
Improved Linear Key Recovery Attacks on
PRESENT

Wenhui Wu1,3, Muzhou Li1,3,� and Meiqin Wang1,2,3

1 School of Cyber Science and Technology, Shandong University, Qingdao, China
2 Quan Cheng Shandong Laboratory, Jinan, China

3 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education,
Shandong University, Jinan, China

wenhuiwu@mail.sdu.edu.cn, muzhouli@mail.sdu.edu.cn, mqwang@sdu.edu.cn

Abstract. PRESENT is an ultra-lightweight block cipher designed by Bogdanov et
al., and has been widely studied since its proposal. It supports 80-bit and 128-bit
keys, which are referred as PRESENT-80 and PRESENT-128, respectively. Up to
now, linear cryptanalysis is the most effective method on attacking this cipher, espe-
cially when accelerated with the pruned Walsh transform. Combing pruned Walsh
transform with multiple linear attacks, one can recover the right key for 28-round
PRESENT-80 and -128. Later, this method is further improved with affine pruned
Walsh transform by adding more zeros in the Walsh spectrum through rejecting some
data. This leads to the 29-round attack on PRESENT-128 with full codebook.
In this paper, we follow the affine pruned Walsh transform accelerated linear method,
and propose 29-round attacks on both PRESENT-80 and PRESENT-128 without
using full codebook. Both attacks rely on a statistical model depicting distributions
of the experimental correlation when some data are artificially rejected in its compu-
tation. Besides, detailed analysis of complexity reduction for each linear hull used
in attacking PRESENT is also provided and supported by an automatic tool. Our
29-round attack on PRESENT-80 mainly benefits from this tool. According to our
knowledge, both attacks are the best ones on PRESENT so far.
Keywords: PRESENT · Affine Pruned Walsh Transform · Linear Cryptanalysis

1 Introduction
Lightweight cryptography is a widely discussed topic in recent years, especially its design
and cryptanalytic results. PRESENT [BKL+07] is one of the typical lightweight ciphers
announced by Bogdanov et al. in CHES’07, and has been an ISO standard since 2012.
This cipher operates on the 64-bit state with the 80-bit or 128-bit master key, which are
named as PRESENT-80 and PRESENT-128, respectively. Both variants adopt the same
round function that is based on the substitution-permutation network. Given the 64-bit
plaintext, they proceed 31 times of the round function and then the last whitening key is
XORed with the state before outputs the ciphertext.

Since its proposal, many cryptanalytic results have been provided, such as integral at-
tack [ZRHD08], differential attacks [Wan08, AC09, ÖVTK09], statistical saturation [CS09],
and various variants of linear attacks [Ohk09, JSZW09, Cho10, ZZ15, BTV18, FN20,
Fló22]. Among all of them, the most effective attacks are given by variants of linear crypt-
analysis, especially those using (affine) pruned Walsh transform accelerated [FN20, Fló22].

Linear cryptanalysis [Mat93] was proposed by Matsui in EUROCRYPT’93, and has
become one of the most important methods in designing and analysing ciphers. It ex-
ploits a linear approximation connecting some plaintext and ciphertext bits, as well as

mailto:wenhuiwu@mail.sdu.edu.cn
mailto:muzhouli@mail.sdu.edu.cn
mailto:mqwang@sdu.edu.cn

2 Improved Linear Key Recovery Attacks on PRESENT

key bits. Matsui proposed two types of key recovery attacks based on this linear ap-
proximation, which are named as Matsui’s Algorithm 1 and Matsui’s Algorithm 2 in the
literature. In Matsui’s Algorithm 1, one can deduce 1-bit key after gathering enough
plaintext-ciphertext pairs. When using Matsui’s Algorithm 2, one will put the linear ap-
proximation in the middle part of the target (round-reduced) cipher, and try to recover
key bits involved in rounds in both sides. Statistical behavior of this method is accurately
constructed by Blondeau and Nyberg [BN17].

Multiple linear cryptanalysis is a variant of linear attacks, which was firstly proposed
by Kaliski and Robshaw [JR94], and then extended by Biryukov et al. [BCQ04]. In
this variant, one will adopt multiple independent linear approximations and can gain
lower data complexities. Its statistical behavior is also refined in [BN17]. Meanwhile,
there also exist other type of linear attacks that use multiple approximations, such as
the multidimensional linear attack [BJV04, HCN08, HCN09, HVLN15] and multivariate
linear attack [BTV18].

The idea of using Walsh transform to accelerate linear key recovery attacks was pro-
vided by Collard et al. [CSQ07], where only the last-round key can be recovered efficiently
with fast Walsh transform (FWT). In EUROCRYPT’20, Flórez-Gutiérrez et al. [FN20]
provided a framework to deal with the general case when key recovery is considered on
both the plaintext and ciphertext sides. In their framework, the experimental correlation
is evaluated step-by-step, and thus can be accelerated in many steps with FWT. Mean-
while, they also used the pruned Walsh transform whenever possible, which avoid wasting
time costs to some extent. With this framework, they proposed 28-round key recovery
attacks on both PRESENT-80 and PRESENT-128 with multiple independent approxima-
tions. Later, in ASIACRYPT’22, Flórez-Gutiérrez [Fló22] introduced the affine pruned
Walsh transform technique, which further improves this framework. When evaluating the
experimental correlation for some linear hulls, more zeros are added in the Walsh spectrum
through rejecting some data, thus leading to reduced time complexity. With this improved
framework, 29-round attack on PRESENT-128 using full codebook is proposed. However,
it’s unclear how the success probability of this attack is estimated. From [Fló22], we only
found one sentence: “the statistical model from [BN17] is used with careful consideration
that the number of available plaintexts depends on the approximation”. Taking the num-
ber of remaining data into consideration will change the form of the statistic constructed
in [BN17]. In other words, previous model cannot be directly used. Meanwhile, whether
this improved framework can lead to 29-round key recovery attack on PRESENT-80 is
uncertain. Hence, we are motivated to check if we can gain better key recovery attacks on
these two ciphers with the affine pruned Walsh transform technique, and provide a better
understanding of the statistical behavior behind this new technique. Our contributions
are listed as follows.

Statistical Behavior behind the Affine Pruned Walsh Transform Technique. In this
new method, some data are rejected during the evaluation of the experimental correlation,
with the aim of reducing its time costs. However, such artificially filtering of data will lead
to deviation from expected distributions given in [BN17]. Similar questions also exist when
multiple independent linear hulls are used. In Sect. 3, we introduce the statistical behavior
behind this new technique, where distributions of the experimental correlation when some
data are rejected during its evaluation are provided. Based on the statistical behavior for a
single linear hull, we also construct a statistical model to deal with the case when multiple
independent hulls are utilized. All our statistical models are proposed under strictly proofs
and have been experimentally verified using SmallPRESENT-[4]. Such newly constructed
models provide the accurate relation between success probability and data complexity for
the improved framework proposed by [Fló22].

Wenhui Wu, Muzhou Li and Meiqin Wang 3

Non Full-Codebook Key Recovery Attack on 29-Round PRESENT-128. Following the
affine pruned Walsh transform framework, we introduce the improved 29-round multiple
linear attack on PRESENT-128 in Sect. 4. We adopt the same linear hulls used in [Fló22]
but with more detailed analysis of complexity reduction for each linear hull. Such analysis
is efficiently proceeded by an automatic tool we constructed. Meanwhile, benefiting from
our statistical models, this attack can be mounted without adopting the full-codebook.

First Key Recovery Attack on 29-Round PRESENT-80. In Sect. 5, we adopt a similar
key recovery process as used in attacking 29-round PRESENT-128. However, we subtly
choose some 24-round linear hulls from those given by [FN20]. A linear hull is included
only if it can enlarge the distance between variances of right and wrong key guesses,
and in the same time, the extra time complexity caused by this hull cannot increase the
final complexity too fast. Such trade-offs can be effectively found using our constructed
automatic tool, which provides detailed analysis of complexity reduction for each hull.

Comparison between our attacks and previous linear-like attacks is depicted in Table 1.

Table 1: Comparison of linear attacks on round-reduced PRESENT. KP denotes the
known-plaintext setting, while DKP is the distinct known-plaintext setting. Time com-
plexities are evaluated in encryption units, and memory costs are evaluated in memory
registers.

Key Rds. Non Full Complexity Success Ref.
Codebook Data Time Memory Pr.

128
28† 264.0 DKP 2122 284.6 95% [FN20]

29 264.0 DKP 2124.06 299.2 40.11%‡ [Fló22]
3 262.88 DKP 2126.33 297.91 62.83% Sect. 4

80

26

3 263.8 KP 272.0 232.0 51% [BN16, Cho10]
3 263.0 KP 268.6 248.0 95% [BTV18]
3 261.1 KP 268.2 244.0 95% [FN20]
3 260.8 KP 271.8 244.0 95% [FN20]

27
264.0 KP 274.0 267.0 95% [ZZ15]

3 263.8 DKP 277.3 248.0 95% [BTV18]
3 263.4 DKP 272.0 244.0 95% [FN20]

28† 264.0 DKP 277.4 251.0 95% [FN20]
29 3 263.93 DKP 278.87 271 51.23% Sect. 5

†Trade-offs between data and time complexities can be made in these two attacks
[FN20].
‡Success probability is re-evaluated with our statistical model constructed in Sect. 3,
since previous estimation in [Fló22] is not accurate as shown in Appendix D.

2 Preliminaries
2.1 Brief Introduction of PRESENT
PRESENT [BKL+07] is an ultra-lightweight block cipher proposed by Bogdanov et al.. It
adopts the substitution-permutation network with 64-bit block length. Its key length can
be 80 and 128 bits, which are often referred as PRESENT-80 and PRESENT-128 in the
literature, respectively.

4 Improved Linear Key Recovery Attacks on PRESENT

Both variants of PRESENT iterates the same round function 31 times, and then
a whitening key is XORed to the state at the end. Round function of PRESENT is
composed of three consecutive operations: addRoundKey, sBoxLayer and pLayer. Denote
the i-th rightmost bit of X starting from 0 as X[i]. In addRoundKey, a 64-bit round key
Ki is XORed to the 64-bit state. The sBoxLayer consists of 16 parallel 4-bit Sboxes S(x),
which is shown in Table 2. pLayer is a bit-wise permutation that moves the j-th bit to
the P (j)-th bit, where P (j) = 16j mod 63 for j ̸= 63, and P (63) = 63. Given the 80-bit
or 128-bit master key K, one can generate all Ki as well as the last whitening key with
key schedules depicted in Algorithm 1 and 2 given in Appendix A.

Table 2: 4-bit Sbox used in PRESENT (in hex form).

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

2.2 (Affine) Pruned Walsh Transform Accelerated Linear Attacks
Linear Cryptanalysis. This method was originally proposed by Matsui [Mat93], where a
linear approximation is utilized to distinguish between the right and wrong key guesses.
To mount key recovery attacks, Matsui gave two different algorithms. Matsui’s Algo-
rithm 1 directly use this linear approximation and can deduce 1-bit key information after
obtaining enough plaintext-ciphertext pairs (x̃, ỹ). While in Matsui’s Algorithm 2, the
linear approximation is placed in the middle of the block cipher. Denote EK as the target
cipher with block length n, which is divided into three parts E2 ◦ E′

K ◦ E1. E′
K is the

part covered by the linear approximation, while E1 and E2 are rounds covered in the
key recovery process. Let x̂ = E1(x̃) and ŷ = E−1

2 (ỹ). The linear approximation can
then be represented as ⟨u, x̂⟩ ⊕ ⟨v, ŷ⟩ = 0, where ⟨u, x̂⟩ denotes the inner product of u
and x̂. The mask pair (u, v) is also referred as the linear hull in the literature. Given N
plaintext-ciphertext pairs (x̃, ỹ), one computes the experimental correlation

ĉor = 1
N

∑
(x̃,ỹ)

(−1)⟨u,E1(x̃)⟩⊕⟨v,E−1
2 (ỹ)⟩

for each key guess. According to [BN17], this statistic follows different distributions un-
der the right and wrong key guess, thus one can recover the right key with some success
probability Prs. Correlation of (u, v) is determined by all linear trails comprising it, and
varies from the right key K. Denote C(u, v)(K) as its correlation under K. To determine
the relation between N and Prs, Nyberg [Nyb94] introduced the definition of expected lin-
ear potential ELP = 2−|K| ∑

K |C(u, v)(K)|2. Detailed relation is constructed in [BN17]
with its ELP as a vital parameter. When multiple independent linear hulls are available,
Blondeau and Nyberg also constructed the above relation in [BN17] by summing these
squared experimental correlations ĉor

2 of each hull together.

Linear Cryptanalysis with (Affine) Pruned Walsh Transform. The idea of using Walsh
transform to accelerate linear cryptanalysis was introduced by Collard et al. [CSQ07].
However, this framework is restricted to the case where only the last-round key in the key
recovery process can be recovered. In EUROCRYPT’20, Flórez-Gutiérrez et al. [FN20]
generalized their technique into the case when key recovery is considered on both the
plaintext and ciphertext sides. They also considered pruned Walsh transform whenever
possible, which can save time costs to some extent. Last year, Flórez-Gutiérrez [Fló22]
improved this framework using the affine pruned Walsh transform technique, by adding
more zeros in the Walsh spectrum through rejecting some data.

Wenhui Wu, Muzhou Li and Meiqin Wang 5

Distinguisher

Figure 1: Framework of (affine) pruned Walsh transform accelerated linear attacks.

Here, we briefly recall the core idea of [FN20] and [Fló22] following notations in
Fig. 1. In the linear key recovery attack, one aims to evaluate the experimental corre-
lation through the linear approximation ⟨u, x̂⟩ ⊕ ⟨v, ŷ⟩ = 0 given N plaintext-ciphertext
pairs (x̃, ỹ). In [FN20] and [Fló22], the above evaluation is performed under several
Walsh Transforms. When computing ⟨u, x̂⟩, some bits of x̂ may be obtained without
any key material, i.e. forward-slash part in Fig. 1, while the value of those backslash
part can only be achieved after guessing corresponding key bits. In this case, ⟨u, x̂⟩ =
f0(x̃)⊕ F1(X1 ⊕KO

1 , KI
1), where X1 represents some bits of x̃ and we denote as x̃→ X1.

Similarly, ⟨v, ŷ⟩ = g0(ỹ) ⊕ F2(X2 ⊕KO
2 , KI

2) with X2 being some bits of ỹ = EK(x̃) and
denoted as EK(x̃)→ X2. Therefore, as shown in [Fló22], the experimental correlation ĉor
under (KO

1 , KO
2 , KI

1 , KI
2) can be computed as

N · ĉor =
∑

x̃∈D,
x̃→X1,EK(x̃)→X2

(−1)F1(X1⊕KO
1 ,KI

1)⊕F2(X2⊕KO
2 ,KI

2)⊕f0(x̃)⊕g0(EK(x̃))

=
∑

X1,X2

(−1)F1(X1⊕KO
1 ,KI

1)⊕F2(X2⊕KO
2 ,KI

2)
∑

x̃∈D,
x̃→X1,EK(x̃)→X2

(−1)f0(x̃)⊕g0(EK(x̃))

︸ ︷︷ ︸
A[X1,X2]

= 1
2|Y1|+|Y2|

∑
Y1,Y2

(−1)⟨Y1,KO
1 ⟩⊕⟨Y2,KO

2 ⟩SKI
1

Y1
S

KI
2

Y2
Â[Y1, Y2],

where S
KI

j

Yj
=

∑
Zj

(−1)⟨Yj ,Zj⟩⊕Fj(Zj ,KI
j) with j ∈ {1, 2}, and

Â[Y1, Y2] =
∑

X1,X2

(−1)⟨Y1,X1⟩⊕⟨Y2,X2⟩A[X1, X2].

Note that Â[Y1, Y2] is the Walsh transform of A[X1, X2], and thus can be evaluated within

6 Improved Linear Key Recovery Attacks on PRESENT

L2L additions with L = |Y1| + |Y2|. When evaluating S
KI

j

Yj
, one can separate F1(Z1, KI

1)
and F2(Z2, KI

2) into the XORed value of several small Boolean functions f1,i(z1,i, kI
1,i)

and f2,i(z2,i, kI
2,i), as shown in [Fló22]. Hence, for each j ∈ {1, 2},

S
KI

j

Yj
=

∏
i

∑
zj,i

(−1)⟨yj,i,zj,i⟩⊕fj,i(zj,i,kI
j,i) =

∏
i

(−2)f̂j,i,

which can then be effectively obtained with the pruned Walsh transform algorithm.
To further reduce the cost of above computations, Flórez-Gutiérrez [Fló22] utilized the

following idea. When computing S
KI

1
Y1

and S
KI

2
Y2

, if Z1 or Z2 are restricted in specific subsets
of Fn

2 , some f̂j,i will become zeros. In this case, one can achieve much faster computations
of S

KI
1

Y1
and S

KI
2

Y2
using the affine pruned Walsh transform algorithm proposed in [Fló22].

However, one should be aware that ĉor no longer follows the distributions proposed in
[BN17] in this case. Detailed discussions are given in Appendix D. Therefore, the statistic
behavior of ĉor when Z1 or Z2 are limited in a subset should be reconstructed.

3 Statistical Models for Linear Attacks with Affine Pruned
Walsh Transform

In traditional linear key recovery attacks, the adversary will utilize all obtained N plaintext-
ciphertext pairs to compute the experimental correlation. Thus, statistical models pro-
posed by Blondeau and Nyberg in [BN17] are utilized to deduce the relation between N
and success probability. However, in the affine pruned Walsh transform accelerated linear
attacks [Fló22], we may not use all these N known plaintext-ciphertext pairs, with the
aim of reducing time cost.

In this section, we will show the statistic behavior of the experimental correlation
under the right and wrong key guesses when some data are rejected in its computation.
We also provide the accurate relation between data complexity N and success proba-
bility. Dedicated statistical models are given for the general case when l ≥ 1 indepen-
dent linear hulls are utilized. Experimental verifications on these statistical models using
SmallPRESENT-[4] are shown in Sect. 3.3. Notations in this section are borrowed from
Sect. 2.

3.1 Classical Setting using One Linear Hull
Before starting this subsection, we give Lemma 1, which is used in the following theorems.
Proof of this Lemma is given in Appendix B.

Lemma 1. The 2|Y1|+|Y2|-dimensional statistic vector (Â[0, 0], · · · , Â[2|Y1| − 1, 2|Y2| − 1])
follows the multivariate normal distribution. Each Â[Y1, Y2] has expectation NC[Y1,Y2].
Covariance between Â[Y a

1 , Y a
2] and Â[Y b

1 , Y b
2] is NBδ[Y a

1 ⊕Y b
1 ,Y a

2 ⊕Y b
2]−NBC[Y a

1 ,Y a
2]C[Y b

1 ,Y b
2],

where
C[Y1,Y2] = 1

2n

∑
x̃∈Fn

2 ,
x̃→X1,EK(x̃)→X2

(−1)⟨Y1,X1⟩⊕⟨Y2,X2⟩⊕f0(x̃)⊕g0(EK (x̃)),

δ[Y a
1 ⊕Y b

1 ,Y a
2 ⊕Y b

2] = 1
2n

∑
x̃∈Fn

2 ,
x̃→X1,EK(x̃)→X2

(−1)⟨Y
a

1 ⊕Y b
1 ,X1⟩⊕⟨Y a

2 ⊕Y b
2 ,X2⟩,

and B equals to 1 (KP Sampling) or 2n−N
2n−1 (DKP Sampling).

Wenhui Wu, Muzhou Li and Meiqin Wang 7

Right Key Guess. Given the linear hull (u, v), we denote C(u, v)(K) as the correlation
of the approximation ⟨u, x̂⟩ ⊕ ⟨v, ŷ⟩ = 0 evaluated using the full codebook, where ŷ =
E′

K(x̂). According to [BN17], when all possible Z1 and Z2 are used, ĉor will follow
the normal distribution with expectation C(u, v)(K) and variance B

N

(
1− [C(u, v)(K)]2

)
under the right key guess. Note that the above distribution of ĉor cannot be directly
used in mounting key recovery attacks, since C(u, v)(K) is unknown to the adversary and
related to the right key. Blondeau and Nyberg [BN17] took a step further by assuming that
C(u, v)(K) follows a normal distribution. Denote its expectation as c, and the expected
linear potential ELP = 2−|K| ∑

K [C(u, v)(K)]2. Thus, its variance is ELP −c2 according
to its definition. In this case, one can conclude that ĉor approximately follows the normal
distribution with expectation c and variance B

N + ELP − c2.
When Z1 or Z2 are limited in a subset, we show that ĉor is also a normal variable,

but with different expectation and variance. To avoid confusion, we use variables with
subscript (s) to denote the case when not all possible Z1 or Z2 are used, such as ĉor(s),

S
KI

j

Yj ,(s) and C(u, v)(K)(s). Theorem 1 shows the distribution of ĉor(s) when K is fixed,
which is related to C(u, v)(K)(s). Next, we investigate the relation between C(u, v)(K)(s)
and C(u, v)(K) in Theorem 2. Thus, one can obtain the final distribution of ĉor(s) (The-
orem 3). Note that restricted Z1 or Z2 will lead to restricted values of (x̂, ŷ) under fixed
K. Denote QK as the set recording all these left (x̂, ŷ). All QK have the same size #QK

since EK is a fixed-key permutation, which can be obtained once the linear hull, Q1 and
Q2 are fixed.

Theorem 1. Experimental correlation evaluated under right key guess (KO
1 , KO

2 , KI
1 , KI

2)
with restricted Z1 or Z2 is

ĉor(s) = 1
N

1
2|Y1|+|Y2|

∑
Y1,Y2

(−1)⟨Y1,KO
1 ⟩⊕⟨Y2,KO

2 ⟩SKI
1

Y1,(s)S
KI

2
Y2,(s)Â[Y1, Y2].

For fixed right key guess K, it follows the normal distribution with expectation

C(u, v)(K)(s) = 1
2n

∑
(x̂,ŷ)∈QK

(−1)⟨u,x̂⟩⊕⟨v,ŷ⟩

and variance B
N

(
#QK · 2−n − [C(u, v)(K)(s)]2

)
, where #QK denotes the size of QK .

Proof. According to Lemma 1, statistic vector (Â[0, 0], · · · , Â[2|Y1| − 1, 2|Y2| − 1]) follows
the multivariate normal distribution. Hence, ĉor(s) follows the normal distribution [KH11].
Without loss of generality, we assume Z1 ∈ Q1 and Z2 ∈ Q2 under the fixed KI

1 and KI
2 .

Thus, according to Lemma 1, expectation of ĉor(s) is

E(ĉor(s)) = 1
N

1
2|Y1|+|Y2|

∑
Y1,Y2

(−1)⟨Y1,KO
1 ⟩⊕⟨Y2,KO

2 ⟩SKI
1

Y1,(s)S
KI

2
Y2,(s)E(Â[Y1, Y2])

= 1
2|Y1|+|Y2|

∑
Y1,Y2

(−1)⟨Y1,KO
1 ⟩⊕⟨Y2,KO

2 ⟩SKI
1

Y1,(s)S
KI

2
Y2,(s)C[Y1,Y2]

= 1
2|Y1|+|Y2|

1
2n

∑
x̃∈Fn

2 ,
x̃→X1,EK (x̃)→X2

(−1)f0(x̃)⊕g0(EK (x̃))R1R2,

where
R1 =

∑
Z1∈Q1

(−1)F1(Z1,KI
1)

∑
Y1

(−1)⟨Y1,KO
1 ⊕X1⊕Z1⟩,

R2 =
∑

Z2∈Q2

(−1)F2(Z2,KI
2)

∑
Y2

(−1)⟨Y2,KO
2 ⊕X2⊕Z2⟩,

8 Improved Linear Key Recovery Attacks on PRESENT

and the last equality comes directly from the definition of C[Y1,Y2] given in Lemma 1. For
each x̃ ∈ Fn

2 , if ∃Z1 ∈ Q1 and ∃Z2 ∈ Q2 s.t. X1 ⊕KO
1 = Z1 and X2 ⊕KO

2 = Z2, we have
R1 = (−1)F1(X1⊕KO

1 ,KI
1)2|Y1| and R2 = (−1)F2(X2⊕KO

2 ,KI
2)2|Y2|. However, if ∀Z1 ∈ Q1 s.t.

X1 ⊕KO
1 ̸= Z1 or ∀Z2 ∈ Q2 s.t. X2 ⊕KO

2 ̸= Z2, we have R1R2 = 0. Therefore,

E(ĉor(s)) = 1
2|Y1|+|Y2|

1
2n

∑
x̃∈Fn

2 ,
x̃→X1,EK(x̃)→X2,

∃Z1∈Q1, s.t. X1⊕KO
1 =Z1,

∃Z2∈Q2, s.t. X2⊕KO
2 =Z2

(−1)f0(x̃)⊕g0(EK (x̃))R1R2

= 1
2n

∑
x̃∈Fn

2 ,
x̃→X1,EK (x̃)→X2,

∃Z1∈Q1, s.t. X1⊕KO
1 =Z1,

∃Z2∈Q2, s.t. X2⊕KO
2 =Z2

(−1)f0(x̃)⊕g0(EK(x̃))⊕F1(X1⊕KO
1 ,KI

1)⊕F2(X2⊕KO
2 ,KI

2)

For the fixed x̃, we know that there is only one x̂, X1 and Z1 under K. Similarly, if ỹ is
fixed, ŷ, X2 and Z2 are all fixed values. Hence, restricted Z1 or Z2 will leads to restricted
value set QK of (x̂, ŷ). Recall that ⟨u, x̂⟩⊕⟨v, ŷ⟩ = f0(x̃)⊕g0(EK(x̃))⊕F1(X1⊕KO

1 , KI
1)⊕

F2(X2 ⊕KO
2 , KI

2), we can obtain

E(ĉor(s)) = 1
2n

∑
(x̂,ŷ)∈QK

(−1)⟨u,x̂⟩⊕⟨v,ŷ⟩ = C(u, v)(K)(s).

According to Lemma 1, (Â[0, 0], · · · , Â[2|Y1|−1, 2|Y2|−1]) follows the multivariate normal
distribution. Note that variance of any linear combination

∑
Y1,Y2

a[Y1,Y2]Â[Y1, Y2] is∑
Y a

1 ,Y a
2

a[Y a
1 ,Y a

2]
∑

Y b
1 ,Y b

2

a[Y b
1 ,Y b

2]Cov(Â[Y a
1 , Y a

2], Â[Y b
1 , Y b

2]).

Therefore, according to Lemma 1, we can obtain V ar
(
ĉor(s)

)
, which equals to(

1
N

1
2|Y1|+|Y2|

)2 ∑
Y a

1 ,Y a
2

∑
Y b

1 ,Y b
2

(−1)⟨Y
a

1 ⊕Y b
1 ,KO

1 ⟩⊕⟨Y a
2 ⊕Y b

2 ,KO
2 ⟩

S
KI

1
Y a

1 ,(s)S
KI

2
Y a

2 ,(s)S
KI

1
Y b

1 ,(s)S
KI

2
Y b

2 ,(s)

(
NBδ[Y a

1 ⊕Y b
1 ,Y a

2 ⊕Y b
2] −NBC[Y a

1 ,Y a
2]C[Y b

1 ,Y b
2]

)
.

Denote W as the first part of the above formula ignoring its coefficient, which is∑
Y a

1 ,Y a
2

∑
Y b

1 ,Y b
2

(−1)⟨Y
a

1 ⊕Y b
1 ,KO

1 ⟩⊕⟨Y a
2 ⊕Y b

2 ,KO
2 ⟩SKI

1
Y a

1 ,(s)S
KI

2
Y a

2 ,(s)S
KI

1
Y b

1 ,(s)S
KI

2
Y b

2 ,(s)δ[Y a
1 ⊕Y b

1 ,Y a
2 ⊕Y b

2],

one can represent V ar
(
ĉor(s)

)
as

B

N

(
1

2|Y1|+|Y2|

)2

W − B

N

 1
2|Y1|+|Y2|

∑
Y a

1 ,Y a
2

(−1)⟨Y
a

1 ,KO
1 ⟩⊕⟨Y a

2 ,KO
2 ⟩SKI

1
Y a

1 ,(s)S
KI

2
Y a

2 ,(s)C[Y a
1 ,Y a

2]


 1

2|Y1|+|Y2|

∑
Y b

1 ,Y b
2

(−1)⟨Y
b

1 ,KO
1 ⟩⊕⟨Y b

2 ,KO
2 ⟩SKI

1
Y b

1 ,(s)S
KI

2
Y b

2 ,(s)C[Y b
1 ,Y b

2]


= B

N

(
1

2|Y1|+|Y2|

)2

W − B

N

 1
2|Y1|+|Y2|

∑
Y1,Y2

(−1)⟨Y1,KO
1 ⟩⊕⟨Y2,KO

2 ⟩SKI
1

Y1,(s)S
KI

2
Y2,(s)C[Y1,Y2]

2

.

Wenhui Wu, Muzhou Li and Meiqin Wang 9

From Lemma 1, recall that E(Â[Y1, Y2]) = NC[Y1,Y2]. Hence, V ar
(
ĉor(s)

)
equals to

B

N

(
1

2|Y1|+|Y2|

)2

W − B

N

(
E(ĉor(s))

)2 = B

N

(
1

2|Y1|+|Y2|

)2

W − B

N

[
C(u, v)(K)(s)

]2
.

Now let’s focus on W . Let T1 = Y a
1 ⊕ Y b

1 and T2 = Y a
2 ⊕ Y b

2 , we have

W =
∑

T1,T2

∑
Y b

1 ,Y b
2

(−1)⟨T1,KO
1 ⟩⊕⟨T2,KO

2 ⟩SKI
1

Y b
1 ,(s)S

KI
2

Y b
2 ,(s)S

KI
1

Y b
1 ⊕T1,(s)S

KI
2

Y b
2 ⊕T2,(s)δ[T1,T2]

=
∑

T1,T2

(−1)⟨T1,KO
1 ⟩⊕⟨T2,KO

2 ⟩δ[T1,T2]

∑
Y b

1

S
KI

1
Y b

1 ,(s)S
KI

1
Y b

1 ⊕T1,(s)

 ∑
Y b

2

S
KI

2
Y b

2 ,(s)S
KI

2
Y b

2 ⊕T2,(s)

 .

Since S
KI

1
Y b

1 ,(s) =
∑

Z1∈Q1
(−1)⟨Y

b
1 ,Z1⟩⊕F1(Z1,KI

1), we have∑
Y b

1

S
KI

1
Y b

1 ,(s)S
KI

1
Y b

1 ⊕T1,(s)

=
∑
Y b

1

 ∑
Z1∈Q1

(−1)⟨Y
b

1 ,Z1⟩⊕F1(Z1,KI
1)

  ∑
Z′

1∈Q1

(−1)⟨Y
b

1 ⊕T1,Z′
1⟩⊕F1(Z′

1,KI
1)


=

∑
Z1∈Q1

∑
Z′

1∈Q1

(−1)⟨T1,Z′
1⟩⊕F1(Z1,KI

1)⊕F1(Z′
1,KI

1)
∑
Y b

1

(−1)⟨Y
b

1 ,Z1⊕Z′
1⟩


=

∑
Z1∈Q1

(−1)⟨T1,Z1⟩2|Y |.

The last equality comes from the fact that when Z1 = Z ′
1, the sum

∑
Y b

1
(−1)⟨Y

b
1 ,Z1⊕Z′

1⟩

equals to 2|Y |; while it equals to 0 when Z1 ̸= Z ′
1. In this case, with the definition of

δ[T1,T2] shown in Lemma 1,

W =
∑

T1,T2

(−1)⟨T1,KO
1 ⟩⊕⟨T2,KO

2 ⟩δ[T1,T2]

2|Y1|
∑

Z1∈Q1

(−1)⟨T1,Z1⟩

 2|Y2|
∑

Z2∈Q2

(−1)⟨T2,Z2⟩


=2|Y1|+|Y2|

2n

∑
x̃∈Fn

2 ,
x̃→X1,EK(x̃)→X2

2∏
j=1

∑
Tj

∑
Zj∈Qj

(−1)⟨Tj ,KO
j ⊕Xj⊕Zj⟩

 .

As discussed before, for each x̃ ∈ Fn
2 , the above product is 2|T1|+|T2| or 0 depending on

whether corresponding Z1 and Z2 exist. In this case, we can deduce that

W = 1
2n

2|Y1|+|Y2|2|T1|+|T2|
∑

x̃∈Fn
2 ,

x̃→X1,EK (x̃)→X2,

∃Z1∈Q1, s.t. X1⊕KO
1 =Z1,

∃Z2∈Q2, s.t. X2⊕KO
2 =Z2

1 =
(

2|Y1|+|Y2|
)2

#QK · 2−n,

which leads to V ar(ĉor(s)) = B
N (#QK · 2−n − [C(u, v)(K)(s)]2).

When K is fixed, C(u, v)(K)(s) = 2−n
∑

(x̂,ŷ)∈QK
(−1)⟨u,x̂⟩⊕⟨v,ŷ⟩ is a fixed value. How-

ever, one cannot obtain it unless K is known since QK has to be obtained at first. Hence,
we have to consider the effect of different K, as Blondeau and Nyberg did in [BN17].

10 Improved Linear Key Recovery Attacks on PRESENT

Theorem 2. C(u, v)(K)(s) approximately follows the normal distribution with expectation
#QK2−nc and variance #QK2−2n + (#QK2−n)2(ELP − c2).

Proof. Denote pK,(s) as the probability that ⟨u, x̂⟩ ⊕ ⟨v, ŷ⟩ = 0 when (x̂, ŷ) ∈ QK . Thus,

pK,(s) =
2nC(u, v)(K)(s) + #QK

2#QK
.

When the above approximation is evaluated under all 2n possible values of (x̂, ŷ), we
denote corresponding probability as pK , which equals to 2−1(1 + C(u, v)(K)).

Note that pK,(s) can be regarded as the sample proportion when #QK samples are
considered. According to the central limit theorem for sample proportions [Wei82], we
know that pK,(s) approximately follows the normal distribution with expectation pK and
variance 1

#QK
pK(1 − pK). Hence, C(u, v)(K)(s) = #QK2−n(2pK,(s) − 1) also approxi-

mately follows the normal distribution with expectation #QK2−nC(u, v)(K) and variance
#QK2−2n(1 − [C(u, v)(K)]2). As Blondeau and Nyberg did in [BN17], one can replace
this variance by its close upper bound that is #QK2−2n.

Given C(u, v)(K) ∼ N
(
c, ELP − c2)

, one can obtain the distribution of C(u, v)(K)(s)
by exploiting characteristic functions of normal distributions, which are

CFC(u,v)(K)(s)|C(u,v)(K)(it) = exp
{

it#QK2−nC(u, v)(K)− t2

2
#QK2−2n

}
,

CFC(u,v)(K)(it) = exp
{

itc− t2

2
(ELP − c2)

}
.

Thus,

CFC(u,v)(K)(s)(it)

= exp
{
− t2

2
#QK2−2n

}
· CFC(u,v)(K)(it#QK2−n)

= exp
{
− t2

2
#QK2−2n} exp{it#QK2−nc− t2(#QK2−n)2

2
(ELP − c2)

}
= exp

{
it#QK2−nc− t2

2
(
#QK2−2n + (#QK2−n)2(ELP − c2)

)}
.

Hence, C(u, v)(K)(s) is a normal variable with claimed expectation and variance.

Theorem 3. When guessed key is right, ĉor(s) approximately follows the normal distri-
bution with expectation #QK2−nc and variance

B

N
#QK2−n + #QK2−2n + (#QK2−n)2(ELP − c2),

where B = 1 (KP Sampling) or B = 2n−N
2n−1 (DKP Sampling).

Proof. As did in [BN17], we replace the variance of ĉor(s) when K is fixed by its close
upper bound. Therefore, with Theorem 1 and 2, we have

ĉor(s) ∼ N
(

C(u, v)(K)(s),
B

N
#QK · 2−n

)
,

C(u, v)(K)(s) ∼ N
(
#QK2−nc, #QK2−2n + (#QK2−n)2(ELP − c2)

)
.

Characteristic function of the first distribution is

CF
ĉor(s)|C(u,v)(K)(s)

(it) = exp
{

itC(u, v)(K)(s) −
t2

2
B

N
#QK · 2−n

}
.

Wenhui Wu, Muzhou Li and Meiqin Wang 11

It follows that

CF
ĉor(s)

(it)

= exp
{
− t2

2
B

N
#QK · 2−n

}
· CFC(u,v)(K)(s)(it)

= exp
{

it#QK2−nc− t2

2

(
B

N
#QK2−n + #QK2−2n + (#QK2−n)2(ELP − c2)

)}
.

In other words, ĉor(s) is a normal variate with claimed expectation and variance.

Wrong Key Guess. Denote x̂′ = Ẽ1(x̃) and ŷ′ = Ẽ2(ỹ) as values encrypted or decrypted
under wrong key Kw, respectively. C(Kw) represents the correlation of ⟨u, x̂′⟩⊕⟨v, ŷ′⟩ = 0
evaluated using the full codebook, where ŷ′ = Ẽ2 ◦ EK ◦ Ẽ1

−1(x̂′). When all possible Z1
and Z2 are used, ĉor follows the normal distribution with expectation C(Kw) and variance
B
N

(
1− [C(Kw)]2

)
when Kw is fixed [BN17]. By regarding Ẽ2 ◦ EK ◦ Ẽ1

−1 as a random
vectorial Boolean function, C(Kw) follows the normal distribution with expectation 0
and variance 2−n. Combing above two distributions, one can obtain that ĉor follows the
normal distribution with expectation 0 and variance B

N +2−n. When Z1 or Z2 are limited
in a subset, we can achieve that ĉor(s) also follows a normal distribution with the same
expectation but different variance following Theorem 4, 5 and 6.

Theorem 4. Experimental correlation evaluated under wrong key guess (KO
1 , KO

2 , KI
1 , KI

2)
with restricted Z1 or Z2 is

ĉor(s) = 1
N

1
2|Y1|+|Y2|

∑
Y1,Y2

(−1)⟨Y1,KO
1 ⟩⊕⟨Y2,KO

2 ⟩SKI
1

Y1,(s)S
KI

2
Y2,(s)Â[Y1, Y2].

For fixed wrong key guess Kw, it follows the normal distribution with expectation

C(Kw)(s) = 1
2n

∑
(x̂′,ŷ′)∈QK

(−1)⟨u,x̂′⟩⊕⟨v,ŷ′⟩

and variance B
N

(
#QK · 2−n − [C(Kw)(s)]2

)
, where #QK denotes the size of QK .

Proof. This proof follows directly from the one of Theorem 1. Difference between them is
shown as follows. From the former proof, we have learned that

E(ĉor(s)) = 1
2n

∑
x̃∈Fn

2 ,
x̃→X1,EK (x̃)→X2,

∃Z1∈Q1, s.t. X1⊕KO
1 =Z1,

∃Z2∈Q2, s.t. X2⊕KO
2 =Z2

(−1)f0(x̃)⊕g0(EK(x̃))⊕F1(X1⊕KO
1 ,KI

1)⊕F2(X2⊕KO
2 ,KI

2).

When guessed key Kw is wrong, E(ĉor(s)) represents the correlation of ⟨u, x̂′⟩⊕⟨v, ŷ′⟩ = 0
where (x̂′, ŷ′) is obtained from (x̃, ỹ) under Kw and restricted in a subset QKw

. Hence,
E(ĉor(s)) = C(Kw)(s). Since Ẽ2 ◦ EK ◦ Ẽ1

−1 is a fixed-key permutation, QKw
will have

the same size for any Kw due to the same subsets Q1 and Q2. Similarly, #QKw
equals to

previous mentioned #QK since both Ẽ2 ◦EK ◦ Ẽ1
−1 and E′

K are fixed-key permutations.
Meanwhile, its variance is

B

N

(
1

2|Y1|+|Y2|

)2

W − B

N

(
E(ĉor(s))

)2 = B

N

(
1

2|Y1|+|Y2|

)2

W − B

N

(
C(Kw)(s)

)2
,

where W =
(
2|Y1|+|Y2|)2 #QK · 2−n as shown in the former proof.

12 Improved Linear Key Recovery Attacks on PRESENT

Theorem 5. C(Kw)(s) approximately follows the normal distribution with expectation 0
and variance #QK2−2n.

Proof. Similar with [BN17], Ẽ2◦EK ◦Ẽ1
−1 can be regarded as a random vectorial Boolean

function for each wrong key guess Kw. Hence, the probability that ⟨u, x̂′⟩ ⊕ ⟨v, ŷ′⟩ =
0 is always 2−1. Note that 2−1(2nC(Kw)(s) + #QK) is the number of (x̂′, ŷ′) ∈ QK

fulfilling this approximation. Thus, it approximately follows the normal distribution with
expectation #QK2−1 and variance #QK2−2. It follows that C(Kw)(s) is a normal variable
with claimed expectation and variance.

Theorem 6. When guessed key is wrong, ĉor(s) approximately follows the normal distri-
bution with expectation 0 and variance

B

N
#QK2−n + #QK2−2n,

where B = 1 (KP Sampling) or B = 2n−N
2n−1 (DKP Sampling).

Proof. Replacing the variance of ĉor(s) when the guessed key Kw is fixed by its close upper
bound, we obtain

ĉor(s) ∼ N
(

C(Kw)(s),
B

N
#QK · 2−n

)
from Theorem 4. With Theorem 5, C(Kw)(s) ∼ N

(
0, #QK2−2n

)
. Hence, using charac-

teristic functions of above two normal distributions, we can obtain the claimed distribu-
tion.

Data Complexity and Error Probabilities. With Theorem 3 and 6, we can deduce the
relation between N and two types of error probabilities α0 and α1. When the expectation
of C(u, c)(K), which is denoted as c, equals to zero, Corollary 1 shows the above relation,
while Corollary 3 given in Appendix C describes the above relation when c ̸= 0. In our
applications on PRESENT, c = 0 as shown in [BN17]. Note that c is often hard to be
estimated in practical applications unless all dominant linear trails in the hull can be
obtained [BN17].

To deduce the above relation, we have to perform a statistic test which can decide
whether the obtained statistic ĉor(s) is computed under the right key or a wrong key
guess. When c = 0, it’s impossible to distinguish two normal distributions with the same
expectation with a single value of ĉor(s). However, we can still construct the relation
between N , α0 and α1 if we use [ĉor(s)]2 as our statistic. Note that

[ĉor(s)]2 ∼


(

B

N
#QK2−n + #QK2−2n + (#QK2−n)2ELP

)
χ2(1), right key guess,(

B

N
#QK2−n + #QK2−2n

)
χ2(1), wrong key guess.

according to Theorem 3 and 6, where χ2(1) denotes the chi-square distribution with the
degree of freedom 1. In this case, we use the threshold-based decision function, where we
regard the guessed key is possibly right if [ĉor(s)]2 > τ , otherwise, it’s a wrong key guess.
Detailed relation is depicted in Corollary 1.

Corollary 1. Denote α0 as the probability of rejecting the right key, and α1 as the prob-
ability of accepting a wrong key. When c = 0, the number of plaintexts needed is

N =


M2(α0, α1), KP Sampling,

2n M2(α0, α1)
2n − 1 + M2(α0, α1)

, DKP Sampling,

Wenhui Wu, Muzhou Li and Meiqin Wang 13

and the threshold value is

τ =
(

B

N
#QK2−n + #QK2−2n + (#QK2−n)2ELP

)
qα0 ,

where
M2(α0, α1) = 2n qα0 − q1−α1

q1−α1 − qα0 −#QKqα0ELP

with qα0 and q1−α1 as lower quantiles of χ2(1).
Proof. By the definition of α0 and our statistic test, we have Pr{[ĉor(s)]2 < τ} = α0 when
[ĉor(s)]2 follows the distribution under the right key guess. Then,

Pr
{ [ĉor(s)]2

ER
<

τ

ER

}
= α0

where ER =
(

B
N #QK2−n + #QK2−2n + (#QK2−n)2ELP

)
. By the definition of a quan-

tile, τ
ER

= qα0 . In other words, τ = ERqα0 . Similarly, we can obtain τ = Ewq1−α1 due to
Pr{[ĉor(s)]2 < τ} = 1−α1 when [ĉor(s)]2 follows the distribution under a wrong key guess,
where Ew =

(
B
N #QK2−n + #QK2−2n

)
. Hence, we see that ERqα0 = Ewq1−α1 by elimi-

nating τ from the above two equations. In this case, N can be obtained as claimed.

3.2 Multiple Linear Setting with l Linear Hulls
Linear key recovery attack using multiple independent linear hulls was proposed in [JR94,
BCQ04], and its statistical model is then refined in [BN17]. Here, we show how to con-
struct the statistic model for l hulls when Z1 or Z2 are restricted in a subset. Note that
for different hull, one may add different restrictions on Z1 and Z2, or even no restrictions
are made. However, our statistical model here can deal with all possible cases together.

For the i-th hull, we represent its expected linear potential as ELPi. Expectation of
C(u, v)(K) of this hull is ci. Besides, #QK for this hull equals to 2npi. Denote Ci as the
experimental correlation evaluated for the i-th hull. Hence, we adopt

C =
l∑

i=1

[Ci]2

pi

as the final statistic. According to Theorem 3 and 6, we know that

Ci√
pi
∼


N

(
√

pici,
B

N
+ 2−n + pi(ELPi − c2

i)
)

, right key guess,

N
(

0,
B

N
+ 2−n

)
, wrong key guess.

Hence, for the wrong key guess, C follows
(

B
N + 2−n

)
χ2(l) since all Ci√

pi
follow the same

normal distribution. While for the right key guess, each Ci√
pi

follows the normal distribu-
tion with different variances. According to [Coe20], there is no finite form of the density
function of C. However, one can approximate its density function by approximating each
variance with B

N + 2−n + σ̄. There are many different ways to determine σ̄, such as the
arithmetic mean of pi(ELPi − c2

i) adopted by [BN17]. Thus, for the right key guess,

C ∼
(

B

N
+ 2−n + σ̄

)
χ2(l, γ)

with the non-central parameter γ =
∑l

i=1 pic
2
i . In practical applications, ci is always

hard to be obtained since one cannot traverse all possible K. Similar question also exist
in [BN17], where

∑l
i=1 c2

i is assumed to be zero. Here, we also adopt this assumption in
our applications, which leads to γ = 0. We summarize above results in Theorem 7.

14 Improved Linear Key Recovery Attacks on PRESENT

Theorem 7. Let Ci be the experimental correlation evaluated for the i-th hull. Then

C =
l∑

i=1

[Ci]2

pi
∼


(

B

N
+ 2−n + σ̄

)
χ2(l), right key guess,(

B

N
+ 2−n

)
χ2(l), wrong key guess.

σ̄ is the arithmetic mean of these piELPi, where pi = #QK2−n is the filtering ratio, and
ELPi is the expected linear potential of the i-th hull.

Relation between N and two types of error probabilities α0 and α1 can then be obtained
by Theorem 7, which is depicted in Corollary 2. To deduce the relation, we adopt a similar
decision function where we regard the guessed key is right if C > τ . Proof of this corollary
is similar with that of Corollary 1. Hence, we omit it here.

Corollary 2. Denote α0 as the probability of rejecting the right key, and α1 as the prob-
ability of accepting a wrong key. Assuming that γ = 0, the number of plaintexts is

N =


M3(α0, α1), KP Sampling,

2n M3(α0, α1)
2n − 1 + M3(α0, α1)

, DKP Sampling,

and the threshold value is
τ =

(
B

N
+ 2−n + σ̄

)
qα0 ,

where
M3(α0, α1) = 2n qα0 − q1−α1

q1−α1 − qα0 − 2nqα0 σ̄

with qα0 and q1−α1 as lower quantiles of χ2(l).

3.3 Experimental Verifications
To verify our statistical models, we mount linear key recovery attacks on SmallPRESENT-[4]
with a single linear hull and 6 linear hulls, respectively.

SmallPRESENT-[4] is a 16-bit scale variant of PRESENT proposed by Leander [Lea10].
To simplify the key recovery process, we assumed that all round keys are chosen indepen-
dently. We use 4-round hulls to mount 6-round attacks by appending two rounds after.
All linear hulls used are depicted in Table 3.

Table 3: 4-Round linear hulls used in attacking 6-Round SmallPRESENT.

Input Mask Output Mask ELP Filtering Ratio p Value Rejected
1 00a0 0020 2−11.89 0.75 {3, 5, B, D}
2 00a0 0040 2−11.84 0.75 {1, 3, D, F}
3 00a0 0080 2−11.61 0.5 {0, 1, 2, 4, 5, 7, 9, C}
4 0020 0020 2−12.35 1 ∅
5 0020 0040 2−13.05 1 ∅
6 0020 0080 2−12.35 1 ∅

The first hull shown in Table 3 is used in the case where only one linear hull is adopted.
Corresponding experiment is denoted as Type-I experiment in this subsection. All 6 hulls
in Table 3 are used in the multiple linear setting, and we refer corresponding experiment
as Type-II experiment hereafter.

Wenhui Wu, Muzhou Li and Meiqin Wang 15

Both experiments follow a similar process, although they adopt different statistics.
Let’s take Type-I experiment as an example. Setting α0 = 0.3 and choosing different
values for N , we can obtain α1 and τ according to Corollary 1 due to c = 0. In each
test, we independently choose N (distinct) plaintexts and query for their corresponding
ciphertexts under the same randomly chosen right key. Next, we follow the framework
proposed by Flórez-Gutiérrez [Fló22] to compute ĉor(s) under each key guess, where the
output of the active Sbox in the fifth round (i.e. the first key recovery round) is restricted
to take values not included in {3, 5, B, D}. After obtaining ĉor(s) and comparing it with τ ,
we can decide whether the guessed key is right. By launching this test 2000 times, we can
obtain experimental error probabilities α̂0 and α̂1. Therefore, we can compare them with
theoretical ones α0 and α1, which is shown in Fig. 2. Similarly, for Type-II experiment,
we show their comparisons in Fig. 3, where σ̄ in Corollary 2 is set to be the arithmetic
mean of pi(ELPi − c2

i). From these two figures, one can see that the test results for
error probabilities are in good accordance with those for the theoretical model. Thus, our
statistical models are constructed accurately.

9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5
log(N)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Er
ro

r P
ro

ba
bi

lit
y

0

0

1

1

(a) KP setting

9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5
log(N)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Er
ro

r P
ro

ba
bi

lit
y

0

0

1

1

(b) DKP setting

Figure 2: Experimental results of the statistical model in Sect. 3.1 with
SmallPRESENT-[4].

16 Improved Linear Key Recovery Attacks on PRESENT

9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5
log(N)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Er
ro

r P
ro

ba
bi

lit
y

0

0

1

1

(a) KP setting

9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5
log(N)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Er
ro

r P
ro

ba
bi

lit
y

0

0

1

1

(b) DKP setting

Figure 3: Experimental results of the statistical model in Sect. 3.2 with
SmallPRESENT-[4].

4 Non Full-Codebook Attack on 29-Round PRESENT-128
In this section, we follow the affine pruned Walsh transform technique [Fló22] to mount
a 29-round multiple linear key recovery attack on PRESENT-128 without using the full-
codebook. This attack is based on our newly constructed statistical models depicted in
Sect. 3, as well as detailed complexity analysis when using each linear hull. Note that this
is the best key recovery attack on PRESENT-128.

4.1 Linear Hulls Used in the Attack
We adopt one of the three sets of the 24-round linear hulls introduced in [FN20], which is
Set II. All these linear hulls are listed in Table 4. Different with previous notations, the
output masks and S-Boxes here are those after the last pLayer, i.e. the actual outputs of
the 24-round distinguisher. Hereafter, we also use the four-tuple [u, v, Su, Sv] to represent
a specific linear hull, whose input mask is u, input S-Box is Su, output mask is v, and
output S-Box is Sv.

According to the Hamming weight of input masks, all these linear hulls can be divided

Wenhui Wu, Muzhou Li and Meiqin Wang 17

Table 4: The 24-round linear hulls used in attacking 29-round PRESENT-128 belonging
to Set II of [FN20]. Here, output masks and S-Boxes are those after the last pLayer.

Group Input
Mask

Input
S-Box

Output
Mask

Output
S-Box Qty. Filtering

Ratio
24R
ELP

A A 5,6,9,10 2 5,7,13,15 16 3/4 2−65.1
A 5,6,9,10 8 5,7,13,15 16 1/2

B C 5,6,9,10 2 5,7,13,15 16 3/4 2−65.6
C 5,6,9,10 8 5,7,13,15 16 1/2

C
A 5,6,9,10 4 5,7,13,15 16 3/4

2−65.8A 13,14 2 5,7,13,15 8 3/4
A 13,14 8 5,7,13,15 8 1/2

D 2,4 5,6,9,10 2 5,7,13,15 32 1 2−66
2,4 5,6,9,10 8 5,7,13,15 32 1

E
C 5,6,9,10 4 5,7,13,15 16 3/4

2−66.3C 13,14 2 5,7,13,15 8 3/4
C 13,14 8 5,7,13,15 8 1/2

F A 13,14 4 5,7,13,15 8 3/4 2−66.5

G

2,4 5,6,9,10 4 5,7,13,15 32 1

2−66.7
8 5,6,9,10 2 5,7,13,15 16 1
8 5,6,9,10 8 5,7,13,15 16 1

2,4 13,14 2 5,7,13,15 16 1
2,4 13,14 8 5,7,13,15 16 1

Total 296 2−57.8

into two types: Type I, including 160 linear hulls with input masks of Hamming weight 1
and Type II, including 136 linear hulls with input masks of Hamming weight 2. In other
words, Type I is composed of Group D and G, while the other groups constitute Type II.

To mount the 29-round attack, we add two rounds before these 24-round linear hulls,
and appending three rounds after. Therefore, this key recovery procedure involves some
bits in round keys K1, K2, K28, K29 and K30. For linear hulls in Type I, there are 16
bits in K1, 4 bits in K2, 4 bits in K28, 16 bits in K29 and 64 bits in K30; while for those
in Type II, they are 32, 8, 4, 16, 64, respectively. For better understanding, we show two
examples in Fig. 4.

4.2 Detailed Key Recovery Procedure
For the purpose of reducing time complexity, we will apply the affine pruning technique
to linear hulls in Type II. That is, we will reject some data when evaluating experimental
correlations using these hulls. Detailed rejection rules follow those used in [Fló22, Table 4],
and filtering ratios pi of each hull have been shown in Table 4. According to Sect. 3.2,
one has to compute the statistic C =

∑
i

C2
i

pi
where Ci denotes the statistic evaluated for

the i-th linear hull.
For a single linear hull, we use (k1, k2, k28, k29, k30) to denote specific key bits needed

to be guessed in each key recovery rounds. Note that different hulls may share the same
key guess bits. For linear hulls in Type I, they can be separated into 24 groups; while for
those in Type II, they are divided into 16 groups. In each group, one need to guess the
same key bits. Considering the key schedule, if we know the 64-bit k30, we can deduce
some key bits in k1, k2, k28 and k29. In our attack, we will construct a table Tk for the
k-th group, which is indexed by these involved key bits and used to record intermediate
values in evaluating Ci. Namely, we denote T0, T1, · · · , T23 as tables related to linear
hulls in Type I ; while T24, T25, · · · , T39 are those for hulls in Type II. Denote that nk bits

18 Improved Linear Key Recovery Attacks on PRESENT

𝐾1

𝐾2
𝐾28

𝐾29

𝐾30

24 rounds

S

P

S

P

S

P

S

P

S

P

60 48 32 16 0 60 48 32 16 0

60 48 32 16 0 60 48 32 16 0

60 48 32 16 0 60 48 32 16 0

60 48 32 16 0 60 48 32 16 0

60 48 32 16 0 60 48 32 16 0

60 48 32 16 0

60 48 32 16 0

Figure 4: Key Bits involved in two different hulls. Bits in yellow color represent key bits
needed to be guessed for the hull [2,2,5,5], while both blue and yellow ones indicate those
for the hull [A,2,5,5].

Wenhui Wu, Muzhou Li and Meiqin Wang 19

can be deduced from k30. Size of each table Tk is 2104−nk for k ∈ {0, 1, · · · , 23} or 2124−nk

for k ∈ {24, 25, · · · , 39}. Detailed information of these tables are shown in Appendix E.
In our attack, we have to store these 40 tables, which costs 297.91 registers in total.

When evaluating Ci for the i-th linear hull, (k1, k30) are outer key bits, (k2, k28, k29) are
inner key bits, and (k1, k30, k2, (k28, k29)) corresponds to (KO

1 , KO
2 , KI

1 , KI
2). Assuming

that we have known KI
1 ||KI

2 , some bits of KO
1 ||KO

2 may be deduced according to the
key schedule. Here, we denote mi bits of KO

1 ||KO
2 can be deduced for the i-th hull. As

shown in [Fló22], we can divide Y1||Y2 into two subspaces with size 232+64−16 = 280 when
dealing with Type-II linear hulls whose output mask is 2 or 4, while only one subspace
with size 280 exits for those in Type-II with output mask 8. For Type-I hulls, the size of
Y1||Y2 is 216+64 = 280. Hereafter, we use gi to denote the number of subspaces for the
i-th hull, where each subspace has size 2si , i.e. 280 here. During the above evaluation,
we can firstly use a fixed KI

1 ||KI
2 to obtain necessary Walsh coefficients, and then one

can obtain corresponding coefficients for arbitrary KI
1 ||KI

2 by changing its sign. This is
ensured according to [Fló22, Corollary 14] relying on the fact that only after three rounds,
PRESENT will get a full diffusion.

Given N plaintext-ciphertext pairs, we firstly update Tk tables for every linear hull,
and then one can recover the master key with these Tk tables using our statistical models.

Update T k table for the i-th linear hull. According to Appendix E, one can see which
Tk table is related to this linear hull. Thus, we will use N data to update this Tk table
with the i-th linear hull by following steps. To be more clear, we construct an automatic
tool to generate all necessary parameters of each hull, and list them in Appendix F.

S1. Compute S
KI

1
Y1

and S
KI

2
Y2

with FWT, where KI
1 and KI

2 can be fixed to be zero without
loss of generality during S1 to S3. This step costs |Y1|2|Y1| + |Y2|2|Y2| additions, and
2|Y1| + 2|Y2| registers.

S2. For the j-th subspace of Y1||Y2, we can get array Â[Y1, Y2] using the fast Walsh
transform pruned to affine subspaces algorithm [Fló22], which is depicted in Ap-
pendix I. However, to gain lower time costs and combining it with the next Walsh
transform, we return g in Line 17 of the above algorithm as Âj . Thus, this step
costs giN + giti2ti additions with ti = 80 according to [Fló22, Proposition 7], and
needs gi2ti registers.

S3. For the j-th subspace of Y1||Y2, we firstly determine whether S
KI

1
Y1
̸= 0 and S

KI
2

Y2
̸= 0.

If so, after computing ÂjS
KI

1
Y1

S
KI

2
Y2

, and proceeding Line 15 and 16, one can return
g as Hj . The proportion of the condition is Prcon = (10/16)20 according to the
Walsh spectrum of S-Box. Thus, this step costs 2gi2si(10/16)20 multiplications and
gi2si(10/16)20 additions. Note that for Type I hulls, we will directly compute Hj

as ÂjS
KI

1
Y1

S
KI

2
Y2

. Hence, for those hulls, this step costs 2gi2si multiplications.

S4. Under each guess of KI
1 ||KI

2 , for the j-th subspace, we firstly change the sign of Hj

according to KI
1 ||KI

2 and then use FWT to get Ĥj . This costs 2|KI
1 |+|KI

2 | ∑gi

j=1 rj
i 2rj

i

additions and uses
∑gi

j=1 2rj
i registers, where rj

i will be different for different sub-
spaces. It can be deduced with Proposition 7 in [Fló22]. Next, we traverse the index
of Tk, get corresponding bits of KI

1 ||KI
2 from this index, and check if these bits are

the same as previous guessed ones. If so, for each subspace of Y1||Y2, we proceed
Line 18 to 20, get ĥj and then add it to Cortmp. Finally, we update the value of
Tk in this index by adding Cor2

tmp/pi. This step need 2nigi additions, and 2 · 2ni

multiplications.

20 Improved Linear Key Recovery Attacks on PRESENT

Guess the master key. After updating Tk tables with all linear hulls, we can use them
to compute the statistic CkT

for every possible global key guess kT . Here, we choose kT

as the 115-bit key colored with red in Fig. 6, which is composed of 113-bit in KS29, 1-bit
KS1 and 1-bit KS2. From kT , one can deduce all key bits of KO

1 ||KO
2 ||KI

1 ||KI
2 , which are

needed in the key recovery procedure, using its key schedule. Next, we traverse all these
40 tables Tk, get corresponding values under this KO

1 ||KO
2 ||KI

1 ||KI
2 , and then add them

to CkT
. This costs 40 · 2115 = 2120.32 additions. Once getting a CkT

for a global key guess
kT , it is compared with τ to see whether it is a candidate key. Setting α1 = 2−a, about
2115α1 = 2115−a CkT

satisfies this condition, and will be kept as the right key candidates.
After traversing the other 15-bit unknown key in KS29, one can compute the 1-bit KS1
and 1-bit KS2, which costs 2115−a · 215 · (1/8) = 2127−a times of 29-round encryptions.
Averagely, there will be 2115−a+15−2 keys left and need to be further verified with new
plaintext-ciphertext pair. This step needs 2128−a times of 29-round encryptions.

124 112 96 80 64 60 48 32 16 0

124 112 96 80 64 60 48 32 16 0

124 112 96 80 64 60 48 32 16 0

124 112 96 80 64 60 48 32 16 0

124 112 96 80 64 60 48 32 16 0

𝐾𝑆1

𝐾𝑆2

𝐾𝑆28

𝐾𝑆29

𝐾𝑆30

Figure 5: Determining involved key bits for all linear hulls (crossed out in the figure) with
as fewer guesses as possible when attacking PRESENT-128. We can deduce the (light)
green bits if we know the 115 key bits highlighted in (dark) red.

Analysis of attack complexities. Using the statistical model proposed in Sect. 3.2,
62.83% success probability could be achieved with 262.88 DKP and α1 = 2−a = 2−2.26.
For each hull, time complexity of updating its corresponding table Tk can be computed
with information given in Appendix F. In total, the time complexity of the whole at-
tack is composed of 2121.39 additions, 2102.07 multiplications and 2126.32 times of 29-round
encryptions. A simple lower bound on the cost of a 29-round PRESENT encryption is
2 · 64 · 29 + 64 = 3776 binary operations, while an addition is 128 and a multiplication
is 2143 [FN20]. Therefore, the final time complexity is at most 2126.33 times of 29-round
encryptions. The dominant memory cost comes from storing 40 tables Tk, which needs
297.91 registers. Note that the same memory could be reused during the update process of
table Tk for each hull. In this procedure, the highest memory complexity is 281 registers,
which can be ignored.

Wenhui Wu, Muzhou Li and Meiqin Wang 21

5 First Key Recovery Attack on 29-Round PRESENT-80
In this section, we provide the first 29-round attack on PRESENT-80, which benefits from
subtly chosen 24-round linear hulls with detailed analysis of its complexity reduction, as
well as our newly proposed statistical models.

To mount the 29-round attack, two and three rounds are added before and after the
24-round linear hulls, respectively. Linear hulls used in this attack are depicted in Table 5,
which are chosen from those given in [FN20] in a trade-off manner. When picking each
linear hull, we try to ensure that the arithmetic mean of piELPi of all chosen hulls can
be larger while extra time complexity caused by this hull should not increase the final
complexity too fast. Such trade-off can be effectively obtained using our constructed
automatic tool, which can provide detailed analysis of complexity reduction of each linear
hull. Attack parameters for each linear hull are depicted in Appendix H.

Table 5: The 24-round linear hulls used in attacking 29-round PRESENT-80, which are
chosen from those proposed by [FN20].

Linear Hull ELP pi Linear Hull ELP pi

[4, 2, 5, 13] 2−66.0 3/4 [4, 2, 5, 15] 2−66.0 3/4
[4, 2, 9, 13] 2−66.0 3/4 [4, 2, 9, 15] 2−66.0 3/4
[4, 8, 5, 5] 2−66.0 1/2 [4, 8, 5, 7] 2−66.0 1/2
[4, 8, 9, 5] 2−66.0 1/2 [4, 8, 9, 7] 2−66.0 1/2
[4, 4, 5, 13] 2−66.7 3/4 [4, 4, 5, 15] 2−66.7 3/4
[4, 4, 9, 13] 2−66.7 3/4 [4, 4, 9, 15] 2−66.7 3/4
[4, 2, 13, 13] 2−66.7 3/4 [4, 2, 13, 15] 2−66.7 3/4
[4, 8, 13, 5] 2−66.7 1/2 [4, 8, 13, 7] 2−66.7 1/2

𝐾𝑆1

𝐾𝑆2

𝐾𝑆28

𝐾𝑆29

𝐾𝑆30

76 72 68 64 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0

76 72 68 64 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0

76 72 68 64 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0

76 72 68 64 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0

76 72 68 64 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0

Figure 6: Determining involved key bits for all linear hulls (crossed out in the figure)
with as fewer guesses as possible when attacking PRESENT-80. We can deduce the
(light) green bits if we know the 76 key bits highlighted in (dark) red.

Similar with the 29-round attack on PRESENT-128, we also construct some Tk tables,

22 Improved Linear Key Recovery Attacks on PRESENT

whose index is involved key bits and stores intermediate values in evaluating the final
statistic C. Here, we adopt four tables T0, T1, T2 and T3. Detailed information of
these tables are provided in Appendix G. During the attack, these four tables need to be
stored and thus need 4 · 269 = 271 registers in total. When updating these Tk tables, the
probability Prcon occurs in S3 is changed to (10/16)15. After obtaining these updated
Tk tables, one can use them to recover the right key bits as follows. As shown in Fig. 6,
we choose kT as 76-bit KS29 to compute the statistic C. Setting α1 = 2−a = 2−1.39

and N = 263.93 DKP, we can mount such attack with success probability 51.23%. Time
complexity of the whole attack process is 280.99 additions, 274 multiplications and 278.61

times of 29-round encryptions. In other words, the time complexity is at most 278.87 times
of 29-round encryptions. Memory cost is dominated by storing Tk, thus is 271 registers.

6 Conclusion and Future Work
Following the affine pruned Walsh transform framework, we introduce improved linear
key recovery attacks on both PRESENT-80 and PRESENT-128 based on two ideas. The
first one is that we have made detailed analysis of complexity reduction for each linear
hull, thus one can decide to use which linear hulls with the aim of obtaining better key
recovery attacks. This procedure is proceeded automatically with an tool designed by
us. Our 29-round attack on PRESENT-80 mainly benefits from this idea, where we
subtly choose some 24-round linear hulls to get the balance between attack complexities
and success probabilities. Without such detailed analysis, trade-offs may be not easy
to efficiently achieve. The second idea is constructing a dedicated statistical model for
such affine pruned Walsh transform technique, since there exist deviations from statistical
models built for classical linear attacks when some data are artificially rejected. With
this newly proposed statistical models, we can construct the accurate relation between
data complexity and success probability, which gives the chance to make further trade-offs.
Based on our statistical models, we can mount 29-round attacks on PRESENT-80 and
PRESENT-128 without using full-codebook. Both attacks are the best ones so far. In
future, there are plenty of interesting works. On the one hand, further applications on
other ciphers using this technique with our statistical models are encouraged. On the
other hand, statistical behaviors behind this technique when combing with other variants
of linear attacks are worth to be discovered, such as for the multidimensional linear attacks
or multivariate ones, or even for linear attacks using (multiple) zero-correlation linear hulls.

References
[AC09] Martin R. Albrecht and Carlos Cid. Algebraic techniques in differential crypt-

analysis. In Orr Dunkelman, editor, FSE 2009, volume 5665 of LNCS, pages
193–208. Springer, 2009.

[BCQ04] Alex Biryukov, Christophe De Cannière, and Michaël Quisquater. On multi-
ple linear approximations. In Matthew K. Franklin, editor, CRYPTO 2004,
volume 3152 of LNCS, pages 1–22. Springer, 2004.

[BJV04] Thomas Baignères, Pascal Junod, and Serge Vaudenay. How far can we go
beyond linear cryptanalysis? In Pil Joong Lee, editor, ASIACRYPT 2004,
volume 3329 of LNCS, pages 432–450. Springer, 2004.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In Pascal Paillier and Ingrid

Wenhui Wu, Muzhou Li and Meiqin Wang 23

Verbauwhede, editors, CHES 2007, volume 4727 of LNCS, pages 450–466.
Springer, 2007.

[BN16] Céline Blondeau and Kaisa Nyberg. Improved parameter estimates for corre-
lation and capacity deviates in linear cryptanalysis. IACR Trans. Symmetric
Cryptol., 2016(2):162–191, 2016.

[BN17] Céline Blondeau and Kaisa Nyberg. Joint data and key distribution of sim-
ple, multiple, and multidimensional linear cryptanalysis test statistic and its
impact to data complexity. Des. Codes Cryptogr., 82(1-2):319–349, 2017.

[BTV18] Andrey Bogdanov, Elmar Tischhauser, and Philip S. Vejre. Multivariate
profiling of hulls for linear cryptanalysis. IACR Trans. Symmetric Cryptol.,
2018(1):101–125, 2018.

[Cho10] Joo Yeon Cho. Linear cryptanalysis of reduced-round PRESENT. In Josef
Pieprzyk, editor, CT-RSA 2010, volume 5985 of LNCS, pages 302–317.
Springer, 2010.

[Coe20] Carlos A. Coelho. On the Distribution of Linear Combinations of Chi-Square
Random Variables, pages 211–252. Springer International Publishing, Cham,
2020.

[CS09] Baudoin Collard and François-Xavier Standaert. A statistical saturation at-
tack against the block cipher PRESENT. In Marc Fischlin, editor, CT-RSA
2009, volume 5473 of LNCS, pages 195–210. Springer, 2009.

[CSQ07] Baudoin Collard, François-Xavier Standaert, and Jean-Jacques Quisquater.
Improving the time complexity of matsui’s linear cryptanalysis. In Kil-Hyun
Nam and Gwangsoo Rhee, editors, ICISC 2007, volume 4817 of LNCS, pages
77–88. Springer, 2007.

[Fló22] Antonio Flórez-Gutiérrez. Optimising linear key recovery attacks with affine
walsh transform pruning. In Shweta Agrawal and Dongdai Lin, editors, ASI-
ACRYPT 2022, volume 13794 of LNCS, pages 447–476. Springer, 2022.

[FN20] Antonio Flórez-Gutiérrez and María Naya-Plasencia. Improving key-recovery
in linear attacks: Application to 28-round PRESENT. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, volume 12105 of LNCS, pages
221–249. Springer, 2020.

[HCN08] Miia Hermelin, Joo Yeon Cho, and Kaisa Nyberg. Multidimensional linear
cryptanalysis of reduced round serpent. In Yi Mu, Willy Susilo, and Jennifer
Seberry, editors, ACISP 2008, volume 5107 of LNCS, pages 203–215. Springer,
2008.

[HCN09] Miia Hermelin, Joo Yeon Cho, and Kaisa Nyberg. Multidimensional extension
of Matsui’s algorithm 2. In Orr Dunkelman, editor, Fast Software Encryption,
16th International Workshop, FSE 2009, Leuven, Belgium, February 22-25,
2009, Revised Selected Papers, volume 5665 of LNCS, pages 209–227. Springer,
2009.

[HVLN15] Jialin Huang, Serge Vaudenay, Xuejia Lai, and Kaisa Nyberg. Capacity and
data complexity in multidimensional linear attack. In Rosario Gennaro and
Matthew Robshaw, editors, CRYPTO 2015, volume 9215 of LNCS, pages 141–
160. Springer, 2015.

24 Improved Linear Key Recovery Attacks on PRESENT

[JR94] Burton S. Kaliski Jr. and Matthew J. B. Robshaw. Linear cryptanalysis using
multiple approximations. In Yvo Desmedt, editor, CRYPTO 1994, volume
839 of LNCS, pages 26–39. Springer, 1994.

[JSZW09] Jorge Nakahara Jr., Pouyan Sepehrdad, Bingsheng Zhang, and Meiqin Wang.
Linear (hull) and algebraic cryptanalysis of the block cipher PRESENT. In
Juan A. Garay, Atsuko Miyaji, and Akira Otsuka, editors, CANS 2009, volume
5888 of LNCS, pages 58–75. Springer, 2009.

[KH11] Damir Kalpić and Nikica Hlupić. Multivariate Normal Distributions, pages
907–910. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[Lea10] Gregor Leander. Small scale variants of the block cipher PRESENT. IACR
Cryptol. ePrint Arch., page 143, 2010.

[Mat93] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Tor Helleseth,
editor, EUROCRYPT 1993, volume 765 of LNCS, pages 386–397. Springer,
1993.

[Nyb94] Kaisa Nyberg. Linear approximation of block ciphers. In Alfredo De Santis,
editor, EUROCRYPT 1994, volume 950 of LNCS, pages 439–444. Springer,
1994.

[Ohk09] Kenji Ohkuma. Weak keys of reduced-round PRESENT for linear cryptanal-
ysis. In Michael J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini,
editors, SAC 2009, volume 5867 of LNCS, pages 249–265. Springer, 2009.

[ÖVTK09] Onur Özen, Kerem Varici, Cihangir Tezcan, and Çelebi Kocair. Lightweight
block ciphers revisited: Cryptanalysis of reduced round PRESENT and
HIGHT. In Colin Boyd and Juan Manuel González Nieto, editors, ACISP
2009, volume 5594 of LNCS, pages 90–107. Springer, 2009.

[Wan08] Meiqin Wang. Differential cryptanalysis of reduced-round PRESENT. In Serge
Vaudenay, editor, AFRICACRYPT 2008, volume 5023 of LNCS, pages 40–49.
Springer, 2008.

[Wei82] Neil A. Weiss. Introductory statistics. 1982.

[ZRHD08] Muhammad Reza Z’aba, Håvard Raddum, Matthew Henricksen, and Ed Daw-
son. Bit-pattern based integral attack. In Kaisa Nyberg, editor, FSE, volume
5086 of LNCS, pages 363–381. Springer, 2008.

[ZZ15] Lei Zheng and Shao-Wu Zhang. FFT-based multidimensional linear attack
on PRESENT using the 2-bit-fixed characteristic. Secur. Commun. Networks,
8(18):3535–3545, 2015.

A Key Schedules of PRESENT

B Proof of Lemma 1
Proof. Denote h(x̃) : Fn

2 → F|X1|+|X2|+2
2 as the vectorial Boolean function. Let X1,i and

X2,i denote the i-th bit of X1 and X2, respectively. Each component hi(x̃) is

h0(x̃) = X1,0, h1(x̃) = X1,1, · · · , h|X1|−1(x̃) = X1,|X1|−1,

h|X1|(x̃) = X2,0, h|X1|+1(x̃) = X2,1, · · · , h|X1|+|X2|−1(x̃) = X2,|X1|−1,

Wenhui Wu, Muzhou Li and Meiqin Wang 25

Algorithm 1: Key Schedule of PRESENT-80
1 for i→ 1 to 31 do
2 Ki → K[79, 78, · · · , 16];
3 K → K ≫ 19;
4 K[79, 78, 77, 76]→ S(K[79, 78, 77, 76]);
5 K[19, · · · , 15]→ K[19, · · · , 15]⊕RCi;
6 K32 → K[79, 78, · · · , 16];

Algorithm 2: Key Schedule of PRESENT-128
1 for i→ 1 to 31 do
2 Ki → K[127, 126, · · · , 64];
3 K → K ≪ 61;
4 K[127, 126, 125, 124]→ S(K[127, 126, 125, 124]);
5 K[123, 122, 121, 120]→ S(K[123, 122, 121, 120]);
6 K[66, · · · , 62]→ K[66, · · · , 62]⊕RCi;
7 K32 → K[127, 126, · · · , 64];

h|X1|+|X2| = f0(x̃), h|X1|+|X2|+1 = g0(EK(x̃)).

Suppose the probability that h(x̃) = η is p̂η when x̃ ∈ D, we can deduce that

Â[Y1, Y2] =
∑

X1,X2

(−1)⟨Y1,X1⟩⊕⟨Y2,X2⟩A[X1, X2]

=
∑

x̃∈D,
x̃→X1,EK(x̃)→X2

(−1)⟨Y1,X1⟩⊕⟨Y2,X2⟩⊕f0(x̃)⊕g0(EK (x̃))

=
∑

x̃∈D,
x̃→X1,EK(x̃)→X2

(−1)⟨Y1||Y2||11,h(x̃)⟩

=
∑

η∈F|X1|+|X2|+2
2

(−1)⟨Y1||Y2||11,η⟩Np̂η.

The last equality comes from [HCN08, Lemma 1].
Denote T̂η = Np̂η, which is the number of x̃ ∈ D that fulfills h(x̃) = η. Besides, we

have
∑

η T̂η = N . Thus, when x̃ ∈ D are chosen with known-plaintext (KP) sampling,
statistic vector (T̂0, T̂1, · · · , T̂2|X1|+|X2|+2−1) will follow the multinomial distribution; while
in the distinct known-plaintext (DKP) sampling, it follows the multivariate hypergeomet-
ric distribution. Both distributions can then be approximated as multivariate normal ones.
Denote qη as the probability that h(x̃) = η when x̃ ∈ Fn

2 . Expectation and variance of each
T̂η are Nqη and NBqη(1−qη), respectively. Covariance between T̂η1 and T̂η2 is −NBqη1qη2 .
Since all Â[Y1, Y2] are linear combinations of T̂η, (Â[0, 0], · · · , Â[2|Y1| − 1, 2|Y2| − 1]) also
follows the multivariate normal distribution [KH11]. Meanwhile, its expectation is

E(Â[Y1, Y2]) =
∑

η∈F|X1|+|X2|+2
2

(−1)⟨Y1||Y2||11,η⟩ · E(T̂η) = N
∑

η∈F|X1|+|X2|+2
2

(−1)⟨Y1||Y2||11,η⟩qη

=N
1
2n

∑
x̃∈Fn

2 ,
x̃→X1,EK(x̃)→X2

(−1)⟨Y1||Y2||11,h(x̃)⟩ = NC[Y1,Y2],

26 Improved Linear Key Recovery Attacks on PRESENT

while the third equality also comes from [HCN08, Lemma 1]. Covariance between Â[Y a
1 , Y a

2]
and Â[Y b

1 , Y b
2] is

Cov(Â[Y a
1 , Y a

2], Â[Y b
1 , Y b

2]) =
∑
ηa

∑
ηb

(−1)⟨Y a
1 ||Y a

2 ||11,ηa⟩⊕⟨Y b
1 ||Y b

2 ||11,ηb⟩Cov(T̂ηa
, T̂ηb

)

=
∑

η

(−1)⟨Y
a

1 ||Y a
2 ||11⊕Y b

1 ||Y b
2 ||11,η⟩NBqη −

∑
ηa

∑
ηb

(−1)⟨Y a
1 ||Y a

2 ||11,ηa⟩⊕⟨Y b
1 ||Y b

2 ||11,ηb⟩NBqηaqηb

=NB
1
2n

∑
x̃∈Fn

2 ,
x̃→X1,EK(x̃)→X2

(−1)⟨(Y a
1 ⊕Y b

1)||(Y a
2 ⊕Y b

2)||00,h(x̃)⟩ −NBC[Y a
1 ,Y a

2]C[Y b
1 ,Y b

2]

=NBδ[Y a
1 ⊕Y b

1 ,Y a
2 ⊕Y b

2] −NBC[Y a
1 ,Y a

2]C[Y b
1 ,Y b

2].

Note that the third equality can be obtained from [HCN08, Lemma 1].

C Relation between Data Complexity and Error Probabili-
ties when c ̸= 0 in the Classical Setting

To deduce this relation, we have to perform a statistic test which can decide whether the
obtained statistic ĉor(s) is computed under the right key or a wrong key guess. In this
test, we compare ĉor(s) to a threshold value τ . When c > 0, we regard the guessed key is
possibly right if ĉor(s) > τ , while it’s a wrong key otherwise. When c < 0, the decision
rule is a little different. In this case, we will regard it is possibly right if ĉor(s) < τ . Hence,
one can obtain Corollary 3. Its proof is similar with Corollary 1, thus we omit it.

Corollary 3. Denote α0 as the probability of rejecting the right key, and α1 as the prob-
ability of accepting a wrong key. When c > 0, the number of plaintexts needed is

N =


M1(α0, α1), KP Sampling,

2n M1(α0, α1)
2n − 1 + M1(α0, α1)

, DKP Sampling,

and the threshold value is

τ = #QK2−nc + qα0

√
B

N
#QK2−n + #QK2−2n + (#QK2−n)2(ELP − c2),

where M1(α0, α1) equals to

22n(q2
α0
− q2

1−α1
) + 2c#QK2nqα0

2n(q2
1−α1

− q2
α0

)− 2nc2#QK − 2c#QKqα0 −#QK(ELP − c2)(2nq2
α0

+ 2c#QKqα0)

with qα0 and q1−α1 as lower quantiles of N(0, 1). When c < 0, N has the similar form
except that it’s M1(1− α0, 1− α1) rather than M1(α0, α1), while

τ = #QK2−nc + q1−α0

√
B

N
#QK2−n + #QK2−2n + (#QK2−n)2(ELP − c2).

D Discussions on Statistical Models used in [Fló22]
In [Fló22], key recovery attacks on DES and 29-round PRESENT-128 are proposed. Both
attacks use the statistical model from [BN17]. However, these two attacks belong to dif-
ferent cases. For the one mounted on DES, no data is artificially rejected during the

Wenhui Wu, Muzhou Li and Meiqin Wang 27

evaluation of the experimental correlation. Hence, it still follows the model from [BN17].
While for 29-round PRESENT-128, different ratio of data is rejected when evaluating the
experimental correlation under different linear hull. From [Fló22], the statistical model
used is unclear. There is only one sentence: “the statistical model from [BN17] is used
with careful consideration that the number of available plaintexts depends on the approx-
imation”. Note that [Fló22] takes the number of remaining data into consideration, which
changes the form of the previous statistic constructed in [BN17]. Since no specific form
of this statistic is given in [Fló22], one cannot check whether the claimed success proba-
bility 67% is correct or not. Meanwhile, with our statistical model constructed in Sect. 3,
the success probability of this 29-round attack is only 40.11%, which is much lower than
67%. To be more clear, we also verified the applicability of the model from [BN17] in the
classical linear setting where only one linear hull is used, when some data are rejected.
We follow the same Type-I experiment proposed in Sect. 3.3 with the first linear hull
shown in Table 3, where the experimental correlation is assumed to fulfill distributions
from [BN17]. Fig. 7 shows the comparison between experimental error probabilities and
theoretical ones. Hence, the statistical model from [BN17] cannot be directly used when
some data are rejected even in the classical setting. This motivated us to study the statis-
tical behavior behind this new technique. Compared with [Fló22], our newly constructed
statistical model is clear and accurate (See Fig. 2 and 3). Since [Fló22] uses the models
from [BN17], one can conclude that the estimation of data/time complexity and success
probability is not accurate in [Fló22].

E Table T k used in Attacking 29-round PRESENT-128
All Tk tables contains the 64-bit k30. Bits colored in red are those can be deduced from
the 64-bit k30.

• Table T0 of size 291

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]
k2: [20, 21, 22, 23]
k28: [5, 21, 37, 53]
k29: [1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61]

– Included Linear Hulls:
[2, 2, 5, 5], [2, 4, 5, 5], [2, 8, 5, 5], [2, 2, 9, 5], [2, 4, 9, 5], [2, 8, 9, 5], [2, 2, 13,
5], [2, 8, 13, 5]

• Table T1 of size 291

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]
k2: [20, 21, 22, 23]
k28: [13, 29, 45, 61]
k29: [3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63]

– Included Linear Hulls:
[2, 2, 5, 13], [2, 4, 5, 13], [2, 8, 5, 13], [2, 2, 9, 13], [2, 4, 9, 13], [2, 8, 9, 13], [2,
2, 13, 13], [2, 8, 13, 13]

• Table T2 of size 291

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]

28 Improved Linear Key Recovery Attacks on PRESENT

9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5
log(N)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Er
ro

r P
ro

ba
bi

lit
y

0

0

1

1

(a) KP setting

9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5
log(N)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Er
ro

r P
ro

ba
bi

lit
y

0

0

1

1

(b) DKP setting

Figure 7: Experimental results of the statistical model (only one linear hull) from [BN17]
with SmallPRESENT-[4] when some data are artificially rejected.

k2: [20, 21, 22, 23]
k28: [15, 31, 47, 63]
k29: [3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63]

– Included Linear Hulls:
[2, 2, 5, 15], [2, 4, 5, 15], [2, 8, 5, 15], [2, 2, 9, 15], [2, 4, 9, 15], [2, 8, 9, 15], [2,
2, 13, 15], [2, 8, 13, 15]

• Table T3 of size 290

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]
k2: [20, 21, 22, 23]
k28: [7, 23, 39, 55]
k29: [1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61]

– Included Linear Hulls:
[2, 2, 5, 7], [2, 4, 5, 7], [2, 8, 5, 7], [2, 2, 9, 7], [2, 4, 9, 7], [2, 8, 9, 7], [2, 2, 13,
7], [2, 8, 13, 7]

Wenhui Wu, Muzhou Li and Meiqin Wang 29

• Table T4 of size 291

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]
k2: [36, 37, 38, 39]
k28: [5, 21, 37, 53]
k29: [1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61]

– Included Linear Hulls:
[2, 2, 6, 5], [2, 4, 6, 5], [2, 8, 6, 5], [2, 2, 10, 5], [2, 4, 10, 5], [2, 8, 10, 5], [2, 2,
14, 5], [2, 8, 14, 5]

• Table T5 of size 291

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]
k2: [36, 37, 38, 39]
k28: [13, 29, 45, 61]
k29: [3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63]

– Included Linear Hulls:
[2, 2, 6, 13], [2, 4, 6, 13], [2, 8, 6, 13], [2, 2, 10, 13], [2, 4, 10, 13], [2, 8, 10, 13],
[2, 2, 14, 13], [2, 8, 14, 13]

• Table T6 of size 291

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]
k2: [36, 37, 38, 39]
k28: [15, 31, 47, 63]
k29: [3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63]

– Included Linear Hulls:
[2, 2, 6, 15], [2, 4, 6, 15], [2, 8, 6, 15], [2, 2, 10, 15], [2, 4, 10, 15], [2, 8, 10, 15],
[2, 2, 14, 15], [2, 8, 14, 15]

• Table T7 of size 290

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]
k2: [36, 37, 38, 39]
k28: [7, 23, 39, 55]
k29: [1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61]

– Included Linear Hulls:
[2, 2, 6, 7], [2, 4, 6, 7], [2, 8, 6, 7], [2, 2, 10, 7], [2, 4, 10, 7], [2, 8, 10, 7], [2, 2,
14, 7], [2, 8, 14, 7]

• Table T8 of size 284

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]
k2: [24, 25, 26, 27]
k28: [5, 21, 37, 53]
k29: [1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61]

– Included Linear Hulls:
[4, 2, 5, 5], [4, 4, 5, 5], [4, 8, 5, 5], [4, 2, 9, 5], [4, 4, 9, 5], [4, 8, 9, 5], [4, 2, 13,
5], [4, 8, 13, 5]

30 Improved Linear Key Recovery Attacks on PRESENT

• Table T9 of size 284

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]
k2: [24, 25, 26, 27]
k28: [13, 29, 45, 61]
k29: [3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63]

– Included Linear Hulls:
[4, 2, 5, 13], [4, 4, 5, 13], [4, 8, 5, 13], [4, 2, 9, 13], [4, 4, 9, 13], [4, 8, 9, 13], [4,
2, 13, 13], [4, 8, 13, 13]

• Table T10 of size 284

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]
k2: [24, 25, 26, 27]
k28: [15, 31, 47, 63]
k29: [3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63]

– Included Linear Hulls:
[4, 2, 5, 15], [4, 4, 5, 15], [4, 8, 5, 15], [4, 2, 9, 15], [4, 4, 9, 15], [4, 8, 9, 15], [4,
2, 13, 15], [4, 8, 13, 15]

• Table T11 of size 283

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]
k2: [24, 25, 26, 27]
k28: [7, 23, 39, 55]
k29: [1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61]

– Included Linear Hulls:
[4, 2, 5, 7], [4, 4, 5, 7], [4, 8, 5, 7], [4, 2, 9, 7], [4, 4, 9, 7], [4, 8, 9, 7], [4, 2, 13,
7], [4, 8, 13, 7]

• Table T12 of size 284

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]
k2: [40, 41, 42, 43]
k28: [5, 21, 37, 53]
k29: [1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61]

– Included Linear Hulls:
[4, 2, 6, 5], [4, 4, 6, 5], [4, 8, 6, 5], [4, 2, 10, 5], [4, 4, 10, 5], [4, 8, 10, 5], [4, 2,
14, 5], [4, 8, 14, 5]

• Table T13 of size 284

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]
k2: [40, 41, 42, 43]
k28: [13, 29, 45, 61]
k29: [3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63]

– Included Linear Hulls:
[4, 2, 6, 13], [4, 4, 6, 13], [4, 8, 6, 13], [4, 2, 10, 13], [4, 4, 10, 13], [4, 8, 10, 13],
[4, 2, 14, 13], [4, 8, 14, 13]

Wenhui Wu, Muzhou Li and Meiqin Wang 31

• Table T14 of size 284

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]
k2: [40, 41, 42, 43]
k28: [15, 31, 47, 63]
k29: [3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63]

– Included Linear Hulls:
[4, 2, 6, 15], [4, 4, 6, 15], [4, 8, 6, 15], [4, 2, 10, 15], [4, 4, 10, 15], [4, 8, 10, 15],
[4, 2, 14, 15], [4, 8, 14, 15]

• Table T15 of size 283

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]
k2: [40, 41, 42, 43]
k28: [7, 23, 39, 55]
k29: [1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61]

– Included Linear Hulls:
[4, 2, 6, 7], [4, 4, 6, 7], [4, 8, 6, 7], [4, 2, 10, 7], [4, 4, 10, 7], [4, 8, 10, 7], [4, 2,
14, 7], [4, 8, 14, 7]

• Table T16 of size 284

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
k2: [28, 29, 30, 31]
k28: [5, 21, 37, 53]
k29: [1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61]

– Included Linear Hulls:
[8, 2, 5, 5], [8, 8, 5, 5], [8, 2, 9, 5], [8, 8, 9, 5]

• Table T17 of size 284

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
k2: [28, 29, 30, 31]
k28: [13, 29, 45, 61]
k29: [3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63]

– Included Linear Hulls:
[8, 2, 5, 13], [8, 8, 5, 13], [8, 2, 9, 13], [8, 8, 9, 13]

• Table T18 of size 284

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
k2: [28, 29, 30, 31]
k28: [15, 31, 47, 63]
k29: [3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63]

– Included Linear Hulls:
[8, 2, 5, 15], [8, 8, 5, 15], [8, 2, 9, 15], [8, 8, 9, 15]

• Table T19 of size 283

32 Improved Linear Key Recovery Attacks on PRESENT

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
k2: [28, 29, 30, 31]
k28: [7, 23, 39, 55]
k29: [1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61]

– Included Linear Hulls:
[8, 2, 5, 7], [8, 8, 5, 7], [8, 2, 9, 7], [8, 8, 9, 7]

• Table T20 of size 284

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
k2: [44, 45, 46, 47]
k28: [5, 21, 37, 53]
k29: [1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61]

– Included Linear Hulls:
[8, 2, 6, 5], [8, 8, 6, 5], [8, 2, 10, 5], [8, 8, 10, 5]

• Table T21 of size 284

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
k2: [44, 45, 46, 47]
k28: [13, 29, 45, 61]
k29: [3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63]

– Included Linear Hulls:
[8, 2, 6, 13], [8, 8, 6, 13], [8, 2, 10, 13], [8, 8, 10, 13]

• Table T22 of size 284

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
k2: [44, 45, 46, 47]
k28: [15, 31, 47, 63]
k29: [3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63]

– Included Linear Hulls:
[8, 2, 6, 15], [8, 8, 6, 15], [8, 2, 10, 15], [8, 8, 10, 15]

• Table T23 of size 283

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
k2: [44, 45, 46, 47]
k28: [7, 23, 39, 55]
k29: [1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61]

– Included Linear Hulls:
[8, 2, 6, 7], [8, 8, 6, 7], [8, 2, 10, 7], [8, 8, 10, 7]

• Table T24 of size 295

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
k2: [20, 21, 22, 23, 28, 29, 30, 31]
k28: [5, 21, 37, 53]
k29: [1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61]

Wenhui Wu, Muzhou Li and Meiqin Wang 33

– Included Linear Hulls:
[a, 2, 5, 5], [a, 4, 5, 5], [a, 8, 5, 5], [a, 2, 9, 5], [a, 4, 9, 5], [a, 8, 9, 5], [a, 2, 13,
5], [a, 4, 13, 5], [a, 8, 13, 5]

• Table T25 of size 295

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
k2: [20, 21, 22, 23, 28, 29, 30, 31]
k28: [13, 29, 45, 61]
k29: [3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63]

– Included Linear Hulls:
[a, 2, 5, 13], [a, 4, 5, 13], [a, 8, 5, 13], [a, 2, 9, 13], [a, 4, 9, 13], [a, 8, 9, 13], [a,
2, 13, 13], [a, 4, 13, 13], [a, 8, 13, 13]

• Table T26 of size 295

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
k2: [20, 21, 22, 23, 28, 29, 30, 31]
k28: [15, 31, 47, 63]
k29: [3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63]

– Included Linear Hulls:
[a, 2, 5, 15], [a, 4, 5, 15], [a, 8, 5, 15], [a, 2, 9, 15], [a, 4, 9, 15], [a, 8, 9, 15], [a,
2, 13, 15], [a, 4, 13, 15], [a, 8, 13, 15]

• Table T27 of size 294

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
k2: [20, 21, 22, 23, 28, 29, 30, 31]
k28: [7, 23, 39, 55]
k29: [1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61]

– Included Linear Hulls:
[a, 2, 5, 7], [a, 4, 5, 7], [a, 8, 5, 7], [a, 2, 9, 7], [a, 4, 9, 7], [a, 8, 9, 7], [a, 2, 13,
7], [a, 4, 13, 7], [a, 8, 13, 7]

• Table T28 of size 295

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
k2: [36, 37, 38, 39, 44, 45, 46, 47]
k28: [5, 21, 37, 53]
k29: [1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61]

– Included Linear Hulls:
[a, 2, 6, 5], [a, 4, 6, 5], [a, 8, 6, 5], [a, 2, 10, 5], [a, 4, 10, 5], [a, 8, 10, 5], [a, 2,
14, 5], [a, 4, 14, 5], [a, 8, 14, 5]

• Table T29 of size 295

34 Improved Linear Key Recovery Attacks on PRESENT

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
k2: [36, 37, 38, 39, 44, 45, 46, 47]
k28: [13, 29, 45, 61]
k29: [3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63]

– Included Linear Hulls:
[a, 2, 6, 13], [a, 4, 6, 13], [a, 8, 6, 13], [a, 2, 10, 13], [a, 4, 10, 13], [a, 8, 10, 13],
[a, 2, 14, 13], [a, 4, 14, 13], [a, 8, 14, 13]

• Table T30 of size 295

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
k2: [36, 37, 38, 39, 44, 45, 46, 47]
k28: [15, 31, 47, 63]
k29: [3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63]

– Included Linear Hulls:
[a, 2, 6, 15], [a, 4, 6, 15], [a, 8, 6, 15], [a, 2, 10, 15], [a, 4, 10, 15], [a, 8, 10, 15],
[a, 2, 14, 15], [a, 4, 14, 15], [a, 8, 14, 15]

• Table T31 of size 294

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
k2: [36, 37, 38, 39, 44, 45, 46, 47]
k28: [7, 23, 39, 55]
k29: [1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61]

– Included Linear Hulls:
[a, 2, 6, 7], [a, 4, 6, 7], [a, 8, 6, 7], [a, 2, 10, 7], [a, 4, 10, 7], [a, 8, 10, 7], [a, 2,
14, 7], [a, 4, 14, 7], [a, 8, 14, 7]

• Table T32 of size 288

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
k2: [24, 25, 26, 27, 28, 29, 30, 31]
k28: [5, 21, 37, 53]
k29: [1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61]

– Included Linear Hulls:
[c, 2, 5, 5], [c, 4, 5, 5], [c, 8, 5, 5], [c, 2, 9, 5], [c, 4, 9, 5], [c, 8, 9, 5], [c, 2, 13,
5], [c, 8, 13, 5]

• Table T33 of size 288

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
k2: [24, 25, 26, 27, 28, 29, 30, 31]
k28: [13, 29, 45, 61]
k29: [3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63]

Wenhui Wu, Muzhou Li and Meiqin Wang 35

– Included Linear Hulls:
[c, 2, 5, 13], [c, 4, 5, 13], [c, 8, 5, 13], [c, 2, 9, 13], [c, 4, 9, 13], [c, 8, 9, 13], [c,
2, 13, 13], [c, 8, 13, 13]

• Table T34 of size 288

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
k2: [24, 25, 26, 27, 28, 29, 30, 31]
k28: [15, 31, 47, 63]
k29: [3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63]

– Included Linear Hulls:
[c, 2, 5, 15], [c, 4, 5, 15], [c, 8, 5, 15], [c, 2, 9, 15], [c, 4, 9, 15], [c, 8, 9, 15], [c,
2, 13, 15], [c, 8, 13, 15]

• Table T35 of size 287

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
k2: [24, 25, 26, 27, 28, 29, 30, 31]
k28: [7, 23, 39, 55]
k29: [1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61]

– Included Linear Hulls:
[c, 2, 5, 7], [c, 4, 5, 7], [c, 8, 5, 7], [c, 2, 9, 7], [c, 4, 9, 7], [c, 8, 9, 7], [c, 2, 13,
7], [c, 8, 13, 7]

• Table T36 of size 288

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
k2: [40, 41, 42, 43, 44, 45, 46, 47]
k28: [5, 21, 37, 53]
k29: [1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61]

– Included Linear Hulls:
[c, 2, 6, 5], [c, 4, 6, 5], [c, 8, 6, 5], [c, 2, 10, 5], [c, 4, 10, 5], [c, 8, 10, 5], [c, 2,
14, 5], [c, 8, 14, 5]

• Table T37 of size 288

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
k2: [40, 41, 42, 43, 44, 45, 46, 47]
k28: [13, 29, 45, 61]
k29: [3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63]

– Included Linear Hulls:
[c, 2, 6, 13], [c, 4, 6, 13], [c, 8, 6, 13], [c, 2, 10, 13], [c, 4, 10, 13], [c, 8, 10, 13],
[c, 2, 14, 13], [c, 8, 14, 13]

• Table T38 of size 288

36 Improved Linear Key Recovery Attacks on PRESENT

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
k2: [40, 41, 42, 43, 44, 45, 46, 47]
k28: [15, 31, 47, 63]
k29: [3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63]

– Included Linear Hulls:
[c, 2, 6, 15], [c, 4, 6, 15], [c, 8, 6, 15], [c, 2, 10, 15], [c, 4, 10, 15], [c, 8, 10, 15],
[c, 2, 14, 15], [c, 8, 14, 15]

• Table T39 of size 287

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]
k2: [40, 41, 42, 43, 44, 45, 46, 47]
k28: [7, 23, 39, 55]
k29: [1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61]

– Included Linear Hulls:
[c, 2, 6, 7], [c, 4, 6, 7], [c, 8, 6, 7], [c, 2, 10, 7], [c, 4, 10, 7], [c, 8, 10, 7], [c, 2,
14, 7], [c, 8, 14, 7]

F Attack Parameters of Linear Hulls in the 29-Round At-
tack on PRESENT-128

• L0: [2, 2, 5, 5] , g0 = 1, s0 = (80), t0 = (80), r0 = (80), belongs to T0.
m0 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L1: [2, 2, 5, 7] , g1 = 1, s1 = (80), t1 = (80), r1 = (80), belongs to T3.
m1 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L2: [2, 2, 5, 13] , g2 = 1, s2 = (80), t2 = (80), r2 = (80), belongs to T1.
m2 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L3: [2, 2, 5, 15] , g3 = 1, s3 = (80), t3 = (80), r3 = (80), belongs to T2.
m3 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L4: [2, 4, 5, 5] , g4 = 1, s4 = (80), t4 = (80), r4 = (80), belongs to T0.
m4 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L5: [2, 4, 5, 7] , g5 = 1, s5 = (80), t5 = (80), r5 = (80), belongs to T3.
m5 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L6: [2, 4, 5, 13] , g6 = 1, s6 = (80), t6 = (80), r6 = (80), belongs to T1.
m6 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L7: [2, 4, 5, 15] , g7 = 1, s7 = (80), t7 = (80), r7 = (80), belongs to T2.
m7 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L8: [2, 8, 5, 5] , g8 = 1, s8 = (80), t8 = (80), r8 = (80), belongs to T0.
m8 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

Wenhui Wu, Muzhou Li and Meiqin Wang 37

• L9: [2, 8, 5, 7] , g9 = 1, s9 = (80), t9 = (80), r9 = (80), belongs to T3.
m9 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L10: [2, 8, 5, 13] , g10 = 1, s10 = (80), t10 = (80), r10 = (80), belongs to T1.
m10 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L11: [2, 8, 5, 15] , g11 = 1, s11 = (80), t11 = (80), r11 = (80), belongs to T2.
m11 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L12: [2, 2, 6, 5] , g12 = 1, s12 = (80), t12 = (80), r12 = (80), belongs to T4.
m12 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L13: [2, 2, 6, 7] , g13 = 1, s13 = (80), t13 = (80), r13 = (80), belongs to T7.
m13 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L14: [2, 2, 6, 13] , g14 = 1, s14 = (80), t14 = (80), r14 = (80), belongs to T5.
m14 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L15: [2, 2, 6, 15] , g15 = 1, s15 = (80), t15 = (80), r15 = (80), belongs to T6.
m15 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L16: [2, 4, 6, 5] , g16 = 1, s16 = (80), t16 = (80), r16 = (80), belongs to T4.
m16 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L17: [2, 4, 6, 7] , g17 = 1, s17 = (80), t17 = (80), r17 = (80), belongs to T7.
m17 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L18: [2, 4, 6, 13] , g18 = 1, s18 = (80), t18 = (80), r18 = (80), belongs to T5.
m18 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L19: [2, 4, 6, 15] , g19 = 1, s19 = (80), t19 = (80), r19 = (80), belongs to T6.
m19 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L20: [2, 8, 6, 5] , g20 = 1, s20 = (80), t20 = (80), r20 = (80), belongs to T4.
m20 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L21: [2, 8, 6, 7] , g21 = 1, s21 = (80), t21 = (80), r21 = (80), belongs to T7.
m21 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L22: [2, 8, 6, 13] , g22 = 1, s22 = (80), t22 = (80), r22 = (80), belongs to T5.
m22 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L23: [2, 8, 6, 15] , g23 = 1, s23 = (80), t23 = (80), r23 = (80), belongs to T6.
m23 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L24: [2, 2, 9, 5] , g24 = 1, s24 = (80), t24 = (80), r24 = (80), belongs to T0.
m24 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L25: [2, 2, 9, 7] , g25 = 1, s25 = (80), t25 = (80), r25 = (80), belongs to T3.
m25 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L26: [2, 2, 9, 13] , g26 = 1, s26 = (80), t26 = (80), r26 = (80), belongs to T1.
m26 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

38 Improved Linear Key Recovery Attacks on PRESENT

• L27: [2, 2, 9, 15] , g27 = 1, s27 = (80), t27 = (80), r27 = (80), belongs to T2.
m27 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L28: [2, 4, 9, 5] , g28 = 1, s28 = (80), t28 = (80), r28 = (80), belongs to T0.
m28 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L29: [2, 4, 9, 7] , g29 = 1, s29 = (80), t29 = (80), r29 = (80), belongs to T3.
m29 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L30: [2, 4, 9, 13] , g30 = 1, s30 = (80), t30 = (80), r30 = (80), belongs to T1.
m30 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L31: [2, 4, 9, 15] , g31 = 1, s31 = (80), t31 = (80), r31 = (80), belongs to T2.
m31 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L32: [2, 8, 9, 5] , g32 = 1, s32 = (80), t32 = (80), r32 = (80), belongs to T0.
m32 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L33: [2, 8, 9, 7] , g33 = 1, s33 = (80), t33 = (80), r33 = (80), belongs to T3.
m33 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L34: [2, 8, 9, 13] , g34 = 1, s34 = (80), t34 = (80), r34 = (80), belongs to T1.
m34 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L35: [2, 8, 9, 15] , g35 = 1, s35 = (80), t35 = (80), r35 = (80), belongs to T2.
m35 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L36: [2, 2, 10, 5] , g36 = 1, s36 = (80), t36 = (80), r36 = (80), belongs to T4.
m36 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L37: [2, 2, 10, 7] , g37 = 1, s37 = (80), t37 = (80), r37 = (80), belongs to T7.
m37 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L38: [2, 2, 10, 13] , g38 = 1, s38 = (80), t38 = (80), r38 = (80), belongs to T5.
m38 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L39: [2, 2, 10, 15] , g39 = 1, s39 = (80), t39 = (80), r39 = (80), belongs to T6.
m39 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L40: [2, 4, 10, 5] , g40 = 1, s40 = (80), t40 = (80), r40 = (80), belongs to T4.
m40 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L41: [2, 4, 10, 7] , g41 = 1, s41 = (80), t41 = (80), r41 = (80), belongs to T7.
m41 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L42: [2, 4, 10, 13] , g42 = 1, s42 = (80), t42 = (80), r42 = (80), belongs to T5.
m42 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L43: [2, 4, 10, 15] , g43 = 1, s43 = (80), t43 = (80), r43 = (80), belongs to T6.
m43 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L44: [2, 8, 10, 5] , g44 = 1, s44 = (80), t44 = (80), r44 = (80), belongs to T4.
m44 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

Wenhui Wu, Muzhou Li and Meiqin Wang 39

• L45: [2, 8, 10, 7] , g45 = 1, s45 = (80), t45 = (80), r45 = (80), belongs to T7.
m45 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L46: [2, 8, 10, 13] , g46 = 1, s46 = (80), t46 = (80), r46 = (80), belongs to T5.
m46 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L47: [2, 8, 10, 15] , g47 = 1, s47 = (80), t47 = (80), r47 = (80), belongs to T6.
m47 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L48: [4, 2, 5, 5] , g48 = 1, s48 = (80), t48 = (80), r48 = (80), belongs to T8.
m48 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L49: [4, 2, 5, 7] , g49 = 1, s49 = (80), t49 = (80), r49 = (80), belongs to T11.
m49 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L50: [4, 2, 5, 13] , g50 = 1, s50 = (80), t50 = (80), r50 = (80), belongs to T9.
m50 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L51: [4, 2, 5, 15] , g51 = 1, s51 = (80), t51 = (80), r51 = (80), belongs to T10.
m51 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L52: [4, 4, 5, 5] , g52 = 1, s52 = (80), t52 = (80), r52 = (80), belongs to T8.
m52 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L53: [4, 4, 5, 7] , g53 = 1, s53 = (80), t53 = (80), r53 = (80), belongs to T11.
m53 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L54: [4, 4, 5, 13] , g54 = 1, s54 = (80), t54 = (80), r54 = (80), belongs to T9.
m54 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L55: [4, 4, 5, 15] , g55 = 1, s55 = (80), t55 = (80), r55 = (80), belongs to T10.
m55 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L56: [4, 8, 5, 5] , g56 = 1, s56 = (80), t56 = (80), r56 = (80), belongs to T8.
m56 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L57: [4, 8, 5, 7] , g57 = 1, s57 = (80), t57 = (80), r57 = (80), belongs to T11.
m57 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L58: [4, 8, 5, 13] , g58 = 1, s58 = (80), t58 = (80), r58 = (80), belongs to T9.
m58 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L59: [4, 8, 5, 15] , g59 = 1, s59 = (80), t59 = (80), r59 = (80), belongs to T10.
m59 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L60: [4, 2, 6, 5] , g60 = 1, s60 = (80), t60 = (80), r60 = (80), belongs to T12.
m60 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L61: [4, 2, 6, 7] , g61 = 1, s61 = (80), t61 = (80), r61 = (80), belongs to T15.
m61 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L62: [4, 2, 6, 13] , g62 = 1, s62 = (80), t62 = (80), r62 = (80), belongs to T13.
m62 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

40 Improved Linear Key Recovery Attacks on PRESENT

• L63: [4, 2, 6, 15] , g63 = 1, s63 = (80), t63 = (80), r63 = (80), belongs to T14.
m63 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L64: [4, 4, 6, 5] , g64 = 1, s64 = (80), t64 = (80), r64 = (80), belongs to T12.
m64 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L65: [4, 4, 6, 7] , g65 = 1, s65 = (80), t65 = (80), r65 = (80), belongs to T15.
m65 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L66: [4, 4, 6, 13] , g66 = 1, s66 = (80), t66 = (80), r66 = (80), belongs to T13.
m66 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L67: [4, 4, 6, 15] , g67 = 1, s67 = (80), t67 = (80), r67 = (80), belongs to T14.
m67 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L68: [4, 8, 6, 5] , g68 = 1, s68 = (80), t68 = (80), r68 = (80), belongs to T12.
m68 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L69: [4, 8, 6, 7] , g69 = 1, s69 = (80), t69 = (80), r69 = (80), belongs to T15.
m69 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L70: [4, 8, 6, 13] , g70 = 1, s70 = (80), t70 = (80), r70 = (80), belongs to T13.
m70 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L71: [4, 8, 6, 15] , g71 = 1, s71 = (80), t71 = (80), r71 = (80), belongs to T14.
m71 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L72: [4, 2, 9, 5] , g72 = 1, s72 = (80), t72 = (80), r72 = (80), belongs to T8.
m72 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L73: [4, 2, 9, 7] , g73 = 1, s73 = (80), t73 = (80), r73 = (80), belongs to T11.
m73 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L74: [4, 2, 9, 13] , g74 = 1, s74 = (80), t74 = (80), r74 = (80), belongs to T9.
m74 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L75: [4, 2, 9, 15] , g75 = 1, s75 = (80), t75 = (80), r75 = (80), belongs to T10.
m75 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L76: [4, 4, 9, 5] , g76 = 1, s76 = (80), t76 = (80), r76 = (80), belongs to T8.
m76 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L77: [4, 4, 9, 7] , g77 = 1, s77 = (80), t77 = (80), r77 = (80), belongs to T11.
m77 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L78: [4, 4, 9, 13] , g78 = 1, s78 = (80), t78 = (80), r78 = (80), belongs to T9.
m78 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L79: [4, 4, 9, 15] , g79 = 1, s79 = (80), t79 = (80), r79 = (80), belongs to T10.
m79 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L80: [4, 8, 9, 5] , g80 = 1, s80 = (80), t80 = (80), r80 = (80), belongs to T8.
m80 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

Wenhui Wu, Muzhou Li and Meiqin Wang 41

• L81: [4, 8, 9, 7] , g81 = 1, s81 = (80), t81 = (80), r81 = (80), belongs to T11.
m81 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L82: [4, 8, 9, 13] , g82 = 1, s82 = (80), t82 = (80), r82 = (80), belongs to T9.
m82 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L83: [4, 8, 9, 15] , g83 = 1, s83 = (80), t83 = (80), r83 = (80), belongs to T10.
m83 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L84: [4, 2, 10, 5] , g84 = 1, s84 = (80), t84 = (80), r84 = (80), belongs to T12.
m84 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L85: [4, 2, 10, 7] , g85 = 1, s85 = (80), t85 = (80), r85 = (80), belongs to T15.
m85 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L86: [4, 2, 10, 13] , g86 = 1, s86 = (80), t86 = (80), r86 = (80), belongs to T13.
m86 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L87: [4, 2, 10, 15] , g87 = 1, s87 = (80), t87 = (80), r87 = (80), belongs to T14.
m87 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L88: [4, 4, 10, 5] , g88 = 1, s88 = (80), t88 = (80), r88 = (80), belongs to T12.
m88 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L89: [4, 4, 10, 7] , g89 = 1, s89 = (80), t89 = (80), r89 = (80), belongs to T15.
m89 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L90: [4, 4, 10, 13] , g90 = 1, s90 = (80), t90 = (80), r90 = (80), belongs to T13.
m90 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L91: [4, 4, 10, 15] , g91 = 1, s91 = (80), t91 = (80), r91 = (80), belongs to T14.
m91 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L92: [4, 8, 10, 5] , g92 = 1, s92 = (80), t92 = (80), r92 = (80), belongs to T12.
m92 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L93: [4, 8, 10, 7] , g93 = 1, s93 = (80), t93 = (80), r93 = (80), belongs to T15.
m93 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L94: [4, 8, 10, 13] , g94 = 1, s94 = (80), t94 = (80), r94 = (80), belongs to T13.
m94 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L95: [4, 8, 10, 15] , g95 = 1, s95 = (80), t95 = (80), r95 = (80), belongs to T14.
m95 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L96: [8, 2, 5, 5] , g96 = 1, s96 = (80), t96 = (80), r96 = (80), belongs to T16.
m96 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L97: [8, 2, 5, 7] , g97 = 1, s97 = (80), t97 = (80), r97 = (80), belongs to T19.
m97 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L98: [8, 2, 5, 13] , g98 = 1, s98 = (80), t98 = (80), r98 = (80), belongs to T17.
m98 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

42 Improved Linear Key Recovery Attacks on PRESENT

• L99: [8, 2, 5, 15] , g99 = 1, s99 = (80), t99 = (80), r99 = (80), belongs to T18.
m99 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L100: [8, 8, 5, 5] , g100 = 1, s100 = (80), t100 = (80), r100 = (80), belongs to T16.
m100 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L101: [8, 8, 5, 7] , g101 = 1, s101 = (80), t101 = (80), r101 = (80), belongs to T19.
m101 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L102: [8, 8, 5, 13] , g102 = 1, s102 = (80), t102 = (80), r102 = (80), belongs to T17.
m102 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L103: [8, 8, 5, 15] , g103 = 1, s103 = (80), t103 = (80), r103 = (80), belongs to T18.
m103 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L104: [8, 2, 6, 5] , g104 = 1, s104 = (80), t104 = (80), r104 = (80), belongs to T20.
m104 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L105: [8, 2, 6, 7] , g105 = 1, s105 = (80), t105 = (80), r105 = (80), belongs to T23.
m105 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L106: [8, 2, 6, 13] , g106 = 1, s106 = (80), t106 = (80), r106 = (80), belongs to T21.
m106 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L107: [8, 2, 6, 15] , g107 = 1, s107 = (80), t107 = (80), r107 = (80), belongs to T22.
m107 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L108: [8, 8, 6, 5] , g108 = 1, s108 = (80), t108 = (80), r108 = (80), belongs to T20.
m108 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L109: [8, 8, 6, 7] , g109 = 1, s109 = (80), t109 = (80), r109 = (80), belongs to T23.
m109 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L110: [8, 8, 6, 13] , g110 = 1, s110 = (80), t110 = (80), r110 = (80), belongs to T21.
m110 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L111: [8, 8, 6, 15] , g111 = 1, s111 = (80), t111 = (80), r111 = (80), belongs to T22.
m111 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L112: [8, 2, 9, 5] , g112 = 1, s112 = (80), t112 = (80), r112 = (80), belongs to T16.
m112 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L113: [8, 2, 9, 7] , g113 = 1, s113 = (80), t113 = (80), r113 = (80), belongs to T19.
m113 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L114: [8, 2, 9, 13] , g114 = 1, s114 = (80), t114 = (80), r114 = (80), belongs to T17.
m114 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L115: [8, 2, 9, 15] , g115 = 1, s115 = (80), t115 = (80), r115 = (80), belongs to T18.
m115 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L116: [8, 8, 9, 5] , g116 = 1, s116 = (80), t116 = (80), r116 = (80), belongs to T16.
m116 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

Wenhui Wu, Muzhou Li and Meiqin Wang 43

• L117: [8, 8, 9, 7] , g117 = 1, s117 = (80), t117 = (80), r117 = (80), belongs to T19.
m117 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L118: [8, 8, 9, 13] , g118 = 1, s118 = (80), t118 = (80), r118 = (80), belongs to T17.
m118 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L119: [8, 8, 9, 15] , g119 = 1, s119 = (80), t119 = (80), r119 = (80), belongs to T18.
m119 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L120: [8, 2, 10, 5] , g120 = 1, s120 = (80), t120 = (80), r120 = (80), belongs to T20.
m120 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L121: [8, 2, 10, 7] , g121 = 1, s121 = (80), t121 = (80), r121 = (80), belongs to T23.
m121 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L122: [8, 2, 10, 13] , g122 = 1, s122 = (80), t122 = (80), r122 = (80), belongs to T21.
m122 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L123: [8, 2, 10, 15] , g123 = 1, s123 = (80), t123 = (80), r123 = (80), belongs to T22.
m123 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L124: [8, 8, 10, 5] , g124 = 1, s124 = (80), t124 = (80), r124 = (80), belongs to T20.
m124 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L125: [8, 8, 10, 7] , g125 = 1, s125 = (80), t125 = (80), r125 = (80), belongs to T23.
m125 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L126: [8, 8, 10, 13] , g126 = 1, s126 = (80), t126 = (80), r126 = (80), belongs to T21.
m126 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L127: [8, 8, 10, 15] , g127 = 1, s127 = (80), t127 = (80), r127 = (80), belongs to T22.
m127 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L128: [2, 2, 13, 5] , g128 = 1, s128 = (80), t128 = (80), r128 = (80), belongs to T0.
m128 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L129: [2, 2, 13, 7] , g129 = 1, s129 = (80), t129 = (80), r129 = (80), belongs to T3.
m129 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L130: [2, 2, 13, 13] , g130 = 1, s130 = (80), t130 = (80), r130 = (80), belongs to T1.
m130 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L131: [2, 2, 13, 15] , g131 = 1, s131 = (80), t131 = (80), r131 = (80), belongs to T2.
m131 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L132: [2, 8, 13, 5] , g132 = 1, s132 = (80), t132 = (80), r132 = (80), belongs to T0.
m132 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L133: [2, 8, 13, 7] , g133 = 1, s133 = (80), t133 = (80), r133 = (80), belongs to T3.
m133 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L134: [2, 8, 13, 13] , g134 = 1, s134 = (80), t134 = (80), r134 = (80), belongs to T1.
m134 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

44 Improved Linear Key Recovery Attacks on PRESENT

• L135: [2, 8, 13, 15] , g135 = 1, s135 = (80), t135 = (80), r135 = (80), belongs to T2.
m135 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L136: [2, 2, 14, 5] , g136 = 1, s136 = (80), t136 = (80), r136 = (80), belongs to T4.
m136 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L137: [2, 2, 14, 7] , g137 = 1, s137 = (80), t137 = (80), r137 = (80), belongs to T7.
m137 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L138: [2, 2, 14, 13] , g138 = 1, s138 = (80), t138 = (80), r138 = (80), belongs to T5.
m138 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L139: [2, 2, 14, 15] , g139 = 1, s139 = (80), t139 = (80), r139 = (80), belongs to T6.
m139 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L140: [2, 8, 14, 5] , g140 = 1, s140 = (80), t140 = (80), r140 = (80), belongs to T4.
m140 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L141: [2, 8, 14, 7] , g141 = 1, s141 = (80), t141 = (80), r141 = (80), belongs to T7.
m141 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L142: [2, 8, 14, 13] , g142 = 1, s142 = (80), t142 = (80), r142 = (80), belongs to T5.
m142 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L143: [2, 8, 14, 15] , g143 = 1, s143 = (80), t143 = (80), r143 = (80), belongs to T6.
m143 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L144: [4, 2, 13, 5] , g144 = 1, s144 = (80), t144 = (80), r144 = (80), belongs to T8.
m144 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L145: [4, 2, 13, 7] , g145 = 1, s145 = (80), t145 = (80), r145 = (80), belongs to T11.
m145 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L146: [4, 2, 13, 13] , g146 = 1, s146 = (80), t146 = (80), r146 = (80), belongs to T9.
m146 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L147: [4, 2, 13, 15] , g147 = 1, s147 = (80), t147 = (80), r147 = (80), belongs to T10.
m147 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L148: [4, 8, 13, 5] , g148 = 1, s148 = (80), t148 = (80), r148 = (80), belongs to T8.
m148 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L149: [4, 8, 13, 7] , g149 = 1, s149 = (80), t149 = (80), r149 = (80), belongs to T11.
m149 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L150: [4, 8, 13, 13] , g150 = 1, s150 = (80), t150 = (80), r150 = (80), belongs to T9.
m150 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L151: [4, 8, 13, 15] , g151 = 1, s151 = (80), t151 = (80), r151 = (80), belongs to T10.
m151 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L152: [4, 2, 14, 5] , g152 = 1, s152 = (80), t152 = (80), r152 = (80), belongs to T12.
m152 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

Wenhui Wu, Muzhou Li and Meiqin Wang 45

• L153: [4, 2, 14, 7] , g153 = 1, s153 = (80), t153 = (80), r153 = (80), belongs to T15.
m153 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L154: [4, 2, 14, 13] , g154 = 1, s154 = (80), t154 = (80), r154 = (80), belongs to T13.
m154 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L155: [4, 2, 14, 15] , g155 = 1, s155 = (80), t155 = (80), r155 = (80), belongs to T14.
m155 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L156: [4, 8, 14, 5] , g156 = 1, s156 = (80), t156 = (80), r156 = (80), belongs to T12.
m156 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L157: [4, 8, 14, 7] , g157 = 1, s157 = (80), t157 = (80), r157 = (80), belongs to T15.
m157 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L158: [4, 8, 14, 13] , g158 = 1, s158 = (80), t158 = (80), r158 = (80), belongs to T13.
m158 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L159: [4, 8, 14, 15] , g159 = 1, s159 = (80), t159 = (80), r159 = (80), belongs to T14.
m159 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L160: [a, 2, 5, 5] , g160 = 2, s160 = (80, 80), t160 = (80, 80), r160 = (77, 77), belongs
to T24.
m160 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L161: [a, 2, 5, 7] , g161 = 2, s161 = (80, 80), t161 = (80, 80), r161 = (76, 80), belongs
to T27.
m161 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L162: [a, 2, 5, 13] , g162 = 2, s162 = (80, 80), t162 = (80, 80), r162 = (76, 76), belongs
to T25.
m162 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L163: [a, 2, 5, 15] , g163 = 2, s163 = (80, 80), t163 = (80, 80), r163 = (77, 80), belongs
to T26.
m163 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L164: [a, 4, 5, 5] , g164 = 2, s164 = (80, 80), t164 = (80, 80), r164 = (80, 77), belongs
to T24.
m164 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L165: [a, 4, 5, 7] , g165 = 2, s165 = (80, 80), t165 = (80, 80), r165 = (76, 76), belongs
to T27.
m165 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L166: [a, 4, 5, 13] , g166 = 2, s166 = (80, 80), t166 = (80, 80), r166 = (80, 76), belongs
to T25.
m166 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L167: [a, 4, 5, 15] , g167 = 2, s167 = (80, 80), t167 = (80, 80), r167 = (77, 77), belongs
to T26.
m167 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

46 Improved Linear Key Recovery Attacks on PRESENT

• L168: [a, 8, 5, 5] , g168 = 1, s168 = (80), t168 = (80), r168 = (77), belongs to T24.
m168 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L169: [a, 8, 5, 7] , g169 = 1, s169 = (80), t169 = (80), r169 = (76), belongs to T27.
m169 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L170: [a, 8, 5, 13] , g170 = 1, s170 = (80), t170 = (80), r170 = (76), belongs to T25.
m170 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L171: [a, 8, 5, 15] , g171 = 1, s171 = (80), t171 = (80), r171 = (77), belongs to T26.
m171 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L172: [a, 2, 6, 5] , g172 = 2, s172 = (80, 80), t172 = (80, 80), r172 = (77, 77), belongs
to T28.
m172 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L173: [a, 2, 6, 7] , g173 = 2, s173 = (80, 80), t173 = (80, 80), r173 = (76, 80), belongs
to T31.
m173 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L174: [a, 2, 6, 13] , g174 = 2, s174 = (80, 80), t174 = (80, 80), r174 = (76, 76), belongs
to T29.
m174 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L175: [a, 2, 6, 15] , g175 = 2, s175 = (80, 80), t175 = (80, 80), r175 = (77, 80), belongs
to T30.
m175 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L176: [a, 4, 6, 5] , g176 = 2, s176 = (80, 80), t176 = (80, 80), r176 = (80, 77), belongs
to T28.
m176 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L177: [a, 4, 6, 7] , g177 = 2, s177 = (80, 80), t177 = (80, 80), r177 = (76, 76), belongs
to T31.
m177 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L178: [a, 4, 6, 13] , g178 = 2, s178 = (80, 80), t178 = (80, 80), r178 = (80, 76), belongs
to T29.
m178 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L179: [a, 4, 6, 15] , g179 = 2, s179 = (80, 80), t179 = (80, 80), r179 = (77, 77), belongs
to T30.
m179 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L180: [a, 8, 6, 5] , g180 = 1, s180 = (80), t180 = (80), r180 = (77), belongs to T28.
m180 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L181: [a, 8, 6, 7] , g181 = 1, s181 = (80), t181 = (80), r181 = (76), belongs to T31.
m181 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L182: [a, 8, 6, 13] , g182 = 1, s182 = (80), t182 = (80), r182 = (76), belongs to T29.
m182 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

Wenhui Wu, Muzhou Li and Meiqin Wang 47

• L183: [a, 8, 6, 15] , g183 = 1, s183 = (80), t183 = (80), r183 = (77), belongs to T30.
m183 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L184: [a, 2, 9, 5] , g184 = 2, s184 = (80, 80), t184 = (80, 80), r184 = (77, 77), belongs
to T24.
m184 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L185: [a, 2, 9, 7] , g185 = 2, s185 = (80, 80), t185 = (80, 80), r185 = (76, 80), belongs
to T27.
m185 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L186: [a, 2, 9, 13] , g186 = 2, s186 = (80, 80), t186 = (80, 80), r186 = (76, 76), belongs
to T25.
m186 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L187: [a, 2, 9, 15] , g187 = 2, s187 = (80, 80), t187 = (80, 80), r187 = (77, 80), belongs
to T26.
m187 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L188: [a, 4, 9, 5] , g188 = 2, s188 = (80, 80), t188 = (80, 80), r188 = (80, 77), belongs
to T24.
m188 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L189: [a, 4, 9, 7] , g189 = 2, s189 = (80, 80), t189 = (80, 80), r189 = (76, 76), belongs
to T27.
m189 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L190: [a, 4, 9, 13] , g190 = 2, s190 = (80, 80), t190 = (80, 80), r190 = (80, 76), belongs
to T25.
m190 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L191: [a, 4, 9, 15] , g191 = 2, s191 = (80, 80), t191 = (80, 80), r191 = (77, 77), belongs
to T26.
m191 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L192: [a, 8, 9, 5] , g192 = 1, s192 = (80), t192 = (80), r192 = (77), belongs to T24.
m192 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L193: [a, 8, 9, 7] , g193 = 1, s193 = (80), t193 = (80), r193 = (76), belongs to T27.
m193 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L194: [a, 8, 9, 13] , g194 = 1, s194 = (80), t194 = (80), r194 = (76), belongs to T25.
m194 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L195: [a, 8, 9, 15] , g195 = 1, s195 = (80), t195 = (80), r195 = (77), belongs to T26.
m195 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L196: [a, 2, 10, 5] , g196 = 2, s196 = (80, 80), t196 = (80, 80), r196 = (77, 77), belongs
to T28.
m196 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L197: [a, 2, 10, 7] , g197 = 2, s197 = (80, 80), t197 = (80, 80), r197 = (76, 80), belongs
to T31.
m197 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

48 Improved Linear Key Recovery Attacks on PRESENT

• L198: [a, 2, 10, 13] , g198 = 2, s198 = (80, 80), t198 = (80, 80), r198 = (76, 76), belongs
to T29.
m198 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L199: [a, 2, 10, 15] , g199 = 2, s199 = (80, 80), t199 = (80, 80), r199 = (77, 80), belongs
to T30.
m199 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L200: [a, 4, 10, 5] , g200 = 2, s200 = (80, 80), t200 = (80, 80), r200 = (80, 77), belongs
to T28.
m200 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L201: [a, 4, 10, 7] , g201 = 2, s201 = (80, 80), t201 = (80, 80), r201 = (76, 76), belongs
to T31.
m201 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L202: [a, 4, 10, 13] , g202 = 2, s202 = (80, 80), t202 = (80, 80), r202 = (80, 76), belongs
to T29.
m202 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L203: [a, 4, 10, 15] , g203 = 2, s203 = (80, 80), t203 = (80, 80), r203 = (77, 77), belongs
to T30.
m203 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L204: [a, 8, 10, 5] , g204 = 1, s204 = (80), t204 = (80), r204 = (77), belongs to T28.
m204 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L205: [a, 8, 10, 7] , g205 = 1, s205 = (80), t205 = (80), r205 = (76), belongs to T31.
m205 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L206: [a, 8, 10, 13] , g206 = 1, s206 = (80), t206 = (80), r206 = (76), belongs to T29.
m206 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L207: [a, 8, 10, 15] , g207 = 1, s207 = (80), t207 = (80), r207 = (77), belongs to T30.
m207 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L208: [c, 2, 5, 5] , g208 = 2, s208 = (80, 80), t208 = (80, 80), r208 = (77, 77), belongs
to T32.
m208 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L209: [c, 2, 5, 7] , g209 = 2, s209 = (80, 80), t209 = (80, 80), r209 = (76, 80), belongs
to T35.
m209 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L210: [c, 2, 5, 13] , g210 = 2, s210 = (80, 80), t210 = (80, 80), r210 = (76, 76), belongs
to T33.
m210 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L211: [c, 2, 5, 15] , g211 = 2, s211 = (80, 80), t211 = (80, 80), r211 = (77, 80), belongs
to T34.
m211 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

Wenhui Wu, Muzhou Li and Meiqin Wang 49

• L212: [c, 4, 5, 5] , g212 = 2, s212 = (80, 80), t212 = (80, 80), r212 = (80, 77), belongs
to T32.
m212 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L213: [c, 4, 5, 7] , g213 = 2, s213 = (80, 80), t213 = (80, 80), r213 = (76, 76), belongs
to T35.
m213 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L214: [c, 4, 5, 13] , g214 = 2, s214 = (80, 80), t214 = (80, 80), r214 = (80, 76), belongs
to T33.
m214 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L215: [c, 4, 5, 15] , g215 = 2, s215 = (80, 80), t215 = (80, 80), r215 = (77, 77), belongs
to T34.
m215 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L216: [c, 8, 5, 5] , g216 = 1, s216 = (80), t216 = (80), r216 = (77), belongs to T32.
m216 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L217: [c, 8, 5, 7] , g217 = 1, s217 = (80), t217 = (80), r217 = (76), belongs to T35.
m217 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L218: [c, 8, 5, 13] , g218 = 1, s218 = (80), t218 = (80), r218 = (76), belongs to T33.
m218 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L219: [c, 8, 5, 15] , g219 = 1, s219 = (80), t219 = (80), r219 = (77), belongs to T34.
m219 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L220: [c, 2, 6, 5] , g220 = 2, s220 = (80, 80), t220 = (80, 80), r220 = (77, 77), belongs
to T36.
m220 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L221: [c, 2, 6, 7] , g221 = 2, s221 = (80, 80), t221 = (80, 80), r221 = (76, 80), belongs
to T39.
m221 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L222: [c, 2, 6, 13] , g222 = 2, s222 = (80, 80), t222 = (80, 80), r222 = (76, 76), belongs
to T37.
m222 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L223: [c, 2, 6, 15] , g223 = 2, s223 = (80, 80), t223 = (80, 80), r223 = (77, 80), belongs
to T38.
m223 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L224: [c, 4, 6, 5] , g224 = 2, s224 = (80, 80), t224 = (80, 80), r224 = (80, 77), belongs
to T36.
m224 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L225: [c, 4, 6, 7] , g225 = 2, s225 = (80, 80), t225 = (80, 80), r225 = (76, 76), belongs
to T39.
m225 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

50 Improved Linear Key Recovery Attacks on PRESENT

• L226: [c, 4, 6, 13] , g226 = 2, s226 = (80, 80), t226 = (80, 80), r226 = (80, 76), belongs
to T37.
m226 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L227: [c, 4, 6, 15] , g227 = 2, s227 = (80, 80), t227 = (80, 80), r227 = (77, 77), belongs
to T38.
m227 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L228: [c, 8, 6, 5] , g228 = 1, s228 = (80), t228 = (80), r228 = (77), belongs to T36.
m228 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L229: [c, 8, 6, 7] , g229 = 1, s229 = (80), t229 = (80), r229 = (76), belongs to T39.
m229 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L230: [c, 8, 6, 13] , g230 = 1, s230 = (80), t230 = (80), r230 = (76), belongs to T37.
m230 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L231: [c, 8, 6, 15] , g231 = 1, s231 = (80), t231 = (80), r231 = (77), belongs to T38.
m231 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L232: [c, 2, 9, 5] , g232 = 2, s232 = (80, 80), t232 = (80, 80), r232 = (77, 77), belongs
to T32.
m232 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L233: [c, 2, 9, 7] , g233 = 2, s233 = (80, 80), t233 = (80, 80), r233 = (76, 80), belongs
to T35.
m233 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L234: [c, 2, 9, 13] , g234 = 2, s234 = (80, 80), t234 = (80, 80), r234 = (76, 76), belongs
to T33.
m234 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L235: [c, 2, 9, 15] , g235 = 2, s235 = (80, 80), t235 = (80, 80), r235 = (77, 80), belongs
to T34.
m235 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L236: [c, 4, 9, 5] , g236 = 2, s236 = (80, 80), t236 = (80, 80), r236 = (80, 77), belongs
to T32.
m236 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L237: [c, 4, 9, 7] , g237 = 2, s237 = (80, 80), t237 = (80, 80), r237 = (76, 76), belongs
to T35.
m237 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L238: [c, 4, 9, 13] , g238 = 2, s238 = (80, 80), t238 = (80, 80), r238 = (80, 76), belongs
to T33.
m238 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L239: [c, 4, 9, 15] , g239 = 2, s239 = (80, 80), t239 = (80, 80), r239 = (77, 77), belongs
to T34.
m239 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

Wenhui Wu, Muzhou Li and Meiqin Wang 51

• L240: [c, 8, 9, 5] , g240 = 1, s240 = (80), t240 = (80), r240 = (77), belongs to T32.
m240 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L241: [c, 8, 9, 7] , g241 = 1, s241 = (80), t241 = (80), r241 = (76), belongs to T35.
m241 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L242: [c, 8, 9, 13] , g242 = 1, s242 = (80), t242 = (80), r242 = (76), belongs to T33.
m242 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L243: [c, 8, 9, 15] , g243 = 1, s243 = (80), t243 = (80), r243 = (77), belongs to T34.
m243 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L244: [c, 2, 10, 5] , g244 = 2, s244 = (80, 80), t244 = (80, 80), r244 = (77, 77), belongs
to T36.
m244 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L245: [c, 2, 10, 7] , g245 = 2, s245 = (80, 80), t245 = (80, 80), r245 = (76, 80), belongs
to T39.
m245 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L246: [c, 2, 10, 13] , g246 = 2, s246 = (80, 80), t246 = (80, 80), r246 = (76, 76), belongs
to T37.
m246 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L247: [c, 2, 10, 15] , g247 = 2, s247 = (80, 80), t247 = (80, 80), r247 = (77, 80), belongs
to T38.
m247 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L248: [c, 4, 10, 5] , g248 = 2, s248 = (80, 80), t248 = (80, 80), r248 = (80, 77), belongs
to T36.
m248 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L249: [c, 4, 10, 7] , g249 = 2, s249 = (80, 80), t249 = (80, 80), r249 = (76, 76), belongs
to T39.
m249 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L250: [c, 4, 10, 13] , g250 = 2, s250 = (80, 80), t250 = (80, 80), r250 = (80, 76), belongs
to T37.
m250 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L251: [c, 4, 10, 15] , g251 = 2, s251 = (80, 80), t251 = (80, 80), r251 = (77, 77), belongs
to T38.
m251 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L252: [c, 8, 10, 5] , g252 = 1, s252 = (80), t252 = (80), r252 = (77), belongs to T36.
m252 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L253: [c, 8, 10, 7] , g253 = 1, s253 = (80), t253 = (80), r253 = (76), belongs to T39.
m253 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L254: [c, 8, 10, 13] , g254 = 1, s254 = (80), t254 = (80), r254 = (76), belongs to T37.
m254 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

52 Improved Linear Key Recovery Attacks on PRESENT

• L255: [c, 8, 10, 15] , g255 = 1, s255 = (80), t255 = (80), r255 = (77), belongs to T38.
m255 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L256: [a, 2, 13, 5] , g256 = 2, s256 = (80, 80), t256 = (80, 80), r256 = (77, 77), belongs
to T24.
m256 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L257: [a, 2, 13, 7] , g257 = 2, s257 = (80, 80), t257 = (80, 80), r257 = (76, 80), belongs
to T27.
m257 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L258: [a, 2, 13, 13] , g258 = 2, s258 = (80, 80), t258 = (80, 80), r258 = (76, 76), belongs
to T25.
m258 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L259: [a, 2, 13, 15] , g259 = 2, s259 = (80, 80), t259 = (80, 80), r259 = (77, 80), belongs
to T26.
m259 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L260: [a, 4, 13, 5] , g260 = 2, s260 = (80, 80), t260 = (80, 80), r260 = (80, 77), belongs
to T24.
m260 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L261: [a, 4, 13, 7] , g261 = 2, s261 = (80, 80), t261 = (80, 80), r261 = (76, 76), belongs
to T27.
m261 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L262: [a, 4, 13, 13] , g262 = 2, s262 = (80, 80), t262 = (80, 80), r262 = (80, 76), belongs
to T25.
m262 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L263: [a, 4, 13, 15] , g263 = 2, s263 = (80, 80), t263 = (80, 80), r263 = (77, 77), belongs
to T26.
m263 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L264: [a, 8, 13, 5] , g264 = 1, s264 = (80), t264 = (80), r264 = (77), belongs to T24.
m264 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L265: [a, 8, 13, 7] , g265 = 1, s265 = (80), t265 = (80), r265 = (76), belongs to T27.
m265 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L266: [a, 8, 13, 13] , g266 = 1, s266 = (80), t266 = (80), r266 = (76), belongs to T25.
m266 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L267: [a, 8, 13, 15] , g267 = 1, s267 = (80), t267 = (80), r267 = (77), belongs to T26.
m267 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L268: [a, 2, 14, 5] , g268 = 2, s268 = (80, 80), t268 = (80, 80), r268 = (77, 77), belongs
to T28.
m268 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L269: [a, 2, 14, 7] , g269 = 2, s269 = (80, 80), t269 = (80, 80), r269 = (76, 80), belongs
to T31.
m269 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

Wenhui Wu, Muzhou Li and Meiqin Wang 53

• L270: [a, 2, 14, 13] , g270 = 2, s270 = (80, 80), t270 = (80, 80), r270 = (76, 76), belongs
to T29.
m270 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L271: [a, 2, 14, 15] , g271 = 2, s271 = (80, 80), t271 = (80, 80), r271 = (77, 80), belongs
to T30.
m271 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L272: [a, 4, 14, 5] , g272 = 2, s272 = (80, 80), t272 = (80, 80), r272 = (80, 77), belongs
to T28.
m272 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L273: [a, 4, 14, 7] , g273 = 2, s273 = (80, 80), t273 = (80, 80), r273 = (76, 76), belongs
to T31.
m273 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L274: [a, 4, 14, 13] , g274 = 2, s274 = (80, 80), t274 = (80, 80), r274 = (80, 76), belongs
to T29.
m274 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L275: [a, 4, 14, 15] , g275 = 2, s275 = (80, 80), t275 = (80, 80), r275 = (77, 77), belongs
to T30.
m275 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L276: [a, 8, 14, 5] , g276 = 1, s276 = (80), t276 = (80), r276 = (77), belongs to T28.
m276 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L277: [a, 8, 14, 7] , g277 = 1, s277 = (80), t277 = (80), r277 = (76), belongs to T31.
m277 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L278: [a, 8, 14, 13] , g278 = 1, s278 = (80), t278 = (80), r278 = (76), belongs to T29.
m278 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L279: [a, 8, 14, 15] , g279 = 1, s279 = (80), t279 = (80), r279 = (77), belongs to T30.
m279 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L280: [c, 2, 13, 5] , g280 = 2, s280 = (80, 80), t280 = (80, 80), r280 = (77, 77), belongs
to T32.
m280 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L281: [c, 2, 13, 7] , g281 = 2, s281 = (80, 80), t281 = (80, 80), r281 = (76, 80), belongs
to T35.
m281 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L282: [c, 2, 13, 13] , g282 = 2, s282 = (80, 80), t282 = (80, 80), r282 = (76, 76), belongs
to T33.
m282 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L283: [c, 2, 13, 15] , g283 = 2, s283 = (80, 80), t283 = (80, 80), r283 = (77, 80), belongs
to T34.
m283 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

54 Improved Linear Key Recovery Attacks on PRESENT

• L284: [c, 8, 13, 5] , g284 = 1, s284 = (80), t284 = (80), r284 = (77), belongs to T32.
m284 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L285: [c, 8, 13, 7] , g285 = 1, s285 = (80), t285 = (80), r285 = (76), belongs to T35.
m285 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L286: [c, 8, 13, 13] , g286 = 1, s286 = (80), t286 = (80), r286 = (76), belongs to T33.
m286 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L287: [c, 8, 13, 15] , g287 = 1, s287 = (80), t287 = (80), r287 = (77), belongs to T34.
m287 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L288: [c, 2, 14, 5] , g288 = 2, s288 = (80, 80), t288 = (80, 80), r288 = (77, 77), belongs
to T36.
m288 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L289: [c, 2, 14, 7] , g289 = 2, s289 = (80, 80), t289 = (80, 80), r289 = (76, 80), belongs
to T39.
m289 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L290: [c, 2, 14, 13] , g290 = 2, s290 = (80, 80), t290 = (80, 80), r290 = (76, 76), belongs
to T37.
m290 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L291: [c, 2, 14, 15] , g291 = 2, s291 = (80, 80), t291 = (80, 80), r291 = (77, 80), belongs
to T38.
m291 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

• L292: [c, 8, 14, 5] , g292 = 1, s292 = (80), t292 = (80), r292 = (77), belongs to T36.
m292 = 3 bits (k30: [15, 31, 47]) could be deduced from k2, k28, k29.

• L293: [c, 8, 14, 7] , g293 = 1, s293 = (80), t293 = (80), r293 = (76), belongs to T39.
m293 = 4 bits (k30: [1, 17, 33, 49]) could be deduced from k2, k28, k29.

• L294: [c, 8, 14, 13] , g294 = 1, s294 = (80), t294 = (80), r294 = (76), belongs to T37.
m294 = 4 bits (k30: [7, 23, 39, 55]) could be deduced from k2, k28, k29.

• L295: [c, 8, 14, 15] , g295 = 1, s295 = (80), t295 = (80), r295 = (77), belongs to T38.
m295 = 3 bits (k30: [9, 25, 41]) could be deduced from k2, k28, k29.

G Table T k used in Attacking 29-round PRESENT-80
All Tk tables contains the 64-bit k30. Bits colored in red are those can be deduced from
the 64-bit k30.

• Table T0 of size 269

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]
k2: [24, 25, 26, 27]
k28: [13, 29, 45, 61]
k29: [3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63]

Wenhui Wu, Muzhou Li and Meiqin Wang 55

– Included Linear Hulls:
[4, 2, 5, 13], [4, 2, 9, 13], [4, 4, 5, 13], [4, 4, 9, 13], [4, 2, 13, 13]

• Table T1 of size 269

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]
k2: [24, 25, 26, 27]
k28: [15, 31, 47, 63]
k29: [3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63]

– Included Linear Hulls:
[4, 2, 5, 15], [4, 2, 9, 15], [4, 4, 5, 15], [4, 4, 9, 15], [4, 2, 13, 15]

• Table T2 of size 269

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]
k2: [24, 25, 26, 27]
k28: [5, 21, 37, 53]
k29: [1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61]

– Included Linear Hulls:
[4, 8, 5, 5], [4, 8, 9, 5], [4, 8, 13, 5]

• Table T3 of size 269

– Key Bits Need to Guess in K1, K2, K28, K29:
k1: [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]
k2: [24, 25, 26, 27]
k28: [7, 23, 39, 55]
k29: [1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61]

– Included Linear Hulls:
[4, 8, 5, 7], [4, 8, 9, 7], [4, 8, 13, 7]

H Attack Parameters of Linear Hulls in the 29-Round At-
tack on PRESENT-80

• L0: [4, 2, 5, 13] , g0 = 2, s0 = (64, 64), t0 = (64, 64), r0 = (45, 45), belongs to T0.
m0 = 19 bits (k1: [43, 44, 45, 46], k30: [0, 4, 7, 8, 12, 16, 20, 23, 24, 28, 32, 36, 40,
44, 55]) could be deduced from k2, k28, k29.

• L1: [4, 2, 5, 15] , g1 = 2, s1 = (64, 64), t1 = (64, 64), r1 = (45, 48), belongs to T1.
m1 = 19 bits (k1: [43, 44, 45, 46], k30: [0, 4, 8, 9, 12, 16, 20, 24, 25, 28, 32, 36, 40,
44, 57]) could be deduced from k2, k28, k29.

• L2: [4, 2, 9, 13] , g2 = 2, s2 = (64, 64), t2 = (64, 64), r2 = (45, 45), belongs to T0.
m2 = 19 bits (k1: [43, 44, 45, 46], k30: [0, 4, 7, 8, 12, 16, 20, 23, 24, 28, 32, 36, 40,
44, 55]) could be deduced from k2, k28, k29.

• L3: [4, 2, 9, 15] , g3 = 2, s3 = (64, 64), t3 = (64, 64), r3 = (45, 48), belongs to T1.
m3 = 19 bits (k1: [43, 44, 45, 46], k30: [0, 4, 8, 9, 12, 16, 20, 24, 25, 28, 32, 36, 40,
44, 57]) could be deduced from k2, k28, k29.

56 Improved Linear Key Recovery Attacks on PRESENT

• L4: [4, 8, 5, 5] , g4 = 1, s4 = (64), t4 = (64), r4 = (47), belongs to T2.
m4 = 17 bits (k1: [43, 44, 45, 46], k30: [2, 6, 10, 14, 15, 18, 22, 26, 30, 34, 38, 42,
47]) could be deduced from k2, k28, k29.

• L5: [4, 8, 5, 7] , g5 = 1, s5 = (64), t5 = (64), r5 = (46), belongs to T3.
m5 = 18 bits (k1: [43, 44, 45, 46], k30: [1, 2, 6, 10, 14, 17, 18, 22, 26, 30, 34, 38, 42,
49]) could be deduced from k2, k28, k29.

• L6: [4, 8, 9, 5] , g6 = 1, s6 = (64), t6 = (64), r6 = (47), belongs to T0.
m6 = 17 bits (k1: [43, 44, 45, 46], k30: [2, 6, 10, 14, 15, 18, 22, 26, 30, 34, 38, 42,
47]) could be deduced from k2, k28, k29.

• L7: [4, 8, 9, 7] , g7 = 1, s7 = (64), t7 = (64), r7 = (46), belongs to T1.
m7 = 18 bits (k1: [43, 44, 45, 46], k30: [1, 2, 6, 10, 14, 17, 18, 22, 26, 30, 34, 38, 42,
49]) could be deduced from k2, k28, k29.

• L8: [4, 4, 5, 13] , g8 = 2, s8 = (64, 64), t8 = (64, 64), r8 = (48, 45), belongs to T0.
m8 = 19 bits (k1: [43, 44, 45, 46], k30: [0, 4, 7, 8, 12, 16, 20, 23, 24, 28, 32, 36, 40,
44, 55]) could be deduced from k2, k28, k29.

• L9: [4, 4, 5, 15] , g9 = 2, s9 = (64, 64), t9 = (64, 64), r9 = (45, 45), belongs to T1.
m9 = 19 bits (k1: [43, 44, 45, 46], k30: [0, 4, 8, 9, 12, 16, 20, 24, 25, 28, 32, 36, 40,
44, 57]) could be deduced from k2, k28, k29.

• L10: [4, 4, 9, 13] , g10 = 2, s10 = (64, 64), t10 = (64, 64), r10 = (48, 45), belongs to
T2.
m10 = 19 bits (k1: [43, 44, 45, 46], k30: [0, 4, 7, 8, 12, 16, 20, 23, 24, 28, 32, 36, 40,
44, 55]) could be deduced from k2, k28, k29.

• L11: [4, 4, 9, 15] , g11 = 2, s11 = (64, 64), t11 = (64, 64), r11 = (45, 45), belongs to
T3.
m11 = 19 bits (k1: [43, 44, 45, 46], k30: [0, 4, 8, 9, 12, 16, 20, 24, 25, 28, 32, 36, 40,
44, 57]) could be deduced from k2, k28, k29.

• L12: [4, 2, 13, 13] , g12 = 2, s12 = (64, 64), t12 = (64, 64), r12 = (45, 45), belongs to
T0.
m12 = 19 bits (k1: [43, 44, 45, 46], k30: [0, 4, 7, 8, 12, 16, 20, 23, 24, 28, 32, 36, 40,
44, 55]) could be deduced from k2, k28, k29.

• L13: [4, 2, 13, 15] , g13 = 2, s13 = (64, 64), t13 = (64, 64), r13 = (45, 48), belongs to
T1.
m13 = 19 bits (k1: [43, 44, 45, 46], k30: [0, 4, 8, 9, 12, 16, 20, 24, 25, 28, 32, 36, 40,
44, 57]) could be deduced from k2, k28, k29.

• L14: [4, 8, 13, 5] , g14 = 1, s14 = (64), t14 = (64), r14 = (47), belongs to T2.
m14 = 17 bits (k1: [43, 44, 45, 46], k30: [2, 6, 10, 14, 15, 18, 22, 26, 30, 34, 38, 42,
47]) could be deduced from k2, k28, k29.

• L15: [4, 8, 13, 7] , g15 = 1, s15 = (64), t15 = (64), r15 = (46), belongs to T3.
m15 = 18 bits (k1: [43, 44, 45, 46], k30: [1, 2, 6, 10, 14, 17, 18, 22, 26, 30, 34, 38, 42,
49]) could be deduced from k2, k28, k29.

I Fast Walsh Transform Pruned to Affine Subspaces [Fló22]

Wenhui Wu, Muzhou Li and Meiqin Wang 57

Algorithm 3: Fast Walsh Transform pruned to affine subspaces [Fló22]
1 Parameters: L ⊆ x0 + X ⊆ Fn

2 , M ⊆ u0 + U ⊆ Fn
2 , (X, U subspaces) ;

2 Input: f̂ : L→ C ;
3 Output: f̂ : M → C ;
4 BX = {y1, . . . , yt} ← GetBasis(X/(X ∩ U⊥)) ;
5 BU = {v1, . . . , vt} ← GetBasis(U/(U ∩X⊥)) ;
6 for k ← 1 to t− 1 do
7 while ⟨yk, vk⟩ do
8 (vk.vk+1, . . . , vt−1, vt)← (vk+1, . . . , vt−1, vt, vk);
9 for i← k + 1 to t do

10 yi ← yi + ⟨yi, vk⟩yk ;
11 for j ← k + 1 to t do
12 vj ← vj + ⟨yk, vj⟩vk ;

13 let g : Ft
2 → C, g(y) = 0 ∀y ∈ Ft

2;
14 for each x ∈ L do
15 (i1, . . . , it)← GetCoordinates(x− x0,BX) ;
16 g(i1, . . . , it)← g(i1, . . . , it) + (−1)⟨x−x0,u0⟩f(x) ;
17 g ← FWT (g);
18 for each u ∈M do
19 (j1, . . . , jt)← GetCoordinates(u− u0,BU);
20 f̂(u)← (−1)⟨x0,u⟩g(j1, . . . , jt) ;

21 return f̂

	Introduction
	Preliminaries
	Brief Introduction of PRESENT
	(Affine) Pruned Walsh Transform Accelerated Linear Attacks

	Statistical Models for Linear Attacks with Affine Pruned Walsh Transform
	Classical Setting using One Linear Hull
	Multiple Linear Setting with l Linear Hulls
	Experimental Verifications

	Non Full-Codebook Attack on 29-Round PRESENT-128
	Linear Hulls Used in the Attack
	Detailed Key Recovery Procedure

	First Key Recovery Attack on 29-Round PRESENT-80
	Conclusion and Future Work
	Key Schedules of PRESENT
	Proof of Lemma 1
	Relation between Data Complexity and Error Probabilities when c=0 in the Classical Setting
	Discussions on Statistical Models used in DBLP:conf/asiacrypt/Florez-Gutierrez22
	Table Tk used in Attacking 29-round PRESENT-128
	Attack Parameters of Linear Hulls in the 29-Round Attack on PRESENT-128
	Table Tk used in Attacking 29-round PRESENT-80
	Attack Parameters of Linear Hulls in the 29-Round Attack on PRESENT-80
	Fast Walsh Transform Pruned to Affine Subspaces DBLP:conf/asiacrypt/Florez-Gutierrez22

