover the case of
CM-fields, which includes cyclotomic fields. Our reduction technique subsumes
theirs, improving on their polynomial time algorithm to solve the problem over
totally real fields, and additionally removing the need for a heuristic assumption
and the dependency in ρK in their complexity.7

We stress that, when the field where LIP needs to be solved is a cyclotomic
field, there are no known polynomial time algorithm to solve the quaternionic
version of the principal ideal problem with given reduced norm. In other words,
this work does not break Hawk. Our reduction rather shows that any improvement
for solving the nrdPIP problem (or SVP in ideals of quaternion algebras) would
directly impact the hardness of rank-two module-LIP and the security of Hawk.

To the best of our knowledge, the best algorithm solving the nrdPIP instances
generated by our reduction is due to Kirschmer and Voight [27, Alg. 6.3]. Instantiating
the nrdPIP oracle with this algorithm proves in particular that a single call to
an SVP solver in dimension 2d is sufficient to break Hawk (a fact that seemed
folklore so far, but was never proven anywhere to the best of our knowledge).
In the original Hawk article [14], the authors explain in Section 4.2 that the
best algorithms solving (module-)LIP require at least one SVP call, so to be
conservative they “assume that the best key recovery attack requires one to find
a single shortest vector”. Our result shows that this assumption is tight: one SVP
call is indeed enough for a key recovery attack.

While our reduction provides an easy way to prove this fact about Hawk, it
is probably overkill: the underlying module is free, has rank two and has many
orthogonal shortest vectors. There are probably more straightforward ways to
show that a single SVP call in a large lattice is enough. For general rank-2
modules over a CM-field K, there does not seem to be a Karp reduction anymore
(i.e., a reduction making only one call to an SVP oracle): instead we are only able
to reduce the module-LIP problem in any rank-2 module of K2 to two instances
of the nrdPIP problem (which can then be reduced to two instances of SVP in
ideal lattices of a non-commutative ring of dimension 2d).

Finally we mention here that the ideas of this work can be adapted to the
totally real regime too, by replacing the quaternionic extension of F with a CM-
extension K = F (i). Doing so would improve the result of Mureau et al. [31], by
removing the heuristic argument of their work, removing the dependency in ρK
in the complexity, and providing a polynomial time algorithm for all modules of
rank 2 included in K2, whereas the reduction of [31] was polynomial time only
for some rank-2 modules in some totally real number fields K. We delay the
technical details of this adaptation to a longer journal version combining both
results.

Technical overview. Let us recall the main idea of Mureau et al., as it provides
enough background to understand our ideas. Computing isomorphisms of lattices
7 ρK is the so-called residue at 1 of the Dedekind zeta function of the field.
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is equivalently formulated as finding integral equivalence of quadratic forms: one
is given G = BTB with a public lattice basis B and G′ := CTC = UTGU with
a secret basis C = BU and a secret unimodular matrix U ∈ GLn(OK). The
goal is to recover U (equivalently, C). Let us consider the simpler case where
B = Q = I2, the identity matrix, which is Hawk’s setting and conveys enough
intuition for this overview. In this case, the first observation of [31] was that,
when the underlying field K is totally real, the diagonal entries of G′ are of the
form q = x2 + y2, where (x, y) ∈ O2

F are the columns of C. In other words, they
are sums of two squares. Following Dedekind’s work on the famous theorem of
Fermat, it is equivalently written as q = (x+ iy)(x− iy) =: nrd(x+ iy), seeing
now x+ iy as an element in the extension K(i) for i2 = −1.8 Over integers, the
situation is well-understood thanks to the set of Gaussian integers Z[i]. Over
algebraic integers, one can restate the problem as finding the correct generator
x + iy of a principal ideal in K(i), given a description of this ideal and its
relative norm q in F . Finding the candidate principal ideal requires factoring
a large number, as seen also in Howgrave-Graham-Szydlo’s algorithm [24]. To
maintain a polynomial time reduction, Mureau et al. randomize the instances to
get a power of a prime instead — this is where they need a heuristic assumption
about the success rate of this procedure, and where the quantity ρK in the
complexity comes from. Using an algorithm by Lenstra and Silverberg [25], one
can then recover the needed generator (from the knowledge of the ideal and the
relative norm q) in polynomial time.

Now let us assume that the field K where LIP needs to be solved is a power-
of-two cyclotomic field, with maximal totally real field F . In this case we have
G′ = C∗C, where C∗ is the transpose-conjugate of C. The diagonal entries of
G′ are of the form q = xx̄+ yȳ ∈ F , where ·̄ stands for the complex conjugation,
and (x, y)T ∈ O2

K is a column of C. Going down to F , actually these entries are
now sums of four squares in 1

2OF as q = a2 + b2 + c2 + d2 if x = a + ib and
y = c+ id.9 We are led to a generalization of Lagrange’s famous theorem, which
admits a proof using quaternion arithmetic. This proof can be turned into an
algorithm, illustrated by the work of Rabin and Shallit [35] to find such four-
squares decompositions, but just as above, we need here an extension to algebraic
numbers. Let us set A := F ⟨i, j⟩ with i2 = j2 = −1 and such that ij = −ji, so
that we have an extension of F -algebras A/K/F . The non-commutative algebra
A is known as a quaternion algebra over F , and comes with a reduced norm
nrd(a + ib + jc + ijd) := a2 + b2 + c2 + d2. The technical part here is then to
elucidate the quaternionic version of the reduction of Mureau et al., as subtleties
arise from the non-commutative setting. In the end, there are currently no known
polynomial-time algorithms to solve nrdPIP over quaternion algebras, so we rely
on a oracle to complete the reduction in this setting.

8 Here, we use the notation nrd to refer to the relative norm of the extension K(i)/K,
this is by analogy with the quaternion algebra case that will be discussed below.

9 Note that even if x and y are in OK , then a,b,c and d are only guaranteed to be in
1
2
OF (the inclusion can be seen by observing that 2a = x+ x̄ ∈ OK ∩ F = OF ).
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We observe additionally that the work of [31] did not use all the information
given by the public form G′. As our reductions are similar whether the “highest”
considered extension of F is A or K, let us write temporarily E for either of these
for the sake of simplicity. From our description above, one realises that they have
not used the anti-diagonal entries, although these entries also gives constraints on
the set of solutions to compute. Our formulation naturally involves these terms
as well, and we show that from all the public data10 one can obtain a fraction
αβ−1 of E, whose numerator and denominator encode the secret columns of C.
With some ideal arithmetic, we are then able to build a principal ideal αO, for a
maximal order11 O in E. The nrdPIP oracle gives us a candidate for α (up to an
element of O1 := {x ∈ O | nrd(x) = 1}). We then show that this element α allows
to efficiently build all possible solutions to the lattice isomorphim problem. When
K is totally real (i.e., when we are in the context of [31]), Lenstra-Silverberg’s
algorithm computes α in polynomial time from αO and nrd(α) = q. By using
quaternion algebras of more general forms than the one underlying Lagrange’s
theorem, we can also extend our reduction to all CM extensions K/F .

The general case of the module-LIP problem covers rank 2 modules over a
field K, which are known to not all be of the form O2

K . Such objects admit
so-called pseudo-bases, involving fractional ideals in K. As ideals in K do not
commute anymore when extended to an ambient quaternion algebra, tailoring
the reduction to this broader context adds a thin layer of technicalities. Interestingly,
we also do not need to rely on a heuristic assumption anymore: this makes our
new reduction rigorously proven, and removes the need for heuristics in [31].
Compared to [31], an additional benefit is also to reduce the amounts of nrdPIP
instances to be solved to a maximum of two, and even only one when the target
module is O2

K . Since this is by far the most computationally expensive task of
their work, this should significantly improve the practical run-time.

Computationally, ideals in quaternionic algebras over F or in a quadratic
extension K can also be seen as OF -modules of rank 2 or 4, which is enough
for our purpose. In particular, there are known polynomial-time algorithms to
handle their arithmetic and representations [10, Chap. 2]. As explained we need
at some point the group O1 of elements of reduced norm 1 in a maximal order
O of the considered extension of F . In the number field case, there is a unique
maximal order, and this amounts to finding the roots of unity in the field — a
computationally easy task. For quaternion algebras, the situation is more dire:
there are several maximal orders, which are not trivially related to one another.
In other words, knowing O1 does not mean we know another Õ1. At last, the
order O involved in our work can be computed from the parameters of the
module-LIP problem in polynomial time. Thus for E = A, we assume that those

10 More precisely, the determinant of C must also be known. We give a polynomial-time
algorithm to compute it from detG′ and detB, up to a root of unity in K. In the
case of the O2

K module, we refine our analysis to show that knowing det(C) up to a
root of unity in K is sufficient.

11 An order O in a K-algebra A is a finitely generated OK-submodule of A which is
also a subring and such that KO = A.
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O and O1 have been precomputed, or given as additional input. We also note
that in our context, groups such as O1 are always finite, and belongs (up to
isomorphism) to a small, explicit list of groups of small cardinalities (at most
polynomial in the degree of F ) [40, Chap. 32].

Related works. The Principal Ideal Problem over a number field (say, F -PIP)
has been coined as a central problem in algorithmic number theory (e.g. [9]).

In an arbitrary number field, the state-of-the-art classical algorithms are
heuristic and run in subexponential time [6,4] or quantum polynomial time [5].
We note that all these algorithms reduce to the problem of computing the unit
group and the class group of the underlying field. In lattice-based cryptography,
F -PIP appeared in important results [11,12] on the hardness of the Ideal-SVP
problem. In this article we encounter a variant of this problem over (totally
definite) quaternion algebras, sayA-PIP. In this context, an algorithm to compute
a generator of a principal ideal I ⊂ A is provided in [27, Alg. 6.3]. The strategy
reduces to the computation of the class group of F and to a short vector
computation in a rank-2d Z-lattice, where d is the degree of K.

While computing the class group may be done in quantum polynomial time,
computing short vectors in lattices is believed to be hard even for quantum
computers. For more general algebras, Bley et al. [8] give an algorithm solving
PIP by reducing it to many subproblems, including PIP in K. We note that
their work also provides algorithms to compute isomorphisms between finitely
generated modules over number fields, but that these are not isometries between
modules lattices. In other words, they are not lattice isomorphisms in the sense
we are interested in.

With the additional information of the reduced norm of a generator of a
principal ideal (say, F -nrdPIP), the situation can change drastically and (classical)
polynomial time complexity can be achieved for CM extensions. For cyclotomic
fields, this observation goes back to Gentry and Szydlo’s algorithm [21] to attack
NTRU encryption. Variants of this algorithm [24,20,17,19] were subsequently
used to attack lattice-based signatures in several context, and a more general
version was described by Lenstra and Silverberg [25], covering in particular all
CM fields. On the other hand, for the quaternion variant A-nrdPIP, there are
(to our knowledge) no known polynomial time algorithms, and thus the problem
is solved by using a A-PIP solver instead.

In a concurrent work [18], Espitau and Pliatsok proved a reduction from
module-LIP over CM fields for certain rank-2 modules12to the shortest vector
problem in rank-2 modules with additional symmetries. These rank-2 modules
with symmetries are closely related to the ideal in A that our reduction produces.

Their reduction stems from a purely geometric point of view, providing an
arguably simpler intuition on the modules at stake and their symmetries. It is
however restricted to a subset of free rank-2 modules and does not allow to
compute the whole congruence class of the given instance. Luo, Jiang, Pan and
12 Their reduction requires the rank-2 modules to be free and something they call

primitive (see [18] for a definition).
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Wang published another concurrent work [29], reducing module-LIP over a CM
field to the problem of finding a specific (symplectic) automorphism. With the
knowledge of this automorphism, finding the correct congruence matrix reduces
to a O-nrdPIP instance in a commutative ring O, where the polynomial time
algorithm of Lenstra and Silverberg [25] applies. This “reduction to rank one”
has a flavour similar to our results, and one can interpret the knowledge of
the symplectic automorphism as a way to bypass the non-commutativity of
quaternion.

Organisation of the paper. In Section 2, we present the necessary algebraic
structures for this work. We recall the worst-case search module Lattice Isomorphism
Problem (wc-smodLIP) in rank 2, and define the reduced norm Principal Ideal
Problem (nrdPIP). We discuss the representation and concrete handling of every
object we manipulate in our reduction. In Section 3, we prove our main reduction
from rank-2 module-LIP in CM fields to nrdPIP in a well-chosen maximal order
of a quaternion algebra. We then proove a Karp reduction of the same kind,
in the particular case where our module is O2

K , with K a cyclotomic field. The
proofs of some technical results from preliminaries are delayed to the appendices.
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2 Preliminaries

For a ring R, we denote R× its set of invertible elements (that is, whose inverse
are in R). The set of n × n matrices with entries in R is denoted Mn(R) and
the subset of invertible matrices forms the group GLn(R). We use bold letters
to denote vectors.

2.1 Number Fields

Generalities A number field K is a finite extension of the field of rational
numbers Q. It is isomorphic to Q[X]/P (X), where P (X) is an irreducible monic
polynomial of Q[X]. The degree d := [K : Q] of K over Q is exactly the degree
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of P (X). A number field K of degree d has d embeddings K → C, sending the
class of X to a complex root of P . Any embedding σi : K → R is called a real
embedding. An embedding σi which is not real is called complex, and it can
be composed with the complex conjugation in C to obtain a different complex
embedding σi. The canonical embedding of K is defined as

σ(e) := (σ1(e), . . . , σd(e)) ∈ Cd, ∀e ∈ K

where the σi are all the embeddings of K. We extend it coordinate-wise to Kℓ.
When all the embedding of K → C are actually real embeddings, we say that

K is totally real. When none of them are, we say that K is totally complex. An
element a ∈ K is totally positive, resp. totally negative, if all its embeddings
are positive, resp. negative real numbers (in particular, all its embeddings are
real numbers). The (absolute) trace and norm of e ∈ K is Tr(e) =

∑
i σi(e) and

N(e) =
∏

i σi(e) ∈ Q.
We note OK the ring of integers of a number field K. It is defined as the

ring containing all elements e ∈ K such that there exists a monic polynomial
Q(X) ∈ Z[X] such that Q(e) = 0. It is a free Z-module of rank d. The (absolute)
discriminant of K is ∆K = |det([Tr(βiβj)]i,j)|, for any Z-basis (βi)i of OK . We
also note µ(K) the set of roots of unity in K, which is of size ⩽ 2d2 (see, e.g., [31,
Corollary 2.11]).

The space KR is defined as KR = K ⊗Q R.13 Then the canonical embedding
of K extends to KR and its image is isomorphic to the real subspace H =
{(x1, . . . , xd) : xd1+i = xd1+d2+i for 1 ≤ i ≤ d2} ⊂ Rd1 ×C2d2 ⊂ Cd where d1 is
the number of real embeddings of K and 2d2 the number of complex embeddings.
Through this identification KR is equipped with a complex conjugation · which
amounts to taking the complex conjugate coordinate-wise.

CM fields. A Complex Multiplication (CM) number field K is a totally complex
quadratic extension of a totally real number field F (we also say K/F is a CM-
extension). Equivalently, here F is a totally real number field and there exists
a totally negative element a ∈ F such that K = F (

√
a) [41, Page 38]. From

now on, K/F will denote a CM extension. A fundamental example of CM fields
for cryptographic applications are cyclotomic fields. Let m ∈ N>2 and ζm be a
primitive m-th root of unity. Then, Km = Q(ζm) is a totally complex number
field of degree d = φ(m) containing the totally real field Fm = Q(ζm + ζ−1

m )
and K/F is quadratic.14 In full generality we have Km = Fm(

√
am) where

am = (ζm − ζ−1
m )2 = ζ2m + ζ−2

m − 2 ∈ Fm. In the case where m is divisible by
4, the element i = ζ

m/4
m is a square root of −1, thus i ∈ Km \ Fm and we can

write Km = Fm(
√
−1). In a CM-extension K/F , there is a unique non-trivial

automorphism of K fixing F pointwise, which is called the complex conjugation.
With the notation K = F (

√
a), it acts on K by τ :

√
a 7→ −

√
a. In particular,

the relative norm for the extension K/F is defined by NK/F (x+ y
√
a) := (x+

13 If K ≃ Q[X]/(P ), then one has KR ≃ R[X]/(P ).
14 Since ζm /∈ Fm we have [Km : Fm] > 1 and one can check that ζm is a root of

Ψm(X) = X2 − (ζm + ζ−1
m )X + 1 ∈ Fm[X], so [Km : Fm] ≤ 2.
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y
√
a) · τ(x + y

√
a) = (x + y

√
a)(x − y

√
a) = x2 − ay2, for all x + y

√
a ∈ K.

The following lemma justifies why the automorphism τ is also called complex
conjugation.

Lemma 2.1 ([31, Lemma 2.7]). Let K/F be a CM extension of number fields.
For any embedding σi : K → C and x ∈ K, we have σi(x) = σi(τ(x)).

To simplify notations n the rest of this article, we write x̄ instead of τ(x).

Kronecker’s theorem and an application. Equations of the form aa + bb = 1
(for a, b in the ring of integers of a CM number field K) will naturally appear
further in the paper (see Proposition 3.13 and Corollary A.23). The main tool
for studying these equations is a celebrated result, attributed to Kronecker.

Proposition 2.2 ([13, Theorem K]). Let K be a CM field and a ∈ OK . If a
is non zero and if all its conjugates have absolute value at most 1, then a is a
root of unity.

Corollary 2.3. Let K be a CM field and a, b ∈ OK be such that aa + bb = 1.
Then either a is a root of unity and b = 0 or a = 0 and b is a root of unity.

Proof. By Lemma 2.1), for all embeddings σi of K, σi(aa) = |σi(a)|2 and
σi(bb) = |σi(b)|2 are both positive. Moreover, we have σi(aa)+σi(bb) = σi(1) = 1.
Suppose that a ̸= 0, so 0 < σi(aa) ≤ 1 for all i’s. Then Proposition 2.2 implies
that aa must be a root of unity in K. But aa is totally positive so aa = 1 and
b = 0, which also implies that |σi(a)| = 1. Applying again Proposition 2.2 to a,
we conclude that a is a root of unity.

The computation of the roots of unity in a number field is handled by the
following lemma.

Lemma 2.4 (Computing roots of unity [31, Cor. 2.11]). Let K be a degree
d number field. Then, K has at most 2d2 roots of unity and there is a polynomial
time algorithm that given a basis of OK , computes the roots of unity in K.

Note that, according to [32, 7.4], this group is cyclic.

Ideals. An integral ideal a of K is an additive subgroup of OK , such that for
all x ∈ K,xa ⊆ a. A fractional ideal a of K is an additive subgroup of K such
that for some x ∈ K \ {0}, xa is an integral ideal. If a is generated by a single
element x, it is said to be principal, and is noted a = xOK . Generally, fractional
OK-ideals can all be generated using at most two elements, see [9, Proposition
4.7.7] We will use fraktur-letters to denote fractional ideals of K or F .

Let a, b be two fractional ideals. The product ab is the smallest ideal containing
all products xy for x ∈ a and y ∈ b. We have that a ⊆ b if and only if there
exists an integral ideal c such that a = bc. When this is the case, we say that b
(equivalently c) divides a. An integral ideal p is prime whenever xy ∈ p implies
x ∈ p or y ∈ p. Prime ideals are the maximal ideals in OK . When dealing with
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number fields, we have unique factorization of integral ideals into prime ideals
(up to permutation of the factors). Typically, given a prime integer p ∈ Z, the
ideal p · OK is a product

∏
i p

ei
i of at most [K : Q] prime ideals ([32, Chapter

I, Proposition 8.3]). Moreover this factorization can be computed in polynomial
time.

Lemma 2.5 ([10, Section 6.2.5]). There exists a polynomial time algorithm
that takes as input any prime integer p ∈ Z and a basis of the ring of integers OK

of a number field K, and computes all the prime ideals of OK dividing p · OK .

When K/F is a CM extension and a is a fractional ideal of K, the set
a := {x |x ∈ a} is again a fractional ideal of K, called the conjugate of a.

Modules. The main reference for this paragraph is the first chapter from [10].
Let V be a finite-dimensional vector space over a number field K. We call
module15 any set of the form a1b1 + · · · + aℓbℓ, where the ai’s are fractional
ideals in K and the bi’s are K-linearly independent vectors in V . The data of
((b1, a1), . . . , (bℓ, aℓ)) is called a pseudo-basis of M and the integer ℓ is called the
rank of the module. We write B = (B, {ai}i≤ℓ) where B is the (column) matrix
of the bi’s, and we call it a pseudo-basis of the module. We use bold capital
letters to denote pseudo-bases. In this article we always consider modules with
full rank, and let dimK(V ) = ℓ. A module M ⊂ Kℓ (resp. Oℓ

K) is said to be
rational (resp. integer).

Two pseudo-bases B = (B, {ai}1≤i≤ℓ) and C = (C, {bi}1≤i≤ℓ) generate the
same module if and only if there exists U = (ui,j)1≤i,j≤ℓ ∈ GLℓ(K) such that
C = BU and ui,j ∈ aib

−1
j for all 1 ≤ i, j ≤ ℓ and a1 · · · aℓ = (detU)b1 · · · bℓ ([10,

Proposition 1.4.2]).
When K is a CM-field, the pseudo-Gram matrix associated to a pseudo-basis

B = (B, {ai}i≤ℓ) is G = (B∗B, {ai}i≤ℓ), where B∗ := B
t

is the conjugate-
transpose matrix (where the complex conjugation of K is taken on each matrix
coefficient).16

Let M,M ′ ⊂ Kℓ be modules and let Θ ∈ Uℓ(KR), i.e., Θ ∈ Mℓ(KR) with
U∗U = Id. When M ′ = Θ ·M , we say that Θ is a module lattice isomorphism
between M and M ′. Furthermore when M ′ = M , we say Θ is a module lattice
automorphism.

2.2 Quaternion algebras

We now give the background on quaternion algebras that is needed in this work.
A general reference for this topic is [40], from which we borrow most of the
material. For a field F , a F -algebra is a F -linear space which is also a ring (its
15 In full generality, these should be called finitely generated, torsion-free OK-modules

in V . Since we will only consider these kind of modules, we drop the “finitely
generated, torsion free” part, to make it easier to read.

16 The pseudo-Gram matrix can be more generally defined for any number field [31,
Definition 3.6], but in this work we will only be interested in CM-field.
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elements can be multiplied together into another ring element). In this work, we
are interested in one type of quaternion algebra, defined below. Recall that F is
a totally real field, a is a totally negative element in F , so that K = F (

√
a) is a

CM-extension.

Definition 2.6. The quaternion algebra A := (a,−1
F ) is the F -algebra of dimension

4 with basis {1, i, j, ij} and satisfying the rules

i2 = a ; j2 = −1 ; ij = −ji.

Because of the rule ij = −ji, A is a non commutative algebra. Its center
(the set of elements that commute with every other) is equal to F . A quaternion
algebra is also equipped with an involution · defined by x+ iy + jz + ijt =
x − iy − jz − ijt. This map is F -linear and satisfies α = α and αβ = β · α
for any α, β ∈ A (see [40, Section 3.2]). The reduced norm on A is the map
nrd : A → F defined by α = x+ iy + jz + ijt 7→ αα = x2 − ay2 + z2 − at2. We
have nrd(αβ) = nrd(α)nrd(β) for all α, β ∈ A [40, Par. 3.3.4]. Since a is totally
negative, K = F (

√
a) is a CM extension of F included in A, and when x ∈ K,

we have nrd(x) = NK/F (x).

Example 2.7. Consider the quaternion algebra (−1,−1
Q ). The standard involution

acts as x+ iy + jz + ijt = x − iy − jz − ijt and the reduced norm is given by
nrd(x+ iy + jz + ijt) = x2 + y2 + z2 + t2.

Because of our choice for a, the quaternion algebras (a,−1
F ) are said to be

totally definite. In this article, we will not need to know precisely what a totally
definite algebra is, but we will use results that hold only for totally definite
algebras. We provide the following lemma which confirms that the algebras we
are interested in are totally definite.

Proposition 2.8 ([22, Page 3], adapted). If F is a totally real number field
and a ∈ F is totally negative, then the quaternion algebra (a,−1

F ) is totally
definite.

A notable property of algebras of the form A = (a,−1
F ) with F totally real and

a totally negative is that they are division algebras — that is, all their elements
are invertible, or equivalently, they are non-commutative fields. To see this, note
that by definition, all the embeddings of −a are positive numbers. Hence, for any
α = x+ iy+jz+ ijt ∈ A\{0}, all the embeddings of nrd(α) = x2−ay2+z2−at2

also positive (they are a sum of four non-negative real numbers and at least one
of them has to be non-zero since α ̸= 0), which implies that nrd(α) is a non-zero
element of F . We know that an element α ∈ A is invertible if and only if its
reduced norm is non-zero (see [40, Lemma 3.3.6]), in which case its inverse is
α−1 = nrd(α)−1α. Hence, we conclude that for our algebras, A× = A\{0}.

Quaternion orders and ideals. Let us fix a quaternion algebra A = (a,−1
F ) over

a totally real field F . We begin by the definition of OF -lattices in A.
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Definition 2.9 ([40, Definition 9.3.1]). An OF -lattice in A is a finitely
generated OF -module contained in A and with full-rank in A (i.e., it is a rank-4
OF -module included in A).

We can now define the notion of orders in A.

Definition 2.10 ([40, Definition 10.2.1]). An OF -order O ⊆ A is an OF -
lattice in A that is also a subring of A (in particular, 1 ∈ O). An OF -order of
A is said to be maximal if it is not strictly contained in another OF -order.

One can define analogously orders of A for different subrings of A (e.g. Z).
In this article, we will only be interested in OF -orders, so we simply call them
orders.

Lemma 2.11 ([40, Prop. 15.5.2], adapted). In the quaternion algebra A,
there exists (at least) one maximal order, and every order O is contained in a
maximal order Õ.

Example 2.12. Over F = Q, the Z-module Z+ iZ+ jZ+ ijZ is an order but is
not maximal. However, it is contained in the maximal order Z+ iZ+ jZ+ ωZ,
where ω = 1+i+j+ij

2 .

Contrary to the case of number fields where the ring of integers is the unique
maximal order, there can be many maximal orders in a quaternion algebra.

Proposition 2.13 ([40, Lemma 10.2.7 and Definition 10.2.8]). Let I ⊆ A
be an OF -lattice. The set Oℓ(I) := {x ∈ A |xI ⊆ I} is an order of A, called the
left order of I. Similarly, the set Or(I) := {x ∈ A | Ix ⊂ I} is an order of A
called the right order of I.

Given an order O, a left (resp. right) fractional O-ideal is an OF -lattice I ⊆ A
satisfying xI ⊆ I (resp. Ix ⊆ I) for all x ∈ O. Since a left fractional O-ideal is in
particular an OF -lattice in A, we can define its left order Oℓ(I). By definition,
this order contains O, but it can be larger. We say that I is a sated left fractional
O-ideal if O = Oℓ(I) (i.e., if O is the largest order for which I is a left ideal) [40,
Definition 16.2.11]. A similar definition holds for right O-ideals.

An important observation that follows from the definition above is that any
OF -lattice I ⊆ A is a left fractional O-ideal for some order O, namely its left
order Oℓ(I) (it is even a sated left fractional Oℓ(I)-ideal). In the rest of this
section, we will review some definitions and lemmas, that extend similar results
for ideals in number fields. These results will be stated for OF -lattices in A (but
keep in mind that these are left fractional O-ideals for some order O, depending
on the lattice).

Let I and J be two OF -lattices in A. The sum of I and J is defined by
I + J := {α + β |α ∈ I, β ∈ J} and their product IJ is the set of all finite
sums

∑
i αiβi, where αi ∈ I, βi ∈ J . It can be checked that I + J and IJ are

still OF -lattices in A (the sum of two finitely generated OF -modules is still a
finitely generated OF -module whose rank is at least the maximum of the ranks
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of the two modules; for the product see [40, p.260]). We say that I is integral if
I2 ⊂ I [40, Definition 16.2.7].

For an OF -lattice I of A, the reduced norm of I, denoted by nrd(I), is the
(fractional) ideal of F generated by the set {nrd(α) |α ∈ I} [40, Definition 16.3.1
and Proposition 16.3.2]. Let I := {α |α ∈ I}, then this forms another OF -lattice
which we will call the conjugate of I [40, 16.6.6].

We say that an OF -lattice is principal if there exists α ∈ A× such that
I = αOr(I) = Oℓ(I)α [40, Definition 16.2.1, 16.2.2]. For any OF -lattice I, if
there exists α ∈ A× such that I = αOr(I), then it also automatically holds that
I = Oℓ(I)α [40, 16.2.3]. Hence, to test if an OF -lattice is principal, it suffices to
test if it is left (or right) principal.

The quasi-inverse of an OF -lattice I ⊂ A is the set I−1 := {α ∈ A | IαI ⊆ I},
which is, again, an OF -lattice [40, Def. 16.5.5 and Le. 16.5.7]. Using the definition
of the left order of an OF -lattice, one can check that the above definition is
equivalent to I−1 = {α ∈ A | Iα ⊆ Oℓ(I)} (because for all x ∈ A, we have
x ∈ Oℓ(I) if and only if xI ⊆ I). By definition, we always have II−1 ⊆ Oℓ(I)
and I−1I ⊆ Or(I). We say that I is invertible when the previous inclusions
are in fact equalities [40, Prop. 16.5.8]. We say that a left fractional O-ideal I is
invertible if it is invertible as an OF -lattice and if it is sated as a left O-ideal (i.e.,
Oℓ(I) = O). The following lemma gives a sufficient condition for an OF -lattice
to be invertible and an expression of its inverse.

Lemma 2.14 ([40, Prop. 16.6.15 (b)]). Let I ⊆ A be an OF -lattice. Whenever
Oℓ(I) or Or(I) is maximal, then both are and I is invertible.

The inverse of an invertibleOF -lattice is characterized by the following result.

Proposition 2.15. Let I, I ′ be OF -lattices I such that Or(I) = Oℓ(I
′) and I is

invertible. Then, one has II ′ = Oℓ(I) if and only if I ′ = I−1.

Proof. Suppose that II ′ = Oℓ(I
′). Then multiplying on the left by I−1 gives

Or(I)I
′ = I−1Oℓ(I) but Oℓ(I

′) = Or(I) by assumption, so Or(I)I
′ = I ′. By

definition of the pseudo-inverse one has Or(I
−1) = Oℓ(I), so I−1Oℓ(I) = I−1.

Therefore one obtains I ′ = I−1 as expected. The converse is contained in the
definition of being an invertible OF -lattice.

We will use the following lemma on reverse inclusion of quasi-inverses.

Lemma 2.16. Let I, J ⊆ A be OF -lattices with the same left order, i.e., Oℓ(I) =
Oℓ(J). If J ⊆ I, then the inclusion of quasi-inverses I−1 ⊆ J−1 holds.

Proof. Using the second definition of the quasi-inverse, we have I−1 = {α ∈
A | Iα ⊆ Oℓ(I)}. Similarly J−1 = {α ∈ A | Jα ⊆ Oℓ(J)}. Using the fact that
J ⊆ I and that Oℓ(I) = Oℓ(J), we have that any element α ∈ I−1 verifies
Jα ⊆ Iα ⊆ Oℓ(I) = Oℓ(J), so α ∈ J−1.

By [40, Definition 16.2.7], a left-O ideal I is said to be integral if and only if
I2 ⊂ I. Then, by [40, Lemma 16.2.8], I is integral if and only if I ⊂ Oℓ(I), if and
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only if I ⊂ Or(I). This is a useful criteria to determine whether a quaternion
ideal is integral or not.

Recall that for a given order O, a sated fractional left O-ideal I is an OF -
lattice with Oℓ(I) = O. When O is a maximal order of A, such sated left O-
ideals enjoy many nice properties. A first property is that I is always invertible
by Lemma 2.14. Analogously as the situation for fractional ideals of the ring
of integers in a number field, invertible OF -lattices in A = (a,−1

F ) are locally
principal ([40, Thm. 16.6.1]). A precise definition of this notion is not needed for
the core of this work; rather, it is enough to know that such lattices have nice
properties with respect to the reduced norm, and that the quaternionic ideals
we will consider in this work are all sated. We say that I is compatible with J
if Or(I) = Oℓ(J) [40, Definition 16.2.5].

Lemma 2.17 ([40, Le. 16.3.7, 16.3.5 and 16.3.8]). Let I, J be two OF -
lattices in A, with I invertible.

1. If I is compatible with J , then nrd(IJ) = nrd(I)nrd(J).
2. We have I = Oℓ(I)α if and only if α ∈ I and nrd(α)OF = nrd(I).

In the same fashion, when dealing with compatible ideals, we can also state
the following lemmas:

Lemma 2.18 ([40, Le. 16.5.11], adapted). Let I, J be two OF -lattices in
A, with I invertible. If I is compatible with J , then Or(IJ) = Or(J).

The proof of this proposition goes exactly as the proof of [40, Le. 16.5.11]
for left orders.

Lemma 2.19. Let I, J be two OF -lattices in A, with I invertible and Oℓ(I) =
Oℓ(J) or Or(I) = Or(J). If I ⊂ J and nrd(I) = nrd(J), then I = J .

Proof. We do the proof when Oℓ(I) = Oℓ(J), the case where Or(I) = Or(J)
being analogous. Since I invertible and I ⊂ J , we have I−1I = Or(I) ⊂ I−1J .
By hypothesis the latter is a product of compatible ideals, hence by Lemma 2.17
1., nrd(I−1J) = nrd(I−1)nrd(J). Since OF = nrd(II−1) = nrd(I)nrd(I−1), we
have nrd(I−1) = nrd(I)−1 and nrd(I−1J) = nrd(I)−1nrd(J) = OF . Thus, the
element 1 ∈ Or(I) ⊂ I−1J generates nrd(1)OF = OF = nrd(I−1J), so by
Lemma 2.17 2., I−1J = Or(J) and we conclude I = J .

When O is maximal, a left-O-ideal is sated. This implies in particular that
if I and J are two sated left O-ideals, then their sum is still a sated left O-ideal.
Indeed, I + J is a left O-ideal, and since O is maximal then it has to be sated.
When O is maximal, we also have the following proposition, which gives us a
description of the quasi-inverse17 of a sum of sated left O-ideals.

Proposition 2.20. Let n be a positive integer, O be a maximal order in A and
J1, . . . , Jn be sated fractional left O-ideals in A. Then, the sum I = J1+ · · ·+Jn
has quasi-inverse

I−1 = J−1
1 ∩ · · · ∩ J−1

n .
17 The same result holds for sums of invertible ideals of number fields.
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Proof. Since O is maximal, we know that I is a sated left O-ideal, i.e., Oℓ(I) =
O = Oℓ(Ji) for all i. Moreover, for any 1 ≤ i ≤ n, we have Ji ⊂ I so we can
apply Lemma 2.16, which gives I−1 ⊂ J−1

i . Therefore, I−1 ⊂ J−1
1 ∩ · · · ∩ J−1

n .
Conversely, let x ∈ J−1

1 ∩· · ·∩J−1
n . Then Ix = (J1+ · · ·+Jn)x = J1x+ · · ·+

Jnx. Since x ∈ J−1
i for all i, and by the second definition of the quasi-inverse, it

holds that Jix ⊆ Oℓ(Ji) = O. Thus Ix ⊂ O = Oℓ(I) which means x ∈ I−1. We
conclude that J−1

1 ∩ · · · ∩ J−1
n ⊂ I−1, as wanted.

Definition 2.21. Let O ⊆ A be any order and S ⊆ A be a subset of A that is
included in some OF -lattice in A.18 Then, the left (resp. right) O-ideal generated
by S is the smallest fractional left O-ideal of A containing the elements s·α (resp.
α · s), for (s, α) ∈ S ×O. It is denoted by OS (resp. SO).

In the case where S = {α} is a singleton, the left (resp. right) O-ideal
generated by {α} is called the principal left (resp. right) O-ideal generated by α.
It is equal to Oα = {xα |x ∈ O} (resp. αO = {αx |x ∈ O}).

Note that if the order O is maximal, the left O-ideal generated by S in the
definition above is necessarily a sated left O-ideal.

The group O1. The subgroup of norm 1 elements in a order O ⊂ A is O1 :=
{α ∈ O |nrd(α) = 1}. It is a multiplicative subgroup of O×. In totally definite
quaternion algebras, O1 is always a finite group, and O1/{±1} falls into some
known list of groups, up to automorphism — see A.3 for details.

To conclude this subsection, we introduce the norm reduced-Principal Ideal
Problem in quaternion orders. In the commutative version of this problem, K is
typically a cyclotomic number field, and the input are (a Z-basis of) a principal
ideal a · OK and the relative norm aa of one of its generator. The so-called
Gentry-Szydlo algorithm [21] then recovers a in polynomial time — for more
general context, one can also use Lenstra-Silverberg’s algorithm [25].

Definition 2.22 (O-nrdPIP). For an order O in A, the O-norm reduced
Principal Ideal Problem (O-nrdPIP) is, given as input a right O-ideal I and
an element q ∈ F such that nrd(I) = q · OF , to compute, if it exists, an element
g ∈ I with nrd(g) = q.

Lemma 2.23. Let (I, q) be an instance of O-nrdPIP and suppose that g ∈ I is
a solution. Then I is a principal right O-ideal and g is a generator. Moreover
the set of solutions is precisely the set of generators of I with reduced norm q,
which is equal to g · O1.

Proof. Almost everything is contained in Lemma 2.17 (2.). The only thing we
need to prove is that the solutions are all equal up to right multiplication by an
element in O1. Let g′ ∈ I be another solution. Since I = g ·O, there exists u ∈ O
such that g′ = gu. But then nrd(g) = q = nrd(g′) (and the multiplicativity of
nrd) implies nrd(u) = 1, i.e., u ∈ O1. The converse is true: if u ∈ O1 then gu ∈ I
has reduced norm q.
18 In more standard terms, the condition “S is included in some OF -lattice in A” means

that the OF -submodule of A generated by S is finitely generated.
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2.3 Algorithmic considerations

This section covers how we represent each mathematical objects to carry actual
computations. We borrow most arguments from [31, Section 2.3].

Lattices in Rℓ Let 1 ⩽ r ⩽ ℓ be integers, and a fixed set of r independents
vectors of Rℓ, noted b1, . . . , br. The Z-lattice of Rℓ of dimension r generated by
the bi’s, is the set L(b1| . . . |br) := {

∑
aibi, ai ∈ Z}. This set is discrete and

stable by addition. When r = ℓ, we say that L is full rank.
From now on, we will only manipulate full rank lattices when dealing with

lattices in Rℓ. Consider a matrix B ∈ GLℓ(R). Since B is invertible, their column
vectors are independent, and span a full rank lattice L(B). To represent lattices
in Rℓ, we use such matrices B, in a form that is called “LLL-reduced”.

Representations of ground objects. While we consider several sets of numbers,
they are all built on a ground, totally real, number field F of degree d. We
therefore chose this field as the base for representing all elements. Let α1, . . . , αd

be a Z-basis19 of OF . An element x ∈ F is represented by its rational coordinates
in the basis (α1, . . . , αd). The size of a rational is the sum of the bit-size of its
numerator and denominator, and the size of an element x ∈ F is defined as
size(x) =

∑
i size(xi), where xi are the coordinates of x in the give basis of

OF . A fractional OF -ideal a is also a Z-module of rank d, and admits a Z-basis
(a1, . . . , ad) — this includes the case of OF . There are many such bases for a
given ideal, but we can always assume that (σ(a1), . . . , σ(ad)) is LLL-reduced
for the so-called T2-norm ∥a∥2 :=

∑
i |σi(a)|2. Then the size of an ideal will be

size(I) =
∑

i size(ai), where the ai’s are reduced in the sense above.
By LLL-reducedness and following the arguments presented in [31, Section 2.3],

one can show that size(x) ≤ poly(log∆F , ∥σ(x)∥) as well as ∥σ(x)∥ ≤ poly(log∆F ,
size(x)) for all x ∈ K. Additionally, an integral OF -ideal a can be represented
with size(a) = poly(log∆F , logN(a)), where N(a) = [OF : a] is the algebraic
norm of the ideal a.

Representations in extensions and of modules. Recall that we are in the setting
of a totally negative a ∈ F and a quaternion algebra A = (a,−1

F ). Then, the
CM-extension K = F (

√
a) can be seen as a F -linear space of dimension 2 and

basis {1,
√
a}. All x ∈ K have coordinates (x1, x2) ∈ F 2 in this basis, and can

thus be represented as a vector in Q2d. Likewise, since A is 4-dimensional over
F with basis {1, i, j, ij}, every element of A has 4 coordinates in this basis, and
corresponds to a vector in Q4d. The size of elements of K and A is then the
sum of the sizes of their F -coordinates. For a matrix B with entries in F and ℓ
columns bi, its size is size(B) :=

∑
i≤ℓ size(bi).

Fractional OK-ideals can be viewed as rank 2 modules over OF living in K ≃
F 2. Similarly, quaternionic ideals in A are also OF -modules (of rank 4) in A. Any
19 Note however that computing such a basis may be an expensive task. It is a standard

practice to assume that such a basis is available, at the cost of having non-uniform
reductions. In most of practical usecases, a good basis is explicitely known.
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such module has a pseudo-basis (B, {ai}i≤ℓ). According to the representation of
elements above, B is a 2 by 2 or 4 by 4 matrix with entries in F and the ai’s are
fractional OF -ideals given by a LLL-reduced basis. The size of such an object
M is then size(M) := size(B) +

∑
i size(ai). Likewise, pseudo-Gram matrices G

are represented by tuples (G, {ai}i≤ℓ), with G that is also a 2 by 2 or 4 by 4
matrix with entries in F , and ai fractional OF -ideals that supports the same
assumptions as above. Therefore, size(G) := size(G) +

∑
i size(ai).

Computing arithmetic operations with modules. Still following [31, Section 2.3],
we have size(x · y) ≤ poly(size(x), size(y), log(∆F )) for all x, y ∈ F . We now
turn to ideals in F , in the CM extension K and the quaternion algebra (a,−1

F ).
Generally, they are all finitely generated OF -modules in A ≃ F 4 of respective
rank 1, 2 or 4. This gives a convenient way to do arithmetic with them, whenever
the target operation makes sense (e.g. compatibility for the product of quaternion
ideals). Indeed, it is known that the sum, the intersection, the product of twoOF -
modules I, J can be computed from generating sets and the use of the pseudo-
Hermite Normal Form algorithm [10, Section 1.5.2]. Noting that in our case the
rank over OF is bounded by 4, there exists version of this algorithm running in
time poly(size(I), size(J), log |∆F |), see e.g. [7]. If I is invertible, computing I−1

can be done by using that I−1 = Inrd(I)−1 [40, 16.6.14].

Selecting module lattice isomorphisms from isomorphisms of lattices. Recall that
two (Euclidean) lattices L,L′ ⊂ Rℓ are said to be isomorphic if there exists an
orthogonal matrix O ∈ Oℓ(R) such that L′ = O · L. Such a matrix O is called
an isomorphism between the lattices L and L′.

Given a module M ⊂ Kℓ represented by a pseudo-basis B, one can associate
to it a full-rank lattice L = L(B) ⊂ Rdℓ, once a Z-basis of OK has been fixed.
A natural question is to decide when an isomorphism between L(B) and L(C)
(where C stands for a pseudo-basis of a module M ′ ⊂ Kℓ) actually corresponds
to a module lattice isomorphism between M and M ′. The answer is given in the
following lemma.

Lemma 2.24 ([26, Lemma 2.4.3, adapted]). Let K = Q(ζ) be a CM field
of degree d and M,M ′ ⊂ Kℓ be two modules, given by pseudo-bases B and C.
Suppose that σ : Kℓ → Kℓ is a Q-linear map, represented by some Σ ∈Mdℓ(Q)
in a fixed Q-basis of Kℓ. The following statements are equivalent:

1. σ is an isomorphism of module lattices between M and M ′.
2. Σ · L(B) = L(C) and

Tr
(
ασ(v)∗σ(w) + ασ(v)∗σ(w)

)
= Tr

(
αv∗w + αv∗w

)
, (1)

for all v,w ∈ Kℓ and α ∈ {1, ζ}.

Remark 2.25. Since the form (v,w) 7→ Tr(αv∗w + αv∗w) is Q-bilinear, it is
enough to check the condition 2. on a Q-generating set of Kℓ.
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Corollary 2.26. With the same notations as in the previous lemma, suppose
that we are given an isomorphism Σ ∈ Odℓ(R) between the lattices L(B) and
L(C). Then there is an algorithm to determine if Σ is the ground representation
of a module lattice isomorphism σ between M and M ′. Moreover for fixed ℓ, this
algorithm runs in polynomial time in d.

Proof. Let us denote by B a fixed Q-basis of Kℓ, containing dℓ elements. Thanks
to B, one can check in polynomial time if Σ is a Q-endomorphism of Kℓ. If it is
not, then the algorithm returns ⊥. Otherwise, looping over all v,w in a B × B,
the algorithm computes σ(v) := Σ · vt and σ(w) := Σ ·wt, seen as elements of
Kℓ, and check if Equation (1) is satisfied for α ∈ {1, ζ}. If the condition is not
satisfied, the algorithm returns ⊥; if it finishes the loop, it returns True. Each
of these computations can be done in polynomial time, and there are at most
2(dℓ)2 of them. The correctness is guaranteed by Lemma 2.24.

2.4 Module-LIP

In this section we give formal definitions of the problem we study, borrowing
from [31].

Definition 2.27 (Congruent pseudo-Gram matrices). Two pseudo-Gram
matrices G = (G, {ai}1≤i≤ℓ) and G′ = (G′, {bi}1≤i≤ℓ) are said to be congruent
if there exists a matrix U = (ui,j)1≤i,j≤ℓ ∈ GLℓ(K) such that:

1. G′ = U∗GU .
2. ∀ i, j ∈ {1, . . . , ℓ}, ui,j ∈ aib

−1
j .

3.
∏

i ai = (detU)
∏

i bj .

The set of congruence matrices between G and G′ is denoted by Cong(G,G′).

Given two congruent pseudo-Gram matrices G and G′, module-LIP is the
task of computing the set Cong(G,G′). To fix an underlying module, module-
LIP takes as a parameter a pseudo-basis B of a module M ⊂ Kℓ whose pseudo-
Gram matrix is G, instead of G only.

Definition 2.28 (wc-smodLIPB
K [31, Definition 3.11]). Let B be a pseudo-

basis of a module M ⊂ Kℓ, and G the pseudo-Gram matrix associated to B.
Let G′ be a pseudo-Gram matrix congruent to G. The worst-case search module
Lattice Isomorphism Problem with parameters K and B (wc-smodLIPB

K) and
input G′, is to compute an element of Cong(G,G′).

One can interpret module-LIP as the problem of computing factorizations
C = (C, {bi}i) of G′ = (G′, {bi}i) (that is C∗C = G′) with the constraint
that C is a pseudo-basis of M . In fact the equivalence between LIP and Gram
factorization has already been noticed by Szydlo in [38], for rotations of Zn, in
which case the equivalence with SVP also holds.
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Lemma 2.29. Let B = (B, {ai}1≤i≤ℓ) be a pseudo-basis of a rank-ℓ module
M ⊆ Kℓ and with associated pseudo-Gram matrix G. Let G′ = (G′, {bi}1≤i≤ℓ)
be a pseudo-Gram matrix congruent to G. Then a matrix U ∈ GLℓ(K) is in
Cong(G,G′) if and only if C = BU satisfies C∗C = G′ and C = (C, {bi}1≤i≤ℓ)
is a pseudo-basis of M .

Proof. Observe that the condition 1. in Definition 2.27 is equivalent to G′ =
C∗C, where C = BU and 2., 3. are the necessary and sufficient conditions for U
to be a pseudo-base change between B and C, i.e., for C to be a pseudo-basis
of the same module M .

The relation G′ = U∗GU implies that detU is a solution to the norm
equation nrd(x) = NK/F (x) = detG′/ detG in K. These equations has been
studied and solved in [24] but in general the number of solutions is large. The
following technical lemma will be useful for the reduction. It tells us that all
U ∈ Cong(G,G′) have the same determinant in K×/µ(K). Moreover when K
is a CM field, a representative of this class can be computed efficiently.

Lemma 2.30 (Computing the determinant). Let G = (G, {ai}i) and G′ =
(G′, {bi}i) be two congruent pseudo-Gram matrices. Congruence matrices between
G and G′ all have the same determinant, up to root of a unity of K. We write
δ̄(G,G′) ∈ K×/µ(K) for the equivalence class of all these determinants modulo
the roots of unity of K.

Moreover, if K is a CM field, then there is a polynomial time algorithm
ComputeDet that given G and G′ (and a basis of OK), computes a representative
in K× of δ̄(G,G′).

Proof. Let U be a congruence matrix between G and G’. By definition U satisfies
G′ = U∗GU so taking the determinant we see that detU is a solution to the
norm equation xx = detG′/detG. Another property of U is that

∏
i ai =

(detU)
∏

i bi. In particular, detU is a generator of the fractional ideal I =∏
i aib

−1
i . Any other congruence matrix U ′ satisfies again these two conditions:

detU ′ is a generator of I, so one can write detU ′ = u · detU with u ∈ O×
K , and

the fact that detU ′ is a solution to the same norm equation gives uu = 1. By
Kronecker’s theorem, we conclude that u is a root of unity.

Knowing G and G’, we can call the Lenstra-Silverberg algorithm [25, Theorem
1.3] with inputs I and relative norm detG′/ detG (and a basis of OK). This
algorithm outputs (if it exists) a generator x of I such that xx̄ = detG′/ detG,
and runs in polynomial time. This provides us with the determinant of our
congruence matrix U , up to a root of unity.

3 A reduction from modLIP to nrdPIP

Let K/F be a CM extension of number fields where K = F (
√
a) and A denotes

the totally definite quaternion algebra A = (a,−1
F ) over F . Through this section

we fix a maximal order O in A containing the order O0 = OK ⊕OK · j.
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In this section we prove the main result of this paper, namely, a polynomial
time reduction from module-LIP for rank-2 modules in K2 to nrdPIP, the
problem of computing a generator of a (right) principal ideal in A, with given
reduced norm (see Definition 2.22). Thanks to Lemma 2.29, module-LIP can be
reinterpreted as the task of computing factorizations of a pseudo-Gram matrix
which are also pseudo-bases of a fixed module M ⊂ K2.

The key point is the isomorphism A = K ⊕K · j ≃ K2 of K-vector spaces.
As a consequence, to a matrix C ∈ M2(K) corresponds a unique pair (α, β) ∈
A2 (applying the previous isomorphism on each column of C). We prove in
Lemma 3.5 that when C∗C = G′ holds, then the quotient αβ−1 can be obtained
from an elementary computation involving only G′ and det(C). In the setting of
module-LIP, this determinant can be computed (up to a root of unity of K) in
polynomial time, using Lemma 2.30. We won’t be able to obtain α directly from
αβ−1, still we show how to build a principal ideal generated by α.

Again, the isomorphism K2 ≃ A allows to associate to a module M ⊂ K2 a
left O-ideal in A: the left ideal of A generated by all the vectors of M , when seen
as element of A via the isomorphism. This ideal, denoted by IM , is efficiently
computable from any pseudo-basis of M (c.f., Lemma 3.2). In Proposition 3.6, we
use the knowledge of αβ−1 and IM to build a principal right O′-ideal α·O′, where
O′ is some maximal order inA, efficiently computable from IM but different from
O in general.

Since α · O′ is known, as well as nrd(α) (c.f., Lemma 3.5), this defines an
instance of O′-nrdPIP. The set of factorizations of G′ which are also pseudo-
bases of M is then obtained from the set of generators of α · O′, with reduced
norm nrd(α). Notice that once such a generator has been computed, the other
are its (right) multiples by the elements of O′1 (c.f., Lemma 2.23). From the set
of generators, one recovers efficiently the set of pseudo-matrices we are interested
in (see the proof of Theorem 3.8).

Most of the objects used in the reduction depends only on the parameters of
module-LIP and not on its input. We will therefore assume that several structures
have been precomputed. Following standard practices, we assume that we are
given Z-bases of OF and OK and pseudo-bases of O, IM and O′ (as OF -modules,
see the previous section). We will also assume that the finite group O′1 has been
precomputed20, and we also know that in our situation such a group belongs to
an explicit list of finite groups ([40, Chap. 32] and see also Appendix A.3).

3.1 The reduction

Embedding modules. Let us recall the setting for an instance of (rank-two)
module-LIP. We are given a pseudo-basis B = (B, a1, a2) of a rank-two module
M ⊂ K2, with associated pseudo-Gram matrix G. Then, wc-smodLIPB

K takes
as input a pseudo-Gram matrix G′ and asks to compute the set Cong(G,G′).

20 By computation we mean an abstract finite presentation of a group G, together with
an isomorphism G ≃ O1.
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Recall the relation A = K ⊕K · j. In particular,

φ : K2 −→ A
(x, y) 7−→ x+ yj

is an isomorphism of K-vectors spaces, where K acts both on K2 and A by left
multiplication.

Definition 3.1. Let M ⊂ K2 be a module. Then, IM is defined as the left
O-ideal generated by φ(M), i.e,

IM = O · φ(M),

where we recall that O is a maximal order of A containing O0 = OK ⊕OK · j,
which has been fixed once and for all.

The content of the following lemma is to argue that IM is well defined,
according to Definition 2.21, but also to prove that IM can be computed using
any pseudo-basis of M .

Lemma 3.2. Let B = ((b1 | b2), a1, a2) be a pseudo-basis of a module M ⊂ K2.
Then, the following equality of left O-ideals holds

IM = Oa1α+Oa2β,

where α = φ(b1) and β = φ(b2).

Proof. Let {a1, a2} ⊂ K be a two elements generating set for a1. Then a1α =
a1OK ·α+a2OK ·α is contained in a OF -lattice of A. Therefore, Definition 2.21
ensures that Oa1α is well defined. The same argument holds for Oa2β. Since
φ is left K-linear and M = a1b1 + a2b2 we have φ(M) = a1α + a2β, so IM ⊂
Oa1α + Oa2β. Conversely, φ(M) contains the rank one submodule a1α so it
holds that Oa1α ⊂ IM , and in the same way Oa2β ⊂ IM . As IM is stable by
addition, it must contain the sum Oa1α+Oa2β.

By construction, the left order of IM is O. Its right order O′ := Or(IM ) is a
priori different from O, except for special cases such as when M = O2

K . In this
case, the previous lemma applied with the (pseudo)-basis Id = (Id,OK ,OK)
of O2

K immediately gives IM = O, thus O′ = O holds. This fact is stated in
the following corollary, which will be useful to state a simplified version of our
reduction when M = O2

K .

Corollary 3.3. For M = O2
K , we have IM = O.

Remark 3.4. By referring to the discussion at the beginning of [36, Chapter
24], the identity IM = O holds whenever IM is integral and nrd(IM ) = OF
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is verified.21 This can be rephrased as conditions on M directly. Recall that
the reduced norm of IM is by definition the fractional ideal of F generated
by {nrd(x)}x∈IM . Moreover, IM is integral whenever M is integer, i.e., when
M ⊂ O2

K (this is because M ⊂ O2
K ⇒ φ(M) ⊂ O0 ⇒ IM ⊂ O ⇔ IM is

integral). Therefore, having M integer with G(M) = OF is a sufficient condition
to have IM = O. This is indeed the case for M = O2

K .

Gram matrices and quaternions. We can identify M2(K) with K2×K2 (taking
the column vectors) and thus with A2, applying φ coordinate wise. Therefore
to a matrix C ∈M2(K) corresponds a unique pair (α, β) ∈ A2. In the following
lemma, we prove that if C is a factorization of G′, then the quotient αβ−1 is
expressible in terms of the coefficients of G′ and det(C). We note that Equation (2)
below and its proof are very similar to Equation (3) (p.13) from the concurrent
work [18].

Lemma 3.5. Let C =

(
x1 x2

y1 y2

)
, G′ =

(
q1,1 q1,2
q1,2 q2,2

)
∈ GL2(K) and let α, β ∈ A

be the quaternions defined by α = φ(x1, y1) and β = φ(x2, y2). Then we have
the following equivalence

C∗C = G′ ⇐⇒


nrd(α) = q1,1
nrd(β) = q2,2
αβ−1 = q−1

2,2(q1,2 − det(C)j)
(2)

Proof. Let us write c1 =
( x1
y1

)
and c2 =

( x2
y2

)
for the columns of C, so that

C∗C =
( c∗1 ·c1 c∗1 ·c2
c∗2 ·c1 c∗2 ·c2

)
. The first coefficient is c∗1 · c1 = x1x1 + y1y1 = nrd(α) and in

the same way, the last coefficient is c∗2 · c2 = nrd(β). For the non diagonal terms,
we first compute

αβ = (x1 + y1j)(x2 − y2j)

= x1x2 + y1y2 + (y1x2 − x1y2)j

= c∗2 · c1 − det(C)j,

where we used the relations xj = −xj and jx = xj which hold for any x ∈ K.
Combining with β−1 = β · nrd(β)−1, we obtain αβ−1 = nrd(β)−1 · (c∗2 · c1 −
det(C)j). This gives the result.

Next we show how to recover a principal generated by α, from αβ−1 and IM .

Proposition 3.6. Let C = ((c1 | c2), a, b) be a pseudo-basis for a module M ⊂ K2.
Let α = φ(c1), β = φ(c2) and O′ = Or(IM ). Then O′ = I−1

M IM is a maximal
order, and we have the following equality of right O′-ideals

αO′ = a−1IM ∩ αβ−1b−1IM .
21 Note that in loc. cit., the norm map NA/F is defined exclusively for normal ideals,

i.e., ideals whose left and right orders are maximal. Its definition is different from the
one of nrd we gave in Section 2. However Theorem 24.11 and Corollary 24.12 of loc.
cit. ensure that the identity NA/K(I) = nrd(I)2 holds for such ideals. In particular
we have NA/K(I) = OF whenever nrd(I) = OF .
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Proof. Recall that Oℓ(IM ) = O is a maximal order. Then, Lemma 2.14 tells us
that IM is invertible and that O′ = Or(IM ) is maximal too. The same argument
applies to I := Oaα and we will show that its inverse is I−1 = α−1a−1O. From
Proposition 2.15, it is enough to prove the equality I(α−1a−1O) = Oℓ(I) = O.
The inclusion I(α−1a−1O) = Oℓ(I) ⊂ O is clear from the definition of the
product of two ideals, and because aa−1 = OK is contained in O. Conversely,
since aa−1 = OK , there exists elements a1, . . . , ak ∈ a and a′1, . . . , a

′
k ∈ a−1 such

that
∑

k aka
′
k = 1. Since 1 ∈ O, we have akα ∈ I for all k. By definition, we also

have α−1a′kx ∈ α−1a−1O for all x ∈ O. This means that x =
∑

k(akα)(α
−1a′kx) ∈

I(α−1a−1O), and proves the other inclusion.
Similarly we have (Obβ)−1 = β−1b−1O. Using Proposition 2.20 and the

definition of IM from Lemma 3.2 yields I−1
M = (Oaα)−1 ∩ (Obβ)−1. Multiplying

this equality by α on the left and by IM on the right (the product of ideals is
compatible), we obtain the result.

Now we have everything to prove the main results of this paper. They are
described in Algorithm 2 for the general case and Algorithm 3 for an important
particular case. Both rely on the following routine algorithm which computes all
matrices in Cong(G,G′) with prescribed determinant, from one call to a nrdPIP
oracle22.

Theorem 3.7. Let B = (B, a1, a2) be a pseudo-basis of a rank-2 module M ⊂
K2, with associated pseudo-Gram matrix G and let G′ = (G′, b1, b2) be a pseudo-
Gram matrix congruent to G, and let δ ∈ K be a candidate determinant. Assume
that pseudo-bases over OF of O, IM and O′ = Or(IM ) have been precomputed,
as well as the finite groups µ(K) and O′1. Finally, assume that we are given
an oracle O that solves O′-nrdPIP. Then Algorithm 1 returns the (potentially
empty) set of congruence matrices between G and G′ with determinant δ. It
makes exactly one call to the oracle O and except for this call it runs in time

poly(log∆K , size(G), size(G′)).

Proof. Correctness. We prove that the algorithm outputs the set of congruence
matrices between G and G′ with determinant δ. Let C be a matrix computed
during Step 11 and satisfying Step 12. By construction, the coefficients of C
verify all the conditions in Lemma 3.5 so we must have C∗C = G′. Therefore
the corresponding U = B−1 · C computed at Step 13 is a pseudo-base change
between B and C and it satisfies U∗GU = G′, i.e., U ∈ Cong(G,G′). Moreover,
Lemma 3.5 ensures that det(C) = γ so det(U) = δ and U is a valid output.

Conversely, let U ∈ Cong(G,G′) with det(U) = δ and let us prove that
U ∈ Congruence_matδ by the end of the algorithm. Then, C = B · U is a
pseudo-basis of M with det(C) = γ and such that C∗C = G′. By Lemma 3.5
and Proposition 3.6 (and with the same notations), it holds that β = q−1α,
nrd(α) = q1,1 and αO′ = I. Then, α is a solution to the nrdPIP instance (I, q1,1)

22 This set can be empty, for example if the candidate determinant δ for C is not a
solution to the equation δδ = det(G).
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Algorithm 1: Computing congruence matrices of fixed determinant
Input: • B = (B, a1, a2) a pseudo-basis of a rank-2 module M ⊂ K2, of

associated pseudo-Gram matrix G;
• G′ = (G′ = (qi,j)1≤i,j≤2, b1, b2) pseudo-Gram matrix congruent to
G;
• pseudo-bases of O, IM and O′ = Or(IM ) over OF ;
• the (finite) sets µ(K) and O′1;
• an oracle O solving O′-nrdPIP (outputting ⊥ when there is no
solution);
• a candidate determinant δ ∈ K

Output: The set of all congruence matrices Cong(G,G′) with determinant δ

1 Congruence_matδ ← {}
2 γ ← δ · detB
3 q ← q−1

2,2(q2,1 − γj) ∈ A // c.f., Lemma 3.5
4 I ← b−1

1 IM ∩ qb−1
2 IM // c.f., Proposition 3.6

5 α′ ← O(I, q1,1)
6 if α′ =⊥ then
7 Return {} // the nrd-PIP instance was invalid

8 S ← {α′ · x |x ∈ O′1} // set of all solutions to the nrdPIP instance
9 for α in S do

10 β ← q−1α
11 C ← (φ−1(α) |φ−1(β))
12 if C = (C, b1, b2) is a pseudo-basis for M then
13 U ← B−1 · C
14 Congruence_matδ ← Congruence_matδ ∪ {U}

15 Return Congruence_matδ.

and according to Lemma 2.23, it belongs to the set S computed during Step 8.
For this choice of α in the loop, C is computed at Step 11, it passes Step 12,
and U is added to Congruence_matδ at Step 14.

Complexity. The computation of γ at Step 2, as well as the computation of
q at Step 3 and the computation of I at Step 4 can be done in polynomial time
(see subsection 2.3 for the computation of I). Note that the size of the right
O′-ideal I is polynomially bounded by the size of the inputs of the algorithm. At
Step 5, the algorithm makes one call to the oracle O. Step 8 can be performed in
time poly(log∆K , size(α′), |O′1|). By Lemma A.25, the size of |O′1| is polynomial
in the degree of F , so this step can be done in polynomial time too, and the
size of S is polynomial in [F : Q]. The for loop starting at Step 9 will then be
iterated a polynomial number of times. Each computation from Step 9 to the
end, including checking that the candidates C are indeed pseudo-basis of M ,
require only simple linear algebra computations. This concludes the bound on
the running time of the algorithm.
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Algorithm 2: Reduction of wc-smodLIP to nrdPIP
Input: •B = (B, a1, a2) a pseudo-basis of a rank-2 module M ⊂ K2, of

associated pseudo-Gram matrix G;
•G′ = (G′, b1, b2) pseudo-Gram matrix congruent to G;
• pseudo-bases of O, IM and O′ = Or(IM ) over OF ;
• the (finite) sets µ(K) = ⟨µ0⟩ and O′1;
• an oracle O solving O′-nrdPIP (outputting ⊥ when there is no
solution)

Output: The set of all congruence matrices Cong(G,G′)
1 Congruence_mat← {}
2 δ0 ← ComputeDet(G,G′) // c.f., Lemma 2.30
3 µ0 ← A generator of µ(K)
4 for i ∈ {0, 1} do
5 δ ← δ0 · µi

0

6 Compute Congruence_matδ with Algorithm 1 // c.f., Theorem 3.7
7 for U ∈ Congruence_matδ do
8 for µ ∈ µ(K) do
9 V ← µ · U

10 Congruence_mat← Congruence_mat ∪ {V }

11 Return Congruence_mat.

Theorem 3.8. Let B = (B, a1, a2) be a pseudo-basis of a rank-2 module M ⊂
K2, with associated pseudo-Gram matrix G and let G′ = (G′, b1, b2) be a pseudo-
Gram matrix congruent to G. Assume that pseudo-bases over OF of O, IM and
O′ = Or(IM ) have been precomputed, as well as the finite groups µ(K) and
O′1. Finally, assume that we are given an oracle O that solves O′-nrdPIP. Then
Algorithm 2 returns the set Cong(G,G′) of all congruence matrices between G
and G′. In particular it solves wc-smodLIPB

K on input G′. Moreover, it makes
exactly two calls to the oracle O and except for these calls it runs in time

poly(log∆K , size(G), size(G′)).

Proof. Correctness: We want to prove that at the end of the algorithm, the
variable set Congruence_mat contains all the congruence matrices between G
and G′, i.e., that Congruence_mat = Cong(G,G′). Observe first that if U ∈
Congruence_matδ is chosen at Step 7, then for all µ ∈ µ(K), the matrix V =
µ · U satisfies the three conditions in Definition 2.27 (because U does) thus
V ∈ Cong(G,G′). This proves the inclusion Congruence_mat ⊆ Cong(G,G′).

Let us now prove the reverse inclusion. Let V0 ∈ Cong(G,G′) arbitrary, we
want to prove that, by the end of the algorithm, V0 ∈ Congruence_mat holds. Let
δ0 ← ComputeDet(G,G′) be as in Step 2 of the algorithm. By Lemma 2.30, we
know that det(V0) is equal to δ0 up to a root of unity of K, i.e., det(V0) = δ0 · µ
for some µ ∈ µ(K). Since µ0 generates µ(K), one can write in a unique way
µ = µi

0 · µ2k
0 , where i ∈ {0, 1} and k ∈ {0, . . . , ⌊(|µ(K)|+ 1)/2⌋}. Let us focus

on this i-th iteration of the outer for loop. We will prove that V0 is added
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to Congruence_mat during this iteration. By the previous observation, U0 :=
µ−k
0 · V0 belongs to Cong(G,G′) as well. Also by construction, det(U0) = δ so

by Theorem 3.7, U0 is computed during Step 8. During the iteration of the inner
loop corresponding to U0 ∈ Congruence_matδ, V0 is then computed at Step 9.
This concludes the proof of the correctness.

Complexity: According to Lemma 2.30, a representative δ0 of the determinant
class can be computed in polynomial time. Inside the outer loop (starting at
Step 4), the computation of δ at Step 5 can be done in polynomial time. Since
it makes two iterations, and by Theorem 3.7, the algorithm makes exactly two
calls to the nrdPIP oracle and except for these calls, Step 8 runs in polynomial
time. The for loop starting at Step 7 will then be iterated a polynomial number
of times (this can be made more precise, see subsection 3.2) and Lemma 2.4 tells
us that there is a polynomial number of roots of unity in K, so the number of
iterations of the final loop (starting at Step 8) will be polynomially bounded
and each computation from Step 7 to the end require only simple linear algebra
computations. This concludes the bound on the running time of the algorithm.

Algorithm 2 requires as input a pseudo-Gram matrix G′ congruent to G
(which will be the input of our module-LIP problem) but also multiple other
objects: a pseudo-basis B of M , a maximal order O containing OK +OK · j, the
ideal IM , the right order O′ of IM , the roots of unity µ(K) of K, and the set O′1

of elements of reduced norm 1 in O′. An important observation is that all these
additional objects only depend on K and B, which are parameters of the module-
LIP problem. Hence, for the purpose of reductions, one can assume that all these
objects have been pre-computed somehow, and that the reduction algorithm
only takes as input G′, the input of module-LIP. This makes the reduction from
module-LIP to nrdPIP non-uniform: for every choice of parameters K and B of
the module-LIP problem, there exists a reduction from wc-smodLIPB

K to nrdPIP,
but there might not exist an efficient algorithm computing a description of these
reductions from the knowledge of K and B.

Still, some of the objects from the list above can be computed efficiently.
This is the case of µ(K), which can always be computed from K in polynomial
time (see Lemma 2.4). If O has been computed, then the ideal IM can also
be computed efficiently from O and B, using Lemmas 3.2 and results from
subsection 2.3. Once IM has been computed, its right order O′ can also be
computed efficiently, again by subsection 2.3. The only two objects that may
require effort to compute are O and O′1. If K is a cyclotomic field, then O
becomes efficiently computable using Proposition A.18. In the case where M =
O2

K , then O′ = O and the set O′1 = O1 becomes efficiently computable too,
using Corollary A.26.

Summing up, we obtain a non-uniform reduction for the general case (stated
in Corollary 3.9 below), and a uniform reduction for the special case of cyclotomic
fields when the module M is O2

K (stated in Corollary 3.16).

Corollary 3.9 (modLIP to O′-nrdPIP). There is a non-uniform polynomial
time reduction from wc-smodLIPB

K to O′-nrdPIP, where K is any CM field
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(with maximal totally real subfield F ), B is any pseudo-basis of a rank-2 module
M ⊆ K2 and O′ is a particular maximal order of a quaternion algebra over F ,
depending only on K and B.

Proof. Let K be any CM field with maximal totally real subfield F , and let
a ∈ F totally negative such that K = F (

√
a). Let B be a pseudo-basis of a rank-

2 module M ⊆ K2. Let A be the quaternion algebra (a,−1
F ) and O be a maximal

order of A containing OK +OK · j. Let IM be the left O-ideal of A associated
to the module M , as in Definition 3.1, and let O′ = Or(IM ) (note that O′ is
maximal because O is, using Lemma 2.14). We want to prove that there is a
non-uniform polynomial time reduction from wc-smodLIPB

K to O′-nrdPIP. The
reduction is provided by Algorithm 2. This algorithm takes as input a pseudo-
Gram matrix G′, which is the input of the wc-smodLIPB

K problem, as well as
many other inputs that only depend on K and B, and solves wc-smodLIPB

K on
input G′ by making some calls to a O′-nrdPIP oracle. Since B, O, IM , O′, O′1

and µ(K) all depends only on K and B, which are parameters of the module-
LIP problem, we can assume that these quantities have been hardcoded into the
algorithm, instead of being given as input.

Note that computing these quantities from K and B may not be doable
in polynomial time, which is why our reduction is non-uniform: we prove the
existence of a reduction from wc-smodLIPB

K toO′-nrdPIP, but computing explicitly
the algorithm performing the reduction may not be doable efficiently from the
knowledge of K and B.

Before focusing on the relevant case ofO2
K , we give an immediate consequence

of Theorem 3.8 on the number of lattice automorphisms of a rank-two module.

3.2 Application to the number of module lattice automorphisms of
rank-2 modules

The following lemma and its corollary hold for modules of any rank ℓ > 0. Let us
fix a module M ⊂ Kℓ, which is implicitly equipped with the standard hermitian
metric ⟨a, b⟩ =

∑ℓ
i=1 aibi over Kℓ. We make clear the link between Aut(M),

the module lattice automorphism group of M and the full set of solutions to an
instance of module-LIP. A module lattice automorphism of M is a K-linear map
Θ : Kℓ → Kℓ which also satisfies ⟨Θ(a), Θ(b)⟩ = ⟨a, b⟩ for all a, b ∈ Kℓ (that is,
it is a K-linear isometry for this form). We identify these automorphisms to their
matrix representation in the canonical basis of Kℓ. The group of automorphism
of M is then Aut(M) = {Θ ∈ EndK(Kℓ) |Θ ·M = M and Θ∗Θ = Id}.

Lemma 3.10. Let C = (C, {bi}1≤i≤ℓ) be a pseudo-basis of a rank-ℓ module
M ⊂ Kℓ and let G = C∗C. We have

Aut(M) = {C ′C−1 |C′ = (C ′, {bi}1≤i≤ℓ) is a pseudo-basis of M and C ′∗C ′ = G}.

Proof. If Θ ∈ Aut(M), then Θ = C ′C−1 for C ′ = ΘC which, with the coefficient
ideals bi, forms a pseudo-basis of M having the same Gram matrix G. Conversely,
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let C ′ be as in the right set. Then, Θ = C ′C−1 is a K-endomorphism of Kℓ such
that Θ∗Θ = (C−1)∗(C ′∗C ′)C−1 = (C−1)∗(C∗C)C−1 = Id. Moreover, Θ ·M =
C ′C−1 · (C1b1 ⊕ · · · ⊕ Cℓbℓ) = C ′

1b1 ⊕ · · · ⊕ C ′
ℓbℓ = M , where Ci and C ′

i denote
the column vectors of C and C ′ respectively. Hence we have proved Θ ∈ Aut(M)
and the result.

Corollary 3.11. Let B = (B, {ai}1≤i≤ℓ) be a pseudo-basis of a module M ⊂
Kℓ, with pseudo-Gram matrix G. Consider an instance G′ of wc-smodLIPB

K .
For U0 ∈ Cong(G,G′) arbitrary and C0 := BU0, we have

Aut(M) −→ Cong(G,G′)

Θ 7−→ B−1ΘC0

is a bijection. In particular, |Aut(M)| = |Cong(G,G′)| and each of them can be
computed efficiently knowing the other.

Proof. We have the following sequence of equivalences

U ∈ Cong(G,G′)

⇐⇒ C = (C = BU, {bi}1≤i≤ℓ) is a pseudo-basis of M with C∗C = G′.

⇐⇒ C = BU ∈ Aut(M) · C0

⇐⇒ U ∈ B−1 ·Aut(M) · C0,

where the first equivalence comes from Lemma 2.29 and the second is a direct
consequence of Lemma 3.10.

Analyzing carefully Algorithms 1 and 2, we are able to give a bound on the
number of solutions to a module-LIP instance, when M ⊂ K2. In the light of
Corollary 3.11, this also bounds the cardinality of Aut(M) for such modules.

Theorem 3.12. Let K be a CM field of degree d > 4 and let M ⊂ K2 be a
rank-two module. We have |Aut(M)| ≤ 64d4.

Proof. Let B be any pseudo-basis of M , with associated pseudo-Gram matrix G,
and let G′ be any instance of wc-smodLIPB

K . By Corollary 3.11, it is enough to
upper bound the cardinal of Cong(G,G′). Looking at Algorithm 1, one observes
that its output has size less or equal to |S| = |O′1|. In the same way, at the end
of Algorithm 2, we have |Cong(G,G′)| = |Congruence_mat| ≤ 2|O′1| · |µ(K)|
(thanks to Theorem 3.8). But now, Proposition A.25 gives |O′1| ≤ 16d2 and
Lemma 2.4 tells us |µ(K)| ≤ 2d2 so that |Cong(G,G′)| ≤ 64d4.

3.3 The special case of Hawk

Lastly, suppose that K is a cyclotomic field and M is the module O2
K , given by a

pseudo-basis B = (B, a1, a2). This module is of particular interest, as it occurs in
Hawk’s framework [14] (with B = Id and a1 = a2 = OK). We already mentioned
that over cyclotomic fields, the reduction becomes uniform since a lot of inputs
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in Algorithm 2 can be computed directly from the parameters. In addition to
the uniformity, we will prove that a Karp reduction is possible in that case. This
means that the same result can be achived making only one call to the nrdPIP
oracle. Informally, in this situation the module lattice automorphism group of
O2

K can be described and computed efficiently, thanks to Kronecker’s theorem
and Corollary 2.3. Then, from the knowledge of one solution we can deduce them
all, thanks to Corollary 3.11.

Denote by Aut(O2
K) := {Θ ∈ GL2(OK) |Θ∗Θ = Id} the group of unitary

matrices with integral coefficients, equivalently, the group of module lattice
automorphisms of the module O2

K .

Proposition 3.13. The group Aut(O2
K) is finite of order 2 |µ(K)|2 ⩽ 8d4.

Moreover, Θ ∈ Aut(O2
K) is either diagonal or antidiagonal and its non-zero

coefficients are in µ(K).

Proof. Let Θ =
(
a c
b d

)
∈ Aut(O2

K). The relation Θ∗Θ = Id implies aa + bb = 1

and cc+dd = 1. Following Corollary 2.3, either a or b equals 0, and either c or d
equals 0. Since M must be invertible, either a and d are both 0, or b and c are.
Hence Θ is either diagonal or antidiagonal and the non zero coefficients are in
µ(K). We count µ(K)2 diagonal matrices, and the same number of antidiagonal
matrices. Lemma 2.4 then gives |Aut(O2

K)| = 2µ(K)2 ≤ 8d4.

Remark 3.14. Even though for a random module M ⊂ K2 one would expect
Aut(M) = {±Id} to be trivial, the previous result shows that the bound obtained
in Theorem 3.12 is tight, up to a small constant factor. As expected, O2

K is (one
of) the module having the largest number of module lattice automorphisms.
As a comparison, its “non-module” version Zn has 2nn! lattice automorphisms
(see [23, Section 1.1]).

Theorem 3.15. Let K be a cyclotomic field of degree d = φ(m) with m ≥ 31
and let M = O2

K , with a pseudo-basis B = (B, a1, a2) and G its pseudo-Gram
matrix. Let G′ = (G′, b1, b2) be a pseudo-Gram matrix congruent to G. Assume
that we are given an oracle O that solves O-nrdPIP. Then Algorithm 3 returns
the set Cong(G,G′) of all congruence matrices between G and G′. In particular
it solves wc-smodLIPB

K on input G′. Moreover, it makes exactly one call to the
oracle O and except for this call it runs in time

poly(d, size(G), size(G′)).

Proof. Correctness: First of all we justify that Congruence_matδ0 computed at
Step 9 is non empty. Since G and G′ are chosen to be congruent, there exists
a congruence matrix U ′ ∈ Cong(G,G′), but we might have det(U ′) ̸= δ0 in
general. However, by Lemma 2.30, it holds that det(U ′) = µδ0 for some root of
unity µ ∈ µ(K). Thus, U0 := diag(µ−1, 1) · U ′ has determinant δ0 and it is still
a congruence matrix between G and G′. By the correctness of Algorithm 1, this
means that U0 ∈ Congruence_matδ0 is non empty. For any such U0 chosen during
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Algorithm 3: Karp reduction of wc-smodLIP to nrdPIP for O2
K

Input: • K = Q(ζm) a cyclotomic field, B = (B, a1, a2) a pseudo-basis of O2
K ;

• G = (G = B∗B, a1, a2) and G′ = (G, b1, b2) congruent to G;
• An oracle O solving O-nrdPIP.

Output: The set of all congruence matrices Cong(G,G′).
1 µ(K)← ⟨ζm⟩ ⊂ K×

2 Aut(O2
K)←

{(
a 0
0 b

)
;
(
0 a
b 0

)
: a, b ∈ µ(K)

}
// c.f., Corollary 3.13

3 O ← Run Algorithm 4 on the order OK +OK · j // c.f., Proposition A.18
4 IM ← O; O′ ← O // c.f., Corollary 3.3
5 O′1 ← ⟨ζm, j⟩ // c.f., Corollary A.26
6 Congruence_mat← {}
7 δ0 ← ComputeDet(G,G′) // c.f., Lemma 2.30
8 Compute Congruence_matδ0 with Algorithm 1 on input

(B,G′, δ0,O, IM ,O′,O′1, µ(K)) // c.f., Theorem 3.7
9 Pick any U0 ∈ Congruence_matδ0

10 for Θ ∈ Aut(O2
K) do

11 U ← B−1ΘBU0

12 Congruence_mat← Congruence_mat ∪ {U}
13 Return Congruence_mat.

Step 9, Corollary 3.11 guarantees that the the loop computes iteratively exactly
all the other solutions so by the end, the algorithm outputs indeed Cong(G,G′).

Complexity: We need to argue that when K and M are as in the theorem, then
the quantities O, IM , O′, O′1 and µ(K) that are required as input of Algorithm 2
can be computed in polynomial time from the knowledge of K and B. First, when
K is a cyclotomic field of conductor m, thenOK = Z[ζm] can easily be computed,
where ζm is a primitive m-th root of unity in K. Using Proposition A.18, a
maximal order O of A containing OK +OK · j can be computed in polynomial
time. According to Corollary 3.3, we have IM = O thus O′ = O and O′1 = O1.
The latter equals ⟨ζm, j⟩ for conductors m ≥ 31, by Corollary A.26, so it can
be computed in polynomial time. Finally, recall that log∆K = poly(d) holds for
cyclotomic fields. Hence, the complexity is a consequence of the above discussion,
Lemma 2.30 for Step 7 and Theorem 3.7.

Corollary 3.16 (modLIP to O-nrdPIP, Hawk). For any cyclotomic field
K (with F its maximal totally real subfield) and pseudo-basis B = (B, a1, a2) of
O2

K , there exists a uniform polynomial time Karp reduction from wc-smodLIPB
K

to O-nrdPIP, where O is a maximal order of a quaternion algebra over F , and
is efficiently computable from the parameters.

Proof. When the conductor of K is m ≥ 31, the reduction is provided by
Algorithm 3 and the previous theorem. In that case, since Algorithm 3 makes
only one call to the O-nrdPIP oracle, the reduction is Karp. The fact that it
is uniform follows from several observations, already mentioned. Indeed, OK =
Z[ζm] andO = IM = O′ can be computed in polynomial time (see Proposition A.18),
as well as the finite group O1 (see Corollary A.26 for conductors m ≥ 31).
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For lower conductors m ≤ 30, we rely on a generic method that we describe
below. On an input G′ = (G′, b1, b2) congruent to G, one computes the “structured”
Cholesky factorization of G′ with coefficients in KR, that is, some C ∈M2(KR)
such that C∗C = G′ (see [31, Proposition 3.4] for more details). Observe that for
any solution U ∈ Cong(G,G′), then (BU)∗(BU) = G′ is another factorization
of G′ (in K and a fortiori in KR). Thus, [31, Proposition 3.5]) ensures23 the
existence of a unitary transformation Θ ∈ U2(KR) such that C = Θ ·B ·U . Now
from B and C := (C, b1, b2), we explain how to compute all such Θ, from which
we will deduce the congruence matrices.

To B and C one associates the full-rank module lattices L(B), L(C) ⊂ R2d

using the canonical embedding. These two Euclidean lattices are isomorphic as
module lattices and so a fortiori as “plain” lattices. In other words, this gives an
instance of LIP as defined in [23]. Using Theorem 1.1 of loc. cit. one computes all
isomorphisms O ∈ O2d(R) between L(B) and L(C) in time exponential in d ≤ 30
here. Finally thanks to Corollary 2.26, it is possible to check if O is actually a
module lattice isomorphism Θ or not. When it is, we compute U = (Θ ·B)−1 ·C
and check if U ∈ Cong(G,G′). Summing up, for m ≤ 30, the algorithm we
just described solves wc-smodLIPK

B making no call to the oracle for nrdPIP,
providing the claimed Karp reduction. Since all necessary structures can be
computed efficiently from the parameters of the instance, it is also uniform.

References

1. Léo Ackermann, Adeline Roux-Langlois, and Alexandre Wallet. Public-key
encryption from lip. In International Workshop on Coding and Cryptography
(WCC), 2024.

2. Chandrashekar Adiga, Ismail Naci Cangul, and HN Ramaswamy. On the constant
term of the minimal polynomial of cos(2πn) over Q. Filomat, 30(4):1097–1102,
2016.

3. Huck Bennett, Atul Ganju, Pura Peetathawatchai, and Noah Stephens-Davidowitz.
Just how hard are rotations of Zn? algorithms and cryptography with the simplest
lattice. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 252–281. Springer, 2023.

4. Jean-François Biasse, Thomas Espitau, Pierre-Alain Fouque, Alexandre Gélin, and
Paul Kirchner. Computing generator in cyclotomic integer rings - A subfield
algorithm for the principal ideal problem in L(1/2) and application to the
cryptanalysis of a FHE scheme. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Paris,
France, April 30 - May 4, 2017, Proceedings, Part I, volume 10210 of Lecture
Notes in Computer Science, pages 60–88, 2017.

5. Jean-François Biasse and Fang Song. Efficient quantum algorithms for computing
class groups and solving the principal ideal problem in arbitrary degree number
fields. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual

23 This is the usual way to move between two possible definitions of module-LIP (see
[31, Lemma 3.10])

31



ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA,
USA, January 10-12, 2016, pages 893–902. SIAM, 2016.

6. Jean-François Biasse and Claus Fieker. Subexponential class group and unit group
computation in large degree number fields. LMS Journal of Computation and
Mathematics, 17(A):385–403, 2014.

7. Jean-François Biasse, Claus Fieker, and Tommy Hofmann. On the computation of
the hnf of a module over the ring of integers of a number field. Journal of Symbolic
Computation, 80:581–615, 2017.

8. Werner Bley, Tommy Hofmann, and Henri Johnston. Computation of lattice
isomorphisms and the integral matrix similarity problem. Forum of Mathematics,
Sigma, 10:e87, 2022.

9. Henri Cohen. A Course in Computational Algebraic Number Theory. Springer
Publishing Company, Incorporated, 2010.

10. Henri Cohen. Advanced topics in computational number theory, volume 193.
Springer Science & Business Media, 2012.

11. Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short
generators of principal ideals in cyclotomic rings. In Marc Fischlin and Jean-
Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT 2016, volume
9666 of Lecture Notes in Computer Science, pages 559–585. Springer, 2016.

12. Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short stickelberger class
relations and application to ideal-svp. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, Advances in Cryptology - EUROCRYPT 2017, volume 10210 of
Lecture Notes in Computer Science, pages 324–348, 2017.
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A Supplementary material

The aim of this appendix is to justify the computability of some structures used
in Section 3, to prove our reduction in the case where K is a cyclotomic field
and M = O2

K . Precisely, Algorithm 3 requires to compute a maximal order O
containing OK +OK · j and the finite group O1.

Subsection A.2 is devoted to the computation of maximal orders in quaternion
algebras Am = (am,−1

Fm
). A preliminary step is to compute the discriminant of

Am, which is discussed in A.1. Finally in A.3, we explicit the group O1 for big
enough conductors m, thanks to the classification given in [40, Chapter 32].

A.1 Discriminant of a quaternion algebra

Places and ramification. The complex embeddings σ of a number field F provides
absolute values vσ(x) = |σ(x)|, and completing F with respect to them yields
R or C, depending on whether σ is real or complex — these are often called
archimedian absolute values. Other absolute values can be obtained by looking
at prime ideals. For a prime ideal p of a number field F , the p-adic valuation of
x ∈ OF is the largest integer ep(x) such that pe|xOF . This yields a corresponding
p-adic absolute value vp(x) = N(p)−ep(x), and accordingly a corresponding p-
adic completion Fp. In a generic way, from now on we denote by v an arbitrary
absolute value of F , and the completion of F at v as the field Fv. We may also
call v a place24 of F . Given a quaternion algebra A over F and a place v of F ,
one can extend the scalars of A from F to Fv, giving the quaternion algebra
Av := A⊗F Fv over Fv.

Wedderburn-Artin theorem [40, Corollary 7.3.12] states that a quaternion
algebra A over a field F is either isomorphic to M2(F ), or a division algebra
(i.e., a non necessarily commutative ring in which every non zero element has an
inverse). In the first case, called the split case, all the completions are isomorphic
to a matrix algebra : Av ≃M2(F )⊗F Fv = M2(Fv). When A is a division ring,
Av can be either a matrix algebra or again a division ring. This leads to the
notion of ramification.

Definition A.1 ([40, 14.5.1 and 14.3.1]). Let v a place of F . We say that
the algebra A is ramified at v if Av = A⊗F Fv is a division ring, which means
that every nonzero element has an inverse. Otherwise we say that A is split (or
unramified) at v.

We denote RamA the set of ramified places of A. This set is finite [40,
Lem. 14.5.3]. Analogously as the discriminant for relative extensions of number
fields, the discriminant of A is an integral ideal of OF , defined as the product of

24 Formally, the language of places allows to avoid explicit choices of valuations, since
a place of a number field F is defined as an equivalence class of non-trivial absolute
values on F .
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the finite ramified places in A.

discF (A) :=
∏

p∈Ram(A)
p finite

p.

From its definition, it is clear that the discriminant encodes the ramification
at finite places. The behaviour at infinite places leads to the definition of totally
definite and indefinite algebras. In the core of this paper we focused on the
algebras (a,−1

F ) where K = F (
√
a)/F is a CM extension. They fall into the

category of totally definite quaternion algebras, an important property which
implies, for example, the finiteness of the groups O1 (see A.3).

Definition A.2 ([40], 14.5.7). We say that A is totally definite if all archimedean
places of F are ramified in A; otherwise, we say A is indefinite.

Hilbert symbol. To check if a quaternion algebra A over F ramifies at some place
v of F , one can compute a Hilbert symbol. In the following we give the definition
of the Hilbert symbol and we stand some properties useful for our purpose. A
standard reference for the theory of Hilbert symbol is [37, Chapter III] but all
the following results can be found in [40].

Definition A.3. Let A = (a,bF ) be a quaternion algebra over a number field F
and v be a place of F (either finite of infinite). The Hilbert symbol of A at v is(

a, b

v

)
:=

{
1 if x2 − ay2 − bz2 = 0 has a non trivial solution in (Fv)

3

−1 otherwise

Let us link the Hilbert symbol with the ramification. Recall that an element
α = x+ iy + jz + kt ∈ A has reduced norm nrd(α) = x2 − ay2 − bz2 + abt2. In
this expression, one recognizes the quadratic form involved in the definition of
the Hilbert symbol, with an extra term abt2. If there exists a non trivial solution
(x0, y0, z0) ∈ (Fv)

3 to x2 − ay2 − bz2 = 0, one can consider the quaternion
α0 = x0+ iy0+jz0 ∈ Av, which reduced norm is zero, by construction. Since the
invertible elements in Av are the ones with non zero reduced norm, we conclude
that α0 ̸= 0 is not invertible and Av can’t be a division ring (and so A does not
ramify at v).

The converse is actually true, that is, any element in A \ {0} with reduced
norm equal to zero gives a non trivial zero in (Fv)

3 to the quadratic form x2 −
ay2 − bz2. As a consequence, we obtain that the Hilbert symbol is non trivial
exactly at the ramified places:(

a, b

v

)
=

{
1 if A is split at v
−1 if A is ramified at v

.

Hilbert reciprocity law states that the product
∏

v(
a,b
v ) over all places v of F

is always equal to 1. Therefore, the set Ram(A) = {v | (a,bv ) = −1} of ramified
places has even cardinal.
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Lemma A.4 (Hilbert reciprocity law, [40, 14.6.3]). Let F be a number
field and a, b ∈ F×. Then, ∏

v

(
a, b

v

)
= 1, (3)

where the product is taken over all places v of F . In particular when F is totally
real of even degree and A is totally definite, the same holds when the product is
indexed over finite places of F .

This is a powerful result which sometimes makes us able to decide if the
ramification at a place is impossible or must occur, without computing any
Hilbert symbol. Finally, we state a formula for computing Hilbert symbols, in
the particular case of our quaternion algebras (am,−1

Fm
). We emphasize that the

following formula does not hold for prime ideals above 2.

Lemma A.5 ([40, 12.4.10]). Let F be a number field and A = (a,−1
F ). For

any prime ideal p of F such that p ∤ (2), the Hilbert symbol of A at p is given by(
a,−1
p

)
=

(
−1
p

)vp(a)

,

where
(

−1
p

)
:=

{
1 if − 1 is a square in (OF /p)

×

−1 otherwise is the Legendre symbol of −1

at p and vp(a) := max{e ∈ N | a ∈ pe} is the p-adic valuation of a.

Algorithms. In [39], the authors gave deterministic polynomial time algorithms
for computing Hilbert symbols, treating the case where p is above 2 separately.

Lemma A.6 ([39, Theorem 6.1]). Let F be a number field and let v be a
place of F . There exists an algorithm to evaluate the Hilbert symbol (a,bv ) for
a, b ∈ F×, that is deterministic polynomial time in the size of the inputs.

Corollary A.7. There exists an algorithm that given a quaternion algebra A =
(a,−1

F ) and the prime factorization of a ·OF , computes discF (A). Moreover, this
algorithm is deterministic and runs in polynomial time.

Proof. According to Lemma A.5, it is enough to check if the prime ideals dividing
a · OF ramify in A, as well as the prime ideals above 2. The latters can be
computed in polynomial time thanks to Lemma 2.5. For each prime ideal p
dividing either a · OF or 2 · OF , the Hilbert symbol (a,−1

p ) is computed in
deterministic polynomial time, using Lemma A.6. There are at most 2 · [F : Q]
such ideals.

A.2 Computing maximal orders

Relative norm for ideals in CM extensions. Here, we state some additionnal
results and terminology regarding ideals in CM fields, that will be of use later.
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Let K/F be a CM field, and p be a prime ideal of OF . Recall from [32, Chapter
I, (8.3) and (9.1)] that pOK factorizes in OK either as

pOK =

qq with q ̸= q prime ideals (split case)
q2 with q = q prime ideal (ramified case)
q with q = q prime ideal (inert case).

(4)

In the split and ramified cases, we have qq∩F = pOK ∩OF = p ([30, Chapter 3,
Exercise 9 (c)]). For the inert case, qq∩F = p2OK ∩OF = p2. The relative norm
of a prime ideal q ⊂ OK is then as NK/F (q) = qq ∩ F . Thanks to the previous
observation, this definition coincides with the one given in [32, Chapter III, §1].
The relative norm is then extended multiplicatively to the set of fractional ideals
of K. In particular it is multiplicative, i.e., NK/F (ab) = NK/F (a)NK/F (b) holds.
In fact NK/F (a) is also equal to the ideal of F generated by {NK/F (x) |x ∈ a},
see [32, Chapter III, (1.6)]. For a principal ideal a = g · OK , we have NK/F (a) =
NK/F (g) · OF .

Discriminant of orders. The discriminant of an order O in a quaternion algebra
A over F is the following ideal of OF :

disc(O) := {det(trd(αiαj)1⩽i,j⩽4), α1, . . . , α4 ∈ O} · OF ,

where trd(a) := a + a is the reduced trace map on A, and trd(aiaj)1⩽i,j⩽4 is a
4× 4 matrix with coefficients in F . Given a pseudo-basis O = a1α1⊕ · · ·⊕ a4α4,
and according to [40, Corollary 15.2.7, Paragraph 15.2.8], we have

disc(O) = (a1 · · · a4)2 · det(trd(αiαj)1⩽i,j⩽4) · OF

In fact disc(O) is the square of an ideal of OF (see [40, Section 15.4]) and we call
reduced discriminant of O the ideal such that discrd(O)2 = disc(O). It somehow
measures how far O is from being a maximal order, in the sense that it is a
maximal order if and only if its (reduced) discriminant is equal to the one of A.

Lemma A.8 ([40, Proposition 15.5.5]). A quaternion order O in a quaternion
algebra A is maximal if and only if discrd(O) = disc(A).

Notice that relative discriminants in a CM (so quadratic) extension K/F are
defined in the same fashion

disc(O) := {det(trd(aiaj))1⩽i,j⩽2, a1, a2 ∈ O} · OF ,

for any order O ⊂ OK . For the maximal order O = OK , we denote ∆K/F :=
disc(OK) the relative discriminant of K over F .

Example A.9. Consider A = (−1,−1
Q ). According to [40, Example 15.5.7] we have

disc(A) = 2Z. The order O := Z ⊕ Zi ⊕ Zj ⊕ Zk has basis {1, i, j, k} and
one computes disc(O) = (det diag(2,−2,−2,−2)) · Z so discrd(O) = 4Z and
O is not maximal. So this order is not maximal in A. Now consider O′ :=
Z ⊕ Zi ⊕ Zj ⊕ Zγ, where γ =

(
1+i+j+k

2

)
. Then one computes disc(O′) =

(det diag(2,−2,−2,−1/2)) · Z so discrd(O′) = 2Z and O′ is thus maximal.
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Algorithms. Before focusing on the case of the algebras Am, we give a generic
procedure to compute a maximal order Õ containing some given order O in
a quaternion algebra A. As in the commutative case, the algorithm can be
described iteratively. Given a prime ideal p of OF , we say that O is p-maximal
if vp(discrd(O)) is minimal, i.e., when vp(discrd(O)) = vp(discF (A)) holds.
Therefore, the maximal orders of A are precisely the orders which are p-maximal
for every prime ideal. It is enough to look at the prime ideals p dividing discrd(O)
(since q ∤ discrd(O) implies that vq(discrd(O)) is already minimal). Once the
factorization of discrd(O) is known, a p-maximal order containing O can be
computed in deterministic polynomial-time. Repeating this step for each prime
p |discrd(O) leads to a maximal order O, as desired.

Lemma A.10 ([39, Algorithm 7.10]). Let O and A be as above and let p be
a prime ideal of OF . There exists an algorithm that given as input a pseudo-basis
of O and p, computes a pseudo-basis of a p-maximal order containing O. It is
deterministic and it runs in polynomial-time in rankZ(O) = 4 · [F : Q] and in
the size of O.

Remark A.11. The complexity of this algorithm is not mentionned in [39] however
it is guaranteed to run in deterministic polynomial-time thanks to the following
result.

Lemma A.12 ([39, Theorem 7.14]). Let O and A be as above and let p be a
prime ideal of OF . There exists an algorithm that given as input a pseudo-basis
of O, computes a pseudo-basis of a maximal order Õ ⊃ O. It is deterministic
polynomial-time reducible to the problem of factoring discrd(O) in OF .

An explicit computation in cyclotomic fields. Let Km = Fm(am) be the m-th
cyclotomic field with maximal totally real subfield Fm, andAm be the quaternion
algebra (am,−1

Fm
) over Fm. We investigate the maximality of the order Om =

OKm ⊕OKm · j ⊂ Am, and we give a polynomial time algorithm for computing
a maximal order containing it. In Corollary A.17, we prove that Om is often
maximal and always not far from being maximal, in the sense that discrd(Om)
is either OFm

, a prime ideal p of OFm
or p2. Since discrd(Om) ⊂ discFm

(Am)
holds (as for any order in Am) we get as a corollary the prime factorization of
discFm(Am). Once given the factorizations of discFm(Am) and discrd(Om), we
are then able to compute a maximal order containing Om in polynomial time.

Lemma A.13 ([40, 15.2.12]). We have the equality discFm
(Om) = ∆2

Km/Fm
.

Proof. Apply [40, 15.2.12] with the OFm-order S = OKm , whose discriminant
relatively to OFm

is by definition ∆Km/Fm
.

So, computing discFm
(Om) boils down to computing the factorization of

∆Km/Fm
. This is done in two steps. First, we recall how this ideal can be

built efficiently. Then, a property says that the prime ideals of OFm dividing
∆Km/Fm

are the ones which ramify in OKm
(this is in fact an equivalence, see [32,
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Chapter III, Corollary 2.12]). Ramification in cyclotomic CM-extensions is well-
understood: Lemma A.15 recalls those ramified prime ideals. Additionally, the
(relative) different ideal DK/F is an ideal of OK whose prime factors are exactly
the primes of OK over the ones in F that ramify. Morally, DK/F encodes the
ramification in K/F , as ∆K/F does, but at the level of K. Below we recall how
these ideals are linked.
Lemma A.14 ([32, Chap. 3, Prop. 2.4]). Let K = F (α)/F be an extension
of number fields and suppose that OK = OF [α]. Then,

DK/F = (T ′(α)) · OK

∆K/F = NK/F (T
′(α)) · OF ,

where T (X) ∈ OF [X] is the minimal polynomial of α over F .
In our case, Km = Fm(ζm), OKm

= OFm
[ζm]25 and the minimal polynomial

of ζm over Fm is T (X) = X2 − (ζm + ζ−1
m )X + 1 so ∆Km/Fm

= NKm/Fm
(2ζm −

(ζm + ζ−1
m )) · OFm = NKm/Fm

(ζm − ζ−1
m ) · OFm

= (ζm − ζ−1
m )2 · OFm

. Moreover,
from the identity ζ−1

m − ζm = ζ−1
m (1 − ζm)(1 + ζm), we have DKm/Fm

= (1 −
ζm)(1 + ζm) · OKm

.

Lemma A.15 ([41, Proposition 2.15]). If m = pe or 2pe with p an odd
prime, then Km/Fm is ramified at the unique prime ideal above p and unramified
everywhere else. In the other cases, Km/Fm is unramified.

Corollary A.16. If m = pe or 2pe with p an odd prime, then ∆Km/Fm
= p

where p = (ζm+ ζ−1
m −2) is the unique prime ideal above p. If m = 2e is a power

of two (with e > 2), then ∆Km/Fm
= p22 where p2 = (ζm + ζ−1

m ) is the unique
prime ideal above 2. Otherwise, ∆Km/Fm

= OFm .

Before proving this corollary, recall that, given a CM extension Km/Fm,
the relative norm of a ∈ Km over Fm is NKm/Fm

(a) = aa. The same notation
NKm/Fm

is used for the relative norm of ideals of K, as defined at the beginning
of this subsection. The absolute norm of an ideal a ⊂ K is the Z-fractional ideal
N(a) (equal to |OKm

/a| · Z when a is an integral ideal).

Proof. Thanks to [32, Chapter III, Corollary 2.3 and 2.12], the primes ideals of
Fm dividing ∆Km/Fm

are exactly the ramified primes inOKm
. So, by Lemma A.15,

there are three cases to distinguish. If m is not a prime power, then no prime ideal
ramifies so ∆Km/Fm

= OFm
. If m = pe, then 2 is coprime to m and therefore

1+ ζm =
1−ζ2

m

1−ζm
is a cyclotomic unit, see c.f., [41, §8.1]. Since Km/Fm is ramified

at the unique prime ideal above p by Lemma A.15, 1− ζm cannot also be a unit,
and so we have DKm/Fm

= (1− ζm) · OKm as the sole ideal above the prime p in
Fm that ramifies in Km, and p = (ζm+ ζ−1

m −2) ·OFm
as claimed, by computing

the relative norm of 1− ζm. Note that the case where m = 2pe with p odd prime
leads to the same result, since Km = Kpe .26

25 In fact for cyclotomic rings of integers we have OKm = Z[ζm]. But then OFm [ζm] is
a sub-order containing both Z and ζm, so we must have equality.

26 Indeed, Kpe ⊂ Km holds because pe | m and φ(pe) = φ(m) so the fields have same
degree over Q and are thus equal.
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Now suppose that p = 2. Then both ζm and −ζm are primitive m-th roots of
unity. In particular NKm/Q(1−ζm) = NKm/Q(1+ζm). Using that −ζm = ζm/2+1,
we have the identity (1− ζm)

∑m/2
i=0 ζim = 1 + ζm, so that

∑m/2
i=0 ζim ∈ OKm

has
norm 1: it is a unit. Hence we have (1−ζm) ·OKm

= (1+ζm) ·OKm
. We compute

∆Km/Fm
as NKm/Fm

((1− ζm)2) = (ζm+ ζ−1
m − 2)2. To finish the proof, we must

argue that (ζm+ζ−1
m −2)·OFm is in fact equal to p2. For this, we use [2, Theorem

2.2] which implies that N(ζm + ζ−1
m ) = 2. Thus, 2 ∈ (ζm + ζ−1

m ) · OFm and the
inclusion (ζm + ζ−1

m − 2) ⊂ p2 holds. But these two integral ideals have the same
absolute norm, so they must be equal.

Corollary A.17. The following assertions hold:

1. If m = 2e (with e > 2) then discrd(Om) = p22, where p2 = (ζm + ζ−1
m ) is the

unique prime ideal above 2, whereas discFm
(Am) = OFm

.
2. If m = pe or 2pe with p = 1 (mod 4) then discrd(Om) = p, where p =

(ζm+ζ−1
m −2) is the unique prime ideal above p, whereas discFm

(Am) = OFm
.

3. If m = pe or 2pe with p = 3 (mod 4) then discrd(Om) = p, where p =
(ζm + ζ−1

m − 2) is the unique prime ideal above p, whereas discFm(Am) = p.
In particular, Om is maximal.

4. Otherwise, discrd(Om) = discFm(Am) = OFm . In particular, Om is maximal.

Proof. In all cases we will use the inclusion of ideals discrd(Om) ⊂ discFm
(Am) ⊂

OFm , so that any prime ideal dividing the second discriminant must also divide
the first one.

1. If m = 2e and e > 2, then we have discFm
(Om) = ∆2

Km/Fm
, by Lemma A.13

and ∆Km/Fm
= p22 by Corollary A.16 so discrd(Om) = p22. There are [Fm :

Q] = φ(m)/2 = 2e−2 ∈ 2Z infinite places in Fm which all ramify in Am.
Since discFm(Am) | discrd(Om), the unique finite place of Fm which can
potentially ramify in Am is p2. But then by Hilbert reciprocity law (3),

1 =
∏
v∞

(
am,−1
v∞

)
︸ ︷︷ ︸
=(−1)deg(Fm) =1

·
∏
p

(
am,−1

p

)
=

(
am,−1

p2

)
·
∏
p∤(2)

(
am,−1

p

)
︸ ︷︷ ︸

=1

=

(
am,−1

p2

)
.

so Am does not ramify at p2 and discFm
(Am) = OFm

.
2. If m = pe or 2pe with p = 1 (mod 4), then Corollary A.16 gives ∆Km/Fm

= p
so discrd(Om) = p. There are [Fm : Q] = φ(m)/2 = (p − 1)pe−1/2 ∈ 2Z
infinite places in Fm which all ramify in Am. In the same way, the unique
finite place of Fm which can potentially ramify in Am is p. Again by Hilbert
reciprocity law, Am can’t ramify at p so discFm

(Am) = OFm
.

3. If m = pe or 2pe with p = 3 (mod 4), then Corollary A.16 gives ∆Km/Fm
= p

so discrd(Om) = p. There are [Fm : Q] = φ(m)/2 = (p − 1)pe−1/2 ∈
(2Z + 1) infinite places in Fm which all ramify in Am. In the same way,
the unique finite place of Fm which can potentially ramify in Am is p. Now
Hilbert reciprocity law implies thatAm must ramify at p, so discFm(Am) = p.
Finally, discrd(Om) = discFm

(Am) so Om is maximal, by Lemma A.8.
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4. In all other cases, Corollary A.16 gives ∆Km/Fm
= OFm so discFm(Am) =

discrd(Om) = OFm
and Om is maximal, by Lemma A.8.

Algorithm 4: Computing a maximal order Õm ⊃ Om = OKm
⊕OKm

·j
Input: An integer m ∈ N>2 (m ̸= 4), a primitive m-th root of unity ζm.

Km = Q(ζm) (resp. Fm = Q(ζm + ζ−1
m )). A pseudo-basis

(B, {a, b}) of OKm
= Z[ζm] over OFm

= Z[ζm + ζ−1
m ].

Output: A pseudo-basis over OFm
of a maximal order containing Om.

1 Check if m = 2e, pe or 2pe and if p = 1 or 3 (mod 4);
2 Compute (the prime factorization of) discFm(Am) and discrd(Om) ▷

Thanks to Corollary A.17;
3 if discFm

(Am) = discrd(Om) then
4 return (diag(B,B), {a, b, a, b})
5 else
6 Õm ← p-maximal order containing Om ▷ Using Lemma A.10;
7 return (Õm)

Proposition A.18. For m ∈ N>2,m ̸= 4 and with the previous notations,
Algorithm 4 computes (a pseudo-basis of) a maximal order Õm of Am containing
the order Om = OKm

⊕ OKm
· j. Moreover, it runs in polynomial time in the

degree dm = φ(m) = [Km : Q].

Proof. Correctness. If discFm
(Am) = discrd(Om), then Lemma A.8 ensures

that Om is already maximal. Otherwise, Corollary A.17 tells us that we have
discrd(Om) = p or p2. In both cases, vp(discFm(Am)) = 0 and vq(discFm(Am)) =
vq(discrd(Om)) = 0 for any prime q ̸= p, so it is enough to build an order
Õm ⊃ Om which is p-maximal i.e., such that vp(discrd(Õm)) is maximal. This
is done in step 6, according to Lemma A.10.

Complexity. One can check if m is either of the form 2e, pe or 2pe, in
polynomial time in m. Step 6 is achieved in polynomial time in rankZ(O) = 2d
and in size(O) = poly(dm, log∆Km) = poly(dm), as log∆Km = poly(dm) holds
for cyclotomic fields (see [41, Proposition 2.1]).

A.3 Units of reduced norm 1 of an order

Recall that our setting is a CM extension K/F of number fields, and a totally
definite quaternion algebra A = (a,−1

F ), where a is such that K = F (
√
a). Let

A× resp. A1 is the set of elements with non-zero reduced norm (equivalently,
invertible), resp. reduced norm equal to 1. For any order O in A, we let O× =
A×∩O (so, the units of O) and O1 = A1∩O. Lastly, we let O×

K ,O1
K and O×

F ,O1
F

the intersection of A× resp. A1 with OK , resp. OF .
We now precise the structure of O× and O1.
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Proposition A.19 ([40, Proposition 32.3.7]). Let O be a maximal order of
a definite quaternion algebra A. Then O1 is a finite group.

We are mostly concerned with the possible size of O1, and the goal of this
section is to show that it remains small. The structure of O1 can sometimes
be elucidated, but following [40, Chap. 32], it is easier to understand working
modulo signs. Let PA× := A×/F×. In the totally definite case, O1/{±1} is not
only a finite subgroup of PA1, but its structure is also known to some extent.

A dihedral group Dm can be understood as the group of symmetry of a
regular polygon with m vertices, and thus is generated by a reflexion τ and a
cyclic permutation σ of order m. It is non commutative when m > 2, as we have
τστ = σ−1. Recall that Sn is the group of all the permutations of n symbols,
and An is its subgroup of even permutations.

Proposition A.20 ([40, Proposition 32.4.1]). The finite subgroups of PA×

are cyclic, dihedral, or isomorphic to a permutation group A4, S4, A5. In particular,
the group O1/{±1} is of this form.

Finite groups of PA× isomorphic to a permutation group are called exceptional.
Their size is constant (respectively 12, 24 and 60), and particularly independent
of the CM extension K/F . We will show that for many (and the most interesting)
cases, O1/{±1} will not be an exceptional group.

There are known characterizations and even descriptions (up to isomorphism)
of each of the possible situations above, proved in [40, Proposition 32.5.1, 32.5.5,
32.5.8, 32.6.6, 32.7.1]. We separate the exceptional and non-exceptional cases for
clarity.

Proposition A.21 (Characterizations of non-exceptional groups).

– PA× contains a cyclic subgroup Γ of order m > 2 if and only there exists
a primitive m-th root of unity ζm in an algebraic closure of F , such that
ζm + ζ−1

m ∈ F and F (ζm) = K.27
– PA1 contains a cyclic subgroup of order m if and only if PA× contains one

of order 2m. In this case, it contains ⟨ζ2m⟩, of order m.
– PA1 contains a dihedral group of order 2m > 4 if and only if, with the

notation ζm as above, we have K = F (1 + ζm).

When there exists a cyclic group Γ in PA×, then it is conjugated to ⟨1 + ζm⟩,
the group generated by 1 + ζm, by an element of A×.

Proposition A.22 (Characterizations of exceptional groups). The group
PA1 contains a subgroup isomorphic to:

– A4 if and only if a2 = −1;
– S4 if and only if a2 = −1 and

√
2 ∈ F ;

– A5 if and only if a2 = −1 and
√
5 ∈ F .

27 In [40, Proposition 32.5.1] the condition that K splits A is needed. The latter is in
fact automatic for us, thanks to [40, Proposition 2.3.1].

43



Any such subgroups are isomorphic if and only if they are conjugated by an
element of A×.

These exceptional characterizations can be understood informally by the
presence of 1√

2
(1±ϵ), of order 4 (modulo sign) and 1√

2
(ϵ±ϵ′) of order 2 (modulo

sign) when
√
2 ∈ F , for ϵ, ϵ′ distinct in {i, j, k}. Algebraically, one then works

out the structure of S4, or identifies these quaternions to symmetries of regular
polygons. In the typical usecase where K is a power-of-two cyclotomic field, these
exceptional groups appear in PA1. The case of

√
5 involves the golden ratio and

can also be worked out similarly, see [40, Chap. 11].
While copies of all these well-identified groups can be explicitely written out

in PA×, without the knowledge of the conjugating element δ ∈ A×, we only
know them “up to isomorphism” and cannot explicitely compute with them. We
now characterize the elements of norm 1 in OK +OK · j. Recall that µ(K) is the
group of roots of unity in the number field K, which is cyclic [32, 7.4].

Corollary A.23 (Corollary of 2.3). Let O0 := OK +OK · j. We have O1
0 =

⟨j, µ(K)⟩, that is, O1
0 is the group generated by j and µ(K)

Proof. Let x = a+ bj ∈ O0. We have x ∈ O1
0 if and only if nrd(x) = aa+ bb = 1.

Corollary 2.3 gives the solutions.

This tells us that O1
0/{±1} is a dihedral group of size at least |µ(K)|. When

µ(K) is large enough, O1/{±1} then cannot be exceptional. We sum-up these
observations in the next proposition.

Proposition A.24. Let O be a maximal order containing O0 and d = [F : Q].
If |µ(K)| ≥ 61, then O1/{±1} is dihedral and O1 has at most 16d2 elements.

Proof. By inclusion, we have O1 ⊃ ⟨j, µ(K)⟩ = O1
0. Let G,G0 be respectively

O1/{±1} and O1
0/{±1}. Because |G0| > 60, neither G or G0 can be any of

the exceptional groups, thus they are cyclic or dihedral. In any of this cases,
the cyclic component of G, generated by γ (say), contains the cyclic component
µ(K)/{±1} of G0 generated by ζ. This means that γ commutes with ζ, and that
±γk = ±ζ, for some integer k ≥ 1. By cardinality of µ(K), we also see that
γ ̸= −1 and therefore γ ̸∈ F . Now, ζ or −ζ is a primitive root of 1 in K \ F ,
so we have F ⊊ F (ζ) ⊂ K. Because K is quadratic over F , this means that we
have K = F (ζ) ⊂ F (γ) ⊂ A. Since all elements in A have degree at most 2 over
F , with minimal polynomial T 2 − (γ + γ)T + nrd(γ), F (γ) has degree 2 over F
and thus actually F (γ) = K. We deduce that γ and −γ are roots of unity in K,
and one (or both) of them any generator of µ(K). The conclusion comes from
Lemma 2.4.

A more general version of this proposition is as follows:

Proposition A.25. Let K be a CM field, such that K = F (
√
a) is a quadratic

extension of a totally real field F of degree d = [F : Q]. Let O′ be an order in
A = (K,−1

F ). If d > 2, then O′1 has at most 16d2 elements.
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Proof. O′1/{±1} is a finite subgroup of PA1. According to Proposition A.21,
and [40, Proposition 32.7.1], the finites subgroup of PA1 are either dihedral,
cyclic, or conjugated to an exceptionnal subgroup A4,A5 or S4. If O′1/{±1} falls
in the latter case, considering the size of each of these groups, this means that
|O′1/{±1}| ⩽ 60.

Suppose now that O′1/{±1} is cyclic of order m. Then by Proposition A.21,
it is conjugated to the group generated by ζ2m, where ζ2m is a 2m-th root
of unity in A (so a m-th root of −1) such that A = (F (ζ2m),−1

F ). Again by
Proposition A.21, ζ2m + ζ−1

2m ∈ F , so the minimal polynomial of ζ2m in F [T ] is
T 2 − (ζ2m + ζ−1

2m)T +1. This polynomial is of degree 2, and so [F (ζ2m) : F ] = 2.
We know, according to Lemma 2.4, that µ(F ) is a cyclic group of order ⩽ 2d2,
so µ(F (ζ2m)) is a cyclic group of order ⩽ 8d2, so 2m is at most equal to 8d2. To
sum up, in this case, we have |O′1/{±1}| ⩽ 4d2, and |O′1| ⩽ 8d2.

Finally, if O′1/{±1} is dihedral of order 2m > 4, then by Proposition A.21,
it contains a cyclic subgroup of order m. As per the same argument as above,
m ⩽ 4d2, |O′1/{±1}| ⩽ 8d2, and |O′1| ⩽ 16d2.

Since we assumed in the Proposition that d > 2, we have 16d2 > 120, and
so, to sum up, |O′1| ⩽ 16d2.

Quaternion algebra over cyclotomic fields. The special case of cyclotomic CM
extensions can be made explicit for large conductors, so we isolate its formulation
for the sake of clarity and reusability. Recall the notation Km for the cyclotomic
field Q(ζm), with maximal totally real subfield Fm. Denote byAm the quaternion
algebra Km + Km · j over Fm, with order Om = OKm

+ OKm
· j. Finally, Õm

denotes a maximal order containing Om. The following result explicits Õm in all
but one cases.

Corollary A.26. Let m ≥ 2 be an integer. If m is of the form m = 2e or
m = pe or 2pe with p = 1 (mod 4) prime, suppose furthermore that m ≥ 31.
Then,

Õm
1 = O1

m = ⟨±ζm, j⟩.

Remark A.27. Let G be the subgroup of Aut(O2
Km

) formed by diagonal matrices
diag(a, a) (c.f., Proposition 3.13) and H the subgroup of matrices either diagonal
or antidiagonal with coefficients a ∈ µ(Km) on the first row, and 1 on the second.
Then G is a normal subgroup and G ∩ H = {Id}. Moreover, one checks that
G ·H = Aut(O2

Km
), so Aut(O2

Km
) is isomorphic to a semi-direct product G⋊H.

Through the natural embedding A → A⊗Fm Km ≃ M2(Km), the order Om is
mapped to M2(OKm

) and O1
m to G. Automorphisms in Aut(O2

Km
) \ G do not

correspond to quaternions.
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